WorldWideScience

Sample records for fed permanent magnet

  1. Co-Simulation of an Inverter Fed Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Kiss Gergely Máté

    2014-10-01

    Full Text Available Co-simulation is a method which makes it possible to study the electric machine and its drive at once, as one system. By taking into account the actual inverter voltage waveforms in a finite element model instead of using only the fundamental, we are able to study the electrical machine's behavior in more realistic scenario. The recent increase in the use of variable speed drives justifies the research on such simulation techniques. In this paper we present the co-simulation of an inverter fed permanent magnet synchronous machine. The modelling method employs an analytical variable speed drive model and a finite element electrical machine model. By linking the analytical variable speed drive model together with a finite element model the complex simulation model enables the investigation of the electrical machine during actual operation. The methods are coupled via the results. This means that output of the finite element model serves as an input to the analytical model, and the output of the analytical model provides the input of the finite element model for a different simulation, thus enabling the finite element simulation of an inverter fed machine. The resulting speed and torque characteristics from the analytical model and the finite element model show a good agreement. The experiences with the co-simulation technique encourage further research and effort to improve the method.

  2. Comparison of Modulation Techniques for Multilevel Inverter fed Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    V. NAGA BHASKAR REDDY

    2010-10-01

    Full Text Available Multilevel inversion is a power conversion strategy in which the output voltage is obtained in steps thus bringing the output closer to a sine wave and reduces the Total Harmonic Distortion. Multilevel inverter structures have been developed to overcome shortcomings in solid-state switching device ratings so that they can be applied to higher voltage systems. In recent years, the multilevel inverters have drawn tremendous interest in the area of high-power medium-voltage energy control. Three different topologies have been proposed for multilevel inverters like Diode-Clamped Inverter, Capacitor Clamped Inverter and Cascaded Multi cell Inverter. In addition, several modulation and control strategies have been developed or adopted for multilevel inverters including the following multilevel Sinusoidal Pulse Width Modulation (SPWM, and Space Vector Modulation. In this paper, simulation of various modulating techniques i.e., Pulse Width Modulate techniques such as Sinusoidal PWM, Trapezoidal PWM, Stepped PWM, Stair case PWM, third harmonicinjected PWM, Modified SVPWM are applied for both Diode Clamped Three-Level Inverter and Diode Clamped Five-Level Inverter, and Space Vector PWM technique are analyzed for DC3LI. The best modulationtechnique are extended to Permanent Magnet Synchronous Motor.

  3. Characteristics of permanent magnet linear synchronous motor fed by spwm inverter based on field-circuit coupled method

    Institute of Scientific and Technical Information of China (English)

    SI Ji-kai; CHEN Hao; WANG Xu-dong; JIAO Liu-cheng; YUAN Shi-ying

    2008-01-01

    Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter. In air-gap field where the direction or magnitude of the field is changing rapidly, the smallest elements are demanded due to high accuracy to use adaptive meshing technique. The co-simulation was used with the status space functions and time-step finite element functions, in which time-step of the status space functions was the smallest than finite element functions'. The magnitude relation of the normal elec-tromagnetic force and tangential electromagnetic force and the period were attained, and current curve was very abrupt at current zero area due to the bigger resistance and leak-age reactance, including main characteristics of motor voltage and velocity. The simulation results compare triumphantly with the experiments results.

  4. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    OpenAIRE

    Nicolas Denis; Yoshiyuki Kato; Masaharu Ieki; Keisuke Fujisaki

    2016-01-01

    In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but ...

  5. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  6. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    Directory of Open Access Journals (Sweden)

    Nicolas Denis

    2016-05-01

    Full Text Available In this paper, an interior permanent magnet synchronous motor (IPMSM with a stator core made of amorphous magnetic material (AMM is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  7. Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages

    Directory of Open Access Journals (Sweden)

    Borzou Yousefi

    2017-09-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSM have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software.

  8. A New Scheme to Direct Torque Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Sayyed Asghar Gholamian

    2013-07-01

    Full Text Available Multiphase machines have gained an increasing attention due to their more advantages in comparison with three-phase machines. In recent literatures, only voltage source inverters (VSIs have been used to supply five-phase drives. Matrix converters (MCs pose many advantages over conventional VSIs, such as lack of dc-bulk capacitors, high quality power output waveform and higher number of output voltages. Due to some special applications of multiphase machines such as ship propulsion and aerospace, the volume of these drives is an important challenging problem. As a consequence, using MCs can be a reasonable alternative. In this paper, a new direct torque control (DTC algorithm using a three-to-five phase MC is proposed for five-phase permanent magnet synchronous motors (PMSMs. All of output voltage space vectors of three-to-five phase MC are extracted and a new switching table is proposed. Because of higher number of output voltages in MCs, there is a degree of freedom to control input power factor to keep close to unit moreover the torque and flux control. In other words, this proposed method use the advantages of both DTC method and MCs. Simulation results show the effectiveness of presented method in different operation modes.

  9. Permanent magnet design methodology

    Science.gov (United States)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  10. Permanent-Magnet Meissner Bearing

    Science.gov (United States)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  11. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...

  12. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  13. Lodestone: Nature's own permanent magnet

    Science.gov (United States)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  14. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  15. A discrete time model of a power conditioner fed permanent magnet brushless dc motor system for aerospace and electric vehicle applications for design purpose using finite elements for machine parameter determination

    Science.gov (United States)

    Nehl, T. W.

    1980-12-01

    A discrete state space model of a power conditioner fed permanent magnet brushless dc motor for aerospace and electric vehicle applications is developed. The parameters which describe that machine portion of this model are derived from a two dimensional nonlinear magnetic field analysis using the finite element method. The model predicts the instantaneous mechanical and electrical behavior of a prototype electromechanical actuator for possible use on board the shuttle orbiter. The model is also used to simulate the instantaneous performance of an advanced electric vehicle propulsion unit. The results of the computer simulations are compared with experimental test data and excellent agreement between the two is found in all cases.

  16. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  17. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  18. Manganese-based Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Ian Baker

    2015-08-01

    Full Text Available There is a significant gap between the energy product, BH, where B is the magnetic flux density and H is the magnetic field strength, of both the traditional ferrite and AlNiCo permanent magnets of less than 10 MGOe and that of the rare earth magnets of greater than 30 MGOe. This is a gap that Mn-based magnets could potentially, inexpensively, fill. This Special Issue presents work on the development of both types of manganese permanent magnets. Some of the challenges involved in the development of these magnets include improving the compounds’ energy product, increasing the thermal stability of these metastable compounds, and producing them in quantity as a bulk material.[...

  19. Overview on permanent magnetic actuator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Permanent magnetic actuator (PMA), as a new electronic actuator of vacuum circuit breakers, certainly will be used to replace the traditional mechanical actuator. It has such advantages as simple structure, high reliability, free maintenance, and so on. This paper summarizes the development, structure, magnetic analysis, character analysis, and control strategy of PMA, and also predicts the future trend of PMA development

  20. Topology optimized permanent magnet systems

    CERN Document Server

    Bjørk, R; Insinga, A R

    2016-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. First, the Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown, albeit with an increase of 3.8 pp. in field inhomogeneity - a value compared to the inhomogeneity in a 16 segmented Halbach cylinder. Following this a topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111% for the chosen dimensions. Finally, a permanent magnet with alternating high and low field regions is considered. Here a $\\Lambda_\\mathrm{cool}$ figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  1. The cycloid Permanent Magnetic Gear

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Andersen, Torben Ole; Jørgensen, Frank T.

    2008-01-01

    This paper presents a new permanent-magnet gear based on the cycloid gearing principle. which normally is characterized by an extreme torque density and a very high gearing ratio. An initial design of the proposed magnetic gear was designed, analyzed, and optimized with an analytical model...... regarding torque density. The results were promising as compared to other high-performance magnetic-gear designs. A test model was constructed to verify the analytical model....

  2. Permanent magnets including undulators and wigglers

    OpenAIRE

    Bahrdt, J.

    2011-01-01

    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrat...

  3. PERMANENT-MAGNET INDUCTION GENERATORS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    K. S. S. RAMAKRISHNAN

    2011-06-01

    Full Text Available The advantage of using a permanent-magnet induction generator (PMIG instead of a conventional induction generator is its ability to suppress inrush current during system linking when synchronous input is performed. Induction machines excited with permanent-magnet (PM are called permanent-magnet induction generators. This paper presents an exhaustive survey of the literature discussing the classification of permanent-magnet machines, process of permanent-magnet excitation and voltage build-up, modelling, steady-state and performance analysis of the permanent-magnet induction generators.

  4. 21 CFR 886.4445 - Permanent magnet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Permanent magnet. 886.4445 Section 886.4445 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4445 Permanent magnet. (a) Identification. A permanent magnet is a nonelectric device that generates a magnetic field intended to find and remove...

  5. Trans-permanent magnetic actuation

    Science.gov (United States)

    Farmer, Daniel Jay

    The demands for an actuator to deploy, position and shape large spaced-based structures form a unique set of design criteria. In many applications it is desirable to hold displacements or forces between two points to within specified requirements (the regulation problem) and to periodically to change position (the tracking problem). Furthermore, the interest generally lies in satisfying the dynamic performance requirements while expending minimal power, while meeting tight tolerances and while experiencing little wear and fatigue. The actuator must also be able to withstand a variety of operational conditions such as impacts and thermal changes over an extended period of time. Current trends in large-scale structures have addressed the demands by using conventional actuators and motors, along with elaborate linkages or mechanisms to shape, position, protect and deploy. The developed designs use unique characteristics of permanent magnets to create simple direct-acting actuators and motors very suitable for space based structures. The developed trans-permanent magnetic (T-PM) actuators and motors are systems consisting of one or more permanent magnets, some of whose magnetic strengths can be switched on-board by surrounding pulse-coils. The T-PM actuator and motors expend no power during regulation. The T-PM can periodically change or remove the strength of its own magnets thereby enabling both fine-tune adjustments (microsteps) and large-scale adjustments (rotation). The fine (microstep) adjustments are particularly helpful in thermally varying space environments. The large-scale adjustments (rotation) are particularly helpful in deployment where the structure or antenna must experience large-angle rotations and/or large displacements. T-PM concepts are illustrated in direct acting actuators and built into stepper motor and permanent magnet motor applications. Several examples of design, analysis and testing are developed to verify the technology and supporting

  6. Novel Switched Flux Permanent Magnet Machine Topologies

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews various switched flux permanent magnet machines and their design and performance features,with particular emphasis on machine topologies with reduced magnet usage or without using magnet,as well as with variable flux capability.

  7. New permanent magnets; manganese compounds.

    Science.gov (United States)

    Coey, J M D

    2014-02-12

    The exponential growth of maximum energy product that prevailed in the 20th century has stalled, leaving a market dominated by two permanent magnet materials, Nd2Fe14B and Ba(Sr)Fe12O19, for which the maximum theoretical energy products differ by an order of magnitude (515 kJ m(-3) and 45 kJ m(-3), respectively). Rather than seeking to improve on optimized Nd-Fe-B, it is suggested that some research efforts should be devoted to developing appropriately priced alternatives with energy products in the range 100-300 kJ m(-3). The prospects for Mn-based hard magnetic materials are discussed, based on known Mn-based compounds with the tetragonal L10 or D022 structure or the hexagonal B81 structure.

  8. Finite element modeling of permanent magnet devices

    Science.gov (United States)

    Brauer, J. R.; Larkin, L. A.; Overbye, V. D.

    1984-03-01

    New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.

  9. Magnetizing of permanent magnets using HTS bulk magnets

    Science.gov (United States)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  10. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can...

  11. Micromachined permanent magnets and their MEMS applications

    Science.gov (United States)

    Cho, Hyoung Jin

    2002-01-01

    In this research, new micromachined permanent magnets have been proposed, developed and characterized for MEMS applications. In realizing micromachined permanent magnets, a new electroplating technique using external magnetic field and a bumper filling technique using a photolithographically defined mold with resin bonded magnetic particles have been developed. The newly developed micromachining techniques allow thick film-type permanent magnet components to be integrated to magnetic MEMS devices with dimensional control and alignment. Permanent magnet arrays with the dimensions ranging from 30 mum to 200 mum have been developed with an energy density up to 2.7 kJ/m3 in precisely defined forms in the micro scale. For the applications of the permanent magnets developed in this work, three novel magnetic MEMS devices such as a bi-directional magnetic actuator, a magnetically driven optical scanner, and a magnetic cell separator have been successfully realized. After design and modeling, each device has been fabricated and fully characterized. The bi-directional actuator with the electroplated permanent magnet array has achieved bi-directional motion clearly and shown good agreement with the analytical and simulated models. The optical scanner has shown linear bi-directional response under static actuation and stable bi-directional scanning performance under dynamic actuation. As a potential BioMEMS application of the developed permanent magnet, the prototype magnetic cell separator using the electroplated permanent magnet strip array has been proposed and demonstrated for magnetic bead patterning. In conclusion, new thick film-type, electroplated CoNiMnP and epoxy resin bonded Sr-ferrite permanent magnets have been developed and characterized, and then, three new magnetic MEMS devices using the permanent magnets such as a bi-directional magnetic actuator, an optical scanner and a magnetic cell separator have been realized in this research. The new micromachined

  12. Macroscopic Simulation of Isotropic Permanent Magnets

    CERN Document Server

    Bruckner, Florian; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  13. Macroscopic simulation of isotropic permanent magnets

    Science.gov (United States)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  14. resonant inverter supplied interior permanent magnet (ipm)

    African Journals Online (AJOL)

    user

    Permanent Magnet (IPM) or Surface Permanent. Magnet ... desired torque is produced to rotate the motor in the desired ... u axis, and the direct-axis of the rotor is at angle θ from the ..... Based Stator Flux Estimator” International. Journal of ...

  15. Macroscopic Simulation of Isotropic Permanent Magnets

    OpenAIRE

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the...

  16. Permanent Magnetic Bearing for Spacecraft Applications

    Science.gov (United States)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  17. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  18. Design and construction of permanent magnetic gears

    OpenAIRE

    Jørgensen, Frank Thorleif

    2010-01-01

    This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical mechanical gears. The new magnetic gear will have a high torque density1 relationship –high efficiency and are maintenance free. In this project was manufactured two test gears which is tested and verifie...

  19. Permanent Magnet Boosted Modular Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    SZABÓ Loránd

    2016-10-01

    Full Text Available This paper deals with the analyses of a novel motor structure obtained by boosting with permanent magnets a formerly studied modular switched reluctance motor. Upon dynamic simulation results the improvements of the proposed motor are emphasized.

  20. Design and construction of permanent magnetic gears

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif

    This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical...... calculation models for determination of gear output torque from different magnetic gear types are analysed. These analytical calculations models are used together with optimisation tools in order to improve the performance of investigated magnetic gear types. Experimental test gears are designed to validate...... is searched and only a single reference [74] is found and that is why the combination of a cycloidal gear and a magnetic gear are considered as an innovative supplement to magnetic gear technology. A magnetic cycloidal gear is designed with a gearing of 1:21 and a calculated active torque density of 142 [Nm...

  1. Forces Between a Permanent Magnet and a Soft Magnetic Plate

    DEFF Research Database (Denmark)

    Beleggia, Marco; Vokoun, David; De Graef, Marc

    2012-01-01

    Forces between a hard/permanent magnet of arbitrary shape and an ideally soft magnetic plate in close proximity are derived analytically from the image method applied to magnetostatics. We found that the contact force, defined as the force required to detach the hard magnet from the plate......, coincides with that between two identical touching permanent magnets. Furthermore, if the hard and the soft magnets are displaced by some amount, their attraction equals that between two identical permanent magnets displaced by twice that amount. Experimental results are presented that validate...

  2. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim; Zeitler, Benno; Gruener, Florian [University of Hamburg and Center for Free-Electron Laser Science, Hamburg (Germany); Floettmann, Klaus [DESY, Hamburg (Germany); Manz, Stephanie [MPSD, University of Hamburg (Germany)

    2013-07-01

    The Relativistic Electron Gun for Atomic Exploration REGAE is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. Two future experiments at REGAE, an external injection experiment for Laser Wakefield Acceleration (LWA) and a time resolving Transmission Electron Microscopy (TEM) setup, require strong focusing magnets inside the target chamber. Permanent magnetic solenoids can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. Solenoids are fundamentally non-linear focusing elements whose non-linearity is worst for short, strong magnets as required for REGAE. The induced emittance growth is investigated and minimized for different setups with axially and radially magnetized annular magnets. Since permanent magnetic solenoids cannot be switched off but are not needed in every experiment at REGAE, a mechanical lifting-system and a magnetic shielding has to ensure, that the different experiments do not disturb each other.

  3. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  4. Dovetail spoke internal permanent magnet machine

    Science.gov (United States)

    Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Shah, Manoj Ramprasad; VanDam, Jeremy Daniel

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  5. Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue

    2012-01-01

    In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...

  6. Optimally segmented permanent magnet structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector...

  7. Design Study Of Cyclotron Magnet With Permanent Magnet

    Science.gov (United States)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  8. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio of the r......We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio...

  9. Hybrid high gradient permanent magnet quadrupole

    Science.gov (United States)

    N'gotta, P.; Le Bec, G.; Chavanne, J.

    2016-12-01

    This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.

  10. Permanent magnet motor technology design and applications

    CERN Document Server

    Gieras, Jacek F

    2009-01-01

    Demonstrates the construction of permanent magnet (PM) motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This book also supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors.

  11. Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue

    2012-01-01

    In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...... current analysis. The model takes the eddy current effect of PMs into account in determination of the magnetic field in the air-gap and in the magnet regions. The eddy current losses generated in the magnets are properly interpreted. Design improvements for reducing the eddy current losses are suggested...

  12. Permanent magnet design for high-speed superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (5519 S. Bruner, Hinsdale, IL 60521); Uherka, Kenneth L. (830 Ironwood, Frankfort, IL 60423); Abdoud, Robert G. (13 Country Oaks La., Barrington Hills, IL 60010)

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  13. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...... and establish the suitability of the machine for sensorless control using inductance saliency tracking methods. The same electromagnetic behaviour is used in the implementation of a dynamical simulation model of the machine useful for evaluation of sensorless control methods at the control design stage. Further...

  14. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  15. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  16. Magnetic forces between arrays of cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, D.; Tomassetti, G.; Beleggia, Marco

    2011-01-01

    Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...

  17. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  18. A Novel Permanent Magnetic Angular Acceleration Sensor

    OpenAIRE

    Hao Zhao; Hao Feng

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it h...

  19. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  20. Didactic Considerations on Magnetic Circuits Excited by Permanent Magnets

    Science.gov (United States)

    Barmada, S.; Rizzo, R.; Sani, L.

    2009-01-01

    In this paper, the authors focus their attention on the way magnetic circuits and permanent magnets are usually treated in most textbooks and electrical engineering courses. This paper demonstrates how this important topic is too often presented simplistically. This simplistic treatment does not allow the students to develop a complete…

  1. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  2. Forces between permanent magnets: experiments and model

    Science.gov (United States)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  3. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    Science.gov (United States)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  4. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    Science.gov (United States)

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  5. Design of magnet arrays for permanent magnetic linear motor

    Institute of Scientific and Technical Information of China (English)

    Junhong MAO; Junhang LUO; Qiang JIANG; Youbai XIE

    2008-01-01

    An iron-less single side permanent magnetic linear motor structure is presented,and two-dimensional analytical formulae for its magnetic field are deduced to design the types of magnetic arrays,the thickness of permanent magnet,and the duty ratio of magnet arrays,etc.With certain design parameters,conventional arrays are used instead of a piecewise Halbach arrays,and the machining and assembling of the motor are greatly simplified.Calculation results coincide with that of ANSYS.The analytical formulae can be used in designing cored linear motors by modifying boundary conditions.A linear motor driven bench with a single degree of freedom is realized,where the travel reaches 27 mm,the mass of the moving parts is 1.4 kg,and the maximum acceleration iS 11.5 m/s2.

  6. TEM observation of sintered permanent magnetic strontium ferrite

    Institute of Scientific and Technical Information of China (English)

    YU Hongya; LIU Zhengyi; ZENG Dechang

    2006-01-01

    Sintered permanent magnetic strontium ferrites were studied using transmission electron microscopy to investigate the microstructure morphology and its correlation with the magnetic properties. The present study shows that the microstructure of sintered permanent magnetic strontium ferrites is an important parameter in determining their magnetic properties. The microstructure morphology in low-performance ferrite magnet is obviously different from high-performance one. Themagnetic properties of sintered permanent strontium ferrite depend strongly on the orientation degree of strong magnetic crystals. The presence of ferric oxidephase in ferrite magnet can deteriorate the magnetic properties. Moreover, proper quantities of crystal defects are beneficial to high coercive force due to the fixing of magnetic domain.

  7. Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet

    OpenAIRE

    Ohji, T.; Mukhopadhyay, S. C.; Iwahara, Masayoshi; Yamada, Sotoshi

    2000-01-01

    Permanent magnet bearing system utilizes the repulsive forces between the stator and rotor permanent magnets (PM) for the levitation of the system and it results a simplified axial control scheme. A repulsive type magnetic bearing system based on the above principle was fabricated in our laboratory. Material characteristics and the configuration of the permanent magnets are the central component for this type of bearing system. Due to aging or as both the magnets are repelling each other, the...

  8. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  9. Permanent magnetic toroidal drive with half stator

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2017-01-01

    Full Text Available A permanent magnetic toroidal drive with a half stator is proposed that avoids noise and mechanical vibrations. The effects of the system parameters on the output torque of the drive were investigated. A model machine was designed and produced. The output torque and speed fluctuation of the drive system were measured, and the calculated and measured output torque were compared. The tests demonstrated that the drive system could operate continuously without noise, and the system achieved a given speed ratio. The drive system had high load-carrying ability and a maximum output torque of 0.15 N m when certain parameter values were used.

  10. Recent Advances on Permanent Magnet Machines

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.

  11. Strong permanent magnet-assisted electromagnetic undulator

    Science.gov (United States)

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  12. Permanent superconducting magnets for space applications

    Science.gov (United States)

    Weinstein, Roy

    1994-01-01

    Work has been done to develop superconducting trapped field magnets (TFM's) and to apply them to a bumper-tether device for magnetic docking of spacecraft. The quality parameters for TFM's are J(c), the critical current of the superconductor, and d, the diameter of the superconducting tile. During this year we have doubled d, for production models, from 1 cm to 2 cm. This was done by means of seeding, an improved temperature profile in processing, and the addition of 1 percent Pt to the superconductor chemistry. Using these tiles we have set increasing records for the fields' permanent magnets. Magnets fabricated from old 1 cm tiles trapped 1.52 Tesla at 77K, 4.0T at 65K and 7.0T at 55K. The second of these fields broke a 17 year old record set at Stanford. The third field broke our own record. More recently using 2 cm tiles, we have trapped 2.3T at 77K, and 5.3T at 65K. We expect to trap lOT at 55K in this magnet in the near future. We have also achieved increases in J(c) using a method we developed for seeding U-235, and subsequently bombarding with neutrons. This method doubles J(c). We have not yet fabricated magnets from these tiles. During this year we have increased production yields from 15 percent to 95 percent. We have explored the properties of a magnetic bumper-tether for spacecraft. We have measured the bumper forces, and their dependence on time, distance, and the field of the ordinary ferromagnet (used together with a TFM). We have accounted for 85 percent of the collision energy, and its transformation to magnetic energy and heat energy. We have learned to control the relative bumper and tether forces by controlling TFM and ferromagnetic field strengths.

  13. Adjustable permanent magnet assembly for NMR and MRI

    Science.gov (United States)

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  14. Simulation on Magnetic Field Characteristics of Permanent-Magnet Seed-Metering Device

    OpenAIRE

    Wang, Jing; Hu, Jianping; Wang, Qirui; Wang, Xun

    2011-01-01

    Part 1: Simulation, Optimization, Monitoring and Control Technology; International audience; The cylindrical permanent magnet is the core part of the permanent-magnet seed-metering device, it can absorb single magnetic powder coated seed. The first, the magnetic induction intensity model of any point in the cylindrical permanent magnet external was established based on the equivalent current model of permanent magnet. The second, the mathematical formula was derived using the Biot-Savart law ...

  15. Forces between arrays of permanent magnets of basic geometric shapes

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco

    2014-01-01

    We provide formulas for evaluating the magnetic force between two permanent magnet arrays, regularly spaced over a square lattice. We focus on three basic shapes of magnets constituting the arrays: cylinder, sphere and rectangular prism. When the lattice parameter is large, the expressions can...... be used to calculate the force between two single magnets in a computationally efficient way. The calculations are validated experimentally by measuring the attraction force between two single permanent magnets, where we demonstrate a fair agreement within about 15%....

  16. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  17. Main Problems Faced by Chinese RE Permanent Magnetic Industry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Under over 50 years' development, Chinese rare earth magnetic industry developed into the global AINiCo, ferrite permanent magnets and NdFeB magnets manufacturing center, and average consumption of magnets per person in China increased to 1.026 tons in 2003 from 0.217 ton in 1990. Although China has been the large producing country of rare earth permanent magnetic materials, to be the strongest one, there are many problems to solve. Main Problems Faced By Chinese Permanent Magnet Industry

  18. Application of permanent magnets in accelerators and electron storage rings

    Science.gov (United States)

    Halbach, K.

    1985-04-01

    The use of permanent-magnet systems in high-energy accelerators and as sources of synchrotron radiation in electron-storage rings is discussed in a review of recent experimental investigations. Consideration is given to the generic advantages of permanent magnets over electromagnets (higher field strength per magnet size) in small-scale configurations; the magnetic properties of some charge-sheet-equivalent-permanent-magnet materials (CSEMs); and the design of pure-CSEM and CSEM-Fe-hybrid multipole magnetic lenses, dipoles, and undulator/wiggler systems for use in free-electron lasers and the production of elliptically polarized synchrotron light. Drawings and diagrams are provided.

  19. Magnetostatic interactions and forces between cylindrical permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Vokoun, David [Institute of Physics ASCR, v.v.i., Prague (Czech Republic)], E-mail: vokoun@fzu.cz; Beleggia, Marco [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom); Heller, Ludek; Sittner, Petr [Institute of Physics ASCR, v.v.i., Prague (Czech Republic)

    2009-11-15

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  20. Magnetostatic interactions and forces between cylindrical permanent magnets

    Science.gov (United States)

    Vokoun, David; Beleggia, Marco; Heller, Luděk; Šittner, Petr

    2009-11-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  1. Magnetic Performance of a Nanocomposite Permanent Material

    Institute of Scientific and Technical Information of China (English)

    LIU Min; HAN Guang-Bing; GAO Ru-Wei

    2011-01-01

    @@ We build a sandwiched structure model in which the intergranular phase(IP) is homogeneously distributed between soft and hard magnetic grains, and gives a continuously anisotropic expression of the coupling part under the assumption that the IP weakens the intergrain exchange-coupling interaction.Based on the idea that the hardening mechanism is of the pinning type, we calculate the effect of the IP's thickness d and its anisotropy constant K1(0) on the intrinsic coercivity of a nanocomposite permanent material.The calculated results indicate that the domain wall goes twice through irreversible domain wall displacement during the process of moving from soft to hard magnetic grains, and the intrinsic coercivity increases with increasing d, but decreases with increasing K1(0).When d and K1(0) take 2nm and 0.7Kh, respectively, with Kh being the anisotropy constant in the inner part of the hard magnetic grain, the calculated intrinsic coercivity is in good agreement with the experimental data.

  2. Distributed generation induction and permanent magnet generators

    CERN Document Server

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  3. Rotor for a line start permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  4. Analysis of Permanent Magnets Bearings in Flywheel Rotor Designs

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2016-04-01

    Full Text Available This paper discusses analysis of permanent magnet bearing in flywheel rotor designs. This work focuses on the advantages of using permanent magnets in flywheel rotor design as compared to that of the convectional mode of levitating the rotor position. The use of permanent magnet in magnetic bearing design to generate the steady state position of the magnetic field results in less variation of the force exerted on the rotor when it deviates from the nominal position than when an electrical coil is used for the same purpose. Theresults of the analysis shows that the magnetic bearing dynamics as well as its load carryingcapacity improves when the rotor is offset from its central position. The use of permanent magnet compared to current-carrying coils results in smaller overall size of magnetic bearing leading to a more compact system design resulting in improved rotordynamic performance

  5. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  6. Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    CERN Document Server

    Shepherd, Ben; Collomb, Norbert

    2012-01-01

    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory.

  7. A Novel Open-winding Permanent Magnetic Starter-generator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to overcome the difficulties of voltage regulation, narrow speed range and low power factor of the traditional permanent magnetic generator applied in the vehicles, a novel open-winding permanent magnetic starter-generator (see Fig.l) is used to widen the speed range and improve the efficiency in the generation mode.

  8. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    Green Magnet® technology with close to zero electrical power consumption without the need for cooling water saves costs, space and natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. Our first Green Magnet...... coils permit fine tuning of the magnetic field. Magnetic field measurements and thermal stability tests show that the Green Magnet fully meets the magnetic requirements of the previously used electromagnet. A permanent 30° bending dipole is currently being development to demonstrate the use of Green...

