WorldWideScience

Sample records for febex bentonite 2004-2008

  1. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    International Nuclear Information System (INIS)

    Villar, M. V.; Gomez-Espina, R.

    2009-01-01

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  2. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  3. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  4. Simulation of Water Percolation in a FEBEX Bentonite Block Using TOUGH2 Program; Simulacion de la Percolacion de Agua en un Bloque de Bentonite Febex Utilizando el Programa TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Bru, A.

    2001-07-01

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs.

  5. Simulation of Water Percolation in a FEBEX Bentonite Block using TOUGH2 Program

    International Nuclear Information System (INIS)

    Bru, A.

    2001-01-01

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs

  6. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  7. Adsorption behaviour of bivalent ions onto Febex bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Garcia-Gutierrez, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Dpt. de Impacto Ambiental de la Energia Madrid (Spain)

    2005-07-01

    The sorption and transport properties of radionuclides in the near and far field barriers of a deep geological radioactive waste repository are amongst the principal aspects to be evaluated for the performance assessment (PA) of such a kind of disposal. The study of the clayey materials is crucial because the backfill material is constituted by compacted clay in most countries design; in addition, argillaceous formations are particularly suitable as host rock formations. It is widely recognised that, to acquire predictive modelling capability, a theoretical effort is needed for a mechanistic understanding of sorption processes, as they greatly influence the transport of radionuclides in clay porous structures. In this work, an exhaustive experimental study of the Co(II), Sr (II) and Ca(II) sorption behaviour on a Spanish bentonite was carried out. The clay used for these experiments is the FEBEX bentonite, which is basically formed by smectite (93 {+-} 2%) with small percentages of quartz (2 {+-} 1 %), plagioclase (3 {+-} 1 %), cristobalite (2 {+-} 1 %) and traces of minerals such as K-feldspar and calcite. (authors)

  8. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted Febex bentonite

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Alonso, U.; Mingarro, M.; Cormenzana, J.L.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonite is used as an engineered barrier in high-level radioactive waste (HLRW) repositories because is a swelling clay of very low permeability and high sorption capability for many solutes. The transport of radionuclides through compacted bentonite is a diffusion-controlled process retarded by sorption. Performance assessment calculations of a repository need diffusion coefficients data of relevant radionuclides. Several studies on diffusion behaviour of neutral, anionic and weakly sorbing elements on clay exist while very few studies are available for moderately sorbing elements, and almost no studies for Eu, a highly sorbing element are reported. In this study, diffusion experiments with strongly sorbing radionuclides, as 60 Co and 152 Eu, have been performed through compacted FEBEX bentonite. Diffusion essays with these strongly sorbing radionuclides are not straightforward to carry out because they are very time consuming essays, but also because sorption on the diffusion cells, tubing, filters and reservoirs, typically used in the classical through-diffusion or in-diffusion methods make hard the interpretation of the experimental results and the calculation of the diffusion coefficients. FEBEX bentonite was selected as Spanish reference buffer materials, and used in many national and international projects. The clay comes from the Cortijo de Archidona deposit (Almeria, Spain), and has a smectite content greater than 90% (93 ± 2%), with quartz (2 ± 1%), plagioclase (3 ± 1%), cristobalite (2 ± 1%), potassic feldspar, calcite, and trydimite as accessory minerals. The specific weight of the FEBEX bentonite is 2.7 g/cm 3 . Diffusion experiments were performed using the instantaneous plane source method. In this setup, a paper filter tagged with a tracer is introduced between two compacted tablets, avoiding contact between the tracer and the experimental vessels. The tracer can diffuse into both

  9. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted FEBEX bentonite

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Cormenzana, J. L.; Missana, T.; Alonso, U.; Mingarro, M.

    2011-01-01

    Diffusion experiments in compacted FEBEX bentonite were performed with strongly sorbing radionuclides, 60 Co and 152 Eu. Diffusion experiments with these radionuclides present several difficulties: first of all these tests are very time consuming because of the high sorption on the clays, secondly these elements not only present high sorption onto clays but also on diffusion cells, tubing, filters and reservoirs, typically used in the classical through-diffusion or in-diffusion methods, which makes difficult the interpretation of the results. In this study, the experiments were performed using the instantaneous planar source method, where a paper filter tagged with a tracer is placed between two tablets of compacted bentonite. The apparent diffusion coefficient (D a ) is obtained analysing the tracer concentration profile in the samples at the end of the experiment, both with an analytical and a numerical approach. The ranges of D a values obtained from these experiments in the FEBEX clay compacted at 1.65 g/cm 3 are (0.5-2.3) x 10 -13 m 2 /s for Co and (0.8-2.5) x 10 -14 m 2 /s for Eu. Results showed that the analytical solution is able to fit reasonably well the Eu concentration profiles, whereas Co concentration profiles show a different behavior, not straightforward to explain, which was also analyzed by numerical methods. (authors)

  10. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  11. Geochemical processes and compacted bentonite FEBEX with a thermohydraulic gradient with a thermohydraulic gradient

    International Nuclear Information System (INIS)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Martin Barca, M.; Vigil de la Villa Mencia, R.; Ramirez Martin, S.; Garcia Gimenez, R.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all sep of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR), based on the concept of multi barrier. According to this concept, the wastes is isolated from biosphere by the interposition of confinement barrier. In the context of an investigation of the near field for a repository of HLW, the FEBEX Project, a set of laboratory test has been designed to give a better understanding of the thermo-hydro-mechanical and geochemical behaviour of the compacted bentonite as a confinement barrier. The object of these work is to analyse the properties of the bentonite and its behaviour under conditions that will be found in a repository. The precipitation of mineral phases, due to local changes in the chemical equilibrium and the hydration itself, can produce changes in the salinity of the interstitial water and in the microstructural organisation of the clay particles. the hydraulic and mechanical properties of the bentonite can be modified by the special conditions of the barrier. (Author)

  12. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  13. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-01-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO 2 (g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO 3 - and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  14. FEBEX II Project THG Laboratory Experiments

    International Nuclear Information System (INIS)

    Missana, T.

    2004-01-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  15. FEBEX II Project THG Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.

    2004-07-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  16. Geochemical Processes and compacted bentonite FEBEX with a thermohydraulic gradient with a thermohydraulic gradient; Procesos geoquimicos y modificaciones texturales en bentonita FEBEX compactada sometida a un gradiente termohidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Leguey Jimenez, S; Cuevas Rodriguez, J; Martin Barca, M; Vigil de la Villa Mencia, R.; Ramirez Martin, S; Garcia Gimenez, R [Universidad Autonoma de Madrid (Spain)

    2002-07-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all sep of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR), based on the concept of multi barrier. According to this concept, the wastes is isolated from biosphere by the interposition of confinement barrier. In the context of an investigation of the near field for a repository of HLW, the FEBEX Project, a set of laboratory test has been designed to give a better understanding of the thermo-hydro-mechanical and geochemical behaviour of the compacted bentonite as a confinement barrier. The object of these work is to analyse the properties of the bentonite and its behaviour under conditions that will be found in a repository. The precipitation of mineral phases, due to local changes in the chemical equilibrium and the hydration itself, can produce changes in the salinity of the interstitial water and in the microstructural organisation of the clay particles. the hydraulic and mechanical properties of the bentonite can be modified by the special conditions of the barrier. (Author)

  17. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capacity, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The pre consolidation pressure of the Grimsel samples has decreased due to the microstructural changes associated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  18. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    International Nuclear Information System (INIS)

    Villar, M. V.

    2004-01-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capaciaty, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The preconsolidation pressure of the Grimsel samples has decreased due to the microstructural changes asswociated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  19. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    International Nuclear Information System (INIS)

    Lloret, A.; Romero, E.; Villar, M. V.

    2004-01-01

    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  20. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, A.; Romero, E.; Villar, M. V.

    2004-07-01

    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  1. MX-80 Bentonite. Thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    International Nuclear Information System (INIS)

    Villar, M. V.

    2005-01-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60 0 C. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs

  2. MX-80 Bentonite. thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2005-07-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60oC. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs.

  3. Effect of Heating/Hydratation on Compacted Bentonite: Tests in 60-cm Long Cells

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Fernandez, A. M.; Martin, P. L.; Barcala, J. M.; Gomez-Espina, R.; Rivas, P.

    2008-07-01

    The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal have been simulated in a series of tests. Cylindrical cells with an inner length of 60 cm and a diameter of 7 cm were constructed. Inside the cells, blocks of compacted FEBEX bentonite were put one on top of the other. the bottom surface of the material was heated at 100 degree centigree and the top surface was injected with granitic water. the duration of the tests was 0.5, 1,2 and 7,6 years. The temperatures and water intake were measured during the tests and, at the end, the cells were dismounted and the dry density, water content, mineralogy, geochemistry and some hydro-mechanical properties of the clay (permeability, swelling) were measured at different positions. the values obtained are compared among them and to those of the untreated FEBEX bentonite. The study has run over for 10 years in the context of the projects FEBEX I and II and NF-PRO. (Author) 50 refs.

  4. Effect of Heating/Hydratation on Compacted Bentonite: Tests in 60-cm Long Cells

    International Nuclear Information System (INIS)

    Villar, M. V.; Fernandez, A. M.; Martin, P. L.; Barcala, J. M.; Gomez-Espina, R.; Rivas, P.

    2008-01-01

    The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal have been simulated in a series of tests. Cylindrical cells with an inner length of 60 cm and a diameter of 7 cm were constructed. Inside the cells, blocks of compacted FEBEX bentonite were put one on top of the other. the bottom surface of the material was heated at 100 degree centigree and the top surface was injected with granitic water. the duration of the tests was 0.5, 1,2 and 7,6 years. The temperatures and water intake were measured during the tests and, at the end, the cells were dismounted and the dry density, water content, mineralogy, geochemistry and some hydro-mechanical properties of the clay (permeability, swelling) were measured at different positions. the values obtained are compared among them and to those of the untreated FEBEX bentonite. The study has run over for 10 years in the context of the projects FEBEX I and II and NF-PRO. (Author) 50 refs

  5. FEBEX-DP. Dismantling the ''full-scale engineered barrier experiment'' after 18 years of operation at the Grimsel Test Site, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Florian; Gaus, Irina [Nagra, Wettingen (Switzerland)

    2015-07-01

    The FEBEX experiment at the Grimsel Test Site (GTS) consists of an in-situ full-scale engineered barrier system (EBS) test for the disposal of high-level waste (HLW). It is performed under natural conditions in crystalline rock in which the canisters are placed horizontally in drifts and are surrounded by a clay barrier constructed of highly compacted bentonite blocks. A partial dismantling and sampling of the EBS was carried out during 2002. Heating of the FEBEX started in 1997 and since then a constant temperature of 100 deg C has been maintained, while the bentonite buffer has been slowly hydrating in a natural way. A total of 632 sensors in the bentonite barrier, the rock mass, the heaters and the service zone record temperature, water saturation, humidity, total pressure, displacement, and water pressure. The hydration pattern is relatively symmetric, with no major differences along the axis. Although the host rock is characterized by heterogeneities with zones of higher permeability, the resaturation process is driven by the suction of the bentonite rather than by the availability of water in the rock, especially in the early phase. After 17 years, the water content in the buffer close to the heater still continues to increase slowly. The hydraulic pore pressures in the buffer and the geosphere have practically stabilized. The total pressure in general continues to increase in most points into the buffer, where in some parts pressures of over 6 MPa are registered. The long monitoring phase and the partial dismantling in 2002 indicate that the EBS has largely performed as expected and the major processes and couplings affecting the buffer saturation during the initial thermal period identified prior to the start of the experiment have been confirmed. A comprehensive report documents and reviews the state of the FEBEX (Lanyon and Gaus, 2013). After 18 years of operation the experiment will be excavated and dismantled in 2015. The main objectives of the FEBEX

  6. The use of synthetic Zn-/Ni-labeled montmorillonite colloids as a natural bentonite marker

    International Nuclear Information System (INIS)

    Huber, F.; Heck, S.; Hoess, P.; Bouby, M.; Schaefer, T.; Truche, L.; Brendle, J.

    2012-01-01

    Document available in extended abstract form only. Quantification of bentonite erosion rates/colloid release rates and the colloid attachment under unfavourable conditions for clay colloids is frequently based on the detection of the alumino-silicate building blocks and accompanied by relative high analytical uncertainties due to the presence of high background concentrations in the groundwater. In situ experiments planned at the Grimsel Test Site (CH) in the frame of the Colloid Formation and Migration (CFM) project foresee the emplacement of a compacted bentonite source and determination of the bentonite erosion rate under near-natural flow conditions. To univocally differentiate between the natural background colloid concentration and the eroded bentonite an irreversible labeling of the bentonite colloid source placed in a granite fracture would greatly improve their detection and reduce the analytical uncertainty. It is thought to use an admixture to label the natural bentonite. Therefore, the characteristics as erosion behavior, colloid stability and radionuclide sorption/reversibility behavior have to be studied and compared. Here, we focus on the radionuclide sorption reversibility. Synthetic montmorillonite containing structurally bound Zn and Ni in its octahedral layer was used within this study. Actually, Zn and Ni are good candidates to determine more accurately the colloid concentration as the ICP-MS sensitivity is at least one order of magnitude higher and the Zn and Ni background concentrations found in natural ground waters (e.g. Grimsel ground water, GGW) are very low. In the present study, the colloids are first separated and characterized by AsFlFFF-ICP-MS. Then, they are used to perform radionuclide reversibility kinetic experiments similar to those already published under anoxic conditions and room temperature. The aim is to compare the results obtained with those already available on natural FEBEX bentonite derived colloids. The size

  7. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    International Nuclear Information System (INIS)

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L.

    2008-01-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  8. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L. [CIEMAT, Environmental Department, Avda. Complutense, 22, 28040 Madrid (Spain)

    2008-07-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  9. FEBEX. Investigations on gas generation, release and migration

    International Nuclear Information System (INIS)

    Jockwer, Norbert; Wieczorek, Klaus

    2008-06-01

    The FEBEX project is based on the Spanish reference concept for the disposal of radioactive waste in crystalline rock, which considers the emplacement of the canisters enclosing the conditioned waste surrounded by clay barriers constructed of high-compacted bentonite blocks in horizontal drifts /ENR 957. The whole project consisted of an experimental and a modelling part. The experimental part itself was divided into the in-situ test, a mock-up test performed at the CIEMAT laboratory, and various small-scale laboratory tests. In the modelling part it was expected to develop and validate the thermo-hydro-mechanical (THM) and the thermo-hydro-chemical (THC) processes for the performance assessment of the near-field behaviour. GRS was only involved in the in-situ test and some additional laboratory work with regard to gas generation, gas migration, and pore pressure build-up in the buffer constructed of high-compacted bentonite blocks around the electrical heaters simulating the waste containers. The following topics are covered: installation and dismantling of the heater pipes; methods of gas generation and release measurement, summary of results and discussion

  10. Gas Transport in Bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gutierre-Rodrigo, V.; Martin, P. I.; Romero, F. J.; Barcala, J. M.

    2013-07-01

    The gas permeability of the Spanish FEBEX bentonite compacted at dry densities of between 1.4 and 1.8 g/cm{sup 3} with high water contents was measured for different confining, injection and back pressures. The results were compared with results obtained in previous investigations for lower degrees of saturation. It was checked that gas permeability was greatly affected by dry density, decreasing about three orders of magnitude when it increased from 1.5 to 1.8 g/cm{sup 3} for similar water content. The increase of water content caused also a decrease in gas permeability. It was found that both gas permeability and the relative gas permeability were mainly related to the accessible porosity. These relationships could be fitted to potential expressions with exponents between 3 and 4, as well as the relationship between intrinsic permeability and void ratio. For gas pressures below 1.2 MPa no effect of the injection or confining pressures on the value of permeability was detected. For a given confining pressure the permeability value decreased as the effective pressure increased, especially if the increase in effective pressure was due to a decrease in gas back pressure. It was checked that the Klinkenberg effect was not significant for this material in the range of pressures applied in the tests. The gas breakthrough pressure values in FEBEX saturated bentonite were determined for different dry densities. They increased clearly with dry density and were always higher than the swelling pressure of the bentonite. In high density samples gas flow tended to stop abruptly after breakthrough, whereas in lower density samples gas flow decreased gradually until a given pressure gradient was reached. The permeabilities computed after breakthrough (which usually did not stabilise) were inversely related to dry density. This would indicate that, even if the flow took place predominantly through preferential pathways that sometimes closed quickly after breakthrough and others

  11. Gas Transport in Bentonite

    International Nuclear Information System (INIS)

    Villar, M. V.; Gutierrez-Rodrigo, V.; Martin, P. L.; Romero, F. J.; Barcala, J. M.

    2013-01-01

    The gas permeability of the Spanish FEBEX bentonite compacted at dry densities of between 1.4 and 1.8 g/cm 3 with high water contents was measured for different confining, injection and back pressures. The results were compared with results obtained in previous investigations for lower degrees of saturation. It was checked that gas permeability was greatly affected by dry density, decreasing about three orders of magnitude when it increased from 1.5 to 1.8 g/cm 3 for similar water content. The increase of water content caused also a decrease in gas permeability. It was found that both gas permeability and the relative gas permeability were mainly related to the accessible porosity. These relationships could be fitted to potential expressions with exponents between 3 and 4, as well as the relationship between intrinsic permeability and void ratio. For gas pressures below 1.2 MPa no effect of the injection or confining pressures on the value of permeability was detected. For a given confining pressure the permeability value decreased as the effective pressure increased, especially if the increase in effective pressure was due to a decrease in gas back pressure. It was checked that the Klinkenberg effect was not significant for this material in the range of pressures applied in the tests. The gas breakthrough pressure values in FEBEX saturated bentonite were determined for different dry densities. They increased clearly with dry density and were always higher than the swelling pressure of the bentonite. In high density samples gas flow tended to stop abruptly after breakthrough, whereas in lower density samples gas flow decreased gradually until a given pressure gradient was reached. The permeabilities computed after breakthrough (which usually did not stabilise) were inversely related to dry density. This would indicate that, even if the flow took place predominantly through preferential pathways that sometimes closed quickly after breakthrough and others remained

  12. FEBEX: An example of a major international collaborative project

    International Nuclear Information System (INIS)

    Ulibarri, A.M.; Olmo, C. del; Huertas, F.

    1996-01-01

    There are many similarities in the high-level waste (HLW) disposal programmes in Switzerland and Spain. In both cases, alternative crystalline and sedimentary host rocks are currently under investigation, options for disposal of both vitrified reprocessing waste and spent fuel are considered and repository designs utilize massive engineered barriers. For the case of HLW disposal in a granite rock, the reference engineered barrier system (EBS) concepts are almost identical. The waste, in its steel fabrication container, is sealed in a massive steel canister which is emplaced horizontally in drilled tunnels. The canister is surrounded by a highly compacted bentonite backfill. Individual components of this waste package have been tested in isolation or on a small scale, but the aim of the full-scale engineered barrier experiment is to examine some properties of a real size system in a realistic natural environment. FEBEX was proposed by ENRESA and the experimental studies at Grimsel are run as an ENRESA/NAGRA collaboration. The field experiments are, however, only one component of a project which includes a large-scale laboratory 'mockup' and supporting materials tests and modelling. FEBEX, as a whole, is sponsored by the European Union as part of the 'Nuclear Fission Safety' research programme (the Swiss component being supported by the Bundesamt fur Bildung und Wissenschaft)

  13. DECOVALEX III PROJECT. Modelling of FEBEX In-Situ Test. Task1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E.E.; Alcoverro, J. [Univ. Politecnica de Catalunya, Barcelona (Spain)] (comps.)

    2005-02-15

    Task 1 of DECOVALEX III was conceived as a benchmark exercise supported by all field and laboratory data generated during the performance of the FEBEX experiment designed to study thermo-hydro-mechanical and thermo-hydro-geochemical processes of the buffer and rock in the near field. The task was defined as a series of three successive blind prediction exercises (Parts A, B and C), which cover the behaviour of both the rock and bentonite barrier. Research teams participating in the FEBEX task were given, for each of the three parts, a set of field and laboratory data theoretically sufficient to generate a proper model and were asked to submit predictions, at given locations and time, for some of the measured variables. The merits and limitations of different modeling approaches were therefore established. The teams could perform additional calculations, once the actual 'solution' was disclosed. Final calculations represented the best approximation that a given team could provide, always within the general time constraints imposed by the General DECOVALEX III Organization. This report presents the works performed for Task 1. It contains the case definitions and evaluations of modelling results for Part A, B and C, and the overall evaluation of the works performed. The report is completed by a CD-ROM containing a set of final reports provided by the modeling teams participating in each of the three parts defined. These reports provide the necessary details to better understand the nature of the blind or final predictions included in this report. The report closes with a set of conclusions, which provides a summary of the main findings and highlights the lessons learned, some of which were summarized below. The best predictions of the water inflow into the excavated tunnel are found when the hydro geological model is properly calibrated on the basis of other known flow measurements in the same area. The particular idealization of the rock mass (equivalent

  14. DECOVALEX III PROJECT. Modelling of FEBEX In-Situ Test. Task1 Final Report

    International Nuclear Information System (INIS)

    Alonso, E.E.; Alcoverro, J.

    2005-02-01

    Task 1 of DECOVALEX III was conceived as a benchmark exercise supported by all field and laboratory data generated during the performance of the FEBEX experiment designed to study thermo-hydro-mechanical and thermo-hydro-geochemical processes of the buffer and rock in the near field. The task was defined as a series of three successive blind prediction exercises (Parts A, B and C), which cover the behaviour of both the rock and bentonite barrier. Research teams participating in the FEBEX task were given, for each of the three parts, a set of field and laboratory data theoretically sufficient to generate a proper model and were asked to submit predictions, at given locations and time, for some of the measured variables. The merits and limitations of different modeling approaches were therefore established. The teams could perform additional calculations, once the actual 'solution' was disclosed. Final calculations represented the best approximation that a given team could provide, always within the general time constraints imposed by the General DECOVALEX III Organization. This report presents the works performed for Task 1. It contains the case definitions and evaluations of modelling results for Part A, B and C, and the overall evaluation of the works performed. The report is completed by a CD-ROM containing a set of final reports provided by the modeling teams participating in each of the three parts defined. These reports provide the necessary details to better understand the nature of the blind or final predictions included in this report. The report closes with a set of conclusions, which provides a summary of the main findings and highlights the lessons learned, some of which were summarized below. The best predictions of the water inflow into the excavated tunnel are found when the hydro geological model is properly calibrated on the basis of other known flow measurements in the same area. The particular idealization of the rock mass (equivalent porous media

  15. Modelling of bentonite-granite solutes transfer from an in situ full-scale experiment to simulate a deep geological repository (Grimsel Test Site, Switzerland)

    International Nuclear Information System (INIS)

    Buil, B.; Gomez, P.; Pena, J.; Garralon, A.; Turrero, M.J.; Escribano, A.; Sanchez, L.; Duran, J.M.

    2010-01-01

    Research highlights: → The FEBEX experiment is a 1:1 simulation of a high level waste disposal facility in crystalline rock according to the Spanish radwaste disposal concept. → Solute transfer processes occurrs at the bentonite-granite interface. → An increase of Cl and Na is observed in granitic water of the surrounding of the experiment. → Solute transfer does not affect the sealing and thermo-hydromechanical properties of the engineered barriers. → A diffusive transport of Cl and Na simulated by 1D transport modeling with an effective diffusion coefficient of D e ≅ 5.0 E-11 m 2 /s. - Abstract: The FEBEX experiment is a 1:1 simulation of a high level waste disposal facility in crystalline rock according to the Spanish radwaste disposal concept. This experiment has been performed in a gallery drilled in the underground laboratory Grimsel Test Site (Switzerland). Two boreholes parallel to the FEBEX drift were drilled 20 and 60 cm away from the granite-bentonite interface to provide data on potential bentonite-granite solutes transfer. Periodic sampling and analysis of the major ions showed: (a) the existence of solutes transfer from the bentonite porewater towards the granite groundwater, explaining the Cl - and Na + contents of the latter; (b) that the concentration of the natural tracers coming into the granite groundwater from the bentonite porewater increased over time. This bentonite-granite solutes transfer was modelled in order to predict the increase in the Cl - and Na + concentrations of the granite groundwater. The modelled results seem to confirm that the mechanism of solute migration in this scenario is that of diffusive transport. An effective diffusion coefficient of D e = 5 x 10 -11 m 2 /s was that which best fitted the data obtained.

  16. FEBEX Project Post-mortem Analysis: Corrosion Study

    International Nuclear Information System (INIS)

    Madina, V.; Azkarate, I.

    2004-01-01

    The partial dismantling of the FEBEX in situ test was carried out during de summer of 2002, following 5 years of continuous heating. The operation included the demolition of the concrete plug and the removal of the section of the test corresponding to the first heater. A large number of samples from all types of materials have been taken during the dismantling for subsequent analysis. Part of the samples collected were devoted to the analysis of the corrosion processes occurred during the first operational phase of the test. These samples comprised corrosion coupons from different metals installed for that purpose, sensors retrieved during the dismantling that were found severely corroded and bentonite in contact with those sensors. In addition, a corrosion study was performed on the heater extracted and on one section of liner surrounding it. All the analyses were carried out by the Fundacion INASMET (Spain). This report describes, in detail the studies carried out the different materials and the obtained results, as well as the drawn conclusions. (Author)

  17. FEBEX Project Post-mortem Analysis: Corrosion Study

    Energy Technology Data Exchange (ETDEWEB)

    Madina, V.; Azkarate, I.

    2004-07-01

    The partial dismantling of the FEBEX in situ test was carried out during de summer of 2002, following 5 years of continuous heating. The operation included the demolition of the concrete plug and the removal of the section of the test corresponding to the first heater. A large number of samples from all types of materials have been taken during the dismantling for subsequent analysis. Part of the samples collected were devoted to the analysis of the corrosion processes occurred during the first operational phase of the test. These samples comprised corrosion coupons from different metals installed for that purpose, sensors retrieved during the dismantling that were found severely corroded and bentonite in contact with those sensors. In addition, a corrosion study was performed on the heater extracted and on one section of liner surrounding it. All the analyses were carried out by the Fundacion INASMET (Spain). This report describes, in detail the studies carried out the different materials and the obtained results, as well as the drawn conclusions. (Author)

  18. Saturation of compacted bentonite under repository conditions: long-term experimental evidences

    International Nuclear Information System (INIS)

    Villar, M.V.; Martin, P.L.; Gomez-Espina, R.; Garcia-Sineriz, J.L.; Barcena, I.; Lloret, A.

    2010-01-01

    Document available in extended abstract form only. A current design for engineered barriers in the context of high-level radioactive waste disposal includes bentonite compacted blocks initially unsaturated. The heat released by the waste will induce high temperatures in the bentonite barrier. It is expected that full saturation of the buffer be reached before the dissipation of the thermal gradient. However, it still remains unclear whether the high temperatures around the canister would hinder the full saturation of the inner part of the barrier or just delay it. This paper summarises the information gathered in the last 15 years on the saturation of compacted FEBEX bentonite by means of different scale laboratory tests, a big-scale mock-up test and a real-scale in situ test, that were performed in order to simulate the conditions of the clay barrier in the repository and better understand the hydration/heating processes and their consequences on bentonite performance. FEBEX is a Spanish bentonite composed mainly of montmorillonite (about 92%). In the tests it has been used compacted with its hygroscopic water content (14%) at dry densities between 1.6 and 1.7 g/cm 3 , which is the range expected in the repository. For these densities the saturated permeability of the bentonite is about 3.10 -14 m/s and its swelling pressure 8 MPa. The FEBEX in situ test is being performed under natural conditions and at full scale within a drift excavated in the underground laboratory managed by NAGRA at the Grimsel Test Site (Switzerland). The thickness of the bentonite barrier is of 65 cm, and the surface heater temperature is 100 C. After five years of heating, and according to the sensors measurements, the bentonite closer to the heater had water contents below the initial ones, although they were recovering after the intense initial drying. On the contrary, for the same period of time, the sensors located at the same distance from the gallery wall, but in an area not

  19. Changes in the microstructure of compacted bentonite caused by heating and hydration

    Directory of Open Access Journals (Sweden)

    Villar M.V.

    2016-01-01

    Full Text Available Two twin 40-cm long columns of compacted FEBEX bentonite were tested in Teflon cells; water was supplied through the top surface of the columns and in one of them a heater was placed at the base and set to 100°C. The purpose of these tests was to simulate the behaviour of an engineered barrier in a radioactive waste repository and investigate the effect of the thermal gradient on saturation. In particular, changes in the pore size distribution and interlayer size have been investigated in this work. The thermal gradient had a strong influence on the water intake and distribution. Water content and dry density gradients persisted in the two columns after 12 years of testing. These changes gave place to the modification of the bentonite microstructure, overall increasing the microstructural void ratio and the proportion of adsorbed, interlayer water.

  20. Changes on the mineralogical and physico-chemical properties of a compacted bentonite in contact with hyperalkaline pore fluids

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.; Sanchez, D.M.

    2010-01-01

    Document available in extended abstract form only. In high-level radioactive waste disposal (HLW) concepts, compacted bentonites are being considered in many countries as a sealing material because of their low permeability, high swelling capacity and high plasticity. In the case of the geological disposal of nuclear wastes in argillaceous host formations, concrete will be also used as support of tunnels and galleries and as waste containment material. Therefore, the bentonite barrier will become saturated with the water resulting from the host-rock/concrete interaction. An understanding of the rate and nature of the bentonite alteration, as well as the evolution of the bentonite pore water in the long-term is important for performance assessment. In this work the behaviour of the bentonite has been simulated in a laboratory test. A concrete-bentonite interaction experiment has been performed at a high solid to liquid ratio with FEBEX bentonite. The aim of the experiment was to analyse the buffering capacity of the bentonite and the clay mineral stability in a high-pH environment over a long contact period. The rate of pH buffering capacity of the bentonite is related to its surface hydroxyl sites (≡SOH) located along the edges of the clay platelets (fast reaction), and the montmorillonite crystal lattice itself (governed by reaction kinetics). Two infiltration tests with hyper-alkaline water were performed with FEBEX bentonite compacted at a dry density of 1.65 g/cm 3 with a hygroscopic water content (w.c.) of 13.4% in small-scale hermetic cells (50- mm diameter and 25-mm high). The experiments were running for 1.65 years under anoxic conditions inside an anoxic glove (< 1 ppm O 2 ) box and at temperature of 30-35 deg. C. The type of alkaline solution was a Na-K-OH water in equilibrium with portlandite, Ca(OH) 2 , at pH 13.5. This water is representative of an average pore water of a mortar made with CEM-I-SR type Portland cement (sulphate-resistant) at a 0

  1. Inverse modeling of multicomponent reactive transport through single and dual porosity media

    Science.gov (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis

    2008-06-01

    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  2. Nuclear medical inpatient treatment in Germany. Analysis of the structured quality reports 2004 to 2008; Stationaere nuklearmedizinische Therapie in Deutschland. Analyse der strukturierten Qualitaetsberichte 2004 bis 2008

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, R.; Reiners, C. [Universitaetsklinikum Wuerzburg (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Dietlein, M. [Koeln Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2010-07-01

    All public licensed hospitals of Germany are obligated since 2004 to establish and to publish a structured biennial quality report. The aim of this study was to analyse the quality reports from 2008 of clinics with nuclear-medicine therapy ward and to investigate developments for the inpatient nuclear-medicine therapy by comparing the results with the quality reports of the years 2004 and 2006. Methods: All available structured quality reports of clinics with a nuclear-medicine therapy ward of the years 2004, 2006 and 2008 were evaluated. Results: The total number of inpatient treatment cases in 2008 amounted to 54 190 (2006: 54 884; 2004: 57 366). This corresponds to a decrease of 5.5% in comparison to 2004. The number of the therapy wards decreased at the same time to currently 117 (2006: 120; 2004: 124). Remarkable changes were found in the spectrum of the main diagnosis. Thus, the most frequent diagnosis with the ICD-code E05 (hyperthyroidism) decreased continuously from 37 747 treatments in 2004 and 34 764 in 2006 to 31 756 in the year 2008. In contrast, the ICD-diagnoses for thyroid cancer (C73, Z08) with 14 761 cases in 2008 increased with time (2006: 13 426; 2004: 12 581). Conclusions: In analogy to the observations from Europe after introduction of an iodine prophylaxis the improved iodine supply in Germany has led to a decline of the radioiodine therapy due to hyperthyroidism.

  3. Edirne merkez ilçede prematür ölümler, 2004 ve 2008/Premature mortality in provincial center of Edirne, 2004 and 2008

    Directory of Open Access Journals (Sweden)

    Muzaffer Eskiocak

    2014-04-01

    Full Text Available ÖzetAmaç: Bu çalışmada; Edirne Merkez ilçe ve bağlı köylerde 2004 ve 2008 yıllarında olan prematür ölüm nedenlerini ve bu ölümlere bağlı oluşan potansiyel yaşam yılı kayıplarını belirlemek amaçlanmıştır. Yöntem: Çalışma kesitsel bir araştırmadır. Edirne Merkez ilçe ve bağlı köylerde 2004 ve 2008 yılında meydana gelen ölümler mezarlık, hastane, belediye ve adli tabiplik kayıtlarından derlenmiştir. Ölümler zaman, yer, cinsiyet ve nedenlerine yönelik olarak incelenmiştir. Prematür ölümlere bağlı oluşan Potansiyel Yaşam Yılı Kayıpları (PYYK, Years Potential Life Lost hesaplanmıştır. Bulgular: Edirne Merkez ilçede kaba ölüm hızı 2004 ve 2008 yıllarında sırasıyla binde 5.17 ve binde 5.48 olarak bulunmuştur. 65 yaş altında gerçekleşen ölümler prematür ölüm olarak değerlendirilmiştir. Prematür ölüm oranları 2004 yılında %34.9, 2008 yılında %35.5 olarak tespit edilmiştir. Prematür ölümlerin 2004 yılında %69.9’u, 2008 yılında %65.8’i erkek ölümleridir ve 2004 yılında %14.3’ü, 2008 yılında %8.1’i kırsalda gerçekleşmiştir. Prematür ölümlere bağlı PYYK 2004 yılında 4809 yıl, 2008 yılında 4929 yıldır. Her iki yılda prematür ölüme neden olan ilk beş ölüm nedeni; dolaşım sistemi hastalıkları, kanserler, iyi tanımlayan durumlar, kazalar, solunum sistemi hastalıklarıdır. Sonuç: Edirne Merkez ilçede prematür ölümler tüm ölümlerin yaklaşık üçte birini oluşturmaktadır ve en sık görülen prematür ölüm nedenleri dolaşım sistemi hastalıkları ve kanserlerdir.Anahtar Kelimeler: Prematür mortalite, potansiyel yaşam yılı kaybıAbstractObjective: This study determined the causes of premature mortalities, the potential years of life lost (PYLL and the economic losses due to premature mortality in the provincial centre of Edirne. Methods:This is a cross-sectional study. Mortality data in Edirne for the

  4. United States home births increase 20 percent from 2004 to 2008.

    Science.gov (United States)

    MacDorman, Marian F; Declercq, Eugene; Mathews, T J

    2011-09-01

    After a gradual decline from 1990 to 2004, the percentage of births occurring at home increased from 2004 to 2008 in the United States. The objective of this report was to examine the recent increase in home births and the factors associated with this increase from 2004 to 2008. United States birth certificate data on home births were analyzed by maternal demographic and medical characteristics. In 2008, there were 28,357 home births in the United States. From 2004 to 2008, the percentage of births occurring at home increased by 20 percent from 0.56 percent to 0.67 percent of United States births. This rise was largely driven by a 28 percent increase in the percentage of home births for non-Hispanic white women, for whom more than 1 percent of births occur at home. At the same time, the risk profile for home births has been lowered, with substantial drops in the percentage of home births of infants who are born preterm or at low birthweight, and declines in the percentage of home births that occur to teen and unmarried mothers. Twenty-seven states had statistically significant increases in the percentage of home births from 2004 to 2008; only four states had declines. The 20 percent increase in United States home births from 2004 to 2008 is a notable development that will be of interest to practitioners and policymakers. (BIRTH 38:3 September 2011). © 2011, Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc.

  5. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock

    Energy Technology Data Exchange (ETDEWEB)

    Alberid, J; Barcala, J M; Campos, R; Cuevas, A M; Fernandez, E [Ciemat. Madrid (Spain)

    2000-07-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  6. Pore water chemistry of Rokle Bentonite (Czech Republic)

    International Nuclear Information System (INIS)

    Cervinka, R.; Vejsada, J.

    2010-01-01

    Document available in extended abstract form only. With inflowing the groundwater to Deep Geological Repository (DGR), the interaction of this water with engineering barrier materials will alter both, barrier materials and also the groundwater. One of the most important alterations represents the formation of bentonite pore water that will affect a number of important processes, e.g. corrosion of waste package materials, solubility of radionuclides, diffusion and sorption of radionuclides. The composition of bentonite pore water is influenced primarily by the composition of solid phase (bentonite), liquid phase (inflowing groundwater), the gaseous phase (partial pressure of CO 2 ), bentonite compaction and the rate of groundwater species diffusion through bentonite. Also following processes have to be taken into account: dissolution of admixtures present in the bentonite (particularly well soluble salts, e.g. KCl, NaCl, gypsum), ion exchange process and protonation and deprotonation of surface hydroxyl groups on clay minerals. Long-term stability of mineral phases and possible mineral transformation should not be neglected as well. In the Czech Republic, DGR concept takes local bentonite into account as material for both buffer and backfill. The candidate bentonite comes from the Rokle deposit (NW Bohemia) and represents complex mixture of (Ca,Mg)-Fe-rich montmorillonite, micas, kaolinite and other mineral admixtures (mainly Ca, Mg, Fe carbonates, feldspars and iron oxides). The mineralogical and chemical characteristics were published previously. This bentonite is different in composition and properties from worldwide studied Na-bentonite (e.g. MX-80, Volclay) or Na-Ca bentonite (e.g. Febex). This fact leads to the need of investigation of Rokle bentonite in greater detail to verify its suitability as a buffer and backfill in DGR. Presented task is focused on the study of pore water evolution. Our approach for this study consists in modeling the pore water using

  7. Lessons learned from the Febex in situ test: geochemical processes associated to the microbial degradation and gas generation

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Sanchez, D.M.; Melon, A.; Mingarro, M.; Wieczorek, K.

    2012-01-01

    existence of gaps between the bentonite blocks, which favour the development and growth of inactive and dormant cells or spores belonging to the original bentonite. In this work, the observed geochemical and corrosion processes influenced both by organic matter degradation and micro-organisms in the 1:1 scale FEBEX in situ test (Grimsel, Switzerland) are described. This test consists of two heaters, simulating radioactive waste containers, emplaced in a horizontal gallery and surrounded by a highly compacted bentonite barrier. Samples from pore water, gases and bentonite (SHSDI-01: clay in contact with AISI 316L metal; S29 and BSBI-26: clay in contact with carbon steel) have been analysed. The samples were obtained during the test and the dismantling of the heater 1 after six years of experiment. The solid samples were analysed by XRD, SEM, XPS, FTIR, ATD-TG and chemical analysis; the water samples by IC and ICP-OES, and the gases by gas chromatography. Different geochemical processes have been detected as a function of the temperature and water content of the samples. When the water content is high, there are aerobic respiration and fermentation processes, anaerobic respiration with SO 4 2- as electron acceptor, and anaerobic production of methane with CO 2 as electron acceptor. In a first phase, both oxygen consumption and an increase of CH 4 and CO 2 is observed. Afterwards, there is a reduction of sulfates by SRB bacteria, which provokes corrosion processes. As a consequence, a precipitation of sulphurs, iron oxy-hydroxides and carbonates occurs, as well as H 2 generation. There is an increase of the iron content in the smectite and the neo-formation of zeolites. However this alteration is punctual and localized. The redox potential of the bentonite pore water was of -284 mV. When the temperature is high and water content is low, other processes take place

  8. MANU. Purchase of Bentonite. Process Description

    International Nuclear Information System (INIS)

    Laaksonen, R.

    2010-01-01

    The aim of this study is to describe the entire bentonite purchasing process accurately. This will enable efficient and focused use of information related to the purchasing phase and to each individual bentonite batch. This work continues from the work started in the report by Ahonen et al. (2008), Quality Assurance of the Bentonite Material, Posiva Working Report 2008-33. The current work includes a short enquiry for all relevant and at the time known producers or re-sellers of bentonite. Questions about relevant products suitable for civil engineering use, more specifically nuclear waste disposal site use, were asked together with test methods, typical test results and test standards. The following aspects and opinions have been processed from the results that were obtained during the project. Each seller/producer has a quality management system, QMS (typically ISO 9001), and ability to perform the basic tests, but there is not an established common set of properties to be tested. Some producers are willing to test according to customers' specifications. Posiva could arrange a network of capable laboratories to carry out tests according to its selected standards. This activity should then be accredited with a reasonable testing volume. Before starting the purchase of bentonite at a large scale, Posiva should go through negotiations and audits with each seller in order to make sure that both parties are testing with the same methods and both understand the range where the values of key parameters may lie. A database is needed for gathering statistically relevant information from the bentonite material parameters over the long run. This is needed for determining the limits within which the material parameters should remain in order to be acceptable. Posiva is encouraged to create a process to optimize the test types and the amount of tests should be identified for immediate and long term use. This process ensures the required quality and costs involved. (orig.)

  9. Decreasing Prevalence of Obesity Among Young Children in Massachusetts From 2004 to 2008

    Science.gov (United States)

    Gillman, Matthew W.; Rifas-Shiman, Sheryl L.; Sherry, Bettylou; Kleinman, Ken; Taveras, Elsie M.

    2012-01-01

    OBJECTIVE: To examine whether the obesity prevalence is increasing, level, or decreasing among young US children (aged children) at a multisite pediatric practice in eastern Massachusetts during 1999–2008. By using the Centers for Disease Control and Prevention 2000 gender-specific growth charts, we defined obesity as weight-for-length ≥95th percentile for children aged children aged 24 to obesity trends in 2 separate periods, 1999–2003 and 20042008, adjusting for age group, race/ethnicity, health insurance, and practice site. RESULTS: From 1999 to 2003, the obesity prevalence was fairly stable among both boys and girls. From 2004 to 2008, the obesity prevalence substantially decreased among both boys and girls. The decline in obesity prevalence during 20042008 was more pronounced among children insured by non-Medicaid health plans than among those insured by Medicaid. CONCLUSIONS: Among children aged obesity prevalence decreased during 20042008, which is in line with national data showing no increase in prevalence during this time period. The smaller decrease among Medicaid-insured children may portend widening of socioeconomic disparities in childhood obesity. PMID:22529276

  10. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final report

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J. M.; Campos, R.; Cuevas, A. M.; Fernandez, E.

    2000-01-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  11. Analysis of traffic crash data in Kentucky : 2004-2008.

    Science.gov (United States)

    2009-09-01

    The report documents an analysis of traffic crash data in Kentucky for the years of 2004 through 2008. A primary objective of this study was to determine average crash statistics for Kentucky highways. Average and critical numbers and rates of crashe...

  12. Utilisation of podiatry services in Australia under the Medicare Enhanced Primary Care program, 2004-2008.

    Science.gov (United States)

    Menz, Hylton B

    2009-10-30

    In 2004, as an extension of the Enhanced Primary Care (EPC) program, the Australian Government introduced a policy of providing Medicare rebates for allied health services provided to patients with chronic or complex health conditions. The objective of this study was to evaluate the utilisation of podiatry services provided under this scheme between 2004 and 2008. Data pertaining to the Medicare item 10962 for the calendar years 2004-2008 were extracted from the Australian Medicare Benefits Schedule (MBS) database and cross-tabulated by sex and age. Descriptive analyses were undertaken to assess sex and age differences in the number of consultations provided and to assess for temporal trends over the five-year assessment period. The total cost to Medicare over this period was also determined. During the 2004-2008 period, a total of 1,338,044 EPC consultations were provided by podiatrists in Australia. Females exhibited higher utilisation than males (63 versus 37%), and those aged over 65 years accounted for 75% of consultations. There was a marked increase in the number of consultations provided from 2004 to 2008, and the total cost of providing EPC podiatry services during this period was $62.9 M. Podiatry services have been extensively utilised under the EPC program by primary care patients, particularly older women, and the number of services provided has increased dramatically between 2004 and 2008. Further research is required to determine whether the EPC program enhances clinical outcomes compared to standard practice.

  13. Utilisation of podiatry services in Australia under the Medicare Enhanced Primary Care program, 2004-2008

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2009-10-01

    Full Text Available Abstract Background In 2004, as an extension of the Enhanced Primary Care (EPC program, the Australian Government introduced a policy of providing Medicare rebates for allied health services provided to patients with chronic or complex health conditions. The objective of this study was to evaluate the utilisation of podiatry services provided under this scheme between 2004 and 2008. Methods Data pertaining to the Medicare item 10962 for the calendar years 2004-2008 were extracted from the Australian Medicare Benefits Schedule (MBS database and cross-tabulated by sex and age. Descriptive analyses were undertaken to assess sex and age differences in the number of consultations provided and to assess for temporal trends over the five-year assessment period. The total cost to Medicare over this period was also determined. Results During the 2004-2008 period, a total of 1,338,044 EPC consultations were provided by podiatrists in Australia. Females exhibited higher utilisation than males (63 versus 37%, and those aged over 65 years accounted for 75% of consultations. There was a marked increase in the number of consultations provided from 2004 to 2008, and the total cost of providing EPC podiatry services during this period was $62.9 M. Conclusion Podiatry services have been extensively utilised under the EPC program by primary care patients, particularly older women, and the number of services provided has increased dramatically between 2004 and 2008. Further research is required to determine whether the EPC program enhances clinical outcomes compared to standard practice.

  14. BENTONITE PROCESSING

    Directory of Open Access Journals (Sweden)

    Anamarija Kutlić

    2012-07-01

    Full Text Available Bentonite has vide variety of uses. Special use of bentonite, where its absorbing properties are employed to provide water-tight sealing is for an underground repository in granites In this paper, bentonite processing and beneficiation are described.

  15. Smoke-free-home rules among women with infants, 2004-2008.

    Science.gov (United States)

    Gibbs, Falicia A; Tong, Van T; Farr, Sherry L; Dietz, Patricia M; Babb, Stephen

    2012-01-01

    Exposure to secondhand smoke increases risk for infant illness and death. The objective of this study was to estimate the prevalence of complete smoke-free-home rules (smoking not allowed anywhere in the home) among women with infants in the United States. We analyzed 2004-2008 data from the Pregnancy Risk Assessment Monitoring System on 41,535 women who had recent live births in 5 states (Arkansas, Maine, New Jersey, Oregon, and Washington). We calculated the prevalence of complete smoke-free-home rules and partial or no rules by maternal smoking status, demographic characteristics, delivery year, and state of residence. We used adjusted prevalence ratios (APRs) to estimate associations between complete rules and partial or no rules and variables. During 2004-2008, the overall prevalence of complete rules was 94.6% (95% confidence interval [CI], 94.4-94.9), ranging from 85.4% (Arkansas) to 98.1% (Oregon). The prevalence of complete rules increased significantly in 3 states from 2004 to 2008. It was lowest among women who smoked during pregnancy and postpartum, women younger than 20 years, non-Hispanic black women, women with fewer than 12 years of education, women who had an annual household income of less than $10,000, unmarried women, and women enrolled in Medicaid during pregnancy. The prevalence of complete smoke-free-home rules among women with infants was high overall and increased in 3 of 5 states, signifying a public health success. Sustained and targeted efforts among groups of women who are least likely to have complete smoke-free-home rules are needed to protect infants from exposure to secondhand smoke.

  16. 2004/2008 labour market information comparative analysis report

    International Nuclear Information System (INIS)

    2009-01-01

    The electricity sector has entered into a phase of both challenges and opportunities. Challenges include workforce retirement, labour shortages, and increased competition from other employers to attract and retain the skilled people required to deliver on the increasing demand for electricity in Canada. The electricity sector in Canada is also moving into a new phase, whereby much of the existing infrastructure is either due for significant upgrades, or complete replacement. The increasing demand for electricity means that increased investment and capital expenditure will need to be put toward building new infrastructure altogether. The opportunities for the electricity industry will lie in its ability to effectively and efficiently react to these challenges. The purpose of this report was to provide employers and stakeholders in the sector with relevant and current trend data to help them make appropriate policy and human resource decisions. The report presented a comparative analysis of a 2004 Canadian Electricity Association employer survey with a 2008 Electricity Sector Council employer survey. The comparative analysis highlighted trends and changes that emerged between the 2004 and 2008 studies. Specific topics that were addressed included overall employment trends; employment diversity in the sector; age of non-support staff; recruitment; and retirements and pension eligibility. Recommendations were also offered. It was concluded that the electricity sector could benefit greatly from implementing on-going recruitment campaigns. refs., tabs., figs

  17. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  18. Bentonite in the repository - Manufacture of bentonite blocks. A literature study

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1995-09-01

    Activities in nuclear power countries are reviewed, concerning developments in the use of bentonite for backfilling in nuclear waste repositories, in particular regarding manufacture of bentonite-blocks. Only one report was found which in detail describes the manufacture of highly compacted blocks of bentonite. Use of bentonite for sealing boreholes etc in the oil- and gas industry was also covered in the literature study. 19 refs, 3 tabs

  19. Advanced study of transport analysis in bentonite (3)

    International Nuclear Information System (INIS)

    Kawamura, Katsuyuki

    2005-02-01

    Solute and radionuclide transport analysis in buffer material made of bentonite clay is essential in safety assessment of a geological disposal facility for high-level radioactive waste (HLW). It is keenly required to understand the true physical and chemical process of the transport phenomena and to improve reliability of the safety assessment, since any conventional methods based on experimental models involve difficulty to estimate the robustness for a very long-term behavior. In order to solve this difficulty we start with the molecular dynamics (MD) simulation method for understanding the molecular-based fundamental properties such as an ionic state and diffusion characteristics of hydrated smectite clay minerals, and we extend the microscale properties to the macroscale behaviors by applying the multiscale homogenization analysis (HA) method. In the study of this year we improved the MD atomic model for the hydrated clay minerals, and a new adsorption-diffusion analysis scheme by the homogenization analysis (HA). In the MD simulation we precisely simulated the molecular behaviors of cations and H 2 O in the neighborhood of a clay mineral. In FY2002 the swelling property and diffusivity of interlayer cations, Cs and Ca, were calculated. In FY2003 the interatomic potential model was improved, and the diffusivity of several interlayer cations were calculated. In FY2004 the interatomic potential model was further improved, and the swelling and diffusive properties became more realistic. Then the coordination number of cations were calculated. A microscopic image is important to specify micro/macro behavior of bentonite. In FY2002 we observed microstructures of bentonite by using a confocal laser scanning microscope (LSM). In FY2003 based on the knowledge of the local material properties obtained by MD and the microscopic observation we simulated the micro-/macro-behavior of diffusion experiments of the bentonite which included the microscale adsorption

  20. Influence of temperature, exchangeable cation composition, salinity and density in the adsorption of water by a bentonite: implications to the pore water composition

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.M.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonites are being considered in many countries as a sealing material in high-level radioactive waste disposal (HLW) concepts because of their low permeability, high swelling capacity and high plasticity. In this context, the knowledge of the pore water composition in bentonites is an uncertainty associated to the retention and transport processes through highly compacted material. The nature of the pore water directly affects how the radionuclides are transported through the buffer materials because of a potential distribution is developed at the solid-liquid interface. Besides, the moisture potential of bentonites is closely related to swelling pressure. The pore water chemistry depends on the hydration and swelling of bentonites (matric and osmotic potentials), and therefore on the distribution of the external and the interlayer water. This relationship depends, in turn, on parameters such as water content, bulk dry density, temperature, type of cations at interlayers and salinity. The osmotic potential is related to the dissolved salt content and increases with pore water salinity. It is well-known that variations in pore water osmotic suction affect osmotic repulsion pressure caused by the diffuse double layers interactions of adjacent particles as both are functions of dissolved salt concentration in pore water. In this work, the moisture potential has been analysed as a function of the water content, temperature (20, 30 and 60 deg. C), type of cations at interlayers, salinity and degree of compaction of the FEBEX bentonite. The aim was to analyse the hydration of this bentonite, and the types and distribution of water as a function of these parameters, since both the Cl-accessible porosity (key parameter for transport processes) and the amount of internal (interlayer)/external water depend strongly on the ionic strength of the saturating solution, the composition at interlayers and the

  1. Sealing performance assessments of bentonite and bentonite/crushed rock plugs

    International Nuclear Information System (INIS)

    Ouyang, Shoung.

    1990-01-01

    Bentonite and mixtures of bentonite and crushed rock are potential sealing materials for high level nuclear waste repositories. The materials have been used to form cap layers to reduce infiltration for mined waste tailings and can also be used to construct clay liners for municipal as well as industrial waste managements. American Colloid C/S granular dentonite and Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that an appropriate composition would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no negative effects on the sealing performance within the test range from room temperature to 60C. The piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for 25 and 35% bentonite content, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for the plug design. A permeability model developed is useful for the prediction of permeability in clays. A piping model permits the estimation of critical hydraulic gradient allowed before the flow of bentonite takes place. It can also be used to define the maximum allowable pore diameter of a protective filter layer

  2. Evaluation of gas migration characteristics of compacted bentonite and Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of subsurface disposal and near-surface pit disposal for low level radioactive waste, compacted bentonite and Ca-bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides, respectively. Hydrogen gas can be generated inside the engineered barrier of subsurface disposal facilities mainly by anaerobic corrosion of metals used for containers, etc. Hydrogen gas can be also generated inside the engineered barrier of near-surface pit disposal facilities mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite and Ca-bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite and Ca-bentonite mixture until breakthrough occurs. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite and Ca-bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted bentonite and Ca-bentonite mixture are investigated by the gas migration tests. The applicability of the two phase flow model without considering deformability of the specimen is investigated. The applicability of the model of two phase flow through deformable porous media, which was originally developed by CRIEPI, is also investigated. Results of this study imply that : (1) Gas migration mechanism of the compacted bentonite and Ca-bentonite mixture is revealed through gas migration test. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Stress change, pore-water pressure change and volume change of the specimen during the gas migration test can be reproduced by the numerical

  3. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  4. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    Directory of Open Access Journals (Sweden)

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  5. Fe-bentonite. Experiments and modelling of the interactions of bentonites with iron

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Horst-Juergen; Xie, Mingliang [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Kasbohm, Joern; Lan, Nguyen T. [Greifswald Univ. (Germany); Hoang Thi Minh Thao [Hanoi Univ. of Science (Viet Nam)

    2011-11-15

    The main objectives of this study were to enhance the understanding of the interactions of bentonites with steel containers in the near field of a repository in salt formations and to determine missing experimental thermo-hydraulical-chemical and mineralogical data needed for the THC modelling of the interactions of bentonites with iron. At the beginning of this project a literature review helped to clarify the state of the art regarding the above mentioned objectives prior to the start of the experimental work. In the following experimental programme the hydraulic changes in the pore space of compacted MX80 bentonites containing metallic iron powder and in contact with three solutions of different ionic strength containing different concentrations of Fe{sup 2+} have been investigated. The alterations of MX80 and several other bentonites have been assessed in contact with the low ionic strength Opalinus Clay Pore Water (OCPW) and the saturated salt solutions NaCl solution and IP21 solution. Under repository relevant boundary conditions we determined on compacted MX80 samples with the raw density of 1.6 g/cm{sup 3} simultaneously interdependent properties like swelling pressures, hydraulic parameters (permeabilities and porosities), mineralogical data (changes of the smectite composition and iron corrosion products), transport parameters (diffusion coefficients) and thermal data (temperature dependent reaction progresses). The information and data resulting from the experiments have been used in geochemical modelling calculations and the existing possibilities and limitations to simulate these very complex near field processes were demonstrated. The main conclusion of this study is that the alteration of bentonites in contact with iron is accentuated and accelerated. Alterations in contact with solutions of different ionic strength identified by the authors in previous studies were found be much more intensive in contact with metallic iron and at elevated

  6. Epidemiology and trend of common cancers in Iran (2004-2008).

    Science.gov (United States)

    Amori, N; Aghajani, M; Asgarian, F S; Jazayeri, M

    2017-09-01

    Cancer is one of the most important causes of mortality worldwide. It includes approximately 13% of death cases. This study aimed to investigate the incidence trend of common cancers in Iran during 2004-2008 to improve reporting distribution the disease. This was a retrospective study. The study population was all cases of cancer diagnosed in Iran during 2004-2008. The crude incidence rate of cancers was calculated per 100 000 people by age groups and sex. Age-standardised incidence rates (ASRs) were calculated using direct standardisation and the world standard population. Data were analysed using SPSS (version 17) and Microsoft Office Excel 2007. In this study, a total of 301 055 cases of cancer were diagnosed. ASRs were 60.51 and 84.51 in women and men respectively. Most common cancers in men were skin (ASR = 18.85), stomach (15.02), bladder (ASR = 11.25), prostate (ASR = 8.93) and colorectal (ASR = 8.29). Most common cancers in women were breast (ASR = 18.24), skin (ASR = 12.01), colorectal (ASR = 7.75), stomach (ASR = 7.05) and haematocyte (ASR = 4.01). A significant increase was observed in the incidence of cancers in the country. Therefore, it is necessary to perform screening, early diagnosis and treatment in early stages of cancers. © 2016 John Wiley & Sons Ltd.

