WorldWideScience

Sample records for fe83b17 alloy prepared

  1. Amorphous-to-crystalline phase transformation by neutron irradiation of the alloy Fe83B17

    International Nuclear Information System (INIS)

    Weis, J.; Gabris, F.; Cerven, I.; Sitek, J.

    1984-01-01

    The purpose of the present work is to investigate the structural changes of amorphous Fe 83 B 17 alloy after irradiation with fast neutrons ( > 1 MeV) and to compare with the crystallization behaviour of the amorphous Fe 83 B 17 alloy after annealing. The structural changes were studied by Moessbauer spectroscopy and X-ray diffraction with the usual Fourier analysis. (author)

  2. Amorphous-to-crystalline phase transformation by neutron irradiation of the alloy Fe/sub 83/B/sub 17/

    Energy Technology Data Exchange (ETDEWEB)

    Weis, J.; Gabris, F.; Cerven, I.; Sitek, J. (Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia))

    1984-03-01

    The purpose of the present work is to investigate the structural changes of amorphous Fe/sub 83/B/sub 17/ alloy after irradiation with fast neutrons ( > 1 MeV) and to compare with the crystallization behaviour of the amorphous Fe/sub 83/B/sub 17/ alloy after annealing. The structural changes were studied by Moessbauer spectroscopy and X-ray diffraction with the usual Fourier analysis.

  3. Crystallization of Fe83B17 amorphous alloy by electric pulses produced by a capacitor discharge

    International Nuclear Information System (INIS)

    Georgarakis, Konstantinos; Dudina, Dina V.; Mali, Vyacheslav I.; Anisimov, Alexander G.; Bulina, Natalia V.; Moreira Jorge, Alberto Jr.; Yavari, Alain R.

    2015-01-01

    Heating of conductive materials by electric current is used in many technological processes. Application of electric pulses to metallic glasses induces their fast crystallization, which is an interesting and complex phenomenon. In this work, crystallization of the Fe 83 B 17 amorphous alloy induced by pulses of electric current produced has been studied using X-ray diffraction and transmission electron microscopy. Ribbons of the alloy were directly subjected to single pulses of electric current 250 μs long formed by a capacitor discharge. As the value of ∫I 2 dt was increased from 0.33 to 2.00 A 2 s, different crystallization stages could be observed. The crystallization began through the formation of the nuclei of α-Fe. At high values of ∫I 2 dt, α-Fe and tetragonal and orthorhombic Fe 3 B and Fe 23 B 6 were detected in the crystallized ribbons with crystallites of about 50 nm. Thermal annealing of the ribbons at 600 C for 2 min resulted in the formation of α-Fe and tetragonal Fe 3 B. It was concluded that pulses of electric current produced by a capacitor discharge induced transformation of the Fe 83 B 17 amorphous phase into metastable crystalline products. (orig.)

  4. Effect of heating rates of crystallization behaviour of amorphous Fe/sub 83/01/B/sub 17/ alloy

    International Nuclear Information System (INIS)

    Ashfaq, A.; Shamim, A.

    1993-01-01

    The electric resistivity of amorphous Fe/sub 83/01/B/sub 17/ alloy has been measured to study its crystallization behaviour from room temperature to about 900 K at the constant heating rates of 40, 60 and 80 K/hr. The crystallization temperature was observed to increase with the increase of heating g rate. However amorphous to crystalline path of RT-curve between the maximum and the minimum decreases with heating rate. The Resistivity Temperature (RT) curves exhibit different steps which are shown to correspond to the phase change stages of the alloy. The slope of the rt-curve after the previous step increases with the rise in heating rate and finally passes through a board peak and then rises again. From the peak shift dta of first crystallization stage activation energy was calculated by applying various peak shift equations. The values so obtained were in good agreement with those obtained with DSC measurement for (FeM)/sub 83/01/B/sub 17/ amorphous alloys where M=Mo, Ni, Cr, and V. (author)

  5. Effect of annealing on the structural and magnetic properties of (Fe{sub 1−x}Co{sub x}){sub 83}B{sub 17} metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, Neeru, E-mail: neerubhagat@hotmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412115 (India); Gupta, Ajay [Center for Spintronic Materials, Amity University, Sector 125, Noida (India); Reddy, V.R. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore (India); Pandey, Brajesh, E-mail: bpandey@gmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412115 (India)

    2015-05-01

    Amorphous alloys of (Fe{sub 1−x}Co{sub x}){sub 83}B{sub 17} (x=22, 25.3, 28.4) in the vicinity of 25 at% of Co were prepared by melt spun technique. The samples were annealed at different temperatures and the changes in structural and magnetic properties have been studied. Phase stabilization and magnetic properties of amorphous alloys were studies using X-ray diffraction and Mössbauer spectroscopy. The result shows anomalies in structure and in magnetic properties in the studied samples. Annealing at 475 °C brings about the formation of complete and stable crystalline structure. At this stage multiple crystalline phases have been observed. Mössbauer spectroscopy also revealed that two phases of Fe{sub 3}B were formed along with stable Fe{sub 3}Co phase. - Highlights: • Using melt spun technique alloys of (Fe{sub 1−x}Co{sub x}){sub 83}B{sub 17} (x=22, 25.3, 28.4) in amorphous phase were prepared. • Crystalline phase increases with increasing the Co concentration. • Appearance of one crystalline phase is observed when samples annealing at 345 °C. • Annealing at higher temperature leads to emergence of multiple crystalline phases. • Different phases of Fe–Co, and Fe–Co–B were identified.

  6. Hyperfine field distribution of Fe83B17 glassy metal

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1990-01-01

    Convolutions of Gaussian and Lorentzian lines are proposed to fit the Moessbauer spectrum of Fe 83 B 17 metallic glass. The hyperfine field distribution is constructed from three Gaussian lines corresponding to the individual line pairs. (author). 1 fig., 7 refs

  7. Dynamics of Fe83B17 glass

    International Nuclear Information System (INIS)

    Prasad, Anamika; Bhandari, Deepika; Pratap, Arun; Saxena, N.S.; Saksena, M.P.

    1995-01-01

    A new effective pair-potential for the archetypal transition metal-metalloid metallic glass Fe 83 B 17 is computed, treating it as a one component system in Wills-Harrison form. The obtained potential is compared with that derived using partial pair-potentials. The derivatives of the pair-potential provide dynamics of this system in terms of dispersion relation using the theory of Hubbard-Beeby of liquid and amorphous materials. The pair-correlation function required for this study is taken from the neutron diffraction study. The elastic constant and Debye temperature are also evaluated using the phonon dispersion curves. Besides, the low temperature heat capacity is also computed that show anomalous behaviour. (author). 18 refs., 3 figs

  8. Low temperature Moessbauer study of amorphous Fe83B17

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1987-01-01

    Information about changes in magnetic structures of metallic glass Fe 83 B 17 at low temperatures has been obtained by 57 Fe Moessbauer spectroscopy in the temperature range from 295 to 77 K. The mean values of the magnetic hyperfine field have been calculated from magnetic splitting of Moessbauer spectra. The angle between the direction of magnetization and the γ-ray direction θ obtained from line intensity ratios is given as a function of temperature. The curve shows a minimum at 120 K. The influence of decreasing temperature on the magnetic structure may be caused by a change in magnetic anisotropy and a reorientation of surface spins. The main contribution to the changes in θ comes from the reorientation of surface domains

  9. Magnetic hysteresis properties of melt-spun Nd-Fe-B alloys prepared by centrifugal method

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Pushkarsky, V.I.; Markin, P.E.; Zaikov, N.K.; Tarasov, E.N.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching onto the internal surface of an iron spinning wheel at tangential speeds in the range 5-20 m/s are reported. The alloy composition was Nd-36% wt, B-1.2% wt. and Fe-remainder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in applied range (18 kOe at 5 m/s and 22 kOe at 20 m/s), whereas the grain size of the basic phase (2-14-1) ste[ily decreases when the speed rises, starting from 2-3 μm for 5 m/s alloy down to the 200-300 nm for 20 m/s alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for tr[itionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbon in a vibration mill causes the coercivity drop to 7 kOe after 120 min of treatment. However, this operation increases the powder alignment ability and, as a result, the energy product for a fully dense magnet from anisotropic powder prepared from some ribbons rises to 20-23 MGOe. (orig.)