  9. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    Green Magnet® technology with close to zero electrical power consumption without the need for cooling water saves costs, space and natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. Our first Green Magnet...... Magnet technology in other accelerator systems like synchrotron light sources and transfer beamlines....

  10. Relativistic Engine Based on a Permanent Magnet

    CERN Document Server

    Tuval, Miron

    2015-01-01

    Newton's third law states that any action is countered by a reaction of equal magnitude but opposite direction. The total force in a system not affected by external forces is thus zero. However, according to the principles of relativity a signal can not propagate at speeds exceeding the speed of light. Hence the action cannot be generated at the same time with the reaction due to the relativity of simultaneity, thus the total force cannot be null at a given time. The following is a continuation of a previous paper \\cite{Tuval} in which we analyzed the relativistic effects in a system of two current conducting loops. Here the analysis is repeated but one of the loops is replaced by a permanent magnet. It should be emphasized that although momentum can be created in the {\\bf material} part of the system as described in the following work momentum can not be created in the {\\bf physical} system, hence for any momentum that is acquired by matter an opposite momentum is attributed to the electromagnetic field.

  11. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  12. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  13. A Novel Permanent Magnetic Angular Acceleration Sensor.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2015-07-03

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  14. Efficient IEC permanent magnet motor; Effizienter IEC Permanent-Magnetmotor (3 kW) - Jahresbericht 2007

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.; Salathe, D.; Biner, H. P.; Evequoz, B.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the Swiss Universities of Applied Sciences in Lucerne and Valais and the Circle Motor Company in 2007 on the economic feasibility, efficiency and limitations of permanent magnet motors. The higher efficiency of permanent-magnet motors in comparison with asynchronous motors for powers of over 100 kW is noted. Work done on the integration of a 3 kW permanent-magnet motor in an IEC-Standard housing is described. The construction of an efficient permanent magnet motor drive and its testing at the Valais University of Applied Sciences is discussed. The high efficiencies obtained both for the motor and its drive electronics are noted.

  15. Research on Magnetic Model of Low Resistance Permanent Magnet Pipe Belt Conveyor

    Science.gov (United States)

    Wang, Shuang; Li, De-yong; Guo, Yong-cun

    2016-09-01

    In view of the feasibility of a new type of low resistance permanent magnet pipe belt conveyor, the magnetic properties of the permanent magnet magnetic pipe conveyor belt system are studied. Based on the molecular current hypothesis, the mathematical model of the three dimensional radial magnetic force of permanent magnet pipe conveyor belt was established. The mathematical model of the radial magnetic force was derived, and the influence factors of the radial magnetic force were derived. The finite element simulation of permanent magnet-magnetic pipe conveyor belt magnetic model was carried out, then the magnetic flux density distribution chart under the conditions of different remanence intensity of different permanent magnet and different lengths of the permanent magnets (along the transport direction) were obtained. The simulation results are consistent with the calculation results, which shows that the permanent magnet pipe belt conveyor is feasible. Under certain conditions, the radial magnetic force has nonlinear increase relations with residual magnetism of permanent magnet and the length of the permanent magnet (along the transport direction).

  16. Globally Optimal Segmentation of Permanent-Magnet Systems

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective...... functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments...

  17. Permanent magnet microstructures using dry-pressed magnetic powders

    Science.gov (United States)

    Oniku, Ololade D.; Bowers, Benjamin J.; Shetye, Sheetal B.; Wang, Naigang; Arnold, David P.

    2013-07-01

    This paper presents microfabrication methods and performance analysis of bonded powder permanent magnets targeting dimensions ranging from 10 µm to greater than 1 mm. For the structural definition and pattern transfer, a doctor blade technique is used to dry press magnetic powders into pre-etched cavities in a silicon substrate. The powders are secured in the cavities by one of the three methods: capping with a polyimide layer, thermal reflow of intermixed wax-binder particles, or conformal coating with a vapor-deposited parylene-C film. A systematic study of micromagnets fabricated using these methods is conducted using three different types of magnetic powders: 50 µm Nd-Fe-B, 5 µm Nd-Fe-B and 1 µm barium ferrite powder. The isotropic magnets are shown to exhibit intrinsic coercivities (Hci) as high as 720 kA m-1, remanences (Br) up to 0.5 T and maximum energy products (BHmax) up to 30 kJ m-3, depending on the magnetic powder used. Process compatibility experiments demonstrate the potential for the magnets to withstand typical microfabrication chemical exposure and thermal cycles, thereby facilitating their integration into more complex process flows. The remanences are also characterized at elevated temperatures to determine thermal sensitivities and maximum operating temperature ranges.

  18. Iron free permanent magnet systems for charged particle beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  19. Fracture in sintered Sm-Co permanent magnetic materials

    Institute of Scientific and Technical Information of China (English)

    LI; Anhua(李安华); DONG; Shengzhi(董生智); LI; Wei(李卫)

    2003-01-01

    The bending strength and fracture toughness of sintered Sm-Co permanent magnetic materials are measured. A scanning electron microscope equipped with an energy dispersive X-ray analysis system is employed to investigate the bending fractography. The fracture behavior and micromechanism are discussed. The fracture behavior of sintered Sm-Co permanent magnetic materials exhibits cleavage fracture. Some Sm-rich impurities are found in fracture plane, suggesting that the Sm-rich impurities help reduce the cleavage brittleness of sintered Sm-Co permanent magnetic materials. The possible methods for improving the strength and toughness are also proposed.

  20. Multipactor Mitigation in Coaxial Lines by Means of Permanent Magnets

    CERN Document Server

    Gonzalez-Iglesias, D; Anza, S; Vague, J; Gimeno, B; Boria, V E; Raboso, D; Vicente, C; Gil, J; Caspers, F; Conde, L

    2014-01-01

    The main aim of this paper is the analysis of the feasibility of employing permanent magnets for the multipactor mitigation in a coaxial waveguide. First, the study of a coaxial line immersed in a uniform axial magnetic field shows that multipactor can be suppressed at any RF frequency if the external magnetic field is strong enough. Both theoretical simulations and experimental tests validate this statement. Next, multipactor breakdown of a coaxial line immersed in a hollow cylindrical permanent magnet is analyzed. Numerical simulations show that multipactor can be suppressed in a certain RF frequency range. The performed experimental test campaign demonstrates the capability of the magnet to avoid the multipactor electron multiplication process.

  1. On the Motion of the Field of a Permanent Magnet

    Science.gov (United States)

    Leus, Vladimir; Taylor, Stephen

    2011-01-01

    A description is given of a series of recent experiments using a rotating magnetic circuit comprising a permanent magnet ring and yoke, and a stationary conductor in the air gap between the ring and yoke. The EMF induced in this case cannot be described by a simple application of Faraday's flux law. This is because the magnetic flux in the air gap…

  2. Fully permanent magnet atom chip for Bose-Einstein condensation

    NARCIS (Netherlands)

    T. Fernholz; R. Gerritsma; S. Whitlock; I. Barb; R.J.C. Spreeuw

    2008-01-01

    We describe a proof-of-principle experiment on a fully permanent magnet atom chip. We study ultracold atoms and produce a Bose-Einstein condensate. The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectr

  3. Wide gap, permanent magnet biased magnetic bearing system

    Science.gov (United States)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  4. Single Phase Permanent Magnet Low Speed Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Gao Lianxue

    2013-04-01

    Full Text Available In order to acquire a better cognition to the single phase permanent magnet low speed synchronous motor and validate the correctness of the motor mathematical model, the performances of the motor are tested with the single phase permanent magnet low speed synchronous motor whose type is 70TDY4, the corresponding simulations are done too. The resistance and the inductance of the single phase permanent magnet low speed synchronous motor are measured. According to the data of experiments and simulations, the static characteristics of the single phase permanent magnet low speed synchronous motor with the changes of the phase shift resistance and the phase shift capacitance are analysed, the results of experiments and simulations prove the correctness of the mathematics model.

  5. Design of Permanent Magnet Synchronous Generators for Wave Power Generation

    Institute of Scientific and Technical Information of China (English)

    方红伟; 王丹

    2016-01-01

    In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embed-ded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coeffi-cient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.

  6. Passive control of Permanent Magnet Synchronous Motor chaotic systems

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Jia-jun; ZHAO Guang-zhou

    2005-01-01

    Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.

  7. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    OpenAIRE

    Li Hai Xia; Cao Yang

    2016-01-01

    This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  8. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    Directory of Open Access Journals (Sweden)

    Li Hai Xia

    2016-01-01

    Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  9. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  10. Two cylinder permanent magnet stirrer for liquid metals

    Science.gov (United States)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  11. Permanent magnet with MgB2 bulk superconductor

    Science.gov (United States)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-01

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

  12. Contribution to permanent magnet excited dc linear actuators

    Energy Technology Data Exchange (ETDEWEB)

    Okonkwo, R.C.; Hanitsch, R. [Technische Univ. Berlin (Germany)

    1998-07-01

    In this paper an efficient method for the computation of magnetic fields and forces in dc linear actuators built with Sm{sub 2}Co{sub 17} - permanent magnet is presented. The results obtained show good agreement with measurements. (orig.)

  13. Variable-period permanent-magnet helical undulator

    OpenAIRE

    Jungho Mun; Young Uk Jeong; Vinokurov, Nikolay A.; Kitae Lee; Kyu-Ha Jang; Seong Hee Park; Min Yong Jeon; Sang-In Shin

    2014-01-01

    We realized a variable-period permanent-magnet helical undulator with high (∼1  T) field amplitude, which is almost constant over undulator periods of 23–26 mm. Each undulator period has four modular sections of iron poles and permanent magnets embedded in nonmagnetic disks with holes along the undulator axis. Modular plates undergo a longitudinal repulsive force from the magnetic field pressure and the spring coils between modular plates. The undulator period can thus be controlled by mechan...

  14. Bonded permanent magnets: Current status and future opportunities (invited)

    Science.gov (United States)

    Ormerod, John; Constantinides, Steve

    1997-04-01

    Permanent magnets play a vital role in modern society as a component in a wide range of devices utilized by many industries and consumers. In 1995, the world production of permanent magnets was estimated to be valued at 3.6 billion and growing at an annual rate of 12%. Bonded permanent magnets are the fastest growing segment of this market. Bonded magnet technology enables a wide variety of magnetic powders to be combined with several polymer and binder systems to produce magnetic components utilizing several processing options. In this article, we review the development of bonded magnet technology. The major classes of magnetic powders, binder systems, and processing technologies are described. Recent developments in magnetic material grades, e.g., anisotropic NdFeB, rare earth lean NdFeB, SmFe(N,C) are outlined. The current status of processing and binder options aimed at increasing the upper application temperature limit of these materials is highlighted. Finally, the improvements and future opportunities for bonded magnets are discussed.

  15. System Cost Analysis for an Interior Permanent Magnet Motor

    Energy Technology Data Exchange (ETDEWEB)

    Peter Campbell

    2008-08-01

    The objective of this program is to provide an assessment of the cost structure for an interior permanent magnet ('IPM') motor which is designed to meet the 2010 FreedomCAR specification. The program is to evaluate the range of viable permanent magnet materials for an IPM motor, including sintered and bonded grades of rare earth magnets. The study considers the benefits of key processing steps, alternative magnet shapes and their assembly methods into the rotor (including magnetization), and any mechanical stress or temperature limits. The motor's costs are estimated for an annual production quantity of 200,000 units, and are broken out into such major components as magnetic raw materials, processing and manufacturing. But this is essentially a feasibility study of the motor's electromagnetic design, and is not intended to include mechanical or thermal studies as would be done to work up a selected design for production.

  16. Lunar magnetic field - Permanent and induced dipole moments

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  17. Design and characterization of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, M., E-mail: max.hachmann@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Flöttmann, K. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Gehrke, T. [Deutsches Krebsforschungszentrum DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Mayet, F. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany)

    2016-09-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations. - Highlights: • presenting a two-ring radially magnetized permanent magnetic solenoid design. • development of a analytical field description and field quality factor. • development of a sorting algorithm for permanent magnetic pieces to form a magnet. • performing a high-precision field measurement of a high gradient field.

  18. Design, manufacture and measurements of permanent dipole magnets for DIRAC

    CERN Document Server

    Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D

    2013-01-01

    The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.

  19. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  20. Effect of permanent-magnet irregularities in levitation force measurements

    Science.gov (United States)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  1. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  2. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  3. Dynamic Analysis of Permanent Magnet Synchronous Generator with Power Electronics

    Directory of Open Access Journals (Sweden)

    OZCIRA, S.

    2010-05-01

    Full Text Available Permanent magnet DC motor-generators (PMDC, PMSG have been widely used in industrial and energy sectors recently. Power control of these systems can be achieved by controlling the output voltage. In this study, PMDC-PMSG systems are mathematically modeled and simulated in MATLAB and Simulink software. Then the results are discussed. A low power permanent magnet synchronous generator is driven by a permanent magnet DC motor and the output voltage is controlled by a frequency cycle-converter. The output of a half-wave uncontrolled rectifier is applied to an SPWM inverter and the power is supplied to a 300V, 50Hz load. The load which is connected to an LC filter is modeled by state-space equations. LC filter is utilized in order to suppress the voltage oscillations at the inverter output.

  4. Asynchronous slip-ring motor synchronized with permanent magnets

    Directory of Open Access Journals (Sweden)

    Glinka Tadeusz

    2017-03-01

    Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.

  5. Proposal of Permanent Magnet Repulsive Maglev Transportation System

    Science.gov (United States)

    Moriyama, Shin-Ichi

    This paper describes a maglev transportation system for automobile. The track is an array of permanent magnet blocks, and the levitating body is the bedplate which consists of permanent magnet plates, propulsion coils, levitation coils and guidance coils. The feature of this system is that the automobile equipped with the bedplate is free to approach into the track or to swerve from the track by using four wheels with the lift. The force acting on the levitating body is calculated on the assumption that each permanent magnet can be expressed as a surface current. From the calculation results, it is proven that the automobile of 4.35m length, 1.8m width and 1700kg weight can run at speed of 500km/h against the air resistance force of 3704N on the condition that the battery has an output of 337.5V and a capacity of 190Ah.

  6. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  7. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  8. Analysis and Design of Hybrid Excitation Permanent Magnet Synchronous Generators

    Institute of Scientific and Technical Information of China (English)

    JIN Wan-bing; ZHANG Dong; AN Zhong-liang; TAN Ren-yuan

    2006-01-01

    On the basis of a conventional permanent magnet (PM) synchronous generator's construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator (HEPMSG) is introduced by inserting exciting winding in the stator or rotor.Firstly,the construction of HEPMSG is improved with the addition of PM excitation on the ferromagnetic pole,and its working principle and design method are studied in detail.Then,an appropriate exciting current control system is presented considering the characteristics of HEPMSG.Finally,a prototype is made,and test results confirm the analysis and design.

  9. Motor Integrated Permanent Magnet Gear in a Battery Electrical Vehicle

    DEFF Research Database (Denmark)

    Frandsen, Tommy; Mathe, Laszlo; Berg, Nick Ilsø

    2015-01-01

    This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV) and the......This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV...

  10. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  11. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Directory of Open Access Journals (Sweden)

    Jikai Si

    2014-01-01

    Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  12. Design and analysis of tubular permanent magnet linear wave generator.

    Science.gov (United States)

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  13. Some Character of Application of Nd-Fe-B Permanent Magnet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The character of application of Nd-Fe-B permanent magnet is characterized in an irreversible loss of magnetic flux in the various environment conditions. According to the size of permanent magnet in the various environment conditions the irreversible loss of the permanent magnets is very different. Therefore, the irreversible loss and the application method according to the size of permanent magnets and the intervals in the magnetic system are discussed.

  14. A modified Rogowski coil for measurements of hybrid permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.

    1996-08-01

    For large permanent magnets, as proposed for the Fermilab Recycler Ring, it may be important to quickly verify that the magnet`s strength is correct. This may be important, for example, if a magnet is suspected of having changed due to some sort of accident. The field strength of a pure dipole can be readily measured with a Hall probe, but for indexed dipoles and for quadrupoles a Hall probe will not give very accurate results without precise positioning. We have investigated a different approach, the use of a modified Rogowski coil to measure the magnetic potential of each pole. As long as magnet geometry is fixed and known, measurement of the magnetic potential at each pole gives a good measurement of field strength even for magnets with large quadrupole components. The construction and use of such a coil and the precision of measurements made with it will be discussed. 4 refs., 5 figs.

  15. CALCULATION OF INDUCTANCE OF THE INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    Phyong Le Ngo

    2017-01-01

    Full Text Available Interior permanent magnet synchronous motor (IPMSM refers to salient-pole synchronous motors, characterized by inequality of inductances of longitudinal (d and transverse (q axes. Electromagnetic torque of IPMSM consists of two components: active torque and reactive torque; the latter depends on inductances of d and q axes. An analytical method to calculate own inductances and mutual inductances of a three-phase IPMSM is presented. Distributed windings of the stator are substituted by equivalent sine distributed windings. An interior permanent magnets rotor is substituted by an equivalent salient-pole rotor. Sections of a magnetic circuit comprising interior permanent magnets, air barriers and steel bridges are substituted by equivalent air-gap. The expressions of the magnetic induction created by current of the stator windings at each point of the air gap as well as of magnetic flux linkage of the stator windings have been obtained. The equations of the self-inductances of phases A, B, C, and of inductance of mutual induction are determined from magnetic flux linkage. The inductance of the d and q axes have been obtained as a result of transformation of the axes abc–dq. The results obtained with the use of the proposed analytical method and the finite element method are presented in the form of a graph; the calculations that have been obtained by these two methods were compared. 

  16. Performance characterization of a permanent-magnet helicon plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod

    2012-10-01

    Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.

  17. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper both the technologies are combined with the aim of developing a new kind of hybrid permanent magnetic - gas bearing. This new kind of machine is intended to exploit the benefits of the two technologies while minimizing their drawbacks. The poor start-up and low speed operation performance...... of the gas bearing is balanced by the properties of the passive magnetic one. At high speeds the dynamic characteristics of the gas bearing are improved by offsetting the stator ring of the permanent magnetic bearing. Furthermore this design shows a kind of redundancy, which offers soft failure properties...

  18. Optimal Design Solutions for Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    POPESCU, M.

    2011-11-01

    Full Text Available This paper presents optimal design solutions for reducing the cogging torque of permanent magnets synchronous machines. A first solution proposed in the paper consists in using closed stator slots that determines a nearly isotropic magnetic structure of the stator core, reducing the mutual attraction between permanent magnets and the slotted armature. To avoid complications in the windings manufacture technology the stator slots are closed using wedges made of soft magnetic composite materials. The second solution consists in properly choosing the combination of pole number and stator slots number that typically leads to a winding with fractional number of slots/pole/phase. The proposed measures for cogging torque reduction are analyzed by means of 2D/3D finite element models developed using the professional Flux software package. Numerical results are discussed and compared with experimental ones obtained by testing a PMSM prototype.

  19. Rational design of the exchange-spring permanent magnet.

    Science.gov (United States)

    Jiang, J S; Bader, S D

    2014-02-12

    The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.

  20. The permanent and induced magnetic dipole moment of the moon

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.

    1974-01-01

    Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.

  1. Investigation Procedure of Magnetic Performances of NdFeB Permanent Magnets

    DEFF Research Database (Denmark)

    Calin, Marius-Daniel; Helerea, Elena; Ritchie, Ewen

    2011-01-01

    The permanent magnet applications based on carbon steel magnets, hard ferrites and AlNiCo magnets classes are renewed with new classes of advanced magnetic materials based on rare earth elements, the Sm-Co and NdFeB types. Performance increase of the hard magnetic materials and their use...... in specific applications impose also great advances in the field of magnetic measurement. New researches need to be validated in order to investigate the NdFeB permanent magnets performances, including their stability under different thermal operational regimes. In this paper a specific investigation...... procedure of magnetic performances of NdFeB permanent magnets in correlation with the range of operating temperature is proposed based on modern hysteresisgraph method and impulse magnetization technique....

  2. Preferred Orientation in Nanocomposite Permanent Magnet Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Melt-spun (Nd11.4Fe82.9B5.7)0.99M1 ribbons (M=Zr, Nb, Ga, Zr+Ga, Nb+Ga) were prepared by melt-spinning technique. Ga addition is found to be effective for the orientation of c-axis of Nd2Fe14B grains perpendicular to the ribbon plane. Better magnetic properties can be achieved by adding both the two kinds of elements Zr+Ga, Nb+Ga, and it is found that the preferred orientation is further improved. The alignment degree changes with ribbon thickness and is highest when ribbon thickness is 120 μm. Heat treatment can improve the texture degree, but lead to coarser grains. Cryogenic treatment is first applied for the treatment of nanocomposite Nd2Fe14B/α-Fe melt-spun ribbons. The effects on magnetic properties and texture degree of nanocomposite magnets after cryogenic treatment were studied. The result shows that cryogenic treatment is beneficial to the enhancement of texture degree of melt-spun ribbon and the grain size has no obvious change.

  3. Asymmetric Circuit Models and Parameter Measurement for PermanentMagnet Linear Synchronous Motor Considering Inductance Harmonics and Saliency

    Science.gov (United States)

    Yamamoto, Shu; Yamaguchi, Tomonobu; Hirahara, Hideaki; Ara, Takahiro

    This paper presents asymmetric circuit models and an inductance parameter measurement method for Permanent Magnet Linear Synchronous Motors (PMLSMs). The reason why the tested PMLSM with surface permanent magnet structure exhibits both asymmetry and salient pole natures is investigated. Asymmetric circuit models considering the saliency and inductance harmonic effects are discussed for PMLSM fed by three-phase three-wire power source systems. All fundamental and harmonic inductance parameters are easily determined by a standstill test using a single-phase commercial source. Experimental and simulation results on a single-sided PMLSM with a 3-phase, 4-pole and 14-slot mover demonstrate the validity of the proposed method.

  4. Study of a Mini-Actuator with Permanent Magnets

    Directory of Open Access Journals (Sweden)

    PETRESCU, C.

    2009-10-01

    Full Text Available The paper presents an analytical method for the determination of the magnetic force produced by a mini - actuator with permanent magnets. The results are compared with those obtained by performing a numerical field analysis with COMSOL Multiphysics, showing a very good agreement. The study reveals that the actuator has two equilibrium points, one of which is stable and the other one unstable.

  5. Structural looseness investigation in slow rotating permanent magnet generators

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted;

    2016-01-01

    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...

  6. The permanent magnet propulsion motor: from infancy to adolescence

    Energy Technology Data Exchange (ETDEWEB)

    Voyce, J.E. [Royal Navy (United Kingdom); Husband, S.M. [Rolls-Royce Strategic Research Centre (United Kingdom); Mattick, D.J. [Rolls-Royce Marine (United Kingdom)

    2000-07-01

    This paper presents an update on the Permanent Magnet Propulsion Motor (PMPM) Technical Demonstrator Programme (TDP). It looks at the history behind the TDP before concentrating on the design and development of the motor. The paper highlights the manufacturing processes involved in building such a novel design, and the motor testing programme, both complete and forthcoming at the time of writing the paper. (authors)

  7. Design Considerations of Permanent Magnet Transverse Flux Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    Permanent magnet transverse flux machine (PMTFM) is well known for its high torque density and is interested in various direct-drive applications. Due to its complicated 3-D flux components, design and design optimization of a PMTFM is more difficult and time consuming than for radial flux...

  8. Compact ECR ion source with permanent magnets for Carbon therapy

    NARCIS (Netherlands)

    Muramatsu, M; Kitagawa, A; Sakamoto, Y; Sato, Y; Yamada, S; Ogawa, H; Drentje, AG; Biri, S; Yoshida, Y

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets

  9. Modeling of Exterior Rotor Permanent Magnet Machines with Concentrated Windings

    NARCIS (Netherlands)

    Vu Xuan, H.

    2012-01-01

    In this thesis modeling, analysis, design and measurement of exterior rotor permanent magnet (PM) machines with concentrated windings are dealt with. Special attention is paid to slotting effect. The PM machine is integrated in flywheel and used for small-scale ship application. Analytical model and

  10. Combinatorial investigation of rare-earth free permanent magnets

    Science.gov (United States)

    Fackler, Sean Wu

    The combinatorial high throughput method allows one to rapidly study a large number of samples with systematically changing parameters. We apply this method to study Fe-Co-V alloys as alternatives to rare-earth permanent magnets. Rare-earth permanent magnets derive their unmatched magnetic properties from the hybridization of Fe and Co with the f-orbitals of rare-earth elements, which have strong spin-orbit coupling. It is predicted that Fe and Co may also have strong hybridization with 4d and 5d refractory transition metals with strong spin-orbit coupling. Refractory transition metals like V also have the desirable property of high temperature stability, which is important for permanent magnet applications in traction motors. In this work, we focus on the role of crystal structure, composition, and secondary phases in the origin of competitive permanent magnetic properties of a particular Fe-Co-V alloy. Fe38Co52V10, compositions are known as Vicalloys. Fe-CoV composition spreads were sputtered onto three-inch silicon wafers and patterned into discrete sample pads forming a combinatorial library. We employed highthroughput screening methods using synchrotron X-rays, wavelength dispersive spectroscopy, and magneto-optical Kerr effect (MOKE) to rapidly screen crystal structure, composition, and magnetic properties, respectively. We found that in-plane magnetic coercive fields of our Vicalloy thin films agree with known bulk values (300 G), but found a remarkable eight times increase of the out-of-plane coercive fields (˜2,500 G). To explain this, we measured the switching fields between in-plane and out-of-plane thin film directions which revealed that the Kondorsky model of 180° domain wall reversal was responsible for Vicalloy's enhanced out-of-plane coercive field and possibly its permanent magnetic properties. The Kondorsky model suggests that domain-wall pinning is the origin of Vicalloy's permanent magnetic properties, in contrast to strain, shape, or

  11. Performance Comparison of Permanent Magnet Linear Actuators of Different Mover Types

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Hinov, K.; Yatchev, I.

    2006-01-01

    A comparative study of permanent magnet linear actuators with different location of the permanent magnet is reported. Three mover types are considered - soft magnetic mover, permanent magnet mover and hybrid mover. Force-stroke characteristics are obtained with the help of finite element models...

  12. Permanent magnet motor drives with switched stator windings

    Energy Technology Data Exchange (ETDEWEB)

    Nipp, E.

    1999-06-01

    Permanent magnet (PM) motors are today regarded as an interesting solution for a wide range of inverter-fed variable-speed drives. The generally increased interest in these motors has led to many investigations on their feasibility for vehicle propulsion. Consequently, they are also of interest for traction applications which led to the research project that is presented in this thesis. The most important advantages that are expected in comparison to the state of the art asynchronous motors are lower losses and a higher torque density. Often the field weakening speed range is important, but difficult to obtain with PM machines because the inductance in the direction of the magnetization tends to be low. An alternative can be to switch different coils groups of the stator winding into different configurations. This is the central topic of this thesis. Various aspects of the design of PM motor drives are considered with special attention to the requirements for the application of the switched winding concept. The studies were thereby limited to the inner rotor, radial flux topology. It was found that two winding parts per phase, implying four different winding connections, is the only interesting solution. An advantage of switched windings is that the internal voltage of the machine will never exceed the maximum inverter output, which increases the operation safety. Furthermore the machine design can uncompromisingly be optimized for operation below base speed, which means low inductances implying a large air gap length and thick magnets. A problem with switched windings is that circulating currents can occur. To diminish them, a 2/3 magnet covering of the pole surface must be chosen in combination with a non-salient rotor. Moreover it was found that the eddy current losses in the magnets can reach non-negligible levels and must be considered when designing a drive system. The major drawback of switched stator windings is probably the occurrence of torque

  13. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    Science.gov (United States)

    Hull, J. R.; Rossing, T. D.; Mulcahy, T. M.; Uherka, K. L.

    1992-10-01

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss 'coefficient of friction' for thrust bearings of this type can be as low as 8 x 10(exp -6). While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K (Delta B)(sup 3)/J(sub c) where K is a geometric coefficient, Delta B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J(sub c) is the critical current density of the HTS. It is clear that a small decrease in Delta B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of Delta B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing Delta B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  14. Rotating permanent magnet excitation for blood flow measurement.

    Science.gov (United States)

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  15. A Practical Permanent Magnetic Motor Drive for Hybrid Motorcycle

    Institute of Scientific and Technical Information of China (English)

    崔巍; 江建中; 邵定国; 杨斌

    2003-01-01

    A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directional operation characteristic of motorcycle and effectively suppresses the distortion of air-gap magnetic field caused by armature reaction. Hence the torque ripple is reduced. A drive system consisting of the newly-designed Nd-Fe-B permanent magnet synchronous motor and parallel-MOSFET threephase inverter for hybrid motorcycle propulsion is established. Wide-range speed operation is realized through a simple and novel control strategy. Computer simulation is described and experimental results given to verify the practicality of the proposed motor design and control strategy.

  16. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field.