  7. Porewater chemistry in compacted bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A.; Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In this study, the porewater chemistry in compacted bentonite, considered as an engineered barrier in the repository of spent fuel, has been studied in interaction experiments. Many parameters, like the composition and density of bentonite, composition of the solution, bentonite-to-water ratio (B/W), surrounding conditions and experimental time have been varied in the experiments. At the end of the interaction the equilibrating solution, the porewaters squeezed out of the bentonite samples, and bentonites themselves were analyzed to give information for the interpretation and modelling of the interaction. Equilibrium modelling was performed with the HYDRAQL/CE computer code 33 refs.

  8. Bentonite erosion - Laboratory studies

    International Nuclear Information System (INIS)

    Jansson, Mats

    2010-01-01

    Document available in extended abstract form only. Bentonite clay is proposed as buffer material in the KBS-3 concept of storing spent nuclear fuel. Since the clay is plastic it will protect the canisters containing the spent fuel from movements in the rock. Furthermore, the clay will expand when taking up water, become very compact and hence limit the transport of solutes to and from the canister to only diffusion. The chemical stability of the bentonite barrier is of vital importance. If much material would be lost the barrier will lose its functions. As a side effect, lots of colloids will be released which may facilitate radionuclide transport in case of a breach in the canister. There are scenarios where during an ice age fresh melt water may penetrate down to repository depths with relatively high flow rates and not mix with older waters of high salinity. Under such conditions bentonite colloids will be more stable and there is a possibility that the bentonite buffer would start to disperse and bentonite colloids be carried away by the passing water. This work is a part of a larger project called Bentonite Erosion, initiated and supported by SKB. In this work several minor experiments have been performed in order to investigate the influence of for instance di-valent cations, gravity, etc. on the dispersion behaviour of bentonite and/or montmorillonite. A bigger experiment where the real situation was simulated using an artificial fracture was conducted. Two Plexiglas slabs were placed on top of each other, separated by plastic spacers. Bentonite was placed in a container in contact with a fracture. The bentonite was water saturated before deionized water was pumped through the fracture. The evolution of the bentonite profile in the fracture was followed visually. The eluate was collected in five different slots at the outlet side and analyzed for colloid concentration employing Photon Correlation Spectroscopy (PCS) and a Single Particle Counter (SPC). Some

  9. Physical changes in MX-80 bentonite saturated under thermal gradient

    International Nuclear Information System (INIS)

    Villar, Maria Victoria; Gomez-Espina, Roberto; Gutierrez-Nebot, Luis; Campos, Rocio; Barrios, Iciar

    2012-01-01

    water loss caused by the evaporation triggered by heating. Additionally, the state of hydration of the smectite was studied by determining the number of layers of water in the inter-lamellar region through measurement of the basal spacing of the smectite, i.e. the d(001) distance, by means of X-ray diffraction. This was done in sub-samples taken along the columns. The d(001) reflected a change in the interlayer hydration state from the 2- to the 0-layer hydrate, the latter corresponding to conditions drier than in the initial bentonite. The values of specific surface area along the columns were obtained in oven-dried and in lyophilised samples, the values obtained with both techniques being similar. In both tests the specific surface area decreased towards the ends of the columns, i.e. towards the driest and the wettest areas. The decrease of specific surface area in samples subjected to heating has been repeatedly observed in this kind of TH tests with FEBEX bentonite, as well as a slight decrease near the hydration surface. Also, previous similar tests showed an overall reduction in the specific surface area with respect to the initial value all along the column that tended to recover as the duration of the test was longer. This was the trend observed in our tests with MX-80: in the shortest one the specific surface area of most of the samples was below the initial value (20 m 2 /g), whereas in the longest test the trend was reversed, except near the heater. These changes in the specific surface area could be related to changes in the crystallinity of the particles, possibly caused by dissolution processes, delamination of the crystallites and reorganisation of the layers. The pore size distribution of the samples was also analysed in the longest test by mercury intrusion porosimetry, showing an increase in the percentage of macro-pores and a decrease in the meso-pore percentage towards the heater, whereas the micropore percentage remained approximately constant all

  10. FEBEX II Project Post-mortem analysis EDZ assessment

    International Nuclear Information System (INIS)

    Bazargan Sabet, B.; Shao, H.; Autio, J.; Elorza, F. J.

    2004-01-01

    Within the framework of the FEBEX II project a multidisciplinary team studied the mechanisms of creation of the potential damaged zone around the test drift. The research program includes laboratory and in situ investigations as well as the numerical modelling of the observed phenomena. Where laboratory investigations are concerned, the 14C-PMMA technique was applied to study the spatial distribution of porosity in the samples taken from the test drift wall. In addition complementary microscopy and scanning electron microscopy (SEM) studies were performed to make qualitative investigations on the pore apertures and minerals in porous regions. The results obtained with the PMMA method have not shown any clear increased porosity zone adjacent to the tunnel wall. The total porosity of the samples varied between 0.6-1.2%. The samples of unplugged region did not differ from the samples of plugged region. A clear increase in porosity to depths of 10-15 mm from the tunnel wall was detected in lamprophyre samples. According to the SEM/EDX analyses the excavation-disturbed zone in the granite matrix extended to depths of 1-3 mm from the wall surface. A few quartz grains were crushed and some micro fractures were found. Gas permeability tests were carried out on two hollow cylinder samples of about 1m long each taken on the granite wall perpendicular to the drift axis. The first sample was cored in the service area far from the heated zone and the second one at the level of the heater. The tests were performed at constant gas pressure by setting a steady state radial flow through a section of 1cm wide isolated by means of four mini-packers. The profile of the gas permeability according to the core length has been established. The results obtained for both considered samples have shown permeability ranging between 3.5 10-18 and 8.4 10-19m2, pointing out the absence of a marked damage. Acoustic investigations have been carried out with the objective of quantifying the

  11. FEBEX II Project Post-mortem analysis EDZ assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bazargan Sabet, B.; Shao, H.; Autio, J.; Elorza, F. J.

    2004-07-01

    Within the framework of the FEBEX II project a multidisciplinary team studied the mechanisms of creation of the potential damaged zone around the test drift. The research program includes laboratory and in situ investigations as well as the numerical modelling of the observed phenomena. Where laboratory investigations are concerned, the 14C-PMMA technique was applied to study the spatial distribution of porosity in the samples taken from the test drift wall. In addition complementary microscopy and scanning electron microscopy (SEM) studies were performed to make qualitative investigations on the pore apertures and minerals in porous regions. The results obtained with the PMMA method have not shown any clear increased porosity zone adjacent to the tunnel wall. The total porosity of the samples varied between 0.6-1.2%. The samples of unplugged region did not differ from the samples of plugged region. A clear increase in porosity to depths of 10-15 mm from the tunnel wall was detected in lamprophyre samples. According to the SEM/EDX analyses the excavation-disturbed zone in the granite matrix extended to depths of 1-3 mm from the wall surface. A few quartz grains were crushed and some micro fractures were found. Gas permeability tests were carried out on two hollow cylinder samples of about 1m long each taken on the granite wall perpendicular to the drift axis. The first sample was cored in the service area far from the heated zone and the second one at the level of the heater. The tests were performed at constant gas pressure by setting a steady state radial flow through a section of 1cm wide isolated by means of four mini-packers. The profile of the gas permeability according to the core length has been established. The results obtained for both considered samples have shown permeability ranging between 3.5 10-18 and 8.4 10-19m2, pointing out the absence of a marked damage. Acoustic investigations have been carried out with the objective of quantifying the

  12. Prediction of pressure of bentonite buffer in model test of disposal pit for high-level radioactive waste

    International Nuclear Information System (INIS)

    Komine, Hideo; Osada, Toru; Takao, Hajime; Ueda, Hiroyoshi

    2013-01-01

    Bentonite-based buffer materials for high-level radioactive waste (HLW) disposal are expected to fill up the space between buffer and a wall of the disposal pit, and/or between buffer and an waste-container called as overpack by its swelling deformation. That is called as self-sealing ability. This study performs the model tests simulated the relationship between buffer and space mentioned above. It also investigates the validity of the theoretical equations for evaluating the swelling characteristics of bentonite-based buffer and backfill material, which were proposed in Komine and Ogata (2003, 2004), by comparing the calculations and the experimental results. (author)

  13. Selfinjection of highly compacted bentonite into rock joints

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-02-01

    When radioactive waste is disposed in bore holes in rocks there will be some space between rock and canister. Other investigations have suggested that the space could be filled with highly compacted bentonite. In this report it is discussed if open joints formed or widened in the surrounding rock after the deposition will be sealed by self-injecting bentonite. Bentonite in contact with water will swell. The flow pattern and properties of the swelling bentonite, the permeability of the extruded bentonite and the viscosity of the extruded bentonite have been investigated. The following statements are done. In the narrow joints that can possibly be opened by various processes, the rate of bentonite extrusion will be very slow except for the first few centimeter move, which may take place in a few mounths. The swelling pressure of the extruded bentonite will decrease rapidly with the distance from the deposition hole. The loss of bentonite extruded through the narrow joints will be negligible. In the outer part of the bentonite zone there will be a successive transition to a very soft, dilute bentonite suspension. It will consist of fairly large particle aggregates which will be stuck where the joint width decreases

  14. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  15. Assessment Criteria of Bentonite Binding Properties

    Directory of Open Access Journals (Sweden)

    S. Żymankowska-Kumon

    2012-09-01

    Full Text Available The criteria, with which one should be guided at the assessment of the binding properties of bentonites used for moulding sands, areproposed in the paper. Apart from the standard parameter which is the active bentonite content, the unrestrained growth indicator should be taken into account since it seems to be more adequate in the estimation of the sand compression strength. The investigations performed for three kinds of bentonites, applied in the Polish foundry plants, subjected to a high temperature influences indicate, that the pathway of changes of the unrestrained growth indicator is very similar to the pathway of changes of the sand compression strength. Instead, the character of changes of the montmorillonite content in the sand in dependence of the temperature is quite different. The sand exhibits the significant active bentonite content, and the sand compression strength decreases rapidly. The montmorillonite content in bentonite samples was determined by the modern copper complex method of triethylenetetraamine (Cu(II-TET. Tests were performed for bentonites and for sands with those bentonites subjected to high temperatures influences in a range: 100-700ºC.

  16. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    /condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  17. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    International Nuclear Information System (INIS)

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-12-01

    /condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  18. Prediction for swelling characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  19. Quality assurance of the bentonite material

    International Nuclear Information System (INIS)

    Ahonen, L.; Korkeakoski, P.; Tiljander, M.; Kivikoski, H.; Laaksonen, R.

    2008-05-01

    This report describes a quality assurance chain for the bentonite material acquisition for a nuclear waste disposal repository. Chemical, mineralogical and geotechnical methods, which may be applied in quality control of bentonite are shortly reviewed. As a case study, many of the presented control studies were performed for six different bentonite samples. Chemical analysis is a very reliable research method to control material homogeneity, because the accuracy and repeatability of the study method is extremely good. Accurate mineralogical study of bentonite is a complicated task. X-ray diffractometry is the best method to identify smectite minerals, but quantitative analysis of smectite content remains uncertain. To obtain a better quantitative analysis, development of techniques based on automatic image analysis of SEM images is proposed. General characteristics of bentonite can be obtained by rapid indicator tests, which can be done on the place of reception. These tests are methylene blue test giving information on the cation exchange capacity, swelling index and determination of water absorption. Different methods were used in the determination of cation exchange capacity (CEC) of bentonite. The results indicated differences both between methodologies and between replicate determinations for the same material and method. Additional work should be done to improve the reliability and reproducibility of the methodology. Bentonite contains water in different modes. Thus, different determination methods are used in bentonite studies and they give somewhat dissimilar results. Clay research use frequently the so-called consistency tests (liquid limit, plastic limit and plasticity index). This study method does, however, not seem to be very practical in quality control of bentonite. Therefore, only the determination of liquid limit with fall-cone method is recommended for quality control. (orig.)

  20. Modelling the cooling and partial dismantling of the Febex in-situ test

    International Nuclear Information System (INIS)

    Sanchez, M.; Gens, A.; Guimaraes, L.

    2010-01-01

    Document available in extended abstract form only. In many designs for radioactive waste disposal the space between the canister and the cavity surface is filled by an engineered barrier made up of compacted expansive clay. Engineered barrier and adjacent host rock will be submitted to the heating effect of the nuclear waste as well as to associated hydraulic and mechanical phenomena that interact in a complex way. In order to achieve a safe and robust repository design, it is necessary to have a good understanding of the processes that occur in the near field and their evolution over time. To this end, properly instrumented full scale in situ tests provide essential information. The in-situ test operated at full scale and under natural conditions at the underground laboratory managed by NAGRA (Swiss National Cooperative for the Disposal of Radioactive Waste) at the Grimsel test site in Switzerland. Two 4300 W heaters were placed in the axis of the horizontal drift in the natural rock (granite). The heaters were 4.54 m long and 0.90 m in diameter, and were intended to simulate the release of heat by nuclear waste. The space between the rock surface and the heaters was backfilled using blocks of compacted bentonite. The test area was sealed with a 2.7 m long concrete plug. The test was heavily instrumented, including 632 sensors that were installed in the clay barrier and in the rock with measurements of temperatures, relative humidity (equivalent to total suction), pore pressures, displacements, and stresses. The heaters were symmetrically placed in relation to the central section of the test. The power of the heaters was adjusted to maintain a 100 deg. C temperature at the interface between heaters and bentonite barrier. The test was run in this way for five years when one of the heaters was switched off and dismantled. Dismantling data provided extremely valuable information about the state of the barrier at the end of the experiment and a useful benchmark for

  1. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  2. Swelling characteristics of Gaomiaozi bentonite and its prediction

    Directory of Open Access Journals (Sweden)

    De'an Sun

    2014-04-01

    Full Text Available Gaomiaozi (GMZ bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship between the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, but dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.

  3. Stabilization of overweight prevalence and improvement of dietary habits in French children between 2004 and 2008.

    Science.gov (United States)

    Carriere, Caroline; Langevin, Coralie; Déti, Eduoard Kossi; Barberger-Gateau, Pascale; Maurice, Sylvie; Thibault, Hélène

    2015-07-01

    The objective of the present study was to describe changes in overweight and obesity prevalence and eating habits among 7.5-10.5-year-old children in Aquitaine (France) between 2004 and 2008, and to assess how the programme 'Nutrition, Prevention and Health of children and teenagers in Aquitaine' implemented in 2004 may have impacted these changes. Two cross-sectional studies were conducted in two samples of children: the 'before programme' sample during the school year 2004/2005 and the 'after programme' sample during the school year 2008/2009. Settings Data were collected on gender, age, weight, height, area of residence (rural/urban) and socio-economic status of the school (non-low socio-economic/low socio-economic). Multivariate analyses were used to assess the effect of the regional programme intervention on the evolution of overweight and obesity prevalence and eating habits independently. The 'before programme' sample included 1836 children from 163 schools during the school year 2004/2005 and the 'after programme' sample included 3483 children from 210 schools during the school year 2008/2009. After adjustment of the model for age, residential area and socio-economic status of the area of residence, the prevalence of overweight including obesity (OR = 1.05; 95% CI 0.89, 1.23, P = 0.56) and of obesity (OR = 0.99; 95% CI 0.71, 1.39, P = 0.96) was found to have stabilized and eating habits had improved: intake of light afternoon meals had increased (OR = 1.38; 95% CI 1.13, 1.69, P = 0.002) while snacking in the morning (OR = 0.50; 95 % CI 0.45, 0.57, P eating habits in order to stabilize or decrease the prevalence of overweight.

  4. Dual continuum models of fully coupled non-isothermal multiphase flow and reactive transport in porous media

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.

    2005-01-01

    Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been

  5. The bentonite industry in North America

    International Nuclear Information System (INIS)

    Dixon, D.A.; Hnatiw, D.S.J.; Walker, B.T.

    1992-11-01

    The Canadian Nuclear Fuel Waste Management Program is studying a concept for the disposal of nuclear fuel waste at a depth of 500 to 1000 m below the surface in stable crystalline rock of the Canadian Shield. The waste containers would be surrounded by a clay-based buffer material, composed of equal proportions of bentonite clay and silica sand. In the reference disposal concept, some 1.9 x 10 5 Mg of used fuel would be emplaced. This would require 2.5 x 10 6 Mg of bentonite. A review of the bentonite industry in North America was carried out to establish the availability of sufficient high-quality material. There are proven reserves of sodium bentonite clay in excess of 1.5 x 10 8 Mg, and vast supplies are known to exist but not yet proven. The Canadian conceptual disposal vault would require 6 x 10 4 Mg of sodium bentonite each year for 40 years. The bentonite industry of North America has an installed annual production capacity of 2 x 10 7 Mg. A disposal vault would therefore require approximately 2% of the industry capacity. A number of commercial products have been screened for potential suitability for use as a component of the buffer. Ten currently marketed bentonite products have been identified as meeting the initial quality standards for the buffer, and two non-commercial bentonites have been identified as having the potential for use in a disposal vault. (Author) (14 figs., 7 tabs., 18 refs.)

  6. The application of bentonite in the atomic energy field and some research results of the sorption of uranium on Vietnam bentonite

    International Nuclear Information System (INIS)

    Than Van Lien; Do Qui Son; Le Thi Kim Dung

    2008-01-01

    The properties of bentonite can be summarised as follows: low gas permeability, low hydraulic conductivity, high radionuclide retardation capacity, high swelling potential, that is why bentonite has been widely used in the atomic energy fields in many countries all over the world. Vietnam has bentonite deposits that is exploited and used in some fields. In order to use bentonite - available and abandon resources in our country for atomic energy many research activities on the field of bentonite applications have been carried out in Institute for Technology of Radioactive and Rare Elements and Dalat Nuclear Research Institute. In this content, this article introduces the application of bentonite in radioactive waste management and treatment fields (bentonite used as barrier in the deep repository for spent nuclear fuel, as barriers in landfills to prevent contamination of soil and groundwater by leachates containing radioactive, bentonite is also used as sorbent for nuclear reactor activation products (Co, Cr in the waste effluents). At the some time it is present some research results of the sorption of uranium on Vietnamese bentonite. (author)

  7. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    International Nuclear Information System (INIS)

    Villar, M. V.

    2004-01-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (USA) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs

  8. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (US) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs.

  9. Hydraulic conductivity of some bentonites in artificial seawater

    International Nuclear Information System (INIS)

    Komine, Hideo; Murakami, Satoshi; Yasuhara, Kazuya

    2011-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on hydraulic conductivity of three common sodium-types of bentonite and one calcium-type bentonite by the laboratory experiments. >From the results of laboratory experiment, this study discussed the influence of seawater on hydraulic conductivity of bentonites from the viewpoints of kinds of bentonite such as exchangeable-cation type and montmorillonite content and dry density of bentonite-based buffer. (author)

  10. MANU. Handling of bentonite prior buffer block manufacturing

    International Nuclear Information System (INIS)

    Laaksonen, R.

    2010-01-01

    The aim of this study is to describe the entire bentonite handling process starting from freight from harbour to storage facility and ending up to the manufacturing filling process of the bentonite block moulds. This work describes the bentonite handling prior to the process in which bentonite blocks are manufactured in great quantities. This work included a study of relevant Nordic and international well documented cases of storage, processing and techniques involving bentonite material. Information about storage and handling processes from producers or re-sellers of bentonite was collected while keeping in mind the requirements coming from the Posiva side. Also a limited experiment was made for humidification of different material types. This work includes a detailed description of methods and equipment needed for bentonite storage and processing. Posiva Oy used Jauhetekniikka Oy as a consultant to prepare handling process flow charts for bentonite. Jauhetekniikka Oy also evaluated the content of this report. The handling of bentonite was based on the assumption that bentonite process work is done in one factory for 11 months of work time while the weekly volume is around 41-45 tons. Storage space needed in this case is about 300 tons of bentonite which equals about seven weeks of raw material consumption. This work concluded several things to be carefully considered: sampling at various phases of the process, the air quality at the production/storage facilities (humidity and temperature), the level of automation/process control of the manufacturing process and the means of producing/saving data from different phases of the process. (orig.)

  11. Immobilization of spent Bentonite by using cement matrix

    International Nuclear Information System (INIS)

    Isman MT; Endro-Kismolo

    1996-01-01

    Investigation of spent bentonite immobilization by using cement was done. The purpose of the investigation was to know the performance of cement in binding bentonite waste. The investigation was done by adding cement, water, and bentonite waste into a container and string until the mixture became homogenous. The mixture was put into a polyethylene tube (3.5 cm in diameter and 4 cm high) and it was cured up to 28 days. The specific weight of the monolith block was then calculated, and the compressive strength and the leaching rate in ground water and sea water was tested. The mass ratio of water to cement was 0.4. The variable investigated was the mass ratio of bentonite to cement. The immobilized bentonite waste was natural bentonite waste and activated bentonite waste. The result of the investigation showed that cement was good for binding bentonite waste. The maximum binding mass ratio of bentonite to cement was 0.4. In this condition the specific weight of the monolith block was 2.177 gram/cm 3 , its compressive strength was 22.6 N/mm 2 , and the leaching rate for 90 days in ground water and sea water was 5.7 x 10 -4 gram cm -2 day -1

  12. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  13. Observations of bentonite-hyper-alkaline fluid and bentonite-cement interactions by the X-ray computed tomography

    International Nuclear Information System (INIS)

    Nakabayashi, R.; Chino, D.; Kawaragi, C.; Sato, T.; Yoneda, T.; Kaneko, K.; Shibata, S.; Sakamoto, H.

    2010-01-01

    Document available in extended abstract form only. Bentonite-hyper-alkaline fluid interaction has been a key research issue in the performance assessment of radioactive waste disposal. It has therefore been investigated based on the dissolution rate of smectite (main constituent mineral of bentonite) under such hyper-alkaline condition. Generally, the dissolution rate has been obtained from batch and flow-through experiments under the conditions with high fluid/solid weight rations. These previous studies have provided a contribution to kinetic model of smectite dissolution. Some of them in particularly showed some equations explaining the effect of different factors such as pH of reactive fluid, temperature and deviation from equilibrium on smectite dissolution rate. However, the experimental conditions in such studies were completely different from the conditions in actual radioactive waste disposal system. For quantitative understanding, dissolution experiments for the compacted bentonite have also been conducted. These studies showed that the dissolution rate of compacted bentonite was different from that of batch and flow-through experiments. However, the difference has not been understood in details. On the other hand, the interface between bentonite and cement has also been investigated by experiments in laboratories and field sites, via reaction transport modelling. Despite the very few in numbers of experimental results as function of time, there are many long-term modelling works intended for bentonite-cement interaction. The models developed by many authors should be verified by comparing results of the model calculations with experimental observations. The experimental results with different conditions are therefore necessary for verifications and comparisons. Even in the experimental works done previously, the alteration process at the interface has mainly been observed by EPMA. EPMA is a destructive analysis with lower time resolution for 2D images

  14. Roles of bentonite in radioactive waste disposal

    International Nuclear Information System (INIS)

    Suzuki, Keizo

    1995-01-01

    Bentonite is used in radioactive waste disposal from the following points; (1) properties (2) now utilization fields (3) how to use in radioactive waste disposal (4) how much consumption and deposits as source at the present time. Bentonite is produced as alteration products from pyroclastic rocks such as volcanic ash and ryolite, and is clay composed mainly smectite (montmorillonite in general). Therefore, special properties of bentonite such as swelling potential, rheological property, bonding ability, cation exchange capacity and absorption come mainly from properties of montmorillonite. Bentonite has numerous uses such as iron ore pelleizing, civil engineering, green sand molding, cat litter, agricultural chemicals and drilling mud. Consumption of bentonite is about 600-700 x 10 3 tons in Japan and about 10 x 10 6 tons in the world. Roles of bentonite to be expected in radioactive waste disposal are hydraulic conductivity, swelling potential, absorption, mechanical strength, ion diffusion capacity and long-term durability. These properties come from montmorillonite. (author)

  15. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior

    International Nuclear Information System (INIS)

    Braga, C.R.C.; Melo, F.M.A. de; Vitorino, I.F.; Fook, M.V.L.; Silva, S.M.L.

    2010-01-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  16. Adsorption of La(III) onto GMZ bentonite. Effect of contact time, bentonite content, pH value and ionic strength

    International Nuclear Information System (INIS)

    Yonggui Chen; Changsha University of Science and Technology, Changsha; Chunming Zhu; Weimin Ye; Yanhong Sun; Huiying Duan; Dongbei Wu

    2012-01-01

    Bentonite has been studied extensively because of its strong adsorption capacity. A local Na-bentonite named GMZ bentonite, collected from Gaomiaozi County (Inner Mongolia, China), was selected as the first choice of buffer/backfill material for the high-level radioactive waste repository in China. In this research, the adsorption of La (III) onto GMZ bentonite was performed as a function of contact time, pH, solid content and metal ion concentrations by using the batch experiments. The results indicate that the adsorption of La (III) on GMZ bentonite achieves equilibration quickly and the kinetic adsorption follows the pseudo-second-order model; the adsorption of La (III) on the adsorbent is strongly dependent on pH and solid content, the adsorption process follows Langmuir isotherm. The equilibrium batch experiment data demonstrate that GMZ bentonite is effective adsorbent for the removal of La (III) from aqueous solution with the maximum adsorption capacity of 26.8 mg g -1 under the given experimental conditions. (author)

  17. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    International Nuclear Information System (INIS)

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-01-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  18. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Energy Technology Data Exchange (ETDEWEB)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Lee, Hyung Woo, E-mail: leehw@che.itb.ac.id [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Research and Business Foundation, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746 (Korea, Republic of)

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  19. Fabrication and handling of bentonite blocks

    International Nuclear Information System (INIS)

    1978-06-01

    In accordance with the project for the final storage of spent nuclear fuel, the waste will be encapsulated into copper canisters, which will be deposited in a final repository located in rock 500 m below ground level. The canisters will be placed in vertical holes in the bottoms of the tunnels, where the copper cylinders will be surrounded by blocks of highly compacted bentonite. When the blocks are saturated with water and expansion is essentially retained as in the actual case, a very high swelling pressure will arise. The bentonite will be extremely impermeable and thus it will form a barrier against transport of corrosive matters to the canister. The blocks are fabricated by means of cold isostatic pressing of bentonite powder. The base material in the form of powder is enclosed in flexible forms, which are introduced into pressure vessels where the forms are surrounded by oil or water. Thus the powder is compacted into rigid bodies with a bulk density of about 2.2 t/m 3 for ''air dry'' bentonite, which might be compared with a specific density of about 2.7 t/m 3 . The placing of a canister is preceded by piling up bentonite blocks to a level just below the canister lid position, after which the slot around the blocks is filled with bentonite powder. The rest of the blocks are mounted after filling bentonite powder into the inner slot around the canister as well. Finally the storage tunnels will be sealed by filling them with a mixture o02067NRM 0000181 45

  20. Activation of wine bentonite with gamma rays

    International Nuclear Information System (INIS)

    Goranov, N.; Antonov, M.

    1997-01-01

    The action of gamma rays on wine bentonite as well as influence of its adsorption and technologic qualities on the composition and stability of wines against protein darkening and precipitation has been studied. The experiments were carried out with wine bentonite produced in the firm Bentonite and irradiated with doses of 0.4, 0.6, 0.8 and 1.0 MR. White and red wines have been treated with irradiated bentonite under laboratory conditions at 1.0 g/dm 3 . All samples are treated at the same conditions. The flocculation rate of the sediment was determined visually. Samples have been taken 24 h later from the cleared wine layers. The following parameters have been determined: clarification, filtration rate, phenolic compounds, calcium, colour intensity, total extracted substances, etc. The volume of the sediment has been determined also. The control samples have been taken from the same unirradiated wines. The results showed better and faster clarification in on the third, the 20th and the 24th hours with using of gamma-irradiated at doses 0.8 and 1.0 MR. The sediment was the most compact and its volume - the smallest compared to the samples treated with bentonite irradiated with doses of 0.6 and 0.4 MR. This ensures a faster clarification and better filtration of treated wines. The bentonite activated with doses of 0.8 and 1.0 MR adsorbs the phenolic compounds and the complex protein-phenolic molecules better. In the same time it adsorbs less extracted substances compared to untreated bentonite and so preserves all organoleptic properties of wine. The irradiated bentonite adsorbs less the monomers of anthocyan compounds which ensures brighter natural colour of wine. The gamma-rays activation consolidates calcium in the crystal lattice of bentonite particles and in this way eliminates the formation of crystal precipitates

  1. Behaviour of M X-80 Bentonite at Unsaturated Conditions and under Thermo-Hydraulic Gradient - Work Performed by CIEMAT in the Context of the TB T Project - Behaviour of M X-80 Bentonite at Unsaturated Conditions and under Thermo-Hydraulic Gradient - Work Performed by CIEMAT in the Context of the TB T Project -

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M.V.; Gomez-Espina, R.; Martin, P.L.

    2006-07-01

    This document reports the thermo-hydro-mechanical characterisation of the MX-80 bentonite performed at CIEMAT between 2004 and 2006 in the context of the Agreement CIEMAT/CIMNE 04/113. This Agreement took place in the framework of the Temperature Buffer Test (TBT) Project, Whose experimental part is going on at the underground research laboratory of Aspo (Sweden) and in which the MX-80 bentonite is used as sealing material in a large scale test. A methodology has been developed for the determination of retention curves at high temperature, what has allowed checking the decrease of the retention capacity of the bentonite with temperature. Infiltration and infiltration/heating tests have been carried out, some of them with simultaneous measurement of temperature and relative humidity. (Author) 9 refs.

  2. Characterization of bentonite clay from Cubati, PB, Brazil

    International Nuclear Information System (INIS)

    Batista, A.P.; Marques, L.N.; Campos, L.A.; Neves, G.A.; Ferreira, H.C.; Menezes, R.R.

    2009-01-01

    The bentonite of the State of Paraiba are commercially used in numerous technological sectors, particularly in oil drilling muds. However, these bentonite deposits are becoming exhausted after decades of exploitation. Thus, the aim of this work was to characterize physically, mineralogically and technologically bentonite clays from Cubati city, PB. The samples were dried at 60 deg C and characterized through X-ray fluorescence, particle size distribution, X-ray diffraction, differential thermal and gravimetric analyzes and scanning electronic microscopy. The natural bentonite clays were transformed into sodium bentonite by Na_2CO_3 solution treatment. It was estimated the rheological properties of the suspensions: apparent and plastic viscosities and water loss. The results showed that the samples are polycationic bentonite clays, containing amounts of MgO, CaO and K_2O similar to those of bentonite from Boa Vista, PB, and are composed of smectite, kaolinite and quartz. The samples presented fractions of particles size under 2 μm of 30 and 32%. The rheological properties showed that the samples presented technological potential to be used in drilling muds. (author)

  3. Quality control and characterization of bentonite materials

    International Nuclear Information System (INIS)

    Kiviranta, L.; Kumpulainen, S.

    2011-12-01

    Before bentonite material is taken into use in performance testing, the quality of the material needs to be checked. Three high grade bentonite materials: two natural Nabentonites from Wyoming, and one natural Ca-bentonite from Milos, were characterized. Each material was characterized using duplicate or triplicate samples in order to study variability in material quality in batches. The procedure consisted of basic acceptance testing (water ratio, CEC, swelling index, liquid limit, and granule size distribution), advanced acceptance testing (exchangeable cations, chemical and mineralogical composition, density, swelling pressure and hydraulic conductivity) and complementary testing (herein surface area, water absorption capacity, montmorillonite composition, grain size distribution and plastic limit). All three materials qualified the requirements set for buffer bentonite for CEC, smectite content, swelling pressure, and hydraulic conductivity. Wyoming bentonites contained approximately 88 wt.% of smectite, and Milos bentonite 79 wt.% of smectite and 3 wt.% of illite. Precision of smectite analyses was ±2 %, and variances in composition of parallel samples within analytical errors, at least for Wyoming bentonites. Accuracy of quantitative analyses for trace minerals such as gypsum, pyrite or carbonates, was however low. As the concentrations of these trace minerals are important for Eh or pH buffering reactions or development of bentonite pore water composition, normative concentrations are recommended to be used instead of mineralogically determined concentrations. The swelling pressures and hydraulic conductivities of different materials were compared using EMDD. Swelling pressure was relatively higher for studied Cabentonite than for the studied Na-bentonites and the difference could not be explained with different smectite contents. Hydraulic conductivities seemed to be similar for all materials. The results of index tests correlated with the smectite content

  4. Bentonite-amended soil special study

    International Nuclear Information System (INIS)

    1989-12-01

    This special study was conducted to assess the viability of soil with a high percentage of bentonite added as an infiltration barrier in the cover of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. To achieve maximum concentration limits (MCLs) at several UMTRA Project sites, covers with a very low permeability are needed. If alternate concentration limits (ACLs) are the appropriate site groundwater compliance strategy, the US Department of Energy (DOE) is required to demonstrate, among other things, that the infiltration to the disposal cell is as low as reasonably achievable, and hence that the cover has a very low permeability. When the study discussed here was begun, the lowest permeability element available was CLAYMAX R , a manufactured liner material constructed of natural material (bentonite clay) between two geosynthetics.The strength of soil-bentonite mixes was measured to see if they could be placed on sideslopes and not pose stability problems. Also evaluated were the hydraulic conductivities of soil-bentonite mixes. If the strengths and permeabilities of soils with a high percentage of bentonite are favorable, the soils may be used as infiltration barriers in current cover designs without changing pile geometries. The scope of work for this study called for a literature review and a two-phased laboratory testing program. This report presents the results of the literature review and the first phase of the testing program

  5. Trailing (L5) Neptune Trojans: 2004 KV18 and 2008 LC18

    International Nuclear Information System (INIS)

    Guan Pu; Zhou Liyong; Li Jian

    2012-01-01

    The population of Neptune Trojans is believed to be bigger than that of Jupiter Trojans and that of asteroids in the main belt, although only eight members of this distant asteroid swarm have been observed up to now. Six leading Neptune Trojans around the Lagrange point L 4 discovered earlier have been studied in detail, but two trailing ones found recently around the L 5 point, 2004 KV18 and 2008 LC18, have not yet been investigated. We report our investigations on the dynamical behaviors of these two new Neptune Trojans. Our calculations show that the asteroid 2004 KV18 is a temporary Neptune Trojan. Most probably, it was captured into the trailing Trojan cloud no earlier than 2.03 × 10 5 yr ago, and it will not maintain this position later than 1.65 × 10 5 yr in the future. Based on the statistics from our orbital simulations, we argue that this object is more like a scattered Kuiper belt object. By contrast, the orbit of 2008 LC18 is much more stable. Among the clone orbits spreading within the orbital uncertainties, a considerable portion of clones may survive on the L 5 tadpole orbits for 4 Gyr. The strong dependence of the stability on the semimajor axis and resonant angle suggests that further observations are badly required to constrain the orbit in the stable region. We also discuss the implications of the existence and dynamics of these two trailing Trojans over the history of the solar system.

  6. Bentonite. Geotechnical barrier and source for microbial life

    International Nuclear Information System (INIS)

    Matschiavelli, Nicole; Kluge, Sindy; Cherkouk, Andrea; Steglich, Jennifer

    2017-01-01

    Due to their properties, namely a high swelling capacity and a low hydraulic conductivity, Bentonites fulfil as geotechnical barrier a sealing and buffering function in the nuclear waste repository. Depending on the mineral composition Bentonites contain many suitable electron-donors and -acceptors, enabling potential microbial life. For the potential repository of highly radioactive waste the microbial mediated transformation of Bentonite could influence its properties as a barrier material. Microcosms were set up containing Bentonite and anaerobic synthetic Opalinus-clay-pore water solution under an N_2/CO_2-atmosphere to elucidate the microbial potential within selected Bentonites. Substrates like acetate and lactate were supplemented to stimulate potential microbial activity. First results show that bentonites represent a source for microbial life, demonstrated by the consumption of lactate and the formation of pyruvate. Furthermore, microbial iron-reduction was determined, which plays a crucial role in Betonite-transformation.

  7. Bentonite. Geotechnical barrier and source for microbial life

    Energy Technology Data Exchange (ETDEWEB)

    Matschiavelli, Nicole; Kluge, Sindy; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group; Steglich, Jennifer

    2017-06-01

    Due to their properties, namely a high swelling capacity and a low hydraulic conductivity, Bentonites fulfil as geotechnical barrier a sealing and buffering function in the nuclear waste repository. Depending on the mineral composition Bentonites contain many suitable electron-donors and -acceptors, enabling potential microbial life. For the potential repository of highly radioactive waste the microbial mediated transformation of Bentonite could influence its properties as a barrier material. Microcosms were set up containing Bentonite and anaerobic synthetic Opalinus-clay-pore water solution under an N{sub 2}/CO{sub 2}-atmosphere to elucidate the microbial potential within selected Bentonites. Substrates like acetate and lactate were supplemented to stimulate potential microbial activity. First results show that bentonites represent a source for microbial life, demonstrated by the consumption of lactate and the formation of pyruvate. Furthermore, microbial iron-reduction was determined, which plays a crucial role in Betonite-transformation.

  8. Exchangeability of bentonite buffer and backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D. [Savage Earth Associates Ltd, Bournemouth (United Kingdom); Arthur, R. [Intera Inc, Ottawa, ON, (Canada); Luukkonen, A.

    2012-08-15

    Clay-based buffer and tunnel backfill materials are important barriers in the KBS-3 repository concept for final disposal of spent nuclear fuel in Finland. One issue that is relevant to material properties is the degree to which different bentonite compositions can be regarded as interchangeable. In Posiva's current repository design, the reference bentonite composition is MX-80, a sodium montmorillonite dominated clay. Posiva would like to be able to use bentonite with Ca-montmorillonite as the dominant clay mineral. However, at this stage, it is not clear what supporting data need to be acquired/defined to be able to place the state of knowledge of Ca-bentonite at the same level as that of Na-bentonite. In this report, the concept of bentonite exchangeability has been evaluated through consideration of how bentonite behaviour may be affected in six key performance-relevant properties, namely (1) mineralogical composition and availability of materials, (2) hydraulic conductivity, (3) mechanical and rheological properties, (4) long-term alteration, (5) colloidal properties, and (6) swelling pressure. The report evaluates implications for both buffer and backfill. Summary conclusions are drawn from these sections to suggest how bentonite exchangeability may be addressed in regulatory assessments of engineered barrier design for a future geological repository for spent fuel in Finland. Some important conclusions are: (a) There are some fundamental differences between Ca- and Na-bentonites such as colloidal behaviour, pore structure and long-term alteration that could affect the exchangeability of these materials as buffer or backfill materials and which should be further evaluated; (b) Additional experimental data are desirable for some issues such as long-term alteration, hydraulic properties and swelling behaviour, (c) The minor mineral content of bentonites is very variable, both between different bentonites and within the same bentonite type, it is not clear

  9. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  10. Removal of oil from water by bentonite

    International Nuclear Information System (INIS)

    Moazed, H.; Viraraghavan, T.

    1999-01-01

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  11. Bentonite erosion by dilute waters in initially saturated bentonite

    International Nuclear Information System (INIS)

    Olin, Markus; Seppaelae, Anniina; Laurila, Teemu; Koskinen, Kari

    2012-01-01

    Document available in extended abstract form only. One scenario of interest for the long-term safety assessment of a spent nuclear fuel repository involves the loss of bentonite buffer material through contact with dilute groundwater at a transmissive fracture interface (SKB 2011, Posiva 2012a). The scenario is based on the stable colloids at low ionic strength: - the cohesive forces of bentonite decrease in low-salinity conditions, and colloids start to dominate and are able to leave the gel-like bentonite on the groundwater bentonite boundary; - after colloid formation, groundwater may carry away the only just released clay colloids; - low-salinity events are most probable during post-glacial conditions, when also pressure gradients are high, causing elevated flow velocity, which may enhance colloidal transport. Therefore, it is very important from the point of view of repository safety assessment to be able to estimate how much bentonite may be lost during a post-glacial event, when the groundwater salinity and velocity, as well as the duration of the event are fixed. It is possible that more than one event will hit the same canister and buffer, and that several canisters and buffers may be jeopardized. The results in the issue so far may be divided into modelling attempts and experimental work. The modelling has been based on two main guidelines: external (Birgersson et al., 2009) and internal friction models (Neretnieks et al., 2009). However, these models have not been validated for erosion, probably due to lack of suitable laboratory data. The latter approach is more ambitious due to lack of fitting parameters, though the internal friction model itself may be varied. The internal friction model has proven to be time-consuming to solve numerically. This work indicates that experiments carried out by Schatz et al. (2012) differ significantly from the predictions obtained from Neretnieks' model. We present our numerical modelling results based on a set of

  12. CHARACTERIZATION OF SUICIDE IN ARMENIA, COLOMBIA, 20042008

    Directory of Open Access Journals (Sweden)

    Oscar Medina Pérez

    2010-04-01

    Full Text Available This paper describes trends in mortality from suicide and its main features in the city of Armenia, Colombia, in the period 2004-2008. The suicide figures have been provided by the National Institute of Legal Medicine and Forensic Sciences and population projections are taken from the National Bureau of Statistics (DANE. The results indicate a municipal rate of 8.2 for the five years, falling 64% higher than the rest of the country. A total of 116 suicides were reported during the study period, in the distribution by sex and age groups, the highest rates were found in men aged 70-79 years, with 31.5 cases/100.000 hab.; In female population figure corresponded to the range of 10-19 years, with a rate of 8.6. In general, rates are high compared with other  parts of Colombia. It further identifies the urgency of this public health problem locally, closely related to social factors.

  13. Sorption of strontium on bentonites from Slovak deposits

    International Nuclear Information System (INIS)

    Kufcakova, J.; Galambos, M.; Rajc, P.

    2005-01-01

    Sorption on bentonite from different Slovak deposits / Jelsovy potok, Kopernica and Lieskove has been investigated under various experimental conditions, such as contact time, pH, sorbate concentrations, presence of complementary cation. The sorption of strontium from aqueous solutions was investigated using a radiometric determination of distribution coefficient, Kd. The individual solutions were labelled with radiotracer. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites /tab.l/ , which can be explained by the increase of specific surface and change of solubility of the irradiated samples of bentonite. The presence of complementary cations, Na + , K + , NH 4 + , Ca 2+ , Mg 2+ and Ba 2+ depresses the sorption of Sr on bentonite. In the case of bentonite Kopernica the effectiveness in reducing the sorption of strontium by cations followed the order K + 4 + + 2+ 2+ 2+ . Results indicate that the sorption of Sr + on bentonite will be affected by the presence of high concentrations of various salts in the waste water effluents. (author)

  14. Strength and Compaction Analysis of Sand-Bentonite-Coal Ash Mixes

    Science.gov (United States)

    Sobti, Jaskiran; Singh, Sanjay Kumar

    2017-08-01

    This paper deals with the strength and compaction characteristics of sand-bentonite-coal ash mixes prepared by varying percentages of sand, bentonite and coal ash to be used in cutoff walls and as a liner or cover material in landfills. The maximum dry density (MDD) and optimum moisture content (OMC) of sand-bentonite mixes and sand-bentonite-coal ash mixes were determined by conducting the standard proctor test. Also, the strength and stiffness characteristics of soil mixes were furnished using unconfined compressive strength test. The results of the study reveal influence of varying percentages of coal ash and bentonite on the compaction characteristics of the sand-bentonite-coal ash mixes. Also, validation of a statistical analysis of the correlations between maximum dry density (MDD), optimum moisture content (OMC) and Specific Gravity (G) was done using the experimental results. The experimental results obtained for sand-bentonite, sand-bentonite-ash and coal ash-bentonite mixes very well satisfied the statistical relations between MDD, OMC and G with a maximum error in the estimate of MDD being within ±1 kN/m3. The coefficient of determination (R2) ranged from 0.95 to 0.967 in case of sand-bentonite-ash mixes. However, for sand-bentonite mixes, the R2 values are low and varied from 0.48 to 0.56.

  15. Diffusion of uranium in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1992-09-01

    In the study the diffusion of uranium dissolved from uranium oxide fuel was studied experimentally in compacted sodium bentonite (Wyoming bentonite MX-80). The experiments were carried out by the through-diffusion method. The parameters varied in the study were the density of bentonite, salt content of the solution and redox conditions. Uranium was dissolved under aerobic conditions in order to simulate oxic conditions possibly caused by radiolysis in the repository

  16. Filtration behavior of organic substance through a compacted bentonite

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Kuno, Yoshio; Yui, Mikazu

    1999-07-01

    Filtration behavior of organic substance through a compacted bentonite was investigated. Na-type bentonite containing 30wt% of quartz sand was compacted in a column and the dry density was adjusted to be 1.6 g/cm 3 . Polyacrylic acid solution (including three types of polyacrylic acid, average molecular weight 2,100, 15,000 and 450,000) was prepared and was passed through the compacted bentonite. Molecular weight distributions of polyacrylic acid in the effluent solution were analysed by GPC (Gel Permeation Chromatography). A batch type experiment was also carried out in order to examine a sorption behavior of these organic substances onto the surfaces of grains of the bentonite. The results indicated that the smaller size polyacrylic acid (molecular weight < 100,000) was passed through the compacted bentonite. On the other hand, the larger size polyacrylic acid (molecular weight ≥100,000) was mostly filtrated by the compacted bentonite. The batch type sorption tests clarified that the polyacrylic acid did not sorb onto the surfaces of minerals constituting the bentonite. Therefore it was suggested that the larger size molecules (≥100,000) of organic substances could be predominantly filtrated by the microstructure of the compacted bentonite. (author)

  17. Enhanced shear strength of sodium bentonite using frictional additives

    International Nuclear Information System (INIS)

    Schmitt, K.E.; Bowders, J.J.; Gilbert, R.B.; Daniel, D.E.

    1997-01-01

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45 degrees for the expanded 36 degrees for the recycled glass, and 7 degrees for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44 degrees for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10 -9 cm/sec, while increasing the shear strength parameters of the bentonitic mixture to φ' = 17 degrees and c' = 0

  18. A comparison of nano bentonite and some nano chemical additives to improve drilling fluid using local clay and commercial bentonites

    Directory of Open Access Journals (Sweden)

    Nada S. Al-Zubaidi

    2017-09-01

    In the second part, a commercial bentonite was used and mixed with nano commercial bentonite and nano chemical materials (MgO, TiO2, and graphene at 0.005, 0.01, 0.05, 0.1, 0.2 and 0.4 wt% concentrations. The results showed that nano commercial bentonite gives the same filtration behavior of graphene, whereas, the plastic viscosity, yield point and apparent viscosity were the same when using nano commercial bentonite, TiO2 and graphene. The best results were obtained with MgO addition, whereby the filter loss decreased to 35% with a higher value of yield point.

  19. Influence of selected factors on strontium sorption on bentonites

    International Nuclear Information System (INIS)

    Galambos, M.; Kufcakova, J.; Rajec, P.

    2007-01-01

    Sorption on bentonite will play an important role in retarding the migration of radionuclides from a waste repository. Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by sorption. Bentonite is characterized by low permeability, water swelling capability and excellent sorption potential for cationic radionuclides. To correctly assess the sorption potential of radionuclides on bentonite is essential for the development of predictive migration models. The sorption of strontium on bentonite from different Slovak deposits - Jelsovy potok, Kopernica and Lieskovec has been investigated under various experimental conditions, such as contact time, sorbate concentrations, presence of complementary cation. Sorption was studied using the batch technique. The uptake of Sr was rapid and equilibrium was reached almost instantaneously. The instantaneous uptake may be due to adsorption and/or exchange of the metal with some ions on the surface of the adsorbent. The best sorption characteristics distinguish bentonite Kopernica, sorption capacity for Sr of the fraction under 45 mm is 0,48 mmol·g -1 for Sr. The highest values of distribution coefficient were reached for the bentonite Jelsovy potok. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites, which can be explained by the increase of specific surface of the bentonite samples. The presence of complementary cations depresses the sorption of Sr on bentonite. Cations Ca 2+ exhibit higher effect on cesium sorption than the Na 2+ ions. Results indicate that the sorption of Sr 2+ on bentonite will be affected by the presence of high concentrations of various salts in the waste water

  20. STUDY OF THERMAL AND ACID STABILITY OF BENTONITE CLAY

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The thermal and acid stability of the bentonite clays (Na- and Ca-bentonite have been tested. The thermal stability testing has been carried out by heating 5 gram of the clays  for five hours at 200, 300 and 500 °C respectively, meanwhile acid stability testing was performed by immersing 5 gram clays into 100 mL sulphuric acid 1M, 2M and 3M for 24 hours. The tested clays, then were characterized by means of X-Ray difractometry and IR-spectroscopy methods. The characterization results showed that upon heating, both Ca- and Na-bentonites indicated same thermal stability. However, upon acid treatment, Na-bentonite was found relatively stabiler and more resistance then Ca-bentonite.   Keywords: bentonite, clay, thermal stability, acid stability.

  1. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  2. Field test of ethanol/bentonite slurry grouting into rock fracture

    International Nuclear Information System (INIS)

    Motoyuki Asada; Hitoshi Nakashima; Takashi Ishii; Sumio Horiuchi

    2006-01-01

    Crystalline rocks have fractures which may cause unexpected routes of groundwater seepage. Cement grouting is one of the most effective methods to minimize seepage; however, cement materials may not be suitable for the purpose of extra-long durability, because cement is neutralized or degraded by chemical and physical influence of chemical reaction. Natural clay like bentonite is one of the most promising materials for seepage barrier; however, water/bentonite grout is so viscous that enough amount of bentonite can not be grouted into rock fractures. To increase bentonite content in grout with low viscosity, the utilization of ethanol as a mixing liquid was studied. Ethanol suppresses bentonite swelling, and more bentonite can be injected more than that of water/bentonite slurry. In this paper, grouting into in-situ rock mass fracture from the ground surface was tested to investigate the barrier performance and workability of ethanol/bentonite slurry as a grouting material. (author)

  3. Microbial activity in bentonite buffers. Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, M.; Itavaara, M.

    2012-07-01

    The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokaryotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7-8 MPa, the amount of free water is low and the average pore and pore throat diameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. Literature on the environmental limits of microbial life in extreme conditions and the occurrence of sulphatereducing prokaryotes in extreme environments is reviewed briefly and the results of published studies characterizing microbes and microbial processes in repository conditions or in relevant subsurface environments are presented. The presence of bacteria, including SRBs, has been confirmed in deep groundwater and bentonite-based materials. Sulphate reducers have been detected in various high-pressure environments, and sulphate-reduction based on hydrogen as an energy source is considered a major microbial process in deep subsurface environments. In bentonite, microbial activity is strongly suppressed, mainly due to the low amount of free water and small pores, which limit the transport of microbes and nutrients. Spore-forming bacteria have been shown to survive in compacted bentonite as dormant spores, and they are able to resume a metabolically active state after decompaction. Thus, microbial sulphide production may increase in repository conditions if the dry density of the bentonite buffer is locally reduced. (orig.)

  4. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  5. BaM bentonite and some of its properties

    International Nuclear Information System (INIS)

    Matal, Oldřich; Vávra Michal; Kachlík, Martin; Maca, Karel; Kotnour, Petr; Pospíšková, Ilona

    2018-01-01

    BaM bentonite is lime-magnesium bentonite of domestic origin. Its properties were measured experimentally with focus on the following parameters: composition, morphology and particle size distribution, powder bulk density, powder pressing parameters, shear strength, and water saturation. The findings will find use in nuclear safety assessments of engineered bentonite barriers in underground nuclear waste disposal facilities. (orig.)

  6. Evolução das principais linhas de crédito ao exportador brasileiro entre 2004 e 2008

    Directory of Open Access Journals (Sweden)

    Julio Cesar de Oliveira

    2010-01-01

    Full Text Available Este trabalho analisa a evolução das duas principais linhas de crédito aos exportadores brasileiros no período entre 2004 e 2008. Inicialmente descrevem-se as linhas de financiamento estudadas, apresentando suas características, restrições e trâmites para obtenção. Os resultados demonstram que, nos últimos cinco anos, as duas principais linhas de crédito não acompanharam o percentual de aumento das exportações brasileiras.Abstract This work analyzes the evolution of the two main credit lines to Brazilian exporters between 2004 and 2008. Initially, it describes the credit lines that were studied, showing its features, restrictions and the necessary procedures for a trader in order to obtain it. The results show that, in the last five years, these credit lines have not accompanied the Brazilian export growth.

  7. Health insurance premium increases for the 5 largest school districts in the United States, 2004-2008.

    Science.gov (United States)

    Cantillo, John R

    2010-03-01

    Local school districts are often one of the largest, if not the largest, employers in their respective communities. Like many large employers, school districts offer health insurance to their employees. There is a lack of information about the rate of health insurance premiums in US school districts relative to other employers. To assess the change in the costs of healthcare insurance in the 5 largest public school districts in the United States, between 2004 and 2008, as representative of large public employers in the country. Data for this study were drawn exclusively from a survey sent to the 5 largest public school districts in the United States. The survey requested responses on 3 data elements for each benefit plan offered from 2004 through 2008; these included enrollment, employee costs, and employer costs. The premium growth for the 5 largest school districts has slowed down and is consistent with other purchasers-Kaiser/Health Research & Educational Trust and the Federal Employee Health Benefit Program. The average increase in health insurance premium for the schools was 5.9% in 2008, and the average annual growth rate over the study period was 7.5%. For family coverage, these schools provide the most generous employer contribution (80.8%) compared with the employer contribution reported by other employers (73.5%) for 2008. Often the largest employers in their communities, school districts demonstrate a commitment to provide choice of benefits and affordability for employees and their families. Despite constraints typical of public employers, the 5 largest school districts in the United States have decelerated in premium growth consistent with other purchasers, albeit at a slower pace.