  10. Magnetic properties of centrifugally prepared melt-spun Nd-Fe-B alloys and their powders

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Kozlov, A.I.; Markin, P.E.; Pushkarskiy, V.I.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching on to the internal surface of an iron spinning wheel at the tangential speeds in the range 5-20 m/sec are reported. The alloy composition was Nd-36% wt. B-1.2% wt. and Fe-reminder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in the applied range (1430 kA/m at 5 m/sec and 1750 kA/m at 20 m/sec), whereas the grain size of the basic phase (2-14-1) steadily decreases when the speed rises, starting from 2-3 μm for 5 m sec alloy down to the 200-300 nm for 20 m/sec alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for traditionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbons subjected to hydrogen and annealing treatments causes the coercivity drop. However, this operations increase the powder alignment ability and, as a result, the energy product for fully dense magnet from such powder rises to 160-180 kJ/m 3 . (orig.)

  11. Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds

    Directory of Open Access Journals (Sweden)

    Radhika Barua

    2018-06-01

    Full Text Available We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2 alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe. The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

  12. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  13. Single step preparation of NdFeB alloy by magnesiothermic reduction-diffusion process

    International Nuclear Information System (INIS)

    Singha, Vinay Kant; Surendranathana, A.O.; John Berchmans, L.

    2014-01-01

    Magnesiothermic reduction is a new approach to produce the NdFeB alloy on a commercial scale. Similar studies were conducted for the preparation of LaNi 5 and SmCo 5 using magnesium as the reductant. In the present investigation NdFeB Hard magnetic bulk materials were synthesized by metallothermic 'Reduction – Diffusion (R-D) Process' using Magnesium as a reductant. For this process oxide precursors of Nd, Fe and B were blended with flux (LiCl/CaCl 2 ) and Mg chips were sandwiched in alternate layers. Thermal analysis (TGA/DTA) was carried out to find the dissociation and decomposition temperature of the reactants. The phase analysis, structure, and elemental composition were assessed by X-ray diffraction (XRD) and electron dispersive spectrometry (EDS). The infrared (IR) spectra were recorded by Fourier transform infrared spectrometer (FTIR). The morphological features and particle size was assessed by scanning electron microscope (SEM). The magnetic behaviour of the alloy was assessed using electron paramagnetic resonance (EPR) and vibratory sample magnetometer (VSM). From these studies it has been concluded that the NdFeB magnetic particles can be prepared using magnesium as the reductant. The process is faster and consumes very less amount of energy for the completion as compared to conventional calciothermic reduction process. Traces of MgO were detected in the alloy which increases the perpendicular anisotropy, thus increasing the coercivity of the material

  14. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  15. Fluxing purification and its effect on magnetic properties of high-B{sub s} FeBPSiC amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jing [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Yue, Shiqiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Kong, Fengyu [School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016 (China); Qiu, Keqiang, E-mail: kqqiu@163.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Chang, Chuntao; Wang, Xinmin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Liu, Chain-Tsuan, E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2017-07-01

    Highlights: • Surface crystallization in Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was inhibited by flux purification. • Amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was made with industrial process and materials. • The ribbons exhibit high B{sub s} of 1.65 T, low H{sub c} of 2 A/m, and high μ{sub e} of 9.7 × 10{sup 3}. • High melting point inclusions trigger the surface crystallization as nuclei. - Abstract: A high-B{sub s} amorphous alloy with the base composition Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-B{sub s} of 1.65 T, low H{sub c} of 2.0 A/m, and high μ{sub e} of 9.7 × 10{sup 3} at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-B{sub s} FeBPSiC amorphous alloys.

  16. Interaction of alumina with liquid Pb{sub 83}Li{sub 17} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Uttam, E-mail: uttamj@barc.gov.in [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Abhishek; Sonak, Sagar; Kumar, Sanjay [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, Ratikant [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Krishnamurthy, Nagaiyar [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-11-15

    Highlights: • The role of oxygen in the interaction of alumina with Pb{sub 83}Li{sub 17} alloy was studied. • Li of Pb{sub 83}Li{sub 17} alloy undergoes oxidation even in flowing high pure argon atmosphere. • It was seen that alumina reacts with Pb{sub 83}Li{sub 17} alloy at 550 °C to form LiAlO{sub 2} compound. • The reaction is rapid in the presence of oxygen and happens more slowly in the presence of flowing argon. - Abstract: Eutectic lead lithium (Pb{sub 83}Li{sub 17}) alloy is being considered a coolant, neutron multiplier and tritium breeder for International Thermonuclear Experimental Reactor (ITER) and Fusion Power Reactors (FPR). In order to reduce the magneto-hydrodynamic drag (MHD) and to prevent corrosion of structural materials due to the flow of lead lithium (Pb{sub 83}Li{sub 17}) alloy, alumina (Al{sub 2}O{sub 3}) is proposed as a candidate ceramic coating material. Interaction of liquid Pb{sub 83}Li{sub 17} alloy with Al{sub 2}O{sub 3} at the operating temperature of these reactors is therefore an important issue. The present paper deals with the characterization of Pb{sub 83}Li{sub 17} alloy and its interaction with Al{sub 2}O{sub 3} at the reactor operating temperature. The interaction was studied using EPMA, XRD and thermal analysis technique. The result indicates that alumina can interact with Pb{sub 83}Li{sub 17} alloy at 550 °C even in high purity argon atmosphere. The role of oxygen in the interaction process has also been discussed.

  17. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  18. Structural Investigation of Rapidly Quenched FeCoPtB Alloys

    International Nuclear Information System (INIS)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.

    2011-01-01

    Two sets of Fe 52-x Co x Pt 28 B 20 (x = 0-26 at.%) and Fe 60-x Co x Pt 25 B 15 (x = 0-40 at.%) alloys were prepared in the form of ribbons by the rapid quenching technique. Structure of the samples was characterized by Moessbauer spectroscopy and X-ray diffraction. In the as-quenched alloys the amorphous phase coexisted with the fcc-(Fe,Co)Pt disordered solid solution. Differential scanning calorimetry measurements performed in the range 50-720 ± C revealed one or two exothermal peaks. The magnetically hard ordered L1 0 (Fe,Co)Pt and magnetically soft (Fe,Co) 2 B nanocrystalline phases were formed due to thermal treatment of the alloys. The influence of Co content on the structure of the as-quenched and heated alloys was studied. (authors)

  19. Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy

    Science.gov (United States)

    Fan, Y.; Liu, A. M.; Chen, Z.; Li, P. Z.; Zhang, C. H.

    2018-03-01

    By employing the glass fluxing technique in combination with cyclical superheating, the microstructural evolution of the undercooled Fe82B17Si1 alloy in the obtained undercooling range was studied. With increase in undercooling, a transition of cooling curves was detected from one recalescence to two recalescences, followed by one recalescence. The two types of cooling curves were fitted by the break equation and the Johnson-Mehl-Avrami-Kolmogorov model. Based on the cooling curves at different undercoolings, the recalescence rate was calculated by the multi-logistic growth model and the Boettinger-Coriel-Trivedi model. Both the recalescence features and the interface growth kinetics of the eutectic Fe82B17Si1 alloy were explored. The fitting results that were obtained using TEM (SAED), SEM and XRD were consistent with the changing rule of microstructures. Finally, the relationship between the microstructure and hardness was also investigated.

  20. Mechanically alloyed PrFeB nanocrystalline magnets

    International Nuclear Information System (INIS)

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  1. Magnetic domain size effect on resistivity and Hall effect of amorphous Fe83-xZr7B10Mx (M=Ni, Nb) alloys

    International Nuclear Information System (INIS)

    Rhie, K.; Lim, W.Y.; Lee, S.H.; Yu, S.C.

    1997-01-01

    Studies of effective permeability, core loss and saturation magnetostriction of Fe 83-x Zr 7 B 10 M x (M=Ni, Nb) alloys revealed that the domain width is smallest around x=0.10. We measured the resistivity and low field Hall coefficients of these alloys and found that the maxima of resistivity and Hall coefficients occurred roughly at the same concentrations. Larger surface area of smaller domains is considered the reason. copyright 1997 American Institute of Physics

  2. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  3. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  4. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  5. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar

    2005-01-01

    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  6. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Directory of Open Access Journals (Sweden)

    Xingjie Jia

    2018-05-01

    Full Text Available Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ∼17.5 nm, and exhibits a high Bs of ∼1.75 T and a low Hc of ∼5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  7. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Science.gov (United States)

    Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei

    2018-05-01

    Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  8. Effect of calcium chloride on the preparation of NdFeB alloy powder by calciothermic reduction process

    International Nuclear Information System (INIS)

    Sidhu, R.K.; Verma, A.; Raina, K.K.