    Science.gov (United States)

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L; Miloushev, Vesselin; Poot, Alex J; Truong, Steven; Alvarez, Julio A; Aldeborgh, Hannah N; Keshari, Kayvan R

    2016-09-06

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting (13)C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.

  17. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field

    Science.gov (United States)

    Tee, Sui Seng; Digialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L.; Miloushev, Vesselin; Poot, Alex J.; Truong, Steven; Alvarez, Julio A.; Aldeborgh, Hannah N.; Keshari, Kayvan R.

    2016-09-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.

  18. Bearingless Permanent Magnet Synchronous Motor using Independent Control

    Directory of Open Access Journals (Sweden)

    Normaisharah Mamat

    2015-06-01

    Full Text Available Bearingless permanent magnet synchronous motor (BPMSM combines the characteristic of the conventional permanent magent synchronous motor and magnetic bearing in one electric motor. BPMSM is a kind of high performance motor due to having both advantages of PMSM and magnetic bearing with simple structure, high efficiency, and reasonable cost. The research on BPMSM is to design and analyse BPMSM by using Maxwell 2-Dimensional of ANSYS Finite Element Method (FEM. Independent suspension force model and bearingless PMSM model are developed by using the method of suspension force. Then, the mathematical model of electromagnetic torque and radial suspension force has been developed by using Matlab/Simulink. The relation between force, current, distance and other parameter are determined. This research covered the principle of suspension force, the mathematical model, FEM analysis and digital control system of bearingless PMSM. This kind of motor is widely used in high speed application such as compressors, pumps and turbines.

  19. Development of permanent magnetic refrigerator at room temperature

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiaohong; LIU Jinrong; JIN Peiyu; YAN Hongwei; QIU Jufeng; XU Laizi; ZHANG Jiuxing

    2006-01-01

    A reciprocating magnetic refrigerator was developed based on the active magneticregeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5- 2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magneticfield space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.

  20. Study of Permanent Magnet Focusing for Astronomical Camera Tubes

    Science.gov (United States)

    Long, D. C.; Lowrance, J. L.

    1975-01-01

    A design is developed of a permanent magnet assembly (PMA) useful as the magnetic focusing unit for the 35 and 70 mm (diagonal) format SEC tubes. Detailed PMA designs for both tubes are given, and all data on their magnetic configuration, size, weight, and structure of magnetic shields adequate to screen the camera tube from the earth's magnetic field are presented. A digital computer is used for the PMA design simulations, and the expected operational performance of the PMA is ascertained through the calculation of a series of photoelectron trajectories. A large volume where the magnetic field uniformity is greater than 0.5% appears obtainable, and the point spread function (PSF) and modulation transfer function(MTF) indicate nearly ideal performance. The MTF at 20 cycles per mm exceeds 90%. The weight and volume appear tractable for the large space telescope and ground based application.

  1. Pure-type superconducting permanent-magnet undulator.

    Science.gov (United States)

    Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo

    2005-07-01

    A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.

  2. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    Science.gov (United States)

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  3. Development of a miniature permanent magnetic circuit for nuclear magnetic resonance chip

    Science.gov (United States)

    Lu, Rongsheng; Yi, Hong; Wu, Weiping; Ni, Zhonghua

    2013-07-01

    The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff's law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.

  4. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    Science.gov (United States)

    Roesler, Alexander W.; Christenson, Todd R.

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  5. Performance of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C; Kangas, Kenneth; Spencer, Cherrill M; Volk, James T

    2005-01-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic centerline and field quality made using an air bearing rotating coil system. The magnetic centerline stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic centerline. Calibration procedures as well as centerline measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  6. Quantum Hall effect in epitaxial graphene with permanent magnets

    Science.gov (United States)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  7. Improved Nonambipolar Electron Source Operation with Permanent Magnets

    Science.gov (United States)

    Gudmundson, Jesse; Hershkowitz, Noah

    2008-11-01

    The Nonambipolar Electron Source (NES) is a Radio Frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface. All electrons are extracted at an electron sheath through a biased ring and all ions are lost radially to a biased Faraday shield. An electromagnet in the original NES has been replaced by a NdFeB permanent magnet array. A portion of the magnet array consists of a ring of radially aligned magnets followed by a ring of axially aligned magnets that produce a peak field of approximately 800 Gauss. Axial magnetic field strength at the extraction ring was increased using an additional ring of axially aligned magnets. Measurement of the magnetic field was in good agreement with field predicted by the FEMM (Finite Element Method Magnetics) code. Optimization of the single turn antenna and biased ring position in the magnetic field will be discussed. At least 15 A of electron current was extracted using a flow rate of 15 sccm Ar at 600 W of rf power at 13.56 MHz. For comparison, the original NES required 1200 W of power to achieve 15 A of extracted current. Compared to the previous coil design, the NdFeB magnets are lighter weight and require no power.

  8. Sensorless operation of surface mount permanent magnet AC (PMAC) motors

    Energy Technology Data Exchange (ETDEWEB)

    Toliyat, H.A.; Rahman, K.M.; Shet, D.S.

    1999-12-01

    A sensorless field oriented control scheme for surface mount permanent magnet ac (PMAC) motor with split phase stator windings is presented. This motor is obtained by splitting the phase windings of a conventional three phase motor. The six-phase motor, however is run as a three-phase motor by connecting the split phase stator windings in series, while the taps are made available for voltage measurements. By measuring the terminal voltages and the line currents, absolute position of the permanent magnet ac motor driven by a current regulated PWM inverter with a hysteresis controller is estimated. The estimated position information is independent of the stator resistance, thus this scheme is even applicable at low speeds. Results are presented to show the effectiveness of the new controller, and it is also shown that the position error is negligible.

  9. FUZZY FAULT DETECTION FOR PERMANENT MAGNET SYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    N. Selvaganesan

    2011-07-01

    Full Text Available Faults in engineering systems are difficult to avoid and may result in serious consequences. Effective fault detection and diagnosis can improve system reliability and avoid expensive maintenance. In this paper fuzzy system based fault detection scheme for permanent magnet synchronous generator is proposed. The sequence current components like positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. Also, the fuzzy inference system is created and rule base is evaluated, relating the sequence current component to the type of faults. These rules are fired for specific changes in sequence current component and the faults are detected. The feasibility of the proposed scheme for permanent magnet synchronous generator is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.

  10. A New Torque Control System of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Evstratov Andrey

    2017-01-01

    Full Text Available The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov’s second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics.

  11. Study on cogging force of permanent magnet linear synchronous motor

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Xuan-feng; YUAN Shi-ying; LI Qing-fu

    2005-01-01

    Presented the methods to obtain the cogging force of permanent magnet linear synchronous motors(PMLSMs), analyzed the characteristics of the cogging force,and provided a basis for reducing the effect of the cogging force. 2-dimensional finite element method(2D FEM) was used to solve the whole motor when its mover was at different position, so that the relation was derived between the cogging force and the mover position. The analysis results show that the cogging force between the two ends of the primary iron-core and the secondary permanent magnets (PMs) is sinusoidal function of the mover position under certain conditions only. Two proposed methods,namely direct and indirect methods, are applied to calculate the cogging force between the primary iron-core teeth and the secondary PMs. The agreement of the two methods is validated.

  12. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  13. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  14. Cogging torque reduction for interior permanent magnet synchronous motors

    OpenAIRE

    Tost Candel, Miquel

    2015-01-01

    Interior permanent magnet synchronous machines show a good range of behaviours, which make these kinds of machines good candidates for an electromechanical energy conversion. However, in order to improve their accuracy in their torque responses, the cogging torque and torque ripple phenomena should be mitigated to obtain better performance of the machine. In order to reduce the cogging torque and torque ripple, control techniques as well as geometric parameters of the machine have to be im...

  15. Studies Directed Toward New and Improved Permanent Magnet Materials.

    Science.gov (United States)

    1994-09-28

    electric motors and generators. At present there are only 3 permanent magnet materials in widespread use - SmCo5, Nd2Fe14B and SmCo5-Sm2Co17. Each has...a third of the effort has been devoted to effecting improvements in existing materials which occur in the SmCo5 or Nd2Fe14B structures. Materials

  16. Induction Motors Versus Permanent-Magnet Actuators for Aerospace Applications

    OpenAIRE

    Kakosimos, Panagiotis E.; Sarigiannidis, Athanasios G.; Beniakar, Minos E.; Kladas, Antonios G.; Gerada, C

    2014-01-01

    This paper introduces a comparative study on the design of aerospace actuators concerning Induction Motor (IM) and Permanent Magnet Motor (PMM) technologies. In the analysis undertaken, the two candidate configurations are evaluated in terms of both their electromagnetic and thermal behavior in a combined manner. On a first step, the basic dimensioning of the actuators and their fundamental operational characteristics are determined via a time-stepping Finite Element (FE) analysis. The consid...

  17. Permanent magnet brushless motor control based on ADRC

    Directory of Open Access Journals (Sweden)

    Li Xiaokun

    2016-01-01

    Full Text Available Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(extended state observer observing system which comes from the observer theory of modern control theory to observe internal and external perturbations. ADRC inherits the advantages of PID with little overshoot, high convergence speed, high accuracy, strong anti-interference ability and other characteristics, and it has a strong disturbance adaptability and robustness as for the uncertainty perturbation and their internal disturbance of control objects. Therefore, This paper attempts to use Active disturbance rejection control(ADRC, in order to improve the control of permanent magnet brushless motor. In this design of control system, the simulation of the system is realized based on MATLAB, and then the discrete control algorithm is transplanted to the embedded system to control the permanent magnet brushless DC motor (PMBLDCM. The control system is implemented on the DSP-F28335 digital signal processor, and the DSP also provides the functions like voltage and current AD sampling, PWM driver generation, speed and rotor position calculation, etc. The simulation and experiment results indicate that, the system has good dynamic performance and anti-disturbance performance.

  18. Speed Regulator for Permanent Magnet DC Boring Machine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper a variable-speed system for a loaded permanent magnet direct current boring machine (PMDCBM) is described in details. The voltage adjustment of PMDCBM is accomplished by means of solid state switch with a high gain Darlington transistor. The device designed possesses good variable speed characteristic and Iow loss at low speed. The speed can be regulated automatically to hold at an ideal value according to the load.

  19. UCLA-KIAE focusing permanent magnet undulator for SASE experiment

    Science.gov (United States)

    Osmanov, N.; Tolmachev, S.; Varfolomeev, A.; Varfolomeev, A. A.; Frigola, P.; Hogan, M.; Pellegrini, C.; Carr, R.; Lidia, S.

    1998-02-01

    A description of a new 2 m undulator is presented which was specially designed and manufactured for a SASE mode FEL experiment. It is a one section two plane focusing permanent magnet construction. The uniform period length is 2.06 cm, total number of periods is 98. The peak field on the axis is 5.4 kG for a 5 mm gap.

  20. Cogging torque mitigation of modular permanent magnet machines

    OpenAIRE

    Li, G. J.; Ren, B.; Zhu, Z-Q.; Li, Y X; Ma, J.

    2015-01-01

    This paper proposes a novel cogging torque mitigation method for modular permanent magnet (PM) machines with flux gaps in alternate stator teeth. The slot openings of the modular PM machines are divided into two groups in a special way. By shifting the slot openings of two groups in opposite directions with the same angle, the machine cogging torque can be significantly reduced. Analytical formula of the desired shift angle is derived, and can be applicable to other modular machines with diff...

  1. Modular Permanent Magnet Machines with Alternate Teeth Having Tooth Tips

    OpenAIRE

    Li, G. J.; Zhu, Z.Q.; Foster, M. P.; Stone, D. A.; Zhan, H.L.

    2015-01-01

    This paper presents single layer modular permanent magnet machines with either wound or unwound teeth with tooth tips. The structures with wound teeth having tooth tips are suitable for modular machines with slot number higher than pole number to compensate for the drop in winding factor due to the flux gaps in alternate stator teeth, accordingly to maintain or even to increase their average torques. However, the structures with unwound teeth having tooth tips are suitable for modular machine...

  2. A permanent magnet electron beam phase-shifter

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, G.A. E-mail: trower@naxs.net; Ermakov, A.N.; Pakhomov, N.I.; Semyachkin, V.K.; Shvedunov, V.I.; Skachkov, V.S.; Tyurin, S.A

    2004-05-21

    We describe here the design and construction of a permanent magnet-based electron beam phase-shifter now operating in our 70 MeV Race-Track Microtron (P. Lucas, S. Webber (Eds.), Proceedings of the 2001 Particle Accelerator Conference, Vol. 4, IEEE, Piscataway, NJ, 2001, p. 2596; L. Gennary (Ed.), Proceedings of the 1995 Particle Accelerator Conference, Vol. 2, IEEE, Piscataway, NJ, 1996, p. 807)

  3. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....

  4. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more...

  5. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  6. A clip-on Zeeman slower using toroidal permanent magnets.

    Science.gov (United States)

    Krzyzewski, S P; Akin, T G; Dahal, Parshuram; Abraham, E R I

    2014-10-01

    We present the design of a zero-crossing Zeeman slower for (85)Rb using rings of flexible permanent magnets. The design is inexpensive, requires no power or cooling, and can be easily attached and removed for vacuum maintenance. We show theoretically that such a design can reproduce a magnetic field profile of a standard zero-crossing Zeeman slower. Experimental measurements of a prototype and comparisons to theoretical simulations demonstrate the feasibility of the design and point toward future improvements. Simulations show an atom flux similar to other Zeeman slowers.

  7. Quasi permanent superconducting magnet of very high field

    Science.gov (United States)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  8. Multipole shimming of permanent magnets using harmonic corrector rings.

    Science.gov (United States)

    Jachmann, R C; Trease, D R; Bouchard, L-S; Sakellariou, D; Martin, R W; Schlueter, R D; Budinger, T F; Pines, A

    2007-03-01

    Shimming systems are required to provide sufficient field homogeneity for high resolution nuclear magnetic resonance (NMR). In certain specialized applications, such as rotating-field NMR and mobile ex situ NMR, permanent magnet-based shimming systems can provide considerable advantages. We present a simple two-dimensional shimming method based on harmonic corrector rings which can provide arbitrary multipole order shimming corrections. Results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to an order of magnitude. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients.

  9. Two dimensional model of a permanent magnet spur gear

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif; Andersen, Torben Ole; Rasmussen, Peter Omand

    2005-01-01

    This paper presents calculation and measurement results of a high-performance permanent-magnetic gear. The analyzed permanent-magnetic gear has a gear ratio of 5.5 and is able to deliver 27 N/spl middot/m. The analysis has shown that special attention needs to be paid to the system where the gear...... is to be installed because of a low natural torsion spring constant. The analyzed gear was also constructed in practice in order to validate the analysis and predict the efficiency. The measured torque from the magnetic gear was only 16 N/spl middot/m reduced by the large end-effects. A systematic analysis...... of the loss components in the magnetic gear is also performed in order to figure out why the efficiency for the actual construction was only 81%. A large magnetic loss component originated in the bearings, where an unplanned extra bearing was necessary due to mechanical problems. Without the losses...

  10. Practical Aspects of Modern and Future Permanent Magnets

    Science.gov (United States)

    McCallum, R. W.; Lewis, L.; Skomski, R.; Kramer, M. J.; Anderson, I. E.

    2014-07-01

    The mandate to reduce greenhouse gases will require highly efficient electric machines for both power generation and traction motor applications. Although permanent magnet electric machines utilizing Nd2Fe14B-based magnets provide obvious power-to-weight advantages over induction machines, the limited availability and high price of the rare earth (RE) metals make these machines less favorable. Of particular concern is the cost and supply criticality of Dy, a key RE element that is required to improve the high-temperature performance of Nd-based magnetic alloys for use in generators and traction motors. Alternatives to RE-based alloys do exist, but they currently lack the energy density necessary to replace Nd-based magnets. Many of these compounds have been known for decades, but serious interest in their development waned once compounds based on RE elements were discovered. In this review, intrinsic and extrinsic materials factors that impact the optimization of both existing and potential future permanent magnets for energy applications are examined in light of new insights gained from renewed examination.

  11. Inspired by nature: investigating tetrataenite for permanent magnet applications.

    Science.gov (United States)

    Lewis, L H; Mubarok, A; Poirier, E; Bordeaux, N; Manchanda, P; Kashyap, A; Skomski, R; Goldstein, J; Pinkerton, F E; Mishra, R K; Kubic, R C; Barmak, K

    2014-02-12

    Chemically ordered L10-type FeNi, also known as tetrataenite, is under investigation as a rare-earth-free advanced permanent magnet. Correlations between crystal structure, microstructure and magnetic properties of naturally occurring tetrataenite with a slightly Fe-rich composition (~ Fe55Ni44) obtained from the meteorite NWA 6259 are reported and augmented with computationally derived results. The tetrataenite microstructure exhibits three mutually orthogonal crystallographic variants of the L10 structure that reduce its remanence; nonetheless, even in its highly unoptimized state tetrataenite provides a room-temperature coercivity of 95.5 kA m(-1) (1200 Oe), a Curie temperature of at least 830 K and a largely temperature-independent anisotropy that preliminarily point to a theoretical magnetic energy product exceeding (BH)max = 335 kJ m(-3) (42 MG Oe) and approaching those found in today's best rare-earth-based magnets.

  12. Torque Characteristics of Saturated Permanent-Magnet Synchronous Motors

    Science.gov (United States)

    Takahashi, Akeshi; Kikuchi, Satoshi; Wakui, Shinichi; Mikami, Hiroyuki; Ide, Kazumasa; Shima, Kazuo

    The evaluation of torque characteristics in a saturated magnetic field for permanent-magnet (PM) synchronous motors is presented. The torque saturation characteristics of non-salient and salient pole machines are investigated by finite element analysis and measurement. Thus, it is found that the torque saturation originates in the magnetic saturation in both the stator teeth, which are located on the leading position toward the direct axis, and in the stator back yoke, which is located on the lagging position toward the direct axis. This mechanism can also explain the reason for the significant torque saturation in the salient-pole machine; the higher inductance of the quadrature axis of the salient-pole machine causes a significant magnetic saturation in the stator back yoke. Therefore, less saliency or a wider back yoke can improve the torque saturation.

  13. Dysprosium-free melt-spun permanent magnets.

    Science.gov (United States)

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  14. Optimization of Magnet Arrangement in Double-Layer Interior Permanent-Magnet Motors

    Science.gov (United States)

    Yamazaki, Katsumi; Kitayuguchi, Kazuya

    The arrangement of permanent magnets in double-layer interior permanent-magnet motors is optimized for variable-speed applications. First, the arrangement of magnets is decided by automatic optimization. Next, the superiority of the optimized motor is discussed by the d- and q-axis equivalent circuits that consider the magnetic saturation of the rotor core. Finally, experimental verification is carried out by using a prototype motor. It is confirmed that the maximum torque of the optimized motor under both low speed and high speed conditions are higher than those of conventional motors because of relatively large q-axis inductance and small d-axis inductance.

  15. High-Performance Permanent Magnets for Energy-Efficient Devices

    Science.gov (United States)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  16. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  17. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  18. Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

    Energy Technology Data Exchange (ETDEWEB)

    J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

    2006-09-30

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces

  19. A SQP optimization method for shimming a permanent MRI magnet

    Institute of Scientific and Technical Information of China (English)

    Zhe Jin; Xing Tang; Bin Meng; Donglin Zu; Weimin Wang

    2009-01-01

    Based on the sequential quadratic programming (SQP) method, a new approach is presented in this paper to gain a uniform magnetic field for a permanent MRI magnet with biplanar poles. First, the adopted shimming piece is modeled as a magnetic dipole moment to calculate its effect on the background field over the imaging region of interest. Then, the SQP method is utilized to determine the ideal solution for the shimming equation. Finally, the ideal solution is discrete, and the quantization error control technique is used for special cases. This new method helps to reduce the inhomogeneity from 1234.5 ppm to 21.4 ppm over a 36 cm diameter spherical volume (DSV), within hours in practical shimming work.

  20. Virtual test system for permanent-magnet DC motor

    Institute of Scientific and Technical Information of China (English)

    崔淑梅; 王悦; 柴凤; 吴红星; 刘宝廷; 程树康

    2003-01-01

    In order to obtain the primary parameters and operating characteristics of a DC motor without directlymeasuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire boththe dynamic and static data of armature current to establish the performance of a DC permanent-magnet motor.The accuracy and validity of this virtual test system proposed were verified by comparing the measurements madewith the system proposed with the measurements made with conventional torque meters. It is concluded from theresults of comparison that from the mathematic model established for the DC permant-magnet motors, both majorparameters and operating characteristics can be directly established for the DC motors without measuring theirtorques and rotational speed, a perfect on-line measurement and test system has been established for the DCpermanent-magnet motors using the theory of virtual test system. The system proposed features shorter test time,higher efficiency and lower cost.

  1. Simulation of magnetic induction distribution in a coaxial linear motor with axial and radial direction of permanent magnets magnetization

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2014-03-01

    Full Text Available The paper presents results of computer simulation and experimental study of magnetic induction distribution in a coaxial linear motor air gap throughout the length of the runner active part at different heights of the air gap between the runner and the inductor magnetic core for motors with axial and radial direction of the permanent magnets magnetization.

  2. Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor

    Institute of Scientific and Technical Information of China (English)

    YANG Jiewei; WU Yihui; JIA Hongguang; ZHANG Ping; WANG Shurong

    2007-01-01

    To investigate the impact of size on its performance in designing an axial-magnetized permanent magnet micromotor,the finite element method is adopted to simulate the magnetic field of the dual rotor motor,and the flux density wave form distributed in the airgap is obtained.The influence of the external dimensions,pole numbers and magnet thicknesses of the rotor,and the airgap distances on the flux density,are analyzed and analytical results are given.With the increase of the airgap distance,the flux density under more poles reduces more quickly than under fewer poles.With the increase of the magnet thickness,the flux density is a rising curve,and after the magnet thickness attains a certain point,the flux density is almost a constant.While reducing the diameter of the rotor,the decrease of the flux density slows down as magnet thickness is reduced.To avoid having a seriously distorted waveform,the distance between inner and outer radii of the rotor must be larger than 1.5 millimeter.Results of the magnetic field analysis can guide a microminiaturization of the motor.Moreover,the results are analyzed theoretically and the simulated values are almost consistent with the experimental values.

  3. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  4. Toroidal-Core Microinductors Biased by Permanent Magnets

    Science.gov (United States)

    Lieneweg, Udo; Blaes, Brent

    2003-01-01

    The designs of microscopic toroidal-core inductors in integrated circuits of DC-to-DC voltage converters would be modified, according to a proposal, by filling the gaps in the cores with permanent magnets that would apply bias fluxes (see figure). The magnitudes and polarities of the bias fluxes would be tailored to counteract the DC fluxes generated by the DC components of the currents in the inductor windings, such that it would be possible to either reduce the sizes of the cores or increase the AC components of the currents in the cores without incurring adverse effects. Reducing the sizes of the cores could save significant amounts of space on integrated circuits because relative to other integrated-circuit components, microinductors occupy large areas - of the order of a square millimeter each. An important consideration in the design of such an inductor is preventing magnetic saturation of the core at current levels up to the maximum anticipated operating current. The requirement to prevent saturation, as well as other requirements and constraints upon the design of the core are expressed by several equations based on the traditional magnetic-circuit approximation. The equations involve the core and gap dimensions and the magnetic-property parameters of the core and magnet materials. The equations show that, other things remaining equal, as the maximum current is increased, one must increase the size of the core to prevent the flux density from rising to the saturation level. By using a permanent bias flux to oppose the flux generated by the DC component of the current, one would reduce the net DC component of flux in the core, making it possible to reduce the core size needed to prevent the total flux density (sum of DC and AC components) from rising to the saturation level. Alternatively, one could take advantage of the reduction of the net DC component of flux by increasing the allowable AC component of flux and the corresponding AC component of current

  5. Sample Size Effect of Magnetomechanical Response for Magnetic Elastomers by Using Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tsubasa Oguro

    2017-01-01

    Full Text Available The size effect of magnetomechanical response of chemically cross-linked disk shaped magnetic elastomers placed on a permanent magnet has been investigated by unidirectional compression tests. A cylindrical permanent magnet with a size of 35 mm in diameter and 15 mm in height was used to create the magnetic field. The magnetic field strength was approximately 420 mT at the center of the upper surface of the magnet. The diameter of the magnetoelastic polymer disks was varied from 14 mm to 35 mm, whereas the height was kept constant (5 mm in the undeformed state. We have studied the influence of the disk diameter on the stress-strain behavior of the magnetoelastic in the presence and in the lack of magnetic field. It was found that the smallest magnetic elastomer with 14 mm diameter did not exhibit measurable magnetomechanical response due to magnetic field. On the opposite, the magnetic elastomers with diameters larger than 30 mm contracted in the direction parallel to the mechanical stress and largely elongated in the perpendicular direction. An explanation is put forward to interpret this size-dependent behavior by taking into account the nonuniform field distribution of magnetic field produced by the permanent magnet.

  6. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    Science.gov (United States)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  7. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  8. A Review of Permanent Magnet Stirring During Metal Solidification

    Science.gov (United States)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-08-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  9. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  10. Slip Torque Investigation and Magnetic Redesign of Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy Vestergaard; Rasmussen, Peter Omand

    2015-01-01

    This paper presents an investigation of 20% difference between the measured and calculated slip torque of a Motor Integrated Permanent Magnet Gear (MIPMG) prototype. The High Speed (HS) side of the Magnetic Gear (MG) was fixed by loading the motor when conducting the slip torque measurement...

  11. Improving torque per kilogram magnet of permanent magnet couplings using finite element analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    This paper presents the methodology and subsequent findings of a performance-improvement routine that employs automated finite element (FE) analysis to increase the torque-per-kilogram-magnet (TPKM) of a permanent magnet coupling (PMC). The routine is applied to a commercially available cylindrical...

  12. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  13. Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity

    Science.gov (United States)

    Liu, Z. J.; Li, J. T.; Jabbar, M. A.

    2006-04-01

    In design of permanent magnet motors for high-precision applications, it is sometimes necessary, early in the design stage, to have a detailed analysis of the effect of rotor eccentricity that may result from manufacturing imperfectness or use of fluid dynamic or aerodynamic bearings. This paper presents an analytical model for electromagnetic torque and forces in permanent magnet motors with rotor eccentricity. The model gives an insight to the relationship between the effect of the eccentricity and the other motor design parameters on the electromagnetic forces. It is shown that the calculated magnetic forces obtained from this model agree well with those obtained from numerical simulations that are very computationally demanding.

  14. Permanent Magnetic Synchronous Motor Control System Based on ADRC

    Directory of Open Access Journals (Sweden)

    Song Wang

    2013-06-01

    Full Text Available Permanent magnetic synchronous motor (PMSM is a strong coupling and non-linear system. In the PMSM speed-regulation system, PID controller is the conventional one, it is difficult to decide the parameters of PID. Moreover, the performance of PID controller is not very well in large disturbance. In the paper, the Active Disturbance Rejection Controller (ADRC is applied to the PMSM speed-regulation system. The result of simulations and experiments show that this algorithm has better anti-load-disturbance performance than PID controller.

  15. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable...... in order to reduce the rotor inertia and to reduce losses. Analytical models and finite element simulations were employed for the analyses of both generator types, and verified experimentally by prototypes. The results suggested that a generator of this size and power rating (20 mm radius, and 5 m...

  16. Modelling of Permanent Magnet Synchronous Motor Incorporating Core-loss

    Directory of Open Access Journals (Sweden)

    K. Suthamno

    2012-08-01

    Full Text Available This study proposes a dq-axis modelling of a Permanent Magnet Synchronous Motor (PMSM with copper-loss and core-loss taken into account. The proposed models can be applied to PMSM control and drive with loss minimization in simultaneous consideration. The study presents simulation results of direct drive of a PMSM under no-load and loaded conditions using the proposed models with MATLAB codes. Comparisons of the results are made among those obtained from using PSIM and SIMULINK software packages. The comparison results indicate very good agreement.

  17. A strong permanent magnet-assisted electromagnetic undulator

    Science.gov (United States)

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  18. Additive Manufacturing of Near-net Shaped Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-26

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd2Fe14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd2Fe17Bx solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd2Fe14B phase during fabrication.

  19. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  20. Improved Electrical Insulation of Rare Earth Permanent Magnetic Materials With High Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; WANG Da-peng; LI Wei; PAN Wei; YU Xiao-jun; QI Min

    2009-01-01

    Rare earth permanent magnetic materials are typical electrical conductor, and their magnetic properties will decrease because of the eddy current effect, so it is difficult to keep them stable for a long enough time under a high frequency AC field. In the present study, as far as rare earth permanent magnets are concerned, for the first time, rare earth permanent magnets with strong electrical insulation and high magnetic performance have been obtained through experiments, and their properties are as follows:(1) Sm2TM17: Br=0.62 T, jHc=803.7 kA/m, (BH)m= The magnetic properties of Sm2TM17 and NdFeB are obviously higher than those of ferrite permanent magnet, and the electric insulating characteristics of Sm2TM17 and NdFeB applied have in fact been approximately the same as those of ferrite. Therefore, Sm2TM17 and NdFeB will possess the ability to take the place of ferrite under a certain high frequency AC electric field.