  8. Bentonite erosion. Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)

    2009-11-15

    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  9. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    International Nuclear Information System (INIS)

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  10. Evaluation of bentonite alteration due to interactions with iron. Sensitivity analyses to identify the important factors for the bentonite alteration

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Wilson, James; Sato, Tsutomu

    2013-01-01

    Performance assessment of geological disposal systems for high-level radioactive waste requires a consideration of long-term systems behaviour. It is possible that the alteration of swelling clay present in bentonite buffers might have an impact on buffer functions. In the present study, iron (as a candidate overpack material)-bentonite (I-B) interactions were evaluated as the main buffer alteration scenario. Existing knowledge on alteration of bentonite during I-B interactions was first reviewed, then the evaluation methodology was developed considering modeling techniques previously used overseas. A conceptual model for smectite alteration during I-B interactions was produced. The following reactions and processes were selected: 1) release of Fe 2+ due to overpack corrosion; 2) diffusion of Fe 2+ in compacted bentonite; 3) sorption of Fe 2+ on smectite edge and ion exchange in interlayers; 4) dissolution of primary phases and formation of alteration products. Sensitivity analyses were performed to identify the most important factors for the alteration of bentonite by I-B interactions. (author)

  11. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  12. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  13. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  14. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Directory of Open Access Journals (Sweden)

    Kumar Sujeet

    2014-12-01

    Full Text Available Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  15. Evaluation for swelling characteristics of buffer and backfill materials for high-level nuclear waste disposal. Influence of sand-bentonite content and cation compositions in bentonite

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1999-01-01

    Compacted bentonite and sand-bentonite mixture are attracting greater attention as buffer and backfill materials for disposal pits and access tunnels in the underground facilities for repositories of high-level nuclear waste. Buffer and backfill materials must have the swelling characteristics and are expected to fill up the space between these materials and surrounding ground by swelling. This role is called as 'Self-sealing'. To design the specifications, such as dry density, bentonite content and size, of buffer and backfill materials for the disposal facilities of high-level nuclear wastes described above, we must evaluate the swelling characteristics of compacted bentonite and sand-bentonite mixtures. For this purpose, this study proposed the evaluation formula for swelling characteristics of buffer and backfill materials containing bentonite. This study derived new equations for evaluating the relationship between the swelling deformation of compacted bentonite and sand-bentonite mixtures, and the swelling behavior of montmorillonite minerals, which are swelling clay minerals. This study also proposed new equations for evaluating the ion compositions of bentonite, ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of buffer and backfill materials. The evaluation formula proposed in this study is presented by combining the above-mentioned new equations with theoretical equations, of which are the Gouy-Chapman diffuse double layer theory and the van der Waals force, of repulsive and attractive forces of montmorillonite minerals. (author)

  16. Colloid chemical aspects of the ''confined bentonite concept''

    International Nuclear Information System (INIS)

    Bell, J.C. Le

    1978-03-01

    Measurements of the amount of particles released from a bentonite gel by light scattering and visual inspection show that while particles are released in distilled water, the gel will be coagulated if in contact with ground water and consequently the release of particles is negligibly small. Studies of sedimentation volumes by ultracentrifugation also clearly indicate that the bentonite in contact with ground water under the repository pressure will form a completely stable coagulated gel. The swelling of confined bentonite was studied in an ''artificial crack'' of width 0.5 mm. The bentonite flowed readily into this crack and into the much narrower crack formed when the cell was broken. The swelling properties of the bentonite at the repository depth are discussed. It is argued that the gel, if sufficient volume is available, will swell spontaneously to a volume that is approximately 30 % larger than the initial one and then form a stable, coagulated gel containing 30-35 % water in equilibrium with the ground water. Investigations of the diffusion of colloidal matter (sodium lignosulphonate molecules of mean diameter 6 nm) and calcium ions into a dilute bentonite gel show that colloidal matter very probably will have a negligible rate of diffusion while the calcium ions diffuse rapidly. This implies that the initial bentonite gel which is partially in its sodium form will be completely exchanged to its calcium form when brought into contact with ground water which ensures that it will remain coagulated even in its swollen state

  17. Physicochemical, mineralogical and mechanical properties of domestic bentonite and bentonite-sand mixture as a buffer material in the high-level waste repository

    International Nuclear Information System (INIS)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung; Chun, Kwan Sik

    1999-09-01

    The physicochemical properties such as specific weight, free swell rate, chemical composition, cation exchange capacity (CEC), surface area and distribution coefficient of Kyunggju bentonite were measured, and the mineralogical analysis was performed to investigate the mineralogical composition. For the compacted bentonite and the mixture of bentonite and sand, the liquid and plastic limit, the linear shrinkage, and compaction property, the compression property, the shear property, and the consolidation property were investigated and analyzed. The bentonite contains montmorillonite (70 percent), feldspar (29 percent), and small amounts of quartz(-1 percent). The compressive strengths of bentonites are increased from 0.53 MPa to 8.83 MPa rapidly with increasing dry density of 1.4 g/cm 3 to 1.8 g/cm 3 . The cohesion and internal friction angles of bentonites with the dry density of 1.4 g/cm 3 to 1.8 g/cm 3 are in the range of 500 to 1100 kPa and 27 to 50 degree, respectively. (Author). 21 refs., 20 tabs., 46 figs

  18. Physicochemical, mineralogical and mechanical properties of domestic bentonite and bentonite-sand mixture as a buffer material in the high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung; Chun, Kwan Sik

    1999-09-01

    The physicochemical properties such as specific weight, free swell rate, chemical composition, cation exchange capacity (CEC), surface area and distribution coefficient of Kyunggju bentonite were measured, and the mineralogical analysis was performed to investigate the mineralogical composition. For the compacted bentonite and the mixture of bentonite and sand, the liquid and plastic limit, the linear shrinkage, and compaction property, the compression property, the shear property, and the consolidation property were investigated and analyzed. The bentonite contains montmorillonite (70 percent), feldspar (29 percent), and small amounts of quartz(-1 percent). The compressive strengths of bentonites are increased from 0.53 MPa to 8.83 MPa rapidly with increasing dry density of 1.4 g/cm{sup 3} to 1.8 g/cm{sup 3}. The cohesion and internal friction angles of bentonites with the dry density of 1.4 g/cm{sup 3} to 1.8 g/cm{sup 3} are in the range of 500 to 1100 kPa and 27 to 50 degree, respectively. (Author). 21 refs., 20 tabs., 46 figs.

  19. Bentonite-amended soils special study

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents the results of a two-phased special study to evaluate the viability of soil amended with a high percentage of bentonite as an infiltration barrier in the cover of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Phase I of the study was initiated in order to examine the feasibility of using bentonite-amended soils as a cover component on sideslopes and topslopes. The Phase I objectives were to test a variety of materials to determine if low hydraulic conductivities were achievable in materials exhibiting sufficient strength and to select suitable materials for further testing. Phase II objectives were to (1) optimize designs -- test materials with various percentages of bentonite added; (2) provide design recommendations; (3) address constructibility concerns; and (4) evaluate long-term performance with respect to desiccation effects on the amended materials

  20. Physico-chemical properties of water in bentonite

    International Nuclear Information System (INIS)

    Torikai, Yuji; Sato, Seichi; Ohashi, Hiroshi

    1994-01-01

    As a part of safety analysis on ground layer disposal, in order to estimate nuclides migration behavior from engineering shielding materials, it is required to modelize migration process of nuclides in bentonite and chemical species relating to corrosion, to estimate solubility and to specify application condition of geochemical calculation code. In this study, as a part of elucidation of nuclide migration process, physico-chemical properties of water in bentonite and montmorillonite using steam pressure method were determined. As a result, following items were found: (1) Even if 1/3 of water in bentonite is near free water, it is far from a region dealable with dilute solution in the electrolyte solution theory. And, (2) the water in bentonite has generally small activity in comparison with dilute solution, then has smaller solubility than estimation value of calculation code. (G.K.)

  1. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The modelled composition of the pore water of compacted sodium bentonite, as well as the various compositions resulting from the long-term extrapolation, are used to estimate radionuclide solubilities in the near-field of a deep repository. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. Since the effect of calcium bentonite on the groundwater chemical composition will be considerably less marked than that of sodium bentonite, especially with respect to key parameters for the nuclide speciation like carbonate concentration and pH, the use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  2. Diffusion behavior for Se and Zr in sodium-bentonite

    International Nuclear Information System (INIS)

    Sato, Haruo; Yui, Mikazu; Yoshikawa, Hideki

    1995-01-01

    Apparent diffusion coefficients for Se and Zr in bentonite were measured by in-diffusion method at room temperature using water-saturated sodium-bentonite, Kunigel V1 reg-sign containing 50wt% Na-smectite as a major mineral was used as the bentonite material. The experiments were carried out in the dry density range of 400--1,800 kg/m 3 . Bentonite samples were immersed with distilled water and saturated before the experiments. The experiments for Se were carried out under N 2 atmospheric condition (O 2 : 2.5ppm). Those for Zr were carried out under aerobic condition. The apparent diffusion coefficients decrease with increasing density of the bentonite. Since dominant species of Se in the pore water is predicted to be SeO 3 2- , Se may be retarded by anion-exclusion because of negative charge on the surface of the bentonite and little sorption. The dominant species of Zr in the porewater is predicted to be Zr(OH) 5 - or HZrO 3 - . Distribution coefficient measured for Zr on the bentonite was about 1.0 m 3 /kg from batch experiments. Therefore, the retardation may be caused by combination of the sorption and the anion-exclusion. A modeling for the diffusion mechanisms in the bentonite were discussed based on an electric double layer theory. Comparison between the apparent diffusion coefficients predicted by the model and the measured ones shows a good agreement

  3. Adsorption behavior of 99Tc in Ca-bentonite

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The adsorption behaviors of 99 Tc in bentonite were studied with batch methods under aerobic and anoxic conditions. The adsorption ratios is about 1.47 mL/g under aerobic conditions. The adsorption ratio of 99 Tc in bentonite is not affected by pH in the range of 5-12 and the CO 3 2- , Fe 3+ concentrations in the range of 10 -8 -10 -2 mol/L in the solution. The adsorption ratio of Tc in bentonite increases with the increase of the mass percent of Fe 2 O 3 and Fe 3 O 4 and the Fe 2+ concentration in the range of 10 -8 -10 -2 mol/L. Tc exists ainly in the form of Tc(VII) after the adsorption equilibriums. The adsorption ratio of Tc in bentonite increase with the increase of the mass percent of Fe and Tc exists mainly in the form of Tc(VII) after the adsorption equilibriums. The adsorption ratio of Tc in bentonite is about 84.84 mL/g under anoxic conditions. The adsorption ratios of 99 Tc in bentonite decreases with the increase of pH in the range of 5-12 and the CO 3 2- concentration in the range of 10 -8 -10 -2 mol/L in the solution. The adsorption ratio of Tc in bentonite increases with the increase of the Fe 3+ , Fe 2+ concentration in the range of 10 -8 -10 -2 mol/L and the mass percent of Fe, Fe 2 O 3 and Fe 3 O 4 . Tc exists mainly in the form of Tc(IV) after the adsorption equilibriums. The adsorption isotherms of TcO 4 - in bentonite are all in fairly agree with the Freundlich's equation under aerobic and anoxic conditions. (authors)

  4. FEBEX: Full-Scale engineered barriers experiment in crystalline host-rock: preoperational phase. Synthesized report; FEBEX: experimento de barreras de ingenieria a gran escala en rocas cristalinas: etapa preoperacional. Informe de sintesis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The FEBEX project is being cofinanced by the EC under contract F 14WCT950006. In addition to the EC, seven partners from three countries of the EU. (France, Germany, and Spain) as well as one from EFTA (Switzerland) are participating in the project. ENRESA is the coordinating partner with NAGRA assisting in coordinating some aspects. The project consists of two large-scale tests and a series of complimentary laboratory tests. The work is being executed by the following organizations: CIEMAT, AITEMIN, UP-DIT (CIMNE), ULC, CSIC-Zaidin, and UPM (SPAIN) ANDRA and G.3S (FRANCE) GRS (GERMANY). This report includes a synthesized description of the experiment from its conception through the installation of the two large-scale tests (from the middle of 1994 to the beginning of 1997, preoperation stage). The experiment is described in detail in a series of specific reports. (Author)

  5. Optimization of acid-activated bentonites on bleaching of cotton oil

    International Nuclear Information System (INIS)

    Lacin, O.; Sayan, E.; Kirali, E.G.

    2013-01-01

    Bentonites are commonly used adsorbent on bleaching cotton oil to produce edible oil products. Bleaching capacities of neutralized cotton oil were investigated with acid-activated Arguvan and Kursunlu bentonites. Two models for acid activation of the bentonites were developed by using a full factorial experimental design and central composite design. The parameters used to develop these models were contact time, solid to liquid ratio, acid concentration and moisture of bentonite. By using a constrained optimization program, the maximum bleaching capacities of neutralized cotton oil were determined as 99.99% and 48.5% for Arguvan and Kursunlu, respectively. Optimum results showed that Turkish bentonites (especially Arguvan bentonite) have high bleaching ability and they can be used efficiently to bleach neutralized cotton oil by considering the favorable volume weight, capacity of oil adsorbed and filtration rate. (author)

  6. bentonite-sand mixture as new backfill/buffer material

    International Nuclear Information System (INIS)

    Cui Suli; Liu Jisheng; Zhang Huyuan; Liang Jian

    2008-01-01

    The mixture of bentonite and quartz sand is suggested as a new backfill/buffer material for geological disposal of HLW. To improve the further design of underground laboratory and in-situ industrial construction test, the optimization of sand addition to bentonite is focused at present research stage. Based on summarizing the research results abroad, laboratory tests were conducted on the mixture of GMZ001 bentonite and quartz sand, such as compaction test and swelling tests etc. Test data shows that GMZ bentonite-sand mixture exhibits a favorite compaction with a 30% sand addition, a highest swelling pressure with a 20% sand addition, and a decreasing plasticity with increases in sand addition and pore liquid concentration. (authors)

  7. Customized bentonite pellets. Manufacturing, performance and gap filling properties

    Energy Technology Data Exchange (ETDEWEB)

    Marjavaara, P.; Holt, E.; Sjoeblom, V. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-12-15

    The goal of this work was to provide knowledge about how to manufacture customized bentonite pellets and how customized bentonite pellets perform in practice during the nuclear repository construction process. The project was mainly focused on laboratory experimental tests to optimize the pellet filling by customizing the raw materials and pellet manufacturing. Bentonite pellets were made using both extrusion and roller compaction methods. The pellets were intended for use in gaps between compacted bentonite and the rock walls in both buffer deposition holes and tunnel backfilling. Performance of different types of custom-made pellets were evaluated with regard to their ease of manufacturing, density, crush strength, abrasion resistance, water holding capacity, free swelling and also their thermal conductivity. These evaluations were done in both Finland (by VTT) and Canada (by AECL). Over 50 different varieties of pellets were roller-compaction manufactured at AECL in Canada and 20 types of extrusion pellets at VTT in Finland. The parameters that were varied during manufacturing included: bentonite raw material type, water content, pellet sizes, bentonite compaction machine parameters, use of recycled pellets, and addition of two different types of filler (illite or granitic sand) at varying addition percentages. By examining the pellets produced with these methods and materials the performance and behaviour of the bentonite pellets were evaluated in laboratory with selected tests. The work done using extrusion pellets showed that it was possible to manufacture pellets with higher water contents, up to 21 % from MX-80. This water content value was higher than what was typically possible using roller-compaction method in this study. Higher water content values allow closer compatibility with the designed bentonite buffer water content. The extrusion tests also showed that the required production simulation runs could be made successfully with reference type of MX

  8. Synthesis of H/Bentonite and Ni/Al2O3-bentonite and its application to produce biogasoline from nyamplung seed (Calophyllum inophillum Linn) oil by catalytic hydrocracking

    Science.gov (United States)

    Marini, A. T.; Wijaya, K.; Sasongko, N. A.

    2018-03-01

    Hydrocracking process of Nyamplung (Calophyllum inophillum Linn) seed oil to produce biogasoline using H/bentonite and Ni/Al2O3-bentonite that pillared by Al2O3 as catalyst had been conducted. Bentonite was activated by acidification using HF 1% and H2SO4 0.5 M. Ni metal was impregnated into bentonite with two steps reaction; therewas intercalation with Al2O3kegging ion and Ni metal impregnation using NiCl2 metal salt. Catalysts were characterized by infrared spectrophotometer (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET, TEM and ammonia adsorption. Hydrocracking reaction was variated by Ni/Al2O3-bentonite and H/bentonite with ratio catalyst/oil 1:100. Biocrude was prepared by extraction by using ethanol 96%. Hydrocracking oil products were further analyzed by GC-MS. The results show that the acidity of bentonite by activation using HF 1% and H2SO4 0.5 M has been increased from 62.58 to 64.62 mmol/g. Impregnation process also increased the acidity of bentonite from 62.58 to 64.89 mmol/g. Activation using HF 1% and H2SO4 0.5 M, intercalation by Al2O3 and impregnation by Ni metal were increasing the crystallinity, surface area, total volume pore and average pore size of bentonite. These techniques were also causeddealumination of bentonite. The hydrocracking process successfully synthesized hydrocarbons with a number of carbon chain between C5-C20 which include bio-gasoline group compounds. Moreover, catalytic processes by H/bentonite and Ni/Al2O3-bentonite also successfully produced 39.83% and 60.37% of biogasoline yields, respectively.

  9. Health Insurance Premium Increases for the 5 Largest School Districts in the United States, 20042008

    Science.gov (United States)

    Cantillo, John R.

    2010-01-01

    Background Local school districts are often one of the largest, if not the largest, employers in their respective communities. Like many large employers, school districts offer health insurance to their employees. There is a lack of information about the rate of health insurance premiums in US school districts relative to other employers. Objective To assess the change in the costs of healthcare insurance in the 5 largest public school districts in the United States, between 2004 and 2008, as representative of large public employers in the country. Methods Data for this study were drawn exclusively from a survey sent to the 5 largest public school districts in the United States. The survey requested responses on 3 data elements for each benefit plan offered from 2004 through 2008; these included enrollment, employee costs, and employer costs. Results The premium growth for the 5 largest school districts has slowed down and is consistent with other purchasers—Kaiser/Health Research & Educational Trust and the Federal Employee Health Benefit Program. The average increase in health insurance premium for the schools was 5.9% in 2008, and the average annual growth rate over the study period was 7.5%. For family coverage, these schools provide the most generous employer contribution (80.8%) compared with the employer contribution reported by other employers (73.5%) for 2008. Conclusions Often the largest employers in their communities, school districts demonstrate a commitment to provide choice of benefits and affordability for employees and their families. Despite constraints typical of public employers, the 5 largest school districts in the United States have decelerated in premium growth consistent with other purchasers, albeit at a slower pace. PMID:25126311

  10. Research production among students from the Facultad Nacional de Salud Publica, Universidad de Antioquia, during the period 2004-2008

    Directory of Open Access Journals (Sweden)

    Camilo Noreña H

    2011-05-01

    Full Text Available Objective: to describe the research production of undergraduate students from the National Faculty of Public Health (Facultad Nacional de Salud Pública, FNSP, Universidad deAntioquia, during the period 2004-2008. Methods: descriptive study document review. The Study population was limited to graduation projects according to their different modalities (research projects, development project and monographs of the three undergraduate programs at the FNSP and research papers published in the Revista Facultad Nacional de SaludPública during the period 2004-2008. The analysis unit was restricted to graduation projects that could be located at the FNSP library and research papers including undergraduatestudents as authors. Descriptive statistics were used for the analysis of the data collected. Results: a total amount of 279 graduation projects were reviewed, from wich 119 (42.7% were research projects. In the undergraduate program of Management of Health Information Systems, research projects were the most frequent type of graduation project (79.1%. This proportion was smaller in the health administration programs both in its emphasis in health services (36.2% and in its emphasis on environment and sanitation (19.7%. A total amount of 126 research papers were reviewd finding 22 (17.5% with undergraduate students of the FNSP as coauthors. The proportion of research projects published in the Revista FNSP was 11.8%. Conclusions: during the period2004-2008, two out of five graduation projects in the FNSPwere research projects. During the period studied important differences according to the undergraduate programs were observed. The proportion of research projects published in the Revista FNSP is still very small.

  11. Development of the near field geochemistry model

    International Nuclear Information System (INIS)

    Arcos, D.; Bruno, J.; Duro, L.; Grive, M.

    2000-01-01

    This report discusses in a quantitative manner the evolution of the near field geochemistry as a result of the interactions between two different introducing granitic groundwaters and the FEBEX bentonite as a buffer material. The two granitic groundwaters considered are: SR-5 water, sampled in a borehole at 500 m depth in Mina Ratones, and a mean composition of different granitic groundwaters from the iberian Massif. The steel canister has also been introduced by considering the iron corrosion in anoxic conditions. (Author)

  12. Development of the near field geochemistry model; Desarrollo de un modelo geoquimico de campo proximo

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Bruno, J.; Duro, L.; Grive, M.

    2000-07-01

    This report discusses in a quantitative manner the evolution of the near field geochemistry as a result of the interactions between two different introducing granitic groundwaters and the FEBEX bentonite as a buffer material. The two granitic groundwaters considered are: SR-5 water, sampled in a borehole at 500 m depth in Mina Ratones, and a mean composition of different granitic groundwaters from the iberian Massif. The steel canister has also been introduced by considering the iron corrosion in anoxic conditions. (Author)

  13. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  14. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. The model is based on available experimental data and describes the basic reactions between bentonite and groundwater by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. It is found that sodium bentonite will slowly be converted to calcium bentonite. The modelled composition of the pore water of compacted sodium bentonite is used to estimate radionuclide solubilities in the near-field of a deep repository. The elements considered are: uranium, neptunium, plutonium, thorium, americium, and technetium. The redox potential in the near-field is assumed to be controlled by the corrosion products of the iron canister. Except for uranium and neptunium, radionuclide solubilities turn out to be lower under the modelled near-field conditions than in the groundwater of the surrounding granitic host rock. Uranium and neptunium solubility might be higher by orders of magnitude in the near-field than in the far-field. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. The use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  15. Water uptake and stress development in bentonites and bentonite-sand buffer materials

    International Nuclear Information System (INIS)

    Dixon, D.A.; Wan, A.W-L.; Gray, M.N.; Miller, S.H.

    1996-10-01

    The development of swelling pressure and the transfer of pore water pressures through dense bentonite and bentonite-sand materials are examined in this report. This report focuses on the swelling pressure and total pressure developed in initially unsaturated specimens allowed access to free water on one end. The bentonite in this wetted region rapidly develops its full swelling pressure and this pressure is transferred upwards through the specimen. Hence, the bentonite plug will exert a pressure approximately equivalent to the swelling pressure even though only a small region of the plug is actually saturated. A number of specimens were tested with total pressure sensors mounted normal and parallel to the axis of compaction. Lateral pressures developed long before the wetting front reached sensor locations, suggesting stress transfer through the unsaturated portions of these specimens. On achieving saturation, specimens were found to have similar swelling pressures both normal to and parallel to the axis of compaction. This indicates that there is little or no specimen anisotropy induced by the compaction process. Tests were conducted on specimens allowed only to take on a limited quantity of water and it was found that density anisotropy was induced as the result of the swelling pressures generated by the buffer. The wetted skin of buffer developed a considerable pressure and compressed a region of buffer immediately above the wetted region. The results suggest that the buffer material placed in a disposal vault will rapidly develop and transfer swelling pressures as a result of the saturation of a limited region or 'skin' within the emplacement site. The total pressure ultimately present on the container surface should be the sum of the swelling and hydraulic components. (author). 14 refs., 4 tabs., 8 figs

  16. Sequential use of bentonites and solar photocatalysis to treat winery wastewater.

    Science.gov (United States)

    Rodríguez, Eva; Márquez, Gracia; Carpintero, Juan Carlos; Beltrán, Fernando J; Alvarez, Pedro

    2008-12-24

    The sequential use of low-cost adsorbent bentonites and solar photocatalysis to treat winery wastewater has been studied. Three commercial sodium-bentonites (MB-M, MB-G, and MB-P) and one calcium-bentonite (Bengel) were characterized and used in this study. These clay materials were useful to totally remove turbidity (90-100%) and, to a lesser extent, color, polyphenols (PPh), and soluble chemical oxygen demand (CODS) from winery wastewater. Both surface area and cation exchange capacity (CEC) of bentonite had a positive impact on treatment efficiency. The effect of pH on turbidity removal by bentonites was studied in the 3.5-12 pH range. The bentonites were capable of greatly removing turbidity from winery wastewater at pH 3.5-5.5, but removal efficiency decreased with pH increase beyond this range. Settling characteristics (i.e., sludge volume index (SVI) and settling rate) of bentonites were also studied. Best settling properties were observed for bentonite doses around 0.5 g/L. The reuse of bentonite for winery wastewater treatment was found not to be advisable as the turbidity and PPh removal efficiencies decreased with successive uses. The resulting wastewater after bentonite treatment was exposed to solar radiation at oxic conditions in the presence of Fe(III) and Fe(III)/H2O2 catalysts. Significant reductions of COD, total organic carbon (TOC), and PPh were achieved by these solar photocatalytic processes.

  17. Identification of land cover changes in the coastal area of Dakshina Kannada district, South India during the year 20042008

    Directory of Open Access Journals (Sweden)

    J. Jayanth

    2016-06-01

    Full Text Available This study investigates land cover (LC changes in the coastal area of Dakshina Kannada district in the state of Karnataka, South India, during the years 20042008 as a case study. IRS P-6, Linear Imaging Self Scanning sensor (LISS-IV satellite images were used in the present work. Classification was carried out using artificial bee colony algorithm and support vector machine (SVM which gave a better result compared to other traditional classification techniques. The best overall classification accuracy for the study area was achieved with an ABC classifier with an OCA of 80.35% for 2004 year data and OCA of 80.40% for 2008 year data, whereas the OCA in SVM, for the same training set is 71.42% for 2004 data and 71.38% for 2008 data on study area 1 and the results were optimised with respect to multispectral data. In study area 2, ABC algorithm achieved an OCA of 78.17% and MLC of 62.63% which was used to check the universality of the classifier. The classification results with post-classification technique for study area 1 indicate that urbanisation in the study area has almost increased twice. During the same time there is an increase in the forest plantation, agricultural plantation and a decrease in crop land and land without scrubs, indicates rapid changes in the coastal environment.

  18. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  19. Small-scale bentonite injection test on rock

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    When radiactive waste is disposed a sealing of the rock is very valuable since it reduces the rate of water percolation and diffusion. In an earlier report injection of bentonite gels by means of over-pressure and subsequent electrophoresis has been suggested. The present report describes a rock test series where bentonite injection was applied. For the test an approximately cubical block of about 1 m 3 was selected. The rock type was diorite with a fairly high frequency of quartz denses. The block was kept in a basin during the test in order to maintain the water saturation. Holes were bored in the block. A bentonite slurry with 1000 percent water content was injected. It was shown that the bentonite had a sealing effect but the depth of extrusion into rock joints was not large because of gelation. Electro-Kinetic injection of montmorillonite was found to be a more promising technique for rock lightening

  20. Pemanfaatan Bentonite sebagai Media Pembumian Elektroda Batang

    Directory of Open Access Journals (Sweden)

    Winanda Riga Tamma

    2017-03-01

    Full Text Available Sistem pentanahan merupakan suatu sistem yang bertujuan untuk mengamankan sistem tenaga listrik dari gangguan ke tanah maupun gangguan hubung singkat. Pada sistem pentanahan yang baik, resistansi pentanahan harus bernilai dibawah lima ohm. Resistansi pentanahan bergantung pada berbagai aspek antara lain yaitu struktur tanah, kelembapan tanah, dan kandungan yang ada dalam tanah itu sendiri. Dalam pengujian pada penelitian ini akan dilakukan perbaikan pada tanah dengan mencampurkan bentonite ke dalam tanah sebagai media pentanahan. Pencampuran bentonite bertujuan agar mendapatkan nilai resistansi pentanahan yang baik sesuai dengan standar sistem pentanahan. Pengujian dilakukan menggunakan elektroda batang dan alat earth resistance tester dengan metode tiga titik dimana elektroda utama atau elektroda pengukuran diberikan treatment sesuai dengan kondisi yang telah ditentukan. Diharapkan pada pengujian ini akan diketahui dampak dari bentonite terhadap penurunan nilai resistansi pentanahan. Hasil pengujian menunjukkan bahwa dengan mencampurkan bentonite pada media pentanahan, resistansi pentanahan menjadi lebih baik. Meskipun tidak terlalu signifikan, rata-rata penurunan dari setiap masing-masing treatment adalah sebesar 2 ohm.

  1. Review of the interactions between bentonite and cement

    International Nuclear Information System (INIS)

    Duerden, S.L.

    1992-01-01

    Properties of bentonite may be significantly affected by reaction with cement. This report reviews the literature to identify the reactions that may occur and considers their effects on the performance of bentonite in these applications. The dominant reactions expected under alkaline conditions prevalent in an underground repository where cement is used extensively are zeolitization, beidellitization, and ion exchange. Zeolitisation will occur at high temperatures (200 o C) or after long periods (500-1000 years) when the pH is high (pH>9). Beidellitization may occur at high pH (pH>9). The silica may reprecipitate in situ due to low hydraulic conductivity or in regions of low pH or temperature. This may result in reduced porosity/permeability and plasticity. Ion exchange reactions are virtually instantaneous. The rate of the reaction depends on the concentration and rate of access of ground water. Substitution of Ca 2+ ions from cement for Na + ions in sodium-bentonites will result in reduced swelling pressure and plasticity, and increased hydraulic conductivity of the bentonite. The effect of Na-bentonite on the properties of cement is the formation of an Al-substituted 11A tobermorite, which results in improved Cs + sorption. In cements reacted with Calcium-bentonite the main product was found to be a hydroxyapatite layer on the cement surface. (author)

  2. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 2. Effect of type of alkaline solution on permeability of compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2011-01-01

    Permeability tests were carried out using compacted bentonite-sand mixture with initial dry density of 1.55 Mg/m 3 and alkaline solutions at 50degC for about two years to estimate the alteration behavior and the change in the permeability. Bentonite-sand mixtures which contain bentonites of 15wt% were made using Na-bentonite or Ca-exchanged bentonite. 0.3M-NaOH solution with pH 13.3 and 5mM-Ca(OH) 2 solution with pH 12.0 were used to the permeability tests of Na-bentonite-sand mixture and of Ca-exchanged bentonite-sand mixture, respectively. In the case of the permeability test conducted using NaOH solution, montmorillonite and other associated minerals were dissolved, and consequently, the dry density and effective montmorillonite density of Na-bentonite-sand mixture were decreased. Furthermore, the mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Na-bentonite-sand mixture was increased 5.6 times by the end of permeability test as a result of above alteration. In the case of the permeability test conducted using Ca(OH) 2 solution, montmorillonite and other associated minerals were dissolved, and calcium silicate hydrate (C-S-H) was precipitated. Consequently, the dry density of Ca-exchanged bentonite-sand mixture was increased, while the effective montmorillonite density was decreased. The mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Ca-exchange bentonite-sand mixture was decreased by more than two orders of magnitude due to fill the pore of Ca-exchange bentonite-sand mixture by the precipitation of C-S-H. From above results, the type of alkaline solution affects the mineralogical alteration behavior of the compacted bentonite-sand mixture, and consequently, affects the changing trend of permeability. In conclusion, it is important not only to consider the dissolution of montmorillonite, but

  3. Simulation of bentonite colloid migration through granite

    International Nuclear Information System (INIS)

    Rosicka, Dana; Hokr, Milan

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Colloidal bentonite particles generate at the interface of buffer and host rock in spent nuclear fuel repository due to an erosion process and migrate through granite by the water flow. Stability of these colloids and their migration possibilities have been studied on account of radionuclide transport possibility as colloid could carry adsorbed radionuclides in groundwater through granite. That is why a simulation of bentonite colloid migration in the surrounding of a repository might be requested. According to chemical condition as ionic strength and pH, the colloidal particles coagulate into clusters and that influence the migration of particles. The coagulation kinetics of natural bentonite colloids were experimentally studied in many articles, for example by light scattering techniques. We created a model of coagulation of bentonite colloids and simulation of a chosen experiment with use of the multicomponent reactive transport equation. The coagulation model describes clustering of particles due to attractive van der Waals forces as result of collision of particles due to heat fluctuation and different velocity of particles during sedimentation and velocity gradient of water flow. Next, the model includes influence of repulsive electrostatic forces among colloidal particles leading to stability of particles provided high surface charge of colloids. In the model, each group of clusters is transported as one solution component and the kinetics of coagulation are implemented as reactions between the components: a shift of particles among groups of particles with similar migration properties, according to size of the clusters of colloids. The simulation of migration of bentonite colloid through granite using the coagulation model was calibrated according to experiment results. On the basis of the simulation, one can estimate the basic processes that occur during bentonite colloid

  4. Diffusion in crushed rock and in bentonite clay

    International Nuclear Information System (INIS)

    Olin, M.

    1994-04-01

    Diffusion theories for porous media with sorption are reviewed to serve as a basis for considering diffusion in simple systems like sand of crushed rock. A Fickian diffusion and linear sorption model is solved both by analytical Laplance transform and Green's function methods and by numerical methods, and then applied to small-scale experiments for Finnish low- and medium-level operating waste repositories. The main properties of bentonite are reviewed. The hydraulic conductivity of compacted bentonite is so low that the major transport mechanism is diffusion. A Fickian diffusion and linear sorption model is applied to bentonite. The main component of bentonite, montmorillonite, has a high ion-exchange capacity and thus, transport in bentonite consists of interactive chemical and diffusion phenomena. A chemical equilibrium model, CHEQ, is developed for ion-exchange reactions in bentonite water systems. CHEQ is applied to some bentonite experiments with success, especially for monovalent ions. The fitted log-binding constants for sodium exchange with potassium, magnesium, and calcium were 0.27, 1.50, and 2.10, respectively. A coupled chemical and diffusion model, CHEQDIFF, is developed to take account of diffusion in pore water, surface diffusion and ion-exchange reactions. The model is applied to the same experiments as CHEQ, and validation is partly successful. In the diffusion case, the above-mentioned values for binding constants are used. The apparent diffusion (both anions and cations) and surface diffusion (only for cations) constants used are 3.0*10 -11 m 2 /s and 6.0*10 -12 m 2 /s, respectively, but these values are questionable, as experimental results good enough for fitting are not available. (orig.). (74 refs., 27 figs., 12 tabs.)

  5. Effect of seawater and high-temperature history on swelling characteristics of bentonite

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko

    2005-01-01

    In the case of construction of repository for nuclear waste near the coastal area, the effect of seawater on swelling characteristics of bentonite as an engineering as an engineering barrier should be considered. Effects of high-temperature history on swelling characteristics of bentonite should also be considered because nuclear waste generates heat. Thus, in this study, swelling characteristics of bentonite on the conditions of high temperature history and seawater are investigated. The results of this study imply that : (1) Swelling strain of sodium bentonite or transformed sodium bentonite decrease as the salinity of water increases, whereas those of calcium bentonite are not affected by salinity of the water. (2) Quantitative evaluation method for swelling strain and swelling pressure of several kinds of bentonites under brine is proposed. (3) Using distilled water, swelling strain and swelling pressure of sodium bentonite with high-temperature history is less than those without high-temperature history. (author)

  6. Tracer diffusion in compacted, water-saturated bentonite

    International Nuclear Information System (INIS)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-01-01

    Compacted Na-bentonite clay barriers, widely used in the isolation of solid-waste landfills and other contaminated sites, have been proposed for a similar use in the disposal of high-level radioactive waste. Molecular diffusion through the pore space in these barriers plays a key role in their performance, thus motivating recent measurements of the apparent diffusion coefficient tensor of water tracers in compacted, water-saturated Na-bentonites. In the present study, we introduce a conceptual model in which the pore space of water-saturated bentonite is divided into 'macropore' and 'interlayer nanopore' compartments. With this model we determine quantitatively the relative contributions of pore-network geometry (expressed as a geometric factor) and of the diffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contrastivity factor) to the apparent diffusion coefficient tensor. Our model predicts, in agreement with experiment, that the mean principal value of the apparent diffusion coefficient tensor follows a single relationship when plotted against the partial montmorillonite dry density (mass of montmorillonite per combined volume of montmorillonite and pore space). Using a single fitted parameter, the mean principal geometric factor, our model successfully describes this relationship for a broad range of bentonite-water system, from dilute gel to highly-compacted bentonite with 80 percent of its pore water in interlayer nanopores

  7. Waste statistics 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-07

    The 2004 reporting to the ISAG comprises 394 plants owned by 256 enterprises. In 2003, reports covered 403 plants owned by 273 enterprises. Waste generation in 2004 is compared to targets for 2008 in the government's Waste Strategy 2005-2008. The following summarises waste generation in 2004: 1) In 2004, total reported waste arisings amounted to 13,359,000 tonnes, which is 745,000 tonnes, or 6 per cent, more than in 2003. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2004 were 12,179,000 tonnes, which is a 9 per cent increase from 2003. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2004 amounted to 7,684,000 tonnes, which is 328,000 tonnes, or 4 per cent, more than in 2002. In other words, there has been an increase in total waste arisings, if residues and waste from building and construction are excluded. Waste from the building and construction sector is more sensitive to economic change than most other waste. 4) The total rate of recycling was 65 per cent. The 2008 target for recycling is 65 per cent. The rate of recycling in 2003 was also 65 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2003. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point better than the overall landfill target of a maximum of 9 per cent landfilling in 2008. Also in 2003, 8 per cent of the waste was landfilled. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being

  8. FEBEX: Full-Scale engineered barriers experiment in crystalline host-rock: preoperational phase. Synthesized report

    International Nuclear Information System (INIS)

    1997-01-01

    The FEBEX project is being cofinanced by the EC under contract F 14WCT950006. In addition to the EC, seven partners from three countries of the EU. (France, Germany, and Spain) as well as one from EFTA (Switzerland) are participating in the project. ENRESA is the coordinating partner with NAGRA assisting in coordinating some aspects. The project consists of two large-scale tests and a series of complimentary laboratory tests. The work is being executed by the following organizations: CIEMAT, AITEMIN, UP-DIT (CIMNE), ULC, CSIC-Zaidin, and UPM (SPAIN) ANDRA and G.3S (FRANCE) GRS (GERMANY). This report includes a synthesized description of the experiment from its conception through the installation of the two large-scale tests (from the middle of 1994 to the beginning of 1997, preoperation stage). The experiment is described in detail in a series of specific reports. (Author)

  9. Modelling the evolution of compacted bentonite clays in engineered barrier systems: process model development of the bentonite-water-air system

    International Nuclear Information System (INIS)

    Bond, A.E.; Wilson, J.C.; Maul, P.R.; Robinson, P.C.; Savage, D.

    2010-01-01

    Document available in extended abstract form only. An adequate understanding of the short- and long-term evolution of compacted bentonite clays in engineered barrier systems (EBS) for radioactive waste based on the KBS-3 disposal concept is an essential requirement for demonstrating the safe performance of the system. Uncertainties in the way that the re-saturation process occurs are intrinsically tied to the thermal and mechanical evolution of the bentonite buffer and its interaction with the disposal canister and host-rock. Furthermore, the evolution of bentonite in the presence of changing ambient saturation states, groundwater chemistry and stress states could cause the bentonite re-saturation and long-term stability (including the so-called 'buffer erosion scenario') to deviate from the behaviour required by the safety case; this has emphasised the need to consider adequately coupled thermal (T), hydraulic(H), mechanical (M) and chemical (C) processes. Historically, there have been fundamental differences in the representation of porosity and water disposition between geochemical modelling and coupled THM modelling studies. In this paper, a model for the porosity and water disposition in bentonite is presented that is more detailed than models used to date in most THM modelling studies under variably saturated conditions. The new model moves away from the conventional THM soils approach which treats bentonite as an elasto-plastic porous medium with water or air occupying a notional porosity with the inclusion of additional process models to take into account the very high observed water suctions, intrinsic permeability variation and macroscopic swelling of partially saturated compacted bentonite. It replaces the empirical parameterisation usually employed in THM models with a direct representation of the water disposition, pore structure and relevant processes, albeit at an abstracted level. The new model differentiates between water which can be

  10. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    International Nuclear Information System (INIS)

    Smellie, J.

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  11. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J [Conterra AB (Sweden)

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  12. Iodine sorption of bentonite - radiometric and polarographic study

    International Nuclear Information System (INIS)

    Konirova, R.; Vinsova, H.; Koudelkova, M.; Ernestova, M.; Jedinakova-Krizova, V.

    2003-01-01

    The experiments focused on kinetics of iodine retardation on bentonite, influence of aqueous phase pH, buffering properties of bentonite, etc. were carried out by batch method. Distribution coefficient KD was the criterion applied for evaluation of iodine interaction with solid phase. High sorption potential of bentonite to cationic forms of various radionuclides, resulting from relatively high cation exchange capacity, is generally known. On the other hand the inorganic anions are not adsorbed strongly to mineral surface of clays thus uptake of iodine (occurring mainly at iodide (I - ) or iodate (IO 3 - ) form under oxoic conditions) is limited. The distribution coefficients of iodine anions' sorption on bentonite R reach order of magnitude 10 -1 mL/g. In order to increase the sorption capacity of the solid phase, several additives were added to bentonite. Most of them didn't provide satisfactory results except of the addition of activated carbon, which has high surface area. Electromigration and polarographic methods were used for investigation of the redox state of iodine in aqueous phase and determination of KD values as well. Acquired results were compared with data obtained by radiometric measurements. (authors)

  13. Study on the basic property of Gaomiaozi bentonite, inner mongolia

    International Nuclear Information System (INIS)

    Liu Yuemiao; Xu Guoqing; Liu Shufen; Chen Zhangru

    2001-01-01

    Buffer/backfill material layer is one of important engineered barriers in the HLW geological repository. The geologic setting of Gaomiaozi bentonite deposit is introduced, and the mineral composition, physical and chemical property, basic geotechnical property, swelling property and permeability of highly compacted bentonite of main ore bed has been studied. The study results show that montmorillonite content of Gaomiaozi bentonite is relatively high, physical and chemical property, geotechnical property and impermeability are good. So Gaomiaozi bentonite deposit could be regarded as supply base of buffer/backfill material for HLW geological repository

  14. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Yoshikawa, H.; Ito, M.

    1997-01-01

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories

  15. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  16. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The basic reactions between sodium bentonite and groundwater are described by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. It is calculated that the pore water of compacted sodium bentonite saturated with Swiss Reference Groundwater will have a pH value of 9.7 and a free carbonate activity of 8x10 -4 M. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. In this way, an attempt is made to account for the continuous water exchange between the near-field and the host rock. It is found that sodium bentonite will be slowly converted to calcium bentonite. This conversion is roughly estimated to be completed after 2 million years

  17. Long-term stability of bentonite. A literature review

    International Nuclear Information System (INIS)

    Laine, H.; Karttunen, P.

    2010-07-01

    The long-term thermodynamic stability of the bentonite buffer in the evolving chemical, thermal and hydrological conditions at Olkiluoto has been evaluated by reviewing the relevant experimental data and natural occurrences of bentonite that could serve as analogues for the long-term bentonite stability in the expected repository conditions, especially focussing on mineral transformations due, among others, to thermal effects including cementation. Natural occurrences with stable smectite have been reviewed and compared with Olkiluoto groundwater compositions at present and during the expected hydrogeochemical evolution of the repository. Alteration of the bentonite buffer is expected to be insignificant for natural groundwater conditions at present and for the evolving groundwater conditions at the expected thermal boundary conditions caused by the heat induced from the fuel canisters ( + and SiO 2 and elevated pH due to degradation and dissolution processes. These may alter the conditions in the repository that may favour alteration and cementation processes. The amounts of foreign materials to be used in the repository will be updated along with the progress of the construction. Also the information on their impact on the barriers needs to be evaluated in more detail, including the degradation rate, mobility or dilution of the foreign materials in the repository environment. The exchangeable cation composition of the buffer bentonite is expected to equilibrate with the surrounding groundwater during and after saturation. This process is expected to lead towards Ca-dominant exchangeable cation composition within the montmorillonite interlayer spaces in the buffer. In general it seems that the transformation towards Ca-dominated composition would favour the long-term stability of the buffer as Ca-dominated smectite (compared to Na-dominated type) has larger water retention capacity and anion incorporation to the interlayer space of montmorillonite is more

  18. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, Tomoyoshi

    2012-01-01

    Document available in extended abstract form only. bentonite. The compacted bentonite is found in unsaturated conditions before applying of swelling due to absorption. The behaviour of compacted bentonite is not consistent with the principle and concepts of classical, saturated soil mechanics. An unsaturated soil theoretical framework using soil water characteristic curve has been fairly established over the past several decades. The soil-water characteristic curve is a relationship between soil moisture and soil suction obtained by the axis translation technique, vapor pressure technique or osmotic suction control which is a key feature in unsaturated soil mechanics. The soil-water characteristic curve can be used for prediction of the shear strength, volume change and hydraulic conductivity. Cui et al. 2002 indicated soil-water characteristic curve of expansive clay soil in high soil suction ranges using osmotic suction technique. Tripathy et al. 2010 described the soil-water characteristic curve both using the axis translation technique and vapor pressure technique in the entire soil suction ranges. Nishimura and Koseki 2011 measured suction of bentonite applied high soil suction due vapor pressure using a chilled mirror dew point potentiometer (WP4-T of DECAGON Device). The bentonite with gravimetric water content of 18 % indicated soil suction of 2.8 MPa at least. It is predicted that suction efforts to swelling pressure and shear strength of unsaturated compacted bentonite. This study focuses on the influence of suction on both swelling pressure and shear strength of compacted bentonite. The soil-water characteristic curve (SWCC) tests were conducted for compacted bentonite using both axis-translation technique and vapor pressure technique. The SWCC had a range from 0 kPa to 296 MPa in suction. The compacted bentonite having two different soil suctions were prepared for swelling pressure tests. Newly swelling pressure testing apparatus was developed in order

  19. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  20. Bentonite erosion. Final report

    International Nuclear Information System (INIS)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf

    2009-12-01

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  1. Numerical simulation of alteration of sodium bentonite by diffusion of ionic groundwater components

    International Nuclear Information System (INIS)

    Jacobsen, J.S.; Carnahan, C.L.

    1987-12-01

    Experiments measuring the movement of trace amounts of radionuclides through compacted bentonite have typically used unaltered bentonite. Models based on experiments such as these may not lead to accurate predictions of the migration through altered or partially altered bentonite of radionuclides that undergo ion exchange. To address this problem, we have modified an existing transport code to include ion exchange and aqueous complexation reactions. The code is thus able to simulate the diffusion of major ionic groundwater components through bentonite and reactions between the bentonite and groundwater. Numerical simulations have been made to investigate the conversion of sodium bentonite to calcium bentonite for a reference groundwater characteristic of deep granitic formations. 20 refs., 2 figs., 2 tabs

  2. Effect of pH to adsorption behavior of Pu on bentonite in aqueous environment

    International Nuclear Information System (INIS)

    Wang Xiaoqiang; Tuo Xianguo; Li Pingchuan; Leng Yangchun; Su Jilong; Yueping

    2013-01-01

    The effects of pH to the adsorption behavior of Pu in GMZ-bentonite, Lingshou Ca-bentonite, Na-bentonite and bleaching earth were tested by static adsorption experiments in aqueous environment. The results show that the adsorption equilibrium time of Pu is four days in GMZ-bentonite and 5-6 days in bleaching earth, Ca-bentonite and Na-bentonite. In aqueous environment, the adsorption capacity of bentonite to Pu increases with pH in water phase, and it is weak in acidic aqueous environment and strong in alkaline aqueous environment extremely. (authors)

  3. Diffusion of Fission Product Elements in Compacted Bentonite

    International Nuclear Information System (INIS)

    Pratomo-Budiman-Sastrowardoyo; Dewi-Susilowati; Dadang-Suganda

    2000-01-01

    Study on diffusion of fission product in compacted bentonite has been conducted. The information about mobilities of these elements have been obtained from the studies resulted in many countries. It is presented that the diffusion coefficient was varied by the function of solution phase condition as well as the nature of bentonite. It is also showed that the diffusion coefficient decreased by the increasing of density, as well as the increasing of montmorillonite content in bentonite. The ratio of bentonite/silica-sand used, was related to the increasing of elements mobility. In many case variation of diffusion coefficient was related to the variation of pH, redox condition, and the presence of complex ant in solution phase. The lower diffusion coefficient could give the higher retardation factor, which is a favorable factor to retard the radionuclides release from a disposal facility to geosphere. (author)

  4. Long term mineralogical properties of bentonite/quartz buffer substance

    International Nuclear Information System (INIS)

    Jacobsson, A.; Pusch, R.

    1978-06-01

    This report shows results from investigations concerning properties in bentonitebased buffersubstances which are suggested to be used when high level radioactive wastes from nuclear powerplants are to be stored finally. Recommended material characteristica of the bentonite to be used are summerized. In an attempt to find geological evidence for bentonite to loose its desireable properties there were no such findings at the temperatures, groundwater situations and pressures which are to be expected at the actual depositing depth (500 m) for a considerable period of time. Concerning biological activity and then specially the mobility and activity of bacteria the conclusion is that there will be little or no influence from them either there is bentonite-sand or compacted pure bentonite in the buffer mass

  5. Bentonite chemical modification for use in industrial effluents

    International Nuclear Information System (INIS)

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F.

    2010-01-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  6. Agrarian foreign trade of the Czech Republic in the period of 20042008, competitiveness of commodities

    Directory of Open Access Journals (Sweden)

    Jaroslava Burianová

    2011-01-01

    Full Text Available The paper deals with agrarian foreign trade (AFT of the Czech Republic during the period of 20042008. Distinct changes in the trade volume, but also changes in the net export structure were observed. The export is being assisted with a much larger trading area without customs restrictions but it is also exposed to a much tougher competition. A methodology that makes it possible to evaluate the competitiveness of individual commodities is described in the first part. A sequence of individual items from a total list of basic food goods was analyzed using chosen indicators – Balass indicator RCA (Revealed Comparative Advantage as well as the Michaely index MI that shows a specific degree of specialization for export. In the Results section, attention is firstly focused on the year 2004. The values of export and import for 24 items of basic food commodities are summarised, and the most important items in respect of the share in total export are selected. Analogical output was acquired for the year 2008. The values of RCA and MI indicators are then itemised, and a sequence is determined for the highest values for the commodities able to compete that shows the specific degree of specialization for export.

  7. SAXS and TEM Investigation of Bentonite Structure

    International Nuclear Information System (INIS)

    Matusewicz, Michal; Liljestroem, Ville; Muurinen, Arto; Serimaa, Ritva

    2013-01-01

    A preliminary investigation of bentonite structure using Small-Angle X-ray Scattering (SAXS) and Transmission Electron Microscopy (TEM) is presented. Three types of clay were used: unchanged MX-80 bentonite and purified clays with sodium or calcium ions. Quantitative information in nano-scale - basal spacing, mean crystallite size - was obtained from SAXS, which was complemented by TEM to give qualitative information from micron to nanometre scale. SAXS seems to be a more reliable source of quantitative data than TEM. SAXS gives the averaged information about basal spacing. TEM in this study gives more qualitative information, but in a greater resolution range. The presented work is a starting point to combine more methods to obtain a better idea of bentonite structure. (authors)

  8. Quality of groundwater at and near an aquifer storage and recovery site, Bexar, Atascosa, and Wilson Counties, Texas, June 2004-August 2008

    Science.gov (United States)

    Otero, Cassi L.; Petri, Brian L.

    2010-01-01

    recovery wells likely indicate some degree of mixing of the two waters occurred rather than continued decay of radium-226 in the injected water. Geochemical and isotope data measured in samples collected in May 2005 from two Carrizo aquifer monitoring wells and in July 2008 from the three ASR production-only wells in the northern section of the ASR site indicate that injected Edwards aquifer water had not migrated to these five sites. Geochemical and isotope data measured in samples collected from Carrizo aquifer wells in 2004, 2005, and 2008 were graphically analyzed to determine if changes in chemistry could be detected. Major-ion, trace element, and isotope chemistry varied spatially in the samples collected from the Carrizo aquifer. With the exception of a few samples, major-ion concentrations measured in samples collected in Carrizo aquifer wells in 2004, 2005, and 2008 were similar. A slightly larger sulfate con-centration and a slightly smaller bicarbonate concentration were measured in samples collected in 2005 and 2008 from well NC1 compared to samples collected at well NC1 in 2004. Larger sodium concentrations and smaller calcium, magnesium, bicarbonate, and sulfate concentrations were measured in samples collected in 2008 from well WC1 than in samples collected at this well in 2004 and 2005. Larger calcium and magnesium concentrations and a smaller sodium concentration were measured in the samples collected in 2008 at well EC2 compared to samples collected at this well in 2004 and 2005. While in some cases the computed percent differences (compared to concentrations from June 2004) in dissolved iron and dissolved manganese concentrations in 11 wells sampled in the Carrizo aquifer in 2005 and 2008 were quite large, no trends that might have been caused by migration of injected Edwards aquifer water were observed. Because of the natural variation in geochemical data in the Carrizo aquifer and the small data set collected for this study, differences in major

  9. Uncertainties in pore water chemistry of compacted bentonite from Rokle deposit

    International Nuclear Information System (INIS)

    Cervinka, R.; Vejsadu, J.; Vokal, A.