    1999-01-01

    The calciothermic reduction process has been identified to be one of the cost effective processes for producing NdFeB from Nd 2 O 3 . Use of CaCl 2 as slag former in calciothermic reduction is well established. This paper describes the effect of CaCl 2 on the various properties of NdFeB alloy powder prepared by calciothermic reduction. The effect of CaCl 2 on ease of disintegration of the reacted product during calcium leaching, particle size distribution, grain size, lattice parameters and residual calcium has been studied and compared with the alloy powder prepared without using calcium chloride. Addition of CaCl 2 has been found to result in easier disintegration, reduction in grain size and more uniform particle size distribution. Substantial decrease in the residual calcium in case of charge consisting of CaCl 2 was observed. The effect of lattice parameters was not found to be very significant. (author)

  9. Ultra-soft magnetic Co-Fe-B-Si-Nb amorphous alloys for high frequency power applications

    Science.gov (United States)

    Ackland, Karl; Masood, Ansar; Kulkarni, Santosh; Stamenov, Plamen

    2018-05-01

    With the continuous shrinkage of the footprint of inductors and transformers in modern power supplies, higher flux, while still low-loss metallic replacements of traditional ferrite materials are becoming an intriguing alternative. One candidate replacement strategy is based on amorphous CoFeBSi soft-magnetic alloys, in their metallic glass form. Here the structural and magnetic properties of two different families of CoFeBSi-based soft magnetic alloys, prepared by arc-melting and subsequent melt spinning (rapid quenching) are presented, targeting potential applications at effective frequencies of 100 kHz and beyond. The nominal alloy compositions are Co67Fe4B11Si16Mo2 representing commercial Vitrovac and Co72-xFexB28-y (where B includes non-magnetic elements such as Boron, Silicon etc. x varies between 4 and 5 % and y is varied from 0 to 2 %) denoted Alloy #1 and prepared as a possible higher performance alternative, i.e. lower power loss and lower coercivity, to commercial Vitrovac. Room temperature magnetization measurements of the arc-melted alloys reveal that compared to Vitrovac, Alloy #1 already presents a ten-fold decrease in coercivity, with Hc ˜ 1.4 Am-1 and highest figure of merit of (Ms/Hc > 96). Upon melt-spinning the alloys into thin (< 30 μm) ribbons, the alloys are essentially amorphous when analyzed by XRD. Magnetization measurements of the melt-spun ribbons demonstrate that Alloy #1 possesses a coercivity of just 2 Am-1, which represents a significant improvement compared to melt-spun ribbons of Vitrovac (17 Am-1). A set of prototype transformers of approximately 10 turns of Alloy #1 ribbon exhibits systematically Hc < 10 Am-1 at 100 kHz, without a noticeable decrease in coupled flux and saturation.

  10. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  11. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Majid; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3} powder mixtures with sufficient amount of CaH{sub 2} were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys can be successfully synthesized by the reduction reaction of Fe{sub 2}O{sub 3} and B{sub 2}O{sub 3} with CaH{sub 2} during mechanical alloying. The structure of produced Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys was a combination of Fe and Fe{sub 2}B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  12. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  13. Evolution of Fe environments in mechanically alloyed Fe–Nb–(B) compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blázquez, J.S., E-mail: jsebas@us.es; Ipus, J.J.; Conde, C.F.; Conde, A.

    2014-12-05

    Highlights: • Nb is rapidly incorporated to the nanocrystalline FeNb(B) matrix. • B inclusions remains even after long milling times. • B is helpful to enhance the comminuting of crystallites. - Abstract: Nanocrystalline alloys of nominal composition Fe{sub 85}Nb{sub 5}B{sub 10} were produced by mechanical alloying from a mixture of elemental powders. Two commercial boron structures were used: amorphous and crystalline. In addition, a third composition Fe{sub 94.4}Nb{sub 5.6} was prepared for comparison. X-ray diffraction and Mössbauer spectroscopy were used to describe the evolution of the microstructure and Fe environments as a function of the milling time. Whereas Nb is rapidly incorporated into the nanocrystalline matrix, boron inclusions remain even after long milling times. The presence of boron is found to enhance the comminuting of crystallites.

  14. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  15. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  16. Mechanical behaviour of Nd-Fe-B alloys in the semi-solid state

    International Nuclear Information System (INIS)

    Oliveira, I.L.; Sinka, V.; Ferrante, M.

    1996-01-01

    Two alloys with composition Nd 17.6 Fe 75.3 B1.2 Cu 5.9 and Nd 15.9 Fe 77.7 B 5 Cu 1.4 were vacuum induction melted and cast into cylindrical ingots. Samples with 12.3 and 13 mm diameter were deformed with different rates and deformation ratios. One alloy was deformed at 800 deg C between two parallel disks under constant load. Results show that these alloys behave as no-Newtonian fluids. This fact gives a better understanding of both magnetic and crystallographic texture development. Also, changes were detected in the behaviour of semisolid in the course of deformation. (author)

  17. Shape memory effect of Fe-17%Mn-X alloys

    International Nuclear Information System (INIS)

    Lee, S.-H.; Kim, H.-J.; Choi, C.-S.; Baik, S.-H.

    2000-01-01

    SME of Fe-17%Mn-X alloy decreased with increasing Ni and Cr contents. This is because the occurrence of stress-induced martensite transformation of γ to ε is difficult due to the increase in stability of retained austenite with increasing Ni and Cr contents. SME of Fe-17%Mn-X alloy increased with increasing the number of thermal cycles. The reason is that the prior bending deformation for SME is associated with coalescence of the pre-existing ε plates due to their rearrangement, thereby the more the ε content, the greater the SME. (orig.)

  18. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  19. Effect of boron addition on the magnetic properties of the Fe-Nd-Al alloys prepared by suction casting

    International Nuclear Information System (INIS)

    Bai, Q.; Xu, H.; Tan, X.H.; Zhang, S.Y.

    2007-01-01

    The microstructure and magnetic properties of the Fe-Nd-Al alloys prepared by suction casting with boron addition have been investigated. The increasing boron content in the Fe-Nd-Al alloys significantly increases the intrinsic coercivity ( i H c ) and decreases the proportion of the amorphous phase. The magnetization at the maximum applied field (σ ' s ) of the Fe-Nd-Al-B alloys decreases, while the coercivity increases markedly after annealing. The high intrinsic coercivity is due to the presence of the Nd 2 Fe 14 B phase

  20. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  1. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  2. Magnetic and structural properties of the Nd2(Fe100-xNbx)14B system prepared by arc melting

    International Nuclear Information System (INIS)

    Oyola Lozano, D.; Zamora, L. E.; Perez Alcazar, G. A.; Rojas, Y. A.; Bustos, H.; Greneche, J. M.

    2006-01-01

    In this work the magnetic and structural properties are investigated by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction of Nd 2 (Fe 100-x Nb x ) 14 B powdered alloys with x = 0, 2 and 4 prepared by arc melting. The Moessbauer spectra of the samples were fitted with several contributions from: Nd 2 Fe 14 B, α-Fe and a paramagnetic phase associated with Nd 1.1 Fe 4 B 4 for x = 0 and additionally from NbFeB and Nd 2 Fe 17 for x = 2 and x = 4. The relative fractions of α-Fe and Nd 2 Fe 14 B are smaller for x = 4 than for x = 0, indicating that the amount of these two phases is reduced with increasing Nb content, while the relative fraction of Nd 2 Fe 17 increases. The α-Fe grain size slightly decreases while that of the Nd 2 Fe 14 B phase is increasing, when the Nb content increases. The hysteresis loops indicate that these samples behave as hard ferromagnets, with a coercive field which decreases when the Nb content increases, but with rather low remanent magnetization.