  1. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  2. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  3. Torque analysis for double-stator permanent-magnet motor

    Institute of Scientific and Technical Information of China (English)

    柴凤; 程树康; 崔淑梅

    2002-01-01

    In addition to the characteristics of a conventional motor, a novel direct-drive double-stator perma-nent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate.Through numerical calculation and analysis, the output torque of double-stator permanent-magnet brushless motor of the same volume as the traditional machine is discussed, and the reduction of torque ripple by using the structure features of this motor is investigated. The results indicate that lower torque ripple under the condition of ideal effective torque can be obtained by the rational design of motor. The prototype motors tested show that this kind of motor structure has a higher power density.

  4. An improved iron loss estimation for permanent magnet brushless machines

    CERN Document Server

    Fang, D

    1999-01-01

    This paper presents an improved approach for predicting iron losses in permanent magnet brushless machines. The new approach is based on the fundamental concept that eddy current losses are proportional to the square of the time rate of change of flux density. Expressions are derived for predicting hysteresis and eddy current losses in the stator teeth and yoke. The so-called anomalous or excess losses, caused by the induced eddy current concentration around moving magnetic domain walls and neglected in the conventional core loss calculation, are also included in the proposed approach. In addition, the model is also capable of accounting for the stator skewing, if present. The core losses obtained from the proposed approach are compared with those measured on an existing PM motor at several operating speeds, showing very good agreement. (14 refs).

  5. Improvement of the levitation stability of the HTSC-permanent magnet hybrid bearing by using the new arrangement of the permanent magnet

    Science.gov (United States)

    Sukedaia, M.; Emoto, K.; Sugiyama, R.; Ohashi, S.

    The hybrid magnetic bearing using permanent magnets and the high temperature superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. Although the previous configuration improves the load weight of the rotor, levitation and guidance stability has been decreased because of the repulsive force of the permanent magnet. Three-dimensional numerical analysis of the system has been undertaken to reduce lateral force which decreases lateral stability of the rotor. From the results, effective arrangement of the hybrid system is given. Increment of the load weight is confirmed. Influence of the hybrid system on the pinning force between the HTSC and the permanent magnet is shown to be smaller than previous one.

  6. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kansai-u.ac.j [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Kobayashi, S. [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-10-15

    Magnetic levitation using the pinning force of the YBaCuO high-T{sub c} bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  7. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Science.gov (United States)

    Ohashi, S.; Kobayashi, S.

    2009-10-01

    Magnetic levitation using the pinning force of the YBaCuO high- Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  8. Results of using permanent magnets to suppress Josephson noise in the KAPPa SIS receiver

    Science.gov (United States)

    Wheeler, Caleb H.; Neric, Marko; Groppi, Christopher E.; Underhill, Matthew; Mani, Hamdi; Weinreb, Sander; Russell, Damon S.; Kooi, Jacob W.; Lichtenberger, Arthur W.; Walker, Christopher K.; Kulesa, Craig

    2016-07-01

    We present the results from the magnetic field generation within the Kilopixel Array Pathfinder Project (KAPPa) instrument. The KAPPa instrument is a terahertz heterodyne receiver using a Superconducting-Insulating- Superconducting (SIS) mixers. To improve performance, SIS mixers require a magnetic field to suppress Josephson noise. The KAPPa test receiver can house a tunable electromagnet used to optimize the applied magnetic field. The receiver is also capable of accommodating a permanent magnet that applies a fixed field. Our permanent magnet design uses off-the-shelf neodymium permanent magnets and then reshapes the magnetic field using machined steel concentrators. These concentrators allow the use of an unmachined permanent magnet in the back of the detector block while two small posts provide the required magnetic field across the SIS junction in the detector cavity. The KAPPa test receiver is uniquely suited to compare the permanent magnet and electromagnet receiver performance. The current work includes our design of a `U' shaped permanent magnet, the testing and calibration procedure for the permanent magnet, and the overall results of the performance comparison between the electromagnet and the permanent magnet counterpart.

  9. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  10. Improvement of the Levitation Characteristics in the Magnetic Bearing System Using HTSC-Permanent Magnet Hybrid Structure

    Science.gov (United States)

    Ohashi, Shunsuke

    Magnetic bearing using pining force of a permanent magnet and a high-temperature superconductor has been developed. Additional permanent magnet is introduced to increase the levitation force of the magnetic bearing. In this hybrid magnetic bearing system, levitation force is mainly given by the repulsive force of the permanent magnets, and stability for the lateral direction is given by pining force of the superconductor. The experimental device is developed. A ring type superconductor and a bulk one are examined. Levitation characteristics of the hybrid magnetic bearing are measured. A bulk superconductor shows better characteristics both levitation and lateral stability than ring one. Levitation force of the hybrid system becomes about twice as large as that of the no-hybrid one. Although repulsive force of the permanent magnet decreases lateral stability of the system, its influence becomes small by choosing adequate position of the permanent magnets and the superconductor.

  11. Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Wang, Chao

    2014-01-01

    This paper presents the analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear. The magnetic field distribution in the coaxial magnetic gear is calculated analytically in the polar coordinate system and then validated by the finite element method (FEM......) algorithm is employed to optimize the studied magnetic gear. Given that the torque capability and material cost conflict with each other, both of them are set as the optimization objectives in this paper. Different weight factors may be chosen for the two objectives so that more attention can be placed...

  12. Characteristics Analysis of Square Wave BLDC Motor Considering Magnetization Distribution of Permanent Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Byung Il; Park, Seung Chan [Hanyang University (Korea, Republic of); Im, Tae Bin [Korea Electronics Technology Institute (Korea, Republic of); Kang, Young Gyu [Samsung Electro-Mechanics R and D Center (Korea, Republic of)

    1998-04-01

    This paper deals with the characteristics analysis of a permanent magnet brushless DC(BLDC) motor. The analysis method is to utilize the time-stepped finite element method considering the square wave voltage of MOS FET inverter. The system matrix that unknown parameters are magnetic vector potentials at nodes and phases currents is constructed through the finite element formulation and circuit equations, and then solved by bi-conjugate gradient(BCG) method. The analyzed model has a inner rotor which is consisted of a permanent magnet of ring shape and a laminated steel core. The current carrying free-wheeling diode of inverter is neglected because of low value of the winding inductance of motor. The magnetization distribution in the permanent magnet i determined by solving inverse problem that the calculated flux densities values on the surface of the permanent magnet are led to the same values that measured by gauss meter. And then, torque and phase currents, which are calculated by finite element analysis are compared with experimental values. (author). 12 refs., 17 figs., 2 tabs.

  13. Superconducting Solenoid and Press for Permanent Magnet Fabrication

    Science.gov (United States)

    Mulcahy, T. M.; Hull, J. R.

    2002-08-01

    For the first time, a superconducting solenoid (SCM) was used to increase the remnant magnetization of sintered NdFeB permanent magnets (PMs). In particular, improved magnetic alignment of commercial-grade PM powder was achieved, as it was axial die pressed into 12.7-mm diameter cylindrical compacts in the 76.2-mm warm bore of a 9-T SCM. The press used to compact the powder is unique and was specifically designed for use with the SCM. Although the press was operated in the batch mode for this proof of concept study, its design is intended to enable automated production. In operation, a simple die and punch set made of nonmagnetic materials was filled with powder and loaded into a nonmagnetic press tube. The cantilevered press tube was inserted horizontally, on a carrier manually advanced along a track, into the SCM. The robustness of the mechanical components and the SCM, in its liquid helium dewar, were specifically designed to allow for insertion and extraction of the magnetic powder and compacts, while operating at 9 T.

  14. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic fiel

  15. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic

  16. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  17. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  18. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process of t...... may be useful as a direct drive wheel motor for EV's and no liquid cooling system is required....

  19. Accelerated Testing of High Temperature Permanent Magnets for Spacecraft Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature permanent magnet materials play an important role in NASA's space missions in electric propulsion, energy generation and storage and other...

  20. A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields.

    Science.gov (United States)

    Manz, B; Benecke, M; Volke, F

    2008-05-01

    A new portable, pocket-size NMR probe based on a novel permanent magnet arrangement is presented. It is based on a Halbach-type magnet design which mimics the field of a spherical dipole by using cylindrical bar and ring magnets. The magnet system is made up of only three individual magnets, and most field calculations and optimisations can be performed analytically. A prototype system has been built using a set of small, off the shelf commercially available permanent magnets. Proton linewidths of 50 ppm FWHM could be achieved at a field strength of 1T. Calculations show that with custom-sized permanent magnets, linewidths of less than 1 ppm can be achieved over sample volumes of up to 1 mm3, which would in theory enable chemical shift resolved proton spectroscopy on mass-limited samples. But even with the achieved linewidth of 50 ppm, this can be a useful portable sensor for small amounts of liquid samples with restricted molecular mobility, like gels, polymers or high viscosity liquids.

  1. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Science.gov (United States)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  2. Basic Characteristics of the Propulsion System in the Permanent Magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Kumano, Daiki; Goto, Yasuyuki

    The Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. Repulsive force of permanent magnet is introduced to support load weight. Pinning force of the HTSC is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. In this paper, propulsion system of the conveyance system is studied. Propulsion function is installed on the carrier body. Magnetic gradient is used to get propulsion force. Propulsion force of the system is little. So propulsion rail system is introduced. Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Enough propulsion force is given. Influence of the propulsion system on the levitation and guidance system is measured. Stability of levitation and guidance system is enough even when propulsion system is operated.

  3. Novel design configurations for permanent magnet wind generators

    Science.gov (United States)

    Chen, Yicheng

    2004-12-01

    The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the

  4. Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

    Energy Technology Data Exchange (ETDEWEB)

    J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

    2006-09-30

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces

  5. Optimization of Multibrid Permanent-Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, H.; Polinder, H.

    2009-01-01

    This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three......-phase radial-flux PM synchronous generator with a back-to-back power converter is presented. The design optimization is adopted with a genetic algorithm forminimizing generator system cost. To demonstrate the effectiveness of the developed electromagnetic design model, the optimization results of a 500-k......W direct-drive PM generator and a 1.5-MW multibrid PM generator with various gear ratios are, respectively, compared with those from other methods. Then, the optimal design approach is further employed for a range from 750 kW up to 10 MW. The optimization results of PM generator systems including direct...

  6. A double-sided linear primary permanent magnet vernier machine.

    Science.gov (United States)

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  7. Zeeman slowers for strontium based on permanent magnets

    Science.gov (United States)

    Hill, Ian R.; Ovchinnikov, Yuri B.; Bridge, Elizabeth M.; Curtis, E. Anne; Gill, Patrick

    2014-04-01

    We present the design, construction, and characterization of longitudinal- and transverse-field Zeeman slowers, based on arrays of permanent magnets, for slowing thermal beams of atomic Sr. The slowers are optimized for operation with deceleration related to the local laser intensity (by the parameter ɛ), which uses more effectively the available laser power, in contrast to the usual constant deceleration mode. Slowing efficiencies of up to ≈18% are realized and compared to those predicted by modelling. We highlight the transverse-field slower, which is compact, highly tunable, light-weight, and requires no electrical power, as a simple solution to slowing Sr, well-suited to space-borne application. For 88Sr we achieve a slow-atom flux of around 6 × 109 atoms s-1 at 30 ms-1, loading approximately 5 × 108 atoms in to a magneto-optical-trap, and capture all isotopes in approximate relative natural abundances.

  8. Zeeman Slowers for Strontium based on Permanent Magnets

    CERN Document Server

    Hill, Ian R; Bridge, Elizabeth M; Curtis, E Anne; Gill, Patrick

    2014-01-01

    We present the design, construction, and characterisation of longitudinal- and transverse-field Zeeman slowers, based on arrays of permanent magnets, for slowing thermal beams of atomic Sr. The slowers are optimised for operation with deceleration related to the local laser intensity (by the parameter $\\epsilon$), which uses more effectively the available laser power, in contrast to the usual constant deceleration mode. Slowing efficiencies of up to $\\approx$ $18$ $%$ are realised and compared to those predicted by modelling. We highlight the transverse-field slower, which is compact, highly tunable, light-weight, and requires no electrical power, as a simple solution to slowing Sr, well-suited to spaceborne application. For $^{88}$Sr we achieve a slow-atom flux of around $6\\times 10^9$ atoms$\\,$s$^{-1}$ at $30$ ms$^{-1}$, loading approximately $5\\times 10^8$ atoms in to a magneto-optical-trap (MOT), and capture all isotopes in approximate relative natural abundances.

  9. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    Directory of Open Access Journals (Sweden)

    Yi Du

    2015-01-01

    Full Text Available The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM vernier (DSLPPMV machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  10. Force prediction in permanent magnet flat linear motors (abstract)

    Science.gov (United States)

    Eastham, J. F.; Akmese, R.

    1991-11-01

    The advent of neodymium iron boron rare-earth permanent magnet material has afforded the opportunity to construct linear machines of high force to weight ratio. The paper describes the design and construction of an axial flux machine and rotating drum test rig. The machine occupies an arc of 45° on a drum 1.22 m in diameter. The excitation is provided by blocks of NdFeB material which are skewed in order to minimize the force variations due to slotting. The stator carries a three-phase short-chorded double-layer winding of four poles. The machine is supplied by a PWM inverter the fundamental component of which is phase locked to the rotor position so that a ``dc brushless'' drive system is produced. Electromagnetic forces including ripple forces are measured at supply frequencies up to 100 Hz. They are compared with finite-element analysis which calculates the force variation over the time period. The paper then considers some of the causes of ripple torque. In particular, the force production due solely to the permanent magnet excitation is considered. This has two important components each acting along the line of motion of the machine, one is due to slotting and the other is due to the finite length of the primary. In the practical machine the excitation poles are skewed to minimize the slotting force and the effectiveness of this is confirmed by both results from the experiments and the finite-element analysis. The end effect force is shown to have a space period of twice that of the excitation. The amplitude of this force and its period are again confirmed by practical results.

  11. The Behavior Of Asymmetric Frontal Couplings With Permanent Magnets In Magnetic Powder And High Temperature Environments

    Directory of Open Access Journals (Sweden)

    Ion DOBROTA

    2002-12-01

    Full Text Available The main purpose of this paper is the comparative analysis of the behavior of frontal couplings with Nd-Fe-B permanent magnets in difficult environments, specific to metallurgy – such as environments with magnetic powders and high temperature – in two constructive variants: symmetric couplings and asymmetric couplings (with divided poles. The results show the superior performance of asymmetric couplings under the given conditions

  12. Economic viability, applications and limits of efficient permanent magnet motors - Summary and update; Wirtschaftlichkeit, Anwendungen und Grenzen von effizienten Permanent-Magnet-Motoren - Zusammenfassung und Update - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H.-P.; Evequoz, B. [Hochschule Westschweiz, Delemont (Switzerland); Salathe, D. [Hochschule Luzern Technik und Architektur, Horw (Switzerland)

    2009-06-15

    This final report for the Swiss Federal Office of Energy (SFOE), takes a look at the economic viability, applications and limits of efficient permanent magnet motors. Permanent magnet motors are compared with standard IEC asynchronous motors. In a theoretical part of the report, it is discussed how the increasing size of the motor influences efficiency, weight, volume and power. The results of practical tests carried out on six motors are presented. Three standard motors with varying efficiency were compared with three permanent-magnet motors for the power range around 3 kW. Market-oriented considerations concerning permanent-magnet motors are discussed. Operational criteria for the choice of the type of motor to be used are also examined.

  13. Computing the External Magnetic Scalar Potential due to an Unbalanced Six-Pole Permanent Magnet Motor

    Energy Technology Data Exchange (ETDEWEB)

    Selvaggi J, Salon S, Kwon O, Chari MVK

    2007-02-12

    The accurate computation of the external magnetic field from a permanent magnet motor is accomplished by first computing its magnetic scalar potential. In order to find a solution which is valid for any arbitrary point external to the motor, a number of proven methods have been employed. Firstly, A finite element model is developed which helps generate magnetic scalar potential values valid for points close to and outside the motor. Secondly, charge simulation is employed which generates an equivalent magnetic charge matrix. Finally, an equivalent multipole expansion is developed through the application of a toroidal harmonic expansion. This expansion yields the harmonic components of the external magnetic scalar potential which can be used to compute the magnetic field at any point outside the motor.

  14. Design and Maxwell 3D simulation of small permanent magnetic actuator

    Institute of Scientific and Technical Information of China (English)

    Zhang Guangcai; Xu Yajie; Chang Yan; Chen Qiaoyan; Yang Xiaodong

    2014-01-01

    According to the magnetic circuit design theory and performance requirements of magnetic field, an H-type permanent magnetic actuator that generates uniform magnetic field larger than 0.4 T in the interested re- gion has been designed in this paper. The static magnetic field simulation analysis was done by Ansoft' s Max- well three-dimensional (3D) software. The simulation results showed that the magnetic field of this system can meet the requirements, and this permanent magnetic actuator designed in this paper can be used in small nuclear magnetic resonance (NMR) svstem.

  15. Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field

    Science.gov (United States)

    Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.

    2017-08-01

    Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.

  16. The study, design and testing of a linear oscillating generator with moving permanent magnets

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros (Pop

    2015-12-01

    Full Text Available This paper presents a study, design and testing of a Linear Oscillating Generator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally it has been shown the comparative analysis between the linear oscillating generator with moving permanent magnets in no load operation and load operation.

  17. Analysis of a Permanent-Magnet Brushless DC Motor with Fixed Dimensions

    Science.gov (United States)

    Brakanskis, Uldis; Dirba, Janis; Kukjane, Ludmila; Drava, Viesturs

    2010-01-01

    The purpose of this paper is to describe the analysis of a permanent-magnet brushless DC motor with fixed outer diameter and active zone length. The influence of air gap, material of permanent magnets and their size on the magnetic flux density of the machine and magnetic flux is analyzed. The work presents the calculations of two programs, the comparison of the results and the most suitable combination of factors that has been found.

  18. Analytical Calculation of the Magnetic Field distribution in a Flux-Modulated Permanent-Magnet Brushless Motor

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe

    2015-01-01

    This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided int...... magnetic field with those calculated by finite element method....

  19. Levitation and Guidance Characteristics of the Permanent magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Dodo, Daiki

    Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. In this system, pinning force of HTSC and repulsive force of permanent magnet is combined. Repulsive force of permanent magnet is introduced to support weight. Pinning force is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. To decrease influence of weight on the levitation gap of the carrier, the weight stage is fixed to the carrier frame by linear sliders, and moves freely for vertical direction. As a result, there is little influence on levitation gap of the carrier. Basic levitation and guidance characteristics of the system are shown. Repulsive force generates very large levitation force. It also generates unstable lateral force. Weight added to the carrier has some influence on lateral stability. Although lateral position recovery force by pinning effect decreases at a heavier weight, the carrier shows enough force to keep lateral stability.

  20. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  1. Influence of End-Effects on Static Torque Performance of Misaligned Cylindrical Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Hansen, Hilary; Jensen, Bogi Bech;

    2014-01-01

    Permanent magnet couplings are widely used in applications requiring torque to be transmitted through an air- gap. The aim of this study is to observe and explain the effect of radial and axial misalignment in a 12-pole, cylindrical permanent magnet coupling. Pull-out torque was measured for two...

  2. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a d

  3. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a

  4. Optimal Design of Stator Interior Permanent Magnet Machine with Minimized Cogging Torque for Wind Power Application

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, Ming

    2008-01-01

    This paper proposes a new approach to minimize the cogging torque of a stator interior permanent magnet (SIPM) machine. The optimization of stator slot gap and permanent magnet is carried out and the cogging torque ripple is analyzed by using finite element analysis. Experiments on a prototype...

  5. Magnetic force microscope study on anisotropic NdFeB permanent magnets

    Institute of Scientific and Technical Information of China (English)

    刘薇; 蒋建华; 吴建生; 李刚

    2003-01-01

    NdFeB permanent magnets prepared by powder metallurgy were investigated using magnetic force microscopy(MFM).The excellent MFM images of sample along the surfaces parallel and perpendicular to the alignment axis were collected respectively.The results show the necessity of annealing procedure in the preparation of the samples to remove the polishing surface stress and to illustrate the real magnetic domain structure,so that the much information about both the magnetic structure and the topographic microstructure is obtained.The hard MFM tip is verified to be effective for this material especially for the sample with the examined surface parallel to alignment axis.By analyzing these well-captured magnetic force images,magnetic domains and alignment degree as well as thetopographic information such as grain size and the nonmagnetic phases at the grain boundaries were demonstrated.

  6. Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: tsubasa@oshima-k.ac.jp; Wada, H.; Furuse, M. [National Institute of Technology, Oshima College, 1091-1 Komatsu, Suouoshima, Oshima, Yamaguchi 742-2193 (Japan); Asaji, T. [National Institute of Technology, Toyama College, 13 Hongo, Toyama 939-8630 (Japan)

    2016-02-15

    Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar{sup 4+} ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber.

  7. Magnetized sheath near positively biased wall between two permanent magnetic plates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn; Jiang, Zheng-qi; Wu, Fei [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-06-15

    The characteristics of magnetized electron sheath near a positively biased conducting wall parallel to magnetic field formed between two permanent magnetic plates were experimentally investigated in a double plasma device. The magnetic field strength between the magnetic plates is about 1200 G which is sufficient to magnetize the plasma such that the ion gyroradius is comparable to the electron Debye length. A virtual cathode (or potential dip) structure was found between the electron-rich sheath and bulk plasma. For a given neutral gas pressure, the potential minimum (dip position) remains almost the same for different positive biases on the wall. For a given bias on the wall, however, the electron sheath thickness and the potential drop from the bulk plasma to the dip decrease with the increase of the neutral gas pressure. In addition, the electron sheath and potential dip appear to be wider and deeper in the downstream side of the wall.

  8. First Ever Storage of Ultracold Neutrons in a Magnetic Trap Made of Permanent Magnets.

    Science.gov (United States)

    Ezhov, V F; Andreev, A Z; Glushkov, A A; Glushkov, A G; Groshev, M N; Knyazkov, V A; Krygin, G B; Ryabov, V L; Serebrov, A P; Bazarov, B A; Geltenbort, P; Hartman, F J; Paul, S; Picker, R; Zimmer, O; Kovrizhnykh, N A

    2005-01-01

    Further improvement in the accuracy of any neutron lifetime experiment by means of ultracold neutrons (UCN) in material bottles is limited due to unavoidable systematic effects when the UCN are reflected from the walls. However, such effects can be excluded in principle if magnetic trapping of UCN is used. The storage of UCN in a small magnetic trap made of permanent magnets was demonstrated for the first time ever. The measured storage time in this feasibility study was (882 ± 16) s. At this level of accuracy no depolarization was observed.

  9. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  10. Large-Area Permanent-Magnet ECR Plasma Source

    Science.gov (United States)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.

  11. High-gradient permanent magnet apparatus and its use in particle collection

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    2016-07-12

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.

  12. Passive control of Permanent Magnet Synchronous Motor chaotic system based on state observer

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Qiao

    2006-01-01

    Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system.To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system's nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.

  13. Processing of alnico permanent magnets by advanced directional solidification methods

    Science.gov (United States)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti composition

  14. Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear

    Directory of Open Access Journals (Sweden)

    Xiaoxu Zhang

    2014-12-01

    Full Text Available This paper presents the analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear. The magnetic field distribution in the coaxial magnetic gear is calculated analytically in the polar coordinate system and then validated by the finite element method (FEM. The analytical field solution allows the prediction of the magnetic torque, which is formulated as a function of design parameters. The impacts of key design parameters on the torque capability are then studied and some significant observations are summarized. Furthermore, the particle swarm optimization (PSO algorithm is employed to optimize the studied magnetic gear. Given that the torque capability and material cost conflict with each other, both of them are set as the optimization objectives in this paper. Different weight factors may be chosen for the two objectives so that more attention can be placed on one or another. The results shows that the highest torque density of 157 kNm/m3 is achieved with the consideration focusing on the torque capability only, then the highest torque per permanent magnet (PM consumption could be improved to 145 Nm/kg by taking the material cost into account. By synthesizing the torque capability and material cost, a 124 kNm/m3 of torque density and a 128 Nm/kg of torque per PM consumption could be achieved simultaneously by the optimal design.

  15. Magnetic Field Analysis of Interior Composite-Rotor Controllable-Flux Permanent Magnet Synchronous Machine

    Institute of Scientific and Technical Information of China (English)

    CHEN Yiguang; PAN Wei; SHEN Yonghuan; TANG Renyuan

    2006-01-01

    Conventional permanent magnet synchronous machine(PMSM)has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets(PMs)are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current id, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Directory of Open Access Journals (Sweden)

    Michael W Vogel

    Full Text Available We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability.The finite element method (COMSOL® was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field.A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres.A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR and magnetic resonance imaging (MRI instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  17. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    Science.gov (United States)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  18. Electromagnetic Flux Analysis of Permanent Magnet Brushless DC Motor Using Magnet Software

    Directory of Open Access Journals (Sweden)

    G.R.Puttalakshmi

    2013-08-01

    Full Text Available Permanent Magnet Brushless DC (PMBLDC motors is emerging as a suitable motor for a number of drive applications in industrial and consumer products. Cogging torque is one of the important drawbacks of PMBLDC motor which results in shaft vibrations and noise. The focus of this work is to minimize the electromagnetic flux and cogging torque in PMBLDC by introducing structural design modifications. The performance of the machine is analyzed by varying the magnet pole shape, magnet pole width and by using magnetic material with different remenance value. For analyzing the performance of the machine, machine is modeled using Finite Element Analysis (FEA based software package Magnet. Cogging torque and average torque are taken as performance measures to determineoptimum pole shape and pole width.

  19. Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets.

    Science.gov (United States)

    Bizen, Teruhiko; Kinjo, Ryota; Hasegawa, Teruaki; Kagamihata, Akihiro; Kida, Yuichiro; Seike, Takamitsu; Watanabe, Takahiro; Hara, Toru; Itoga, Toshiro; Asano, Yoshihiro; Tanaka, Takashi

    2016-11-29

    We report an unexpectedly large flux loss observed in permanent magnets in one of the undulators operated in SACLA, the x-ray free electron laser facility in Japan. Characterizations of individual magnets extracted from the relevant undulator have revealed that the flux loss was caused by a homogeneous magnetization reversal extending over a wide area, but not by demagnetization of individual magnets damaged by radiation. We show that the estimated flux-loss rate is much higher than what is reported in previous papers, and its distribution is much more localized to the upstream side. Results of numerical and experimental studies carried out to validate the magnetization reversal and quantify the flux loss are presented, together with possible countermeasures against rapid degradation of the undulator performance.

  20. Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets

    Science.gov (United States)

    Bizen, Teruhiko; Kinjo, Ryota; Hasegawa, Teruaki; Kagamihata, Akihiro; Kida, Yuichiro; Seike, Takamitsu; Watanabe, Takahiro; Hara, Toru; Itoga, Toshiro; Asano, Yoshihiro; Tanaka, Takashi

    2016-11-01

    We report an unexpectedly large flux loss observed in permanent magnets in one of the undulators operated in SACLA, the x-ray free electron laser facility in Japan. Characterizations of individual magnets extracted from the relevant undulator have revealed that the flux loss was caused by a homogeneous magnetization reversal extending over a wide area, but not by demagnetization of individual magnets damaged by radiation. We show that the estimated flux-loss rate is much higher than what is reported in previous papers, and its distribution is much more localized to the upstream side. Results of numerical and experimental studies carried out to validate the magnetization reversal and quantify the flux loss are presented, together with possible countermeasures against rapid degradation of the undulator performance.

  1. A few simple classroom experiments with a permanent U-shaped magnet

    Science.gov (United States)

    Babović, Miloš; Babović, Vukota

    2017-01-01

    A few simple experiments in the magnetic field of a permanent U-shaped magnet are described. Among them, pin oscillations inside the magnet are particularly interesting. These easy to perform and amusing measurements can help pupils understand magnetic phenomena and mutually connect knowledge of various physics branches.

  2. Optimal current waveforms for brushless permanent magnet motors

    Science.gov (United States)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  3. Permanent Magnet Synchronous Condenser with Solid State Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ping; Muljadi, Eduard; Wu, Ziping; Gao, Wenzhong

    2015-10-05

    A synchronous condenser consists of a free-spinning wound-field synchronous generator and a field excitation controller. In this paper, we propose a synchronous generator that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage source converter connected in series with the PMSG and the grid. The converter varies the phase voltage of the PMSG so as to create the same effect of over or under excitation in a wound-field machine. The converter output voltage level controls the amount and the direction of the produced reactive power and the voltage's phase is kept in-phase with the grid voltage except a slight phase can be introduced so that some power can be drawn from the grid for maintaining the DC bus voltage level of the converter. Since the output voltage of the converter is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulation.