    2012-01-01

    Document available in extended abstract form only. The composition of compacted bentonite pore water influences a number of important processes occurring in a deep geological repository (DGR), e.g. corrosion of waste package materials, solubility of radionuclides, or diffusion and sorption of radionuclides. Its determination is not straightforward, because it is difficult to obtain (e.g. squeeze) the pore water from compacted bentonite without changing its properties. It is therefore necessary to combine experimentally obtained parameters and geochemical modelling to approach it compositions. This article describes the results achieved in investigation the composition of pore water of compacted Ca-Mg bentonite from Czech deposits, proposed in Czech DGR concept. Ca-Mg bentonite from the largest operating deposit Rokle (Tertiary neo-volcanic area, NW Bohemia) represents complex mixture of (Ca,Mg)-Fe-rich montmorillonite, micas, kaolinite and other mineral admixtures (mainly Ca, Mg, Fe carbonates, feldspars and iron oxides). For experimental investigations the homogenized and grind raw bentonite material obtained directly from the deposit and commercial product (partly Na-activated) from supplier were used. Geochemical characterization of Rokle bentonite included mineralogical composition analyzed by Xray diffraction, cation exchange capacity determined using Cu-trien method, surface complexation parameters determined by acid-base titrations and 'geochemical' porosity derived from diffusion experiments with tracers ( 3 H and 36 Cl). Soluble salts inventory was calculated on the base of results from aqueous extracts of bentonite in deionized water at different solid to liquid ratios (from 18.6 to 125 g/l) and high pressure squeezing of water saturated bentonite at different solid to liquid ratios (from 1:1 to 4:1 w/w). The geochemical model contained cation exchange in the interlayer space and protonization and de-protonization of surface hydroxyl groups on clay

  10. Evaluation of permeability and swelling pressure of compacted bentonite using a calcium hydroxide solution

    International Nuclear Information System (INIS)

    Aoyagi, Takayoshi; Maeda, Munehiro; Mihara, Morihiro; Tanaka, Masuhiro

    1998-12-01

    Tests to determine the swelling pressure, permeability, compressive strength and elastic modulus of Ca-Na exchanged bentonite, Na-bentonite and Ca-bentonite at the Power Reactor and Nuclear Fuel Development Corporation have mainly used distilled water. However, disposal facilities for TRU waste will use cementateous material for packaging, backfill as well as structural support. In this case, a large amount of calcium will dissolve in groundwater flowing through the cementateous material. Therefore, it is important to investigate the mechanical properties of bentonite in calcium-rich water as part of the disposal research program for TRU waste. In order to understand the effect of the chemical composition of water on the basic mechanical properties of bentonite - part of evaluating the disposal concepts for TRU waste disposal - we tested the permeability of compacted bentonite under saturated conditions using a calcium hydroxide solution. The aqueous solution represents water dominated by the calcium component. Na-bentonite, Ca-Na exchanged bentonite and Ca-bentonite were used for swelling pressure measurement tests and permeability testing. Measures of the maximum and equilibrium swelling pressure as well as permeability we obtained. The dry density of bentonite was varied between tests. Results show that swelling pressure and permeability are dependent on dry density. In separate tests using Ca-bentonite, the bentonite-mixing rate was varied as an independent parameter. Results show that there is little change in the swelling pressure and permeability between tests using calcium hydroxide solution and distilled water for all bentonite types. (author)

  11. Evaluation of permeability of compacted bentonite ground considering heterogeneity by geostatistics

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko; Kudo, Kohji; Hironaga, Michihiko; Nakagami, Motonori; Niwase, Kazuhito; Komatsu, Shin-ichi

    2007-01-01

    The permeability of the bentonite ground as an engineered barrier is possibly designed to the value which is lower than that determined in terms of required performance because of heterogeneous distribution of permeability in the ground, which might be considerable when the ground is created by the compaction method. The effect of heterogeneity in the ground on the permeability of the bentonite ground should be evaluated by overall permeability of the ground, whereas in practice, the effect is evaluated by the distribution of permeability in the ground. Thus, in this study, overall permeability of the bentonite ground is evaluated from the permeability of the bentonite ground is evaluated from the permeability distribution determined using the geostatistical method with the dry density data as well as permeability data of the undisturbed sample recovered from the bentonite ground. Consequently, it was proved through this study that possibility of overestimation of permeability of the bentonite ground can be reduced if the overall permeability is used. (author)

  12. Stabilization of heavy metals in soil using two organo-bentonites.

    Science.gov (United States)

    Yu, Kai; Xu, Jian; Jiang, Xiaohong; Liu, Cun; McCall, Wesley; Lu, Jinlong

    2017-10-01

    Stabilization of Cu, Zn, Cd, Hg, Cr and As in soil using tetramethylammonium (TMA) and dodecyltrimethylammonium (DTMA) modified bentonites (T-Bents and D-Bents) as amendments was investigated. Toxicity characteristic leaching procedure (TCLP) was used to quantify the metal mobility after soil treatment. The structural parameters of modified bentonites, including the BET surface area, basal spacing and zeta potential were obtained as a function of the TMA and DTMA loading at 40, 80, 120, 160 and 200% of the bentonite's cation exchange capacity, respectively. The results indicated that the characteristics of the organo-bentonites fundamentally varied depending on the species and concentration of modifiers loaded on bentonite. T-Bents and D-Bents manifested distinct immobilization effectiveness towards various metals. In association with the organo-bentonite characteristics, the main interactive mechanisms for Cu, Zn and Cd proceeded via cation exchange, Hg proceeded via physical adsorption and partitioning, Cr and As proceeded via specific adsorption and electrostatic attraction, respectively. This study provided operational and mechanistic basis for optimizing the organic clay synthesis and selecting as the appropriate amendment for remediation of heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Yeon, Jae-Won; Ha, Young-Kyoung; Choi, In-Kyu; Chun, Kwan-Sik

    1996-01-01

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  14. One-dimensional self-sealing ability of bentonites in artificial seawater

    International Nuclear Information System (INIS)

    Komine, Hideo; Yasuhara, Kazuya; Murakami, Satoshi

    2009-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on self-sealing ability of three common sodium-types of bentonite by the laboratory experiment and chemical analysis. From the results of laboratory experiment, suitable specifications were defined for a bentonite-based buffer that can withstand the effects of seawater. Furthermore, mechanism on filtration of seawater components in highly compacted bentonite was discussed by the results of chemical analysis. (author)

  15. Geochemical investigation of iron transport into bentonite as steel corrodes

    International Nuclear Information System (INIS)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew

    2007-09-01

    In Sweden and Finland, it is proposed that spent nuclear fuel will be encapsulated in sealed cylindrical canisters, for disposal in a geologic repository, either in vertical boreholes (KBS-3V) or in long horizontal boreholes (KBS-3H). The canisters will consist of a thick cast iron insert and a copper outer container, and each canister will be surrounded by a compacted bentonite clay buffer. It is important to investigate the possible consequences if a failure of these physical barriers was to occur. For instance, if mechanical failure of the copper outer container were to occur then groundwater could enter the annulus and reach the cast iron insert. This would result in anaerobically corroded iron from the cast iron insert interacting with the bentonite surrounding the canisters. The presence of anaerobically corroded iron in groundwater raises the question of how the bentonite will be affected by this process. In the case of the KBS-3H concept, mechanical failure of the copper outer container could lead to interaction between anaerobically corroded iron and bentonite, as above. However, direct contact between anaerobically corroding carbon steel and bentonite is also likely because of the presence of perforated carbon steel support structures in the long horizontal boreholes. As part of the NF-PRO project, an extensive experimental programme has been carried out over several years to study the interactions between anaerobically corroding carbon steel or cast iron and bentonite. The purpose of this report is to describe the modelling work that has been carried out, and the conclusions that have been reached. The experimental programme has carried out a series of long term experiments looking at anaerobic corrosion of carbon steel or cast iron in compacted MX80 bentonite at 30 deg C or 50 deg C. In the bentonite the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt % in

  16. Geochemical investigation of iron transport into bentonite as steel corrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    In Sweden and Finland, it is proposed that spent nuclear fuel will be encapsulated in sealed cylindrical canisters, for disposal in a geologic repository, either in vertical boreholes (KBS-3V) or in long horizontal boreholes (KBS-3H). The canisters will consist of a thick cast iron insert and a copper outer container, and each canister will be surrounded by a compacted bentonite clay buffer. It is important to investigate the possible consequences if a failure of these physical barriers was to occur. For instance, if mechanical failure of the copper outer container were to occur then groundwater could enter the annulus and reach the cast iron insert. This would result in anaerobically corroded iron from the cast iron insert interacting with the bentonite surrounding the canisters. The presence of anaerobically corroded iron in groundwater raises the question of how the bentonite will be affected by this process. In the case of the KBS-3H concept, mechanical failure of the copper outer container could lead to interaction between anaerobically corroded iron and bentonite, as above. However, direct contact between anaerobically corroding carbon steel and bentonite is also likely because of the presence of perforated carbon steel support structures in the long horizontal boreholes. As part of the NF-PRO project, an extensive experimental programme has been carried out over several years to study the interactions between anaerobically corroding carbon steel or cast iron and bentonite. The purpose of this report is to describe the modelling work that has been carried out, and the conclusions that have been reached. The experimental programme has carried out a series of long term experiments looking at anaerobic corrosion of carbon steel or cast iron in compacted MX80 bentonite at 30 deg C or 50 deg C. In the bentonite the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt % in

  17. Glucose Oxidase Immobilization on TMAH-Modified Bentonite

    Directory of Open Access Journals (Sweden)

    Ruth Chrisnasari

    2015-03-01

    Full Text Available The influence of bentonite modification by tetramethyl ammonium hydroxide (TMAH on its capability to immobilize glucose oxidase (GOX was studied. Modification of bentonite was conducted by the adding of 0-5% (v/v TMAH. The observed results show that the different concentrations of TMAH affect the percentage of immobilized enzyme. The results of this study show that the best concentration of TMAH is 5% (v/v which can immobilize up to 84.71% of GOX. X-ray diffraction (XRD and Fourier Transforms Infrared Spectroscopy (FTIR studies have been carried out to observe the structural changes in bentonite due to TMAH modification. The obtained immobilized GOX show the optimum catalytic activity on reaction temperature of 40-50 °C and pH of 7. The immobilized GOX kinetics at the optimum conditions determined the Km and Vmax value to be 4.96x10-2 mM and 4.99x10-3 mM.min-1 respectively. In addition, the immobilized GOX on TMAH-modified bentonite is stable enough so it could be re-used six times before its activity decreased by 39.44%.

  18. Bentonite-like material sealing to high-level radioactive wastes storage

    International Nuclear Information System (INIS)

    Linares, J.; Linares Gonzalez, J.; Huertas Garcia, F.; Reyes Camacho.

    1993-01-01

    Among the most used materials for sealing of radioactive waste storage, bentonite shows a high number of advantages because of its plasticity, thermal and hydraulic conductivity, etc. The paper makes a review on different Spanish deposits of bentonite and their stability. Most of studies are focussed on the volcanic region at Cabo de Gata (Almeria). That area offers the most productive hydrothermal bentonite deposits in Spain

  19. Soil-bentonite design mix for slurry cutoff walls used as containment barriers

    International Nuclear Information System (INIS)

    Rad, N.S.; Bachus, R.C.; Jacobson, B.D.

    1995-01-01

    In recent years, soil-bentonite slurry cutoff walls have been increasingly used as containment barriers around contaminated soils to impede or, in some cases, nearly eliminate the off-site migration of contaminated ground water or other potentially hazardous liquids. The paper presents the procedures used and the results obtained during an extensive laboratory testing program performed to select varying soil-bentonite slurry mix components for a soil-bentonite slurry cutoff wall constructed around an old landfill at a former oil refinery. The landfill is underlain to varying depths by a coarse granular soils that has been exposed to oil-products. Compatibility of three commercially available bentonite products with the free oil-products and the oil-contaminated ground water found at some locations in the landfill was initially investigated. Based on the test results, one of the bentonite products was selected for use in the soil-bentonite slurry testing program. A clayey soil from a borrow source, potable water from the site, and subsurface soils from the proposed soil-bentonite slurry wall alignment were used to form different soil-bentonite slurry mixes. Slump tests were performed to evaluate the workability of the mixes. Based on the test results, a single mix was selected for further study, including permeability/compatibility testing. The results of the compatibility testing program are presented and discussed in the paper. A specific design mix methodology for evaluating the chemical compatibility of soil-bentonite slurry mixes with permeants is proposed

  20. Diffusive transport of strontium-85 in sand-bentonite mixtures

    International Nuclear Information System (INIS)

    Gillham, R.W.; Robin, M.J.L.; Dytynyshyn, D.J.

    1983-06-01

    Diffusion experiments have been used to determine the transport of 85 Sr in sand-bentonite mixtures. The diffusion experiments were performed on one natural soil (Chalk River sand) and on seven mixtures of bentonite and silica sand, containing from 0 percent to 100 percent bentonite. Two non-reactive solutes ( 36 Cl and 3 H) and one reactive solute ( 85 Sr) were used in the study. The experiments with non-reactive solutes yielded estimates of tortuosity factors. Retardation factors were obtained from experimental porosities, experimental bulk densities, and from batch distribution coefficients (Ksub(d)). These Ksub(d) values are a simple way of describing the solute/medium reaction, and are based on the assumption that the cation-exchange reaction may be described by a linear adsorption isotherm passing through the origin. The results demonstrate that, for practical purposes and for our experimental conditions, the use of the distribution coefficient provides a convenient means of calculating the effective diffusion coefficient for 85 Sr. The porosity and bulk density were also found to have a considerable influence on the effective diffusion coefficient, through the retardation factor. Mixtures containing 5-10 percent bentonite were found to be more effective in retarding 85 Sr than either sand alone, or mixtures containing more bentonite. In the soils of higher bentonite content, the effect of increased cation-exchange capacity was balanced by a decreasing ratio of bulk density to porosity

  1. Migration study of actinides and lanthanides in compacted bentonite

    International Nuclear Information System (INIS)

    Sastrowardoyo, P.B.; Susilowati, D.; Suganda, D.

    1998-01-01

    Migration study of actinide and lanthanide elements in compacted bentonite has been conducted. Data of these elements mobilities have been shown, and it is showed that the diffusion coefficient was varied as the function of solution phase condition as well as the origin/composition of bentonite. It is showed that the diffusion coefficient decreased by the increasing of density, as well as the increasing of montmorillonite content in bentonite. The ratio of bentonite/silica-sand used was related to the increasing of elements mobility. In many case the difference of diffusion coefficient was related to the variation of pH and redox condition, as well as the presence of complexant in solution phase. The Lower diffusion coefficient could give the higher retardation factor, which is a favourable factor to retard the radionuclides release from a disposal facility to geosphere. (author)

  2. Study of the Properties of Bentonites for their use in Clay Geo synthetic Barriers

    International Nuclear Information System (INIS)

    Leiro Lopez, A.; Mateo Sanz, B.; Garcia Cidoncha, H.; Blanco Fernandez, M.

    2014-01-01

    Bentonites used for the production of clay geo synthetic barriers need to meet some properties so that they can be a waterproofing system. among the bentonites used in industry, sodium bentonite has the lowest permeability due to its high water absorption capacity in the inter-laminar space, causing it to swell and form a barrier to water flow. this paper provides the study of the properties of four bentonite to evaluate their quality the study of the properties of four bentonite to evaluate their quality. For this study, the main properties have been tested: water absorption, swelling index, fluid loss, cation exchange capacity and montmorillonite content. In order to optimize the procedure for the characterization of bentonites, correlations between different tests have been done, to identify the most suitable ones. Finally, a compatibility test has been carried out to study the performance of bentonites in water containing a high amount of sales, because in this case, an ion exchange between the interlayer sodium ions of bentonite and cations dissolved in the water can take, resulting in a decrease swell of the bentonite. (Author)

  3. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    Science.gov (United States)

    Liu, Xinghao; Cheng, Cheng; Xiao, Chengjian; Shao, Dadong; Xu, Zimu; Wang, Jiaquan; Hu, Shuheng; Li, Xiaolong; Wang, Weijuan

    2017-07-01

    Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  4. A new age model for the Late Ordovician bentonites in Oslo, Norway

    Science.gov (United States)

    Gottschalk Ballo, Eirik; Eivind Augland, Lars; Hammer, Øyvind; Svensen, Henrik

    2017-04-01

    During the Late Ordovician, explosive volcanic eruptions led to the deposition of worldwide bentonites. Some of the largest of these eruptions took place in the Sandbian and produced the Milbrig and Deicke K-bentonites of North America and the Kinnekulle K-bentonite of Scandinavia. We have studied the classic locality of Hagemann and Spjeldnæs (1955) - one of the most complete sections of Ordovician bentonites in Europe. The bentonites are present in the Arnestad Formation comprising dark shale with carbonate nodule beds grading into an increasingly more carbonate rich environment. Through a 50-meter interval we have identified 33 bentonites of which 10 have not previously been reported from this locality. The bentonites have an average thickness of 4.9 cm with a few exceptions such as the Kinnekulle K-bentonite (35 cm) and the Grimstorp B (13 cm). We have measured magnetic susceptibility of two 2-3 meter intervals with a sampling distance of 5 cm, using a handheld magnetic susceptibility meter in the field. These data show significant periodicity peaks that correlate well with Milankovitch cycles and are suggested to represent astronomically forced changes in sediment supply. This study further presents high-precision U-Pb zircon ages of five bentonites from the section, including the Kinnekulle K-bentonite and Grimstorp B. These two beds were previously dated by Svensen et al. (2015) from a locality south of Oslo. Our new data improves the precision of the ages of these two key beds, and constrain the duration of the entire interval and thus the onset and termination of the late Ordovician volcanic system that deposited these tephras. We conclude that the Oslo section provides a high-resolution age model to understand one of the most intense volcanic periods of the Paleozoic by combining radiometric and cyclostratigraphic data. BIBLIOGRAPHY Hagemann, F. and Spjeldnæs, N. (1955). "The Middle Ordovician of the Oslo region, Norway. 6. Notes on bentonites (K-bentonites

  5. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    International Nuclear Information System (INIS)

    Liu, Xinghao; Cheng, Cheng; Xiao, Chengjian; Shao, Dadong; Xu, Zimu; Wang, Jiaquan; Hu, Shuheng; Li, Xiaolong; Wang, Weijuan

    2017-01-01

    Highlights: • PANI/bentonie can be synthesized by simple plasma technique. • PANI/bentonie has an excellent adsorption capacity for trace uranium in solution. • U(VI) adsorption on PANI/bentonite is a spontaneous and endothermic process. - Abstract: Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  6. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    Science.gov (United States)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  7. Lake restoration with aluminium, bentonite and Phoslock: the effect on sediment stability and light attenuation

    DEFF Research Database (Denmark)

    Egemose, Sara; Reitzel, Kasper; Flindt, Mogens

    treatments on aluminium mobility, sediment stability or light climate. A laboratory flume experiment including three shallow Danish lakes was conducted. We measured the effects of aluminium, Phoslock (a commercial product), bentonite, and a combination of bentonite/aluminium. Each treatment caused a varying...... consolidation of the sediment. The largest consolidation occurred using Phoslock- and bentonite-addition followed by bentonite/aluminium-addition, whereas aluminium alone had no effect. Sediment stability thresholds were measured before and after addition. Especially Phoslock, but also bentonite and bentonite....../aluminium increased sediment erosion threshold, with respectively 200%, 43% and 57%. Aluminium, bentonite/aluminium, and Phoslock improved the light conditions in the water phase, with respectively 60%, 57% and 50%, whereas bentonite created higher turbidity. Conclusively aluminium improved the light conditions...

  8. BENTONITE-QUARTZ SAND AS THE BACKFILL MATERIALS ON THE RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Raharjo Raharjo

    2010-06-01

    Full Text Available An investigation of the contribution of quartz sand in the bentonite mixture as the backfill materials on the shallow land burial of radioactive waste has been done. The experiment objective is to determine the effect of quartz sand in a bentonite mixture with bentonite particle sizes of -20+40, -40+60, and -60+80 mesh on the retardation factor and the uranium dispersion in the simulation of uranium migration in the backfill materials. The experiment was carried out by the fixed bed method in the column filled by the bentonite mixture with a bentonite-to-quartz sand weight percent ratio of 0/100, 25/75, 50/50, 75/25, and 100/0 on the water saturated condition flown by uranyl nitrate solution at concentration (Co of 500 ppm. The concentration of uranium in the effluents in interval 15 minutes represented as Ct was analyzed by spectrophotometer, then using Co and Ct, retardation factor (R and dispersivity ( were determined. The experiment data showed that the bentonite of -60+80 mesh and the quartz sand of -20+40 mesh on bentonite-to-quartz sand with weight percent ratio of 50/50 gave the highest retardation factor and dispersivity of 18.37 and 0.0363 cm, respectively.   Keywords: bentonite, quartz sand, backfill materials, radioactive waste

  9. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An optimum silica flour-bentonite mixture for an engineered barrier

    International Nuclear Information System (INIS)

    Walker, J.N.; Daffern, D.D.; Emer, D.F.

    1991-01-01

    To dispose of low-level and mixed wastes (MAR) by burial, it is necessary to design an impermeable closure, which limits water infiltration through the waste. Bentonite has very low permeability to water but can be subject to volume alterations. Over time, these alterations can lead to channeling and subsequent permeability increases. The fluid conductivity and bulk properties of silica flour and bentonite mixtures were tested to find a mixture that would retain the low conductivity of the bentonite while maintaining volumetric stability. Silica flour was chosen for its small grain size and spherical shape, and its similarity to silty soil. Test results indicate that a 90% silica flour and 10% bentonite mixture will provide the optimum properties for this application. 5 refs., 2 figs., 2 tabs

  11. On-Going Bentonite Pore Water Studies by NMR and SAXS

    International Nuclear Information System (INIS)

    Carlsson, Torbjoern; Muurinen, Arto; Root, Andrew

    2013-01-01

    Compacted water-saturated MX-80 bentonite is presently being studied by SAXS and NMR in order to quantify the major pore water phases in the bentonite. The SAXS and NMR measurements gave very similar results indicating that the pore water is mainly distributed between two major phases (interlayer and non-interlayer water) and also indicate how these phases depend on the bentonite dry density. The results from the SAXS and NMR studies at VTT indicate the same thing: - The pore water in water-saturated compacted (?dry = 0.7-1.6 g/cm 3 ) bentonite is divided into two main phases: interlayer water and non-interlayer water. - The amounts of these pore water phases can be determined quantitatively with the above methods. (authors)

  12. Coupled behaviour of bentonite buffer results of PUSKURI project

    International Nuclear Information System (INIS)

    Olin, M.; Rasilainen, K.; Itaelae, A.

    2011-08-01

    In the report main results form a KYT2010 programme's project Coupled behaviour of bentonite buffer (PUSKURI) are presented. In THC modelling, Aku Itaelae made and published his Master of Science Thesis. Itaelae was able to successfully model the LOT-experiment. Additionally, he also listed problems and development proposals for THC-modelling of bentonite buffer. VTT and Numerola created in collaboration a model coupling saturation, diffusion and cation exchange; the model was implemented and tested in Numerrin, COMSOL and TOUGHREACT. Petri Jussila's PhD THM-model was implemented into COMSOL to facilitate further development. At GTK, the mineralogical characterisation of bentonite was planned. The previous THM model (Jussila's model) including only small deformations was successfully generalized to finite deformations in way at least formally preserving the original formalism. It appears that the theory allows also a possibility to include finite plastic deformations in the theory. In order to measure the relevant mechanical properties of compacted bentonite, two different experiments, namely hydrostatic compression experiment and one-dimensional compression experiment were designed. In the hydrostatic compression experiment, a cylindrical sample of compacted bentonite covered with liquid rubber coating is placed in the sample chamber equipped with a piston. The same device was also used in one-dimensional compression experiment. X-ray microtomographic techniques were used in order to study the basic mechanisms of water transport in bentonite. The preliminary results indicate that in the present experimental set-up, water transport is dominated by a dispersive mechanism such as diffusion of vapour in gas phase or diffusion of water in solid phase. (orig.)

  13. Behaviour of bentonite accessory minerals during the thermal stage

    International Nuclear Information System (INIS)

    Arcos, David; Bruno, Jordi; Benbow, Steven; Takase, Hiro

    2000-03-01

    This report discusses in a quantitative manner the evolution of the accessory minerals in the bentonite as a result of the thermal event exerted by the spent fuel in the near field. Three different modelling approaches have been used and the results compared between them. The three different approaches have been calculated using two Differential Algebraic Equation (DAE) solver: DYLAN (Model-1) and the Nag DAE solver, d02ngf (Model-2) and the third approach (Model-3) using the last version of PHREEQC. The results from these calculations indicate the feasibility of the modelling approach to model the migration of bentonite accessory minerals and relevant aqueous species throughout the thermal gradient. These calculations indicate that the migration of quartz and quartz polymorphs is a lesser problem. The aqueous speciation of Ca in the bentonite pore water is fundamental in order to define the potential migration of anhydrite during the thermal stage. If CaSO 4 (aq) is the predominant aqueous species, then anhydrite dissolves at the initial groundwater migration times through bentonite. However, if Ca 2+ is considered to be the dominant Ca species at the bentonite pore water, then anhydrite migrates towards the clay/granite interface. This is the main difference in the chemical systems considered in the three model approaches used in this work. The main process affecting the trace mineral behaviour in bentonite is cation exchange. This process controls the concentration of calcium, which results in a direct control of the calcite precipitation-dissolution

  14. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, K.; Nagano, T.; Kozai, N.; Nakashima, S.; Nakayama, S.; Muraoka, S.

    1991-01-01

    The following conclusions were obtained; (1) At 40degC, the average corrosion rate of SS41 carbon steel in wet bentonite was 0.025 mm/y. This is smaller than the value of 0.042 mm/y obtained in pure water at 40degC. However, at 95degC, the corrosion rate of SS41 carbon steel in wet bentonite was 0.27 mm/y, which is much larger than that in pure water at 95degC. (2) At 95degC, γ-FeO(OH) (lepidocrocite) was formed only in wet bentonite, and it was absent in pure water. Evaporation of moisture resulted in the formation of partial covering of bentonite, which promoted local corrosion. Consequently, γ-FeO(OH) was considered to be formed. (3) In wet bentonite at 95degC, α-Fe 2 O 3 (hematite) can be identified by means of colorimetry. The color of corrosion products is orangish, indicating the contribution of α-Fe 2 O 3 in iron hydroxides. (author)

  15. Development of construction methods for high-density bentonite barriers using premixed spraying. Part 1. Laboratory tests on methods of spraying roughly crushed bentonite and investigation of mixing methods

    International Nuclear Information System (INIS)

    Kobayashi, Ichizo; Tanaka, Toshiyuki; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    According to the present concept of geological disposal of radioactive waste, a disposal facility should consist of a bentonite-engineered barrier, a cementitious-engineered barrier, and natural barriers. To guarantee the validity of the geological disposal concept, the bentonite-engineered barrier must have high impermeability. However, an effective construction method for high-density bentonite-engineered barriers in narrow spaces such as those in radioactive waste geological disposal sites has not been developed. Therefore, the authors have developed a spraying method that has high workability in narrow spaces as a method of constructing bentonite-engineered barriers in narrow spaces. This paper describes the production method for a spraying material and an examination through spraying tests of the spraying distance, the shapes of the spray nozzles, and the ratio of spraying material to air. The test results confirmed that a bentonite-engineered barrier of dry density 1.6 Mg/m 3 could be constructed using the spraying method developed and that the appropriate spraying conditions for the construction of high-density bentonite barriers were obtained. Moreover, the authors developed a construction quality management method using the silicon oil specific-gravity method that can clearly and promptly indicate the dry density of the sprayed bentonite. (author)

  16. Investigation on the effect of seawater to hydraulic property and wetting process of bentonite

    International Nuclear Information System (INIS)

    Hasegawa, Takuma

    2004-01-01

    On high-level waste disposal, bentonite is one of the most promising material for buffer and backfill material. The hydraulic properties and wetting process of bentonite are important not only for barrier performance assessment but also for prediction of waste disposal environment, such as resaturation time and thermal distribution. In Japan, we should consider the effect of seawater for bentonite, because radioactive waste will be disposed of in coastal area and in marine sediment where seawater remained. However, it is not enough to understand the effect of seawater. Therefore, experimental study was conducted to investigate the effect of seawater on the hydraulic conductivity and wetting process of bentonite. The effect of seawater on hydraulic conductivity is significant for Na-bentonite, the hydraulic conductivity of Na-bentonite in seawater is one order to magnitude higher than that in distilled water. On the other hand, the hydraulic conductivity of Ca-bentonite is not influenced by seawater. The hydraulic conductivity of bentonite decreases as effective montmorillonite density increases. The effective montmorillonite density is ratio between the weight of montmorillonite and volume of porosity and montmorillonite. The hydraulic conductivity of bentonite is close related to swelling property since the hydraulic conductivity decrease as the swelling pressure increase. Wetting process of compacted bentonite could be evaluated by diffusion phenomena since infiltration rate and change of saturation rate and represented by diffusion equation. The effect of seawater on water diffusivity is significant for Na-type bentonite with low effective montmorillonite density. Except for that condition, the water diffusivity of bentonite is almost constant and is not influenced by effective montmorillonite density and seawater. (author)

  17. Development and validation of mechanical model for saturated/unsaturated bentonite buffer

    International Nuclear Information System (INIS)

    Yamamoto, S.; Komine, H.; Kato, S.

    2010-01-01

    Document available in extended abstract form only. Development and validation of mechanical models for bentonite buffer and backfill materials are one of important subjects to appropriately evaluate long term behaviour or condition of the EBS in radioactive waste disposal. The Barcelona Basic Model (BBM), which is one of extensions of the modified Cam-Clay model for unsaturated and expansive soil, has been developed and widely applied to several problems by using the coupled THM code, Code B right. Advantage of the model is that mechanical characteristics of buffer and backfill materials under not only saturated condition but also unsaturated one are taken account as well as swelling characteristics due to wetting. In this study the BBM is compared with already existing experimental data and already developed another model in terms of swelling characteristics of Japanese bentonite Kunigel-V1, and is validated in terms of consolidation characteristics based on newly performed controlled-suction oedometer tests for the Kunigel-V1 bentonite. Komine et al. (2003) have proposed a model (set of equations) for predicting swelling characteristics based on the diffuse double layer concept and the van der Waals force concept etc. They performed a lot of swelling deformation tests of bentonite and sand-bentonite mixture to confirm the applicability of the model. The BBM well agrees with the model proposed by Komine et al. and the experimental data in terms of swelling characteristics. Compression index and swelling index depending on suction are introduced in the BBM. Controlled-suction consolidation tests (oedometer tests) were performed to confirm the applicability of the suction dependent indexes to unsaturated bentonite. Compacted bentonite with initial dry density of 1.0 Mg/m 3 was tested. Constant suction, 80 kPa, 280 kPa and 480 kPa was applied and kept during the consolidation tests. Applicability of the BBM to consolidation and swelling behaviour of saturated and

  18. Microstructure of bentonite in relation to its physical properties within nuclear waste repositories

    International Nuclear Information System (INIS)

    Laine, E.

    1998-01-01

    High-level nuclear waste in Finland is planned to be placed in bedrock at a depth of several hundred metres. The spent fuel containers in boreholes drilled in the floors of deposition tunnels will be surrounded by bentonite blocks. The upper parts of the tunnels will be filled with mixture of bentonite and crushed rock. The behaviour of the bentonite around the containers during several years after deposition of nuclear waste should be predicted. In the present report, a short literature study of the microstructure of bentonite is presented. The report concentrates on bentonite MX-80. The use of stochastic imaging of microstructure was tested by using the Boolean simulation. Using stochastic imaging, the effect of changes of bentonite microstructure on its physical properties can be evaluated and predicted. (orig.)

  19. Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal

    International Nuclear Information System (INIS)

    Krajnak, Adrian; Viglasova, Eva; Galambos, Michal; Krivosudsky, Lukas; Universitat Wien, Vienna

    2017-01-01

    Bentonite deposits in Slovakia are systematically investigated as potential adsorbents for wastewater and radioactive waste treatment applications. Herein, adsorption properties (isotherms, kinetics and thermodynamics) of raw and organo-modified bentonites towards uranium species in aqueous solutions were investigated. Organo-modified bentonites was prepared by practical and simple chemical modification method with hexadecyltrimethylammonium bromide (denoted as HDTMA-bentonites). The adsorption processes of U(VI) on HDTMA-bentonites were spontaneous and endothermic, and well simulated by pseudo-second-order model. The maximum adsorption capacity of U(VI) was calculated to be 31.45 mg/g at pH 8.5 and T = 298 K. Slovak bentonites Jelsovy potok and Kopernica, their natural and HDTMA-modified forms might be a promising sorbent for the treatment of U(VI) contaminants in aqueous solutions. (author)

  20. Thermal characteristics of highly compressed bentonite

    International Nuclear Information System (INIS)

    Sueoka, Tooru; Kobayashi, Atsushi; Imamura, S.; Ogawa, Terushige; Murata, Shigemi.

    1990-01-01

    In the disposal of high level radioactive wastes in strata, it is planned to protect the canisters enclosing wastes with buffer materials such as overpacks and clay, therefore, the examination of artificial barrier materials is an important problem. The concept of the disposal in strata and the soil mechanics characteristics of highly compressed bentonite as an artificial barrier material were already reported. In this study, the basic experiment on the thermal characteristics of highly compressed bentonite was carried out, therefore, it is reported. The thermal conductivity of buffer materials is important because the possibility that it determines the temperature of solidified bodies and canisters is high, and the buffer materials may cause the thermal degeneration due to high temperature. Thermophysical properties are roughly divided into thermodynamic property, transport property and optical property. The basic principle of measured thermal conductivity and thermal diffusivity, the kinds of the measuring method and so on are explained. As for the measurement of the thermal conductivity of highly compressed bentonite, the experimental setup, the procedure, samples and the results are reported. (K.I.)

  1. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  2. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinghao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Cheng, Cheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xiao, Chengjian, E-mail: xiaocj@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Shao, Dadong, E-mail: shaodadong@126.com [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, Zimu, E-mail: xzm@mail.ustc.edu.cn [Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Wang, Jiaquan; Hu, Shuheng [Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Li, Xiaolong; Wang, Weijuan [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-07-31

    Highlights: • PANI/bentonie can be synthesized by simple plasma technique. • PANI/bentonie has an excellent adsorption capacity for trace uranium in solution. • U(VI) adsorption on PANI/bentonite is a spontaneous and endothermic process. - Abstract: Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH < 6.5 because of the strong complexation, and inhibits U(VI) adsorption at pH > 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  3. Evaluation of brazilian bentonites as additive in the radwaste cementation

    International Nuclear Information System (INIS)

    Tello, C.C.O. de.

    1988-01-01

    The behavior of some Brazilian bentonites has been evaluated, concerning to their use as additive in the radwaste cementation. The purpose of the bentonite is to retain the radioelements in the final product in leaching process. Experiments to determine properties such as compressive strenght, viscosity, set time leaching and cesium sorption have been carried out to this evaluation. After one-year test, the results show that the bentonites greatly reduce the cesium release. A literature survey about cementation process and plants and about the cement product characteristics has been made in order to obtain a reliable final product, able to be transported and storaged. Some leaching test methods and mathematical models, that could be applied in the evaluation of cement products with bentonite have been evaluated. (author) [pt

  4. Alteration of bentonite when contacted with supercritical CO2

    Science.gov (United States)

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  5. DEPOSITS AND MINING POTENTIAL OF BENTONITE IN CROATIA

    Directory of Open Access Journals (Sweden)

    Mario Klanfar

    2012-07-01

    Full Text Available Bentonite is one of the materials that is planed to be used for buffering and backfilling in spent nuclear fuel repositories, within deep crystalline rock. There are several locations in Croatia that bentonite deposits and occurrences are found on. Some were exploited in past, and others were more or less explored. This paper presents overview of bentonite deposits, basic properties and potential resources, and mining practices in Croatia. Largest exploited deposits are found in area of Poljanska luka, Gornja Jelenska and Bednja. Surface and underground methods (drift and fill, sublevel caving were used during exploitation. In the area of Svilaja and Lika are found potentially valuable deposits that were never exploited. Montmorilonite content ranges form 20-50% to 57-89%. Most deposits contain bentonite beds with thickness 0,4-1,6 m, and have plunge 10°-30°. Few exceptions are nearly horizontal and thick more than 5 m and even 12 m. One is declined at 70° and up to 40m thick. Proven reserves are about 2,3 Mt with some level of uncertainty. Average production per mine during exploitation period can be assumed to be several thousands t/y.

  6. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    Science.gov (United States)

    Parolo, María E.; Pettinari, Gisela R.; Musso, Telma B.; Sánchez-Izquierdo, María P.; Fernández, Laura G.

    2014-11-01

    The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm-1 with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination.

  7. Preliminary Study on Benzoic Acid Adsorption from Crude Active Coals and Bentonite

    Directory of Open Access Journals (Sweden)

    Abbes Boucheta

    2016-04-01

    Full Text Available We studied the adsorption of pollutant benzoic acid by the modified bentonite of Maghnia (west of Algeria, and coal (Coal from the mines, southwest of Algeria, Bechar area under three forms, crude and activated. Kinetic data show that the balance of bentonite (as amended adsorbs organic acids better than activated and raw coal. Indeed, the intercalation of bentonite with benzoic acid causes an improvement in the texture of porous material, which allows its use in the adsorption of organic compounds. The adsorption isotherms (Langmuir and Freundlich indicate that the adsorption of benzoic acid by the coal and bentonite yielded results favorably. The results obtained showed the practical value of using the activated coal and bentonite (as amended in the field of remediation of water contaminated with organic pollutants

  8. Investigation of alteration behaviour of compacted bentonite contracted with carbon steel for 10 years

    International Nuclear Information System (INIS)

    Suyama, Tadahiro; Ueno, Kenichi; Sasamoto, Hiroshi

    2008-03-01

    To evaluate long term behavior of corrosion for carbon steel in compacted bentonite, and to evaluate long term stability of bentonite, corrosion experiments were conducted using synthetic sea water and synthetic groundwater at 50 and 80degC for 10 years under anaerobic atmosphere. In the present study, the samples of compacted bentonite after experiments were investigated to understand the alteration behavior of bentonite by iron-bentonite interactions. Results were summarized below. Iron generated by corrosion of carbon steel was migrated into compacted bentonite further in the synthetic seawater case than in the synthetic groundwater case. Result of TEM observation for the sample of synthetic sea water case at 80degC showed that the original layer structure for clay minerals was maintained and the layer distance was about 12[A] which was similar to the layer distance of normal 2:1 smectite. Thus, it was suggested that there was no change in smectite before and after experiments. Iron generated by corrosion of carbon steel was migrated into compacted bentonite in anaerobic condition case but scarcely migrated in aerobic condition case. Results of EPMA analysis indicated that the maximum migration depth of iron in compacted bentonite was about 0.2 mm for sample in synthetic sea water at 80degC under anaerobic condition. Results of XRD analysis for the sample in which iron migration in compacted bentonite was observed showed that there was no corrosion product in compacted bentonite and the structure of clay mineral in bentonite was di-octahedral. Furthermore, the result of XRD analysis under relative humidity controlled condition suggested that the swelling property of sample after experiment was similar to that of initial Na-type smectite. Therefore, it was supposed that the initial Na-type smectite did not change during the experiment. Batch type experiments with different temperature, solutions and duration have been conducted to understand the alteration

  9. Calculation of saturated hydraulic conductivity of bentonite

    International Nuclear Information System (INIS)

    He Jun

    2006-01-01

    Hydraulic conductivity test has some defects such as weak repeatability, time-consuming. Taking bentonite as dual porous media, the calculation formula of the distance, d 2 , between montmorillonite in intraparticle pores is deduced. Improved calculated method of hydraulic conductivity is obtained using d 2 and Poiseuille law. The method is valid through the comparison with results of test and other methods. The method is very convenient to calculate hydraulic conductivity of bentonite of certain montmorillonite content and void ratio. (authors)

  10. Sorption of natural uranium by algerian bentonite

    International Nuclear Information System (INIS)

    Megouda, N.; Kadi, H.; Hamla, M.S.; Brahimi, H.

    2004-01-01

    Full text.Batch sorption experiments have been used to assess the sorption behaviour of uranium onto natural and drilling bentonites. The operating parameters (pH, aolis-liquid ratio, particle size, time and initial uranium concentration) influenced the rate of adsorption. The distribution coefficient (Kd) range values at equilibrium time are 45.95-1079.26 ml/g and 32.81-463053 ml/g for the drilling and natural bentonites respectively. The equilibrium isotherms show that the data correlate with both Freundlich and Langmuir models

  11. Swelling pressure in compacted bentonite below 0°C

    International Nuclear Information System (INIS)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf

    2010-01-01

    Document available in extended abstract form only. Bentonite is a common component in many concepts for underground storage of high level radioactive waste. During its lifetime, an underground repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg. C. From a safety assessment perspective, it is therefore essential to investigate and understand the behavior of bentonite below 0 deg. C. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg. C - +25 deg. C. The swelling pressure response has been recorded continuously. The samples have been varied with respect to bentonite type (e.g. calcium or sodium dominated), smectite content and density. The general observation is that the pressure of the bentonite lowers in a temperature range between 0 deg. C and a specific (negative) temperature T c , which is strongly correlated to the swelling pressure measured above 0 deg. C. Consequently, Tc decreases (i.e. becomes more negative) with increased density or smectite content. At T c , swelling pressure is completely lost. Furthermore, a very weak pressure dependence is observed at temperatures above 0 deg. C. This dependence is however strictly dependent on sample density. For any type of bentonite at high enough densities above 0 deg. C, the slope of the P-T curve is negative and becomes more negative with increasing density. For Na-dominated bentonites at lower densities, on the other hand, the slope is positive. An important observation is that no pressure increase was observed for any of the tested bentonite samples as the transition to temperatures below 0 deg. C was made. Since water expands as it freezes, this observation indicates that no ice is formed in compacted bentonite as the 0 deg. C level is passed. The observed swelling

  12. Natural analogue study for interaction between alkaline groundwater and bentonite at Mangatarem region in the Philippines

    International Nuclear Information System (INIS)

    Tsukada, Y.; Fujita, K.; Nakabayashi, R.; Sato, T.; Yoneda, T.; Yamakawa, M.; Fujii, N.; Namiki, K.; Kasama, T.; Alexander, R.; Arcilla, C.; Pascua, C.

    2012-01-01

    Document available in extended abstract form only. Alteration of bentonite by alkaline leachate from cement/concrete in geological repositories for TRU radioactive waste is deleterious to bentonite performance as a buffer material. Although there have been many laboratory studies on high pH fluid-bentonite interaction for longer term understanding of the behavior of bentonites as buffer materials, different time scales between laboratory experiments and real disposal conditions impede its proper assessment. Thus, a natural analogue study can play an important role in (a) bridging the timescale gaps between laboratory experiments and real disposal conditions and (b) verifying the modeling studies of bentonite stability. Previous natural analogue studies on the cement-bentonite interaction are relatively few. Therefore, this study focuses on the process of serpentinization in ophiolitic rocks which resemble the process of leaching high pH ground waters from cement materials and report the results of study about alkaline water-bentonite interaction in Mangatarem, Philippines. In Mangatarem, in west central Luzon Island in the northern Philippines, there are bentonite quarries in the Aksitero Formation, which is part of the Zambales Ophiolite. Several alkaline hot springs derived from ongoing serpentinization of the ophiolite can be found in close proximity to the bentonite.Through a site characterization (including a foot survey, a series of boreholes and trench excavation in the Saile quarry in Mangatarem, the interface between the bentonite and the pillow lava of the upper ophiolite was confirmed, and chrysotile, a low temperature type of serpentine, was observed in the fault filling by XRD analysis. In the pillow lava, serpentine was also observed inside the fault that cut across both the bentonite and the pillow lava. From these facts, low temperature high pH fluids appears to have passed through the faults and came into contact with the bentonite. In order to

  13. GAMBARAN DISTRIBUSI RABIES DI KABUPATEN SIKKA PROVINSI NUSA TENGGARA TIMUR 2004-2008

    Directory of Open Access Journals (Sweden)

    Fridolina Mau

    2013-09-01

    Full Text Available AbstractRabies has long been known as one of the major public healht problems in Sikka district, East Nusa Tenggara Province,Indonesia. Flores is an isolated preveiously rabies- free. It started with the importation of three dogs from rabies endemicSulawesi in September 1997. The rabies virus is present in the saliva of infected animals; all warm-blooded animals aresusceptible to rabies, and some may serve as natural reservoirs of the virus. Rabies is still a problem for world healthincluding Indonesia. Data of deathcase of rabies (lyssa in Indonesia register 125 cases each year. Rabies in Indonesia is aserious health problem because almost fatal after clinical symptom of the disease with death rate of 100%. Since 2004 toDecember 2009 rabies spread to 24 provinces in East Nusa Tenggara Province. Number of cases due to bite of a mad dogwas 16.000 cases. The aim of this study is to know distribution of rabies casse and the main control measures isimmunizing dogs. Tipe of this study is cross sectional. The result of this study showed the improvement in the last five years(2004 until August 2008 of the occurences of dog bite in cases and human deaths highest in 128 cases (32,48% incommunity health centers Waipare and population dog highest in Kewapante subdistrict 7213 (26,27% although thecoverage of immunization was very low that was 2523 (10,77% out of 6210 population. In average the dog bite casesoccurred in April.Key Word; Description, Distribution, Rabies

  14. Activation of a Ca-bentonite as buffer material

    Science.gov (United States)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  15. Theory and calculation of water distribution in bentonite in a thermal field

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1988-09-01

    Highly compacted bentonite is under consideration for use as a buffer material in geological repositories for high-level radioactive wastes. To assess the suitability of bentonite for this use, it is necessary to be able to predict the rate and spatial extent of water uptake and water distribution in highly compacted bentonite in the presence of thermal gradients. The ''Buffer Mass Test'' (BMT) was conducted by workers in Sweden as part of the Stripa Project. The BMT measured uptake and spatial distributions of water infiltrating annuli of compacted MX-80 sodium bentonite heated from within and surrounded by granite rock; the measurements provided a body of data very valuable for comparison to results of theoretical calculations. Results of experiments on adsorption of water by highly compacted MX-80 bentonite have been reported by workers in Switzerland. The experiments included measurements of heats of immersion and adsorption-desorption isotherms. These measurements provide the basis for prediction of water vapor pressures in equilibrium with bentonite having specified adsorbed water contents at various temperatures. The present work offers a phenomenological description of the processes influencing movement of water in compacted bentonite in the presence of a variable thermal field. The theory is applied to the bentonite buffer-water system in an assumed steady state of heat and mass transport, using critical data derived from the experimental work done in Switzerland. Results of the theory are compared to distributions of absorbed water in buffers observed in the Swedish BMT experiments. 9 refs., 2 figs

  16. Photophysical and adsorption properties of pyronin B in natural bentonite clay dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Mohammad Reza [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey); Kaya, Mehmet [Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, 53100 Rize (Turkey); Gür, Bahri; Onganer, Yavuz [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey); Meral, Kadem, E-mail: kademm@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum (Turkey)

    2015-12-30

    Graphical abstract: The molecular aggregation of PyB in bentonite aqueous dispersion is observed by using molecular absorption spectrum. - Highlights: • Molecular behavior of PyB adsorbed on bentonite was spectroscopically followed. • H-aggregates of PyB in bentonite aqueous dispersion were formed. • The adsorption characteristics of PyB on bentonite particles were determined. - Abstract: The present study focused on the adsorption and photophysical properties of pyronin B (PyB) in bentonite aqueous dispersion. The photophysical properties of PyB in the aqueous dispersion were studied by using UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. In this concept, the interaction of the dye with bentonite particles in the aqueous dispersion was spectroscopically followed depending on certain parameters such as interaction time, pH and the dye concentration. Obtained spectral data revealed that the aggregate structures (H-type) of PyB in the aqueous dispersion were formed in the dye concentration range studied. The non-fluorescence nature of H-aggregates and the clay minerals governed the fluorescence property of PyB. The mentioned non-radiative processes caused the fluorescence lifetime of the dye to decrease compared to that in water. The adsorption process of PyB on bentonite was examined depending on contact time and initial adsorbate concentration. An adsorption isotherm was good-fitted by the Freundlich model with a linear regression correlation value of 0.999. The adsorption of PyB on bentonite particles was in agreement with pseudo second-order kinetics.

  17. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Vinsova, H.; Koudelkova, M.; Konirova, R.; Vecernik, P.; Jedinakova-Krizova, V.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. It is generally known that bentonite materials show an excellent cation-exchange capacity and, on the other hand, a poor uptake of anions. Technetium occurs under aerobic conditions in its most stable oxidation state (+VII) as pertechnetate, which makes a question of its sorption on bentonite more complex when compared with e.g. Cs + or Sr 2+ . To increase the K d values for technetium sorption on bentonite, it is necessary to carry out the experiments under anaerobic conditions in the presence of reducing agent, which is capable to lower the oxidation state of technetium which enables its successful immobilization. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing conditions. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ , Fe) with bentonite, the effect of solid:aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. (authors)

  18. The Effect of Radioactive Lantern Mantle Powder and Bentonite-Zeoloite Minerals on the Volume of Blood Loss, Bleeding and Clotting Time

    Directory of Open Access Journals (Sweden)

    M Atefi

    2009-04-01

    Full Text Available ABSTRACT Introduction & Objective: Over the past decade the US army has widely studied new technologies for stopping sever hemorrhages and has introduced an effective Zeolite based hemostatic agent. On the other hand, Mortazavi and his colleagues previously reported the bio-stimulatory effects of the topical application of radioactive lantern mantle powder on wound healing. Their subsequent studies showed significant changes in some histological parameters concerning healing. In this light, here the bio-stimulatory effect of burned radioactive lantern mantles powder as well as two minerals bentonite and zeolite are presented. Materials & Methods: This experimental study was conducted in the center for radiological studies, Shiraz University of Medical Sciences in 2008. Fifty male Wistar rats were divided randomly into 5 groups of 10 animals each. Following anesthesia, animals’ tails were cut at a thickness of 5 mm by using a surgical scissor. No intervention was made on the animals of the 1st group. The 2nd to 4th group received topical non-radioactive lantern mantle powder, radioactive lantern mantle powder, Bentonite mineral or a mixture of Bentonite-Zeoliteat minerals respectively. After treatment with above mentioned agents, the volume of blood loss was measured using a scaled test-tube. The bleeding time and clotting time were also measured using a chronometer. SPSS software was used for statistical analysis. ANOVA was used for comparing the means of each parameter in the 5 groups. Results: The the volume of blood loss, bleeding and clotting times in control animals were 4.39±1.92 cc, 112.10±39.60 sec and 94.9±54.26 sec, respectively. In the 5th group in which the animals were treated with a mixture of Bentonite-Zeoliteat minerals, the volume of blood loss, bleeding and clotting times were 1.31±0.60 cc, 34.50±4.65 sec and 24.2±4.61 sec, respectively. Conclusion: This is the 1st investigation that studied the alterations of bleeding

  19. Decontamination of cesium, strontium, and cobalt from aqueous solutions by bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.A. [Univ. of the Punjab, Lahore (Pakistan); Khan, S.A. [Government F.C. College, Lahore (Pakistan)

    1996-12-31

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic in nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.

  20. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Koudelkova, M.; Vinsova, H.; Konirova, R.; Ernestova, M.; Jedinakova-Krizova, V.; Tereesha, M.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing condition. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ ) with bentonite, the effect of solid: aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. The 8 days kinetics of the perrhenate and pertechnetate sorption on bentonite was described mathematically with a tendency to predict long-term behavior of studied systems. (authors)

  1. Studies on mechanical behavior of bentonite for development of the constitutive model

    International Nuclear Information System (INIS)

    Sasakura, Tsuyoshi; Kuroyanagi, Mikio; Okamoto, Michitaka

    2002-02-01

    To integrate the system for evaluation of long-term hydraulic condition in near field of TRU waste disposal, series of laboratory tests were conducted to investigate the effect of (1) cation exchange of Na-bentonite for Ca ion, and (2) the swelling behavior of bentonite, on its mechanical and hydraulic properties. For the purpose of this study, same lot of bentonite was used in a series of tests to obtain consistent data. A constitutive model of clayey materials, called Cam-clay model, was expanded conceptually to express the effects mentioned above. The research results of this year are summarized below; 1) Some basic properties such as cation exchange capacity, particle density, grain size distribution, compaction-characteristics and water content were obtained. To examine the effect of previous swelling history of bentonite on its swelling characteristics and hydraulic and mechanical properties, specimens, which generated swelling deformation to various volumetric strain levels, were specially prepared and used in the following tests. Swelling pressure tests, swelling deformation tests, permeability tests were conducted to observe one dimensional swelling characteristics and hydraulic properties of Na-bentonite and Ca-bentonite. High-pressured triaxial consolidated-undrained (CU) compression tests and high-pressured consolidation tests were also carried out to investigate the compression, swelling, and shearing behavior of each type of bentonite. 2) As indicated in previous studies, two important phenomena (1) bentonite possesses remarkable swelling capacity, (2) cation exchange of Na-bentonite for Ca-ion lead increasing of hydraulic conductivity, were confirmed in the test results. From the swelling deformation test results and published data, it was found that swelling capacity of bentonite has no dependency on previous swelling history and it could be easily expressed as a function of void ratio e. It was also confirmed that swelling pressure and water

  2. Long-term alteration of bentonite in the presence of metallic iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, Sirpa; Kiviranta, Leena (BandTech Oy (Finland)); Carlsson, Torbjoern; Muurinen, Arto (VTT (Finland)); Svensson, Daniel (Svensk Kaernbraenslehantering AB (Sweden)); Sasamoto, Hiroshi; Yui, Mikatzu (JAEA (Japan)); Wersin, Paul; Rosch, Dominic (Gruner Ltd (Switzerland))

    2010-05-15

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two iron-bentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5-1.6 g/cm3) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B+Tech in airtight steel vessels filled with N{sub 2} and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO{sub 3}, or 0.05 M Na{sub 2}SO{sub 4}. The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H{sub 2}, most possibly caused by corrosion of the cast iron, and CO{sub 2}, mainly as a result of carbonate dissolution. The eight years old external solution exhibited, inter alia

  3. Long-term alteration of bentonite in the presence of metallic iron

    International Nuclear Information System (INIS)

    Kumpulainen, Sirpa; Kiviranta, Leena; Carlsson, Torbjoern; Muurinen, Arto; Svensson, Daniel; Sasamoto, Hiroshi; Yui, Mikatzu; Wersin, Paul; Rosch, Dominic

    2010-05-01

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two iron-bentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5-1.6 g/cm 3 ) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B+Tech in airtight steel vessels filled with N 2 and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO 3 , or 0.05 M Na 2 SO 4 . The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H 2 , most possibly caused by corrosion of the cast iron, and CO 2 , mainly as a result of carbonate dissolution. The eight years old external solution exhibited, inter alia, reducing conditions, a pH of

  4. Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites

    Directory of Open Access Journals (Sweden)

    Jia Hanzhong

    2017-09-01

    Full Text Available Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.

  5. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  6. Retention of cesium by alkylammonium salt modified bentonite: experiments and modeling

    International Nuclear Information System (INIS)

    Lin, Shih-Min; Chen, Jiann-Ruey; Wang, Tsing-Hai; Teng, Shi-Ping

    2010-01-01

    Document available in extended abstract form only. Application of bentonite as engineering barriers as well as back-filled material to radioactive waste repository is widely conducted around the world. It was reported that organic-modified bentonite is able to adsorb anionic radionuclides but its sorptive capabilities toward cationic radionuclides would decrease at the same time. In order to evaluate the influence of alkyl moiety of modification reagents on sorption of cationic radionuclides, surface modification of bentonite by hexadecyltrimethyl ammonium (HTMA, 3 deg.) and by hexa-decylamine (Hamine, 1 deg.) was prepared. Their sorption capabilities were examined by Cs sorption experiments and quantified as sorption equilibrium constants (in terms of log K) by using surface complexation model MINEQL+ 4.6. In order of the decrease of sorption capability, it is observed that MX 80 > Hamine-modified > HTMA-modified bentonite. Moreover, similar to the performance of MX 80, Hamine-modified bentonite reached a sorption plateau under alkaline environments while HTMA-modified one seemed to be insensitive to the pH variation. To explain the observations, it was assumed that Cs sorption was mainly contributed by structure (= X) and edge (= SOH) sorption sites on bentonite surfaces. It was observed that the log K of structure sites of both Hamine- and HTMA-modified bentonite was more negative than that of raw bentonite. It was taken as evidence that either Hamine or HTMA species were less capable of exchanging with Cs ions than Na ions (exchangeable cation on MX 80 surfaces) do. This also implied that the sorption affinity of Hamine was greater than HTMA toward structure sites. However, it was difficult to explain the influence of organic modification on sorption at edge sorption sites. The HTMA-modified bentonite had the most negative log K value, while Hamine-modified one showed the least negative log K. it could be only explained by the structure changes of the organo

  7. Mineralogical behaviour of bentonites in open and closed systems

    International Nuclear Information System (INIS)

    Herbert, H.J.; Kasbohm, J.

    2004-01-01

    Mineralogical and chemical changes of bentonites were investigated in a natural analogue study and in laboratory experiments. As a working hypothesis we assumed that in geological, i.e. open systems, bentonites may be penetrated over geological time scales by larger water volumes than high compacted bentonites used as technical barriers in repositories in salt formations. Under this assumption open geological systems are characterised by low solid/liquid ratios and closed repository systems by high solid/liquid ratios. Consequently in laboratory experiments the mineralogical changes were investigated under different solid/liquid ratios and compared with results of a natural analogue study. In the natural analogue study in deep boreholes in the East Slovakian Basin the expandability of montmorillonite and the degree of transformation in illite-smectite (IS) mixed layer structures was found to be dependent not only on depth and temperature but also on the salinity of the pore waters. In this open geological system with a comparatively low solid/liquid ratio the observed changes in the montmorillonite were significantly different than those observed in the laboratory study on compacted MX-80 bentonite. (authors)

  8. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.

    1994-02-01

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs + and Sr 2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs + and Sr 2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  9. Mineralogy and geochemistry of bauxite and bentonite deposits from Mozambique

    NARCIS (Netherlands)

    Dos Muchangos, A.C.

    2000-01-01

    Results of mineralogical and geochemical studies of bauxites, kaolinitic clays and bentoniteS from Mozambique are presented in this thesis. The bauxite and kaolinitic clay deposits in Penhalonga area (in the central western part of Mozambique) are associated with Precambrian magmatic rocks and

  10. The 20042008 dome-building eruption at Mount St. Helens, Washington: Epilogue

    Science.gov (United States)

    Dzurisin, Daniel; Moran, Seth C.; Lisowski, Michael; Schilling, Steve P.; Anderson, Kyle R.; Werner, Cynthia A.