  3. Electronic Structures Localized at the Boron Atom in Amorphous Fe-B and Fe-B-P Alloys

    Science.gov (United States)

    Yasuda, Hidehiro; Nakayama, Hiroshi; Fujita, Hiroshi

    1989-11-01

    The electronic structures localized at the B in amorphous Fe-B and Fe-B-P alloys and their crystallized alloys were studied by Auger valence electron spectroscopy and the states of solute B are discussed based on the change in the degree of covalent bonding and the charge transfer between the Fe and B atoms. In amorphous phases, the charge transfers from Fe to B above 15at%B where B atoms occupy the substitutionallike situations, and from B to Fe below 15at%B where B atoms occupy the interstitiallike situations. Magnetic properties depend on such states of solute B. In crystalline phases, covalent bonding becomes dominant because the electron excitation occurs to the B2p state. Consequently, amorphous phases are more metallic in character than crystalline phases and amorphous structures are stabilized by a mixture of more than two different bonding states.

  4. Structural and magnetic evolution of nanostructured Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Raanaei, Hossein, E-mail: hraanaei@yahoo.com [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Abbasi, Sadeq [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Behaein, Saeed [Department of Physics, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-15

    The structural and magnetic properties of nanocrystalline alloy powder Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} prepared by mechanical alloying have been characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and differential scanning calorimeter (DSC). It is shown that the crystallite size has been decreased significantly to about 15 nm after 8 h milling time. On continuing the milling time mechanical crystallization and subsequently the alloying process were noticed up to 190 h. Saturation magnetization decreased during the whole process while coercivity achieved the highest value at the crystallization stage. Post treatment of milled powder at 190 h revealed crystalline constituent elements. - Highlights: • This article focuses on mechanical alloying of Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} system. • Mechanical crystallization is observed. • Structural and magnetic properties were investigated. • The heat treatment revealed the crystalline phases of constituent elements.

  5. Perspectives for tritium recovery from liquid Pb83Li17 alloy

    International Nuclear Information System (INIS)

    Pierini, G.

    1983-01-01

    A preliminary analysis has been made on the perspectives of tritium recovery from a blanket constituted by liquid Pb 83 Li 17 alloy, by investigating the Tsub(2g) 2T alloy thermodynamic behaviour and trying to individuate those chemico-physical characteristics of which knowledge is useful for the effective design of the apparatus. In the light of the recent work carried out on the systems, hydrogen and its isotopes with molten Li-Pb eutectics, it has been possible to individuate a fair reliability of the Sieverts constant for the T 2 -Pb 83 Li 17 system. As far as the kinetics of the tritium desorption process from the liquid phase are concerned, the hydrogen (and its isotopes) transfer rates across the liquid interphase have been evaluated. Even though in first approximation the diffusion coefficient of tritium in the molten alloy at 400 0 C has been found. Then, the processing equations of attractive tritium recovery systems have been presented, individuating the fundamental parameters and reporting an example of applied engineering of the desorption system in a packed column. None of these tritium recovery systems seem incompatible at the actual state of the research

  6. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  7. Magnetic regimes in amorphous Ni--Fe--P--B alloys

    International Nuclear Information System (INIS)

    Durand, J.

    1976-10-01

    A complete substitution of iron for nickel was obtained by splat-cooling in amorphous alloys of composition (Ni/sub 100-y/Fe/sub y/) 79 P 13 B 8 . Results of high-field magnetization (up to 70 kOe), ac and dc low-field susceptibility, Curie temperature, and resistivity measurements over a temperature range of 1.7 to 300 0 K are reported. The Ni 79 P 13 B 8 alloy is not ferromagnetic, but the magnetization behavior as a function of field and temperature is typically that of alloys in the critical concentration range for ferromagnetism. The Fe 79 P 13 B 8 alloy is ferromagnetic with a Curie temperature T/sub c/ of 616 0 K. For y = 1 at. percent, the Fe atoms are magnetic. The variation of the moment per Fe atom as a function of y is discussed. When y is increased, the Ni atoms are likely to be polarized progressively and the moment per Ni atom would be roughly constant for y equal to or greater than 30 at. percent. Various magnetic behaviors were defined as a function of the Fe content. The value of T/sub c/ reaches a maximum for y similarly ordered 90 at. percent and extrapolates to zero for y similarly ordered 7 at. percent. Alloys within the range 1 equal to or less than y equal to or less than 10 at. percent did not exhibit well-defined Curie transition, but sharp maxima in low-field susceptibility measurements were observed at T/sub M/. The value of T/sub M/ is proportional to y for 1 equal to or less than y equal to or less than 4 at. percent, as in classical spin-glass regimes. For 4 less than y equal to or less than 10 at. percent, the variation of T/sub M/ as a function of y implies a more complicated type of magnetic ordering (micromagnetism or superparamagnetism). Homogeneous ferromagnetic ordering emerges only for y greater than 10 at. percent. Results of resistivity measurements are discussed in relation to the magnetic properties of different regimes in the magnetic phase diagram. 6 figures, 2 tables

  8. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Lin [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Yang, Weiming [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Men, He [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Chang, Chuntao [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Shen, Baolong, E-mail: blshen@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-12-01

    Through gradient substitution of Co for Fe, the magnetic properties and microstructures of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} (x=0.1, 0.2, 0.3, 0.4, 0.5) nanocrystalline alloys were investigated. Because of the strong ferromagnetic exchange coupling between Co and Fe, substantial improvement in saturation magnetization was achieved with proper levels of Co addition. Meanwhile, the Curie temperature increased noticeably with increasing Co addition. After heat treatment, the (Fe{sub 0.9}Co{sub 0.1}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloy showed a refined microstructure with an average grain size of 10–20 nm, exhibiting a comparatively high saturation magnetization of 1.82 T and a lower coercivity of 12 A/m compared to other Hitperm-type alloys with higher Co contents. Additionally, the Curie temperature reached 1150 K upon introduction of Co. As the soft magnetic properties are strengthened by adding a small amount of Co, the combination of fine, soft magnetic properties and low cost make this nanocrystalline alloy a potential magnetic material. - Highlights: • New (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys are successfully synthesized. • Minor Co addition improves the Curie temperature of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} alloy system. • (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys exhibit high saturation magnetization above 1.82 T.

  9. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    Science.gov (United States)

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content

  10. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  11. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  12. Metallic glasses of the type Fe80B17X3

    International Nuclear Information System (INIS)

    Riedel, M.; Gnaser, H.; Ruedenauer, F.G.

    1981-08-01

    Absolute and relative practical sensitivities for Osub2sup+ - bombardement of 14 elements, present as a 3% admixture in a Fe80B17X3 metallic glass matrix, were determined by SIMS. The variation of sensitivity data between elements is similar to that found for pure element samples. The 3% admixture causes a small but statistically significant matrix effect on the matrix elements Fe and B. Comparison with yield data of the same minor impurity elements in other matrices (stainless steel, silicon) shows, that sensitivities in different matrices are within 30% for most elements, indicating the possibility of transferring relative sensitivity factor data determined on metallic glasses to other Fe-based alloys and thereby obtaining a semi- quantitative analysis. (author)

  13. Design, processing and characterization of mechanically alloyed galfenol & lightly rare-earth doped FeGa alloys as smart materials for actuators and transducers

    Science.gov (United States)

    Taheri, Parisa

    of Er/Gd-doped [110]-textured polycrystalline alloys of nominal composition, Fe83Ga17Erx (0 In the second part of this work, we report for the first time, experimental results pertaining to successful fabrication and advanced characterization of a series of Er/Gd-doped [110]-textured polycrystalline alloys of nominal composition, Fe83Ga 17Erx (0.

  14. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grabias, A., E-mail: agnieszka.grabias@itme.edu.pl [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Kopcewicz, M. [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Latuch, J.; Oleszak, D. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Kowalczyk, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland)

    2017-07-15

    Highlights: • Nanocomposite alloys were formed by annealing of the rapidly quenched alloys. • Magnetically hard L1{sub 0} (Fe,Co)Pt and soft (Fe,Co){sub 2}B or (Fe,Co)B were formed. • Mössbauer spectra revealed Co substitution for Fe in L1{sub 0} FePt, FeB and Fe{sub 2}B phases. • Annealed alloys exhibit hard magnetic properties which depend on phase compositions. • Co addition was found to decrease the magnetization and the energy product. - Abstract: The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20} (x = 0–26) and Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15} (y = 0–40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840–880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20} alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15} ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L1{sub 0} tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe{sub 52−x}Co{sub x}Pt{sub 28}B{sub 20}) or (Fe,Co){sub 2}B (for Fe{sub 60−y}Co{sub y}Pt{sub 25}B{sub 15}). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L1{sub 0} phase and in iron borides. The nanocomposite Fe{sub 60−y}Co{sub y

  15. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  16. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  17. Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons

    International Nuclear Information System (INIS)

    Xu, J.; Yang, Y.Z.; Li, W.; Chen, X.C.; Xie, Z.W.