  4. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  5. Thermal analysis of high speed permanent magnetic generator

    Institute of Scientific and Technical Information of China (English)

    LI WeiLi; ZHANG XiaoChen; CHENG ShuKang; CAO JunCi; ZHANG YiHuang

    2012-01-01

    High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems.A 100 kW level HSPMG is investigated in this paper,and it is fluid-thermal coupling analyzed.The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM,from which the electromagnetic performances and the loss distributions are obtained.Then,an analysis model for fluid-solid temperature field analysis is established.Taking losses as the distributed heat sources,the 3D thermal field is coupling calculated.The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction,as well as the whole region 3D temperature distribution in HSPMG are obtained.Then,considering the variations of heat sources distributions and heat transfer conditions,3D temperature fields of HSPMG operating under different speeds are calculated,and the influences of machine operating speed on the HSPMG thermal performance are studied,based on which,the functions of machine temperature with operating speed and stator windings resistance are proposed.The obtained conclusions may provide a useful reference for the design and research of HSPMG.

  6. Characterization of the ELIMED prototype permanent magnet quadrupole system

    Science.gov (United States)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  7. Research on an Improved Method for Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Yingpei Liu

    2014-01-01

    Full Text Available In permanent magnet synchronous motor (PMSM traditional vector control system, PI regulator is used in the speed loop, but it has some defects. An improved method of PMSM vector control is proposed in the paper. The active-disturbance rejection control (ADRC speed regulator is designed with the input signals of given speed and real speed and the output of given stator current q coordinate component. Then, in order to optimize ADRC controller, the least squares support vector machines (LSSVM optimal regression model is derived and successfully embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The load disturbance effect on the system is reduced to a large extent. The system anti-interference ability is further improved. Finally, the current sensor CSNE151-100 is selected to sample PMSM stator currents. The voltage sensor JLBV1 is used to sample the stator voltage. The rotor speed of PMSM is measured by mechanical speed sensor, the type of which is BENTLY 330500. Experimental platform is constructed to verify the effectiveness of the proposed method.

  8. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  9. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    Science.gov (United States)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd–Fe–B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  10. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bo, E-mail: yebo@hubu.edu.cn [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Zhang, Wei [Department of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002 (China); Sun, Zhen-jun [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Guo, Lin [School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Deng, Chao [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Chen, Ya-qi [Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Zhang, Hong-hai [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Liu, Sheng [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application. - Highlights: • A new magnetic control method for spiral-type wireless capsule endoscope is proposed. • Wireless capsule endoscope rotates synchronously with external permanent magnet. • The method controls the wireless capsule endoscope well in porcine small intestine. • Long control distance makes the method may be used in future medical application. • Experimental setup has great advantages: high cost performance and easy operation.

  11. Designing Model and Optimization of the Permanent Magnet for Joule Balance NIM-2

    CERN Document Server

    You, Qiang; Li, Zhengkun; Li, Shisong

    2016-01-01

    Permanent magnets with yokes are widely used in the watt and joule balances to measure the Planck constant for the forthcoming redefinition of the unit of mass, the kilogram. Recently, a permanent magnet system has been in consideration for a further practice of NIM-2, the generalized joule balance. In this paper, an analytical model to design the permanent magnet system is presented. The presented model can be solved to obtain the preliminary parameters and then is used as guidance for FEA software to optimize the parameters of such magnetic system. As an instance for the application of the designing model, the design of the permanent magnet system for NIM-2 is described and the special design of opening shape makes the misalignment of the top and middle yokes has little influence on the vertical component of the magnetic field.

  12. A magnetic probe equipped with small-tip permanent magnet for sentinel lymph node biopsy

    Science.gov (United States)

    Kaneko, Miki; Ohashi, Kaichi; Chikaki, Shinichi; Kuwahata, Akihiro; Shiozawa, Mikio; Kusakabe, Moriaki; Sekino, Masaki

    2017-05-01

    We previously developed a magnetic probe equipped with a ring-shaped permanent magnet for detecting magnetic nanoparticle tracer accumulating in the sentinel lymph nodes (SLNs). The magnetic probe enables us to identify SLNs objectively, without the risk of radiation exposure, unlike the conventional technique using dye and radioisotope. A technical challenge of the probe is to reduce the tip diameter of magnet to identify smaller SLNs. In this study, we optimized the size of smaller-tip magnet based on numerical analyses using the finite element method and evaluated the expected sensitivity. According to the analysis results, the optimum tip diameter and length of convex-shaped magnet were 16 mm and 12 mm, respectively. The experimental results showed that the sensitivity of the probe with smaller-tip magnet was comparable to the previous one. We successfully developed a smaller tip magnet, maintaining the sensitivity to magnetic nanoparticles. The proposed probe will be capable of identifying the location of SLNs more easily.

  13. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-06-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  14. Study on Transmission Torque Characteristics of a Surface-Permanent-Magnet-Type Magnetic Gear

    Science.gov (United States)

    Niguchi, Noboru; Hirata, Katsuhiro; Hayakawa, Yuichi

    Magnetic gears have some advantages such as low mechanical loss and maintenance-free operation that are not observed in conventional mechanical gears. In addition, magnetic gears have inherent overload protection. Therefore, magnetic gears are expected to be used in special applications; for example, they can be used in a joint of a humanoid robot. Recently, various types of new magnetic gears have been proposed. Among these new gears, a surface-permanent-magnet-type (SPM-type) magnetic gear employing harmonic magnetic flux has gained attention because of its high transmission torque density, though it has a complex structure with multipole magnets. Some studies on an SPM-type magnetic gear have been carried out, but there are few papers on cogging torque. This paper describes the transmission torque characteristics of an SPM-type magnetic gear. The operating principle and the transmission torque under synchronous operation are formulated in accordance with the gear ratio. High orders of the cogging torque are computed by employing the 3-D finite element method, and the validity of the analysis is verified by carrying out measurements on a prototype. Furthermore, a method for reducing the cogging torque is discussed.

  15. FEDS

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2016-01-01

    to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...... on an actual DSR project....

  16. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  17. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  18. Permanent magnet motors from ABB eliminate gearboxes%ABB永磁电机在船舶上的应用

    Institute of Scientific and Technical Information of China (English)

    钱丽春

    2004-01-01

    Permanent magnet motor is synchronous and eliminates brushes, rotor windings ABB's permanent magnet motor is an AC synchronous motor. With such a motor, there is no rotor slip, which provides better accuracy than induct asynchronous, motors.

  19. Negative and near zero refraction metamaterials based on permanent magnetic ferrites

    OpenAIRE

    Bi, Ke; Guo, Yunsheng; ZHOU, JI; Dong, Guoyan; Zhao, Hongjie; Zhao, Qian; Xiao, Zongqi; Liu, Xiaoming; Lan, Chuwen

    2014-01-01

    Ferrite metamaterials based on the negative permeability of ferromagnetic resonance in ferrites are of great interest. However, such metamaterials face a limitation that the ferromagnetic resonance can only take place while an external magnetic field applied. Here, we demonstrate a metamaterial based on permanent magnetic ferrite which exhibits not only negative refraction but also near zero refraction without applied magnetic field. The wedge-shaped and slab-shaped structures of permanent ma...

  20. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    Science.gov (United States)

    2012-10-01

    high technology businesses, especially the defense industry. They combine with other elements (specifically iron, boron, and cobalt ) to make...exceptional permanent magnets. Samarium- cobalt (SmCo) magnets have the highest known resistance to demagnetization.13 This capability, meaning the magnet...an equal mass of traditional ferrite magnet, an NdFeB magnet has over 10 times the magnetic energy product.14 Accordingly, a much smaller amount of

  1. Study on the Levitation and Restoring Force Characteristics of the Improved HTS-permanent Magnet Hybrid Magnetic Bearing

    Science.gov (United States)

    Sugiyama, R.; Oguni, K.; Ohashi, S.

    We have developed the hybrid magnetic bearing using permanent magnets and high temperature bulk super conductor (HTS). In this system, the permanent magnet has ring type structure so that the permanent magnet and the HTS can be set to the stator. The pinning force of the HTS is used for the levitation and the guidance. Repulsive force of the permanent magnets was used in the conventional hybrid system. However the restoring force in the guidance direction of the conventional hybrid system decreases by the side slip force of the permanent magnets. In this research, attractive force of permanent magnets is used for increasing the load weight in the guidance direction. In this paper, influence of the hybrid system on the static characteristics of the rotor is studied. Three-dimensional numerical analysis of the linkage flux (in the levitation and the guidance direction) in the HTS is undertaken. The stator side permanent magnet increases the linkage flux of the levitation direction. Therefore in the hybrid system the linkage flux of the levitation direction increases. The levitation and restoring force of the rotor is measured. The levitation force of the hybrid system becomes smaller than that of the non-hybrid one by attractive force. The rotor in the hybrid system is supported by the pinning force and attractive force. The restoring force of the hybrid system becomes larger than that of the non-hybrid one because of increasing the linkage flux of the levitation direction.

  2. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    Science.gov (United States)

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  3. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  4. Comparison and Analysis of Magnetic-Geared Permanent Magnet Electrical Machine at No-Load

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2014-12-01

    Full Text Available Magnetic-geared permanent magnet (MGPM electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA. The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.

  5. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    Science.gov (United States)

    Ye, Bo; Zhang, Wei; Sun, Zhen-jun; Guo, Lin; Deng, Chao; Chen, Ya-qi; Zhang, Hong-hai; Liu, Sheng

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application.

  6. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field.

    Science.gov (United States)

    Oikawa, Kohei; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira

    2014-02-01

    Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10(19) m(-3) near the source exit and ∼10(18) m(-3) near the magnetic filter can be obtained, which are higher than those with the solenoids.

  7. Study of metal magnetic memory (MMM) technique using permanently installed magnetic sensor arrays

    Science.gov (United States)

    Li, Zhichao; Dixon, Steve; Cawley, Peter; Jarvis, Rollo; Nagy, Peter B.

    2017-02-01

    The metal magnetic memory (MMM) effect has been reported to be a non-destructive testing technique capable of evaluating stress concentration and detecting defects in steel. This method has been shown to work well in some instances, but has failed in other trials. Its mechanism has been explained widely but the sensitivity to stress concentration has not been satisfactorily investigated. In this paper, both the normal and tangential components of the stress induced MMM signal were measured by two permanently installed magnetic sensor arrays on two types of notched L80 steel specimens. As expected, the results show that an externally applied magnetic field changes the magnetic field perturbation due to the notches linearly. Plastic deformation and residual stress around notches will increase the remnant flux leakage but the effects are small, which suggests that the MMM effect is very small in the material tested and that it will not be useful in practice.

  8. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Kohei, E-mail: oikawa@ecei.tohoku.ac.jp; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-02-15

    Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10{sup 19} m{sup −3} near the source exit and ∼10{sup 18} m{sup −3} near the magnetic filter can be obtained, which are higher than those with the solenoids.

  9. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase tubular permanent-magnet linear machine (PMLM with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA. The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  10. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Science.gov (United States)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  11. Optimal design method for magnetization directions of a permanent magnet array

    Science.gov (United States)

    Choi, Jae Seok; Yoo, Jeonghoon

    2010-08-01

    In many magnetic systems, the permanent magnet (PM) pattern has a great influence on their performance. This study proposes a systematic optimization method for designing discrete magnetization directions. While previous works have been mostly dependent on researchers' intuition, the developed method is systematic and can be applied to a two-dimensional PM-type eddy current brake model. The effectiveness of the method is confirmed, where the design's aim is to maximize the braking force on a moving conductor. The sensitivity analysis is accomplished by the adjoint variable method and the sequential linear programming is used as an optimizer. Several optimization results for various conditions through the proposed design method are compared to each other and the optimal magnet configuration for an eddy current brake is suggested.

  12. Design and Demonstration of a Test-Rig for Static Performance-Studies of Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    The design and construction of an easy-to-use test-rig for permanent magnet couplings is presented. Static torque of permanent magnet couplings as a function of angular displacement is measured of permanent magnet couplings through an semi-automated test system. The test-rig is capable of measuring...

  13. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  14. Flat-type permanent magnet linear alternator: A suitable device for a free piston linear alternator

    Institute of Scientific and Technical Information of China (English)

    Qing-feng LI; Jin XIAO; Zhen HUANG

    2009-01-01

    We proposed the flat-type permanent magnet linear alternator (LA) for free piston linear alternators (FPLAs) instead of the tubular one. Using the finite element method (FEM), we compare these two kinds of LAs. The FEM result shows that the flat-type permanent magnet LA has higher efficiency and larger output specific power than the tubular one, therefore more suitable for FPLAs, and that the alternator design can be optimized with respect to the permanent magnet length as well as the air gap.

  15. ADAPTIVE FLUX OBSERVER FOR PERMANENT MAGNET SYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    A. A. Bobtsov

    2015-01-01

    Full Text Available The paper deals with the observer design problem for a flux in permanent magnet synchronous motors. It is assumed that some electrical parameters such as resistance and inductance are known numbers. But the flux, the angle and the speed of the rotor are unmeasurable. The new robust approach to design an adaptive flux observer is proposed that guarantees globally boundedness of all signals and, moreover, exponential convergence to zero of observer error between the true flux value and an estimate obtained from the adaptive observer. The problem of an adaptive flux observer design has been solved with using the trigonometrical properties and linear filtering which ensures cancellation of unknown terms arisen after mathematical calculations. The key idea is the new parameterization of the dynamical model containing unknown parameters and depending on measurable current and voltage in the motor. By applying the Pythagorean trigonometric identity the linear equation has found that does not contain any functions depending on angle or angular velocity of the rotor. Using dynamical first-order filters the standard regression model is obtained that consists of unknown constant parameters and measurable functions of time. Then the gradient-like estimator is designed to reconstruct unknown parameters, and it guarantees boundedness of all signals in the system. The proposition is proved that if the regressor satisfies the persistent excitation condition, meaning the “frequency-rich” signal, then all errors in observer exponentially converges to zero. It is shown that observer error for the flux explicitly depends on estimator errors. Exponential convergence of parameter estimation errors to zero yields exponential convergence of the flux observer error to zero. The numerical example is considered.

  16. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    Science.gov (United States)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  17. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets.

    Science.gov (United States)

    Deng, Dongge; Wu, Xinjun; Zuo, Su

    2016-10-06

    A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  18. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Dongge Deng

    2016-10-01

    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  19. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    Science.gov (United States)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma

  20. Analysis and Design of Double-sided Air core Linear Servo Motor with Trapezoidal Permanent Magnets

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Yang, Zilong; Yu, Minghu;

    2011-01-01

    In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no......-load is introduced. This model is derived based on the equivalent magnetization intensity method, and its accuracy is validated by using the results obtained from the finite-element method. The key dimensions that affect the air-gap magnetic field are analyzed based on the analytical model, and the design...

  1. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches.

    Science.gov (United States)

    Yue, Ming; Zhang, Xiangyi; Liu, J Ping

    2017-03-06

    Nanostructured permanent magnetic materials, including exchange-coupled nanocomposite permanent magnets, are considered as the next generation of high-strength magnets for future applications in energy-saving and renewable energy technologies. However, fabrication of bulk nanostructured magnets remains very challenging because conventional compaction and sintering techniques cannot be used for nanostructured bulk material processing. In this paper we review recent efforts at producing bulk nanostructured single-phase and composite magnetic materials with emphasis on grain size control, anisotropy generation and interface modification.

  2. FEDS

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard

    2016-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  3. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  4. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    OpenAIRE

    Valenzuela, S. O.; Jorge, G. A.; Rodriguez, E.

    1999-01-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt...

  5. Large output-power, low-speed permanent magnet synchronous motor designs for ship propulsion drive

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, M.

    2001-07-01

    Over the last decade, serious development has taken place in electric motor technology, and its impact is being felt in the shipbuilding community. This development has brought about a new generation of compact, high efficiency electrical machines. High performance, lightweight permanent magnet motors and generators have been developed for a wide range of applications including vehicle propulsion, power generation, pump and compressor drives. These machines combine the advances in magnetic materials and electronic design to provide shipbuilders new options for weight, energy and cost reduction. Permanent magnet machines were built in many different configurations and power classes, ranging from a few hundred watts to multi-megawatts for ship propulsion. Permanent magnet motors and generators for marine use were constructed and tested, all of these machines providing the same outstanding torque and power density. The basic electromagnetic, thermal and mechanical design approaches were established and tested in small prototype machines, the development of larger machines constituting the engineering later in the design process. The goal of this research work is to find an optimum solution in terms of design and suitability of a low-speed and high-power permanent magnet motor for ship propulsion drive. In this work, the study-case analyses are limited to the electromagnetic part of the motor. Two types of radial flux permanent magnet synchronous motors are designed and optimised to meet the propulsion requirements. The first motor has the permanent magnets mounted on the surface of the rotor while the second motor has the permanent magnets mounted on the rotor surface and covered by laminated pole shoes. In their construction, high-energy NdFeB permanent magnets were chosen. These magnetic materials provide a sufficient airgap magnetic flux density with a low volume of material. Moreover, the NdFeB permanent magnets are endowed with high coercivity. As an immediate

  6. Design and analysis of a novel inset permanent magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, C.C. [Department of Electrical Enginering, Feng Chia University, 100 Wenhua Road, Seatwen, Taichung 407, Taiwan (China)], E-mail: cchwang@fcu.edu.tw; Liu, C.-T. [Department of Electrical Enginering, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan (China); Teng, C.C. [Department of Electrical Enginering, Feng Chia University, 100 Wenhua Road, Seatwen, Taichung 407, Taiwan (China)

    2008-07-15

    This paper presents the design of a permanent magnet (PM) synchronous motor with the magnets laid flush in slots let into the rotor surface, called inset magnet rotor. The finite element field analysis coupled with the drive circuit equations are briefly discussed for obtaining the motor performance. Experimental results obtained are in good agreement with the finite element analysis.

  7. A Novel Integral 5-DOFs Hybrid Magnetic Bearing with One Permanent Magnet Ring Used for Turboexpander

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available We propose a novel combined five-degrees-of-freedom (5-DOFs hybrid magnetic bearing (HMB with only one permanent magnet ring (PMR used for turboexpanders. It has two radial magnetic bearing (RMB units; each has four poles and one thrust magnetic bearing (TMB to control 5-DOFs. Based on one PMR, the bias flux of the two radial magnetic bearing units and the one thrust magnetic bearing unit is constructed. As a result, ultra-high-speed, lower power loss, small size, and low cost can be achieved. Furthermore, the equivalent magnetic circuit method and 3D finite element method (FEM are used to model and analyze the combined 5-DOFs HMB. The force-current, force-position, torque-coil currents, the torque-angle position, and the stiffness models of the combined 5-DOFs HMB are given. Moreover, its coupling problems between the RMB units and the AMB unit are also proposed in this paper. An example is given to clarify the mathematical models and the coupling problems, and the linearized models are proposed for the follow-up controller design.

  8. Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators

    Science.gov (United States)

    Kramer, M. J.; McCallum, R. W.; Anderson, I. A.; Constantinides, S.

    2012-07-01

    With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements.

  9. [Mechanical Shimming Method and Implementation for Permanent Magnet of MRI System].

    Science.gov (United States)

    Xue, Tingqiang; Chen, Jinjun

    2015-03-01

    A mechanical shimming method and device for permanent magnet of MRI system has been developed to meet its stringent homogeneity requirement without time-consuming passive shimming on site, installation and adjustment efficiency has been increased.

  10. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process...... of the combined unit is described together with a description of the construction of the part for a test model. The unit is unique in the sense that it has superior traction characteristics and a torque density of 130 Nm/l which is more 1.5 times of other reported motor integrated permanent magnet gears. The unit...... may be useful as a direct drive wheel motor for EV's and no liquid cooling system is required....

  11. Damage Analysis of Internal Faults in Flux Concentrating Permanent Magnet Motors

    Science.gov (United States)

    1994-06-01

    6 1.1 Ship Propulsion Systems...11 1.4 Faults in Permanent Magnet Ship Propulsion Motors...124 5 Chapter 1. Introduction The use of electric ship propulsion offers significant advantages in ship design

  12. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    OpenAIRE

    Lei Wang; Tao Shen; Chen Chen

    2014-01-01

    The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs). A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is model...

  13. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    OpenAIRE

    Lei Wang; Tao Shen; Chen Chen

    2014-01-01

    The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs). A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is model...

  14. Finite-Time Chaos Control of a Complex Permanent Magnet Synchronous Motor System

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2014-01-01

    Full Text Available This paper investigates the finite-time chaos control of a permanent magnet synchronous motor system with complex variables. Based on the finite-time stability theory, two control strategies are proposed to realize stabilization of the complex permanent magnet synchronous motor system in a finite time. Two numerical simulations have been conducted to demonstrate the validity and feasibility of the theoretical analysis.

  15. Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2016-01-01

    Full Text Available In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW. This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it

  16. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2016-01-01

    Full Text Available The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B0 inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained.

  17. Design improvement of permanent magnet flux switching motor with dual rotor structure

    Science.gov (United States)

    Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.

    2017-08-01

    This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.

  18. Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-09-01

    Full Text Available In order to compare the performance difference of the permanent magnet synchronous motors (PMSM with different rotor structure, two kinds of rotor magnetic circuit structure with surface-mounted radial excitation and tangential excitation are designed respectively. By comparing and analyzing the results, the difference of the motor performance was determined. Firstly, based on the finite element method (FEM, the motor electromagnetic field performance was studied, and the magnetic field distribution of the different magnetic circuit structure was obtained. The influence mechanism of the different magnetic circuit structure on the air gap flux density was obtained by using the Fourier theory. Secondly, the cogging torque, output torque and overload capacity of the PMSM with different rotor structure were studied. The effect mechanism of the different rotor structure on the motor output property difference was obtained. The motor prototype with two kinds of rotor structure was manufactured, and the experimental study was carried out. By comparing the experimental data and simulation data, the correctness of the research is verified. This paper lays a foundation for the research on the performance of the PMSM with different magnetic circuit structure.

  19. A Study on Magnetic Decoupling of Compound-Structure Permanent-Magnet Motor for HEVs Application

    Directory of Open Access Journals (Sweden)

    Qiwei Xu

    2016-10-01

    Full Text Available The compound-structure permanent-magnet (CSPM motor is used for an electrical continuously-variable transmission (E-CVT in a hybrid electric vehicle (HEV. It can make the internal combustion engine (ICE independent of the road loads and run in the high efficiency area to improve the fuel economy and reduce the emissions. This paper studies the magnetic coupling of a new type of CSPM motor used in HEVs. Firstly, through the analysis of the parameter matching with CSPM in the HEV, we receive the same dynamic properties’ design parameters between the CSPM motor and the THS (Toyota Hybrid System of the Toyota Prius. Next, we establish the equivalent magnetic circuit model of the overall and the secondary model considering the tangential and radial flux distribution in the outer rotor of the CSPM motor. Based on these two models, we explore the internal magnetic coupling rule of the CSPM motor. Finally, finite element method analysis in 2D-ansoft is used to analyze the magnetic field distribution of the CSPM motor in different operation modes. By the result of the finite element method analysis, the internal magnetic decoupling scheme is put forward, laying the theoretical foundation for the further application of the CSPM motor in HEVs.

  20. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  1. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  2. Development of a permanent magnet alternative for a solenoidal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.; Fahy, A.; Barr, M. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Jardine, A.; Allison, W. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dastoor, P.C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-12-01

    The most sensitive desktop-sized ionizer utilising electron bombardment is currently the solenoidal ion source. We present an alternate design for such an ion source whereby the solenoidal windings of the electromagnet are replaced by a shaped cylindrical permanent magnet in order to reduce the complexity and running costs of the instrument. Through finite element modelling of the magnetic field in COMSOL and experimental measurements on a small-scale prototype magnet stack, we demonstrate the required shape of the permanent magnet in order to generate the needed field, and the necessity of soft iron collars to smooth fluctuations along the central axis.

  3. Controllability and Observability of 2-DOF Permanent Magnet Maglev System with Linear Control

    Institute of Scientific and Technical Information of China (English)

    CUI Tian-shi; OKa koichi; DONG Gui-ju

    2005-01-01

    A new type of 2-DOF(degree of freedom) magnetic levitation system for multi-DOF levitation is proposed. In this system, the force of permanent magnets are used for levitation and controlled by adjusting the reluctance of the magnetic circuit. Using permanent magnets, the feature of this system is effective for saving energy and avoiding heat generation. First, the principle of the levitation system and typical reluctance control methods are described. Second, an experimental device based on the principle is introduced. Finally, the feasibility of this system is considered from linear control theory.

  4. Permanent magnets for Faraday rotators inspired by the design of the magic sphere.

    Science.gov (United States)

    Trénec, Gérard; Volondat, William; Cugat, Orphée; Vigué, Jacques

    2011-08-20

    Faraday polarization rotators are commonly used in laser experiments. Most Faraday materials have a nonnegligible absorption, which is a limiting factor for high power laser optical isolators or for intracavity optical diodes. By using a stronger magnetic field and a shorter length of Faraday material, one can obtain the same polarization rotation and a reduced absorption. In this paper, we describe two permanent magnet arrangements that are easy to build and produce magnetic fields up to 1.7 T, substantially more than commonly used. The field homogeneity is largely sufficient for a 30 dB isolation ratio. We finally discuss the prospects for producing even larger fields with permanent magnets.

  5. POWER FACTOR CORRECTION IN PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE USING SINGLE-PHASE CUK CONVERTER

    Directory of Open Access Journals (Sweden)

    SANJEEV SINGH

    2010-12-01

    Full Text Available Permanent magnet brushless DC motor (PMBLDCM drives are being employed in many variable speed applications due to their high efficiency, silent operation, compact size, high reliability, ease of control, and low maintenance requirements. These drives have power quality problems and poor power factor at input AC mains as they are mostly fed through diode bridge rectifier based voltage source inverters. To overcome such problems a single-phase single-switch power factor correction AC-DC converter topology based on a Cuk converter is proposed to feed voltage source inverters based PMBLDCM. It focuses on the analysis, design and performance evaluation of the proposed PFC converter topology for a 1.5 kW, 1500 rpm, 400 V PMBLDCM drive used for an air-conditioning system. The proposed PFC converter topology is modelled and its performance is simulated in Matlab-Simulink environment and results show an improved power quality and good power factor in wide speed range of the drive.

  6. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  7. Calculation of the Autonomous Mc-Generator with a Permanent Magnet

    Science.gov (United States)

    Gurin, V. E.; Kargin, V. I.; Pikar, A. S.; Popkov, N. F.; Ryaslov, E. A.

    2004-11-01

    Numerical calculations of an autonomous magnetocumulative generator with permanent magnets based on barium oxide are presented. Application of barium oxide magnets allows creation of a closed magnetic circuit with four acting gaps and provides magnetic flux compression with axial geometry. A generator using a permanent magnet does not require an additional energy source thus it is convenient to operate and always ready for activation. Numerical calculation results are discussed here and compared with tests of trial samples. A numerical simulation describes the capture of the magnetic flux, its compression by a copper expanding liner, energy losses to cut the flux and non-liner diffusion of magnetic field in conductors. The optimized autonomous generator design using the MKM-48 permanent magnet is shown. Energy is released from the generator by a low-inductive matching transformer. The generator using permanent magnets and having an explosive charge mass of several tens of grams provides 30 J of magnetic energy, sufficient to drive cascade energy amplifiers of submegajoule range.

  8. Current status and future outlook for bonded neodymium permanent magnets (invited)

    Science.gov (United States)

    Croat, J. J.

    1997-04-01

    Bonded neodymium magnets can provide significant size and weight reduction and/or performance enhancement over sintered and, particularly, bonded ferrite permanent magnets and, moreover, provide these benefits at reasonable cost. Primarily for these reasons, these bonded magnets are now used in a wide and growing range of computer peripheral, office automation, and consumer electronic applications and now constitute the fastest growing segment of the permanent magnet market. The current status of these materials will be reviewed. Included is a brief overview of the manufacture of these magnetically isotropic magnets and a discussion of their unique properties and features from the perspective of both bonded magnet producer and user. Major applications are discussed as are some of the factors that will drive the market for these materials in the future. New technical developments, including the status and outlook for anisotropic bonded materials, high remanance isotropic materials and high temperature bonded magnets will also be discussed.

  9. Monocoil reciprocating permanent magnet electric machine with self-centering force

    Science.gov (United States)

    Bhate, Suresh K. (Inventor); Vitale, Nicholas G. (Inventor)

    1989-01-01

    A linear reciprocating machine has a tubular outer stator housing a coil, a plunger and an inner stator. The plunger has four axially spaced rings of radially magnetized permanent magnets which cooperate two at a time with the stator to complete first or second opposite magnetic paths. The four rings of magnets and the stators are arranged so that the stroke of the plunger is independent of the axial length of the coil.

  10. Estimation of Saturation of Permanent-Magnet Synchronous Motors Through an Energy-Based Model

    CERN Document Server

    Jebai, AlKassem; Martin, Philippe; Rouchon, Pierre

    2011-01-01

    We propose a parametric model of the saturated Permanent-Magnet Synchronous Motor (PMSM) together with an estimation method of the magnetic parameters. The model is based on an energy function which simply encompasses the saturation effects. Injection of fast-varying pulsating voltages and measurements of the resulting current ripples then permit to identify the magnetic parameters by linear least squares. Experimental results on a surface-mounted PMSM and an interoir magnet PMSM illustrate the relevance of the approach.