    2015-01-01

    The 20042008 dome-building eruption at Mount St. Helens ended during winter 2007–2008 at a time when field observations were hampered by persistent bad weather. As a result, recognizing the end of the eruption was challenging—but important for scientists trying to understand how and why long-lived eruptions end and for public officials and land managers responsible for hazards mitigation and access restrictions. In hindsight, the end of the eruption was presaged by a slight increase in seismicity in December 2007 that culminated on January 12–13, 2008, with a burst of more than 500 events, most of which occurred in association with several tremor-like signals and a spasmodic burst of long-period earthquakes. At about the same time, a series of regular, localized, small-amplitude tilt events—thousands of which had been recorded during earlier phases of the eruption—came to an end. Thereafter, seismicity declined to 10–20 events per day until January 27–28, when a spasmodic burst of about 50 volcano-tectonic earthquakes occurred over a span of 3 h. This was followed by a brief return of repetitive “drumbeat” earthquakes that characterized much of the eruption. By January 31, however, seismicity had declined to 1–2 earthquakes per day, a rate similar to pre-eruption levels. We attribute the tilt and seismic observations to convulsive stagnation of a semisolid magma plug in the upper part of the conduit. The upward movement of the plug ceased when the excess driving pressure, which had gradually decreased throughout the eruption as a result of reservoir deflation and increasing overburden from the growing dome, was overcome by increasing friction as a result of cooling and crystallization of the plug.

  11. Study on the properties of Gaomiaozi bentonite as the buffer/backfilling materials for HLW disposal

    International Nuclear Information System (INIS)

    Liu Xiaodong; Luo Taian; Zhu Guoping; Chen Qingchun

    2007-12-01

    Systematic studies including mineral composition and structure, physico- chemical properties and thermal properties have been conducted on Gaomiaozi bentonite, Xinghe County, Inner Mongolia Autonomous Region. The compaction characteristics of bentonite and the influence of additive to bentonite have been discussed. The analysis of mineral composition and structure show that the bentonite ores are dominated by montmorillonite. Preliminary studies of the characteristics of ores indicated that No-type bentonite from the deposit has good absorption, excellent swelling and high cation exchangeability. The compressibility of bentonite will be improved by adding the additives such as quartz sand. The studies indicated that the characteristics of Gaomiaozi bentonite can satisfy the requirement of buffer/backfilling materials for HLW repository and the ores can be selected as the preferential candidate to provide buffer/backfill- ing materials for HLW repository in China. (authors)

  12. Study on the properties of Gaomiaozi bentonite as the buffer/backfilling materials for HLW disposal

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Liu [East China Inst. of Technology, Fuzhou (China); [Key Laboratory of Nuclear Resources and Environment of Ministry of Education, Fuzhou (China); Taian, Luo; Guoping, Zhu; Qingchun, Chen [East China Inst. of Technology, Fuzhou (China)

    2007-12-15

    Systematic studies including mineral composition and structure, physico- chemical properties and thermal properties have been conducted on Gaomiaozi bentonite, Xinghe County, Inner Mongolia Autonomous Region. The compaction characteristics of bentonite and the influence of additive to bentonite have been discussed. The analysis of mineral composition and structure show that the bentonite ores are dominated by montmorillonite. Preliminary studies of the characteristics of ores indicated that No-type bentonite from the deposit has good absorption, excellent swelling and high cation exchangeability. The compressibility of bentonite will be improved by adding the additives such as quartz sand. The studies indicated that the characteristics of Gaomiaozi bentonite can satisfy the requirement of buffer/backfilling materials for HLW repository and the ores can be selected as the preferential candidate to provide buffer/backfill- ing materials for HLW repository in China. (authors)

  13. Thermodynamic understanding on swelling pressure of bentonite buffer

    International Nuclear Information System (INIS)

    Sato, Haruo

    2007-01-01

    Smectite (montmorillonite) is a major clay mineral constituent of the bentonite buffer and backfilling materials to be used for the geological disposal of high-level radioactive waste. Swelling pressure of the bentonite buffer occurring in the permeation process of moisture was estimated based on thermodynamic theory and the thermodynamic data of interlayer water in smectite in this study. The relative partial molar Gibbs free energies (ΔG H2O ) of water on the smectite surface were measured as a function of water content (0-83%) in a dry density range of 0.6-0.9 Mg/m 3 . Purified Na-smectite of which interlayer cations were exchanged with Na + ions and soluble salts were completely removed, was used in this study. Obtained ΔG H2O decreased with an increase of water content in the range of water content lower than about 40%, and similar trends were obtained to data of Kunipia-F bentonite (Na-bentonite) of which smectite content was approximately 100 wt.%. From the specific surface area of smectite (ca. 800 m 2 /g) and the correlation between ΔG H2O and water content, water affected from the surface of smectite was estimated to be up to approximately 2 water layers. Swelling pressure versus smectite partial density (montmorillonite partial density) was estimated based on ΔG H2O from the chemical potential balance of water in equilibrium between the free water and moisturized smectite, and compared to data measured for various kinds of bentonites of which smectite contents were respectively different. The estimated swelling pressures were in good agreement with the measured data. (author)

  14. Decantation time of evaluation on bentonite clays fractionation

    International Nuclear Information System (INIS)

    Gomes, J.; Menezes, R.R.; Neves, G.A.; Lira, H.L; Santana, L.N.L.

    2009-01-01

    Bentonite clays present a great number of industrial uses, from petroleum to pharmaceutics and cosmetic industry. The bentonite clay present particles with very fine particles that is responsible by the vast application of these materials. However, commercial clays present wide particle size distribution and a significant content of impurities, particularly quartz, in the form of silt and fine silt. So, the aim of this work is to analyze the effect of the stirring and decantation time in the deagglomeration, purification and size separation of the bentonite clay particles from Paraiba. The clays were characterized by X-ray diffraction and particle size distribution. Based on the results it was observed the decantation time give the elimination of the agglomerates formed by submicrometric particles. The uses of decantation column give separation of the fraction below 200nm. (author)

  15. Coupled transport/reaction model of the properties of bentonite buffer in a repository

    International Nuclear Information System (INIS)

    Liu, Jinsong; Neretnieks, I.

    1996-11-01

    Two mechanisms that can affect the long-term properties of the bentonite buffer surrounding the canister in a final repository of spent nuclear fuel are studied. The two mechanisms are the oxidation of reducing minerals in the buffer by radiolytically generated oxidant, and the low-temperature alteration of Na-montmorillonite in the bentonite buffer to illite. A coupled mass transport with geochemical reaction model is used. Four cases have been considered, which differ in the assumptions of whether the radiolytically generated oxidant first oxidizes uraninite in the spent fuel, or it is directly transported to the bentonite to oxidize the pyrite. The cases also differ in the assumptions of varying initial concentrations of pyrite in the bentonite buffer. The modelling results show that, at low temperatures, the sodium montmorillonite in the bentonite buffer is chemically stable with respect to the chemical conditions of the near field. Alteration to illite and thus an increase in hydraulic conductivity and loss of swelling ability is not likely to occur. The radiolytically generated oxidant can possibly oxidize the reducing minerals in the bentonite buffer. A redox front can be generated. In all the cases considered in this study, the modelling results indicate that slightly less than 1% by weight of pyrite in the bentonite buffer will be able to ensure that the redox front does not penetrate through the bentonite buffer within 1 million years. 31 refs

  16. Migration behaviour of Pu released from Pu-doped glass in compacted bentonite

    International Nuclear Information System (INIS)

    Ashida, T.; Kohara, Y.; Yui, M.

    1994-01-01

    In order to investigate the coupled behavior of Pu release from the waste glass and transport in bentonite, a migration experiment with compacted sodium-type bentonite saturated with distilled water was carried out at room temperature, in which Pu-doped borosilicate glass was sandwiched. Under these conditions, leaching of Pu from the glass, diffusion and sorption of Pu in the compacted bentonite occur simultaneously. (orig.)

  17. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    International Nuclear Information System (INIS)

    Butcher, B.M.; Novak, C.F.; Jercinovic, M.

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., ≤ 10 -18 m 2 ) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs

  18. Na-smectite s in the Cala de Tomate bentonite deposit (Spain): a natural analogue of the salinity effect on the bentonite barrier of a rad waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Fernandez, A.M.; Cozar, J.S. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT/DIRE/CEAGP), Madrid (Spain); Delgado, A.; Reyes, E. [Ciencias de la Tierra y Quimica Ambiental Estacion Experimental del Zaidin Dpt., Granada (Spain); Fernandez-Soler, J.M. [Granada Univ., Dpt. de Mineralogia y Petrologia (Spain); Tsige, M. [Facultad de Ciencias Geologicas, Dpt. de Geodinamica, Madrid (Spain)

    2005-07-01

    Within the framework of the ENRESA programme for the assessment of the long-term behaviour of the bentonite-engineered barrier for a deep radwaste geological repository, analogue studies on several bentonite deposits are conducted at CIEMAT. Among these analogue studies, the thermal effect induced by volcanic intrusions on bentonite deposits is highlighted. In the Cabo de Gata volcanic region, there are several analogue scenarios where these studies have been performed, such as the Cala de Tomate bentonite deposit that was intruded by a pyroxene andesite volcanic dome. However, geological, mineralogical, physicochemical, geochemical and stable isotopic data obtained from the smectites do not allow to establish any analogy with the thermal effect expected on the bentonite-engineered barrier of a deep geological repository after burial. Thus, the bentonitisation processes took place after the intrusion of the dome, as a result of meteoric diagenesis intensively developed on faulting zone affecting the parent pyroclastic acid tuffs. This faulting process occurred after the dome intrusion. However, the physicochemical characteristics of these smectites, specially the exchangeable cations, allow to consider this bentonite deposit as a natural analogue of the saline effect on the clayey barrier. This analogy has been established because Na-smectites are present in this deposit and, up to our present knowledge, it is the first time that these smectites occur naturally in the Cabo de Gata-La Serrata de Nijar volcanic region. As a consequence, the main objectives of this work are: i) to characterise these smectites; ii) to establish their genesis and processes affecting them after their formation and iii) to identify the effects on the bentonite-engineered barrier should it were affected by a Na-rich saline waterfront. (authors)

  19. O desafio da convivência: assessoria de diversidade e apoio aos cotistas (2004-2008 El desafío de la convivencia: asesoría de diversidad y apoyo a los cotizantes (2004-2008 The challenge of conviviality: advisory For diversity and support to quota holders (2004-2008

    Directory of Open Access Journals (Sweden)

    Jaqueline Gomes de Jesus

    2013-01-01

    Full Text Available Em 2003, a Universidade de Brasília adotou uma política de ações afirmativas para pessoas negras, o Sistema de Cotas para Negros. Em 2004, foi criada a Assessoria de Diversidade e Apoio aos Cotistas - ADAC. Ante à demanda do movimento social por uma sala de apoio aos estudantes, desenvolveu-se o Centro de Convivência Negra - CCN, espaço aberto a toda a comunidade acadêmica. O presente artigo apresenta a experiência da ADAC até 2008 e analisa os desafios da convivência entre estudantes cotistas e o espaço acadêmico a partir de pesquisa qualitativa sobre percepções, sentimentos e expectativas acerca do CCN, na forma de questionários com uma pergunta de evocação ao CCN, aplicados a 35 estudantes universitários oriundos do Sistema de Cotas para Negros frequentadores do CCN. Os dados de evocação foram analisados utilizando-se o software Evoc. Os resultados indicam que o CCN, no período analisado, era reconhecido por seus usuários como um espaço de acolhimento ante a uma organização acadêmica heterogênea, marcada por preconceitos. São discutidas as limitações e as possibilidades de intervenção a partir do uso do CCN, e uma agenda propositiva para a ADAC, com foco na gestão da diversidade.En 2003, la Universidad de Brasilia adoptó una política de acciones afirmativas para personas negras, el Sistema de Cotas para Negros. En 2004, fue creada la Asesoría de Diversidad y Apoyo a los Cotizantes - ADAC. Ante la demanda del movimiento social por una sala de apoyo a los estudiantes, se desarrolló el Centro de Convivencia Negra - CCN, espacio abierto a toda la comunidad académica. El presente artículo presenta la experiencia de la ADAC hasta 2008 y analiza los desafíos de la convivencia entre estudiantes cotizantes y el espacio académico a partir de una investigación cualitativa sobre percepciones, sentimientos y expectativas acerca del CCN, en la forma de cuestionarios con una pregunta de evocación al CCN, aplicados

  20. Long-term alteration of bentonite in the presence of metallic iron

    International Nuclear Information System (INIS)

    Kumpulainen, S.; Kiviranta, L.; Carlsson, T.; Muurinen, A.; Svensson, D.; Sasamoto, Hiroshi; Yui, Mikatzu; Wersin, P.; Rosch, D.

    2011-12-01

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two ironbentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5- 1.6 g/cm 3 ) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B and Tech in airtight steel vessels filled with N 2 and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO 3 , or 0.05 M Na 2 SO 4 . The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H 2 , most possibly caused by corrosion of the cast iron, and CO 2 , mainly as a result of carbonate dissolution. The eight years old external solution exhibited, inter alia, reducing conditions, a p

  1. Response surface optimisation for activation of bentonite with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Rožić Ljiljana S.

    2011-01-01

    Full Text Available In this study, the statistical design of the experimental method was applied on the acid activation process of bentonite with microwave irradiation. The influence of activation parameters (time, acid normality and microwave heating power on the selected process response of the activated bentonite samples was studied. The specific surface area was chosen for the process response, because the chemical, surface and structural properties of the activated clay determine and limit its potential applications. The relationship of various process parameters with the specific surface area of bentonite was examined. A mathematical model was developed using a second-order response surface model (RSM with a central composite design incorporating the above mentioned process parameters. The mathematical model developed helped in predicting the variation in specific surface area of activated bentonite with time (5-21 min, acid normality (2-7 N and microwave heating power (63-172 W. The calculated regression models were found to be statistically significant at the required range and presented little variability. Furthermore, high values of R2 (0.957 and R2 (adjusted (0.914 indicate a high dependence and correlation between the observed and the predicted values of the response. These high values also indicate that about 96% of the result of the total variation can be explained by this model. In addition, the model shows that increasing the time and acid normality improves the textural properties of bentonites, resulting in increased specific surface area. This model also can be useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid normality of 5.2 N, activation time of 7.38 min and microwave power of 117 W. Acid activation of bentonite was found to occur faster with microwave irradiation than with conventional heating. Microwave

  2. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Science.gov (United States)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  4. Leachability of bentonite/cement for medium-level waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamlat, M.S.; Rabia, N. [Centre de Radioprotection et de Surete, Alger-Gare (Algeria)

    1998-12-31

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients ({alpha}) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, ({alpha}) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  5. Leachability of bentonite/cement for medium-level waste immobilisation

    International Nuclear Information System (INIS)

    Hamlat, M.S.; Rabia, N.

    1998-01-01

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients (α) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, (α) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  6. Bentonite as a colloid source in groundwaters at Olkiluoto

    International Nuclear Information System (INIS)

    Vuorinen, U.; Hirvonen, H.

    2005-02-01

    In this work bentonite was studied as a potential source of colloids in Olkiluoto groundwaters. Samples were collected at two groundwater stations, PVA1 at 37.5 m dept and PVA3 at 95.6 m depth, in the VLJ-tunnel. The deeper groundwater at PVA3 was more saline (2.6g/L of Cl-) than the shallow at PVA1 (0.8g/L of Cl-). A bentonite source had been assembled at each groundwater station so that two sample lines were available for water samples; one for collecting a sample before and the other for collecting a sample after interaction with bentonite. Before starting the actual colloid sampling groundwaters from both sample lines at both stations were analysed. Only minor alterations, mostly within the uncertainty limits of the analysis methods, were brought about in the water chemistries after interaction with the bentonite sources. The only clear changes were seen in the concentration of iron which decreased after interaction with bentonite in the groundwaters at both stations. After groundwater sampling the actual colloid sampling was performed. The water samples were collected and treated inside a movable nitrogen filled glove-box. The samples could be collected from each sampling line directly in the glove-box via two quick-couplings that had been assembled on the front face of the box. The sample lines had been assembled with 0.45 μm filters before entering the glove-box, because only colloids smaller than 0.45 μm were of interest, as they are not prone to sedimentation in slow groundwater flows and therefore could act as potential radionuclide carriers. Colloid samples were collected and treated similarly from both sampling lines at both groundwater stations. For estimating the colloid content the groundwater samples were filtered with centrifugal ultrafiltration tubes of different cut-off values (0.3 μm, 300kD and 10kD). The ultrafiltrations produced the colloid-containing concentrate fractions and the soluble substances-containing filtrate fractions. In

  7. Migration Behaviour of Strontium in Czech Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Lucie Baborova

    2016-09-01

    Full Text Available The study deals with sorption and diffusion behaviour of strontium in Czech bentonite B75. The study is a part of a research on reactive transport of radioactive contaminants in barrier materials of a deep geological repository of radioactive waste in the Czech Republic. Series of sorption and diffusion experiments with Sr and non-activated Ca bentonite B75 produced in the Czech Republic were performed in two background solutions (CaCl2 and NaCl. On the basis of sorption batch experiments the kinetics of strontium sorption on bentonite was assessed and the sorption isotherms for various experimental conditions were obtained. As a result of performed diffusion experiments the parameters of diffusion (i.e. effective diffusion coefficient De and apparent diffusion coefficient Da were determined. The observed discrepancies between sorption characteristics obtained from the sorption and diffusion experiments are discussed.

  8. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    International Nuclear Information System (INIS)

    Parolo, María E.; Pettinari, Gisela R.; Musso, Telma B.; Sánchez-Izquierdo, María P.; Fernández, Laura G.

    2014-01-01

    Graphical abstract: - Highlights: • Modification of clay was evaluated by two methods for removing an organic substance. • Surfactant cations and organosilanes were intercalated into the interlayer space. • The hydrophobic surface of adsorbents increased the retention of organic substances. • Clay grafted with vinyltrimethoxysilane showed the highest adsorption for aniline. - Abstract: The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm −1 with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination

  9. Properties of the bentonite from Lieskovec deposit and their possible environmental applications

    International Nuclear Information System (INIS)

    Andrejkovicova, S.

    2008-01-01

    The community increasingly focuses on broader uses of raw materials, occurring in relatively sufficient amounts. Among them, bentonite play very important role in the environmental applications. Results presented herein are related to the yet comprehensively unexplored Fe-rich bentonite from Lieskovec deposit, Central Slovakia. The objective of this study was complex investigation of Lieskovec bentonite deposit. This bentonite was developed from andesitic pyroclastics; the dominant mineral in all the samples is iron-rich montmorillonite, covering 29 to 56 mass % in the samples. The accessory minerals include kaolinite (5-17 mass %), quartz (3-28 mass %), muscovite/illite (3-16 mass %), volcanic glass (6-14 mass %), orthoclase (1-12 mass %), opal (1-8 mass %) and cristobalite (1-3 mass %). Structural Fe(III) is mainly in phyllosilicates accounting for 70 % to 90 % of the total Fe in the unfractionated samples; less than 5 % is Fe(II). The remainder of the Fe is present in oxide and/or oxyhydroxide phases dominated by poorly ordered goethite and hematite with possibly some maghemite. Basic properties of bentonites result from the structure of the smectites. Size fractionation did not lead to pure smectite. Kaolinite and mica were not successfully removed. Quartz and feldspars were dismantled effectively. Non-clay minerals contribution decreased. Smectite content increased after separation up to 75 mass %. Low cation exchange capacities between 35 and 61 meq/100 g are caused also by low magnesium content in the octahedral sheets of montmorillonite, suggesting lower isomorphic Mg for Al substitution in the octahedral sheets of smectite and thus its lower octahedral charge. The main factor influencing CECs is smectite content affecting dominantly also the geotechnical properties. Geotechnical properties of Lieskovec bentonite, such as liquid limit in range 64-80 % and water adsorption by Enslin test 123-265 % were insufficient for utilization in geo-synthetic clay

  10. Atmospheric 3H impact assessment (2004-2008) around Narora Atomic Power Station

    International Nuclear Information System (INIS)

    Kumar, A.; Gautam, Y.P.; Sharma, A.K.; Sharma, S.; Rao, K.S.; Kumar, J.; Kumar, V.; Singh, B.; Hedge, A.G.

    2010-01-01

    Atmospheric tritium activity is measured regularly around Narora Atomic Power Station (NAPS) since gaseous waste, which contains tritium, is being released through a 145 m high stack at NAPS site. Atmospheric data collected during 2004-2008 shows a large variation of 3 H concentration in air, fluctuating in the range of ≤0.2-91.6 Bq.m -3 . Significantly, higher tritium levels were measured in samples near the site boundary (1.6 km) of NAPS compared to off-site locations. The atmospheric dilution factor was found to be in the range of 1.1x10 -7 -7.3x10 -7 s.m -3 . The scavenging of NAPS site was found to be varying from 0.2x10 4 to 14.1x10 4 (Bq.m -3 rain water per Bqm -3 air). The inhalation dose to a member of general public at different distances (1.6-30 km) from NAPS site was found to be in the range of 0.21 μSv.y -1 . (author)

  11. Ectopic pregnancy morbidity and mortality in low-income women, 2004-2008.

    Science.gov (United States)

    Stulberg, D B; Cain, L; Dahlquist, I H; Lauderdale, D S

    2016-03-01

    Does the risk of adverse outcomes at the time of ectopic pregnancy vary by race/ethnicity among women receiving Medicaid, the public health insurance program for low-income people in the USA? Among Medicaid beneficiaries with ectopic pregnancy, 11% experienced at least one complication, and women from all racial/ethnic minority groups were significantly more likely than whites to experience complications. In this population of Medicaid recipients, African American women are significantly more likely than whites to experience ectopic pregnancy, but the risk of adverse outcomes has not previously been assessed. We conducted a cross-sectional observational study of all women (n = 19 135 106) ages 15-44 enrolled in Medicaid for any amount of time during 2004-2008 who lived in one of the following 14 US states: Arizona; California; Colorado; Florida; Illinois; Indiana; Iowa; Louisiana; Massachusetts; Michigan; Minnesota; Mississippi; New York; and Texas. We analyzed Medicaid claims records for inpatient and outpatient encounters and identified ectopic pregnancies with a principal diagnosis code for ectopic pregnancy from 2004-2008. We calculated the ectopic pregnancy complication rate as the number of ectopic pregnancies with at least one complication (blood transfusion, hysterectomy, any sterilization, or length-of-stay (LOS) > 2 days) divided by the total number of ectopic pregnancies. We used Poisson regression to assess the risk of ectopic pregnancy complication by race/ethnicity. Secondary outcomes were each individual complication, and ectopic pregnancy-related death. We calculated the ectopic pregnancy mortality ratio as the number of deaths divided by live births. Ectopic pregnancy-associated complications occurred in 11% of cases. Controlling for age and state, the risk of any complication was significantly higher among women who were black (incidence risk ratio [IRR] 1.47, 95% CI 1.43-1.53, P American Indian/Alaskan Native (IRR 1.34 95% CI 1.16-1.55, P white

  12. Investigations of the changes in the bentonite structure caused by the different treatments

    Directory of Open Access Journals (Sweden)

    Stojiljković S.

    2015-01-01

    Full Text Available The bentonite was treated in different ways and the changes in structure were monitored. Acid activation with sulphuric acid of investigated bentonite caused the increase in specific volume of micropore-mesopore. It was shown that activation by acid obtained at a constant temperature and constant period of time provides the possibility to obtain samples of bentonite of searched porosity only by changing the concentration of sulphuric and hydrochloric acid. By thermal activation of bentonite clay in the temperature range 100-1100 0C, samples of desired porosity were acquired. [Projekat Ministarstva nauke Republike Srbije, br. 174007i br. TR 34020

  13. Borehole sealing with highly compactd Na bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1981-12-01

    This report describes the use of highly compacted Na bentonite for borehole plugging. Bentonites have an extremely low permeability and a low diffusivity, and a swelling ability which produces a nonleaching boundary between clay and rock if the initial bulk density of the bentonite is sufficiently high. The suggested technique, which is applicable to long vertical, and inclined, as well as horizontal boreholes, is based on the use of perforated copper pipes to insert elements of compacted bentonite. Such pipe segments are connected at the rock surface and successively inserted in the hole. When the hole is equipped, the clay takes up water spontaneously and swells through the perforation, and ultimately forms an almost completely homogenous clay core. It embeds the pipe which is left in the hole. Several tests were conducted in the laboratory and one field test was run in Stripa. They all showed that a gel soon fills the slot between the pipe and the confinement which had the form of metal pipes in the laboratory investigations. Subsequently, more clay migrates through the perforation and produces a stiff clay filling in the slot. The redistribution of minerals, leading ultimately to a high degree of homogeneity, can be described as a diffusion process. The rate of redistribution depends on the joint geometry and water flow pattern in the rock. In the rock with an average joint frequence of one per meter or higher, very good homogeneity and sealing ability of the clay are expected within a few months after the application of the plug. (author)

  14. A comparative study of the flow enhancing properties of bentonite ...

    African Journals Online (AJOL)

    A comparative study of granule flow enhancing property of bentonite, magnesium stearate, talc and microcrystalline cellulose (MCC) was undertaken. Bentonite was processed into fine powder. A 10 %w/w of starch granules was prepared and separated into different sizes (˂180, 180-500, 500-710 and 710-850 μm).

  15. A study of the condition for the passivation of carbon steel in bentonite

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Morimoto, Masataka; Honda, Akira

    1999-01-01

    It is important to study the corrosion behavior of materials to be used for overpack for high-level radioactive waste disposal. Carbon steel is one of the candidate materials. The type of corrosion on carbon steel depends on whether the carbon steel is passivated or not. In this study, the condition for the passivation of carbon steel was studied using bentonite as the buffer material. Anodic polarization in bentonite and the measurements of pH of porewater in bentonite was measured. The results of these experiments showed that the possibility of passivation is small in highly compacted bentonite in groundwater in Japan. Therefore, localized corrosion on carbon steel due to the breakdown of passive film is unlikely in bentonite. In other words, general corrosion seems to be the most probable type of corrosion under repository condition in Japan. (author)

  16. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior; Bionanocompositos quitosana/bentonita: morfologia e comportamento mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Braga, C.R.C.; Melo, F.M.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Vitorino, I.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Ciencia e Engenharia de Materiais; Fook, M.V.L.; Silva, S.M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  17. Diffusion of Radionuclides in Bentonite Clay - Laboratory and in situ Studies

    International Nuclear Information System (INIS)

    Jansson, Mats

    2002-12-01

    This thesis deals with the diffusion of ions in compacted bentonite clay. Laboratory experiments were performed to examine in detail different processes that affect the diffusion. To demonstrate that the results obtained from the laboratory investigations are valid under in situ conditions, two different kinds of in situ experiments were performed. Laboratory experiments were performed to better understand the impact of ionic strength on the diffusion of S 2+ and Cs + ions, which sorb to mineral surfaces primarily by ion exchange. Furthermore, surface related diffusion was examined and demonstrated to take place for Sr 2+ and Cs + but not for Co 2+ , which sorbs on mineral surfaces by complexation. The diffusion of anions in bentonite clay compacted to different dry densities was also investigated. The results indicate that anion diffusion in bentonite clay consists of two processes, one fast and another slower. We ascribe the fast diffusive process to intralayer diffusion and the slow process to diffusion in interparticle water, where anions are to some extent sorbed to edge sites of the montmorillonite. Two different types of in situ experiments were performed, CHEMLAB and LOT. CHEMLAB is a borehole laboratory, where cation (Cs + , Sr 2+ and Co 2+ ) and anion (I- and TcO 4 - ) diffusion experiments were performed using groundwater from a fracture in the borehole. In the LOT experiments cylindrical bentonite blocks surrounding a central copper rod were placed in a 4 m deep vertical borehole. The borehole was then sealed and the blocks are left for 1, 5 or >> 5 years. When the bentonite was water saturated the central copper rod is heated to simulate the temperature increase due to radioactive decay of the spent fuel. Bentonite doped with radioactive Cs and Co was placed in one of the lower blocks. Interestingly, the redox-sensitive pertechnetate ion (TcO 4 - ) which thermodynamically should be reduced and precipitate as TcO 2 n H 2 O, travelled unreduced through

  18. Environmental policy memorandum of the Dutch Ministry of Defence 2004; Defensie Milieubeleidsnota 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Starting point of the title memorandum is environmental sound operational management of the Ministry of Defence. In the memorandum 26 policy targets are formulated for the period 2004-2008 in the fields of climate and energy, noise, hazardous materials, environmental care, and biological diversity and nature. One of the projects concerns the participation in a wind turbine farm in the Dutch province Drenthe. [Dutch] Uitgangspunt van de nota is een milieuverantwoorde bedrijfsvoering. Na een grondige evaluatie van de Defensie Milieubeleidsnota (DMB) 2000 zijn in de DMB 2004 zo'n 26 doelstellingen geformuleerd tot en met het jaar 2008. De belangrijkste doelstellingen liggen op het gebied van klimaat en energie, geluid, gevaarlijke stoffen, afval, milieuzorg, en biodiversiteit en natuur. Een van de opvallendste projecten uit DMB 2004 is een windturbinepark in Drenthe. Defensie gaat daarbij deelnemen aan een provinciaal project op en naast het magazijnencomplex te Coevorden. Van acht a negen te plaatsen turbines, die elk 2 MegaWatt elektriciteit gaan opwekken, zal het ministerie van Defensie er zes voor zijn rekening nemen. Dat betekent een investering van ruim 19 miljoen euro. Deze investering wordt echter binnen tien jaar geheel terugverdiend. Het turbinepark past in de doelstelling dat bij Defensie, conform het Rijksbeleid, eind 2008 zo'n 75% van het elektriciteitsverbruik duurzaam wordt opgewekt.

  19. Database on gas migration tests through bentonite buffer material

    International Nuclear Information System (INIS)

    Tanai, Kenji

    2009-02-01

    Carbon steel is a candidate material for an overpack for geological disposal of high-level radioactive waste in Japan. The corrosion of the carbon steel overpack in aqueous solution under anoxic conditions will cause the generation of hydrogen gas, which may affect hydrological and mechanical properties of the bentonite buffer. To evaluate such an effect of gas generation, it is necessary to develop a model of gas migration through bentonite buffer material taking account of data obtained from experiments. The gas migration experiments under both unsaturated and saturated conditions have been carried out to clarify the fundamental characteristics of bentonite for gas migration. This report compiles the experimental data obtained from gas migration tests for buffer material which has been conducted by JAEA until December, 2007. A CD-ROM is attached as an appendix. (author)

  20. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    Energy Technology Data Exchange (ETDEWEB)

    Parolo, María E., E-mail: maria.parolo@fain.uncoma.edu.ar [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); Pettinari, Gisela R. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); Musso, Telma B. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Sánchez-Izquierdo, María P.; Fernández, Laura G. [Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina)

    2014-11-30

    Graphical abstract: - Highlights: • Modification of clay was evaluated by two methods for removing an organic substance. • Surfactant cations and organosilanes were intercalated into the interlayer space. • The hydrophobic surface of adsorbents increased the retention of organic substances. • Clay grafted with vinyltrimethoxysilane showed the highest adsorption for aniline. - Abstract: The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm{sup −1} with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination.

  1. Impacto de los subsidios a la investigación en la productividad científica : Argentina 2004-2008

    OpenAIRE

    Vázquez, Claudia

    2015-01-01

    El objetivo de este trabajo consiste en evaluar el impacto de un programa de subsidios a la investigación. En particular, se evalúan las convocatorias 2004 a 2008 de los Proyectos de Investigación Científica y Tecnológica (PICT), el principal instrumento de apoyo a la investigación científica dentro de la ANPCyT de Argentina. Siguiendo a la literatura, las variables de resultado se basan en indicadores bibliométricos construidos a partir de la base de datos SCOPUS. Se encuentra que el program...

  2. Effect on physical properties of laterite soil with difference percentage of sodium bentonite

    Science.gov (United States)

    Kasim, Nur Aisyah; Azmi, Nor Azizah Che; Mukri, Mazidah; Noor, Siti Nur Aishah Mohd

    2017-08-01

    This research was carried out in an attempt to know the physical properties of laterite soil with the appearance of difference percentage of sodium bentonite. Lateritic soils usually develop in tropical and other regions with similar hot and humid climate, where heavy rainfall, warm temperature and well drainage lead to the formation of thick horizons of reddish lateritic soil profiles rich in iron and aluminium. When sodium predominates, a large amount of water can be absorbed in the interlayer, resulting in the remarkable swelling properties observed with hydrating sodium bentonite. There are some basic physical properties test conducted in this research which are Specific Gravity Test, pH Test, Sieve Analysis, Hydrometer Test, Shrinkage Limit and Atterberg Limit. The test will be conducted with 0%, 5%, 10%, 15% and 20% of sodium bentonite. Each test will be repeated three times for the accuracy of the result. From the physical properties test the soil properties characteristic react with the sodium bentonite can be determine. Therefore the best percentage of sodium bentonite admixture can be determined for laterite soil. The outcomes of this study give positive results due to the potential of sodium bentonite to improve the laterite soil particle.

  3. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  4. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Christophe (French Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (FR)); Windt, Laurent de (Ecole des Mines de Paris, Paris (FR))

    2008-03-15

    simulated intrusion of oxidizing waters lead to a limited perturbation, i.e. localized within bentonite near the fracture plane level. Actually, the calculated evolutions are relatively slow, so that in some cases the buffer remains in a transient stage over the whole simulation period and thus could turn heterogeneous in geochemical properties. Regarding the effect of temperature, a heterogeneous evolution is again observed, with moderate to slight dissolution-precipitation reactions either on the inner or outer border of the buffer (warmer and cooler zones) depending on the accessory minerals. These main trends in bentonite geochemical evolutions are in good agreement with the results presented in SR-Can and in Arcos et al., though some discrepancies have been pointed out, that can be explained by differences in modelling input data (mainly regarding log K values). Finally, issues in terms of processes and data would worth being further investigated as they might have a significant influence on bentonite evolutions, such as the thermohydraulic coupling of processes during the initial transient phase or the stability of montmorillonite. PART II: Elements of the SR-Can project relative to piping and erosion phenomena of bentonite components of a KBS-3 repository are analysed with regard to the experience feedback available at IRSN and consisting in experimental results obtained on samples at the UJF-Grenoble between 2000 and 2004. A synthesis of these tests is presented, with a closer attention to the Argillite/Bentonite tests during which phenomena of erosion occurred. The reference evolution of a KBS-3 repository, the resaturation and swelling kinetics of backfills and buffers and the possibility for a buffer to swell upwards the backfill have been considered. According to the reviewed documents, IRSN notes that the SR-Can project tackles the piping and erosion phenomena with local modellings and 'rough estimates', the latter being based on 3 &apos

  5. Modelling bentonite pore waters for the Swiss high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Curti, E.

    1993-11-01

    The main objective of this investigation is to contribute to definition of representative compositions of bentonite pore waters in the near-field of the Swiss repository for high-level radioactive waste. Such compositions are necessary for determining the solubility limits of radionuclides for the safety analysis KRISTALLIN I. The model developed here is based on the premise, supported by experimental data, that the composition of bentonite pore waters is largely controlled by the dissolution or precipitation of reactive trace solids in bentonite. Selectivity constants for the exchange equilibria among Na-K, Na-Ca, and Ca-Mg were derived from water-bentonite interaction experiments performed for NAGRA by the British Geological Survey (BGS). An important parameter for the prediction of radionuclide solubilities is the oxidation potential of the bentonite water. Since the BGS experiments yielded no information on this, the oxidation potential had to be estimated from model assumptions. Bentonite pore waters were defined by computer simulation with the geochemical code MINEQL. They have been modelled in a closed system, i.e. assuming the bentonite, once it has reacted with a fixed volume of groundwater, does not exchange further chemical species with an external reservoir. No attempt was made to model the evolution of the pore water by simulating diffusive exchange processes. It can be anticipated that uncertainties in the concentrations of some major elements (e.g. Al, Si) will not significantly affect the calculated radionuclide solubilities. The latter will depend primarily on the concentrations of a few major ligands (OH - , Cl - and CO 3 -2 ) and, for multivalent elements, also on the oxidation potential of the solution. (author) 10 figs., 22 tabs., 40 refs

  6. Electrical resistivity and rheological properties of sensing bentonite drilling muds modified with lightweight polymer

    Directory of Open Access Journals (Sweden)

    Ahmed S. Mohammed

    2018-03-01

    Full Text Available In this study, the electrical resistivity and rheological properties of a water-based bentonite clay drilling mud modified with the lightweight polymer (guar gum under various temperature were investigated. Based on the experimental and analytical study, the electrical resistivity was identified as the sensing property of the bentonite drilling mud so that the changes in the properties can be monitored in real-time during the construction. The bentonite contents in the drilling muds were varied up to 8% by the weight of water and temperature was varied from 25 °C to 85 °C. The guar gum content (GG% was varied between 0% and 1% by the weight of the drilling mud to modify the rheological properties and enhance the sensing electrical resistivity of the drilling mud. The guar gum and bentonite clay were characterized using thermal gravimetric analysis (TGA. The total weight loss at 800 °C for the bentonite decreased from 12.96% to 0.7%, about 95% reduction, when the bentonite was mixed with 1% of guar gum. The results also showed that 1% guar gum decreased the electrical resistivity of the drilling mud from 50% to 90% based on the bentonite content and the temperature of the drilling mud. The guar gum modification increased the yield point (YP and plastic viscosity (PV by 58% to 230% and 44% to 77% respectively based on the bentonite content and temperature of the drilling mud. The rheological properties of the drilling muds have been correlated to the electrical resistivity of the drilling mud using nonlinear power and hyperbolic relationships. The model predictions agreed well with the experimental results. Hence the performance of the bentonite drilling muds with and without guar gum can be characterized based on the electrical resistivity which can be monitored real-time in the field. Keywords: Bentonite, Polymer (Guar gum, Electrical resistivity, Rheological properties, Temperature, Modeling

  7. Gas migration mechanism of saturated dense bentonite and its modeling

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko; Kudo, Koji

    2007-01-01

    In the current concept of repository for nuclear waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the following subjects: a) Effect of the accumulated gas pressure on surrounding objects such as concrete lining, rock mass. b) Effect of gas breakthrough on the barrier function of bentonite. c) Revealing and modeling gas migration mechanism for overcoming the scale effects in laboratory specimen test. Therefore in this study, gas migration tests for compacted and saturated bentonite to investigate and to model the mechanism of gas migration phenomenon. Firstly, the following conclusions were obtained through by the results of the gas migration tests which are conducted in this study: 1) Bubbles appear in the semitransparent drainage tube at first when the total gas is equal to the initial total axial stress or somewhat smaller. By increasing the gas pressure more, breakthrough of gas migration, which is defined as a sudden increase of amount of emission gas, occurred. When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. 2) Effective gas conductivity after breakthrough of gas migration is times larger than that

  8. Long-term alteration of bentonite in the presence of metallic iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, S.; Kiviranta, L. [B and Tech Oy, Helsinki (Finland); Carlsson, T.; Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Svensson, D. [Svensk Kaernbraenslehantering AB (SKB), Stockholm (Sweden); Sasamoto, Hiroshi; Yui, Mikatzu [Japan Atomic Energy Agency (JAEA) (Japan); Wersin, P.; Rosch, D. [Gruner Ltd, Basel (Switzerland)

    2011-12-15

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two ironbentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5- 1.6 g/cm{sup 3}) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B and Tech in airtight steel vessels filled with N{sub 2} and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO{sub 3}, or 0.05 M Na{sub 2}SO{sub 4}. The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H{sub 2}, most possibly caused by corrosion of the cast iron, and CO{sub 2}, mainly as a result of carbonate dissolution. The eight years old external solution exhibited

  9. On the hydro-mechanical behaviour of MX80 bentonite-based materials

    Directory of Open Access Journals (Sweden)

    Yu-Jun Cui

    2017-06-01

    Full Text Available Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste. During the long period of waste storage, these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters, the engineered barrier/backfill, the retaining structures as well as the geological barrier. Thus, it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials. This review paper presents the recent advances of knowledge on MX80 bentonite-based materials, in terms of water retention properties, hydraulic behaviour and mechanical behaviour. Emphasis is put on the effect of technological voids and the role of the dry density of bentonite. The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities. Microstructure observation was used to help the interpretation of macroscopic hydro-mechanical behaviour. Also, the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests. This evolution is essential for understanding the long-term hydro-mechanical behaviour of the engineered barrier/backfill.

  10. [Scientific articles in the Icelandic Medical Journal 2004-2008: an overview].

    Science.gov (United States)

    Gudbjartsson, Tómas; Sigurdsson, Engilbert

    2009-10-01

    In the past 5 years the Icelandic Medical Journal has undergone many changes during a period of flourishing research in Iceland. The process of reviewing and editing scientific articles has been revised since the Journal joined the Medline database in 2005 and the proportion of rejected articles has risen. New columns have been launched covering medical history, professionalism, ethics and hobbies of the medical profession. We categorized all scientific articles from the period 2004-2008, that is research articles, review articles, case reports and clinical guidelines, according to types of articles and to which medical speciality or subspeciality the publication should belong. The number of scientific articles rose during the period but the number of research articles remained around 20 most years during the period. The relative proportion of research articles therefore fell whereas the number and proportion of review articles and case reports increased. Clinical guidelines ceased to appear in the Journal. The contribution of individual specialities to the Journal varied widely. Researchers amongst doctors and related professions need be encouraged to submit scientific articles to the Journal. The publication of scientific articles in English in the web-based form of the Journal may prove to be stimulating in this regard for Icelandic doctors abroad as well as for some researchers in Iceland.

  11. Magnesium incorporated bentonite clay for defluoridation of drinking water

    International Nuclear Information System (INIS)

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J.; Labhsetwar, Nitin

    2010-01-01

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mg g -1 at an initial fluoride concentration of 5 mg L -1 , which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed (∼97%) using 1 M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water.

  12. Diffusion of radionuclides in concrete/bentonite systems

    International Nuclear Information System (INIS)

    Albinsson, Y.; Boerjesson, S.; Andersson, K.; Allard, B.

    1993-02-01

    In a repository for nuclear waste, different construction materials will be used. Two important materials among these are concrete and bentonite clay. These will act as mechanical barriers, preventing convective water flow and also retard transport due to diffusion of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid. An important issue is the possible change of the initial sodium bentonite into the calcium form due to ion exchange with calcium from the cement. The initial leaching of the concrete has been studied using radioactive spiked concrete in contact with compacted bentonite. The diffusion of Cs, Am and Pu into 5 different types of concrete in contact with porewater have been measured. The measured diffusivity for Cs agrees reasonable well with data found in literature. For Am and Pu no movement could be measured (less than 0.2 mm) even though the contact times were extremely long (2.5 y and 5 y, respectively). This report gives also a summary of the previously published results about sorption and diffusion of radionuclides in cement performed in Prav/KBS/SKB projects 1980-1990. 25 refs

  13. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  14. Limits to the use of highly compacted bentonite as a deterrent for microbially influenced corrosion in a nuclear fuel waste repository

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    2010-01-01

    Highly compacted bentonite-based sealing materials are being developed for use in future geological repositories for nuclear fuel waste. Such materials would ensure a diffusion-controlled hydrology and additionally form a sorption barrier against radionuclide migration after container breach. Due to some inherent physical characteristics, such as low water activity (a w ), small pores and high swelling pressure, an additional role of highly compacted bentonite may be the elimination of significant microbial activity near used fuel containers, which would reduce the occurrence of microbially influenced corrosion (MIC) to insignificant levels. Several recent studies have examined the indigenous microbial populations in compacted bentonite and the factors that control microbial activity in such environments. Laboratory experiments with Wyoming MX-80 bentonite plugs, compacted to dry densities (DD's) of 0.8 to 2.0 g/cm 3 , and infiltrated with sterile distilled deionised water were carried out. At DD's of 0.8 and 1.3 g/cm 3 , culturability of heterotrophic aerobic bacteria increased by up to four orders of magnitude above back-ground levels. Anaerobic heterotrophic bacteria and SRB did not increase significantly above background levels in any of the tests. At higher DD's all culturability remained at, or fell below, the background levels. However, even at the highest DD tested, some culturability remained and viability was only mildly affected by high DD's. Therefore, the potential for increased microbial activity exist if a substantial reduction in DD of bentonite were to occur in a repository. The microbes that survive in dry as-purchased or highly compacted bentonite appear to be largely spore-forming organisms. Chi Fru and Athar (2008) studied the bacterial colonization of compacted MX-80 bentonite from the surrounding granitic groundwater population, at various temperature ranges. Results suggested that high temperature rather than high DD

  15. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  16. Investigations of the changes in the bentonite structure caused by the different treatments

    OpenAIRE

    Stojiljković S.; Stamenković M.; Kostić D.; Miljković M.; Arsić B.; Savić I.; Savić I.

    2015-01-01

    The bentonite was treated in different ways and the changes in structure were monitored. Acid activation with sulphuric acid of investigated bentonite caused the increase in specific volume of micropore-mesopore. It was shown that activation by acid obtained at a constant temperature and constant period of time provides the possibility to obtain samples of bentonite of searched porosity only by changing the concentration of sulphuric and hydrochloric acid. ...

  17. Bentonite reactivity in alkaline solutions: results of the Cyprus natural analogue project (CNAP)

    International Nuclear Information System (INIS)

    Alexander, W.R.; Milodowski, A.E.; Pitty, A.F.; Hardie, S.M.L.; Korkeakoski, P.; Norris, S.; Puigdomenech, I.; Sellin, P.; Rigas, M.

    2012-01-01

    Document available in extended abstract form only. Bentonite is one of the most safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. Bentonite is used due to its favourable properties (including plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides) and its stability in relevant geological environments. However, bentonite is unstable under alkaline conditions and, due to the fact that cementitious materials react with groundwater to produce initial leachates with pH >13 (later falling to around pH 12.5), this has driven recent interest in low alkali cements, because the pH of the leachate is somewhat lower than standard OPC (Ordinary Portland Cement), lying around pH 10-11. It is hoped that this lower pH will reduce bentonite reaction, so allowing the use of low alkali cements in close proximity with bentonite. Assuring the long-term stability of bentonite in contact with such alkaline fluids under conditions representative of a deep geological repository requires complementary laboratory, modelling and in situ studies. In particular, to build a robust safety case, it is important to have supporting natural analogue data to confirm understanding - and validate models - of the likely long-term performance of bentonite. As a result of a review of the available literature and recent geological investigations by the authors, several sites in Cyprus were selected as particularly promising for this purpose. All alkaline groundwaters studied so far in Cyprus originate from ophiolite host rocks which are wide-spread across the island. The alkaline pH values (generally between pH 10 and 11, but a maximum of 12 has been observed) reported in the groundwaters are a product of the serpentinization of the ophiolites. The presence of bentonite and other clay-rich rocks in close proximity to the natural alkaline groundwaters permits the

  18. Modelling Ni diffusion in bentonite using different sorption models

    International Nuclear Information System (INIS)

    Pfingsten, W.; Baeyens, B.; Bradbury, M.

    2010-01-01

    Document available in extended abstract form only. An important component of the multi barrier disposal concept for a radioactive waste repository is the bentonite backfill surrounding the canisters containing vitrified high-level waste and spent fuel located in the tunnels deep within the chosen host rock. The effectiveness of the compacted bentonite barrier is such that calculations have indicated that many radionuclides have decayed to insignificant levels before having diffused through the thickness of bentonite. These calculations are performed using the simple Kd sorption concept in which the values are taken from batch type experiments performed on dispersed systems performed for a single metal at a time, usually at trace concentrations. However, in such complex systems many radionuclides, inactive metal contaminants/ground water components may be simultaneously present in the aqueous phase at a range of concentrations varying with time during the temporal evolution of the repository system. An important aspect influencing the sorption of any radioactive metal under a set of given geochemical conditions is its competition with other metals present, and how this may vary as a function of concentration. Competitive sorption effects are not currently included in safety assessments and are thus an issue which needs to be addressed. Here we provide some first estimates of the potential influence of competitive sorption effects on the migration of radioactive metals through compacted bentonite as a function of their concentration and the concentration of competing metals. Ni(II) and Fe(II) were chosen as possible competing cations since their concentration levels are expected to have values greater than trace levels and effects might be maximal and canister corrosion represents a permanent Fe source at the bentonite interface which could influence bivalent radionuclide diffusion. The modelling of the Ni(II) diffusion/sorption has been carried out using three

  19. Characterization of Cr/Bentonite and HZSM-5 Zeolite as Catalysts for Ethanol Conversion to Biogasoline

    Directory of Open Access Journals (Sweden)

    Robert Ronal Widjaya

    2012-04-01

    Full Text Available In this research it has been done characterization on Cr/Bentonit and Zeolit HZSM-5 catalysts for ethanol catalytic process to biogasoline (equal to gasoline. Cr/Bentonit has high acidity and resistant to a lot of moisture, so in addition to being able to processing feed which a lot of moisture (>15% from ethanol-water mixture, also it is not easy deactivated. Cr/Bentonit which is then used as the catalyst material on the process of ethanol conversion to be biogasoline and the result was compared with catalyst HZSM-5 zeolite. Several characterization methods: X-ray diffraction, Brunauer Emmett Teller (BET, thermogravimetry analysis (TGA, and catalyst activity tests using catalytic Muffler instrument and gas chromatography-mass spectrometry (GC-MS for product analysis were performed on both catalysts. From acidity measurement, it is known that acidity level of Cr/Bentonit is the highest and also from XRD result, it is known there is shift for 2theta in Cr/Bentonit, which indicates that Cr-pillar in the Bentonite can have interaction. It is also supported by BET data that shows the addition of specific surface are in Cr/Bentonite compared with natural Bentonite before pillarization. Futhermore catalyst activity test produced the results, analyzed by GC-MS, identified as butanol and also possibly formed hexanol, decane, dodecane, undecane, which are all included in gasoline range (C4 until C12.

  20. Experimental studies on the interactions between anaerobically corroding iron and bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Liisa (Geological Survey of Finland, Espoo (Finland)); Karnland, Ola; Olsson, Siv (Clay Technology AB, Lund (Sweden)); Rance, Andy; Smart, Nick (Serco Assurance, Hook (United Kingdom))

    2008-06-15

    Anaerobic corrosion experiments using compacted bentonite, carbon steel and cast iron coupons, and carbon steel wires, were performed at temperatures of 30 deg C and 50 deg C. Dry Wyoming bentonite MX-80 powder was mixed with pieces of wire, and then compacted in stainless steel holders. The samples were evacuated and placed in test cells under nitrogen. For the coupon tests, the coupons were placed in the upper and lower part of cells filled with compacted bentonite. The compacted bentonite samples were immersed in deaerated artificial ground water containing sodium chloride and sodium carbonate at pH 10.4. The experiments with coupons ran for 356 days at 50 deg C and for 900 days at 30 deg C and the experiments with wires ran for 829 days at 30 deg C and for 911 days at 50 deg C. Corrosion products on the surface of wires and coupons were examined using Raman spectroscopy, scanning electron microscopy and electron microprobe analysis. A mixture of magnetite, hematite and goethite was found on the surface of coupons. Only magnetite was observed on the surface of wires. The bentonite was examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron microprobe analysis (EPMA), Raman spectroscopy, Moessbauer transmission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) and selected area electron diffraction. In addition, cation exchange capacity and exchangeable cations as well as total chemical composition were determined. Hydraulic conductivity and swelling pressure were also measured. In the coupon tests, increased iron contents could be observed in a thin contact zone. Sodium from the synthetic ground water had substituted for a fraction of the calcium in the interlayer positions of montmorillonite, which could be seen also in the total contents of these elements. A small increase in hydraulic conductivity was observed. In the wire tests a high

  1. Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook

    International Nuclear Information System (INIS)

    Reijonen, H.M.; Russel, A.W.

    2015-01-01

    The practice of utilising natural analogues in assessing the long-term behaviour of various components of geological repositories for radioactive waste is already well established in most disposal programmes. Numerous studies on bentonites, focussing on bentonite interaction with other components of the engineered barrier system and a range of host rock environments, are present in the literature. In this article, recent bentonite natural analogue studies are briefly reviewed, and gaps in the current literature identified, with the aim of (1) suggesting where relevant new information could be obtained by data mining published bentonite natural analogue studies with a new focus on current safety case requirements, (2) collecting relevant information by revisiting known bentonite analogue sites and conducting investigations with more appropriate analytical techniques, and (3) identifying novel study sites where, for example, bentonite longevity in very dilute to highly saline groundwater conditions can be studied. It must be noted that the use of natural analogues in safety case development is likely to be site and repository design-specific in nature and thus emphasis is placed on the appropriate use of relevant natural analogue data on bentonite longevity. (authors)

  2. Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook

    Energy Technology Data Exchange (ETDEWEB)

    Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland)

    2015-06-15

    The practice of utilising natural analogues in assessing the long-term behaviour of various components of geological repositories for radioactive waste is already well established in most disposal programmes. Numerous studies on bentonites, focussing on bentonite interaction with other components of the engineered barrier system and a range of host rock environments, are present in the literature. In this article, recent bentonite natural analogue studies are briefly reviewed, and gaps in the current literature identified, with the aim of (1) suggesting where relevant new information could be obtained by data mining published bentonite natural analogue studies with a new focus on current safety case requirements, (2) collecting relevant information by revisiting known bentonite analogue sites and conducting investigations with more appropriate analytical techniques, and (3) identifying novel study sites where, for example, bentonite longevity in very dilute to highly saline groundwater conditions can be studied. It must be noted that the use of natural analogues in safety case development is likely to be site and repository design-specific in nature and thus emphasis is placed on the appropriate use of relevant natural analogue data on bentonite longevity. (authors)

  3. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  4. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    Science.gov (United States)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  5. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    Science.gov (United States)

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  6. The use of modified bentonite for removal of aromatic organics from contaminated soil

    International Nuclear Information System (INIS)

    Gitipour, S.; Bowers, M.T.; Bodocsi, A.

    1997-01-01

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls

  7. Characteristics study of bentonite as candidate of buffer materials for radioactive waste disposal system

    International Nuclear Information System (INIS)

    Suryantoro; Arimuladi, S.P.; Sastrowardoyo, P.B.

    1998-01-01

    Literature studies on bentonite characteristic of, as candidate for radioactive waste disposal system, have been conducted. Several information have been obtained from references, which would be contributed on performance assessment of engineered barrier. The functions bentonite includes the buffering of chemical and physical behavior, i.e. swelling property, self sealing, hydraulic conductivities and gas permeability. This paper also presented long-term stability of bentonite in natural condition related to the illitisazation, which could change its buffering capacities. These information, showed that bentonite was satisfied to be used for candidate of buffer materials in radioactive waste disposal system. (author)

  8. Effect of calcium bentonite on lipid parameters in Wistar albino rat ...

    African Journals Online (AJOL)

    The in vivo effect of Nigerian calcium bentonite clay on rat plasma cholesterol and triglyceride levels of Wistar albino rats was investigated. The rats were fed for a period of four weeks with varying concentrations of the bentonite clay, and the cholesterol and triglyceride levels determined using spectrophotometric methods.

  9. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  10. The influence of the addition of polymers on the physico-chemical properties of bentonite suspensions

    Directory of Open Access Journals (Sweden)

    Stojiljkovic S.