    2016-01-01

    The dependency of phosphorous content on the glass forming ability, thermal stability and soft magnetic properties of Fe 83.4 Si 2 B 14−x P x Cu 0.5 C 0.1 (x=0,1,2,3,4) alloys was investigated. The experimental results showed that the substitution of B by P increased the glass forming ability in this alloy system. The Fe 83.4 Si 2 B 10 P 4 Cu 0.5 C 0.1 alloy shows a fully amorphous character. Thermal stability of melt-spun ribbons increases and temperature interval between the first and second crystallization peaks enlarges with the increase of P content. And the saturation magnetic flux density (Bs) shows a slight increase with the increase of P content. The Fe 83.4 Si 2 B 11 P 3 Cu 0.5 C 0.1 nanocrystalline alloy exhibits a high Bs about 200.6 emu/g. The Bs of fully amorphous alloy Fe 83.4 Si 2 B 10 P 4 Cu 0.5 C 0.1 drops dramatically to 172.1 emu/g, which is lower than that of other nanocrystallines. Low material cost and excellent soft magnetic properties make the FeSiBPCuC alloys promise soft magnetic materials for industrial applications. - Highlights: • Partial substituting B by P helps to improve the glass forming ability of the alloy. • The addition of P content reduces the thermal stability and improves heat treatment temperature region for these alloys. • The Fe 83.4 Si 2 B 11 P 3 Cu 0.5 C 0.1 nanocrystalline alloy exhibits a high saturation magnetic density of 200.6 emu/g.

  18. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  19. Structural investigation of Fe(Cu)ZrB amorphous alloy

    International Nuclear Information System (INIS)

    Duhaj, P.; Janickovic, D.

    1996-01-01

    The crystallization process in Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 alloys. In both alloys the first crystallization begins with the formation of nanocrystalline α-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of α-Fe and dispersed Fe 23 Zr 6 phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  20. Synthesis and structural characterization of amorphous alloys of the Fe-Ni-B type

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez B, J.; Garcia S, I.

    2004-01-01

    It was prepared the alloy FeNiB for chemical reduction, using four p H values (5, 6, 7 and 7.5). To p H=6 partially oxidized particles were obtained, between 16 and 20%. In the synthesis to other p H values, the obtained particles were highly oxidized (65-90%) according to the X-ray diffraction results, in all the preparations the particles were partially crystallized, with crystal size that varied between 4 and 10 nm. The structure of these particles can be consider that they are formed by a nucleus due to the alloy and an oxide armor recovering it. (Author)

  1. Microstructure and magnetic properties of Nd-Fe-B-(Re, Ti alloys

    Directory of Open Access Journals (Sweden)

    Hasiak Mariusz

    2015-03-01

    Full Text Available The microstructure and magnetic properties of nanocomposite hard magnetic Nd-Fe-B-(Re, Ti materials with different Nd and Fe contents are studied. The role of Re and Ti addition in phase composition and volume fraction of the Nd-Fe-B phase is determined. All samples are annealed at the same temperature of 993 K for 10 min. Mössbauer spectroscopy shows that the addition of 4 at.% of Re to the Nd8Fe78B14 alloy leads to creation of an ineligible amount of the magnetically hard Nd2Fe14B phase. Moreover, the microstructure and magnetic characteristics recorded in a wide range of temperatures for the Nd8Fe79−xB13Mx (x = 4; M = Re or Ti alloys are also analyzed.

  2. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  3. Structural investigation of Fe(Cu)ZrB amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duhaj, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Matko, I. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Svec, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Sitek, J. [Department of Nuclear Physics and Technology, Slovak Technical University, 81219 Bratislava (Slovakia); Janickovic, D. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav

    1996-07-01

    The crystallization process in Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} alloys. In both alloys the first crystallization begins with the formation of nanocrystalline {alpha}-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of {alpha}-Fe and dispersed Fe{sub 23}Zr{sub 6} phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  4. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.; Makino, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B

  5. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  6. Magnetic and structural properties of the Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B system prepared by arc melting

    Energy Technology Data Exchange (ETDEWEB)

    Oyola Lozano, D., E-mail: doyola@ut.edu.co [University of Tolima, Department of Physics (Colombia); Zamora, L. E.; Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Rojas, Y. A.; Bustos, H. [University of Tolima, Department of Physics (Colombia); Greneche, J. M. [Universite du Maine, Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087 (France)

    2006-04-15

    In this work the magnetic and structural properties are investigated by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction of Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B powdered alloys with x = 0, 2 and 4 prepared by arc melting. The Moessbauer spectra of the samples were fitted with several contributions from: Nd{sub 2}Fe{sub 14}B, {alpha}-Fe and a paramagnetic phase associated with Nd{sub 1.1}Fe{sub 4}B{sub 4} for x = 0 and additionally from NbFeB and Nd{sub 2}Fe{sub 17} for x = 2 and x = 4. The relative fractions of {alpha}-Fe and Nd{sub 2}Fe{sub 14}B are smaller for x = 4 than for x = 0, indicating that the amount of these two phases is reduced with increasing Nb content, while the relative fraction of Nd{sub 2}Fe{sub 17} increases. The {alpha}-Fe grain size slightly decreases while that of the Nd{sub 2}Fe{sub 14}B phase is increasing, when the Nb content increases. The hysteresis loops indicate that these samples behave as hard ferromagnets, with a coercive field which decreases when the Nb content increases, but with rather low remanent magnetization.

  7. Synthesis and structural characterization of amorphous alloys of the Fe-Ni-B type; Sintesis y caracterizacion estructural de aleaciones amorfas del tipo Fe-Ni-B

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Jimenez B, J.; Garcia S, I. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    It was prepared the alloy FeNiB for chemical reduction, using four p H values (5, 6, 7 and 7.5). To p H=6 partially oxidized particles were obtained, between 16 and 20%. In the synthesis to other p H values, the obtained particles were highly oxidized (65-90%) according to the X-ray diffraction results, in all the preparations the particles were partially crystallized, with crystal size that varied between 4 and 10 nm. The structure of these particles can be consider that they are formed by a nucleus due to the alloy and an oxide armor recovering it. (Author)

  8. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D., E-mail: fanxd@seu.edu.cn; Shen, B.L., E-mail: blshen@seu.edu.cn

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe{sub 86}B{sub 7}C{sub 7} alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe{sub 3}C and α-Fe phase impedes the devitrification. • Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity.

  9. Preparation of Pr-Fe-Co-B-Nb-M (M= Al, P, Cu, Ga and/or Gd) HDDR magnets and alloys and characterization of their magnetic properties and corrosion resistance

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de

    2009-01-01

    HDDR process has attracted great interest for producing polymer- bonded rare earth based magnets. It presents commercial advantages when compared with conventional sintered magnets owing to easy and low cost manufacturing. With the development of anisotropic powders using praseodymium, the expectations about this process grow e also the need for studying new compositions and alloy additions. In this work the magnetic properties of polymer-bonded magnets prepared with PrFeB magnetic alloys using HDDR process have been studied. Pr 14 Fe bal Co 16 B 6 Nb 0,1 was used as the reference alloy Phosphorus, copper, aluminium, gallium and gadolinium additions have been performed to increase the magnetic properties of the reference alloy. The microstructural characterization of the magnets has been carried out through optical microscopy and SEM. The complex microstructure influences the electrochemical behavior of the magnetic alloys. The literature about this subject is scarce. Thus, the corrosion resistance of the different alloys prepared during this work was evaluated using electrochemical impedance spectroscopy and potentiodynamic polarization curves. A correlation between the microstructural features and the electrochemical behavior of the alloys has been established. The results showed that phosphorus and aluminium additions up to 1.0wt% had a beneficial effect on the magnetic properties and corrosion resistance of the alloys. Copper additions, on the other hand, strongly diminished the magnetic properties of the reference alloy. (author)

  10. The corrosion behaviour and structure of amorphous and thermally treated Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Raicheff, R.; Zaprianova, V.; Petrova, E.