  11. Efficient IEC permanent-magnet motor (3 kW) - Final report; Effizienter IEC Permanent-Magnet-Motor (3 kW) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H. P.; Evequoz, B. [Haute Ecole valaisanne, Sion (Switzerland); Salathe, D. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland)

    2008-04-15

    Efficient permanent-magnet motors achieve in the area up to 100 kW a higher efficiency than induction machines (standard motors). A simple and fast energy saving option is the exchange of inefficient standard motors. The objective of this work is to install a 3 kW permanent-magnet motor in a standard IEC housing and the optimization of the design for high efficiency. Another objective is the development and the realization of an efficient variable speed control. The efficiency of the motor and the inverter with the control system must be demonstrated by tests. These tasks have been split between Circle Motor AG and the universities of applied sciences of Valais and Lucerne. Considering high-efficiency and low manufacturing cost, a brushless DC solution was adopted. This resulted in an optimum design of the motor and the control system realized with a three-phase rectifier, a buck converter with variable DC voltage, and a three-phase inverter feeding full positive and negative current to two of the legs simultaneously. The maximum measured efficiency is about 96.5% for the inverter and 92% for the motor. With the advantage of the variable speed operation, the efficiency of the realized 3 kW permanent magnet motor together with the control system is always higher than the efficiency of a measured class EFF1 induction motor, even with a direct connection to the grid. The permanent-magnet motor is also about 10 kg lighter. The cost calculation shows that the permanent-magnet motor can be competitive with the induction motor when speed control is desired. This is also the domain with the largest potential for energy savings from variable speed pumps, compressors, fans. (author)

  12. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Science.gov (United States)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-11-01

    We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  13. TetraMag: a compact magnetizing device based on eight rotating permanent magnets.

    Science.gov (United States)

    Gilbert, M; Mertins, H-Ch; Tesch, M; Berges, O; Feilbach, Herbert; Schneider, C M

    2012-02-01

    In this paper we describe a novel magnetizing device based on eight rotatable permanent magnets arranged in a quadrupolar configuration, which is termed the TetraMag. TetraMag creates stable and homogeneous magnetic fields at the sample position with a resolution of 0.02 mT tunable between -570 mT and +570 mT. The field direction is continuously rotatable between 0° and 360° within the sample plane, while the field strength is maintained. A simplified mathematical description of TetraMag is developed leading to magnetic field calculations which are in good agreement with the experimental results. This versatile device avoids electrical energy dissipation, cooling mechanisms, and hysteresis effects known from classical electromagnets. It is ultrahigh vacuum compatible and it offers a completely free optical path over 180° for magneto-optical experiments. It is suitable for scattering experiments with synchrotron radiation and neutrons and may be employed in a large class of magnetization experiments.

  14. Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon, E-mail: skywalker03@gmail.com

    2015-09-01

    Magnetic nanoparticles are used in various biological applications such as magnetic resonance imaging (MRI), biological separation, drug delivery or as biomarker. In the case of biomarker, the magnetic particle and a measurand are combined via biological reactions and then detected by magnetic field sensors for a qualitative or quantitative measurement. In the present work, we introduce a commercially available giant magnetoresistive (GMR) sensor for the quantitative measurement of superparamagnetic nanoparticles, which were injected into a glass capillary tube. A pair of permanent magnets standing diagonally opposite to each other was utilized to provide vertical and horizontal magnetic fields for particle magnetization and sensor bias, respectively. In addition, the permanent magnets solved the uniformity problem of generated magnetic fields in previous biomarker detection systems. Using the proposed measurement setup, an output signal change of 0.407 V was achieved for a 1 μg change in the magnetic particle mass. The detection limit was 43.5 ng. - Highlights: • We introduce a GMR sensor for the superparamagnetic nanoparticles quantification. • Permanent magnets were utilized for particle magnetization and sensor bias. • The system sensitivity was 0.407 V per 1 µg of particles. • The limit of detection was 43.5 ng.

  15. Numerical simulation for optimization of multipole permanent magnets of multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, M.; Afarideh, H., E-mail: hafarideh@aut.ac.ir

    2014-01-21

    A new ion source will be designed and manufactured for the CYCLONE30 commercial cyclotron with a much advanced performance compared with the previous one. The newly designed ion source has more plasma density, which is designed to deliver an H{sup –} beam at 30 keV. In this paper numerical simulation of the magnetic flux density from permanent magnet used for a multicusp ion source, plasma confinement and trapping of fast electrons by the magnetic field has been performed to optimize the number of magnets confining the plasma. A code has been developed to fly electrons in the magnetic field to evaluate the mean life of electrons in plasma in different magnetic conditions to have a better evaluation and comparison of density in different cases. The purpose of this design is to recapture more energetic electrons with permanent magnets. Performance simulations of the optimized ion source show considerable improvement over reported one by IBA.

  16. Numerical simulation for optimization of multipole permanent magnets of multicusp ion source

    Science.gov (United States)

    Hosseinzadeh, M.; Afarideh, H.

    2014-01-01

    A new ion source will be designed and manufactured for the CYCLONE30 commercial cyclotron with a much advanced performance compared with the previous one. The newly designed ion source has more plasma density, which is designed to deliver an H- beam at 30 keV. In this paper numerical simulation of the magnetic flux density from permanent magnet used for a multicusp ion source, plasma confinement and trapping of fast electrons by the magnetic field has been performed to optimize the number of magnets confining the plasma. A code has been developed to fly electrons in the magnetic field to evaluate the mean life of electrons in plasma in different magnetic conditions to have a better evaluation and comparison of density in different cases. The purpose of this design is to recapture more energetic electrons with permanent magnets. Performance simulations of the optimized ion source show considerable improvement over reported one by IBA.

  17. Study of internal permanent magnet rotor made of 0.6C-13Cr-Fe dual state magnetic material

    Science.gov (United States)

    Mita, Masahiro; Masuzawa, Masahiro; Hirao, Noriyoshi; Kimura, Fumio

    2003-05-01

    We have successfully developed an internal permanent magnet (IPM) rotor using dual state bulk magnetic material to increase usable magnetic flux dramatically. The most significant benefit of the IPM rotor is its mechanical reliability, because permanent magnets are inserted in slots of soft magnetic material. On the other hand, there is significant leakage flux between adjoining permanent magnets in the soft magnetic rotor core, reducing the usable magnetic flux flowing into the stator core. To solve this problem, we used a dual state magnetic material, 0.6C-13Cr-Fe alloy. This soft magnetic material could locally be changed into nonmagnetic material by localized heat treatment. By changing the material at leakage flux path into nonmagnetic, we can reduce the leakage flux, while keeping the rotor mechanically sound. By applying the dual state magnetic material to an experimental eight pole IPM rotor, the useful flux flowing in the stator core differs by 8% when compared to an all soft magnetic rotor core.

  18. Characteristic Analysis and Experimental Study of a Hybrid Permanent Magnet Variable Flux Memory Motor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Variable flux permanent magnet (PM) memory motors (VFMM), which combine the advantages of PM machines with high power density and electrically excited machines with controllable air-gap magnetic flux, have been widely concerned and researched in recent years.

  19. Stable levitation of steel rotors using permanent magnets and high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.; Passmore, J. L.; Mulcahy, T. M.; Rossing, T. D.

    1994-07-01

    Individual freely spinning magnetic steel rotors were levitated by combining the attractive force between permanent magnets and the rotor with the repulsive force between high-temperature superconductors and the steel. The levitation force and stiffness of several configurations are presented, and the application of this levitation method to high-speed bearings is discussed.

  20. Analysis of a Lorentz force based vibration exciter using permanent magnets mounted on a piezoelectric stack

    Indian Academy of Sciences (India)

    Arghya Nandi; Sumanta Neogy; Sankha Bhaduri

    2011-02-01

    This work presents performance analysis of a Lorentz force based noncontact vibration exciter by mounting a couple of permanent magnets on a piezoelectric stack. A conductor is attached to the structure to be excited and is placed midway between unlike poles of a couple of permanent magnets. The permanent magnets are placed on a piezoelectric stack. This stack, because of its nano-positioning capabilities, can impart an accurate and adjustable harmonic vibratory motion to the couple of permanent magnets. The piezoelectric stack, because of its high stiffness remains uncoupled with the dynamics of the structure. Due to the relative motion between the magnets and the conductor, Lorentz force is generated within the conductor. This Lorentz force is responsible for vibration of the structure in a plane parallel to the pole faces of the magnets. This keeps the magnetic field almost independent of the vibration of the structure and the chance of the structure hitting the magnet during large vibration is totally eliminated. If the amplitude of displacement of the stack is kept constant, the non-contact excitation force in this exciter remains proportional to the excitation frequency. Though use of this exciter eliminates mass (apart from that of the conductor attached to the structure) and stiffness coupling, a known damping term gets added to that of the excited structure.

  1. Method and apparatus from imaging target components in a biological sample using permanent magnets

    NARCIS (Netherlands)

    Tibbe, Arjan G.J.; Terstappen, Leonardus Wendelinus Mathias Marie

    2010-01-01

    The present invention is a method and means for positive selecting and imaging target entities. This includes a coated permanent magnetic device for magnetic manipulation in the system of the present invention. The system immunomagnetically concentrates the target entity, fluorescently labels,

  2. Analysis and Design of Double-sided Air core Linear Servo Motor with Trapezoidal Permanent Magnets

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Yang, Zilong; Yu, Minghu

    2011-01-01

    In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no-load is i......In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no......-load is introduced. This model is derived based on the equivalent magnetization intensity method, and its accuracy is validated by using the results obtained from the finite-element method. The key dimensions that affect the air-gap magnetic field are analyzed based on the analytical model, and the design...... is optimized by using genetic algorithm. A thrust ripple reduction of 70.6% is achieved by optimization. The proposed analytical model may be used for a quick and reliable design and design optimization of the TDAPMLSM....

  3. Permanent Magnet with Very Low Field Gradient (0.1G/mm) for NMR Spectroscopy

    Science.gov (United States)

    Ilic, Ognjen; Issadore, David; Hunt, Tom; Westervelt, Robert

    2007-03-01

    Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for obtaining chemical, physical and structural information. To produce the uniform fields required, NMR experiments typically employ large, expensive electromagnets and shimming coils. We have developed a small permanent magnet with an iron yoke that produces a field of ˜10 kG with gradient CCNE.

  4. Design and Parametr Analysis of Switched Reluctance Motor with Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Ivan Trak

    2004-01-01

    Full Text Available This paper deals with Switched Reluctance Motor (SRM parametr investigation, if permanent magnets are suitable inserted in stator parts to increase magnetic flux. The analysis is made on the base of input geometrical dimensions and materials of a real SRM without permanent magnets (PM. The calculation of PMSRM static parametres is made by means of Finite Element Method (FEM and by analytical approach. The output parameters of PMSRM analysis are phase inductance, flux linage and electromagnetic torque versus phase current and rotor position. These calculated parameters are compared with measured and FEM calculated parameters of SRM without PM. The recommendations for PMSRM design configuration are given.

  5. Development and Application of Rare Earth Permanent Magnet (REPM) Material in Electric Machines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the development of permanent materials, the development and application of permanent material electric machine (REPM) have been more mature. At first the state of development and application of REPM electric machine is presented in this paper, many RMEM have been produced in volume such as the pilot exciter used for power set of large-scale thermal power station, the special RMEM synchronous motor for textile, the starter motor for automobile, the brushless permanent magnet DC motor for electric facilities, permanent magnet servomotor for numerical controlled machine tool, rare-earth torque motor, special micro-motor for automobile and so on. Secondly the field of application of REPM electric machine and remaining problems is analyzed, because of the price of the rare-earth permanent magnet materials, the cost of RMEM is currently higher than that of induction machine, on the other side the dispersibility of performance of rare-earth permanent magnet materials and the limitation of technique of integral excitation are also remaining problems, above-mentioned problems handicapped the popularization of REPMEM. At last the developing prospect and trend of REPM electric machines is described, there are four promising types of PMEM: economical type, high performance type, high efficiency and energy-saving type, micromation, intelligibility type. With the appearance of new REPM material and the improvement of its performance and the continuous perfection of performance of electric-power electronic components, the development and the application of REPM electric machines will be further progressed.

  6. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    Science.gov (United States)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  7. Simple quadratic magneto-optic Kerr effect measurement system using permanent magnets.

    Science.gov (United States)

    Pradeep, A V; Ghosh, Sayak; Anil Kumar, P S

    2017-01-01

    In recent times, quadratic magneto-optic Kerr effect (QMOKE) is emerging as an important experimental tool to investigate higher-order spin-orbit interactions in magnetic thin films and heterostructures. We have designed and constructed a simple, cost-effective QMOKE measurement system using permanent magnets. The permanent magnets are mounted on the inner surface of a cylindrical ferromagnetic yoke which can be rotated about its axis. Our system is sensitive to both the quadratic and linear MOKE signals. We use rotating field method to extract the QMOKE components in saturation. This system is capable of extracting the QMOKE signal from single crystals and thin film samples. Here we present the construction and working of the QMOKE measurement system using permanent magnets and report, for the first time, the QMOKE signal from Fe3O4 single crystal.

  8. A sensorless initial rotor position's estimation for permanent magnet synchronous machines

    Science.gov (United States)

    Krasnov, I.; Langraf, S.; Odnolopylov, I.; Koltun, V.

    2015-10-01

    Permanent magnet synchronous motors for the effective start require information about the initial position of a rotor. In this regard, most systems use position sensors, which substantially increase entirely a cost of an electrical drive [1-3]. The aim of this article is to develop a new method, allowing determining the absolute angular position of the permanent magnet synchronous motors’ rotor [4,5]. With a certain voltage pulses applied to the motor, its stator is magnetized by currents leakage in the windings. This allows using a special algorithm to calculate the absolute position of the rotor without using any motor parameters [6]. Simulation results prove the simplicity and efficiency of this method for determining an initial position of the permanent magnet synchronous motors’ rotor. Thus, this method can be widely used in the electrical industry.

  9. Diagrammatized method of permanent magnet working-point in Polarized System

    Directory of Open Access Journals (Sweden)

    Wangfang Wangfang

    2012-09-01

    Full Text Available Polarized magnetic system  has widely been used in  aeronautical , astronautical , military and civilian domain.  Diagrammatized analysis method has advantages of clear physics concept, direct and compendious. The diagrammatized analysis method for work points of the permanent magnet and air magnetic flux for the typical polarized systems are proposed in this paper, which include type differential and bridge magnetic system. The unite calculating expressions are sum up based on the equivalent magnetic voltage model circuit. The diagrammatized analysis method is benefit for understanding the working principle of polarity magnetic system.

  10. Magnetovisual method for monitoring thermal demagnetization of permanent magnets used in magnetostrictive actuators

    Institute of Scientific and Technical Information of China (English)

    J. Kaleta; P. Wiewiórski

    2014-01-01

    The design and measuring potential of the latest generation of the magnetic scanner called Magscanner-Maglab System (MMS) was presented. It enabled the fast acquisition of 3D signals from magnetic sensors and their visualization as digitalized mag-netic images. This system was used for monitoring of a thermal demagnetization process of permanent magnets. The original method and measurement devices were capable for examination of magnetic, mechanical and thermal defects in cylindrical rods made of NdFeB and non-rare earth components. Effectiveness of the method and device was tested for the reference demagnetized magnet dedicated for magnetostrictive actuators.

  11. Measurement of transverse Jc profiles of coated conductors using a magnetic knife of permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Haenisch, J [Los Alamos National Laboratory; Mueller, F M [Los Alamos National Laboratory; Ashworth, S P [Los Alamos National Laboratory; Coulter, J Y [Los Alamos National Laboratory; Matias, Vlad [Los Alamos National Laboratory

    2008-01-01

    The transverse J{sub c} distribution in YBCO coated conductors was measured non-destructively with high resolution using a 'magnetic knife' made of permanent magnets. The method utilizes the strong depression of J{sub c} in applied magnetic fields. A narrow region of low (including zero) magnetic field, in a surrounding higher field, is moved transversely across the sample in order to reveal the critical-current density distribution. The net resolution of this device is approximately 65 {micro}m, and the J{sub c} resolution is better than 0.5%. A Fourier series inversion process was used to determine the transverse J{sub c} distribution in the sample. The J{sub c} profile was correlated with other sample properties of coated conductors prepared by pulsed laser deposition. Because of its straight-forward and inexpensive design, this J{sub c} imaging technique can be a powerful tool for quality control in coated-conductor production.

  12. Measurement Of Transverse Jc Profiles Of Coated Conductors Using A Magnetic Knife Of Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, J [Los Alamos National Laboratory; Mueller, F M [Los Alamos National Laboratory; Ashworth, S P [Los Alamos National Laboratory; Coulter, J Y [Los Alamos National Laboratory; Matias, Vlad [Los Alamos National Laboratory

    2008-01-01

    The transverse J{sub c} distribution in YBCO coated conductors was measured nondestructively with high resolution using a 'magnetic knife' made of permanent magnets. The method utilizes the strong depression of J{sub c} in applied magnetic fields. A narrow region of low (including zero) magnetic field, in a surrounding higher field, is moved transversely across the sample in order to reveal the critical-current density distribution. The net resolution of this device is approximately 65 {mu}m, and the J{sub c} resolution is better than 0.5%. A Fourier series inversion process was used to determine the transverse J{sub c} distribution in the sample. The J{sub c} profile was correlated with other sample properties of coated conductors prepared by pulsed laser deposition. Because of its straight-forward and inexpensive design, this J{sub c} imaging technique can be a powerful tool for quality control in coated-conductor production.

  13. A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR

    Directory of Open Access Journals (Sweden)

    Huimin Liang

    2015-02-01

    Full Text Available Modeling of permanent magnet (PM is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR. In traditional analytical calculation, PM is often equivalent to a lumped parameter model of one magnetic resistance and one magnetic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given; by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calculation model is established based on 2D MECF and the attractive force at different rotation angles is calculated; the proposed method is compared with the traditional lumped parameter model and finite element method (FEM; for some types of electromagnetic systems with symmetrical structure, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.

  14. A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR

    Institute of Scientific and Technical Information of China (English)

    Liang Huimin; You Jiaxin; Cai Zhaowen; Zhai Guofu

    2015-01-01

    Modeling of permanent magnet (PM) is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR). In traditional analytical calcula-tion, PM is often equivalent to a lumped parameter model of one magnetic resistance and one mag-netic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF) is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given;by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calcu-lation model is established based on 2D MECF and the attractive force at different rotation angles is calculated;the proposed method is compared with the traditional lumped parameter model and finite element method (FEM); for some types of electromagnetic systems with symmetrical struc-ture, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.

  15. Analytical magnetic torque calculations and experimental testing of radial flux permanent magnet-type eddy current brakes

    Science.gov (United States)

    Choi, Jang-Young; Jang, Seok-Myeong

    2012-04-01

    This paper reports on analytical magnetic torque calculations and experimental tests of a radial flux permanent magnet (RFPM)-type eddy current brake (ECB). Analytical solutions for permanent magnet-generated magnetic fields that consider the eddy current reaction are obtained by using a magnetic vector potential and a two dimensional (2D) polar coordinate system. On the basis of these solutions, the analytical expressions for a magnetic torque are also derived. All analytical results are validated extensively by non-linear finite element calculations. In particular, magnetic torque measurements are obtained in tests to confirm the analyses. Finally, practical issues related to the analytical study of RFPM-type ECBs are fully discussed.

  16. Improvement of levitation force characteristics in magnetic levitation type seismic isolation device composed of HTS bulk and permanent magnet

    Science.gov (United States)

    Tsuda, M.; Kawasaki, T.; Yagai, T.; Hamajima, T.

    2008-02-01

    Magnetic levitation type seismic isolation device composed of HTS bulks and permanent magnets can theoretically remove horizontal vibration completely. It is, however, not easy to generate the large levitation force by using only the levitation system composed of HTS bulk and permanent magnet (HTS-PM system). We focused on a hybrid levitation system composed of the HTS-PM system and the PM-PM system composed of only permanent magnets and investigated the suitable arranging method of the hybrid system for improving levitation force and obtaining stable levitation. In order to clarify the most suitable permanent magnet arrangement in the PM-PM system for the levitation force improvement, repulsive force between permanent magnets was measured in various kinds of the PM-PM system. The maximum repulsive force per unit area in the PM-PM system was at least three times larger than the levitation force per unit area in the HTS-PM system, so that the levitation force in the hybrid system was larger than that of the HTS-PM system. Stable levitation was also achieved in the hybrid system. This is because repulsive force in the PM-PM system against horizontal displacement was much smaller than restoring force in the HTS-PM system.

  17. Axial-field permanent magnet motors for electric vehicles

    Science.gov (United States)

    Campbell, P.

    1981-01-01

    The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.

  18. Study of the Magnetic Field of a Permanent Magnet Synchronous Generator by using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Constantin Gabriel Dobrean

    2016-10-01

    Full Text Available The study shows the numerical simulation of the magnetic field for a permanent magnet synchronous generator prototype. Through the study, the OPERA software environment, a program based on the numerical computation using the finite element method and used for the virtual simulation of the synchronous generator prototype, is shown. This 5 kVA power, permanent magnet and low speed prototype is meant for uses in hydraulic driven applications, namely wind applications, and was performed within a cooperations between the Faculty of Automation and Computers and the Faculty of Electrical and Power Engineering within the “Politehnica” University of Timișoara.

  19. Dynamic Analysis of Micro-machined Diamagnetic Stable Permanent Magnet Levitation System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel micro-machined diamagnetic stable-levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined diamagnetic image current method were utilized to model the interaction forces and torques between the lifting permanent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic substrates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified by fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiffness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.

  20. Eddy current loss calculation and thermal analysis of axial-flux permanent magnet couplers

    Directory of Open Access Journals (Sweden)

    Di Zheng

    2017-02-01

    Full Text Available A three-dimensional magnetic field analytical model of axial-flux permanent magnet couplers is presented to calculate the eddy current loss, and the prediction of the copper plate temperature under various loads is analyzed. The magnetic field distribution is calculated, and then the eddy current loss is obtained, with the magnetic field analytical model established in cylindrical coordinate. The influence of various loads on eddy current loss is analyzed. Furthermore, a thermal model of axial-flux permanent magnet couplers is established by taking the eddy current loss as the heat source, using the electromagnetic-thermal coupled method. With the help of the thermal model, the influence of various loads on copper plate temperature rise is also analyzed. The calculated results are compared with the results of finite element method and measurement. The comparison results confirm the validity of the magnetic field analytical model and thermal model.

  1. A Novel Cogging Torque Simulation Method for Permanent-Magnet Synchronous Machines

    OpenAIRE

    Chun-Yu Hsiao; Jonq-Chin Hwang; Sheng-Nian Yeh

    2011-01-01

    Cogging torque exists between rotor mounted permanent magnets and stator teeth due to magnetic attraction and this is an undesired phenomenon which produces output ripple, vibration and noise in machines. The purpose of this paper is to study the existence and effects of cogging torque, and to present a novel, rapid, half magnet pole pair technique for forecasting and evaluating cogging torque. The technique uses the finite element method as well as Matlab research and development oriented so...

  2. A Study on Alnico Permanent Magnet Powders Prepared by Atomization

    Institute of Scientific and Technical Information of China (English)

    Changbin SONG; Bocksoo HAN; Ying LI

    2004-01-01

    Alnico powders were prepared by gas atomization process. Composition of the Alnico powders was Fe37.1 Al8.2 Ni17.6-Co26.6 Cu3.3 Ti7.2 (wt pct) which was the same as that of commercially available Alnico magnets. Average particle size of the powders was 119μm. Effects of heat treatment in magnetic field on magnetic properties of the powders were investigated. The optimum process of heat treatment was found as follows, heated at 870℃ for 1 min first, then cooled down to 700℃ at cooling rate 0.3℃/s in magnetic field, and finally aged isothermally for 4 h.Magnetic properties of the Alnico powders were measured and the results were that intrinsic coercivity iHc was 1.0kOe and remanence Mr was 36.5 emu/g.

  3. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    Science.gov (United States)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-08-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.

  4. Some Considerations on Simple Non-Linear Magnetic Analysis-Based Optimum Design of Multi-Pole Permanent Magnet Machines

    Science.gov (United States)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    This paper presents a simple non-linear magnetic analysis-based optimum design of a multi-pole permanent magnet machine as an assistant design tool of 3D-FEM. The proposed analysis is based on the equivalent magnetic circuit and the air gap permeance model between the stator and rotor teeth of the motor, taking into account the local magnetic saturation in the pointed end of teeth. The availability of the proposed analysis is verified by comparing with 3D-FEM analysis from the standpoints of the torque calculation accuracy for the variations of design free parameter and the computation time. After verification, the proposed analysis-based optimum design of the dimensions of permanent magnet is examined, by which the minimization of magnet volume is realized while keeping torque/current ratio at the specified value.

  5. Magnetic field and performance analysis of a tubular permanent magnet linear synchronous motor applied in elevator door system

    Institute of Scientific and Technical Information of China (English)

    Xiao LIU; Yun-yue YE; Zhuo ZHENG; Qin-fen LU

    2008-01-01

    A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.

  6. Magnetic Simulation and Analysis of Radial Flux Permanent Magnet Generator using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pudji Irasari

    2012-07-01

    Full Text Available This paper discusses magnetic simulation and analysis of radial flux permanent magnet generator (PMG using finite element method (FEM by utilizing open source software FEMM 4.2. The specification of generator is 25 V, 28 A, 3 phase, 300 rpm. The analyzed magnetic flux was in the air gap, stator teeth and slots to find out the distribusian pattern and its fluctuation. The simulations were conducted in no-load and nominal load (28 A conditions. Furthermore the maximum flux density of simulation (Bg(sim was used to calculate phase voltage Eph to find out the magnitude of generated electromotive force (EMF. The calculation results were presented as voltage vs. rotation graph in no-load condition and voltage vs. current graph in nominal load condition. Both graphs were validated with Eph of experiment result (Eph(exp and Eph that the value of Bg obtained from analytical calculation (Eph(calc. The final results showed that in no-load condition, Eph graph with Bg(sim (Eph(sim was close to Eph(exp and Eph(calc. The error rate with respect to the experiment was 6,9%. In nominal load condition, Eph(sim graph almost coincides with Eph(calc. graph, with the voltage drop of both was 0,441 V. Both graphs however were far different from Eph(exp graph, which has 9 V of voltage drop. The overall results demonstrated that magnetic distribution pattern presented by FEM was very helpful to avoid magnetic flux accumulation in a particular segment. Besides Bg(sim facilitated to predict the value of Eph.

  7. Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ding

    2017-03-01

    Full Text Available This paper investigates the impact of silicon carbide (SiC metal oxide semiconductor field effect transistors (MOSFETs on the dynamic performance of permanent magnet synchronous motor (PMSM drive systems. The characteristics of SiC MOSFETs are evaluated experimentally taking into account temperature variations. Then the switching characteristics are firstly introduced into the transfer function of a SiC-inverter fed PMSM drive system. The main contribution of this paper is the investigation of the dynamic control performance features such as the fast response, the stability and the robustness of the drive system considering the characteristics of SiC MOSFETs. All the results of the SiC-drive system are compared to the silicon-(Si insulated gate bipolar transistors (IGBTs drive system counterpart, and the SiC-drive system manifests a higher dynamic performance than the Si-drive system. The analytical results have been effectively validated by experiments on a test bench.

  8. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Science.gov (United States)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-11-01

    We have developed the hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  9. Performance comparison of three-phase flux reversal permanent magnet motors in BLDC and BLAC operation mode

    Science.gov (United States)

    Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Hamler, A.; Goričan, V.; Jesenik, M.; Trlep, M.

    The paper presents a comparison of torque capability and flux-weakening performance of three-phase flux reversal permanent magnet motors with surface and inset permanent magnets. Finite element analysis is employed to determine the performance of each motor in BLDC and BLAC operation mode. It is shown that the torque capability and flux-weakening performance of surface or inset permanent magnet configuration is strongly dependent on the stator teeth number/rotor pole number combination.

  10. Performance comparison of three-phase flux reversal permanent magnet motors in BLDC and BLAC operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Stumberger, B. [Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, Maribor SI-2000 (Slovenia)], E-mail: bojan.stumberger@uni-mb.si; Stumberger, G.; Hadziselimovic, M.; Hamler, A.; Gorican, V.; Jesenik, M.; Trlep, M. [Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, Maribor SI-2000 (Slovenia)

    2008-10-15

    The paper presents a comparison of torque capability and flux-weakening performance of three-phase flux reversal permanent magnet motors with surface and inset permanent magnets. Finite element analysis is employed to determine the performance of each motor in BLDC and BLAC operation mode. It is shown that the torque capability and flux-weakening performance of surface or inset permanent magnet configuration is strongly dependent on the stator teeth number/rotor pole number combination.