    2014-01-01

    Full Text Available Bentonite clays have many applications in industries ranging from construction to cosmetics. Addition of polymers can profoundly influence the properties of bentonite suspensions and we now describe the influence of a range of different polymers. Whereas polyvinyl pyrolidone and soy isolate only slightly influenced the pH and the electrical conductivity of bentonite polymers in suspension, Carbopol solution caused decreases in both pH and electrical conductivity. As expected, strong electrolytes like sodium chloride caused big changes in the electrical conductivity of the suspensions. When the temperature of the bentonite suspensions was increased, the pH was almost unchanged, but the electrical conductivity increased. Bentonite treated with polymer suspensions can be used in purifying polluted water; for example, our results suggest that high pH caused by phosphorous salts can be addressed using bentonite modified with Carbopol. [Projekat Ministarstva nauke Republike Srbije: Stanisa Stojiljkovic, Vojkan Miljkovic, Goran Nikolic, Ivana Savic and Ivan Savic, TR 34020, Danijela Kostic 172047 and Biljana Arsic 174007

  11. Diffusion of uranium in the bentonite in the presence of carbon steel

    International Nuclear Information System (INIS)

    Idemitsu, Kazuya

    1994-01-01

    The most largely expected method for disposal method of high level radioactive waste liquid forming in reprocessing process of used nuclear fuel is a method of geological disposal into ground layer stable hydrologically and geologically and of some hundreds meter under ground on a shape of glass solid excellent to chemical durability (deep ground disposal). Storing container for the ground disposal is surrounded by a kind of buffer material used for barrier. For the buffer candidate material, there are some swelling clay minerals such as bentonite and so forth. In this study, some experiments on diffusion behavior of uranium under reductive environment coexisting bentonite with corroded overpack material were conducted. At the same time, experiments under oxidative environment were also conducted to compare with both results, and effect of quartz sand mixing and buffer material density change on diffusion behavior was investigated. As a result, it was found that uranium diffusion coefficient in saturated swelled bentonite buffer and bentonite/quartz mixing buffer was (0.90-1.4)x10 -12 under oxidative condition, and (3.5-11)x10 -14 under reductive condition, that absorption of uranium to bentonite is mainly due to montmorillonite, and so forth. (G.K.)

  12. Swelling pressure and water absorption property of compacted granular bentonite during water absorption

    International Nuclear Information System (INIS)

    Oyamada, T.; Komine, H.; Murakami, S.; Sekiguchi, T.; Sekine, I.

    2012-01-01

    Document available in extended abstract form only. Bentonite is currently planned to be used as buffer materials in engineered barrier of radioactive waste disposal. Granular bentonites are expected as the materials used in constructions as buffer materials by in-situ compaction methods. After applying these buffer materials, it is expected that the condition of the buffer area changes in long-term by the seepage of groundwater into buffer area. Therefore, it is important to understand water movement and swelling behavior of the buffer materials for evaluating the performance of engineered barrier. In this study, we investigated water absorption property and swelling pressure of compacted granular bentonite. Specifically, the process of swelling pressure and amount of water absorption of granular bentonite-GX (Kunigel-GX, produced at the Tsukinuno mine in Japan) were observed by laboratory tests. To discuss the influence of maximum grain size of bentonite particle on swelling pressure and water absorption property, two types of samples were used. One is granular sample which is Bentonite-GX controlled under 2 mm the maximum grain size, the other is milled sample which is Bentonite-GX with the maximum grain size under 0.18 mm by milling with the agate mortar. In addition, the mechanism on the swelling pressure of compacted granular bentonite was considered and discussed. In the cases of granular sample, swelling pressure increases rapidly, then gradually continues to increase up to maximum value. In the cases of milled sample, swelling pressure also increases rapidly at first. However, then its value decreases before progressing of gradual increase continues. Especially, this trend was clearly observed at a relatively low dry density. At the peaks of these curves, the swelling pressure of granular samples is lower than that of milled samples. In addition, the increasing of swelling pressure by the time the peak observed during the process of swelling pressure from

  13. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    Science.gov (United States)

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 20042008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic

  14. Bentonite as a backfill material for shallow land repositories

    International Nuclear Information System (INIS)

    Yalmali, V.S.; Deshingkar, D.S.

    2001-01-01

    Two commercially available indigenous bentonite samples were evaluated for their cesium and strontium sorption properties in distilled water and surface water. By converting them into sodium form, the distribution coefficients for both cesium (I) and strontium (II) increased. Sodium bentonite was recommended because of high sorption capacity for Cs(I), Mg(II) and Sr(II) for use as backfill material in shallow land repositories where cement waste form containing Cs, Sr and Be wastes are disposed. (author)

  15. Study on GMZ bentonite-sand mixture by undrained triaxial tests

    Directory of Open Access Journals (Sweden)

    Sun Wen-jing

    2016-01-01

    Full Text Available It is particularly necessary to study the deformation, strength and the changes of pore water pressure of bentonite-based buffer/backfill materials under the undrained condition. A series of isotropic compression tests and triaxial shear tests under undrained conditions were conducted on the compacted saturated/unsaturated GMZ bentonite-sand mixtures with dry mass ratio of bentonite/sand of 30:70. During the tests, the images of the sample were collected by photographic equipment and subsequently were cropped, binarized and centroids marked by image processing technique. Based on identification of the variation of the position of marked centroids, the deformation of the sample can be determined automatically in real-time. Finally, the hydro-mechanical behaviour of saturated and unsaturated bentonite-sand mixtures under the undrained condition can be obtained. From results of triaxial shear tests on unsaturated samples under constant water content, inflated volumetric deformation transforms to contractive volumetric deformation due to the increase of the confining pressure and lateral expansion deformation are observed due to the increase in the shearing stress. Moreover, the net mean stress affects the initial stiffness, undrained shear strength and deformation of the sample during the undrained shear tests.

  16. Cement/bentonite interaction. Results from 16 month laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology AB, Lund (Sweden)

    1997-12-01

    The work concerns possible bentonite clay mineral alteration in constructions with bentonite in close contact with cement, and the effect of such changes on bentonite buffer properties. The investigation comprises a 16 months laboratory test series with hydrothermal cell tests, percolation tests and diffusion tests. MX-80 Wyoming bentonite was used in all tests. Two types of artificial cement pore water solutions were used in the percolation and diffusion tests. The swelling pressure and the hydraulic conductivity were measured continuously in the percolation tests. After termination, the clay was analyzed with respect to changes in element distribution, mineralogy and shear strength. The water solutions were analyzed with respect to pH, cations and major anions. The results concerning chemical and mineralogical changes are in summary: Ion exchange in the montmorillonite until equilibrium with cement pore-water ions was reached; Increase in cation exchange capacity; Dissolution of original cristobalite; Increase in quartz content; Minor increase in illite content; Minor formation of chlorite; Formation of CSH(I); Wash away of CSH-gel into surrounding water. A large decrease in swelling pressure and a moderate increase in hydraulic conductivity were recorded in the samples percolated by SULFACEM pore-water solution. The mineralogical alterations only concerned a minor part of the total bentonite mass and the changes in physical properties were therefore most likely due to the replacement of the original charge balancing cation by cement pore-water cations. Comparisons between the current test result and results from 4 month tests indicate that the rates of illite and chlorite formation were reduced during the tests. The presence of zeolites in the clay could not be ensured. However, the discovery of CSH material is important since CSH is expected to precede the formation of zeolites 5 refs, 48 figs, 11 tabs

  17. Study of cesium and strontium adsorption on slovak bentonite

    International Nuclear Information System (INIS)

    Galambos, M.

    2010-01-01

    Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level radioactive waste and spent nuclear fuel. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by adsorption. Slovak Republic avails of many significant deposits of bentonite. Adsorption of Cs and Sr on five Slovak bentonite of deposits (Jelsovy potok, Kopernica, Lieskovec, Lastovce and Dolna Ves) and montmorillonite K10 (Sigma-Aldrich) has been studied with the using batch of radiometric techniques. Natural, irradiated and natrified samples, in three different kinds of grain size: 15, 45 and 250 μm have been used in the experiments. The adsorptions of Cs and Sr on bentonite under various experimental conditions, such as contact time, adsorbent and adsorbate concentrations, pH after adsorption and effect of pH change, chemical modification, competitive ions and organic agents on the adsorption have been studied. The K d have been determined for adsorbent-Cs/Sr solution system as a function of contact time and adsorbate and adsorbent concentration. The data have been interpreted in terms of Langmuir isotherm. The adsorption of Cs and Sr has increased with increasing metal concentrations. Adsorption of Cs and Sr has been suppressed by presence of organic agents; and of bivalent cations more than univalent cations. By adsorption on natrified samples colloidal particles and pH value increase have been formed. Adsorption experiments carried out show that the most suitable materials intended for use as barriers surrounding a canister of spent nuclear fuel are bentonite of the Jelsovy potok and Kopernica deposits. (author)

  18. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-10-15

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H{sub 2} for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 106 apsA copies cm-2, corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H{sub 2} appeared to have any effect on the bacterial incidence on metal surfaces

  19. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    International Nuclear Information System (INIS)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten

    2011-10-01

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H 2 for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 10 6 apsA copies cm -2 , corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H 2 appeared to have any effect on the bacterial incidence on metal surfaces

  20. Stability of bentonite gels in crystalline rock

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-02-01

    The present, extended study comprises a derivation of a simple rock model as a basis for calculation of the penetration rate of bentonite and of the groundwater flow rate, which is a determinant of the erodibility of the protruding clay film. This model, which is representative of a gross permeability of about 10 -8 - 10 -9 m/s, implies a spectrum of slot-shaped joints with apertures ranging between 0.1 and 0.5 mm. It is concluded that less than 2percent of the highly compacted bentonite will be lost into traversing joints in 10 6 years. A closer analysis, in which also Poiseuille retardation and short-term experiments were taken into account, even suggests that the penetration into the considered joints will be less than that. The penetration rate is expected to be 1 decimeter in a few hundred years. The risk of erosion by flowing groundwater was estimated by comparing clay particle bond strength, evaluated from viscometer tests, and theoretically derived drag forces, the conclusion being that the maximum expected water flow rate in the widest joints of the rock model (4 times 10 -4 m/s) is not sufficient to disrupt the gel front or the large individual clay flocs that may exist at this front. The experiments support the conclusion that erosion will not be a source of bentonite loss. A worst case scenario with a shear zone being developed across deposition holes is finally considered and in addition to this, the conditions in the fracture-rich tunnel floor at the upper end of the deposition holes are also analysed. This study shows that even if the rock is much more fractured than normal conditions would imply, the bentonite loss is expected to be very moderate and without substantial effect on the barrier functions of the remaining clay cores in the deposition holes. (author)

  1. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W. [Los Alamos National Laboratory

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  2. Magnesium incorporated bentonite clay for defluoridation of drinking water.

    Science.gov (United States)

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin

    2010-08-15

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Thermal loading of bentonite. Impact on hydromechanics and permeability

    Energy Technology Data Exchange (ETDEWEB)

    Zihms, Stephanie G.; Harrington, Jon [British Geological Survey, Nickerhill Keyworth (United Kingdom)

    2015-07-01

    Due to its favorable properties, in particular, low permeability and swelling capacity, bentonite has been favored as an engineered barrier and backfill material for the geological storage of radioactive waste. To ensure safe long-term performance it is important to understand any changes in these properties when the material is subject to heat emitting waste. As such, this study will investigate the hydro-mechanical response of bentonite under multi-step thermal loading subject to a constant volume boundary condition. The experimental set up allows continuous measurements of hydraulic and mechanical response during each phase of the thermal cycle. The constant volume cell was placed inside an oven and connected to a hydraulic system with the water reservoir located externally. A pressure gradient of 4 MPa was placed across the sample for the duration of the test in order to map the evolution of permeability. After initial hydration of the bentonite, in this case signified by reaching the asymptote in total stress, the temperature was raised in 20 C increments from 20 to 80 C followed by a final 10 C step to reach 90 C. Each temperature was held constant for at least 7-10 days to allow the stresses and hydraulic transients to equilibrate. This data set will provide an insight into the hydromechanical behavior of the bentonite and the evolution of its permeability when exposed to elevated temperatures.

  4. Evaluation of gas migration characteristics of compacted and saturated Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of near-surface pit disposal for low level radioactive waste, compacted bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite mixture until its pressure becomes large enough for it to enter the compacted bentonite mixture as a discrete gaseous phase. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted Ca-bentonite mixture are investigated by the gas migration tests. The effect of stress state on the migration characteristics is also investigated by the gas migration tests and by parametric study using the model of two phase flow through deformable porous media, which was originally developed by CRIEPI. Results of this study imply that : (1) Large gas breakthrough pressure, which is defined as a rapid increase of amount of discharged gas, is affected by initial stress conditions as well as Ca-bentonite content of the mixture. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Axial stress change and volume change of the specimen during the gas migration test can be reproduced by the numerical simulation using the model of two-phase flow through deformable porous media, which was originally developed by CRIEPI. (4) Gas migration of a small scale model is numerically simulated to investigate the

  5. Swelling characteristics of sand-bentonite mixtures under one-dimensional stress

    International Nuclear Information System (INIS)

    Cui, Hongbin; Sun, De'an; Matsuoka, Hajime; Xu Yongfu

    2004-01-01

    Based on the concept that the maximum water volume absorbed by unit volume of montmorillonite is constant, the swelling deformation of sand-bentonite mixtures is uniquely characterized using the void ratio of montmorillonite, which is defined by the ratio of water volume to montomorillonite volume. The relationship between the montmorillonite void ratio and overburden pressure at fully swelling is independent of the initial compaction condition and the sand-bentonite mixture ratio, and is a linear line in their log scale. When overburden pressure is large enough and/or the bentonite ratio of the mixture is small, the measured plots deviate from the line. A method for predicting the limited overburden pressure which is linearly correlated with the montmorillonite void ratio is proposed and verified using the concept of the skeleton void ratio. (author)

  6. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    International Nuclear Information System (INIS)

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  7. Adsorption properties and porous structure of sulfuric acid treated bentonites determined - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    SNEZANA BREZOVSKA

    2005-02-01

    Full Text Available In a previous paper adsorption isotherms of benzene vapor on natural bentonite from Ginovci, Macedonia, and forms acid activated with 10 % and 15 % solutions of hydrochloric were interpreted by means of the Dubinin–Radushkevich–Stoeckli and Dubinin–Astakhov equations; the investigation has been continued with bentonites acid activated with 10 % and 15 % solutions of sulfuric acid where X-ray analysis indicates smaller structural changes. Using the above equations, the heterogeneity of the micropores and the energetic heterogeneity of the bentonites were determined from the differential distribution of the micropore volume with respect to the structural parameter of the equations characterizing the microporous structure and to the molar free energy of adsorption. Activated bentonites obtain bigger pores but also a certain quantity of new small pores appear during acid activation with the higher concentration of acid. The micropore volumes, determined from the adsorption of benzene vapor, of bentonites activated with 10 % and 15 % solution of hydrochloric acid (144.60 cm3 kg-1 and 110.06 cm3 kg-1, respectively, decrease in comparison with that of natural bentonite (162.55 cm3 kgv.1 In contrast, the values of the micropore volume for bentonities treated with 10 % and 15 % solutions of sulfuric acids increase (169.19 cm3 kg-1 and 227.74 cm3 kg-1. That is due to the difference in the structural changes occurring during activation with hydrochloric and sulfuric acids. The values of the free energy of adsorption of benzene vapor for natural bentonite are higher than those of the acid acitivated bentonities, what is in accordance with the structural and porosity changes.

  8. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids.

    Science.gov (United States)

    Albarran, Nairoby; Missana, Tiziana; García-Gutiérrez, Miguel; Alonso, Ursula; Mingarro, Manuel

    2011-03-25

    The effects of bentonite colloids on strontium migration in fractured crystalline medium were investigated. We analyzed first the transport behaviour of bentonite colloids alone at different flow rates; then we compared the transport behaviour of strontium as solute and of strontium previously adsorbed onto stable bentonite colloids at a water velocity of approximately 7.1·10(-6)m/s-224m/yr. Experiments with bentonite colloids alone showed that - at the lowest water flow rate used in our experiments (7.1·10(-6)m/s) - approximately 70% of the initially injected colloids were retained in the fracture. Nevertheless, the mobile colloidal fraction, moved through the fracture without retardation, at any flow rate. Bentonite colloids deposited over the fracture surface were identified during post-mortem analyses. The breakthrough curve of strontium as a solute, presented a retardation factor, R(f)~6, in agreement with its sorption onto the granite fracture surface. The breakthrough curve of strontium in the presence of bentonite colloids was much more complex, suggesting additional contributions of colloids to strontium transport. A very small fraction of strontium adsorbed on mobile colloids moved un-retarded (R(f)=1) and this fraction was much lower than the expected, considering the quantity of strontium initially adsorbed onto colloids (90%). This behaviour suggests the hypothesis of strontium sorption reversibility from colloids. On the other hand, bentonite colloids retained within the granite fracture played a major role, contributing to a slower strontium transport in comparison with strontium as a solute. This was shown by a clear peak in the breakthrough curve corresponding to a retardation factor of approximately 20. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Immobilization and Remediation of Low-level Cd Contaminated Soil Using Bentonite

    Directory of Open Access Journals (Sweden)

    XU Yi

    2017-01-01

    Full Text Available Pot experiments and field trials were conducted to investigate the effects of bentonite on immobilization and remediation of lowlevel Cd contaminated soils. The results showed that under pot and field experiments the concentrations of exchangeable Cd after applied bentonite to soils decreased by 41.3%~86.1% and 7.9%~24.6%, respectively, when compared with the control group, while the contents of Fe-Mn oxides(OXand residual(RESfraction of Cd were increased. Cd concentration in the parts of Oryza sativa L. decreased with the increment of bentonite, with the maximal Cd reduction of 46.0%, 49.8%, 54.2%and 71.8%, respectively under pot experiment and of 35.3%, 48.8%, 36.0%and 40.9%, respectively under field experiments in roots, stems, leaves and brown rice in contrast to the CK. SOD and soluable protein(SPin leaves of rice seedlings was enhanced to some extents, but POD and MDA were significantly inhibited(P0.05. The activities of urease first decreased and then increased with the increasing of bentonite contents.

  10. Removal of Chromium from Waste Water of Tanning Industry Using Bentonite

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2009-01-01

    Tanning industry is considered as one of the oldest industries in the world, which produces solid and liquid wastes, where the Chromium-containing liquid wastes are considered to be as the main liquid pollutant to the environment. In this research, a new method is applied to remove the chromium from the industrial water wastes, which are produced by tanning industry using the Aleppo Bentonite.The experiments on laboratory- prepared samples and collected samples from some tanning factories in Damascus have proved that chromium removal from tanning waste water is very effective for solution of 85-98 %. Moreover, the optimal conditions for the treatment process of tanning waste water by Aleppo Bentonite have determined and found to be (pH=4, Bentonite concentration = 20 g l -1 when chromium concentration is 0.8 g l -1 , solution temperature = 30 degree centigrade, and Bentonite particle size < 90 μm). However, the proposed method can be considered to be an environmental solution for the treatment of tanning industrial wastes in Syria. (author)

  11. Effect of pH on the sorption properties of bentonite Kopernica

    International Nuclear Information System (INIS)

    Galambos, M.; Paucova, V.

    2009-01-01

    In this work sorption of strontium-85 on Slovak bentonites was studied. Sorption experiments that were conducted at four different values of pH = 2, 4, 6 and 8 showed that by increasing of pH in the solution an increasing of values of percentage of sorption and of distribution relationships occur. Value approaching 99% was achieved during the sorption of strontium cations from the bentonite deposits Kopernica only at pH = 8. It can be concluded that in addition to the basic mechanism of sorption, which is ion exchange, complex-forming reactions with surface groups of bentonite take place there at higher values. The increase in value attributable to R 'hydrolytic' adsorption, because there is a reaction between Sr(OH) + and OH-groups and H + ion competition is stifled. At pH = 2 in the whole studied range of concentrations low values of sorption percent, distribution ratio and adsorbed amount of strontium were observed. It can be attributed to a significant competitive impact of hydrogen ions and disruption of the structure of bentonite.

  12. Mechanical stability of bentonite buffer system for high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, A. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Theoretical and Applied Mechanics

    1998-05-01

    According to present plans, high level nuclear waste in Finland is going to be disposed of in bedrock at a depth of several hundred metres. The spent fuel containers will be placed in boreholes drilled in the floors of deposition tunnels with engineered clay buffer, which is made of bentonite blocks. The tunnels will be filled with a mixture of bentonite and crushed rock. For stability calculations a thermomechanical model for compressed bentonite is needed. In the study a thermomechanically consistent model for reversible processes for swelling clays is presented. Preliminary calculations were performed and they show that uncertainty in material parameter values causes significantly different results. Therefore, measurements that are consistent with the model are needed 12 refs.

  13. Mechanical stability of bentonite buffer system for high level nuclear waste

    International Nuclear Information System (INIS)

    Lempinen, A.

    1998-05-01

    According to present plans, high level nuclear waste in Finland is going to be disposed of in bedrock at a depth of several hundred metres. The spent fuel containers will be placed in boreholes drilled in the floors of deposition tunnels with engineered clay buffer, which is made of bentonite blocks. The tunnels will be filled with a mixture of bentonite and crushed rock. For stability calculations a thermomechanical model for compressed bentonite is needed. In the study a thermomechanically consistent model for reversible processes for swelling clays is presented. Preliminary calculations were performed and they show that uncertainty in material parameter values causes significantly different results. Therefore, measurements that are consistent with the model are needed

  14. Literature study on the microstructure of bentonite and its effect on diffusion

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Pusch, R.

    1994-12-01

    In the study the available information from the literature on the microstructural properties of bentonite and its main component montmorillonite have been compiled, together with different phenomena which have been found to participate in the diffusion process in bentonite. (167 refs., 36 figs., 6 tabs.)

  15. Advances on study of temperature effects on hydro-mechanical behaviour of densely compacted bentonite

    International Nuclear Information System (INIS)

    Ye Weimin; Wan Min; Chen Bao; Liu Yuemiao; Cui Yujun

    2008-01-01

    During the operation of a multiple-barrier geological repository, bentonite that works as a buffer/fill material of an artificial barrier will suffer complex coupling effects of thermal (T), hydrological (H), mechanical (M) process, which comes from heat of the nuclear waste radiation, mechanical stress from parent rock mass and seepage action of groundwater. The scientific results show that temperature has influence on the water retention, saturated permeability, swelling pressure, swelling strain and thermal strain of compacted bentonite. As a whole, the research about GMZ (Gao Miaozi) bentonite, which may potentially be chose as Chinese buffer/backfill material for high radioactive nuclear waste disposal, has a long way to go compare to developed contraries. Based on comprehensive laboratory tests and advanced theoretical framework, both of the study on behaviour of compacted GMZ bentonite under HTM coupling conditions, and the establishment of a constitutive relation for prediction of behaviour of compacted bentonite under multi-field coupling conditions are important in theoretic and practical way. (authors)

  16. Purification of bentonite clays from the district of Cubati, PB, for other uses

    International Nuclear Information System (INIS)

    Costa, M.R.; Araujo, J.P.; Silva, I.A.; Cardoso, M.A.; Silva, C.D.; Neves, G.A.; Ferreira, H.C.

    2012-01-01

    The state of Paraiba is responsible for the increased production of crude bentonite in the country, coming from one of the largest mines of Brazil, located in Boa Vista, PB. Recently, in the regions of Cubati and Pedra Lavrada, PB, found new deposits of bentonite that could expand the state reserves. The paper aims at the characterization and development of clay purified using the techniques of screening and hydrocycloning, from bentonite clay recently discovered in the city of Cubati, PB, for various uses. The sample characterization was performed through techniques: granulometric analysis by laser diffraction, X-ray diffraction and chemical analysis by X-ray fluorescence and thermogravimetric and differential thermogravimetric analysis. The results showed that the samples are typical of bentonite clay, and that the purification process using only the hydrocycloning shows better results. (author)

  17. Study on the saturating and swelling behavior of an engineering bentonite barrier using a test model

    International Nuclear Information System (INIS)

    Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fujisaki, Katsutoshi

    2007-01-01

    The conceptual design of a disposal facility with additional buffer depth for radioactive waste is mainly constituted from the multi-barrier system that is constructed around the waste form so that it prevents radionuclide transfer to the biosphere. The engineered bentonite barrier is one of the elements of the multi-barrier system and is constructed with homogeneous bentonite-containing material compacted to a high density so that there are no voids. Due to the swelling characteristics of the bentonite material, the self-sealing function which is an important function of the bentonite barrier can work, but at the same time it mechanically affects the neighboring structures. Therefore, an experimental study was implemented in order to evaluate the mechanical effect of the bentonite swelling behavior throughout the construction, emplacement operations and closure re-saturation phase. In this article, the results of swelling tests to obtain the mechanical properties of the bentonite and three types of test model experiments performed for the event observations in the different saturation processes are described. As a result, the effects of a seepage pattern of ground water and a variation in the density produced by construction on the swelling pressure distribution of the bentonite barrier could be reproduced and validated. It is thought that they will be important events when ground water permeates the bentonite layer of a multiple barrier system. (author)

  18. Exposição ocupacional por material biológico no Hospital Santa Casa de Pelotas - 2004 a 2008 La exposición ocupacional a material biológico en el Hospital Santa Casa de Pelotas - 2004 a 2008 Occupational exposure to biological material at the Hospital Santa Casa de Pelotas - 2004 to 2008

    Directory of Open Access Journals (Sweden)

    Lílian Moura de Lima

    2011-03-01

    Full Text Available A pesquisa trata de exposições ocupacionais por material biológico a que foram submetidos os profissionais de saúde, no Hospital Santa Casa de Misericórdia de Pelotas, no período de janeiro de 2004 a junho de 2008. Trata-se de um estudo transversal, descritivo, com abordagem quantitativa. Utilizou-se como instrumento de pesquisa um questionário elaborado com base na ficha de notificação de acidente de trabalho da referida instituição. Os dados foram digitados e analisados no programa Epi-info 6.04. Como principal resultado encontrou-se a maior ocorrência de acidentes de trabalho com material biológico entre os profissionais técnicos em enfermagem do sexo feminino (38,6%, com idade de 21 a 30 anos (53,9%. A maioria dos acidentes aconteceu através de lesões com perfurocortantes (82,2%, sendo 24,1% no Centro Cirúrgico e 84,5% envolvendo sangue. Conclui-se que o estudo é de extrema relevância, pois, com base no reconhecimento do tipo de acidentes mais frequentes, pode-se conhecer os riscos existentes e intervir na sua redução, por meio de ações preventivas que beneficiem o trabalhador e a instituição.El estudio aborda la exposición ocupacional a material biológico a que fueron sometidos los profesionales de salud en el Hospital Santa Casa de Misericordia de Pelotas, de enero de 2004 a junio de 2008. Este es un corte transversal, descriptivo y cuantitativo. Se utiliza como herramienta de investigación un cuestionario basado en el formulario de informe de accidente de trabajo de esa institución. Los datos fueron introducidos y analizados con Epi-Info 6.04. Como principal resultado se encontró una mayor incidencia de accidentes con material biológico entre los profesionales técnicos de enfermería del sexo femenino (38,6%, de 21 años a 30 años (53,9%. La mayoría de los accidentes ocurrió a través de lesiones con objetos punzantes (82,2%, siendo que 24,1% ocurrió en el Centro Quirúrgico, y 84,5% con sangre. Se

  19. Freezing of bentonite. Experimental studies and theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    During its lifetime, a KBS-3 repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg C. From a safety assessment perspective, it is therefore essential to understand the behavior of compacted bentonite below 0 deg C. A theoretical framework for predicting the pressure response in compacted water saturated bentonite due to temperature changes has been developed based on thermodynamics and a single pore-type. This model predicts an approximately linear temperature dependence of swelling pressure P{sub s}(w,DELTAT) = P{sub s}(w,0 deg C) + DELTAs(w)DELTAT/nu{sub clay}(w) where DELTAT denotes a temperature difference from 0 deg C, DELTAs(w) is the difference in partial molar entropy between clay water and bulk water, nu{sub clay} (w) is the partial molar volume of the clay water and w denotes the water/solid mass ratio of the clay. As bulk water changes phase at 0 deg C, DELTAs(w) has a different value dependent on whether DELTAT is negative or positive. Above 0 deg C DELTAs(w) is a small value for all relevant densities which means that the pressure response due to temperature changes is small. A further consequence of this fact is that DELTAs(w) is a large positive number below 0 deg C when the external water phase is transformed to ice. Consequently, the model predicts a large drop of swelling pressure with temperature below 0 deg C, in the order of 1.2 MPa/deg C. Specifically, the swelling pressure is zero at a certain (negative) temperature T{sub C}. T{sub C} also quantifies the freezing point of the bentonite sample under consideration, as ice formation in the bentonite does not occur until swelling pressure is lost. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg C to +25 deg C. The swelling pressure response has been

  20. Effects of surfactants on microwave-assisted solid-state intercalation of poly(carbazole) in Bentonite

    International Nuclear Information System (INIS)

    Riaz, Ufana; Ashraf, S. M.; Khan, Nisha

    2011-01-01

    The present preliminary investigation reports, for the first time, the effects of typical cationic and anionic surfactants on the microwave-assisted solid-state intercalation and polymerization of carbazole (Cz) in the basal spacings of Bentonite. The intercalation of cetyl pyridinium chloride (CPCl), a cationic surfactant, and naphthalene sulfonic acid (NSA), an anionic surfactant, in Bentonite was carried out at two loadings—25 and 50 wt%—using microwave irradiation. The in situ polymerization of Cz was successfully carried out into the surfactant-modified galleries of Bentonite. This was confirmed by Gel permeation chromatography (GPC). The intercalation of poly(carbazole) (PCz) was confirmed by FT-IR, UV–Visible, and XRD analyses. Although polymerization was carried out in the solid-state, the UV–Visible spectra revealed the doped state of PCz and the presence of a charge carrier tail. The XRD studies showed that the increase in the height of the galleries was higher in case of Bentonite/CPCl/PCz nanocomposites as compared to Bentonite/NSA/PCz nanocomposites. It also revealed different orientations of the two surfactants in the galleries of the clay. The average particle size of Bentonite/CPCl/PCz (1:0.25:0.25) and (1:0.5:0.5) nanocomposites was found to be in the range of 25–35 and 50–60 nm, respectively. The Bentonite/NSA/PCz (1:0.25:0.25) and (1:0.5:0.5) nanocomposites showed the average particle size in the range of 20–30 nm and 40–50 nm, respectively. The results revealed that both cationic and anionic surfactants strongly influenced the morphology of Bentonite/PCz nanocomposites. The difference in the mechanisms of solid-state intercalation of PCz in the presence of these surfactants has been proposed.

  1. Bentonite pore structure based on SAXS, chloride exclusion and NMR studies

    International Nuclear Information System (INIS)

    Muurinen, A.; Carlsson, T.

    2013-11-01

    Water-saturated bentonite is planned to be used in many countries as an important barrier component in high-level nuclear waste (HLW) repositories. Knowledge about the microstructure of the bentonite and the distribution of water between interlayer and non-interlayer pores is important for modelling of long-term processes. In this work the microstructure of water-saturated samples prepared from Na montmorillonite, Ca-montmorillonite, sodium bentonite MX-80 and calcium bentonite Deponit CaN were studied with nuclear magnetic resonance (NMR) and small-angle xray scattering spectroscopy (SAXS). The sample dry densities ranged between 0.3 and 1.6 g/cm 3 . The NMR technique was used to get information about the volumes of different water types in the bentonite samples. The results were obtained using 1H NMR spin-lattice T 1ρ relaxation time measurements using the short inter-pulse method. The interpretation of the NMR results was made by fitting distributions of exponentials to observed decay curves. The SAXS measurements were used to get information about the size distribution of the interlayer distance of montmorillonite. The chloride porosity measurements and Donnan exclusion calculations were used together with the SAXS results for evaluation of the bentonite microstructure. The NMR studies and SAXS studies coupled with Cl porosity measurements provided very similar pictures of how the porewater is divided in interlayer and non-interlayer water in MX-80 bentonite. In the case where MX-80 of a dry density 1.6 g/cm 3 was equilibrated with 0.1 M NaCl solution, the results indicated an interlayer porosity of 30 % and non-interlayer porosity of 12 %. The interlayer space mainly contained two water layers but also spaces with more water layers were present. The average size of the non-interlayer pores was evaluated to be 120 - 150 A. From the montmorillonite surface area 98 % was interlayer and 2 % non-interlayer. Evaluation of the interlayer and non

  2. Possibilities of reducing radiocesium transfer to hen eggs. II. Using bentonite from Polish geological deposits

    International Nuclear Information System (INIS)

    Rachubik, J.; Kowalski, B.

    2000-01-01

    The decontamination effectiveness of bentonite from Polish geological deposits in reducing the radiocesium transfer to hen eggs was examined. The egg white radiocesium concentration was higher than that in egg yolk. The highest decontamination efficacy in all egg components was noticed in animals treated with bentonite from the first day of radionuclide administration. Generally, the radioactivity concentration in hens treated simultaneously with 137CsCl and a cesium binder were lower by 50% than those in the controls. The decontamination efficiency lowered with the delayed bentonite treatment. In Poland bentonite seems to be an alternative to other decontamination agents. (author)

  3. Mobility of U, Np, Pu, Am and Cm from spent nuclear fuel into bentonite clay

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    1998-01-01

    The mobility of uranium, neptunium, plutonium, americium and curium from spent nuclear fuel (UO 2 ) into compacted bentonite was studied. Pieces of spent BWR UO 2 fuel was embedded in a compacted bentonite clay/low saline synthetic groundwater system. After a contact time of six years the bentonite was sliced into 0.1 mm thick slices and analysed for its content of actinides. Radiometric as well as inductively coupled plasma mass spectrometry (ICP-MS) were used for the analysis. The influence on the mobility by the addition of metallic iron, metallic copper and vivianite (Fe(II)-mineral) to the bentonite clay was investigated. The results show a low mobility of actinides in bentonite clay. Except for uranium the mobility of the other actinides could, after six years of diffusion time, only be detected less than 1 mm from the spent fuel. (orig.)

  4. Effect of a bentonite/soil mixture as a barrier for uranium ponds

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.

    2002-01-01

    Uranium mill tailings need safe management as they contain long-lived uranium and its daughters. Chemical treatment applied on these tailings to neutralize the acid solution and to stabilize the remaining radioactive elements. Then they are stored in ponds. These ponds are used for the accumulation of the solids and evaporation of the liquids. Sometimes the liquid returned to the plant for reuse. These applications are used to isolate the tailings from the environment. The purpose of this laboratory test is; initially to determine the effectiveness of bentonite/soil mixture as a barrier for uranium ponds. In this study, two experimental ponds equipped; with different two barriers in laboratory. Dimension of this container is; 120 cm in length, 100 cm in width and 100cm in depth. Sampling pipes were placed at different places of the container. First pond includes ordinary soil; second pond includes soil/bentonite mixture. Uranium mill tailing ponds were placed at the surfaces of these two systems. Uranium solution was prepared by using natural uranium ore. The solution was put into these ponds. These test carried out more than for 10 months. Passed solution was collected by sampling pipes and recorded. Amounts of passed solution were determined according to the location of discharge pipes. At the last stage of these tests, sampling from the different parts o the system has been carried out by small holes, which were opened from the surface by special sampling device. By this way, migration information about the upper parts of the sampling pipes has been received. Behaviour of uranium radionuclides and the effectiveness of the bentonite/soil mixture were experimentally determined. Bentonite/soil mixture layer has better ability to restrain the migration of uranium radionuclides. The performance of the ponds at the natural soil can be improved simply by mixing with bentonite during construction. Bentonite/soil mixture includes 5% bentonite, 95% ordinary soil in weight

  5. Applicability of low alkaline cement for construction and alteration of bentonite in the cement. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Fujii, Kensuke; Tajima, Takatoshi; Takeda, N.; Kubo, Hiroshi

    2003-02-01

    This study consists of accelerating corrosion test of rebar in saline, automogeneous shrinkage test of HFSC, accelerating test for bentonite and rock, and summarizing rock and bentonite alteration. Corrosion of rebars in HFSC: Since sorption capacity of HFSC for Cl ion is slow due to low alkalinity, rate of corrosion of rebar in HFSC is very large. Cracking due to corrosion is generating in 4 years or 20 years, although service period is deferent in OPC amount. Automogenous shrinkage: Automogenous shrinkage of HFSC is larger than OPC in cement paste. It decreases corresponding to rise of fly ash content. The shrinkage in HFSC 226 is quite similar to OPC. The shrinkage in HFSC concrete is smaller than OPC concrete. 720 days alteration test of bentonite by solution of low alkaline cement: Ion exchange to Ca bentonite and calcite are observed in the solid phase. Thin plate of bentonite is disappeared and round shaped secondary mineral is generated. Dissolution of bentonite and generation of secondary minerals are limited in pH 11.0 or less, since pH of bentonite is about 10.0. 720 days alteration test of rock by solution of low alkaline cement: Calcite is generated in very test. Very small evidence is observed as generation of secondary minerals. Etched pits are observed in tuff A due to corrosion. (author)

  6. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.

    2002-02-01

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  7. Advanced study of transport analysis in bentonite (2)

    International Nuclear Information System (INIS)

    Kawamura, Katsuyuki

    2004-03-01

    Solute and radionuclide transport analysis in buffer material made of bentonite clay is essential in safety assessment of a geological disposal facility for high-level radioactive waste (HLW). It is keenly required to understand the true physical and chemical process of the transport phenomena and to improve reliability of the safety assessment, since any conventional methods based on experimental models involve difficulty to estimate the robustness for a very long-term behavior. In order to solve this difficulty we start with the molecular dynamics (MD) simulation method for understanding the molecular-based fundamental properties such as an ionic state and diffusion characteristics of hydrated smectite clay minerals, and we extend the microscale properties to the macroscale behaviors by applying the multiscale homogenization method. In the study of this year we improved the MD atomic model for the hydrated clay minerals, and a new adsorption-diffusion analysis scheme by the homogenization analysis (HA). In the MD simulation first we improved the interatomic potential model for the smectitic clays. Then the behaviors of hydrated Na-beidellite and its substitution products by Cs and Ca were calculated. Not only the swelling behaviors of the beidellite minerals but also the diffusion characteristics of cations in the interlayer space are calculated. A microscopic image is important to specify micro/macro behavior of bentonite. Last year we observed microstructures of bentonite by using a confocal laser scanning microscope (LSM). Based on the knowledge of the local material properties obtained by MD and the microscopic observation we simulated the micro-/macro-behavior of diffusion experiments of the bentonite which included the microscale adsorption characteristics at the edges of clay minerals. (author)

  8. FRACTAL ANALYSIS OF PHYSICAL ADSORPTION ON SURFACES OF ACID ACTIVATED BENTONITES FROM SERBIA

    Directory of Open Access Journals (Sweden)

    Ljiljana Rožić

    2008-11-01

    Full Text Available Solid surfaces are neither ideally regular, that is, morphological and energeticcally homogeneous, nor are they fully irregular or fractal. Instead, real solid surfaces exhibit a limited degree of organization quantified by the fractal dimension, D. Fractal analysis was applied to investigate the effect of concentrations of HCl solutions on the structural and textural properties of chemically activated bentonite from southern Serbia. Acid treatment of bentonites is applied in order to remove impurities and various exchangeable cations from bentonite clay. Important physical changes in acid-activated smectite are the increase of the specific surface area and of the average pore volume, depending on acid strength, time and temperature of a treatment. On the basis of the sorption-structure analysis, the fractal dimension of the bentonite surfaces was determined by Mahnke and Mögel method. The fractal dimension evaluated by this method was 2.11 for the AB3 and 1.94 for the AB4.5 sample. The estimation of the values of the fractal dimension of activated bentonites was performed in the region of small pores, 0.5 nm < rp < 2 nm.

  9. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Denise Ester O. [Polymer Research Laboratory, Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101 Philippines (Philippines); Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines (Philippines); Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T. [Polymer Research Laboratory, Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101 Philippines (Philippines)

    2016-05-18

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  10. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    International Nuclear Information System (INIS)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-01-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  11. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Science.gov (United States)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  12. Brazilian bentonite study: use in Goiania; Estudo das bentonitas nacionais: utilizacao em Goiania

    Energy Technology Data Exchange (ETDEWEB)

    Tello, Cledola Cassia Oliveira de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    1997-12-31

    The evaluation of the bentonite effect in the waste cementation process and in the final solidified product properties is presented. The research showed that bentonite amounts until 15% in the product improves the caesium retention without jeopardizing the other product properties. These results were very useful in the treatment of the wastes from the radiological accident occurred in Goiania in 1987, when a caesium sources was broken. Paste, mortar and grout with bentonite were used to solidify and immobilize these wastes. (author) 20 refs., 1 fig., 6 tabs.; e-mail: tellocc at urano.cdtn.br

  13. Compendium of Data for the Hanford Site (Fiscal Years 2004 to 2008) Applicable to Estimation of Recharge Rates

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, William E.; Rockhold, Mark L.; Downs, Janelle L.

    2008-09-24

    This report is a compendium of recharge data collected in Fiscal Years 2004 through 2008 at various soil and surface covers found and planned in the 200 West and 200 East Areas of the U.S. Department of Energy’s Hanford Site in southeast Washington State. The addition of these new data to previously published recharge data will support improved estimates of recharge with respect to location and soil cover helpful to evaluations and risk assessments of radioactive and chemical wastes at this site. Also presented are evaluations of the associated uncertainties, limitations, and data gaps in the existing knowledge base for recharge at the Hanford Site.

  14. Thermal conductivity tests on buffermasses of bentonite/silt

    International Nuclear Information System (INIS)

    Knutsson, S.

    1977-09-01

    The investigation concerns the thermal conductivity of the bentonite/quartz buffer mass suggested as embedding substance for radioactive canisters. The first part presents the theoretical relationships associated with the various heat transfer mechanisms in moist granular materials. Chapter 3 describes the author's experimental determination of the thermal conductivity of the buffer mass. The tested mass consisted of 10 percent (by weight) bentonite and 90 percent natural silt. Four tests were made with different water content values and degree of water saturation. A comparison between the measured and calculated thermal conductivities is given. It is shown that the conductivity can be calculated with an accuracy of +-20 percent. (author)

  15. Characterization of bentonite clay from “Greda” deposit

    Directory of Open Access Journals (Sweden)

    Nadežda Stanković

    2011-06-01

    Full Text Available Based on mineralogical and technological investigations of the deposit “Greda” important characteristics of bentonite clay were determined. Representative samples of the deposit were characterized with X-ray diffraction, low-temperature nitrogen adsorption, chemical analysis, differential thermal analysis and scanning electron microscopy. It was determined that the main mineral is montmorillonite and in subordinate quantities kaolinite, quartz and pyrite. The chemical composition generally shows high silica and alumina contents in all samples and small quantities of Fe3+, Ca2+ and Mg2+ cations. Based on technological and mineralogical research, bentonite from this deposit is a high-quality raw material for use in the ceramic industry.

  16. Effects of bentonite on plasma urea and creatinine of wistar albino rats.

    African Journals Online (AJOL)

    The in vivo effect of Nigerian calcium bentonite clay on wistar albino rat plasma urea and creatinine levels were investigated. The rats were fed for a period of four weeks with varying concentrations of the bentonite clay, and the urea and creatinine levels determined using spectrophotometric methods. Test results showed ...

  17. Learning from research on the information behaviour of healthcare professionals: a review of the literature 2004-2008 with a focus on emotion.

    Science.gov (United States)

    Fourie, Ina

    2009-09-01

    A review, focusing on emotion, was conducted of reported studies on the information behaviour of healthcare professionals (2004-2008). Findings were intended to offer guidelines on information services and information literacy training, to note gaps in research and to raise research interest. Databases were searched for literature published from January 2004 to December 2008 and indexed on eric, Library and Information Science Abstracts, medline, PsycINFO, Social Services Abstracts, Sociological Abstracts, Health Source: Nursing/Academic Edition; Library, Information Science & Technology Abstracts; Psychology and Behavioral Sciences Collection; Social Work Abstracts; SocINDEX with Full Text; SPORTDiscus; cinhal; and the ISI Web of Knowledge databases. Key journals were manually scanned and citations followed. Literature was included if reporting on issues concerning emotion. Emotion in information behaviour in healthcare contexts is scantily addressed. This review, however, offers some insight into the difficulty in identifying and expressing information needs; sense making and the need to fill knowledge gaps; uncertainty; personality and coping skills; motivation to seeking information; emotional experiences during information seeking; self-confidence and attitude; emotional factors in the selection of information channels; and seeking information for psychological or emotional reasons. Suggestions following findings, address information literacy programs, information services and research gaps.

  18. Hydrothermal alterations of Bentonites in Almeria (Spain)

    International Nuclear Information System (INIS)

    Linares Gonzalez, J.; Barahona Fernandez, E.; Huertas Garcia, F.; Caballero Mesa, E.; Cuadros Ojeda, J.

    1996-01-01

    The use of bentonite as backfilling and sealing material in the high level radioactive waste disposals has been treated in previous studies accomplished by different authors. However, the use of this clayey barrier needs the resolution of different problems so that its efficiency will be enhanced. between those could be cited the study of the actual capacity of sealing the space around the canister and the accommodation to the pressure of the rocky environment; the possible variations in plasticity; the diffusion and reaction processes that can be produced through the barrier by groundwater, the capacity of radionuclides adsorption, etc. These studies, show that the bentonites with high content in smectite fulfill satisfactorily with the physical and chemical conditions to be used as sealing material, but it is known that the smectite can be unstable in diagenetic conditions similar to those are given in a deep repository of radioactive wastes, being transformed into illite. A conclusion of immediate interest is deduced from this last study. The bentonites used as sealing material in radioactive waste repositories must no contain Na as interlayer cation since it is very easily exchangeable by K. It is better to select those smectites with Ca and Mg that detain the entry of K in the interlayer and as a consequence the transformation process of smectite into illite is made more difficult. (Author)

  19. Hospitalizations for varicella in children and adolescents in a referral hospital in Hong Kong, 2004 to 2008: A time series study

    Directory of Open Access Journals (Sweden)

    Chan WM

    2011-05-01

    Full Text Available Abstract Background Varicella accounts for significant morbidities and remains a public health issue worldwide. Climatic factors have been shown to associate with the incidence and transmission of various infectious diseases. We describe the epidemiology of varicella in paediatric patients hospitalized at a tertiary referral hospital in Hong Kong from 2004 to 2008, and to explore the possible association between the occurrence of varicella infection and various climatic factors. Methods The hospital discharge database of Princess Margaret Hospital was retrospectively analyzed for admissions associated with varicella from 2004 to 2008. Meteorological data were obtained from the monthly meteorological reports from the Hong Kong Observatory website. Time series analysis was performed with Poisson regression using a Generalized Estimating Equation (GEE approach. Results During the study period, 598 children were hospitalized for varicella. The mean age on admission was 57.6 months, and the mean duration of hospitalization was 3.7 days. The overall complication rate was 47%. The mean monthly relative humidity, especially in cool seasons, was inversely correlated with the monthly varicella cases of the same month. Conclusions Varicella can lead to serious complications and prolonged hospitalization, even in previously healthy children. Lower relative humidity in cool seasons is associated with higher number of paediatric varicella hospital admissions. These findings are useful for a better understanding of the pattern of paediatric varicella hospitalization in Hong Kong.

  20. Correlation of upper Llandovery–lower Wenlock bentonites in the När (Gotland, Sweden and Ventspils (Latvia drill cores: role of volcanic ash clouds and shelf sea currents in determining areal distribution of bentonite

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2012-11-01

    Full Text Available Study of volcanic ash beds using biostratigraphy, sanidine composition and immobile elements within bentonites has manifested several well-established and some provisional correlations between Gotland and East Baltic sections. Energy dispersive X-ray fluorescence microanalysis of phenocrysts has revealed bentonites containing Mg-rich or Fe-rich biotite. Sanidine phenocrysts contain, in addition to a major Na and K component, often a few per cent of Ca and Ba. On the basis of new correlations the mapping of the distribution areas of bentonites has been extended from the East Baltic to Gotland. The bentonite distribution can be separated into two parts in North Latvia–South Estonia, indicating the existence of shelf sea currents in the Baltic Silurian Basin.

  1. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    WINTEC

    composites have recently found applications in packaging, automotive ... process using xylene as the solvent. Solvent ... Particle size distribution curve for clay, bentonite. Table 2. .... greater probability of debonding due to the poor interfa-.

  2. Formula of Moulding Sand, Bentonite and Portland Cement toImprove The Quality of Al-Si Cast Alloy

    OpenAIRE

    Andoko Andoko; Poppy Puspitasari; Avita Ayu Permanasari; Didin Zakaria Lubis

    2017-01-01

    A binder is any material used to strengthen the bonding of moulding sand grains. The primary function of the binder is to hold the moulding sand and other materialstogether to produce high-quality casts. In this study, there were four binder compositions being tested, i.e. 5% bentonite + 5% Portland cement, 4% bentonite + 6% Portland cement, 6% bentonite + 4% Portland cement, and 7% bentonite + 3% Portland cement. Each specimen was measured for its compressive strength, shear strength, tensil...

  3. Study of Cadmium adsorption of Nickel and Zinc on a natural bentonite and homo ionic of sodium

    International Nuclear Information System (INIS)

    Silva Giraldo, German Dario; Pinzon Bello, Jorge Alejo

    1999-01-01

    It was studied the adsorption of cadmium, nickel and zinc in aqueous solution at 25oC over a bentonite from the Cauca Valley, in its native state as well as in its sodium homo ionic form. The Langmuir isotherm adequately describes the adsorption of these metal ions over both bentonites, and the thermodynamic distribution coefficient, Kdm, which allow quantifying the degree of adsorption, can be calculated. Baeyens-bradbury model correlates well the adsorption of the metal ions over both bentonites but Kdm cannot be calculated from it. The adsorption data do not adjust to freundlich isotherm or B.E.T. As well as they do to the previously mentioned models. The sodium homo ionic bentonite adsorbs nickel and zinc better than the native bentonite, whereas there are not significant differences in cadmium adsorption. The order of adsorption over both bentonites, Cadmium > Zinc > Nickel, follow the HSAB principle

  4. Organophilization process of Brazilian bentonite for preparation of polymeric nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos I.R. de; Rocha, Marisa C.G.; Ferreira, Joao L.A.N.G.

    2015-01-01

    Bentonite clay from the municipality of Cubati, PB, was used for the preparation of an organophilic clay. First, the clay was treated with sodium chloride to obtain the homo-ionic sodium clay. The organoclay was, then, obtained from the reaction of homo-ionic clay with the quaternary ammonium salt, cetyltrimethyl ammonium chloride. The natural clay and the modified clays were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The chemical analysis showed a decrease in the concentration of the majority of the metallic oxides when the bentonite was organophilizated. This result is characteristic of the metal cation exchange process by organic salt molecules. The X-ray diffraction confirmed the intercalation among the layers of the clay. The results obtained by FTIR showed the presence of the characteristic groups of the salt in the clay, thus confirming the obtaining of organophilic bentonite. (author)

  5. Review of the properties and uses of bentonite as a buffer and backfill material

    International Nuclear Information System (INIS)

    Savage, D.; Lind, A.; Arthur, R.C.

    1999-05-01

    Research carried out by SKB on the use and behaviour of bentonite as a buffer and backfill material in a radioactive waste repository has been reviewed. The following research areas have been evaluated: mechanical properties; hydraulic and other transport properties; geochemical properties; thermal properties and resaturation; gas migration; manufacturing and emplacement procedures. This review has shown that SKB has carried out much pioneering and world-leading research on bentonite, particularly with regard to analogue studies, microtextural work and practical manufacturing and emplacement procedures. However, there are a number of subject areas which appear less well addressed than others which require further attention: The extrapolation of experimental results of the mechanical properties of bentonite to repository timescales and repository conditions should be investigated further. There is a need for detailed microstructural analysis of materials as part of experimental programmes. This would enable SKB to build confidence in the interpretations of results and reveal whether the mechanical processes occurring during experimentation truly reflect expectations of the performance of the repository. The large amount of experimental, theoretical, empirical datasets and computer models of the mechanical properties of bentonite need to be collated to form a database which is assessable and relevant to those involved in performance assessment calculations. At present, the valuable results of many excellent research projects on mechanical properties of bentonite buffer are not readily available. There seems to be a relatively poor understanding of the mechanisms of radionuclide diffusion through compacted bentonite. Other international work suggests that diffusion coefficients are much lower than those applied by SKB in its PA work. The importance of surface diffusion to describe diffusion in bentonite for certain chemical species ascribed by SKB is not reflected in

  6. Review of the properties and uses of bentonite as a buffer and backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.; Lind, A. [QuantiSci Ltd., Melton Mowbray (United Kingdom); Arthur, R.C. [QuantiSci lnc., Denver, CO (United States)

    1999-05-01

    Research carried out by SKB on the use and behaviour of bentonite as a buffer and backfill material in a radioactive waste repository has been reviewed. The following research areas have been evaluated: mechanical properties; hydraulic and other transport properties; geochemical properties; thermal properties and resaturation; gas migration; manufacturing and emplacement procedures. This review has shown that SKB has carried out much pioneering and world-leading research on bentonite, particularly with regard to analogue studies, microtextural work and practical manufacturing and emplacement procedures. However, there are a number of subject areas which appear less well addressed than others which require further attention: The extrapolation of experimental results of the mechanical properties of bentonite to repository timescales and repository conditions should be investigated further. There is a need for detailed microstructural analysis of materials as part of experimental programmes. This would enable SKB to build confidence in the interpretations of results and reveal whether the mechanical processes occurring during experimentation truly reflect expectations of the performance of the repository. The large amount of experimental, theoretical, empirical datasets and computer models of the mechanical properties of bentonite need to be collated to form a database which is assessable and relevant to those involved in performance assessment calculations. At present, the valuable results of many excellent research projects on mechanical properties of bentonite buffer are not readily available. There seems to be a relatively poor understanding of the mechanisms of radionuclide diffusion through compacted bentonite. Other international work suggests that diffusion coefficients are much lower than those applied by SKB in its PA work. The importance of surface diffusion to describe diffusion in bentonite for certain chemical species ascribed by SKB is not reflected in

  7. Effect of anionic polyelectrolytes on the flow of activated sodium bentonite drilling mud

    Directory of Open Access Journals (Sweden)

    Chalah Kaci

    2018-01-01

    Full Text Available Bentonite is often used in water-based drilling fluids. The xanthan gum is widely used as to increase the viscosity of the bentonite suspension. For the stabilization of the drilled layers, we use filtrate reducers: sodium carboxymethylcellulose low viscosity and cellulose polyanionic low viscosity. The objective of this work is to explain the effect of the polymers on the rheological behavior of the 5% bentonite suspensions. These results will provide practical recommendations for the rational use of different types of additives in water-based drilling muds. Our work is based on rheological trials on a viscometer. The results obtained on the bentonite 5%-xanthane suspension show a rheofluidifying behavior with yield stress conform to the Herschel-bulckly modal. While increasing the concentration of filtrate reducer decreases the yield stress and reduces the viscosity. The effect of CMC LV is more pronounced than PAC L.

  8. Evidence of ammonium ion-exchange properties of natural bentonite and application to ammonium detection.

    Science.gov (United States)

    Zazoua, A; Kazane, I; Khedimallah, N; Dernane, C; Errachid, A; Jaffrezic-Renault, N

    2013-12-01

    Ammonium exchange with hybrid PVC-bentonite (mineral montmorillonite clay) thin film was revealed using FTIR spectroscopy, EDX, cyclic voltammetry and electrochemical impedance spectroscopy. The effect of ammonium exchange on the charge transfer resistance of PVC-bentonite hybrid thin film was attributed to a modification of the intersheet distance and hydration of bentonite crystals. The obtained impedimetric ammonium sensor shows a linear range of detection from 10(-4)M to 1M and a detection limit around 10(-6)M. © 2013.

  9. Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler

    Science.gov (United States)

    Suryani; Agusnar, Harry; Wirjosentono, Basuki; Rihayat, Teuku; Nurhanifa

    2017-07-01

    PLA (Poly Lactid Acid) - Bentonite polymer nanocomposite which is a combination of natural and nanometer-scale inorganic substances created through three processes, mixing using a melt blending, molding with a hot press using specimens Standard ASTM D 638 Type IV and drying. In this study, PLA combined with two types of natural bentonite obtained from different areas to find differences in the quality of the results of characterization. To optimize the performance of filler, before mixing, bentonite have to furificate first with (NaPO3)6 and also open the interlayer space with CTAB. D-spacing of bentonite imterlayer were analyze by X-Ray difraction (XRD). Characterization bionanocomposite resulting morphologic structure was tested using a Transmission Electron Microscope (TEM). Mechanical analysis of PLA-bentonite nanocomposite in the form of tensile strength was tested using a tensile test specimens of standard American Standard for Testing Materials (ASTM) D 638 Type 4, and thermal resistance using Thermo Gravimetric Analysis (TGA).