    2003-01-01

    The corrosion behaviour of magnetic amorphous alloys Fe 78 B 13 Si 9 , Fe 81 B 13 Si 4 C 2 and Fe 67 Co 18 Bi 4 S 1 obtained by rapid quenching from the melts are investigated in a model corrosive environment of 1N H 2 SO 4 . The structure of the alloys, is, characterized by DTA, SEM, TEM, X-ray and electron diffraction techniques. The dissolution kinetics of the,alloys is studied using gravimetric and electrochemical polarization measurements. It is established that the corrosion rate of the amorphous Fe 67 Co 18 Bt 4 S 1 alloy is up to 50 times lower than that of Fe 78 Bi 3 Si 9 alloy and the addition of cobalt leads to a considerable reduction of the rates of both partial corrosion reactions, while the addition of carbon results only in a moderate decrease (2-3 times) of the corrosion rate. It is also shown that the crystallization of the amorphous Fe 78 B 13 Si 9 alloy (at 700 o C for 3 h) leads to formation of multiphase structure consisting of crystalline phases α-Fe and Fe 3 (B,Si). After crystallization an increase of the rate of both hydrogen evolution and anodic dissolution reactions is observed which results in a considerable (an order of magnitude) increase of the corrosion rate of the alloy. (Original)

  11. Methods of characterization of multiphase Nd-Fe-B melt-spun alloys

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2007-01-01

    Full Text Available Nanocomposite permanent magnetic materials based on Nd-Fe-B alloys with a low Nd content are a new type of permanent magnetic material. The microstructure of these nanocomposite permanent magnets is composed of a mixture of magnetically soft and hard phases providing the so called exchange coupling effect. Beside the optimization process parameters, methods of characterization have a very important role in the design of an optimal magnetic matrix of multiphase melt-spun Nd-Fe-B alloys. Different methods and techniques of characterization were used for observation and study of the microstructure evolution during crystallization. A summary results of measurements using different methods of characterization are presented to enable a better insight into relations between the microstructure and magnetic properties of the investigated melt-spun Nd-Fe-B alloys. .

  12. Crystallization of the amorphous Fe80Zr12B8 alloy under controlled heating

    International Nuclear Information System (INIS)

    Huang, H.; Shao, G.; Tsakiropoulos, P.

    2008-01-01

    The devitrification process of amorphous Fe 80 Zr 12 B 8 alloy ribbons were studied under controlled thermal conditions. The major crystallization event during continuous heating with differential scanning calorimetory (DSC) is dictated by diffusion controlled growth and the associated atom mobility of the slow diffusing species Zr. The existence of prior nano-crystals formed by pre-annealing below the crystallization temperature had little effect on the major crystallization temperature. The crystallization sequence during heating was: amorphous → amorphous + α-Fe + Fe 3 Zr(B) → amorphous + α-Fe + Fe 3 Zr(B) + Fe 2 Zr. Different from previous findings in alloys of lower Zr and B contents, the peak for the crystallization of the α-Fe phase alone is missing in the DSC traces of this alloy

  13. Effect of Mo-Fe substitution on glass forming ability, thermal stability, and hardness of Fe-C-B-Mo-Cr-W bulk amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E.; Cheney, Justin L. [University of California, San Diego Materials Science and Engineering Program, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Vecchio, Kenneth S. [University of California, San Diego Department of NanoEngineering, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: kvecchio@ucsd.edu

    2008-08-25

    Amorphous Fe{sub 67-x}C{sub 10}B{sub 9}Mo{sub 7+x}Cr{sub 4}W{sub 3} (x = 1-7 at.%) plates with 640 {mu}m thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry (DSC), differential thermal analysis, and X-ray diffractometry (XRD). The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe{sub 62}C{sub 10}B{sub 9}Mo{sub 12}Cr{sub 4}W{sub 3} is the best glass former in this study, demonstrating a supercooled liquid region, {delta}T{sub x} = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three-phase evolution during crystallization. A second set of heat treatments was performed to identify each phase. Hardness data was collected at each of the heat treatment conditions, and a bulk metallic glasses (BMG)-derived composite containing a Mo-rich phase exhibited Vickers Hardness in excess of 2000. The fully amorphous alloys had an average hardness approaching 1500.

  14. Microstructure Formation in Strip-Cast RE-Fe-B Alloys for Magnets

    Science.gov (United States)

    Yamamoto, Kazuhiko; Matsuura, Masashi; Sugimoto, Satoshi

    2017-07-01

    During the manufacturing of sintered NdFeB magnets, it is well known that the microstructure of the starting alloy has a strong influence on the processing and the magnetic properties of the product. In this study, we clarify the microstructure formation in strip-cast rare earth (R)-Fe-B alloys used to produce magnets. The microstructure of the alloy surface in contact with the cooling roll and its cross-section were observed using laser microscopy, field emission electron microprobe analysis, and transmission electron microscopy. The orientations of crystal grains were determined by X-ray diffraction and electron backscatter diffraction analyses. Petal-shaped structures were found to cover the alloy surface in contact with the cooling roll, each consisting of a central nucleation region and radially grown Nd2Fe14B dendritic structures. The nucleation region, consisting of a "disc" and "predendrites", occurs in the super-cooled region of the contact area between the cooling roll and melt. In the disc region, spherical Nd2Fe14B particles in the thickness direction increase in volume. These discs and predendrites observed in the super-cooled area negatively influence the magnetic orientation and sinterability in the produced magnets. Therefore, it is important to avoid excessive super-cooling to obtain optimum magnetic properties.

  15. Ferromagnetic alloy material CoFeC with high thermal tolerance in MgO/CoFeC/Pt structure and comparable intrinsic damping factor with CoFeB

    Science.gov (United States)

    Chen, Shaohai; Zhou, Jing; Lin, Weinan; Yu, Jihang; Guo, Rui; Poh, Francis; Shum, Danny; Chen, Jingsheng

    2018-02-01

    The thermal tolerance and perpendicular magnetic anisotropy (PMA) of ferromagnetic alloy Co40Fe40C20 in the structure MgO/CoFeC/Pt (or Ta) were investigated and compared with the commonly used CoFeB alloy. It is found that the PMA of CoFeC with {{K}i,CoFeC}=2.21 erg c{{m}-2} , which is 59% higher than that of CoFeB, can be obtained after proper post-annealing treatment. Furthermore, CoFeC alloy provides better thermal tolerance to temperature of 400 °C than CoFeB. The studies on ferromagnetic resonance show that the intrinsic damping constant α in of Co40Fe40C20 alloy is 0.0047, which is similar to the reported value of 0.004 for Co40Fe40B20 alloy. The comprehensive comparisons indicate that CoFeC alloy is a promising candidate for the application of the integration of spin torque transfer magnetic random access memory with complementary metal-oxide semiconductor processes.

  16. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  17. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    Science.gov (United States)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  18. Structure and Properties of Nd-Fe-B Alloy Subjected to HDDR Process

    Directory of Open Access Journals (Sweden)

    Szymański M.

    2016-03-01

    Full Text Available In this paper the Hydrogenation, Disproportionation, Desorption and Recombination (HDDR route was tested, for the Nd-Fe-B master alloy, as a prospective procedure for recycling of sintered scrap neodymium magnets. The HDDR method is based on the hydrogen induced reversal phase transformation of Nd-Fe-B alloy: Nd2Fe14B + (2±x H2 = 2NdH2±x + Fe2B + 12Fe. Microstructural observations (SEM, phase constitution studies (XRD and measurement of magnetic properties (VSM were done to investigate the HDDR transformation progress. It was observed that disproportionation reaction starts at the grain boundaries, where the Nd-rich phase is located. Average grain size was reduced and coercive material was produced as a result of the HDDR process. Obtained results are similar to literature data.