  11. Towards high-performance permanent magnets without rare earths.

    Science.gov (United States)

    Kuz'min, M D; Skokov, K P; Jian, H; Radulov, I; Gutfleisch, O

    2014-02-12

    Achieving a very strong magnetic anisotropy in a 3d material is a difficult, but not an impossible task. It is difficult because there is no general recipe (necessary condition) for a strong anisotropy in a band magnet. Several strategies can be pursued in this situation. One of them is to re-examine the less studied 3d compounds, somewhat neglected since the discovery of the Nd-Fe-B magnets 30 years ago. As an example, a single crystal of (Fe0.7Co0.3)2B has been investigated in this work.

  12. Design, Prototyping, and Analysis of a Novel Modular Permanent Magnet Transverse Flux Disk Generator

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Ershad, Nima Farrokhzad;

    2011-01-01

    This paper presents the design, prototyping, and analysis of a novel modular transverse flux permanent magnet disk generator. The disk-shaped structure simplifies the construction procedure by using laminated steel sheets. To reduce output harmonics, the excitation of the generator is done...... by circular flat shaped Nd-Fe-B permanent magnets. First, a typical low power generator is designed, and then partially optimized. The optimization objective is to find an inner radius which maximizes the power factor, the output power to mass ratio and the efficiency. The generator equivalent circuit...... parameters are computed by three dimensional finite element analyses. The simulation results show that the power factor of the proposed structure is considerably greater than the power factor previously reported for other transverse flux permanent magnet generator structures. To verify the simulation results...

  13. Thermal Analysis on Radial Flux Permanent Magnet Generator (PMG using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful A Syaeful A

    2011-05-01

    Full Text Available The main source of heat in the permanent magnet generator (PMG is the total losses which f come from winding losses, core losses and rotational losses. Total heat arising from such these losses must be properly distributed and maintained so as not to exceed the maximum allowable temperature to prevent damage to insulation on the winding and demagnetization on the permanent magnet machines. In this research, we consider thermal analysis which is occurred on the radial flux PMG by using finite element method to determine the extent to which the heat generated can be properly distributed. The simulation results show that there are no points of heat concentration or hot spot. The simulation maximum temperatures of the permanent magnet and the winding are 39.1oC and 72.5oC respectively while the experimental maximum temperature of the winding is 62oC.

  14. Speed Tracking of Field Oriented Control Permanent Magnet Synchronous Motor Using Neural Network

    Directory of Open Access Journals (Sweden)

    Wahyu Mulyo Utomo

    2014-05-01

    Full Text Available The field oriented control theory and space vector pulse width modulation technique make a permanent magnet synchronous motor can achieve the performance as well as a DC motor. However, due to the nonlinearity of the permanent magnet synchronous motor drive characteristics, it is difficult to control by using conventional proportional-integral-derivative controller. By this reason in this paper an online neural network controller for the permanent magnet synchronous motor is proposed. The controller is designed to tracks variations of speed references and also during load disturbance. The effectiveness of the proposed method is verified by develop simulation model in MATLAB-simulink program. The simulation results show that the proposed controller can reduce the overshoot, settling time and rise time. It can be concluded that the performance of the controller is improved.

  15. A new Maglev. Permanent magnets to make a train levitate; Un nouveau Maglev. Des aimants permanents pour faire leviter un train

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-02-01

    A new, more stable and economical magnetic levitation system has been developed at the Lawrence Livermore Laboratory (USA) which uses permanent magnets instead of expensive superconducting or electro-magnets. In this new type of levitated train, the skates of the wagons are made of series of permanent magnets organized as a Hallbach net while the levitating coils are included in the rails. The construction of such a train using this 'indutrack' system would be 3 times less expensive than the German Maglev. Short paper. (J.S.)

  16. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Peter Kelly [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE2Fe14B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 105-106K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH)max for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF3). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the

  17. Microstructure of pre-sintered permanent magnetic strontium ferrite powder

    Institute of Scientific and Technical Information of China (English)

    YU Hongya; LIU Zhengyi; ZENG Dechang

    2006-01-01

    The microstructure and characteristics of pre-sintered strontium ferrite powderwere investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The present study shows that the pre-sintered strontium ferrite powder is provided with a certain particle size distribution, which results in high-density magnets. The strontium ferrite particle has a laminar hexagonal structure with a size similar to ferrite single domain. Ferric oxidephase due to an incomplete solid phase reaction in the first sintering is discovered, which will deteriorate the magnetic properties of ferrite magnet. In addition, the waste ferrite magnets with needle shape arranging along C axis in good order into the powders are found, which have no negative effects on finished product quality.

  18. Synchronous motor with hybrid permanent magnets on the rotor.

    Science.gov (United States)

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  19. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings...... concentric rings with radial magnetic orientation - analytical expressions for the calculation of the magnetic flux density and forces are employed, opposed to the main literature trend where finite element software is utilized at least for the calculation of the B-field. Numerical analysis shows how...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....

  20. High-throughput search for new permanent magnet materials.

    Science.gov (United States)

    Goll, D; Loeffler, R; Herbst, J; Karimi, R; Schneider, G

    2014-02-12

    The currently highest-performance Fe-Nd-B magnets show limited cost-effectiveness and lifetime due to their rare-earth (RE) content. The demand for novel hard magnetic phases with more widely available RE metals, reduced RE content or, even better, completely free of RE metals is therefore tremendous. The chances are that such materials still exist given the large number of as yet unexplored alloy systems. To discover such phases, an elaborate concept is necessary which can restrict and prioritize the search field while making use of efficient synthesis and analysis methods. It is shown that an efficient synthesis of new phases using heterogeneous non-equilibrium diffusion couples and reaction sintering is possible. Quantitative microstructure analysis of the domain pattern of the hard magnetic phases can be used to estimate the intrinsic magnetic parameters (saturation polarization from the domain contrast, anisotropy constant from the domain width, Curie temperature from the temperature dependence of the domain contrast). The probability of detecting TM-rich phases for a given system is high, therefore the approach enables one to scan through even higher component systems with one single sample. The visualization of newly occurring hard magnetic phases via their typical domain structure and the correlation existing between domain structure and intrinsic magnetic properties allows an evaluation of the industrial relevance of these novel phases.

  1. The 23 to 300 C demagnetization resistance of samarium-cobalt permanent magnets

    Science.gov (United States)

    Niedra, Janis M.; Overton, Eric

    1991-01-01

    The influence of temperature on knee point and squareness of the M-H demagnetization characteristic of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperature in demagnetization resistent permanent magnet devices. Composite plots of the knee field and the demagnetizing field required to produce a given magnetic induction swing below remanence were obtained for several commercial Sm2Co17 type magnet samples in the temperature range of 23 to 300 C. Using the knee point to define the limits of operation safe against irreversible demagnetization, such plots are shown to provide an effective overview of the useable regions in the space of temperature-induction swing parameters. The observed second quadrant M-H characteristic squareness is shown, by two measures, to increase gradually with temperature, reaching a peak in the interval 200 to 300 C.

  2. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    Science.gov (United States)

    1989-01-01

    aublattice anisotropy. 1. Introduction The compound Nd2Fe14B is the basic material for the production of high quality Permanent magniets [1, 21. It...the in-plane anisotropy is in disagreement with the observed different magnetiza- tion curves for Nd2Fe14B in the [1001 and [1101 directions [101... Nd2Fe14B based permanent magnets so far. The grain size of the magnets also strongly der ds on the processing technique. The electron micrographs of Fig

  3. Design of permanent magnet synchronous motor speed control system based on SVPWM

    Science.gov (United States)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  4. Finite Element Modeling of Five Phase Permanent Magnet BLDC Motor for High Power Density Application

    Directory of Open Access Journals (Sweden)

    Kiran George

    2013-12-01

    Full Text Available Fault-tolerant capability of electrical motor drives is an essential feature in applications such as automotive, aeronautic, and many others. A multi-phase permanent-magnet BLDC motor exhibits a high fault tolerant capability hence increasing the reliability, as it can be designed to reduce the fault occurrence as well as to operate indefinitely in the presence of fault. With multi independent phases, in the event of failure of one or more, the remaining healthy phases let the motor to operate properly. This paper presents finite element modeling and results of a five-phase permanent magnet brushless motor designed for high power density application .

  5. Reducing costs of wind power with a gearless permanent-magnet generator

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H.; Peraelae, R.; Soederlund, L.; Eriksson, J.T. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1995-12-31

    This article examines a disc-type axial-field permanent magnet generator (PMG) utilizing the latest generation of permanent magnet material, namely Nd{sub 15}B{sub 8}Fe{sub 77}. A frequency converter (FC) is needed to keep the system synchronized with the grid. It also offers a possibility to use variable speed. The main advantages of this novel system compared to the conventional one are a higher overall efficiency, better reliability, reduced weight and diminished need for maintenance, all contributing to the cost-reduction of wind power. (author)

  6. Genetic algorithm as a tool for multi-objective optimization of permanent magnet disc motor

    Directory of Open Access Journals (Sweden)

    Cvetkovski Goga

    2016-06-01

    Full Text Available The analysed permanent magnet disc motor (PMDM is used for direct wheel drive in an electric vehicle. Therefore there are several objectives that could be tackled in the design procedure, such as an increased efficiency, reduced iron weight, reduced copper weight or reduced weight of the permanent magnets (reduced rotor weight. In this paper the optimal design of PMDM using a multi-objective genetic algorithm optimisation procedure is performed. A comparative analysis of the optimal motor solution and its parameters in relation to the prototype is presented.

  7. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, R.; Ikeda, M.; Sasaki, R. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  8. Electroplated thick-film cobalt platinum permanent magnets

    Science.gov (United States)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P.

    2016-10-01

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L10 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25-200 mA/cm2), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L10 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (Br ~0.8 T, Hci ~800 kA/m, squareness close to 0.9, and BHmax of 100 kJ/m3) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm2, pH of 7, and subsequently annealed at 675 °C for 30 min.

  9. The influence of low temperature on gamma-ray irradiated permanent magnets.

    Science.gov (United States)

    Han, Young Chul; Cha, Hyun Gil; Kim, Chang Woo; Ji, Eun Sun; Kim, Young Hwan; Kang, Dong In; Kang, Young Soo

    2009-12-01

    The temperature effect on the magnetic property of gamma-ray irradiated Nd-Fe-B and Sr-Ferrite magnets has been investigated. When the permanent magnets are exposed to gamma-ray, it's magnetic and other related properties are declined with degree of dose. The decreased magnetic property by gamma-ray irradiation at low temperature is similar with the result of magnet at high temperature. The temperature effect on the gamma-ray irradiation at exposed moment is also regarded as one of the important parameters for the reduced magnetic properties. The gamma-irradiation at low temperature was carried out at 195 K, and the changed properties of two kinds of magnets before and after gamma-irradiation were comparatively studied. The increased demagnetization of the magnets were studied by Hall probe. And changed Curie temperature and micro-crystal structure of each permanent magnet by gamma-ray irradiation has been also studied. Moreover the strong and broad single line shape of ESR signal in the resonance magnetic field is attributed to unpaired electron of Fe2+ in the sample by the effect of gamma-ray irradiation.

  10. Low fragment polyatomic molecular ion source by using permanent magnets.

    Science.gov (United States)

    Takeuchi, Mitsuaki; Hayashi, Kyouhei; Imanaka, Kousuke; Ryuto, Hiromichi; Takaoka, Gikan H

    2014-02-01

    Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement. Mass spectra of the molecular ions generated from n-tetradecane (C14H30) gas exhibited 4 times larger intensity than that of the ordinary configuration in a range of mass/charge from 93 to 210 u. This indicates that suppression of fragment ion was obtained by increase of low energy electrons resulted from the electron confinement.

  11. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  12. Torque Distribution Characteristics of a Novel Double-Stator Permanent Magnet Generator Integrated with a Magnetic Gear

    Directory of Open Access Journals (Sweden)

    Shehu Salihu Mustafa

    2016-12-01

    Full Text Available This paper presents a novel double-stator permanent-magnet machine integrated with a triple rotor magnetic gear structure, which is proposed to address problems of mechanical geared generators for low-speed applications. Torque transmission is based on three rotors consisting of prime permanent-magnet (PM poles in the middle rotor and field PM poles in the inner and outer rotors. The proposed machine combines the functions of magnetic gearing and electrical power generation. The operating principles of the magnetic gear and generator are discussed and the torque distribution characteristics of the integrated machine are analysed using the 2D finite-element method (2D FEM. Also the power, torque, and speed characteristics are reported. A prototype is fabricated and tested experimentally. The predicted and measured results validate the proposed machine design.

  13. The Coercivity - Remanence Tradeoff in Nanocrystalline Permanent Magnets

    Science.gov (United States)

    2001-11-01

    exchange length L,. in Nd2Fe14B is extremely small, around 21 A [ 10]. Further reduction in the magnetic exchange length from its base value is realized...addition of as-yet unidentified elements to the Nd2Fe14B base composition that would serve to both lower the melting point of the eutectic liquid phase

  14. Reduction of flux-creep in magnetized bulk HTS by use of permanent magnets

    Science.gov (United States)

    Parks, D.; Weinstein, R.; Davey, K.; Sawh, R.-P.; Carpenter, K.

    2017-01-01

    We report the effect of permanent magnet (PM) collars on the flux-creep rate of magnetized bulk HTS. The creep rates of single-grain, cylindrical samples are measured with attached collars activated to various fields, B PM, in the range 0 ≤ B PM ≤ B PM,max, where B PM,max is the fully saturated field of the PM. As B PM varies, the creep rate of the HTS is found to maintain its well-known form—a constant fractional loss λ, of original residual field, per decade of time. However, the magnitude of λ decreases as B PM increases. The decrease in λ is found to be linearly dependent on increasing B PM. The collar field for which flux-creep extrapolates to zero is found to be comparable to the maximum trappable field of the HTS bulk, B T,max. The properties of the dependence of λ on the HTS peak field, B T,max, the PM field, B PM, and the creep rate λ 0 with B PM = 0 permit the reduced creep rate in these experiments to be predicted by a universal equation.

  15. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    Science.gov (United States)

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  16. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    Science.gov (United States)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  17. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  18. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    Science.gov (United States)

    Ohashi, S.; Nishio, R.; Hashikawa, T.

    2010-11-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  19. FED-R: a fusion engineering device utilizing resistive magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Kalsi, S.S. (eds.)

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  20. Control of forced vibrations of mechanical structures by an electromagnetic controller with a permanent magnet

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    A theoretical analysis of an electromagnetic vibration controller is presented. The analyzed device consists of a pot-type iron core with a coil and a permanent magnet as a source of constant magnetic flux. The magnetic circuit is closed by a yoke, excited by an external harmonic mechanical force....... Due to the hysteretic effects in the magnetic material the internal losses influence the overall system’s performance. A mathematical model of the force balance in the oscillatory system is derived in a simplified, linearised form. The electric as well as mechanical system is modelled using lumped......-parameter approach and the actuating principle for control of forced vibration is investigated....

  1. AIRGAP MAGNETIC INDUCTION DISTRIBUTION IN A COAXIALLY-LINEAR SYNCHRONOUS MOTOR WITH AXIAL AND RADIAL DIRECTION OF THE RUNNER PERMANENT MAGNETS MAGNETIZATION

    Directory of Open Access Journals (Sweden)

    Abbasian Mohsen

    2013-02-01

    Full Text Available Results of theoretical and experimental research on magnetic induction distribution in the air gap of a coaxially-linear synchronous motor with reciprocal motion within the pole pitch and axial and radial direction of the permanent magnets magnetization are presented.

  2. Negative and near zero refraction metamaterials based on permanent magnetic ferrites.

    Science.gov (United States)

    Bi, Ke; Guo, Yunsheng; Zhou, Ji; Dong, Guoyan; Zhao, Hongjie; Zhao, Qian; Xiao, Zongqi; Liu, Xiaoming; Lan, Chuwen

    2014-02-20

    Ferrite metamaterials based on the negative permeability of ferromagnetic resonance in ferrites are of great interest. However, such metamaterials face a limitation that the ferromagnetic resonance can only take place while an external magnetic field applied. Here, we demonstrate a metamaterial based on permanent magnetic ferrite which exhibits not only negative refraction but also near zero refraction without applied magnetic field. The wedge-shaped and slab-shaped structures of permanent magnetic ferrite-based metamaterials were prepared and the refraction properties were measured in a near-field scanning system. The negative and near zero refractive behaviors are confirmed by the measured spatial electric field maps. This work offers new opportunities for the development of ferrite-based metamaterials.

  3. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    Science.gov (United States)

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.

  4. A Novel Cogging Torque Simulation Method for Permanent-Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2011-12-01

    Full Text Available Cogging torque exists between rotor mounted permanent magnets and stator teeth due to magnetic attraction and this is an undesired phenomenon which produces output ripple, vibration and noise in machines. The purpose of this paper is to study the existence and effects of cogging torque, and to present a novel, rapid, half magnet pole pair technique for forecasting and evaluating cogging torque. The technique uses the finite element method as well as Matlab research and development oriented software tools to reduce numerous computing jobs and simulation time. An example of a rotor-skewed structure used to reduce cogging torque of permanent magnet synchronous machines is evaluated and compared with a conventional analysis method for the same motor to verify the effectiveness of the proposed approach. The novel method is proved valuable and suitable for large-capacity machine design.

  5. Effective anisotropy and coercivity in nanocrystalline single-phase NdFeB permanent magnetic material

    Institute of Scientific and Technical Information of China (English)

    韩广兵; 高汝伟; 冯维存; 刘汉强; 王标; 张鹏; 陈伟; 李卫; 郭永权

    2003-01-01

    The effect of exchange-coupling interaction on the effective anisotropy and its varying tendency in nanocrystalline single-phase NdFeB permanent magnetic material have been investigated. The results show that the exchange-coupling interaction between grains makes the effective anisotropy of material, Keff, decrease with the reduction of grain size. The variation of Keff is basically the same as that of coercivity. The decrease in effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline single-phase NdFeB permanent magnetic material. In order to get high anisotropy and coercivity in nanocrystalline single-phase NdFeB permanent material, the grain size should be larger than 35 nm.

  6. Multicusp type electron cyclotron resonance plasma with arrangement of permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, H.; Maeda, M. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1995-09-01

    ECR (electron cyclotron resonance) plasmas are generated in a multicusp field of 12-pole formed by permanent magnets, where the polarity of the magnetic field at the end sections is reversed to reflect axially drifting electrons as in the mirror field. Furthermore, the radius of multicusp is contracted below the cut-off radius of the waveguide in vacuum. This is effective in increasing the microwave power absorbed in the plasma and the ion density. (author).

  7. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    Science.gov (United States)

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

  8. Influence of design parameters on cogging torque in permanent magnet machines \\ud

    OpenAIRE

    Zhu, Z.Q.; Howe, D.

    2000-01-01

    The influence of various design parameters on the cogging torque developed by permanent magnet machines is investigated. It is shown that the slot and pole number combination has a significant effect on the cogging torque, and influences the optimal value of both skew angle and magnet arc, as well as determining the optimal number of auxiliary teeth/slots. A simple factor, which is proportional to the slot number and the pole number and inversely proportional to their smallest common multiple...

  9. Construction and Design of a Modular Permanent Magnet Transverse Flux Generator

    Directory of Open Access Journals (Sweden)

    VIOREL, I.-A.

    2010-02-01

    Full Text Available A simple construction of a modular transverse flux generator with permanent magnets in the rotor is proposed in the paper. The specific technology is detailed and an analytical design algorithm is developed. A simplified model is proposed for calculating the machine heating and three dimensions magnetic flux calculation via finite element method (FEM is carried on in order to check the main generator characteristics.

  10. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage vec....... The experimental results show that the proposed method estimates the initial rotor position reliably and efficently. The method is also simple and can achieve satisfied estimation accuracy....

  11. A nanocrystalline Sm-Co compound for high-temperature permanent magnets.

    Science.gov (United States)

    Zhang, Zhexu; Song, Xiaoyan; Qiao, Yinkai; Xu, Wenwu; Zhang, Jiuxing; Seyring, Martin; Rettenmayr, Markus

    2013-03-21

    The inherently high magnetic anisotropy and nanoscale grain size in a Sm5Co19 compound result in an intrinsic coercivity far higher than those of known Sm-Co compounds prior to orientation treatment. The combination of ultrahigh intrinsic coercivity, high Curie temperature and low coercivity temperature coefficient of nanocrystalline Sm5Co19 as a single phase material shows it to be a very promising compound to develop outstanding high-temperature permanent magnets.

  12. Design and Finite Element Analysis of a Novel Transverse Flux Permanent Magnet Disk Generator

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Ershad, Nima Farrokhzad;

    2011-01-01

    This paper presents a novel structure of a transverse flux permanent magnet disk generator. The proposed disk shape structure simplifies prototyping by using simple laminated steel sheets in comparison with previous transverse flux structures that employ bent laminations and soft magnetic composi...... and then optimized. The necessity of optimization is to find the best inner radius which maximizes output power to weight ratio, power factor and efficiency. To this end, the optimization process needs three dimensional finite element analyses....

  13. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  14. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter...

  15. Comparison of Megawatt-Class Permanent Magnet Wind Turbine Generator Concepts

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2012-01-01

    This paper begins by investigating which permanent magnet synchronous generators are being used in wind turbines today. These are broken into three classes based on the ratio of speed between the blades and the generator. Four example gearbox/generator combinations are demonstrated to explore...

  16. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...

  17. Improved Analytical Model of a Permanent-Magnet Brushless DC Motor

    NARCIS (Netherlands)

    Kumar, P.; Bauer, P.

    2008-01-01

    In this paper, we develop a comprehensive model of a permanent-magnet brushless DC (BLDC) motor. An analytical model for determining instantaneous air-gap field density is developed. This instantaneous field distribution can be further used to determine the cogging torque, induced back electromotive

  18. Sensorless control of interior permanent-magnet synchronous motors with compressor load

    DEFF Research Database (Denmark)

    Huang, Shoudao; Gao, Jian; Xiao, Lei

    2013-01-01

    This paper analyzes the mathematical model of the interior permanent-magnet synchronous motors (IPMSM). Through the mathematical deformation, the paper proposes the new sensorless method based on sliding mode observer for a IPMSM. The model is only associated with the q-axis inductance, and without...... of all the control strategies....

  19. Method and apparatus for sensorless operation of brushless permanent magnet motors

    Science.gov (United States)

    Sriram, Tillasthanam V.

    1998-01-01

    A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.

  20. The elements of synthesis of brushless d.c. motor with permanent magnets

    OpenAIRE

    Ткачук, Василь Іванович; Біляковський, Ігор Євгенович

    2010-01-01

    The elements of synthesis of Brushless d.c. Motor with permanent magnets on a rotor and pseudo by U-similar stator is offered. The mathematical model of project calculation of main geometrical dimensions of such Motor is based on these elements.

  1. Practical Investigation of End Effect Losses in a Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy Vestergaard; Rasmussen, Peter Omand

    2015-01-01

    This paper presents a practical investigation of the eddy current losses caused by 3D effects in a Motor Integrated Permanent Magnet Gear (MIPMG). Two prototypes of a MIPMG have been designed and build to be used as traction units for an electric vehicle. The measured efficiency of the prototype...

  2. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe;

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  3. Self-commissioning of permanent magnet synchronous machine drives using hybrid approach

    DEFF Research Database (Denmark)

    Basar, M. Sertug; Bech, Michael Møller; Andersen, Torben Ole

    2014-01-01

    Self-commissioning of permanent-magnet (PM) synchronous machines (PMSMs) is of prime importance in an industrial drive system because control performance and system stability depend heavily on the accurate machine parameter information. This article focuses on a combination of offline and online ...

  4. Influence of stator slotting on the performance of permanent-magnet machines with concentrated windings

    NARCIS (Netherlands)

    Vu Xuan, H.; Lahaye, D.; Polinder, H.; Ferreira, J.A.

    2012-01-01

    The use of slotted stator permanent-magnet machines with concentrated windings is increasing in industry. In this paper, the effect of the slot opening on flux linkage, internal voltage, mean torque, rotor eddy current loss and stator iron losses is evaluated. This gives new insight into the influe

  5. Modelling and optimization of a permanent-magnet machine in a flywheel

    NARCIS (Netherlands)

    Holm, S.R.

    2003-01-01

    This thesis describes the derivation of an analytical model for the design and optimization of a permanent-magnet machine for use in an energy storage flywheel. A prototype of this flywheel is to be used as the peak-power unit in a hybrid electric city bus. The thesis starts by showing the feasibili

  6. Finite-Time Chaos Suppression of Permanent Magnet Synchronous Motor Systems

    Directory of Open Access Journals (Sweden)

    Yi-You Hou

    2014-04-01

    Full Text Available This paper considers the problem of the chaos suppression for the Permanent Magnet Synchronous Motor (PMSM system via the finite-time control. Based on Lyapunov stability theory and the finite-time controller are developed such that the chaos behaviors of PMSM system can be suppressed. The effectiveness and accuracy of the proposed methods are shown in numerical simulations.

  7. Torque ripple minimization in a doubly salient permanent magnet motors by skewing the rotor teeth

    Science.gov (United States)

    Sheth, N. K.; Sekharbabu, A. R. C.; Rajagopal, K. R.

    2006-09-01

    This paper presents the effects of skewing the rotor teeth on the performance of an 8/6 doubly salient permanent magnet motor using a simple method, which utilizes the results obtained from the 2-D FE analysis. The optimum skewing angle is obtained as 12-15° for the least ripple torque without much reduction in the back-emf.

  8. Size Reduction of a DC Link Choke Using Saturation Gap and Biasing with Permanent Magnets

    DEFF Research Database (Denmark)

    Aguilar, Andres Revilla; Munk-Nielsen, Stig; Zuccherato, Marco;

    2014-01-01

    This document describes the design procedure of permanent magnet biased DC inductors using the Saturation-gap technique [1]. This biasing configuration can provide a 50% reduction in either the core volume or the number of turns, while meeting its current and inductance requirements. A design exa...

  9. CURRENT VECTOR CONTROL OF PERMANENT-MAGNET SYNCHRONOUS MOTOR OF HYBRID VEHICLE ENGINE

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2009-01-01

    Full Text Available Characteristics of traction permanent-magnet synchronous motor under current vector optimum control in the possible traction-speed mode area which are relevant for hybrid vehicle engine have been investigated. As a criterion of optimality a maximum of electromagnetic moment per unit of current have been taken.

  10. Low Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A n...

  11. Sensorless control of interior permanent-magnet synchronous motors with compressor load

    DEFF Research Database (Denmark)

    Huang, Shoudao; Gao, Jian; Xiao, Lei

    2013-01-01

    This paper analyzes the mathematical model of the interior permanent-magnet synchronous motors (IPMSM). Through the mathematical deformation, the paper proposes the new sensorless method based on sliding mode observer for a IPMSM. The model is only associated with the q-axis inductance, and without...

  12. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech

    2011-01-01

    This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A n...... by combining three single-phase modules into a three-phase generator....

  13. Mathematical field models of brushless DC motors with permanent magnets and their comparative analysis

    Directory of Open Access Journals (Sweden)

    A.V. Matyuschenko

    2015-03-01

    Full Text Available By means of JMAG-Designer 12 the author performed a comparative analysis of the calculation of the EMF, cogging torque and electromagnetic torque of brushless motor with permanent magnets in two-dimensional and three-dimensional formulation of the problem.

  14. Improved Analytical Model of a Permanent-Magnet Brushless DC Motor

    NARCIS (Netherlands)

    Kumar, P.; Bauer, P.

    2008-01-01

    In this paper, we develop a comprehensive model of a permanent-magnet brushless DC (BLDC) motor. An analytical model for determining instantaneous air-gap field density is developed. This instantaneous field distribution can be further used to determine the cogging torque, induced back electromotive

  15. Design, Prototyping, and Analysis of a Novel Modular Permanent Magnet Transverse Flux Disk Generator

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Ershad, Nima Farrokhzad

    2011-01-01

    This paper presents the design, prototyping, and analysis of a novel modular transverse flux permanent magnet disk generator. The disk-shaped structure simplifies the construction procedure by using laminated steel sheets. To reduce output harmonics, the excitation of the generator is done......, a prototype has been constructed and tested. The experimental results are in good agreement with simulation results....

  16. Net Shape 3D Printed NdFeB Permanent Magnet

    CERN Document Server

    Jacimovic, J; Herrmann, L G; Greuter, F; Genta, J; Calvo, M; Tomse, T; Simon, R A

    2016-01-01

    For two decades, NdFeB based magnets have been a critical component in a range of electrical devices engaged in energy production and conversion. The magnet shape and the internal microstructure of the selected NdFeB grade govern their efficiency and size. However, stricter requirements on device efficiency call for better performing magnets preferably with novel functionality not achievable today. Here we use 3D metal printing by Selective Laser Melting to fabricate dense net shape permanent magnets based on NdFeB that exhibit high magnetic performance. Evidence is provided that the internal microstructure, not achievable by traditional manufacturing means, is the origin of the solid magnetic properties. The freedom in magnet body shape and size that ranges from the millimeter to tens of centimeter scale opens up a design freedom that could be a catalyzer for the next generation of electrical devices.