  10. Water retention behaviour of compacted bentonites: experimental observations and constitutive model

    Directory of Open Access Journals (Sweden)

    Dieudonne Anne-Catherine

    2016-01-01

    Full Text Available Bentonite-based materials are studied as potential barriers for the geological disposal of radioactive waste. In this context, the hydro-mechanical behaviour of the engineered barrier is first characterized by free swelling conditions followed by constant volume conditions. This paper presents an experimental study conducted in order to characterize the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Then, based on observations of the material double structure and the water retention mechanisms in compacted bentonites, a new water retention model is proposed. The model considers adsorbed water in the microstructure and capillary water in the aggregate-porosity. The model is calibrated and validated against the experimental data. It is used for better understanding competing effects between volume change and water uptake observed during hydration under free swelling conditions.

  11. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  12. Modeling hydraulic conductivity and swelling pressure of several kinds of bentonites affected by concentration of saline water

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko

    2007-01-01

    In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)

  13. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers

    Directory of Open Access Journals (Sweden)

    A.M. Motawie

    2014-09-01

    Full Text Available Different types of nano-organo bentonite (NOB were prepared from the Egyptian Bentonite (EB. EB was characterized by energy dispersive X-ray EDX. It was purified from different impurities using a conventional method via the treatment with HCl and distilled water. The modification of the clay was carried out using different types of organo-modifiers namely; hexadecyl trimethyl ammonium bromide (HTAB, 3-aminopropyltriethoxysilane (Silane, octadecylamine (ODA, and dodecylamine (DDA. The cation exchange capacity (CEC was measured for pristine bentonite after and before modification. The NB was characterized by FTIR, XRD, TEM, and TGA techniques. The obtained results indicated that variation of the interlayer space gallery was effected by the type of the penetrator used.

  14. Sorption and diffusion of FE(II) in bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Tournassat, C.; Hadi, J.; Greneche, J.-M.

    2014-02-01

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ( 55 Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  15. Sorption and diffusion of FE(II) in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Tournassat, C.; Hadi, J. [BRGM, Orleans (France); Greneche, J.-M. [LPCE, Le Mans (France)

    2014-02-15

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ({sup 55}Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  16. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  17. CRIEPI's research results (2006-2011) and clarified future issues on alteration behavior of bentonite barrier by alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2013-01-01

    In radioactive waste disposal facilities, bentonite barrier would be altered by alkaline solutions which arise by leaching of cementitious materials. Consequently suitable properties of the bentonite barrier would be degraded for a long time period. In CRIEPI, the investigation on the alteration of the bentonite under alkaline conditions was started in 2006, and several CRIEPI reports have been published. Specifically, we have investigated the kinetics of montmorillonite dissolution, the mineralogical alteration of compacted bentonite (with high- and low-dry density) and the change of permeability of the compacted bentonite (with high- and low-dry density) during alteration under the alkaline conditions. Furthermore, stability of saponite, which has similar physical properties to the bentonite, under the alkaline conditions was also examined. In this report, we show the outline of those research results, and lay out the clarified future issues extracted from our results. Ten clarified future issues were divided three categories as follows: 1) the estimation of the alteration behavior of the bentonite by alkaline solutions, 2) the elucidation of the mechanism of physical properties (e.g., permeability, swelling properties and mechanistic properties) change of the compacted bentonites during alteration, and 3) the development of the model building and simulation technology concerning the change in physical properties during alteration under alkaline conditions. (author)

  18. FEBEX Full-Scalle Engineered Barriers Experiment in Crystalline Host Rock Preoperational Thermo-Hydro-Mechanical (THM) Modelling of the Mock Up Test

    International Nuclear Information System (INIS)

    1998-01-01

    The object of this report is to present and discuss the results of a series of 1-D and 2-D coupled thermo-hydro-mechanical (THM) and 2-D coupled thermo-hydro-mechanical (THM) analyses modelling the FEBEX mock-up test. The analyses have been carried out during the preoperational storage of the test and attempt to incorporate all available information obtained from laboratory characterisation work. The aim is not only to offer the best estimate of test performance using current models and information but also to provide a basis for future model improvements. Both the theoretical framework adopted in the analysis and the computer code employed are briefly described. The set of parameters used in the computation is then presented with particular reference to the source from which they have been derived. Initial and boundary condition are also defined. The results of a 1-D radially symmetric analysis are used to examine the basic patterns of thermal, hydraulic and mechanical behaviour of the test. A set of sensitivity analyses has been carried out in order to check the effects that the variation of a number of important parameters has on test results. Only in this way it is possible to acquire a proper understanding of the internal structure of the problem and of the interactions between the various phenomena occurring in the buffer. A better reproduction of the geometry of the test is achieved by means of a 2-D mesh representing and axisymmetric longitudinal section. Due to two-dimensional effects, the analyses carried out using this geometry exhibit some differences when compared with the results of the 1-D case, but the basic test behaviour is very similar. The test was started with an initial flooding stage with the purpose of closing the gaps between bentonite blocks. A limited number of compilations using recently developed joint elements have been performed to assess approximately the effect of this initial step on subsequent test behaviour. The analyses reported

  19. FEBEX Full-Scalle Engineered barriers experiment in crystalline host rock Preoperational thermo-hydro-mechanical (THM) modelling of the in situ test

    International Nuclear Information System (INIS)

    1998-01-01

    This report contains the results of a set of 1-D and 2-D coupled thermo-hydro-mechanical (THM) analyses carried out during the preoperational stage simulating the in situ FEBEX test. The analyses incorporate available information concerning rock and bentonite properties as well as the final test layout and conditions. The main goals are: -To provide the best estimate of test performance given current models and information - To define a basis for future model improvements. The theoretical bases of the analyses and the computer code used are reviewed. Special reference is made to the process of parameter estimation that tries to incorporate available information on material behaviour obtained in the characterisation work carried out both in the laboratory and in the field. Data obtained in the characterisation stage is also used to define initial and boundary conditions. The results of the 1-D THM Base Case analysis are used to gain a good understanding of expected test behaviour concerning thermal, hydraulic and mechanical problems. A quite extensive programme of sensitivity analyses is also reported in which the effect of a number of parameters and boundary conditions are examined. The results of the sensitivity analyses place an appropriate context the information obtained from the Base Case showing, for instance, that rock desaturation and degree of buffer hydration depend on some critical parameters in a complex way. Two-dimensional effects are discussed on the basis of the results of 2-D axisymmetric THM analysis performed using a longitudinal section that provides a better representation of real test geometry. Quantitative but not qualitative differences are found with respect to the 1-D results. Finally, a 2-D THM cross section analysis has been performed under plane strain conditions. No specific 2-D effects are observed in this case as quasi-axisymmetric conditions have been prescribed. The models employed in the analyses included in this report have not

  20. Effect of organic matter on 125I diffusion in bentonite

    International Nuclear Information System (INIS)

    Tao Wu; Qing Zheng

    2015-01-01

    Through-diffusion method was conducted to investigate the diffusion behavior of 125 I in bentonite in present of organic matter, such as polyaminopolycarboxylate EDTA, oxalic acid, hydrazine and humic acid HA. The effective diffusion coefficient D e value and rock capacity factor α were (2.32.6) × 10 -11 m 2 /s and 0.040-0.052, respectively. The small difference showed that iodine was preferentially associated with silicoaluminate mineral as an inorganic form. In present of HA, the D a value of 125 I was almost two orders of magnitude higher than that of HA and humic substances HS. The D e and α derived from the experiments were used to simulate its diffusion in the designed bentonite obstacle of high-level radioactive waste repository and the results showed that 125 I can be transported from 30 to 50 cm thickness of bentonite to the far-field of repository in several years. (author)

  1. Hydrothermal behaviors and long-term stability of bentonitic buffer material

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin

    2007-01-01

    In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to- illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, while as it might be converted to illite by 50 percent after over 5 x 10 4 year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository

  2. Effect of Nano bentonite on Fire Retardant Properties of Medium density fiberboard (MDF

    Directory of Open Access Journals (Sweden)

    Ghonche Rassam

    2014-05-01

    Full Text Available In the present study, Fire – Retarding properties of nano-bentonite in medium density of fiberboard (MDF was studied. 10% of urea-formaldehyde resin was used as the adhesive of the matrix. Nano Bentonite at 5 levels (0%, 5%, 10%, 15% and 20% g/kg based of dry weight of fibers was used with the consumption of Urea-Formuldehyde (UF. Press pressure of 150 bar and temperature of 170during 4, 5, and 6 minutes were applied. Density was kept constant at 0.7 g/cm3 in all treatments. The measured properties consisted of mass reduction, inflammation time, fire-endurance, melting time and the burnt area. The results revealed that Nano-Bentonite had significant effect in approving fire retarding properties in medium density fiber board. The best properties at the level of 10% obtained and the same level recommended for industry use. The use of Nano-Bentonite more than 10% decreased the stickiness and the partly surface of fiberboards.

  3. Geotechnical characteristics of bentonite/sandy silt mixes for use in waste disposal sites

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1984-06-01

    The coefficient of consolidation for bentonite/sandy silt ratios of 0.04 to 0.14 decreases inversely proportional with the square of that ratio, whereas the compression index, the swelling index, and the permeability change index increase with increasing bentonite ratio. A strong relationship also exists between the void ratio and the logarithm of the applied stress for any given bentonite ratio. The empirical linear relationship between the void ratio and the logarithm of the applied stress, developed by Taylor, is excellent and enables us to limit the evaluation of conductivity at any void ratio to the measurement of the initial and the desired void ratio, the initial conductivity, and the permeability change index. This allows us to read directly, for a given bentonite ratio, the void ratio (or compaction) needed so that a required hydraulic conductivity will prevail. This is crucial in the choice of materials or mixes to be used in a wick system where an established differentiation in hydraulic conductivity is desirable

  4. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  5. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy

    2017-07-01

    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  6. Geological disposal of high level radioactive waste in China: progress during 1985-2004

    International Nuclear Information System (INIS)

    Wang Ju; Xu Guoqing; Zheng Hualing; Fan Xianhua; Wang Chengzu; Fan Zhiwen

    2005-01-01

    Safe disposal of high level radioactive waste (HLW) is a challenging issue for the sustainable development of nuclear energy. The studies for the disposal of HLW in China started in 1985, the proposed goal was to build China's high level waste repository by mid-21st Century, while the waste to be disposed of will be vitrified waste, transuranic waste and small amount of spent fuel. The proposed repository was a shaft-tunnel-silo model hosted by granite in saturated zone. In the period of 1985 to 2004, progress was made in China's HLW disposal program. It was decided that 'deep geological disposal' will be used to dispose of China's HLW, while the technical strategy for the development of repository will a 3-step strategy, that includes steps of site selection and site evaluation, construction of underground research laboratory, and construction of repository. Based on nation wide screening, the Beishan area, Gansu Province, northwestern China, located in Gobi desert area with few inhabitants, integral crust structure and favorable geological and hydrogeological conditions, was selected as the most potential area for China's repository. In early 1990's, site selection for underground research laboratory was conducted, 2 sites in the suburb of Beijing were preliminarily selected as the potential sites for a 'generic underground research laboratory'. It was determined to use bentonite as backfill material for the repository, while the bentonite from Gaomiaozi deposit in Inner Mongolia was selected as potential buffer and backfill material for China's repository. The studies on the mineralogical, geotechnical, physico-mechanical and thermal properties of the Gaomiaozi bentonite have been conducting. Some parameters such as sorption radio, diffusion coefficient and dispersion coefficient of radionuclides (Np, Pu and Tc) in Beishan granite and bentonite have been obtained. A low-oxygen glove box and a device simulating the temperature, pressure and redox potential of

  7. Removal of Radium isotopes from oil co-produced water using Bentonite

    International Nuclear Information System (INIS)

    Al Masri, M.S.; Al Attar, L.; Budeir, Y.; Al Chayah, O.

    2010-01-01

    In view of environmental concern, sorption of radium on natural bentonite mineral (Aleppo, Syria) was investigated using batch-type method. Data were expressed in terms of distribution coefficients. An attempt to increase the selectivity of bentonite for radium was made by preparing M-derivatives. Loss of mineral crystallinity in acidic media and the formation of new phase, such as BaCO 3 , in Ba-derivative were imposed by XRD characterisations. Of the cationic forms, Na-bentonite had shown the highest affinity. Mechanisms of radium uptake were pictured using M-derivatives and simulated radium solutions. The obtained results indicated that surface sorption/surface ion exchange were the predominated processes. The distinct sorption behaviour observed with Ba-form was, possibly, a reflection of radium co-precipitation with barium carbonate. The competing order of macro component, likely present in waste streams, was drawn by studying different concentrations of the corresponding salt media. As an outcome, sodium was the weakest inhibitor. The performance of natural bentonite and the most selective forms, i.e. Ba- and Na-derivatives, to sorb radium from actual oil co-produced waters, collected form Der Ezzor Petroleum Company (DEZPC), was studied. This mirrored the influential effect of waters pH over other comparable parameters. (author)

  8. Swelling and hydraulic properties of Ca-bentonite for the buffer of a waste repository

    International Nuclear Information System (INIS)

    Lee, J.O.; Cho, W.J.; Kang, C.H.; Chun, K.S.

    2001-01-01

    Swelling and hydraulic tests were carried out to provide the information for the selection of buffer material in a radioactive waste repository. Ca-bentonite and de-ionized water were used for the tests. The swelling pressures of compacted bentonite were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 , and they largely increased with an increase in the dry density and bentonite content. However, the swelling pressures decreased with increasing the initial water content and beyond about 12 wt.% of the initial water content, leveled off to a nearly constant value. The hydraulic conductivities were lower than 10 -11 m/s for the compacted bentonite with the dry density higher than 1.4 Mg/m 3 . They increased with increasing temperature in the range of 20 deg. C to 150 deg. C. (author)

  9. Surface complexation modeling of U(VI) sorption on GMZ bentonite in the presence of fulvic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Lanzhou Univ. (China). Radiochemistry Laboratory; Ministry of Industry and Information Technology, Guangzhou (China). The 5th Electronics Research Inst.; Luo, Daojun [Ministry of Industry and Information Technology, Guangzhou (China). The 5th Electronics Research Inst.; Qiao, Yahua; Wang, Liang; Zhang, Chunming [Ministry of Environmental Protection, Beijing (China). Nuclear and Radiation Safety Center; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Laboratory; Ye, Yuanlv [Ministry of Environmental Protection, Beijing (China). Nuclear and Radiation Safety Center; Lanzhou Univ. (China). Radiochemistry Laboratory

    2017-03-01

    In this work, experiments and modeling for the interactions between uranyl ion and GMZ bentonite in the presence of fulvic acid are presented. The results demonstrated that FA is strongly bound to GMZ bentonite, and these molecules have a very large effect on the U(VI) sorption. The results also demonstrated that U(VI) sorption to GMZ bentonite in the presence and absence of sorbed FA can be well predicted by combining SHM and DLM. According to the model calculations, the nature of the interactions between FA with U(VI) at GMZ bentonite surface is mainly surface complex. The first attempt to simulate clay interaction with humus by the SHM model.

  10. Effect of pH, ionic strength and fulvic acid on the sorption and desorption of cobalt to bentonite

    International Nuclear Information System (INIS)

    Yu, Sh.M.; Ren, A.P.; Chen, Ch.L.; Chen, Y.X.; Wang, X.

    2006-01-01

    Humic substances and bentonite have attracted great interest in radioactive waste management. Here the sorption of cobalt on bentonite in the presence and absence of fulvic acid (FA) under ambient conditions was studied. The effects of pH, ionic strength, FA and solution concentrations on cobalt sorption to bentonite were also investigated using batch techniques. The results indicate that the sorption of cobalt is strongly dependent on pH and is independent of ionic strength under our experimental conditions. Surface complexation is considered the main mechanism of cobalt sorption to bentonite. In the presence of FA, little effect of FA on cobalt sorption was found at pH 8. The addition sequences of FA/Co 2+ to the bentonite suspension on the sorption of cobalt to FA-coated bentonite were also studied. The results indicated that the sorption is not influenced by the addition sequences. Some possible mechanisms are discussed

  11. Characterization of natural bentonite by NMR

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Dieguez, Lidia C.; Menezes, Sonia M.C.; San Gil, Rosane A.S.

    1993-01-01

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites

  12. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Science.gov (United States)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  13. Photodegradation of Methylene Blue by TiO2-Fe3O4-Bentonite Magnetic Nanocomposite

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-01-01

    Full Text Available Fe3O4-bentonite nanoparticles have been prepared by a coprecipitation technique under a nitrogen atmosphere. An aqueous suspension of bentonite was first modified with FeCl2 and FeCl3. TiO2 was then loaded onto the surface of the Fe3O4-bentonite by a sol-gel method. After sufficient drying, the colloidal solution was placed in a muffle furnace at 773 K to obtain the TiO2-Fe3O4-bentonite composite. The material has been characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD analysis, and vibrating sample magnetometry (VSM. Morphological observation showed that Fe3O4 and TiO2 nanoparticles had been adsorbed on the surface of bentonite nanoneedles. The material was then applied for the photodegradation of the azo dye methylene blue (MB. It was found that the removal efficiency of MB exceeded 90% under UV illumination, and that only a 20% mass loss was incurred after six cycles. The composite material thus showed good photocatalytic performance and recycling properties.

  14. Bentonite deposits as a natural analogue to long-term barriers in a final repository of nuclear waste

    International Nuclear Information System (INIS)

    Keto, P.

    2000-01-01

    The geology of bentonite occurrences in Almeria (Spain) and Wyoming (USA) were studied in order to find suitable natural analogue to the longterm mechanical behaviour of the bentonite barrier in the final nuclear waste disposal. The study is based on literature review over both occurrence areas and on fieldwork observations from Almeria, Spain. The deposit areas differ from each other by age, deposition environment, exchangeable cation chemistry, alteration condition, occurrence and deformational features. One of the most important deformational feature in Almeria bentonites was the existence of Tertiary (Middle and Upper Miocene, 6-15.5 Ma old) bentonite intrusion inside/over younger Quaternary (Pleistocene Superior, 0.01-0.72 Ma old) sediments. This was a result of the confining pressure of overlying volcanic rocks and sediments and the high plasticity behaviour of bentonites. According to this observation, the pressure effect in final nuclear waste repositories requires further investigations. The bentonites in Wyoming have survived weathering and shearing without losing their expandability or other properties typical of smectite-rich materials. (orig.)

  15. Hydro-mechanical and gas transport properties of bentonite blocks - role of interfaces

    International Nuclear Information System (INIS)

    Popp, Till; Roehlke, Christopher; Salzer, Klaus; Gruner, Matthias

    2012-01-01

    Document available in extended abstract form only. The long-term safety of the disposal of nuclear waste is an important issue in all countries with a significant nuclear programme. Repositories for the disposal of high-level and long-lived radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. The multi-barrier system typically comprises the natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS), i.e. the backfilling and sealing of shafts and galleries to block any preferential path for radioactive contaminants. Because gas will be created in a radioactive waste repository performance assessment requires quantification of the relevancy of various potential pathways. Referring to the sealing plugs it is expected that in addition to the matrix properties of the sealing material conductive discrete interfaces inside the sealing elements itself and to the host rock may act not only as mechanical weakness planes but also as preferential gas pathways (Popp, 2009). For instance despite the assumed self sealing capacity of bentonite inherent existing interfaces may be reopened during gas injection. Our lab investigations are aiming on a comprehensive hydro-mechanical characterization of interfaces in bentonite buffers, i.e. (1) between prefabricated bentonite blocks itself and (2) on mechanical contacts of bentonite blocks and concrete to various host rocks, i.e. granite. We used as reference material pre-compacted bentonite blocks consisting of a sand clay-bentonite mixture but the variety of bentonite-based buffer materials has to be taken in mind. The blocks were manufactured in the frame work of the so-called dam - project 'Sondershausen', i.e. a German research project performed between 1997 and 2002. The blocks have a standard size of (250 x 125 x 62.5) mm. Approximately 500 t of such bentonite blocks have been produced and assembled in underground drift

  16. Adsorption of strontium ions on bentonites of slovak provenance - Influence of pH change of medium

    International Nuclear Information System (INIS)

    Galambos, M.; Kufcakova, J.; Rajec, P.; Paucova, V.

    2007-01-01

    Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for spent fuel and high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by sorption. Slovak republic disposes of many significant deposits of bentonites, e.g. Jelsovy potok, Kopernica, Lieskovec, Lastovce, etc. The bentonites present significant group of natural nanomaterials composed of microcrystallic particles of montmorillonite. Bentonite is characterized by a low hydraulic conductivity, low throughput and excellent sorption capacity for cationic fission products of 235 U (e.g. 89 Sr, 90 Sr, 137 Cs). Sorption of strontium on bentonite from various Slovak deposits was studied using batch technique. Distribution coefficients (K d ) were determined for bentonite-strontium solution system as a function of contact time, pH, sorbent and sorbate concentration. The data were interpreted in term of Langmuir isotherm. The uptake of Sr was rapid and equilibrium was reached almost instantaneously. The effect of pH, on the sorption of metal ions on bentonite was studied by varying the pH of the aqueous metal solutions. The sorption of this nuclide increased by increasing pH. The percentage sorption decreased with increasing metal concentrations. These results could be helpful for nuclear waste management, for waste water effluents containing low concentrations of strontium. (authors)

  17. Transient nuclide release through the bentonite barrier -SKB 91

    International Nuclear Information System (INIS)

    Bengtsson, A.; Widen, H.

    1991-05-01

    A study of near-field radionuclide migration is presented. The study has been performed in the context of the SKB91 study which is a comprehensive performance assessment of disposal of spent fuel. The objective of the present study has been to enable the assessment of which nuclides can be screened out because they decay to insignificant levels already in the near-field of the repository. A numerical model has been used which describes the transient transport of radionuclides through a small hole in a HLW canister imbedded in bentonite clay into a fracture in the rock outside the bentonite. Calculations for more than twenty nuclides, nuclides with both high and low solubility have been made. The effect of sorption in the bentonite backfill is included. The size of the penetration hole was assumed to be constant up to time when the calculations were terminated, 500000 year after the deposition. The mass transport rate is controlled by diffusion. The model is three dimensional. The report describes the geometry of the modelled system, the assumptions concerning the transport resistances at the boundary conditions, the handling of the source term and obtained release curves. (au)

  18. Copper corrosion in bentonite: Studying of parameters (pH, Eh/O2) of importance for Cu corrosion

    International Nuclear Information System (INIS)

    Carlsson, T.; Muurinen, A.

    2007-06-01

    The report describes the development of methods and equipment for studying the parameters (pH, Eh/O 2 ) of importance for copper corrosion. The work involved the fabrication of electrodes for determining Eh and pH in compacted water-saturated bentonite. MX-80 and the Indian Asha 505 bentonites were used in the study. The redox-measurements were carried out by using electrodes prepared of Au and Pt wires. The pH measurements were carried out by using solid IrO x electrodes. The report describes testing of electrodes in different solutions and in bentonite. A destructive method for determining oxygen content in compacted bentonite was tested, too. The electrodes were used in measurements inside compacted bentonite with about the same density as is intended to be used in the Finnish repository for spent nuclear fuel. The results indicate that Au and Pt redox-electrodes and IrO x pH electrodes function in compacted bentonite. The oxygen measurement in bentonite seems to work, too, and can complement the Eh measurements. Eh-values in originally aerobic bentonite samples having a dry densitiy of ≤1.5 g/cm 3 , exhibit mostly a decrease during the first days, which may mainly be ascribed to the depletion of oxygen. The Eh-decrease thereafter is probably associated with redox-reactions involving other species than oxygen. In samples with a dry density of 1.8 g/cm 3 , the observed Eh-decrease is mostly slower. No significant difference between the Eh and pH measurements in MX-80 and Asha 505 could be observed. (orig.)

  19. Effects of bentonite kinds and dry density on the amount of settlement of overpack

    International Nuclear Information System (INIS)

    Nakamura, Kunihiko; Tanaka, Yukihisa

    2009-01-01

    The effects of bentonite kinds and dry density on the settlement behavior of overpack for high level radioactive waste disposal were investigated using both experimental (i.e. centrifuge) and analytical approaches. The nonlinear elastic analysis using a tangent modulus of elasticity obtained from the diffuse double layer theory was carried out to explain the settlement behavior from centrifuge experiments. The difference of properties between bentonites can be considered by this analysis. The results of nonlinear elastic analysis agreed with experimental results. The amount of settlement was decreased with an increase in the dry density and was exponentially decreased with an increase in the swelling pressure. Furthermore, no difference of the amount of settlement was observed if swelling pressure of each bentonite is same. When swelling pressure is more than 1 MPa, the amount of settlement of model overpack into bentonite with 400 mm thickness was less than 10 mm. (author)

  20. Practical and theoretical basis for performing redox-measurements in compacted bentonite. A literature survey

    International Nuclear Information System (INIS)

    Carlsson, T.; Muurinen, A.

    2008-12-01

    This report reviews the state-of-the-art with regard to redox measurements, especially in compacted water saturated bentonite, but also in natural systems like sediments and ground waters. Both theoretical and practical aspects of redox measurements are discussed, as well as some basic concepts like terminal electron-accepting processes (TEAPs) and oxidative capacity (OXC). The problems associated with the interpretation of measured electrode potentials are treated. Despite many practical and theoretical difficulties, redox measurements continue to be carried out by researchers all over the world. The over-all conclusion from the literature survey is that fruitful redox-measurements can be performed in compacted bentonite. Irrespective of whether the measured redox potentials are absolute or not, the use of electrodes provide a valuable tool for studying, e.g., long-term changes in the pore water of compacted bentonite and/or the diffusion of oxygen into a bentonite. (orig.)

  1. Operation databook of the fuel treatment system of the Static Experiment Critical Facility (STACY) and the Transient Experiment Critical Facility (TRACY). JFY 2004 to JFY 2008

    International Nuclear Information System (INIS)

    Kokusen, Junya; Sumiya, Masato; Seki, Masakazu; Kobayashi, Fuyumi; Ishii, Junichi; Umeda, Miki

    2013-02-01

    Uranyl nitrate solution fuel used in the Static Experiment Critical Facility (STACY) and the Transient Experiment Critical Facility (TRACY) is adjusted in the Fuel Treatment System, in which such parameters are varied as concentration of uranium, free nitric acid, soluble neutron poison, and so on. Operations for concentration and denitration of the solution fuel were carried out with an evaporator from JFY 2004 to JFY 2008 in order to adjust the fuel to the experimental condition of the STACY and the TRACY. In parallel, the solution fuel in which some kinds of soluble neutron poison were doped was also adjusted in JFY 2005 and JFY 2006 for the purpose of the STACY experiments to determine neutron absorption effects brought by fission products, etc. After these experiments in the STACY, a part of the solution fuel including the soluble neutron poison was purified by the solvent extraction method with mixer-settlers in JFY 2006 and JFY 2007. This report summarizes operation data of the Fuel Treatment System from JFY 2004 to JFY 2008. (author)

  2. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Directory of Open Access Journals (Sweden)

    Simona Saba

    2014-04-01

    Full Text Available Pre-compacted elements (disks, torus of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT. Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by

  3. Geochemical modelling of bentonite porewater in high-level waste repositories

    Science.gov (United States)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  4. Research program to study the gamma radiation effects in Spanish bentonites

    International Nuclear Information System (INIS)

    Dies, J.; Tarrasa, F.; Cuevas de las, C.; Miralles, L.; Pueyo, J. J.

    2000-01-01

    The engineering barrier of a radioactive waste underground disposal facility, placed in a granitic host rock, will consist of a backfill of compacted bentonite blocks. At first, this material will be subjected to a gamma radiation field, from the waste canister, and heat from the spent fuel inside the canister. Moreover, any groundwater that reaches the repository will saturate the bentonite. For these reasons the performance of the engineered barrier must be carefully assessed in laboratory experiments. (Author)

  5. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  6. Ordovidan K-bentonites in the Precordillera of San Juan and its tectomasmatic significance

    Science.gov (United States)

    Cingolani, C.A.; Huff, W.; Bergstrom, S.; Kolata, D.

    1997-01-01

    A succession of approximately 35 early Middle Ordovician K-bentonite beds are exposed in the Precordillera region near the town of Jachal, in San Juan Province (at Cerro Viejo and La Chilca sections). They occur in argillaceous limestone in the upper part of the San Juan Limestone and in the interbedded shales and mudstones at the base of the overlying Los Azules Formation. Total thickness of the K-bentonite-bearing interval is 23 m and individual beds range from 1 to 65 cm thick. An essentially Arenig-Llanvirn age for the K-bentonite succession is indicated by the presence of graptolites diagnostic of the Paraglossograptus tentaculatus Zone and conodonts indicating the Eoplacognathus suecicus Zone. The bentonites consist mainly of Rl ordered illite/smectite, characteristic of most of the lower Paleozoic K-bentonites, plus volcanogenic crystals. Similar to other K-bentonites, these probably represent the distal, glass-rich portion of fall-out ash beds derived from collision zone explosive volcanism. The geochemical data and preliminary plots on the magmatic discrimination diagram indicate the parental magma was of rhyolite to trachyandesite composition. Tectonic discrimination diagrams show the setting of Cerro Viejo ash layers as falling on the boundary between volcanic arc and within plate rocks, typical of collision margin felsic volcanic rocks. U-Pb isotope dating for two zircon fractions from one sample show a lower concordia intercept of 461, +7-10 Ma coincident with the biostratigraphic age. Thus, they have important implications for the origin and early history of the allochtonous Precordillera terrane and the Pacific margin of South America. Furthermore, they are potentially important in interpretations of the paleogeographic relations of Laurentia and Gondwana during Ordovician time. ?? 1997 Asociacio??n Geolo??gica Argentina.

  7. Development of high-density bentonite barriers by means of spraying methods. Part 2. Investigation of field conditions

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Kobayashi, Ichizo; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    The authors have developed a method of constructing high-density bentonite by means of wet spraying to act as a backfill material in narrow places in radioactive waste disposal facilities. On the basis of the results of laboratory tests, they conducted field spraying tests to investigate the field conditions. The results of these tests are summarized as follows: 1) The bentonite could be sprayed smoothly by using a rotary spraying machine and a screw conveyor. 2) Provided that the air flow was at least 18.5 m 3 /min and the nozzle diameter did not exceed 25 mm, an average dry density of bentonite of 1.6 Mg/m 3 or higher could be achieved. 3) The dry density was constant within the spraying distance range 500 mm ∼ 2000 mm. 4) With a nozzle diameter of 19 mm, a spraying distance of 1000 mm, and a water content of 19.5%, an average dry density of the sprayed bentonite of 1.6 Mg/m 3 or higher and a rebound ratio not exceeding 30% was achieved. 5) The dry density of the sprayed bentonite decreased as the volume of bentonite supplied was increased, and it was shows to be closely related to the rotational speed of the spraying machine and the volume of bentonite sprayed from each hole. (author)

  8. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  9. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    Science.gov (United States)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  10. Thermodynamic modelling of bentonite-groundwater interaction and implications for near field chemistry in a repository for spent fuel

    International Nuclear Information System (INIS)

    Wanner, H.; Wersin, P.; Sierro, N.

    1992-11-01

    Predictions of near field geochemistry are made using a thermodynamic model for bentonite/ground interaction. This model is a refinement and extension of the model developed by the senior author. It is based on recent experiments performed at high solid/water ratio and adapted to the Swedish type of HLW repository design. Thus, from the obtained experimental results on solution composition, the model includes chemical reactions resulting from both the impurities and the main clay fraction within the bentonite. Ion exchange reactions are treated both with and without the contribution of edge sites. Due to its thermodynamic basis, the model exhibits prediction capability over a wide range of conditions in terms of solid/water ratio. The modelling of repository conditions implies, due to the lack of experimental information, simplifications with regard to thermodynamic properties of the bentonite. This mainly involves the non-consideration of the temperature effects and of the acid/base properties of the solid. Nevertheless, our results yield insight into important processes affecting porewater chemistry. Thus, the model suggests that proton exchange reactions may exert a strong control on calcite dissolution within highly compacted bentonite. Estimations of chemical changes over time in the bentonite were done in the basis of a mixing tank model. These results indicate transformation of Na-bentonite to Ca-bentonite over time. The extent of this process, however, critically depends on the amount of carbonate present in the bentonite. (authors) (34 refs.)

  11. Strength characteristics of lightly solidified dredged marine clay admixed with bentonite

    Science.gov (United States)

    Ariffin, Syazwana Tajul; Chan, Chee-Ming

    2017-11-01

    Strength characteristic is a significant parameter in measuring the effect of soil improvement and effective composition of solidification. In this study, the dredged marine sediment (DMS) collected from Kuala Perlis (Malaysia) was examined to determine its strength characteristics under light cement solidification with bentonite. Dredged marine clay generally has the low shear strength and high void ratio, and consists mainly of soil particles of the fine-grained type. As a discarded geo-waste, it can be potentially treated to for reuse as a backfill material instead of being disposed of, hence reducing the negative impact on the environment. Physico-chemical parameters of the dredged sample were first determined, then solidification was carried out to improve the engineering properties by admixing ordinary Portland cement (OPC) as the binder and bentonite as a volume enhancer to the soil. The DMS was treated with the addition of 3 % and 6 % cement and bentonite within the range of 0-30 %. The specimens were cured at room temperature for 3, 7 and 14 days. The strength gain was measured by unconfined compression test and vane shear test. The laboratory test results were analyzed to establish the relationship between strength properties and solidification specifications. In summary, the strength of specimens increased with the increase of the quantity of bentonite and cement to get the effective composition of the specimen.

  12. Evaluation of long-term interaction between cement and bentonite for geological disposal (1) - Project Overview

    International Nuclear Information System (INIS)

    Owada, Hitoshi; Hayashi, Daisuke; Yahagi, Ryoji; Ishii, Tomoko

    2012-01-01

    Document available in extended abstract form only. Bentonitic and cementitious materials are both planned for use as engineered barrier materials in the geological disposal of high level vitrified waste and TRU (transuranic) waste in Japan. As shown in Figure 1, bentonitic material will be placed around the waste packages as buffer material and a large amount of cementitious material is specified for use as filler, structure, support and grout. Cementitious material supplies an alkaline solution with high calcium concentration through reaction with groundwater. However, the alkaline solution will cause chemical and physical alteration of the bentonitic material. Since many important functions of an engineered barrier system (EBS), such as watertightness, chemical buffering, and sorption of radioactive nuclides, will be maintained by the properties of the buffer material, evaluation of long-term chemical or mechanical alteration of the buffer material is necessary to demonstrate the robustness of the EBS. Although many researches on chemical and mechanical alteration of bentonitic material, there was large uncertainty because the chemical alteration of bentonitic material is very slow and the altered region is very limited. In this project, the dissolution rate of montmorillonite under compaction and the spatial distribution of secondary C-S-H precipitation were obtained and mechanical and hydrological changes caused by the mineralogical change of bentonite material were modeled to reduce the uncertainty in the safety assessment of EBS performance. To improve the accuracy of the long term evaluation of the EBS performance, coupled analyses between hydraulic/mechanical calculations and geochemical-mass transport coupled calculations were performed. Alteration of mechanical properties caused by chemical degradation should be modeled for the coupled calculations. Because the mechanical properties of bentonitic material depend strongly on the montmorillonite content and

  13. Water uptake and motion in highly densified bentonite

    International Nuclear Information System (INIS)

    Kahr, G.; Mueller-Vonmoos, F.; Kraehenbuehl, F.; Stoeckli, H.F.

    1986-07-01

    Water uptake by the bentonites MX-80 and Montigel was investigated according to the classical method of determination of the heat immersion and the adsorption-desorption isotherms. In addition, the layer expansion of the montmorillonite was measured as a function of the water content. The evaluation of the adsorption isotherms according to Dubinin-Radushkevich and the stratification distances determined by x-ray confirmed gradual water uptake. Up to 10% water content, the water is adsorbed as a monolayer, up to 20%, as a bimolecular layer around the interlayer cations. The partial specific entropy could be determined from the approximative calculation of the partial specific enthalpy from the heats of immersion and the free enthalpy from the adsorption isotherms. From this it is evident that the interlayer water shows a high degree of order. In this condition, the mobility of the water molecules is considerably lower than in free water. From the adsorption isotherm and the layer expansion observed, it can be assumed that water can appear in the pore space only from approximately 25% water content. The spaces outwith the interlayer space and the surfaces of the montmorillonite particles are considered as pore space. If free swelling is prevented and with dry densities greater than 1.8 Mg/m/sup 3/ for the highly compacted bentonites, water uptake causes a drastic reduction of the original pore space so that practically all the water is in the interlayer space. Calculation of the swelling pressure from the adsorption isotherms gives a good approximation of the measured swelling pressures. A montmorillonite surface of ca. 750 m/sup 2//g for both bentonites can be derived from a Dubinin-Radushkevich analysis of the adsorption isotherm. Water uptake into the compacted unsaturated bentonites can be described as diffusion with a diffusion coefficient of the order of magnitude of 3.10/sup -10/ m/sup 2//s. (author)

  14. The measurement of density distribution of bentonite buffer extruded into fractures

    International Nuclear Information System (INIS)

    Matsumoto, Kazuhiro; Tanai, Kenji

    2008-01-01

    For the geological disposal of the high-level radioactive waste, it is important to develop the model to evaluate the long-term stability of the engineered barrier system. The increase in the reliability of the evaluation model may reduce the uncertainty of the safety assessment. In this study, the density distribution of the bentonite buffer extruded into the artificial fractures was measured by using a X-ray CT scanner to promote understanding of the extrusion phenomenon of the bentonite into fractures. (author)

  15. Pre-study on cementation processes in bentonite buffer under uneven saturation and temperature gradient

    International Nuclear Information System (INIS)

    Jaervinen, Joonas; Muurinen, Arto; Tanhua-Tyrkkoe, Merja

    2012-01-01

    Document available in extended abstract form only. Under final disposal conditions the uneven and slow saturation together with heat from the canister can lead to a situation where water vaporizes in certain areas in bentonite. The evaporation of ion rich water leads to enrichment of ions and precipitation of the components which may e.g. cement montmorillonite layers together and cause some changes in the bentonite properties. To study the cementation in bentonite buffer under uneven and slow saturation conditions the experimental setup was pre-modelled, constructed and tested. The experimental setups consist of a cylindrical cell (d:100 mm and h:100 mm), adsorption cells, heating system, hydration system, cooling system, sensors and a data acquisition system. A schematic drawing of the experimental equipment is presented in Figure 1. In the cell the hydration end of the bentonite was covered only partly by the sinter and the access of water to bentonite was thus limited. The cell was also equipped with holes in the upper part of the cylinder to allow the water vapour to escape from the cell. The released water vapour is collected on an adsorption material in the adsorption cells. Thermal and hydrological properties of the experimental system were pre-modelled in 2D by using TOUGH2, version 2.0. The aim of the model was to see if the planned experimental set-up leads to the wanted conditions, within reasonable time and to find justifiable parameters for experimental setup. An eleven months long pre-experiment was carried out to get preliminary understanding how the experimental arrangement works. After the experiment the cell was dismantled and water content, bulk density, CEC, exchangeable cations, poorly crystalline iron oxides and silicates, chloride, sulphate and carbonate were analysed and pH measured. The low water content and high chloride concentration next to the heater indicated movement of chloride ions from the hydration surface towards the heater and

  16. Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang, Q.

    2012-01-01

    This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentonite, mixtures of MX80/crushed clay-stone and MX80/sand were used in the investigation. An experimental study on the swelling pressure of the bentonite-based materials was first performed. The results evidenced the effects of water chemistry, hydration procedure and duration, pre-existing technological void and experimental methods. Emphasis was put on the relationship between the swelling pressure and the final dry density of bentonite. Afterwards, the water retention test, hydration test and suction controlled oedometer test were conducted on samples with different voids including the technological void and the void inside the soil. By introducing the parameters as bentonite void ratio and water volume ratio, an overall analysis of the effects of voids on the hydro-mechanical response of the compacted material was performed. To get better insight into the seal evolution in case of technological void, the effects of final dry density and hydration time on the microstructure features were also characterized. Then, the hydraulic properties under unsaturated state were investigated by carrying out water retention test and infiltration test as well as the microstructure observation. The results obtained allowed relating the variation of hydraulic conductivity to the microstructure changes. A small scale (1/10) mock up test of the SEALEX in situ experiment was also performed to study the recovery capacity of bentonite-based material with consideration of a technological void. The results were used for interpreting the in-situ observations. With a reduced time scale, it provides useful information for estimating the saturation duration and sealing effectiveness of the field design. Finally, the experimental data obtained in the laboratory on bentonite/sand mixture were interpreted in the

  17. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  18. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    International Nuclear Information System (INIS)

    Bouberka, Z.; Khenifi, A.; Belkaid, N.; Ait Mahamed, H.; Haddou, B.; Derriche, Z.

    2009-01-01

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  19. Effects of polyethyleneimine adsorption on rheology of bentonite ...

    Indian Academy of Sciences (India)

    Unknown

    XRD, zeta potential and adsorption studies were done together with rheological .... trokinetics experiments on Balikesir bentonite samples. For this reason, the ... rence between apparent and true adsorption rates, and hence swelling of clays ...

  20. Preparation and Characterization of Dabco (1,4-Diazabicyclo [2.2.2]octane) modified bentonite: Application for Congo red removal

    Science.gov (United States)

    Taher, Tarmizi; Rohendi, Dedi; Mohadi, Risfidian; Lesbani, Aldes

    2018-01-01

    Natural bentonite provided from Sarolangun deposit was modified with 1,4-Diazabicyclo[2.2.2]octane (Dabco) to form a new class of porous material. Prior further modification, the natural bentonite was cleaned up and activated by NaCl to remove the impurities and increase the bentonite nature. Dabco modified bentonite (Dabco-bent) was prepared by exchanging the inorganic cation placed in the interlayer space of the montmorillonite mineral structure with the 0.01 M Dabco1+ at pH 6. The modified bentonite products were characterized using X-Ray powder diffraction and FT-IR to monitor the change of the bentonite crystallinity and function group due to the modification process. The XRD result confirmed that during the modification process, the d(001) of smectite peak at 2q around 6° was shifted. After the modification, the d(001) reflection of the montmorillonite interlayer was shifted 0.36° to the left indicating that the interlayer space of the montmorillonite has been expanded during the modification process. The FTIR spectra of Dabco modified bentonite exhibit no significantly different with the host bentonite. However, the presence of the new band at the wavenumber around 3000 and 2800 cm-1 indicates that the Dabco molecule has been successfully inserted to the bentonite molecule. The Congo red adsorption experiment was performed onto Dabco-bent product by batch technique. The experiment data described that kinetic model for Congo red adsorption onto Dabco-bent was adequately followed the second-order kinetic model and well described by Freundlich adsorption isotherm model.

  1. EVALUATION OF THE BENTONITE CONTENT IN SPENT FOUNDRY SANDS AS A FUNCTION OF HYDRAULIC CONDUCTIVITY COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Schirlene Chegatti

    2013-06-01

    Full Text Available This study evaluates the relationship of the bentonite content and hydraulic conductivity coefficient (k of waste foundry sands in tests of hydraulic conductivity in a flexible wall permeameter. The test samples had concentrations of activated sodium bentonite and natural sodium bentonite between 4% and 15%. It was also analyzed chemically the liquid leachate (aluminum, barium, chromium, cadmium, lead, phenols, iron, fluoride, and manganese, following de standard tests of Standard Methods 3111 B e D for the determination of this components in liquid samples. The experiments were supplemented with cation exchange capacity analysis. The results indicate that the values of are is related to the content of bentonite in waste foundry sand and the percolation from this waste disposal.

  2. 2008 AESON JOURNAL

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    However, research reports and official documents show that poor people in. Nigeria tend to be concentrated in communities that lack the benefits of modern development. Rural areas and urban fringes have a slightly higher concentration of poor people (Ayanwale and Alimi 2004). Generally, available estimates (CIA 2008, ...

  3. Diffusion and sorption properties of radionuclides in compacted bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Yu Ji-Wei; Neretnieks, I. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1997-07-01

    In this report, recent studies on sorption and diffusion of radionuclides in compacted bentonite have been reviewed. The sorption distribution coefficient and diffusion coefficient data obtained from experiments in the literature have been compiled. Based on these experimental data and the report SKB-TR--91-16 (Brandberg and Skagius, 1991), this report proposes a set of sorption distribution coefficient and diffusion coefficient values for modelling purpose for safety analysis of nuclear waste repositories. The variability and uncertainty of the diffusivity data span somewhat more than an order or magnitude up and down. Most of the nuclides have an effective diffusivity in around 10{sup -10} m{sup 2}/s. Ion exclusion effects are observed for C, Cl and for Tc in oxidizing waters. Effective diffusivities are nearly tow orders of magnitude lower for these elements and of the order of 10{sup -12} m{sup 2}/s. Surface diffusion effects are found for Cs, Ni, Pa, Pb, Ra, Sn, Sr and Zr. Effective diffusivities for these elements are of the order of 10{sup -8} m{sup 2}/s. The surface diffusion effect should decrease in saline waters which is seen for Cs and Sr where there are data available. It is also deemed that Ra will have this effect because of its similarity with Sr. The other nuclides should also show this decrease but no data is available. Sorption and diffusion mechanisms in compacted bentonite are discussed in the report. In highly compacted bentonite, sorption and hence its distribution coefficient is not well defined, and a pore diffusion coefficient or a surface diffusion coefficient is not well defined either. Therefore, an apparent diffusion coefficient and a total concentration gradient should be more relevant in describing the diffusion process in compacted bentonite. 99 refs.

  4. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  5. Numerical simulation of cesium and strontium migration through sodium bentonite altered by cation exchange with groundwater components

    International Nuclear Information System (INIS)

    Jacobsen, J.S.; Carnahan, C.L.

    1988-10-01

    Numerical simulations have been used to investigate how spatial and temporal changes in the ion exchange properties of bentonite affect the migration of cationic fission products from high-level waste. Simulations in which fission products compete for exchange sites with ions present in groundwater diffusing into the bentonite are compared to simulations in which the exchange properties of bentonite are constant. 12 refs., 3 figs., 2 tabs

  6. Photocatalytic Degradation of Safranine by ZnO-Bentonite: Photodegradation versus Adsorbability

    Science.gov (United States)

    Sonawane, Gunvant H.; Patil, Sandip P.; Shrivastava, V. S.

    2017-06-01

    ZnO-bentonite nanocomposite was obtained by incorporation of bentonite clay with ZnO. The effects of pH, contact time, initial dye concentration and photocatalyst dose on the rate of degradation of dye solution were studied. It was observed that working conditions strongly influence the dye removal process. Contact time 70 min and pH 4 was optimized for photocatalytic degradation of Safranine. Adsorption kinetics for 20-80 mg/l dye concentration was found to follow pseudo-second-order kinetics. Adsorption of dye was described by Langmuir and Freundlich isotherm. In adsorption isotherm, Langmuir isotherm was found to fit well with experimental data than Freundlich isotherm. The monolayer adsorption capacity was found to be 50 mg/g. The amount of dye adsorbed ( q t ) increases from 17.31 to 159.62 mg/g as dye concentration increases from 20 to 80 mg/l for 0.4 g/l photocatalyst dose. The photocatalytic degradation of Safranine by ZnO-bentonite takes place by advanced oxidation process.

  7. The use of Syrian bentonite to remove organics and other ions from commercial Syrian phosphoric acid

    International Nuclear Information System (INIS)

    Khorfan, S.; Abdulbaki, M.; Zein, A.

    2006-01-01

    Using of activated carbon to remove organic matter from phosphoric acid in uranium and P 2 O 5 extraction units has high cost. A new study was conducted to establish a new material instead of activated carbon. Experiments were carried out on removing organic matter by adsorption on Syrian bentonite. The experiments of the removal of humic acid by Syrian bentonite gave good results and showed that the chemical and thermal activation of bentonite increased the adsorption efficiency. (Authors)

  8. The use of Syrian bentonite to remove organics and other ions from commercial Syrian phosphoric acid

    International Nuclear Information System (INIS)

    Khorfan, S.; Abdulbaki, M.; Zein, A.

    2005-03-01

    Using of activated carbon to remove organic matter from phosphoric acid in uranium and P 2 O 5 extraction units has high cost. A new study was conducted to establish a new material instead of activated carbon. Experiments were carried out on removing organic matter by adsorption on Syrian bentonite. The experiments of the removal of humic acid by Syrian bentonite gave good results and showed that the chemical and thermal activation of bentonite increased the adsorption efficiency. (Authors)

  9. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1995-04-01

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  10. Mineralogy and sealing properties of various bentonites and smectite-rich clay materials

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf (Clay Technology AB (SE))

    2006-12-15

    The present work includes a coherent study of Wyoming bentonite with respect to the most relevant properties for use in a repository, and a parallel study of other potential buffer and tunnel backfilling materials. The reason for this is twofold; to quantify the effect of mineralogical variations on the various important sealing properties of bentonite, and to verify that there are alternative potential sources of bentonite. The latter is motivated by the fact that Sweden alone plans to deposit at least 6,000 copper canisters which include approximately 130,000 metric tones bentonite buffer material and several times more as tunnel backfill material. Different types of sealing clay materials may also be relevant to use, since the demands on the clay will be different at the various locations in a repository. Alternative sources of bentonite would consequently be valuable in order to secure quality, supply, and price. Important aspects on buffer and tunnel backfilling materials may be summarized as: Original sealing properties. Hazardous substances in any respect. Short-term effects of ground-water chemistry. Long-term stability, i.e. effects of temperature and ground-water chemistry. Availability. Costs. The focus in this study is on the first three items. The long-term stability is indirectly considered in that mineralogical composition is determined. The availability is only considered in such a way that most of the analyzed materials represent huge clay formations, which contain much more material than needed for a repository. The cost aspects have not been included, mainly because the present day price is not relevant due to the time frame of the construction of a repository

  11. Pore water chemistry of domestic bentonite for the buffer of a repository: analysis of experimental data

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik; Kang, Chul Hyung

    1999-04-01

    Experiments were conducted using synthetic ground water and domestic bentonite. Upon reaction of the bentonite and ground water, ionic concentration, ph and Eh nearly reached a steady-state within a few days. The pore water chemistry was dominated mainly by the mineralogical composition of bentonite. Analytic results showed that sodium, sulfate, and carbonate were major ions, and their concentrations increased to about 4-5 times those of original ground water. The ph increased from 8.1 to 8.9, and the Eh were between 365 mV and 375 mV. The concentration of most dissolved ions increased with increasing bentonite-to-ground water ratio. On the contrary, the ph and Eh were little affected by bentonite-to-ground water ratio. The dependence of ionic concentration upon temperature had different trends with different ions. Little change in the ph occurred up to 80 dg C, and decreased beyond the value of temperature. The Eh rather increased beyond 80 dg C on contrary to ph. (Author). 21 refs., 4 tabs., 18 figs

  12. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  13. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Wellen, Renate M.R., E-mail: tatiaraalmeida@gmail.com [Universidade Federal da Paraíba (UFPB), João Pessoa, PB (Brazil)

    2017-11-15

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  14. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    International Nuclear Information System (INIS)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H.; Wellen, Renate M.R.

    2017-01-01

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  15. Bentoniteiron interactions in natural occurrences and in laboratory. The effects of the interactions on the properties of bentonite. A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, N. [Helsinki University of Technology, Espoo (Finland)

    2003-10-15

    The available literature information of iron interaction with bentonite and/or smectite in nature and in laboratory has been reviewed. The purpose of the review was to assess (1) what kind of changes in the properties of bentonite occur as a result of interaction and (2) the physicochemical conditions in which changes take place. The finding of suitable natural occurrences of bentonite as natural analogues to iron-bentonite interactions in the repository was a third objective of this review. The threat of the bentonite transformation to chlorite or berthierine as a result of interaction with iron can be ruled out at temperatures below 85 deg C. Moreover, this kind of change would require either the starting smectite mineral in bentonite be saponite or nontronite or the temperature to rise up to 300 deg C in case the starting mineral were montmorillonite. The corrosion product of iron, magnetite, has been obtained in laboratory conditions at low and at high temperatures. Magnetite is associated to the formation of hydrogen gas. Low-temperature magnetite occurs in nature also in the presence of hydrocarbons. In laboratory experiments the interaction of magnetite with bentonite results in an increase of surface area and micropore volume of bentonite. The oxidation state of iron within bentonite (structural iron) could have major implications in the swelling properties of bentonite. It has been observed that the swelling pressure of smectites with Fe(II) can be almost half of the smectites with Fe(III) at the same content of total iron. The hydraulic conductivity of smectites with Fe(II) is also generally greater than that of smectites with Fe(III). No reported data was found on the case that Fe(II) ions (coming from the dissolution of iron container in reducing conditions) could get into the pore water in bentonite and then to form part of the structure of smectites. It has been reported that ion exchange occurs between Na{sup +} and Fe2{sup +}, but the resulting

  16. Meteorological factors and pollen season dynamics of selected herbaceous plants in Szczecin, 2004-2008

    Directory of Open Access Journals (Sweden)

    Małgorzata Puc

    2012-12-01

    Full Text Available The pollen of mugwort, plantain, sorrel, nettle and pigweed is an important airborne allergen source worldwide. The occurrence of pollen grains in the air is a seasonal phenomenon and estimation of seasonal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. The aim of the study was to analyse the dynamics of Artemisia, Plantago, Rumex, Urticaceae and Chenopodiaceae pollen season in Szczecin (western Poland in 2004-2008 and to establish a relationship between the meteorological parameters versus the pollen count of the taxa studied. Measurements were performed by the Hirst volumetric trap (model Lanzoni VPPS 2000. Consecutive phases during the pollen season were defined for each taxon (1, 5, 25, 50, 75, 95, 99% of annual total and duration of the season was determined using the 98% method. On the basis of this analysis, temporary differences in the dynamics of the seasons were most evident for Artemisia. Correlation analysis with weather parameters demonstrated that the maximum wind speed, mean and maximum air temperature, relative humidity and dew point are the main factors influencing the average daily pollen concentrations in the atmosphere.

  17. Rapid increases in permeability and porosity of bentonite-sand mixtures due to alteration by water vapor

    International Nuclear Information System (INIS)

    Couture, R.A.