  19. Crystallization kinetics of Fe-B based amorphous alloys studied in-situ using X-rays diffraction and differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Santos D.R. dos

    2001-01-01

    Full Text Available The crystallization processes for the amorphous metallic alloys Fe74B17Si2Ni4Mo3 and Fe86B6Zr7Cu1 (at. % were investigated using X-rays diffraction measurements performed in-situ during Joule-heating, with simultaneous monitoring of the electrical resistance. We determined the main structural transitions and crystalline phases formed during heating, and correlated these results to the observed resistance variations. As the annealing current is increased, the resistance shows an initial decrease due to stress relaxation, followed by a drop to a minimum value due to massive nucleation and growth of alpha-Fe nanocrystals. Further annealing causes the formation of small fractions of Fe-B, B2Zr or ZrO2, while the resistance increases due to temperature enhancement. In situ XRD measurements allowed the identification of metastable phases, as the gamma-Fe phase which occurs at high temperatures. The exothermal peaks observed in the differential scanning calorimetry (DSC for each alloy corroborate the results. We also have performed DSC measurements with several heating rates, which allowed the determination of the Avrami exponent and crystallization activation energy for each alloy. The obtained activation energies (362 and 301 kJ/mol for Fe-B-Zr-Cu; 323 kJ/mol for Fe-B-Si-Ni-Mo are comparable to reported values for amorphous iron alloys, while the Avrami exponent values (n = 1.0 or n = 1.2 are consistent with diffusion controlled crystallization processes with nucleation rates close to zero.

  20. High saturation magnetization FeB(C) nanocapsules

    International Nuclear Information System (INIS)

    Ma, S.; Si, P.Z.; Zhang, Y.; Wu, B.; Li, Y.B.; Liu, J.J.; Feng, W.J.; Ma, X.L.; Zhang, Z.D.

    2007-01-01

    FeB(C) nanocapsules were prepared by arc-discharging Fe 80 B 20 alloy in Ar and CH 4 . X-ray diffraction and transmission electron microscopy analyses showed that the FeB(C) nanocapsules had a core-shell structure with α-Fe and Fe 3 B as cores and graphite as shells. The formation mechanism of the FeB(C) nanocapsules is discussed. The graphite shells display a strong anti-acid effect. The saturation magnetization at room temperature of the FeB(C) nanocapsules is much higher than that of Fe(B) nanocapsules. The blocking temperature of FeB(C) nanocapsules is above 300 K

  1. Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe50Ni30Si10B10 and Fe32Ni36Ta7Si8B17 powders

    International Nuclear Information System (INIS)

    Zambon, A.

    2004-01-01

    Gas atomization can produce, besides a possible significant degree of undercooling, high cooling rates, whose extent depends on the size of the droplets, on their velocity with respect to the surrounding medium, on the thermo-physical properties of both the alloy and the gas, and of course on the operating conditions such as melt overheating and gas-to-metal flow ratio. In this respect it is well-known that the atomizing gas can play a significant role in determining both the powder size distribution and the kind and mix of phases which result from the solidification and cooling processes. The microstructures and solidification morphologies of powders obtained from nitrogen and helium sonic gas atomization of two iron-nickel base glass forming alloys, Fe 50 Ni 30 Si 10 B 10 and Fe 32 Ni 36 Ta 7 Si 8 B 17 , were investigated by means of light microscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA). The Fe 32 Ni 36 Ta 7 Si 8 B 17 alloy exhibits a higher proneness to the development of amorphous phase than the Fe 50 Ni 30 Si 10 B 10 alloy, while the effect of the higher speed attainable by the stream of helium with respect to that of nitrogen, affords not only to obtain a larger amount of particles in the finer size ranges, but also to affect the relative amounts of phases within the different size fractions

  2. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  3. Magnetic exchange coupling in amorphous Fe80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Lassri, H.; Ayadi, M.; Omri, M.; Lassri, M.; Krishnan, R.

    2005-01-01

    Amorphous Fe 80-x Dy x B 20 alloys have been prepared by melt spinning and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. The exchange interactions between Co-Co and Dy-Co atom pairs have been evaluated. High-field magnetization studies on samples with stoichiometry close to that of a compensated ferrimagnet show a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Fe sublattices. The region of the canted moments can be described by a phase diagram in the H-T plane

  4. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Toth, I. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1993-11-01

    Amorphous ribbons of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 [mu]m and 27 [mu]m were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO[sub 3]-structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO[sub 3]-structure FeSi alloy, paramagnetic FeNbB and presumably Fe[sub 23]B[sub 6] and Fe[sub 3]SiB[sub 2]. (orig.)

  5. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    Science.gov (United States)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  6. High-temperature electrochemical performance of low-cost La–Ni–Fe based hydrogen storage alloys with different preparation methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiannan [Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhu, Ding [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065 (China); Zhou, Wanhai; Zhong, Chenglin; Wu, Chaoling [Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Chen, Yungui, E-mail: ygchen60@aliyun.com [Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065 (China)

    2016-04-15

    Highlights: • Effects of four different preparation processes were studied at 20/60 °C. • All NS + HT, RS and RS + HT processes can optimize the thermodynamic performance. • The HT process can provoke the precipitation of A{sub 2}B{sub 7} and leads to a poor cycling life. • Al exhibits the most remarkable dissolution for all the alloys, especially at 60 °C. - Abstract: In order to optimize the microstructure and high temperature electrochemical performances of low-cost AB{sub 5}-type Ml(NiMnAl){sub 4.2}Co{sub 0.3}Fe{sub 0.5} hydrogen storage electrode alloys, four different preparation methods including normal solidification (NS), normal solidification and 900 °C heat treatment (NS + HT), rapid solidification (RS), rapid solidification and 900 °C heat treatment (RS + HT) were adopted in this work. All alloys exhibit CaCu{sub 5} type hexagonal structure and there is a small amount of A{sub 2}B{sub 7} phase in NS + HT and RS + HT alloys. It is found the using of HT process can decrease the hydrogen equilibrium plateau pressure, the plateau slope and hysteresis at 40, 60 and 80 °C. The NS + HT and RS + HT alloys also possess better activation, high rate discharge performance, larger discharge capacity, but poor cycling performance due to the existence of A{sub 2}B{sub 7} phase which can accelerate dissolution of Ni, Mn and Fe elements in KOH alkaline electrolyte. The RS process can make alloy exhibit the best cycling performance especially at 60 °C.

  7. Evaluation of Pb–17Li compatibility of ODS Fe-12Cr-5Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Kinga A., E-mail: unocicka@ornl.gov; Hoelzer, David T.

    2016-10-15

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y{sub 2}O{sub 3} (125Y), (2) Y{sub 2}O{sub 3} + ZrO{sub 2} (125YZ), (3) Y{sub 2}O{sub 3} + HfO{sub 2} (125YH), and (4) Y{sub 2}O{sub 3} + TiO{sub 2} (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO{sub 2} on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO{sub 2} product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module. - Highlights: • Investigation of Pb-17Li compatibility of new ODS Fe-12Cr5Al. • Promising small mass change after static Pb-17Li exposure. • LiAlO{sub 2} formed on the surface during Pb-17Li exposure. • Oxide precipitates incorporated within the LiAlO{sub 2} product. • An inward scale growth mechanism was identified.

  8. Shape of growing crystals of primary phases in autectic alloys of Fe - Fe2B and Ni - Ni3B systems

    International Nuclear Information System (INIS)

    Tavadze, F.N.; Garibashvili, V.I.; Nakaidze, Sh.G.

    1983-01-01

    Shapes of Fe 2 B and Ni 3 B crystal growth in eutectic Fe-B and Ni-B system alloys are considered. Iron hemiboride primary crystals take the form of a plane-face phase boundary and inherit a tetragonal prismatic lattice. After the crystal attains the critical size the dendritic branching occurs resulting in formation of a typical sceleton dendrite. Comparison of data obtained with entropy of melting for Fe 2 B and Ni 3 B borides shows that FeB crystals during the growth should take the spherical form. It is stated that the shape of growing crystals in Fe-Fe 2 B and Ni-Ni 2 B eutectic colonies is determined by the shape of borides

  9. Studies on the Production of NdFeB Alloy by Calciothermic Reduction of Neodymium Oxide

    International Nuclear Information System (INIS)

    Charoensri, Apisara

    2003-06-01

    Neodymium-Iron-Boron (NdFeB) is a class of permanent magnets having the highest energy product (BH max ). It has been used in various electronic devices of small size and light weight. This research is to study the preparation of Neodymium-Iron-Boron alloy by calciothermic reduction of neodymium oxide mixed with iron and iron-boron. The reduction process essentially involves the compaction of the charge mixture with calcium metal and then heating at 900-1200οC in argon atmosphere. The results show that charge blend compaction, temperature and time of reaction are important parameters of the process. It is found that at proper conditions, magnetic phase structure of Neodymium-Iron-Boron alloy can be prepared satisfactory although the alloy produced from the reduction contains higher impurities of oxygen and calcium than the alloy produced from the conventional method using Nd metal

  10. Study of Fe-Ni-Si-B alloy and films on its base by X-ray photospectroscopy method

    International Nuclear Information System (INIS)

    Kozlenko, V.G.; Parfenenok, M.A.; Pukhov, I.K.; Shaposhnikov, A.N.; Shirkov, A.V.