  17. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Sivachandran Paulsamy

    2014-01-01

    Full Text Available In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG for direct coupled stand alone wind energy systems (SAWES. Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  18. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  19. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  20. Interaction between ring permanent magnets and bulk Dy-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kurabayashi, H., E-mail: m208501@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Horikoshi, S.; Suzuki, A.; Ikeda, M.; Wongsatanawarid, A.; Seki, H. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Akiyama, S. [Magneo-Giken, 1-4-23, Suwa, Iwatsuki-Ku, Saitama-Shi, Saitama-Ken (Japan); Hiragushi, M. [SEIKOW Chemical Engineering, 4-1-31, Suidou-Cho, Amagasaki-Shi, Hyougo-Ken (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)

    2010-11-01

    A combination of bulk Dy-Ba-Cu-O superconductors and permanent magnets can be used for various rotational applications such as flywheel energy storage and magnetic bearings. For practical applications, there are two important parameters: the levitation force and the stiffness. Since the superconductor and magnets are installed in a closed space, the attractive force is another important parameter that we should take care. In this study, we measured the levitation force and the stiffness by changing the thickness of a ring permanent magnet. We used ring Fe-Nd-B magnets 120 mm in outer diameter and 70 mm in inner diameter with the thicknesses of 5-40 mm. For superconductors, we used single-domain bulk Dy-Ba-Cu-O 47 mm in diameter and 10 mm in thickness. Six pellets of Dy-Ba-Cu-O were placed concentrically such that the inner diameter becomes 70 mm. The levitation forces increased with increasing the thickness of the permanent magnet but tended to saturate.

  1. A Novel Integrated Structure with a Radial Displacement Sensor and a Permanent Magnet Biased Radial Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2014-01-01

    Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  2. A novel integrated structure with a radial displacement sensor and a permanent magnet biased radial magnetic bearing.

    Science.gov (United States)

    Sun, Jinji; Zhang, Yin

    2014-01-24

    In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM) to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  3. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    Science.gov (United States)

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  4. Spin and orbital moments of Co-carbide nanoparticles for permanent magnet applications

    Science.gov (United States)

    Arena, D. A.; Sterbinsky, G. E.; Carroll, K. J.; Yoon, H.; Meng, S.; Huba, Z. J.; Carpenter, E. E.

    2014-03-01

    Many efforts are currently devoted to the development of rare earth free permanent magnets (REFPMs). In newly developed permanent magnet materials, examination of the atomic scale magnetic properties is critical to gaining knowledge of the mechanisms of magnetism and hence furthering the development of these materials. X-ray magnetic circular dichroism (XMCD) is a core-level technique ideally suited for such studies as it provides element-specific information on magnetic properties. We present an XMCD study of the REFPM nanoparticulate Co-carbide using a new high-field end-station at beamline U4B of the National Synchrotron Light Source. This end-station facilitates measurement of XMCD spectra from magnetically hard materials. The Co-Carbide nanoparticles (NPs) under study are synthesized via wet chemical methods, which can lead to differences between the atomic and magnetic structures of the surface and bulk of NPs. To separate the determination of the surface and bulk magnetic properties we have combined our XMCD measurements with in-situ surface treatment. Preliminary measurements of Co L-edge XMCD spectra and element specific hysteresis point to the role of the Co orbital and spin moments in the establishment of the high coercive field and (BH)max in Co-carbide NPs.

  5. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    Science.gov (United States)

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.

  6. A study of generator performance with linear permanent magnet in various coil configuration and rotor-stator geometry

    Science.gov (United States)

    Asy'ari, Hasyim; Sarjito, Prasetio, Septian Heri

    2017-04-01

    The aim of the research work describe in this paper was to design and optimize a permanent magnet linear generator for renewable energy power plants. It is cover of first stage of designing stator and rotor permanent magnet linear generator. Stator design involves determining dimensions, number of slots, diameter of wire, and the number of winding in each slot. The design of the rotor includes rotor manufacture of PVC pipe material, 10 pieces of permanent magnet type ferrite 271 mikroweber, and resin. The second stage was to assemble the stator and rotor that has been done in the first stage to be a permanent magnet linear generator. The third stage was to install a permanent magnet linear generator with induction motors. Further stage was to test performance of a permanent magnet linear generator by utilizing of induction motor as a prime mover experimentally. In this study, permanent magnet linear generator with a rotor consists of five pairs of permanent magnets. The stator consists of 6 slots of the stator frame, each slot mounted stator coil of 200, 300, 400, 500, and 800 windings, and dimensions of wire used was 0.4 mm. The stator frame was made from acrylic. Results of the experiment that, permanent magnet linear generator when no load was able to generate a DC voltage of 14.5 volts at 300 rpm, and at the output of the linear generator when it is connected to the DC fan as a load only generated of 6.7 volts. It concludes that permanent magnet linear generator output can be used as an input device hybrid system. Data obtained from this experiment in laboratory scale can be developed in a larger scale by varying the type of magnet being used, the number of windings, and the speed used to generate more power.

  7. Effects of slot closure by soft magnetic powder wedge material in axial-field permanent magnet brushless machines

    Science.gov (United States)

    Gair, S.; Eastham, J. F.; Canova, A.

    1996-04-01

    The article reports on a study of the effects of slot closure in axial-field permanent magnet brushless machines by a two-dimensional finite element method (2D FEM) of analysis. The closure of the slots is made by using soft magnetic powder wedge material. Parameter values and machine performance for the open and closed slot configuration are computed. In order to test the 2D FEM model, calculated results are compared with measurements and favorable agreement is shown.

  8. Structure and magnetic properties of bulk nanocrystalline Nd-Fe-B permanent magnets prepared by hot pressing and hot deformation

    Institute of Scientific and Technical Information of China (English)

    SONG Jie; YUE Ming; ZUO Jianhua; ZHANG Zirui; LIU Weiqiang; ZHANG Dongtao; ZHANG Jiuxing

    2013-01-01

    Structure and magnetic properties were studied for bulk nanocrystalline Nd-Fe-B permanent magnets that were prepared at 650 ℃ for 3 min under 300 MPa using the SPS-3.20-MK-V sintering machine and the hot pressed magnets were then submitted to hot deformation with height reduction of 50%,60%,70%,80%,and 85%.Effects of height reduction (HR) and deformation temperature on the structure and magnetic properties of the magnets were investigated.The crystal structure was evaluated by means of X-ray diffraction (XRD) and the microstructure was observed by transmission electron microscopy (TEM).The magnetic properties of the magnets were investigated by vibrating sample magnetometer (VSM).As the height reduction increased,the remanence (Br) of the magnets increased first,peaks at 1.3 T with HR=60%,then decreased again,and the coercivity (Hci) of the magnets decreased monotonically.On the other hand,as the deformation temperature increased,the Br of the magnets increased first,peaks at 1.36 T with HR=60%,then decreased again,and the Hci of the magnets decreased monotonically.Under optimal conditions,the hot deformed magnet possessed excellent magnetic properties as Br=l.36 T,Hci=1143 kA/m,and (BH)max=370 kJ/m3,suggesting the good potential of the magnets in practical applications.

  9. A novel permanent magnetic bearing and its anti-wear effect in impeller total artificial heart

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel permanent magnetic bearing has been developed, which consists of two magnetic rings with different dimensions in the same direction of axial magnetization, located concentrically. Because of the effect of magnetic field, the magnetic rings keep a distance axially from each other. If the distance between the two rings changes, a rehabilitation force is produced to return to the original position. When this distance decreases, a repelling force will be generated; its component in axial direction can be used as a magnetic spring and its radial component can function as a bearing. With this novel permanent magnetic bearing, an impeller total artificial heart (TAH) is designed, manufactured and tested. The rotation is driven radially. On the left and right sides of the rotor magnets, two small magnetic rings are fixed onto the rotor, coupling with two big magnetic rings on both sides of the motor coil, to form the magnetic bearings. Hereby the bearings are used for wear reduction rather than rotor levitation. That means the magnetic bearings counteract the attractive force between the motor coil iron and rotor magnets so as to reduce the friction between the motor stator and rotor. At the left and right ends of the rotor, two impellers with the same width but different diameters are mounted. Thus the device has only one moving part-rotor; both the left pump and the right pump eject the blood synchronically; the volume equilibrium of both pumps can be achieved automatically without need of control. The device weighing 250 g has a length of 60 mm and a diameter of 40 mm at its largest point, and can produce a blood flow up to 150 mm Hg and 6 L/min from left pump, 50 mm Hg and 6 L/min from right pump, at rotating speed of 4000 r/min of the motor. The consumed power is under 10 W.

  10. Designing and building a permanent magnet Zeeman slower for calcium atoms using a 3D printer

    Science.gov (United States)

    Parsagian, Alexandria; Kleinert, Michaela

    2015-10-01

    We present the design of a Zeeman slower for calcium atoms using permanent magnets instead of more traditional electromagnets and the novel technique of 3D printing to create a very robust and flexible structure for these magnets. Zeeman slowers are ideal tools to slow atoms from several hundreds of meters per second to just a few tens of meters per second. These slower atoms can then easily be trapped in a magneto-optical trap, making Zeeman slowers a very valuable tool in many cold atom labs. The use of permanent magnets and 3D printing results in a highly stable and robust slower that is suitable for undergraduate laboratories. In our design, we arranged 28 magnet pairs, 2.0 cm apart along the axis of the slower and at varying radial distances from the axis. We determined the radial position of the magnets by simulating the combined field of all magnet pairs using Mathematica and comparing it to the ideal theoretical field for a Zeeman slower. Finally, we designed a stable, robust, compact, and easy-to-align mounting structure for the magnets in Google Sketchup, which we then printed using a commercially available 3D printer by Solidoodle. The resulting magnetic field is well suited to slow calcium atoms from the 770 m/s rms velocity at a temperature of 950 K, down to the capture velocity of the magneto-optical trap.

  11. Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2016-08-01

    Full Text Available Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the correctness of the mentioned models. In addition, a compensation control strategy based on flux-linkage observation is proposed to solve the problems of unstable suspension force and generating voltage under variable load condition in this paper. Meanwhile, the corresponding control system is constructed and its feasibility is validated by simulation results. Finally, an experimental prototype of a 2.2 kW HEBPMG is tested. Experimental researches show that the HEBPMG can operate steadily under variable load condition and possess good suspension performance and power generation quality.

  12. Interaction of bulk superconductors with flywheel rings made of multiple permanent magnets

    Science.gov (United States)

    Ikeda, M.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    Compared to conventional mechanical bearings, superconducting bearings have the advantage that there is no friction loss. Thus the superconducting bearings are employed for a flywheel energy storage device, and thereby one can construct the system that stores the energy for a long duration. Hence, superconducting flywheel energy storage system has attracted worldwide attention. For practical applications of the superconducting energy storage system, the stored energy must be maximized that can be achieved by either increasing the diameter of the levitated flywheel or the rotational velocity. Since the suspended flywheel in the superconducting flywheel energy storage system is made of permanent magnets, its size is limited by the size of permanent magnets. In addition, when the rotational speed is increased, there is possibility for the magnet ring to fracture due to a large centrifugal force. We therefore proposed the construction of the magnetic flywheel ring by simply arranging small permanent magnets pasted into machined grooves in Al disk 650 mm in diameter. Then we measured the force interaction between superconductor sample and a invented flywheel design. We have found that the field is almost uniform when the distance from the flywheel surface exceeded 15 mm, showing that frictionless rotation is possible at the gap larger than 15 mm. Furthermore, the repulsive force density was 0.48 N/cm 2 at 15 mm, which demonstrates that the mass of 161.32 kg can be levitated.

  13. Modeling of Self-Excited Isolated Permanent Magnet Induction Generator Using Iterative Numerical Method

    Directory of Open Access Journals (Sweden)

    Mohamed Mostafa R.

    2016-01-01

    Full Text Available Self-Excited Permanent Magnet Induction Generator (PMIG is commonly used in wind energy generation systems. The difficulty of Self-Excited Permanent Magnet Induction Generator (SEPMIG modeling is the circuit parameters of the generator vary at each load conditions due to the a change in the frequency and stator voltage. The paper introduces a new modeling for SEPMIG using Gauss-sidle relaxation method. The SEPMIG characteristics using the proposed method are studied at different load conditions according to the wind speed variation, load impedance changes and different shunted capacitor values. The system modeling is investigated due to the magnetizing current variation, the efficiency variation, the power variation and power factor variation. The proposed modeling system satisfies high degree of simplicity and accuracy.

  14. Comparison of stator-mounted permanent-magnet machines based on a general power equation

    DEFF Research Database (Denmark)

    Chen, Zhe; Hua, Wei; Cheng, Ming

    2009-01-01

    The stator-mounted permanent-magnet (SMPM) machines have some advantages compared with its counterparts, such as simple rotor, short winding terminals, and good thermal dissipation conditions for magnets. In this paper, a general power equation for three types of SMPM machine is introduced first......, and then, power equations considering the specific topologies are derived. Based on these power equations, theoretical comparisons are carried out between various types of the SMPM machines. In all, eight topologies have been presented and benchmarked. It reveals that the flux switching permanent......-magnet (PM) machine owns higher power density than the flux reversal PM machine and the doubly salient PM machine under same outer diameter. The comparison based on the power equation has established a foundation for optimizing the SMPM machines....

  15. Permanent magnet Hall Thrusters development and applications on future brazilian space missions

    Science.gov (United States)

    Ferreira, Jose Leonardo; Martins, Alexandre A.; Miranda, Rodrigo; Schelling, Adriane; de Souza Alves, Lais; Gonçalves Costa, Ernesto; de Oliveira Coelho Junior, Helbert; Castelo Branco, Artur; de Oliveira Lopes, Felipe Nathan

    2015-10-01

    The Plasma Physics Laboratory (PPLUnB) has been developing a Permanent Magnet Hall Thruster (PHALL) for the Space Research Program for Universities (UNIESPAÇO), part of the Brazilian Space Activities Program (PNAE) since 2004. The PHALL project consists on a plasma source design, construction and characterization of the Hall type that will function as a plasma propulsion engine and characterized by several plasma diagnostics sensors. PHALL is based on a plasma source in which a Hall current is generated inside a cylindrical annular channel with an axial electric field produced by a ring anode and a radial magnetic field produced by permanent magnets. In this work it is shown a brief description of the plasma propulsion engine, its diagnostics instrumentation and possible applications of PHALL on orbit transfer maneuvering for future Brazilian geostationary satellite space missions.

  16. Spectroscopic measurements of railgun plasma armatures in an augmented railgun using a permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Katsuki, S.; Sueda, T.; Koga, Y.; Akiyama, H. [Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science; Sato, K.N. [National Inst. for Fusion Science, Nagoya (Japan)

    1997-01-01

    Small bore railguns have been developed to demonstrate the acceleration of frozen hydrogen pellets which are used to refuel magnetically confined fusion reactors. Here, measurements of electron density using Stark broadening of the H{sub a} line are performed to investigate the behavior of plasma armatures in railguns with and without an augmenting magnetic field. A permanent magnet with a magnetic flux density of 1.25 T was used to augment the magnetic field of one railgun. Driving currents of 20 and 25 kA are supplied to the railguns with and without the augmenting magnetic field, respectively, in order to maintain the same peak Lorentz force on the projectile. Also a gradual temporal increase in electron density and length of the plasma armature is observed in the augmented railgun.

  17. Study and review of permanent magnets for electric vehicle propulsion motors

    Science.gov (United States)

    Strnat, K. J.

    1983-01-01

    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  18. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Science.gov (United States)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  19. Direct Reuse of Rare Earth Permanent Magnets - Wind Turbine Generator Case Study

    DEFF Research Database (Denmark)

    Högberg, Stig; Pedersen, Thomas Stigsberg; Bendixen, Flemming Buus

    2016-01-01

    A novel recycling strategy, direct reuse, for rare earth permanent magnets were investigated in this article. Direct reuse uses small, unit-cell (segmented) magnets to replace the normal solid pole configuration, which is not directly reusable due its unique shape and size. The unit-cell magnets...... output torque, torque ripple, and cogging torque are achievable with this segmentation technique. The influence of the thickness of the adhesive layer was analyzed, and a pole-shaping technique was applied to improve the torque characteristics. The simulation models were verified experimentally...

  20. Dynamically configurable and optimizable Zeeman slower using permanent magnets and servomotors

    CERN Document Server

    Reinaudi, G; Bega, K; Zelevinsky, T

    2011-01-01

    We report on the implementation of a dynamically configurable, servomotor-controlled, permanent magnet Zeeman slower for quantum optics experiments with ultracold atoms and molecules. This atom slower allows for switching between magnetic field profiles that are designed for different atomic species. Additionally, through feedback on the atom trapping rate, we demonstrate that computer-controlled genetic optimization algorithms applied to the magnet positions yield traps several times larger than those obtained with the calculated design field, hence accounting for experimental circumstances not present in the design model. The device is lightweight, remotely controlled, and consumes no power in steady state.

  1. Permanent Magnet System for MRI with Constant Gradient mechanically adjustable in Direction and Strength

    CERN Document Server

    Blümler, Peter

    2015-01-01

    A design for a permanent magnet system is proposed that generates spatially homogeneous, constant magnetic field gradients, thus creating conditions suitable for MRI without gradient coils and amplifiers. This is achieved by superimposing a weak Halbach quadrupole on a strong Halbach dipole. Rotation of either the quadrupole or the entire magnet assembly can be used to generate 2D images via filtered back-projection. Additionally, the mutual rotation of two quadrupoles can be used to scale the resulting gradient. If both gradients have identical strength the gradient can even be made to vanish. The concept is demonstrated by analytical considerations and FEM-simulations.

  2. Direct Reuse of Rare Earth Permanent Magnets - Wind Turbine Generator Case Study

    DEFF Research Database (Denmark)

    Högberg, Stig; Pedersen, Thomas Stigsberg; Bendixen, Flemming Buus;

    2016-01-01

    A novel recycling strategy, direct reuse, for rare earth permanent magnets were investigated in this article. Direct reuse uses small, unit-cell (segmented) magnets to replace the normal solid pole configuration, which is not directly reusable due its unique shape and size. The unit-cell magnets...... are directly reusable due to their standard shape and size, and direct reuse effectively bypasses a number of the expensive and energy intensive processes of normal recycling. Based on a model of a 3 MW direct drive wind turbine generator, the finite element studies concluded that normal values of average...

  3. PERFORMANCE OF A KIND OF PERMANENT MAGNETIC SUCKERS USED IN WALL-CLIMBING ROBOTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The magnetic circuit of a kind of permanent magnetic sucker attached to the tracks of a wall-climbing robot was researched. The formula of the attractive force of sucker to a wall was derived and the relationship between the force and the air gaps was analyzed. Furthermore the effect of the parameters of the magnetic sucker on the sucker's performance was discussed. The experiments show that proper selections of the sucker's structural parameters can provide sufficient attractive force so as to make the wall-climbing robot move safely on the steel wall surface.

  4. Correlations in rare-earth transition-metal permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, R., E-mail: rskomski@neb.rr.com; Manchanda, P. [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68508 (United States); Kashyap, A. [School of Basic Science, IIT Mandi, Mandi, Himachal Pradesh (India)

    2015-05-07

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo{sub 5}. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  5. Vectorial Formalism of Polyphase Synchronous Machine With Permanents Magnets

    Directory of Open Access Journals (Sweden)

    Nacéra Bachir Bouiadjra

    2013-04-01

    Full Text Available This paper presents a mathematical model that transforms the real machine to fictitious machines and our goal is to simulate these and see the behavior of these machines in load. The polyphase machines are developed mainly in the field of variable speed drives of high power because increasing the number of phases on the one hand allows to reduce the dimensions of the components in power modulators energy and secondly to improve the operating safety. By a vector approach (vector space, it is possible to find a set of single-phase machine and / or two-phase fictitious equivalent to polyphase synchronous machine. These fictitious machines are coupled electrically and mechanically but decoupled magnetically. This approach leads to introduce the concept of the equivalent machine (multimachine multiconverter system MMS which aims to analyze systems composed of multiple machines (or multiple converters in electric drives. A first classification multimachine multiconverter system follows naturally from MMS formalism. We present an example of a pentaphase (polyphase synchronous machine for a simulation and study the behavior of the machine load

  6. Effect of Suspension Winding Pole Pair and Permanent Magnet Thickness on Magnetic Levitation Force in Bearingless {PMSM

    Directory of Open Access Journals (Sweden)

    H. Ebrahimpoor Hendoo

    2014-11-01

    Full Text Available One maintenance task that still exist with conventional motors, are bearing lubrication and renewal. Bearingless motors are replaced with conventional motor that uses a magnetic levitation force to suspend a rotor without any mechanical contact. In bearingless motors, additional windings are wound together with motor windings in stator slots. In this paper, a bearingless permanent magnet-type synchronous motor (BPMSM Has been studied. First, the generation of radial levitation forces is discussed and then the optimum permanent magnet thickness is determined to produce maximum levitation force. After that the effect of additional winding pole-pair in the amount of levitation force is investigated. The simulation is done in Maxwell software

  7. A nonlinearity in permanent-magnet systems used in watt balances

    CERN Document Server

    Li, Shisong; Pratt, Jon

    2014-01-01

    Watt balances are used to measure the Planck constant and will be used in the future to realize mass at the kilogram level. They increasingly rely on permanent magnet systems to generate the magnetic flux. It has been known that the weighing current might effect the magnetization state of the permanent magnetic system used in these systems causing a systematic bias that can lead to an error in the result if not accounted for. In this article a simple model explaining the effect of the weighing current on the yoke of the magnet is developed. This model leads to a nonlinear dependence of the magnetic flux density in the gap that is proportional to the squared value of the coil current. The effect arises from changing the reluctance of the yoke by the additional field produced by the coil. Our analysis shows that the effect depends on the width of the air gap, the magnetic flux density in the air gap, and the $BH$ curve of the yoke material. Suggestions to reduce the nonlinear effect are discussed.

  8. Influence of edge slotting of magnet pole with fixed slot opening width on the cogging torque in inset permanent magnet synchronous machine

    Directory of Open Access Journals (Sweden)

    Jeeng Min Ling

    2016-08-01

    Full Text Available The cogging torque in an inset permanent magnet synchronous machine causes some undesirable vibration and noises which should be reduced in the earliest possible stage of design. The influences of edge slotting and slot opening width in the magnet rotor pole on the cogging torque were investigated in this article. The structure of the proposed inset permanent magnet synchronous machine has 8 poles and 24 stator slots with fixed slot opening width and a modified magnet pole in the rotor. The finite element method magnetics (FEMM 4.2 tool was used to investigate the core saturation induced in the stator and rotor of the inset permanent magnet synchronous machine. The simulation results show that the slotting design in the magnet edge can effectively reduce the cogging torque of the inset permanent magnet synchronous machine.

  9. Deep X-Ray Lithography Based Fabrication of Rare-Earth Based Permanent Magnets and their Applications to Microactuators

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, T.R.; Garino, T.J.; Venturini, E.L.

    1999-01-27

    Precision high aspect-ratio micro molds constructed by deep x-ray lithography have been used to batch fabricate accurately shaped bonded rare-earth based permanent magnets with features as small as 5 microns and thicknesses up to 500 microns. Maximum energy products of up to 8 MGOe have been achieved with a 20%/vol. epoxy bonded melt-spun isotropic Nd2Fe14b powder composite. Using individually processed sub- millimeter permanent sections multipole rotors have been assembled. Despite the fact that these permanent magnet structures are small, their magnetic field producing capability remains the same as at any scale. Combining permanent magnet structures with soft magnetic materials and micro-coils makes possible new and more efficient magnetic microdevices.

  10. Effects of oxygen and carbon on the magnetic properties and microstructure of Sm2Co17 permanent magnets

    Institute of Scientific and Technical Information of China (English)

    TIAN Jianjun; ZHANG Shengen; QU Xuanhui

    2007-01-01

    The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this article, the effects of oxygen and carbon on the properties and microstructure of the magnets have been studied. The results indicate that oxygen consumes the effective Sm content of the magnets and forms Sm2O3-the non-magnetism phase, which result in the deterioration of the magnetic properties. Besides, the magnetic properties decrease in evidence with increasing carbon content. The main factor that affects the magnetic properties is the deterioration of the microstructure of the magnets. The Sm(Co, Cu)5 phase decreases, whereas the cell size increases with the increase of the carbon content. When the carbon content is above 0.43 wt.%, the Sm(Co, Cu)5 phase is not enough to form a uniform cellular microstructure. Thus the magnetic properties disappear. ZrC is detected in the magnets by XRD when the carbon content is above 0.21 wt.%. ZrC also reduces the properties of the magnets.

  11. Economic feasibility, applications and limits of efficient permanent-magnet motors; Wirschaftltichkeit, Anwendungen und Grenzen von effizienten Permanent-Magnet Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Salathe, D.; Gosteli, Y.; Imgrueth, D.; Zumstein, D. [Hochschule fuer Technik und Architektur (HTA) Luzern, Horw (Switzerland); Biner, H.-P.; Evequoz, B.; Emery, M. [Hochschule Wallis (HEV), Sion (Switzerland)

    2006-07-01

    This comprehensive final report published by the Swiss Federal Office of Energy (SFOE) presents the results of a study made on permanent-magnet electrical drives. These drives are compared with standard asynchronous motors with respect to their energy consumption, physical size and areas of application. The report is divided into sections dealing with the theory behind the drives, their practical application and their potential markets. Work done at the Lucerne and Valais Universities of Applied Sciences in Switzerland is discussed. Drives in various power classes from 5 to 90 kW were examined, whereby both simulations as well as practical tests were carried out. Results are presented in graphical form and discussed. The report is completed with a discussion of material efficiency and performance of the motors in various applications and modes of operation. Estimates of energy savings that can be realised in Switzerland by using such permanent-magnet motors are presented. Recommendations on the use of the drives and further work to be done are made.

  12. Influence of edge slotting of magnet pole with fixed slot opening width on the cogging torque in inset permanent magnet synchronous machine

    OpenAIRE

    Jeeng Min Ling; Tajuddin Nur

    2016-01-01

    The cogging torque in an inset permanent magnet synchronous machine causes some undesirable vibration and noises which should be reduced in the earliest possible stage of design. The influences of edge slotting and slot opening width in the magnet rotor pole on the cogging torque were investigated in this article. The structure of the proposed inset permanent magnet synchronous machine has 8 poles and 24 stator slots with fixed slot opening width and a modified magnet pole in the rotor. The f...

  13. The Effect of Nano-TiC Addition on Sintered Nd-Fe-B Permanent Magnets

    DEFF Research Database (Denmark)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. I...... for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m3. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively....

  14. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  15. Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements.

    Science.gov (United States)

    Kumar, P; Kashyap, A; Balamurugan, B; Shield, J E; Sellmyer, D J; Skomski, R

    2014-02-12

    First-principle calculations are used to investigate the intrinsic magnetic properties of intermetallic alloys of the type XMn, where X is a 4d or 5d element and M is Fe or Co. Emphasis is on the hexagonal C14 Laves-phase 1:2 and 1:5 alloys, the latter crystallizing in the CaCu5 structure. These series are of interest in permanent magnetism from fundamental and practical viewpoints, respectively. In the former, the unit cells form a prototypical motif where a heavy atom with high spin-orbit coupling and magnetocrystalline anisotropy is surrounded by many somewhat smaller M atoms with high magnetization, and the latter are Laves-phase derivatives of renewed interest in permanent magnetism. Our DFT calculations predict magnetic moments, magnetizations and anisotropies, as well as formation energies. The results are analyzed across the 4d and 5d series, especially with respect to hybridization effects between 3d and 4d/5d bands.

  16. Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino

    2016-03-15

    An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.

  17. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  18. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  19. MODELLING AND TORQUE TRACKING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HYBRID ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    Mohd Sabirin Rahmat

    2013-06-01

    Full Text Available This paper presents a detailed derivation of a permanent magnet synchronous motor, which may be used as the electric power train for the simulation of a hybrid electric vehicle. A torque tracking control of the permanent magnet synchronous motor is developed by using an adaptive proportional-integral-derivative controller. Several tests such as step function, saw tooth function, sine wave function and square wave function were used in order to examine the performance of the proposed control structure. The effectiveness of the proposed controller was verified and compared with the same system under a PID controller and the desired control. The result of the observations shows that the proposed control structure proves to be effective in tracking the desired torque with a good response. The findings of this study will be considered in the design, optimisation and experimentation of series hybrid electric vehicle.

  20. Design optimization of brushed permanent magnet D C motor by genetic algorithm

    CERN Document Server

    Amini, S

    2002-01-01

    Because of field winding replacement with permanent magnet in brushed permanent magnet D C (PMDC) motors, field losses are eliminated and the structure of the motor is more simple. Efficiency of these motors is therefore increased and the manufacturing process is simplified. Hence, these motors are commonly used in low power applications and their design and optimization is an important consideration. Genetic algorithms are proposed for design optimization of PMD motors because of their independence to objective function structure and its derivative. In this paper genetic algorithms are evaluated for PMDC motor design optimization. an introduction is first presented about PMDC motors, general design procedure and elements of their optimization. Genetic algorithms are then briefly described. Finally results of optimization by genetic algorithms are compared with the one obtained using a conventional method.