    1984-01-01

    Packed columns of canister packing material containing 25% bentonite and 75% quartz or basalt sand, were exposed to water vapor at temperatures up t 260 0 C. The permeabilities of the columns were subsequently measured after complete saturation with liquid water in a pressurized system. Exposure to water vapor caused irreversible increases in permeability by factors of up to 10 5 . After saturation with liquid water, the permeability was nearly independent of temperature. The increases in permeability were due to a large decrease in the ability of the bentonite to swell in water. Calculations suggest that swelling of bentonite altered at 250 0 C was not sufficient to fill the pore spaces. If the pore spaces are filled, the mixture will form an effective barrier against flow, diffusion, and transport of colloids. The results suggest that if bentonite-based canister packing material is exposed even briefly to water vapor at high temperatures in a high-level nuclear waste repository, its performance will be seriously impaired. The problem is less severe if the proportion of bentonite is high and the material is highly compacted. Previous results show significant degradation of bentonite by water vapor at temperatures as low as 150 0 C. This suggests that in some repositories, backfill in tunnels and drifts may also be affected. 9 references, 5 figures, 1 table

  18. Occurrence of Fe-Mg-rich smectites and corrensite in the Morron de Mateo bentonite deposit (Cabo de Gata region, Spain): A natural analogue of the bentonite barrier in a radwaste repository

    Energy Technology Data Exchange (ETDEWEB)

    Pelayo, M., E-mail: m.pelayo@ciemat.es [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Garcia-Romero, E. [Departamento de Cristalografia y Mineralogia, Facultad C.C. Geologicas, UCM, 28040 Madrid (Spain); Labajo, M.A.; Perez del Villar, L. [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2011-07-15

    Highlights: > A hydrothermal process transformed Fe-Mg smectites into corrensite. > This transformation was favoured by the intrusion of the Morron de Mateo dome. > The intrusion caused a temperature increased and a supply of Fe-Mg rich solutions. > The system can be a good natural analogue of bentonite barrier in a radwaste disposal. > Experimental studies of stability of bentonite are in agreement with the results. - Abstract: The Morron de Mateo bentonite deposit is being studied as a natural analogue of the thermal and geochemical effects on a bentonite barrier in a deep geological repository of high level radioactive wastes. This bentonite deposit and its host rocks were intruded by a rhyodacitic volcanic dome that induced a hydrothermal metasomatic process affecting the biocalcarenite beds close to the dome. In this work, the mineralogical and chemical features of the clay minerals of the hydrothermally altered pyroclastic (white tuffs) and epiclastic rocks (mass flow), located in the NE sector of the Morron de Mateo deposit are described. White tuffs have a high content of phyllosilicates, mainly composed of dioctahedral smectites, while mass flow have a higher proportion of inherited minerals, the neoformed phyllosilicates are dioctahedral smectites and an interlayer chlorite/smectite mineral of corrensite type. The chemical composition of smectites reflects the different nature of the parent rocks, in such a way that smectites from white tuffs have a quite homogeneous chemical composition and their structural formulae correspond to montmorillonite type, while smectites from mass flow show more chemical variability, higher Fe and Mg contents and a mean structural formulae corresponding to Fe-Mg-rich beidellite and/or to an intermediate smectite member between beidellite and saponite. In addition, chemical composition and textural features of corrensite-like clay minerals in relation to Fe-Mg-rich smectites in the samples have also been studied, suggesting

  19. Occurrence of Fe-Mg-rich smectites and corrensite in the Morron de Mateo bentonite deposit (Cabo de Gata region, Spain): A natural analogue of the bentonite barrier in a radwaste repository

    International Nuclear Information System (INIS)

    Pelayo, M.; Garcia-Romero, E.; Labajo, M.A.; Perez del Villar, L.

    2011-01-01

    Highlights: → A hydrothermal process transformed Fe-Mg smectites into corrensite. → This transformation was favoured by the intrusion of the Morron de Mateo dome. → The intrusion caused a temperature increased and a supply of Fe-Mg rich solutions. → The system can be a good natural analogue of bentonite barrier in a radwaste disposal. → Experimental studies of stability of bentonite are in agreement with the results. - Abstract: The Morron de Mateo bentonite deposit is being studied as a natural analogue of the thermal and geochemical effects on a bentonite barrier in a deep geological repository of high level radioactive wastes. This bentonite deposit and its host rocks were intruded by a rhyodacitic volcanic dome that induced a hydrothermal metasomatic process affecting the biocalcarenite beds close to the dome. In this work, the mineralogical and chemical features of the clay minerals of the hydrothermally altered pyroclastic (white tuffs) and epiclastic rocks (mass flow), located in the NE sector of the Morron de Mateo deposit are described. White tuffs have a high content of phyllosilicates, mainly composed of dioctahedral smectites, while mass flow have a higher proportion of inherited minerals, the neoformed phyllosilicates are dioctahedral smectites and an interlayer chlorite/smectite mineral of corrensite type. The chemical composition of smectites reflects the different nature of the parent rocks, in such a way that smectites from white tuffs have a quite homogeneous chemical composition and their structural formulae correspond to montmorillonite type, while smectites from mass flow show more chemical variability, higher Fe and Mg contents and a mean structural formulae corresponding to Fe-Mg-rich beidellite and/or to an intermediate smectite member between beidellite and saponite. In addition, chemical composition and textural features of corrensite-like clay minerals in relation to Fe-Mg-rich smectites in the samples have also been studied

  20. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  1. Years of life lost because of premature death due to intentional and unintentional accidents in Ghazvin province from 2004 till 2008

    Directory of Open Access Journals (Sweden)

    Nahid Jafari

    2015-01-01

    Full Text Available Background: Accidents are the second cause of death in Iran and one of the significant challenges in public health. They can affect people in all ages. In this study, we try to calculate years of life lost due to intentional and unintentional injuries, which is considered as one of the main indicators for prioritizing public health problems.  Methods: This study is a practical cross sectional survey research HSR (health system research that uses secondary analysis on the death data of Ghazvin province. The calculations also take into account the WHO standards in age group, sex and years of life lost (YLL due to death.  Results: This study showed that the unintentional accidents were the leading cause of death based on YLL from 2004 until 2008 in Ghazvin province. The number of deaths due to intentional and unintentional accidents was 3796 deaths as of which 2954 (77.8% was male and 842 (22.2% female. In general three quarter of the YLL due to early death relates to accidents for males and less than a quarter relates to accidents for females. Between 2004 until 2008, the maximum number of years of life lost (YLL in both sexes is for the age group of 15 to 49.  Conclusion: Considering the high level of years of life lost (YLL due to accident in this province, especially in men, more appropriate interventions for the more risk prone age groups and male in general need to be taken into account.

  2. Investigation into the behaviour of bentonite in contact with magnetite and iron under the conditions of a final repository

    International Nuclear Information System (INIS)

    Mueller-Vonmoos, M.; Kahr, G.; Bucher, F.; Madsen, F.; Mayor, P.A.

    1991-05-01

    This report presents the results of investigations into how magnetite and iron affect the swelling behaviour of the Na-bentonite MX-80 and the Ca-bentonite Montigel. The experiments were conducted under conditions similar to those expected in a repository and covered cation exchange capacity, exchangeable cations and the swelling behaviour of the Na-bentonite MX-80 and the Ca-bentonite Montigel. Waste disposal is assumed to occur at a temperature of 80 o C under an anoxic atmosphere. In addition to this, the behaviour of trivalent iron in the interlayer space of montmorillonite was investigated. The investigations confirmed that contact between iron and bentonite under such conditions leads mainly to formation of magnetite and hydrogen. Montmorillonite does not take up iron by cation-exchange, either on contact with magnetite or with iron itself. The trivalent iron is unstable in the interlayer space of the montmorillonite and is exchanged mainly for aluminium; no change in the interlayer charge can be determined in such a case. It is therefore to be assumed that the aluminium is taken up from the edges of the clay particles into the interlayer space, but that no chlorite formation can be observed during this process. At 80 o C and 150 o C, the swelling pressures of the highly compacted bentonite-iron samples, related to the dry density of the bentonites, corresponded more or less to the swelling pressures of the untreated bentonites. The swelling pressure of the Fe(III)-bentonites was around 50% higher. It is assumed that this is mainly due to the high hydration energy of the iron and aluminium ions. 6 figs., 6 tabs., 13 refs

  3. Evaluation of The Use of Bentonite, Kaolin and Feldspar For Immobilizing The Uranium Radionuclide Slugdewaste

    International Nuclear Information System (INIS)

    Prayitno

    2006-01-01

    The experimental investigation on the mixture of bentonite, kaolin, feldspar, sludge waste and with the ratio of bentonite, kaolin, feldspar for evaluating its effectiveness has been done. Experimentally, this investigation is the preliminary study of the use of bentonite, kaolin, feldspar as a material for the immobilization of sludge waste containing material element especially uranium. This investigation was conducted by mixing waste (2,5; 5; 7.5; 10; 12.5 and 15 %) of total weight sludge waste and bentonite, kaolin, feldspar with of 800, 900 and 1000 o C temperature. The obtained the process condition in which the uranium fraction immobilized could be kept in the limit of safety standard for the sludge waste. Therefore, it could be concluded that the addition of hay ash as an additive in the formation of block monolith tend to minimize the leached sludge waste in the leaching media. (author)

  4. Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Nord, Sven [Ifoe Ceramics AB, Bromoella (Sweden ); Pusch, Roland [Geodevelopment AB, Lund (Sweden); Sjoeblom, Rolf [AaF-Energikonsult AB, Stockholm (Sweden)

    2000-09-01

    The purpose of the present work is to test, on a scale of 1:4, the feasibility of manufacturing bentonite blocks by isostatic compaction for application as a buffer material in a repository for spent nuclear fuel. In order for the tests to be sensitive to any weaknesses of the method, the blocks were shaped as beakers. The scope included the following: 1. Preparation of powder: a. mixing of the bentonite and addition of water in predetermined amounts, b. sieving to remove any lumps generated; 2. Isostatic compaction: a. establishment of a separate laboratory for the handling of bentonite powder (weighing, mixing, filling, sampling and machining), b. development and design of equipment and procedures for compaction of bentonite to beaker-shaped specimens, c. compaction process operation, d. visual inspection; 3. Sampling and characterisation: a. extraction of samples from the blocks made, b. determination of water content, c. determination of density, d. determination of strain at maximum stress by means of bending tests, e. determination of tensile strength by means of bending tests, f. determination of geometries of the blocks prepared; 4. Post-treatment by means of machining: a. machining of blocks made, b. visual inspection; 5. Evaluation. The work went very smoothly. No significant obstacles or unexpected events were encountered. The conclusions are as follows: The conclusions drawn in this report from work on the (linear)scale of one to four are very relevant to the full scale. Mixing of bentonite powder as well as moistening can be carried out on a pilot scale with a good homogeneity and with maintained good quality of the press powder. The compaction of bentonite can be carried out in a similar manner to the present operation at Ifoe Ceramics AB. This implies a very efficient handling as well as a very efficient use of the time in the press which may account for a large proportion of the total cost. The blocks could readily be produced to reproducible

  5. Electrochemical and radiochemical material transport examinations in humate-containing montmorillonite a bentonite thin layers

    International Nuclear Information System (INIS)

    Antal, K.; Joo, P.

    1999-01-01

    Various humate-containing H-bentonite layers were investigated using 137 Cs ion transport and radio absorption measuring method. These processes can model radioactive contamination migration in soils exposed to acid rains. Experiment using montmorillonite and bentonite layers are discussed, and the results obtained with electrochemical and radioisotope absorption techniques are presented. (R.P.)

  6. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  7. Adsorption of strontium on different sodium-enriched bentonites

    Directory of Open Access Journals (Sweden)

    Marinović Sanja R.

    2017-01-01

    Full Text Available Bentonites from three different deposits (Wyoming, TX, USA and Bogovina, Serbia with similar cation exchange capacities were sodium enriched and tested as adsorbents for Sr2+ in aqueous solutions. X-Ray diffraction analysis confirmed successful Na-exchange. The textural properties of the bentonite samples were determined using low-temperature the nitrogen physisorption method. Significant differences in the textural properties between the different sodium enriched bentonites were found. Adsorption was investigated with respect to adsorbent dosage, pH, contact time and the initial concentration of Sr2+. The adsorption capacity increased with pH. In the pH range from 4.0–8.5, the amount of adsorbed Sr2+ was almost constant but 2–3 times smaller than at pH ≈11. Further experiments were performed at the unadjusted pH since extreme alkaline conditions are environmentally hostile and inapplicable in real systems. The adsorption capacity of all the investigated adsorbents toward Sr2+ was similar under the investigated conditions, regardless of significant differences in the specific surface areas. It was shown and confirmed by the Dubinin–Radushkevich model that the cation exchange mechanism was the dominant mechanism of Sr2+ adsorption. Their developed microporous structures contributed to the Sr2+ adsorption process. The adsorption kinetics obeyed the pseudo-second-order model. The isotherm data were best fitted with the Langmuir isotherm model. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45001

  8. SORPTION AND DISPERSION OF STRONTIUM RADIONUCLIDE IN THE BENTONITE-QUARTZ-CLAY AS BACKFILL MATERIAL CANDIDATE ON RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Herry Poernomo

    2010-12-01

    Full Text Available The experiment of sorption and dispersion characteristics of strontium in the mixture of bentonite-quartz, clay-quartz, bentonite-clay-quartz as candidate of raw material for backfill material in the radioactive waste repository has been performed. The objective of this research is to know the grain size effect of bentonite, clay, and quartz on the weight percent ratio of bentonite to quartz, clay to quartz, bentonite to clay to-quartz can be gives physical characteristics of best such as bulk density (rb, effective porosity (e, permeability (K, best sorption characteristic such as distribution coefficient (Kd, and best dispersion characteristics such as dispersivity (a and effective dispersion coefficient (De of strontium in the backfill material candidate. The experiment was carried out in the column filled by the mixture of bentonite-quartz, clay-quartz, bentonite-clay-quartz with the weight percent ratio of bentonite to quartz, clay to quartz, bentonite to clay to quartz of 100/0, 80/20, 60/40, 40/60, 20/80, 0/100 respectively at saturated condition of water, then flowed 0.1 N Sr(NO32 as buffer solution with tracer of 0.05 Ci/cm3 90Sr as strontium radionuclide simulation was leached from immobilized radioactive waste in the radioactive waste repository. The concentration of 90Sr in the effluents represented as Ct were analyzed by Ortec b counter every 30 min, then by using profile concentration of Co and Ct, values of Kd, a and De of 90Sr in the backfill material was determined. The experiment data showed that the best results were -80+120 mesh grain size of bentonite, clay, quartz respectively on the weight percent ratio of bentonite to clay to quartz of 70/10/20 with physical characteristics of rb = 0.658 g/cm3, e = 0.666 cm3/cm3, and K = 1.680x10-2 cm/sec, sorption characteristic of Kd = 46.108 cm3/g, dispersion characteristics of a = 5.443 cm, and De = 1.808x10-03 cm2/sec can be proposed as candidate of raw material of backfill material

  9. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    International Nuclear Information System (INIS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil 5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm 2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil 5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil 5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil 5) as well as one (Nanofil 5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil 5), constant rate (compacted Nanofil 5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil 5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant

  10. Effects of feeding bentonite clay upon ochratoxin A-induced immunosuppression in broiler chicks.

    Science.gov (United States)

    Khatoon, Aisha; Khan, Muhammad Zargham; Abidin, Zain Ul; Bhatti, Sheraz Ahmed

    2018-03-01

    A presence of mycotoxins in feed is one of the most alarming issues in the poultry feed industry. Ochratoxins, produced by several Aspergillus and Penicillium species, are important mycotoxin regarding the health status of poultry birds. Ochratoxins are further classified into to several subtypes (A, B, C, etc) depending on their chemical structures, but ochratoxin A (OTA) is considered the most important and toxic. Bentonite clay, belonging to phyllosilicates and formed from weathering of volcanic ashes, has adsorbent ability for several mycotoxins. The present study was designed to study the effects of bentonite clay upon OTA-induced immunosuppression in broiler chicks. For this, 480 day-old broiler chicks were procured from a local hatchery and then different combinations of OTA (0.15, 0.3, or 1.0 mg/kg) and bentonite clay (5, 10, and 20 g/kg) were incorporated into their feed. At 13, 30, and 42 days of age, parameters such as antibody responses to sheep red blood cells, in situ lymphoproliferative responses to mitogen (PHA-P), and in situ phagocytic activity (i.e., via carbon clearance) were determined respectively. The results indicated there was a significant reduction of total antibody and immunoglobulin titres, lymphoproliferative responses, and phagocytic potential in OTA-treated birds, suggesting clear immunosuppression by OTA in birds in a dose-dependent manner. These results were also significantly lower in all combination groups (OTA with bentonite clay), suggesting few to no effects of feeding bentonite clay upon OTA- induced alterations in different immune parameters.

  11. Origins of chirality in Nature: a reassessment of the postulated role of bentonite

    International Nuclear Information System (INIS)

    Youatt, J.B.; Brown, R.D.

    1981-01-01

    Bondy and Harrington have proposed that selective binding of L isomers of amino acids and D isomers of sugars to bentonite is the mechanism by which the chirality of molecules in living cells was originally established. Further experiments indicate that the observations of Bondy and Harrington are better explained in terms of the effects of the binding to bentonite of the products of radiochemical decomposition. 1 table

  12. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    International Nuclear Information System (INIS)

    Ye, W.M.; Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G.; Cui, Y.J.

    2012-01-01

    Highlights: ► Heating induced volumetric change of GMZ01 bentonite depends on suction. ► Suction has significant influence on compressibility. ► Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 °C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 × 10 −4 °C −1 ; (2) with increasing suction, the elastic compressibility κ and the plastic compressibility λ(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility λ(s) slightly decreases and the yield surface tends to shrink.

  13. Thermic and thermodynamic properties of desorption process of essential oil of Hyssopus seravshanicus from bentonite clays

    International Nuclear Information System (INIS)

    Kukaniev, M.A.; Badalov, A.B.; Sharopov, F.S.

    2004-01-01

    It shown, that desorption process of essential oil of Hyssopus seravshanicus from bentonite clays include by four parts (lines) and the nature between essential oil of Hyssopus seravshanicus from bentonite clays is physical and chemical sorption

  14. Use of Bentonite in residual waters of tanneries for the removal of Cr(III)

    International Nuclear Information System (INIS)

    Echavarria Isaza, Adriana; Moreno Casaf, Monica; Ramirez Ochoa, Claudia; Tamayo Martinez, Claudia; Saldarriaga Molina, Carlos

    1998-01-01

    An efficient procedure is reported for Cr(III) removal from tannery waste waters by means of natural and chemically treated bentonites. The best result was obtained using 20 mL of effluent with 7.5 grams of Bentonite. With this quantity it was removed the total amount of chromium III present in the sample

  15. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  16. Bentonite engineered barrier building method for radioactive waste on sub-surface disposal test project

    International Nuclear Information System (INIS)

    Mori, Takuo; Takahashi, Shinichi; Takeuchi, Kunifumi; Namiki, Kazuto

    2008-01-01

    The engineering barriers such as clay and concrete materials are planned to use for covering radioactive waste in cavern-type disposal facility. The requirement to clay barrier is very low permeability, which could be satisfied by high density Bentonite, and such a compaction method will be needed. Two methods, compaction and air shot, were tested in engineering scale for constructing a high-density clay barrier. Two types of compaction equipments, 'Teasel plate' and 'Plate compacter', were developed and engineering scale experiments were performed for compacting Bentonite only and Bentonite-sand-aggregate mixture. As a result, the Teasel plate can reach higher density Bentonite in relatively short time in comparison to other equipments. While, regarding air shot method, an air-shot machine in a tunnel construction site was tested by different water adding methods (wet, dry, and half wet). It is concluded that the dry and half wet constructing methods will achieve reasonable workability. As a result, the best construction option can be chosen according to the locations of radioactive waste facility. (author)

  17. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    International Nuclear Information System (INIS)

    Fu, Lihua; Lei, Zhiwen; Xu, Chuanhui; Chen, Yukun

    2016-01-01

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  18. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lihua; Lei, Zhiwen [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Xu, Chuanhui, E-mail: xuhuiyee@gxu.edu.cn [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, China(South China University of Technology), Guangzhou, 510640 (China)

    2016-02-15

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  19. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  20. Diffusion of 99TcO4- in compacted bentonite: Effect of pH, concentration, density and contact time

    International Nuclear Information System (INIS)

    Xiangke Wang; Forschungszentrum Karlsruhe; Zuyi Tao

    2004-01-01

    In order to assess radionuclide diffusion and transport properties in compacted bentonite, the 'in-diffusion' method based on bentonite filled capillaries is used. The effect of 99 TcO 4 - concentration and pH value of the solution, the contact time and the dry density of compacted bentonite on the apparent diffusion coefficient (D a ) and on the distribution coefficient (K d ) values obtained from the capillary test was studied. The D a and K d values decrease with increasing of the bulk dry density of compacted bentonite. Ion exclusion influences the diffusion of 99 TcO 4 - 4 in the same substance. As compared to literature data, the K d values obtained from capillary tests are in most cases lower than those from batch tests, the difference between the two K d values is a strong function of dry density of the compacted bentonite. (author)

  1. The adsorption characteristics and porous structure of bentonite adsorbents as determined from the adsorption isotherms of benzene vapor

    Directory of Open Access Journals (Sweden)

    LEPA STOJANOVSKA

    2004-02-01

    Full Text Available The adsorption of benzene vapor on natural and acid activated bentonites was treated by the theory of volume filling of micropores. The micropore volume and characteristic values of the free energy of adsorption were determined from the adsorption isotherms. The Dubinin–Radushkevish–Stoeckli and Dubinin–Astakhov equations were used for this purpose. The results showed that natural bentonite has a more homogeneous micropore structure than the acid activated ones. The characteristic values of the free energy of adsorption for the natural bentonite were higher than those of the acid activated bentonite. This is due to differences in its structure and the pore size.

  2. Sedimentation Characteristics of Kaolin and Bentonite in Concentrated Solutions

    Directory of Open Access Journals (Sweden)

    Abdulah Obut

    2005-11-01

    Full Text Available The sedimentation characteristics of two clays, namely kaolinite and bentonite, were determinated at high clay (5 % wt/vol and electrolyte (1 N concentrations using various inorganic-organic compounds. It was observed that the settling behaviour of kaolinite (1:1 clay and montmorillonite (2:1 clay is quite different due to the structural differences between these minerals. Although, similar initial settling rates and final sediment volumes were obtained after 24 hours of settling time for kaolin suspensions, the corresponding rates and volumes for bentonite suspensions varied greatly with the used chemical compound. According to the experimental results, a further intensive theoretical and experimental investigation is needed to reveal the mechanism underlying the sedimentation characteristics of clay minerals at high clay and electrolyte concentrations.

  3. Investigations on uranium sorption on bentonite and montmorillonite, respectively, and uranium in environmental samples; Untersuchungen zur Uransorption an Bentonit bzw. Montmorillonit sowie von Uran in Umweltproben

    Energy Technology Data Exchange (ETDEWEB)

    Azeroual, Mohamed

    2010-09-22

    The geotechnical barrier is an important component of a geological repository and consists of compacted bentonite surrounding radioactive waste containers. Its most important functions are, to retard the radionuclide migration into the biosphere and to prevent groundwater contact with containers. lt is therefore of central importance to investigate the bentonite material on its capacity to sorb radionuclides under near-natural chemical and physical conditions. The purpose of this work was to study the adsorption of uranium(VI) on bentonit and on montmorillonite-standards at high uranium concentrations. Thereby, a special account was given to the calcium-uranyl-carbonate complexation, which leads to the formation of very stable and mobile uncharged Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} complex. Results of batch experiments showed that the dicalcium-uranyl-tricarbonate complexation lowers the uranium(VI) sorption on natural clay (bentonite) by a factor of up to 3. After 21 days of contact time, about 40 % and 20 % of the initial uranium(VI)concentration were sorbed on Na-bentonite and ea-bentonite, respectively, from a solution with Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} dominating the uranium(VI) speciation. On the contrary, about 55 % of the initial uranium(VI)-concentration were sorbed on thes clays from the solution, in which (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -} complex dominated the uranium(VI) speciation. Thus uranium(VI) sorption is more strongly influenced by the solution composition than by bentonite type. Na-bentonite should be used instead of ea-bentonite as a geotechnical barrier, since calcium-uranyl-carbonate complexation may be a realistic scenario. Further SEM-EDX and HREM-EDX studies showed that uranium(VI) sorption occurred predominantly on montmorillonite, which is the main component of bentonite. Uranium(VI) sorption on bentonite's accessory Minerals (pyrite, calcite, mica, and feldspar) was not observed. Investigation of uranium

  4. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Choi, Heuijoo; Lee, Jong Youl

    2016-01-01

    Highlights: • The thermal conductivities were measured under various disposal conditions. • They were significantly influenced by the water content and dry density. • They were not sensitive to the temperature and the anisotropic structure. • A new model of thermal conductivity was proposed for the thermal analysis. - Abstract: Bentonite buffer is one of the major barrier components of a high-level radioactive waste (HLW) repository, and the thermal conductivity of the bentonite buffer is a key parameter for the thermal performance assessment of the HLW repository. This study measured the thermal conductivity of compacted bentonite as a buffer material and investigated its dependence upon various disposal conditions: the dry density, water content, anisotropic structure of the compacted bentonite, and temperature. The measurement results showed that the thermal conductivity was significantly influenced by the water content and dry density of the compacted bentonite, while there was not a significant variation with respect to the temperature. The anisotropy of the thermal conductivity had a negligible variation for an increasing dry density. The present study also proposed a geometric mean model of thermal conductivity which best fits the experimental data.

  5. Erosion of bentonite by flow and colloid diffusion

    International Nuclear Information System (INIS)

    Moreno, Luis; Liu, Longcheng; Neretnieks, Ivars

    2010-01-01

    Document available in extended abstract form only. Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. The buffer contains sodium in the pore water in much higher concentrations than the approaching seeping groundwater in the fracture has. Diffusion of sodium outward in the expanding gel is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/ sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical showing the flow in a fracture intersecting the deposition hole with the canister. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture depth (extent from the deposition hole) was selected sufficiently large to ensure that the water velocity, near this border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite as it is carried away by the slowly flowing fluid was found to be proportional to the square root of the seeping

  6. Gestión y financiamiento de las investigaciones por el Instituto Nacional de Salud, Perú 2004-2008 Management and funding of the research by the peruvian National Institute of Health, 2004-2008

    Directory of Open Access Journals (Sweden)

    Gladys Garro

    2010-09-01

    Full Text Available Se analizó los resultados de los proyectos de investigación que han sido aprobados y financiados por el Instituto Nacional de Salud durante el periodo 2004-2008. De 182 investigaciones aprobadas y presupuestadas, se ejecutaron 150 (82%; 86% (129/150 culminaron en informe final y solo 14% (18/129 se publicaron en revistas indizadas, el promedio de tiempo de publicación de un artículo fue de 2,7 años. De las investigaciones presentadas, 68 (45%, fueron a través del fondo concursable, 60 (40% institucionales, 14 (9% de direcciones regionales de salud y 8 (5% colaborativas. El presupuesto ejecutado fue de $5 032 906,62. En promedio, se asignó a cada investigación $ 33 552,71 y el costo por cada publicación fue de $ 279 605,92; la distribución del presupuesto según objeto o tema de estudio fue 61% para enfermedades transmisibles, 12% para no transmisibles y 27% para desarrollo tecnológico. La promoción, desarrollo y financiamiento de la investigación en el Instituto Nacional de Salud durante este periodo, ha tenido una tendencia descendente, influenciada por la política institucional. Para revertir esta situación no solo a nivel institucional sino nacional, es necesario que el Estado defina su política nacional de investigación, respetando las prioridades nacionales y regionales de investigación en salud.The results of the research projects that have been approved and funded by the Instituto Nacional de Salud (Peru during the period 2004-2008 were analyzed. Out of 182 approved and funded research projects, 150 (82% were actually performed, 86% (129/150 ended in the final report and only 14% (18/129 were published in indexed journals, the mean time for publication of an article was of 2,7 years. Out of the presented research projects, 68 (45% were through a competitive fund, 60 (40% were institutional, 14 (9% coming from regional (provincial health directions and 8 (5% collaborative. The executed budget was of $ 5’032,906.62. The

  7. Porewater Chemistry in Compacted Re-Saturated MX-80 Bentonite: Physico-Chemical Characterisation and Geochemical Modelling

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.

    2002-06-01

    Bentonites of various types are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Being able to understand the chemistry of the pore water in compacted bentonite, and the factors which influence it, is critical to the synthesis of sorption data bases and to predicting radionuclide solubilities, and hence to repository safety studies. However, quantification of the water chemistry in compacted bentonite is difficult because reliable samples for chemical analysis cannot be obtained even by squeezing at exceedingly high pressures. In this report concepts are developed which are somewhat different from those used in previously published works on bentonite pore water. Considerations of the swelling properties of montmorillonite led to the proposition that there were, generally speaking, three types of water associated with re-saturated compacted bentonite. The water defined as the pore water is only a small fraction of the total. The pore water volume present in re-saturated bentonites having different initial dry densities was quantified using CI- 'through diffusion' data. Highly compacted bentonite is considered to function as an efficient semi-permeable membrane so that re-saturation involves predominantly the movement of water molecules and not solute molecules. This implies that the composition of the external saturating aqueous phase is a second order effect. Consequently CI- concentrations in the pore water could be calculated from the deduced pore water volume values and the measured CI- inventory. The pH of the pore water of a compacted bentonite is an extremely important parameter because of its influence on radionuclide solubility and sorption. Arguments are presented in support of the thesis that the initial pH is fixed by the high buffering capacity afforded by the amphoteric =SOH sites. The pH of the pore water depends directly on the speciation of these sites i.e. the proportions of sites present

  8. Modelling of erosion of bentonite gel by gel/sol flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu (Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2010-11-15

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  9. Modelling of erosion of bentonite gel by gel/sol flow

    International Nuclear Information System (INIS)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu

    2010-11-01

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  10. Results of monitoring at Olkiluoto in 2008. Foreign Materials

    International Nuclear Information System (INIS)

    Juhola, P.

    2009-08-01

    This report focuses on foreign materials introduced to ONKALO. These foreign materials are not part of the multi-barrier system or the natural environment. All the allowed materials introduced to ONKALO are included in the material handbook. All materials used in ONKALO 2008 are listed in this report. During 2008 the ONKALO access tunnel was excavated from chainage 2581 to chainage 3307 and the total excavated volume in 2008 was 38812 m 3 . During 2004 to 2008 the total excavated volume was 161060 m 3 . This report also summaries the total amount of foreign materials used in ONKALO since 2004. All waters used during the excavation of ONKALO are pumped up to the surface into a sedimentation pool. In 2008 water samples were taken from sedimentation pool and from the outlet ditch. The chemistry of these waters can predict us how the use of foreign materials has affected to the baseline groundwater chemistry. (orig.)

  11. Two-phase water movement in unsaturated compacted bentonite under isothermal condition

    International Nuclear Information System (INIS)

    Takeuchi, Shinji

    1994-01-01

    Bentonite is considered as one of the most promising buffer materials of engineered barrier system (EBS) for the geological isolation of high level radioactive waste (HLW) in Japan. The EBS may be composed of vitrified waste, overpack and buffer material. In the early stage of setting and backfilling of HLW, a coupled thermal-hydro-mechanical phenomenon may occur in buffer material due to various causes, but water movement may be the most important phenomenon for the coupled process. It is necessary to verify the two-phase movement for the precise modeling of the water movement in unsaturated bentonite. In this study, in order to analyze water movement, the water retention curves and water diffusivity of compacted bentonite were obtained as the functions of water content, dry density and temperature. Also water movement behavior was examined by applying the Philip and de Vries' and Darcy's equations to the obtained water diffusivity. Water potential was measured with a thermocouple psychrometer. The equation for water diffusivity is shown. The measurement of water potential and water diffusivity and the results are reported. (K.I.)

  12. Bentonite and Gelatine Impact on the Young Red Wine Coloured Matter

    Directory of Open Access Journals (Sweden)

    Slobodan Jović

    2004-01-01

    Full Text Available This paper deals with the impact of two fining agents (bentonite and gelatine on the coloured matters of young red wines Vranac, Pinot Noir and Gamay Noir. Both agents caused decrease in these substances. The effect is more intensive with the dose of bentonite of 1 g/L, but the variability depends on variety. Higher decrease was found in the colour intensity, coloured anthocyanins and polymers (up to 44 %, but lower in the colourless anthocyanins (up to 20 %. The intensity of red and blue colours decreases, while that of yellow colour increases. The use of bentonite in dosages higher than those recommended may cause the wine to obtain more pronounced »brick red« colour (the colour tint increases while the value of the spectrum form decreases. Fewer changes occurred in the coloured matters after treating the wine with gelatine. The colour intensity, colourless and coloured anthocyanins showed a decrease of up to 10 % and polymers of up to 16 %. The intensity of yellow colour decreases, while that of red increases as well as the ΔA/% value.

  13. Admixing dredged marine clay with cement-bentonite for reduction of compressibility

    Science.gov (United States)

    Rahilman, Nur Nazihah Nur; Chan, Chee-Ming

    2017-11-01

    Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.

  14. Evaluation of gas migration characteristics of compacted bentonite considering in-situ conditions of disposal facility

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2012-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. CRIEPI already proposed an analytical method for simulating gas migration through the compacted bentonite using the model of two phase flow through deformable porous media. Though validity of the analytical code of CRIEPI was examined by comparing existing gas migration test results with the calculated results, further validation is needed because in situ conditions, such as stress conditions and boundary condition, are different from conventional laboratory gas migration tent. In this study, gas migration tests whose initial axial stress is larger than initial radial stress and gas migration tests whose gas inlet is small. Simulation of the test results is also conducted. Comparing the test results with the calculated results, it is revealed that the analytical code of CRIEPI can simulate gas migration behavior through compacted bentonite with accuracy. (author)

  15. Coupled behaviour of bentonite buffer results of PUSKURI project; Bentoniittipuskurin kytketty kaeyttaeytyminen PUSKURI-hankkeen tuloksia

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Rasilainen, K.; Itaelae, A. [and others

    2011-08-15

    In the report main results form a KYT2010 programme's project Coupled behaviour of bentonite buffer (PUSKURI) are presented. In THC modelling, Aku Itaelae made and published his Master of Science Thesis. Itaelae was able to successfully model the LOT-experiment. Additionally, he also listed problems and development proposals for THC-modelling of bentonite buffer. VTT and Numerola created in collaboration a model coupling saturation, diffusion and cation exchange; the model was implemented and tested in Numerrin, COMSOL and TOUGHREACT. Petri Jussila's PhD THM-model was implemented into COMSOL to facilitate further development. At GTK, the mineralogical characterisation of bentonite was planned. The previous THM model (Jussila's model) including only small deformations was successfully generalized to finite deformations in way at least formally preserving the original formalism. It appears that the theory allows also a possibility to include finite plastic deformations in the theory. In order to measure the relevant mechanical properties of compacted bentonite, two different experiments, namely hydrostatic compression experiment and one-dimensional compression experiment were designed. In the hydrostatic compression experiment, a cylindrical sample of compacted bentonite covered with liquid rubber coating is placed in the sample chamber equipped with a piston. The same device was also used in one-dimensional compression experiment. X-ray microtomographic techniques were used in order to study the basic mechanisms of water transport in bentonite. The preliminary results indicate that in the present experimental set-up, water transport is dominated by a dispersive mechanism such as diffusion of vapour in gas phase or diffusion of water in solid phase. (orig.)

  16. Tuberculosis pediátrica en un hospital de referencia durante el período 2004-2008 Pediatric tuberculosis at a reference hospital during the 2004-2008 period

    Directory of Open Access Journals (Sweden)

    Mónica G. Rodríguez

    2011-03-01

    Full Text Available Se realizó un estudio retrospectivo y descriptivo de las muestras de pacientes pediátricos remitidas al laboratorio del Hospital Piñero durante el período 2004-2008 para el cultivo de micobacterias por sospecha de tuberculosis. Durante dicho período ingresaron un total de 8409 muestras, de las cuales 1542 (18% fueron pediátricas; de ellas 1407 (91% pulmonares y 135 extrapulmonares (9%. El procesamiento de las muestras incluyó baciloscopía, cultivo, identificación y prueba de sensibilidad. La nacionalidad de los pacientes pediátricos se distribuyó del siguiente modo: argentinos, 1218 (79%; extranjeros, 247 (16%, representados estos últimos por paraguayos, peruanos y sobre todo bolivianos. Para un 5% de los pacientes no fue informada la nacionalidad. La distribución por sexo fue: femenino, 787 pacientes (51%; masculino, 755 pacientes (49%. De acuerdo con la edad de los pacientes se obtuvo la siguiente distribución: 0 a 4 años, 674 niños (grupo A, 45%, 5 a 9 años, 354 niños (grupo B, 24%; y 10 a 15 años, 464 pacientes (grupo C, 31%. Las principales asociaciones mórbidas fueron desnutrición e infección por el virus de la inmunodeficiencia humana. La baciloscopía fue positiva en 41 muestras (2,6%, en tanto que la recuperación mediante cultivo alcanzó las 84 muestras (5,4%, 78 de ellas pulmonares y 6 extrapulmonares. Todas las cepas fueron identificadas como complejo Mycobacterium tuberculosis. Los aislamientos fueron sensibles a estreptomicina, isoniazida, rifampicina y etambutol, excepto una cepa resistente a etambutol y estreptomicina y otra resistente a isoniazida. La confirmación bacteriológica de la tuberculosis pediátrica es difícil de alcanzar debido a la presentación paucibacilar de las muestras, pero juega un papel fundamental en el diagnóstico de certeza, ya que permite la identificación y la realización de las pruebas de sensibilidad del aislamiento.Samples of pediatric patients suspected of tuberculosis

  17. Diseño e implantación de un sistema integrado de calidad y medio ambiente (ISO 9001: 2008 e ISO14001:2004) en una empresa de obra civil

    OpenAIRE

    Campano Calleja, Juan Manuel

    2012-01-01

    El Proyecto Fin de Carrera tiene como objetivos el diseño, desarrollo e implantación de un Sistema de Gestión Integrado de Calidad y de Medio Ambiente según las normas ISO 9001:2008 e ISO 14001:2004 para una empresa ficticia llamada MID EXCAVACIONES S.L.

  18. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  19. Synthesis of MCM-41 nanomaterial from Algerian bentonite ...

    African Journals Online (AJOL)

    Mesoporous materials of the MCM-41 type were synthesized from Algerian bentonite as an aluminosilicate source without the addition of pure silica and aluminum reagents. The samples were synthesized under hydrothermal condition using cetyltrimithylammonium bromide (CTAB) as surfactant. The influence of initial ...

  20. Vitrification and neomineralisation of bentonitic and kaolinitic clays ...

    African Journals Online (AJOL)

    ... metamorphic and/or igneous rocks. Resultant fired mineral phases depicted mineral compositions of ceramic bodies, and the study suggested that these clays could be gainfully utilized in the making of ceramic wares, subject to selected beneficiation processes. Keywords: kaolin, bentonite, vitrification, neomineralization, ...

  1. Bentonite Modification with Manganese Oxides and Its Characterization

    Czech Academy of Sciences Publication Activity Database

    Dolinská, S.; Schütz, T.; Znamenáčková, I.; Lovás, M.; Vaculíková, Lenka

    2015-01-01

    Roč. 35, č. 1 (2015), s. 213-218 ISSN 1640-4920 Institutional support: RVO:68145535 Keywords : bentonite * natrification * manganese oxide Subject RIV: CB - Analytical Chemistry, Separation http://www.potopk.com.pl/ Full _text/2015_full/IM%202-2015-a35.pdf

  2. Influence of ionic strength on the viscosities and water loss of bentonite suspensions containing polymers

    Directory of Open Access Journals (Sweden)

    Luciana Viana Amorim

    2007-03-01

    Full Text Available A study was made of the influence of ionic strength (S on the apparent (AV and plastic (PV viscosities and water loss (WL of sodium bentonite suspension with polymers. Na-bentonite was dispersed in water (4.86% w/w of different ionic strengths (S = 0.0, 0.015, 0.030 and 0.045 M followed by the addition of polymer. Three polymer samples were studied, i.e., low viscosity carboxymethyl cellulose (CMC BV, polyanionic cellulose (PAC, and partially hydrolyzed polyacrylamide (HPAM. The results indicated that the presence of salts and increased salinity greatly influence the apparent and plastic viscosities and water loss of bentonite suspensions with polymer.

  3. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  4. Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions

    International Nuclear Information System (INIS)

    Melamed, A.; Pitkaenen, P.

    1996-01-01

    In the field of nuclear fuel disposal, bentonite has been selected as the principal sealing and buffer material for placement around waste canisters, forming both a mechanical and chemical barrier between the radioactive waste and the surrounding ground water. Ion exchange and mineral alteration processes were investigated in a laboratory study of the long-term interaction between compacted Na-bentonite (Volclay MX-80) and ground water solutions, conducted under simulated nuclear fuel disposal conditions. The possible alteration of montmorillonite into illite has been a major object of the mineralogical study. However, no analytical evidence was found, that would indicate the formation of this non-expandable clay type. Apparently, the change of montmorillonite from Na- to Ca-rich was found to be the major alteration process in bentonite. In the water, a concentration decrease in Ca, Mg, and K, and an increase in Na, HCO 3 and SO 4 were recorded. The amount of calcium ions available in the water was considered insufficient to account for the recorded formation of Ca-montmorillonite. It is therefore assumed that the accessory Ca-bearing minerals in bentonite provide the fundamental source of these cations, which exchange with sodium during the alteration process. (38 refs.)

  5. Sorption properties of bentonite clays towards Pu(IV), U(VI), Np(V) and Cs: experimental and surface complexation study

    Energy Technology Data Exchange (ETDEWEB)

    Sabodina, M.N. [Institute of Physical Chemistry of Russian Academy of Science, Moscow 119192 (Russian Federation); Kalmykov, St.N.; Sapozhnikov, Yu.A. [Radiochemistry div., Chemistry dept., Lomonosov Moscow State University, Moscow 119992, (Russian Federation); Gupalo, T.A.; Beigul, V.P. [VNIPI Promtechnology, Moscow (Russian Federation)

    2005-07-01

    Full text of publication follows: Sorption of radionuclides, their diffusion in bentonite as well as its solubility are the major factors that define bentonite as a geochemical barrier. Sorption of cations by bentonite could be governed by two mechanisms including ion exchange with interlayer cations and formation of surface complexes with either silanol or aluminol groups. The aim of this work was to study mechanisms of {sup 137}Cs, Pu(IV), Np(V) and U(VI) sorption by bentonite and their solubility in bentonite pore waters. Bentonite (Khakassiya deposit) used in the experiments was taken in Na-form and characterized by powder X-ray diffraction, scanning electron microscopy, potentiometric titration. The cation exchange capacities of bentonite at pH=6 were measured by isotopic exchange with {sup 22}Na{sup +} and Cs{sup +} saturation. Sorption experiments were performed in N{sub 2} atmosphere in plastic vials. Bentonite samples were left in the working solutions to swell for few days before sorption experiments were performed. After the desired concentration of radionuclide ({sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 237}Np, {sup 239}Np, {sup 238}U) was added to the suspension, the required pH values are established and samples were left until the equilibrium was reached. Separation of solution after the sorption was performed using micro- and ultrafiltration techniques. The sorption of Pu(IV), U(VI) and Np(V) was highly pH dependent that indicates predominant surface complexation mechanism of sorption. For {sup 137}Cs the pH dependence of sorption was less pronounced and significant decrease of sorption occurs at pH<1.7 that indicate the ion exchange as the major mechanism. The equilibrium constant of Na{sup +}/Cs{sup +} exchange was calculated form sorption isotherms and pH dependence of sorption. It is established using micro- and ultra-filtrations, that sorption of radionuclides onto bentonite nano colloids is essential. Surface complexation modeling exercises

  6. Studies of buffers behaviour in KBS-3H concept. Work during 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart; Sanden, Torbjoern; Faelth, Billy; Aakesson, Mattias [Clay Technology AB, Lund (Sweden); Lindgren, Erik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-08-01

    function of the distance block. Scenario analyses of different concepts for design and installation of the distance blocks for finding critical issues. 2. Sealing ability of the distance plugs during water inflow. 3. Influence of rapid increase of water pressure inside the distance blocks. 4. Piping and erosion phenomena of the swelling bentonite during the installation phase and during the water saturation phase. 5. Mechanical interaction between the container and the buffer during the homogenisation of the bentonite and breakage of the container. 6. Near field thermal and hydraulic evolution. These processes have been studied by Clay Technology in a number of tests and analyses during 2002 to 2004. The studies can be structured in the following way: 1. Test scaled 1:10 of a simulated part of a deposition tunnel with two canisters. 2. Design and planning of a large-scale test of the interaction between the bentonite and the perforated deposition container and manufacturing of components (Big Bertha). 3. Investigation of sealing/piping/erosion phenomena during wetting of the buffer material. a) Basic laboratory tests. b) Study of processes and scenarios in the scale 1:10. c) Study of processes and scenarios in full scale. 4. Investigation of the effect of rapid water pressure increase inside the distance blocks by model tests in the scale 1:10 and in full scale. 4. Modelling a) Modelling of the interaction between the bentonite and the perforated deposition container. b) Modelling of temperature conditions for design and safety analysis purpose. c) Modelling of the water saturation phase and the influence of the hydraulic properties of the rock. d) Modelling of the wetting of the test scaled 1:10. e) Scenario analyses and conceptual modelling of the function of different distance block concepts. These studies and the results and conclusions reached will be presented in this report. The report should be considered a state of the art report at the end of 2004. The studies

  7. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, The Ministry of Education, Shanghai 200092 (China); Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts ParisTech, UR Navier/CERMES 77455 (France)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Heating induced volumetric change of GMZ01 bentonite depends on suction. Black-Right-Pointing-Pointer Suction has significant influence on compressibility. Black-Right-Pointing-Pointer Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 Degree-Sign C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}; (2) with increasing suction, the elastic compressibility {kappa} and the plastic compressibility {lambda}(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility {lambda}(s) slightly decreases and the yield surface tends to shrink.

  8. Modification of ntezi bentonite structure by hydrochloric acid: process kinetics and structural properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2014-01-01

    Bentonite from Ntezi was modified by reacting it with different concentrations of hydrochloric acid solutions. The modified samples were analysed by x-ray fluorescence. The kinetics of the modification reaction was studied by performing the experiment at different temperatures and times. Results of the analysis of the modified samples showed that the octahedral cations were removed which altered the chemical composition of the bentonite. The surface area and adsorptive capacity of the bentonite were improved after the modification. The kinetic studies showed that the acid modification reaction is controlled by the product layer diffusion and can be represented by (1-(l-X)/sup 1/3)/sup 2/ = k t; where, X is the fraction of the bentonite dissolved at time t. The activation energy was determined to be 24.98 kJ/mol. (author)

  9. A Numerical Investigation on the Effect of Gas Pressure on the Water Saturation of Compacted Bentonite-Sand Samples

    Directory of Open Access Journals (Sweden)

    Jiang-Feng Liu

    2017-01-01

    Full Text Available In deep geological disposal for high-level radioactive waste, the generated gas can potentially affect the sealing ability of bentonite buffers. There is a competition between water and gas: the former provides sealing by swelling bentonite, and the latter attempts to desaturate the bentonite buffer. Thus, this study focused on numerically modelling the coupling effects of water and gas on the water saturation and sealing efficiency of compacted bentonite-sand samples. Different gas pressures were applied to the top surface of an upper sample, whereas the water pressure on the bottom side of the lower sample was maintained at 4 MPa. The results indicated that gas pressure did not significantly affect the saturation of the bentonite-sand sample until 2 MPa. At 2 MPa, the degree of water saturation of the upper sample was close to 1.0. As the gas pressure increased, this influence was more apparent. When the gas pressure was 6 MPa or higher, it was difficult for the upper sample to become fully saturated. Additionally, the lower sample was desaturated due to the high gas pressure. This indicated that gas pressure played an important role in the water saturation process and can affect the sealing efficiency of bentonite-based buffer materials.

  10. Natural analogue studies of bentonite reaction under hyperalkaline conditions. Overview of ongoing work at the Zambales ophiolite, Philippines

    International Nuclear Information System (INIS)

    Fujii, N.; Yanakawa, M.; Arcilla, C.A.; Pascua, C.; Namiki, K.; Sato, T.; Shikazono, N.; Alexander, W.R.

    2011-01-01

    Bentonite is one of the safety-critical components of the engineered barrier system for the disposal concepts developed for many types of radioactive waste. However, bentonite - especially the swelling clay component that contributes to its essential barrier functions - is unstable at high pH. To date, results from laboratory tests on bentonite degradation have been ambiguous as the reaction rates are so slow as to be difficult to observe. As such, a key goal in this project is to examine the reaction of natural bentonites in contact with natural hyperalkaline groundwaters to determine if any long-term alteration of the bentonite occurs. Ophiolites have been identified as sources of hyperalkaline groundwaters that can be considered natural analogues of the leachates produced by some cementitious materials in repositories for radioactive waste. At the Zambales ophiolite in the Philippines, widespread active serpentinisation results in hyperalkaline groundwaters with measured pH values of up to 11.7, falling into the range typical of low-alkali cement porewaters. These cements are presently being developed worldwide to minimise the geochemical perturbations which are expected to result from the use of OPC-based concretes (see Kamei et al., this conference, for details). In particular, it is hoped that the lower pH of the low-alkali cement leachates will reduce, or even avoid entirely, the potential degradation of the bentonite buffer which is expected at the higher pH levels (12.5 and above) common to OPC-based concretes. During recent field campaigns at two sites in the Zambales ophiolite (Mangatarem and Bigbiga), samples of bentonite and the associated hyperalkaline groundwaters have been collected by drilling and trenching. At Mangatarem, qualitative data from a 'fossil' (i.e. no groundwater is currently present) reaction zone indicates some alteration of the bentonite to zeolite, serpentine and CSH phases. Preliminary reaction path modelling suggests that the

  11. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    Directory of Open Access Journals (Sweden)

    Tilak B. Vidya

    2015-06-01

    Full Text Available This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  12. Uranium(VI) retention by Ca-bentonite under (hyper)alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Thimo; Schmeide, Katja [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    The sorption behavior of U(VI) on Ca-bentonite was studied in saline, (hyper)alkaline solution via batch experiments. At pH 8.5-9.5 sorption is low in the presence of CO{sub 2} due to the formation of weakly sorbing uranyl carbonate species, which have been observed to dominate speciation up to pH 10 by time-resolved laser-induced fluorescence spectroscopy (TRLFS). In the pH region 10-12, U(VI) retention is almost complete. The retention can either be attributed to strongly sorbing uranyl hydroxo complexes or to a partial precipitation of uranium due to an altered solubility of U(VI) induced by ions leached out of the bentonite.

  13. Musculoskeletal pain: prescription of NSAID and weak opioid by primary health care physicians in Sweden 20042008 – a retrospective patient record review

    Directory of Open Access Journals (Sweden)

    Metha Brattwall

    2010-08-01

    Full Text Available Metha Brattwall1, Ibrahim Turan2, Jan Jakobsson31Department of Anaesthesia, Institute for Clinical Sciences at Sahlgrenska Academy, Mölndal Hospital, Gothenburg, Sweden; 2Foot and Ankle Surgical Centre, Stockholm, Sweden; 3Karolinska Institutet, Institution for Physiology and Pharmacology, Department of Anaesthesia, Stockholm, SwedenPurpose: To study the prescription of oral analgesics for musculoskeletal pain by primary care physicians over a 5-year period in Sweden.Design: A retrospective automatic database review of patient records at four primary health care centers. All prescriptions of NSAIDs, weak opioids, and coprescriptions of gastroprotecting medications to patients with musculoskeletal were retrieved for the period January 1, 2004 to November 11, 2008.Results: A total of 27,067 prescriptions prescribed to 23,457 patients with musculoskeletal pain were analyzed. Of all prescriptions, NSAIDs were the most commonly prescribed analgesic comprising 79%, tramadol was the second most commonly prescribed analgesic comprising 9%, codeine the third most (7%, and dextropropoxyphene the fourth (5%. The proportion of NSAIDs and weak opioids and the proportion of the different weak opioids prescribed showed no change over time. The proportion of nonselective and selective NSAIDs prescribed changed; Coxib prescriptions decreased from 9% to 4% of all analgesics prescribed in 2004–2007 with no change in 2008.Conclusion: NSAIDs were found to be the dominant class of analgesic prescribed by primary care physicians to patients diagnosed as musculoskeletal pain. No change was observed in the proportion of NSAID and weak opioid prescription over the period studied. Prescription of selective Coxibs decreased and was less than 4% in 2008. The impact on gastrointestinal and cardiovascular adverse effects associated with the extensive prescription of NSAIDS for musculoskeletal pain warrants further analysis.Keywords: nonsteroidal anti-inflammatory drugs

  14. Optimization of bentonite pellet properties

    International Nuclear Information System (INIS)

    Sanden, Torbjoern; Andersson, Linus; Jonsson, Esther; Fritzell, Anni

    2012-01-01

    Document available in extended abstract form only. SKB in Sweden is developing and implementing concepts for the final disposal of spent nuclear fuel. A KBS-3V repository consists of a deposition tunnel with copper canisters containing spent fuel placed in vertical deposition holes. The canisters are embedded in highly compacted bentonite. After emplacement of canisters and bentonite blocks, the tunnels will be backfilled and sealed with an in-situ cast plug at the entrance. The main concept for backfilling the deposition tunnels imply pre compacted blocks of bentonite stacked on a bed of bentonite pellet. The remaining slot between blocks and rock will be filled with bentonite pellets. The work described in this abstract is a part of the ASKAR-project which main goal is to make a system design based on the selected concept for backfilling. Immediately after starting the backfill installation, inflowing water from the rock will come in contact with the pellet filling and thereby influence the characteristics of the pellet filling. The pellet filling helps to increase the average density of the backfill, but one of the most important properties beside this is the water storing capacity which will prevent water from reaching the backfill front where it would disturb and influence the quality of the installation. If water flows through the pellet filling out to the backfilling front, there will be erosion of material which also will affect the quality of the installed backfill. In order to optimize the properties regarding water storing capacity and sensitivity for erosion a number of tests have been made with different pellet types. The tests were made in different scales and with equipment specially designed for the purpose. The performed tests can be divided in four parts: 1. Standard tests (determining water content and density of pellet fillings and individual pellets, compressibility of the pellet fillings and strength of the individual pellets); 2. Erosion

  15. Ageing effects on swelling behaviour of compacted GMZ01 bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Lai, X.L.; Liu, Y. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts Paris Tech, UR Navier/CERMES (France)

    2013-12-15

    Highlights: • Ageing effects on compacted GMZ01 bentonite are investigated. • Swelling property decreases with ageing and influenced by initial conditions. • Ageing effects are mainly attributed to the bonding effects and the hydration of smectites. - Abstract: Ageing effects on the swelling properties of compacted GMZ01 bentonite are investigated in this paper. Samples were compacted to prescribed dry densities and water contents and kept for ageing under constant volume and K{sub 0} confined conditions for target days of 0, 1, 7, 15, 30 and 90. Then, swelling deformation and swelling pressure tests were performed on the aged samples. Results indicate that both the swelling deformation and swelling pressure decrease with ageing time, with a more significant decrease at the first few days of ageing. Ageing effects are more pronounced for samples with large dry density and high water content. At the same initial dry density and water content, samples aged under constant volume conditions show much smaller decrease of swelling pressure compared to that of samples aged under K{sub 0} confined conditions. The decrease of swelling potential of samples with ageing days is mainly attributed to the bonding effects and the internal redistribution of water within the bentonite, which was confirmed by the changes of microstructure of samples with ageing.

  16. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3)

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Kubo, Hiroshi

    2004-02-01

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to assess quantitatively permeability of bentonite altered by hyper alkaline and nitrate. Modeling is progressed based on experimental results. The following results are obtained. 1) Consolidation test was carried out in 3 types of bentonite and 30 % sand mixture in which cation exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  17. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    Science.gov (United States)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  18. Immobilization of industrial waste in cement–bentonite clay matrix

    Indian Academy of Sciences (India)

    Unknown

    Immobilization of industrial waste in cement–bentonite clay matrix. I B PLECAS* and S ... high structural integrity and minimizing the risk of escape by leaching. ..... Radioactive Waste Management and Nuclear Fuel Cycle 14. 195. Plecas I ...

  19. Magnesium incorporated bentonite clay for defluoridation of drinking water

    Czech Academy of Sciences Publication Activity Database

    Thakre, D.; Rayalu, S.; Kawade, R.; Meshram, S.; Šubrt, Jan; Labhsetwar, N.

    2010-01-01

    Roč. 180, 1-3 (2010), s. 122-130 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40320502 Keywords : adsorption * bentonite * fluoride removal Subject RIV: CA - Inorganic Chemistry Impact factor: 3.723, year: 2010

  20. Permeability of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-12-01

    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)