    1983-01-01

    By the method of X ray photoelectron spectroscopy the chemical composition of Fe-Ni-Si-B alloy and films on its base prepared by ion-plasma sputtering is investigated. The identity of chemical bonds in film samples and initial target is revealed, realized are in them mostly Fe-B, Ni-C, Si-Si interatomic bonds. It is shown that lono. films contact with atmosphere is the cause of difference of film composition in the near-surface region (up to 100 nm) from its main volume composition

  11. Structure and magnetic properties of Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al, (0 ≤ x ≤ 1) Heusler alloys prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in [Department of Materials Science & Metallurgical Engineering, Ceramic & Powder Metallurgy Laboratory, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Vajpai, Sanjay Kumar, E-mail: vajpaisk@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Srivastava, Sanjay, E-mail: s.srivastava.msme@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India)

    2017-07-01

    Highlights: • A series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy by powder metallurgy. • Effect of substitution of Fe for Cr on the microstructure and magnetic properties. • Increasing amounts of B2 type disordered structure with increasing Fe content. • Enhanced Ms, Mr, Hc, and Tc with increasing Fe content. • Relative magnetic anisotropy decreased with increasing Fe content. - Abstract: In the present study, a series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders were successfully prepared by high energy ball milling and the effect of substitution of Fe for Cr on the microstructure and magnetic properties was investigated in detail. The Co{sub 2}CrAl alloy powder consisted of only A2 type disordered structure whereas the substitution of Cr by Fe led to the appearance of increasing amounts of B2 type disordered structure along with A2 type structure. All the Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders demonstrated high spontaneous magnetization together with a very small hysteresis losses. The saturation magnetization, remanence, coercivity, and Curie temperature increased with increasing Fe content. The increasing magnetization with increasing Fe content was attributed to the replacement of antiferromagnetic Cr by strongly ferromagnetic Fe and an increasing amounts of relatively more ordered, atomically as well as ferromagnetically, B2 structure as compared to that of A2 phase. The increment in remanence and coercivity with increasing Fe content were associated with the variation in microstructural characteristics, such as grain size, lattice defects, and the presence of small amounts of magnetic/nonmagnetic secondary phases. The increment in Curie temperature with increasing Fe content was attributed to the enhancement of d-d exchange interaction due to the possible occupancy of vacant sites by Fe atoms. All the Heusler alloys indicated extremely low magnetic anisotropy and the

  12. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  13. The effect of additional elements on the magnetic properties of hot-rolled Nd-Fe-B alloys

    International Nuclear Information System (INIS)

    Chang, W.C.; Nakamura, H.; Paik, C.R.; Sugimoto, S.; Okada, M.; Homma, M.

    1992-01-01

    The magnetic properties of hot-rolled Nd 16 Fe bal. B 6 M 1.5 (M = Cu, Ga and Al) and Nd 16 Fe 76 B 5.5 Ga 1.5 Al 1 alloys were investigated, in order to study the role of additive elements in improving the magnetic properties in the Nd-Fe-B system. It is found that the original grain size of Cu, Ga or Ga-Al added alloys is much finer than that of the ternary and Al added alloys. But the grain size is almost identical for all the alloys after hot-rolling at 1000degC with 90% reduction in thickness. The coercivity of hot-rolled alloys with Cu, Ga or Ga-Al addition is not improved as was expected, because Nd-rich liquid phase in these alloys is very easily squeezed out during high-reduction-ratio rolling. Less quantity and nonuniform distribution of Nd-rich phase between distributed grains are believed to be the main reasons to depress the effect on the grain boundary smoothing. This effect is not the same as those observed in the Pr-Fe-B system. The highest magnetic properties achieved in this study are B r = 10 kG, i H c = 8.2 kOe, (BH) max = 18.5 MGOe for the Nd 16 Fe 76.5 B 6 Al 1.5 alloy. (orig.)

  14. Structure of nanocomposites of Al–Fe alloys prepared by ...

    Indian Academy of Sciences (India)

    Wintec

    This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP. Keywords. Nanocomposites; Al–Fe; mechanical alloying; rapid solidification; quasicrystalline. 1. Introduction. Al–Fe alloys are attractive for applications at temperatures beyond those normally associated with ...

  15. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  16. Site populations analysis of the Sm2(Co,Fe)17 alloys using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.

    1990-01-01

    Moessbauer measurements were carried out at room temperature for Sm 2 (Co 1-x Fe x ) 17 alloys with x=0,1 to 0,6 and Sm 2 (Co 0.9-v Fe v Cu 0.08 Zr 0.02 ) 8.35 , with v=0.23 to 0.27. All samples were characterized by x-ray diffraction. They showed rhombohedral structure of Th 2 Zn 17 type (R 3-bar m), where Fe atoms occupy four crystallographic sites. All spectra showed magnetic splitting and a high complexity resulting from the superposition of four Fe sites. Hyperfine parameters and site populations were obtained by least-squares fitting of the spectra. (author)

  17. Microstrucural characterization of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez, M.; Marin, P. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Madrid (Spain)

    2011-06-15

    Research highlights: > Two FeSi-base alloys as precursors for small dimension soft magnets. > Small particles rapidly solidified by gas atomisation. > Increase effective magnetic anisotropy constant by alloying segregation. > Magnetic hardenning due to volume decrease. - Abstract: Powder particles of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc {alpha}-Fe (Si) solid solution. The Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe{sub 97}Si{sub 3} alloy in the range of 50-100 {mu}m powder particle size. The coercive fields were quite higher in the Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} than in the Fe{sub 97}Si{sub 3} powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.

  18. Study on magnetic properties of (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 0–0.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, G.S.; Xu, H., E-mail: huixu8888@shu.edu.cn; Yu, L.Y.; Tan, X.H.; Zhang, Q.; Gu, Y.; Hou, X.L.

    2017-09-01

    Highlights: • (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B alloys are prepared by melt-spinning method with simultaneously decreasing of Nd, Ce concentration. • The magnetic properties B{sub r}, (BH){sub max} and squareness are all improved with an appropriate reduction of Nd, Ce concentration. • Magnetic field heat treatment offers a significant improvement in B{sub r}, (BH){sub max} and squareness. - Abstract: In the present work, (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 0–0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 0–0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH){sub max}) and remanence (B{sub r}) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 < x ≤ 0.6. It is found that the optimum magnetic properties are obtained at x = 0.4: H{sub ci} = 4.9 kOe, B{sub r} = 10.1 kG, (BH){sub max} = 13.7 MGOe. Specifically, magnetic field heat treatment below the Curie temperature is applied for (Nd{sub 0.8}Ce{sub 0.2}){sub 1.6}Fe{sub 12}Co{sub 2}B (x = 0.4) annealed ribbons. The magnetic properties B{sub r}, (BH){sub max} and squareness are all enhanced after the magnetic field heat treatment. The (BH){sub max} shows a substantial increase from 13.7 MGOe to 16.0 MGOe after the heat treatment at 623 K with a magnetic field of 1 T, which gets 17% improvement compared with that of the sample without a magnetic field heat treatment. We demonstrate that the magnetic field heat treatment plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd{sub 0.8}Ce{sub 0.2}){sub 1.6}Fe{sub 12}Co{sub 2}B alloy.

  19. Crystal structure and magnetic properties of a nitrogenated melt-spun Sm[sub 2]Fe[sub 17] compound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Choong-Jin [Electromagnetic Materials Laboratory, Research Institute of Industrial Science and Technology, P.O. Box 135, 790-330 Pohang (Korea, Republic of); Lee, Woo-Young [Electromagnetic Materials Laboratory, Research Institute of Industrial Science and Technology, P.O. Box 135, 790-330 Pohang (Korea, Republic of); Choi, Seung-Duck [Electromagnetic Materials Laboratory, Research Institute of Industrial Science and Technology, P.O. Box 135, 790-330 Pohang (Korea, Republic of)

    1994-05-15

    Sm[sub 2]Fe[sub 17]N[sub 2.9] compound powders were prepared from parent alloys of Sm[sub 2]Fe[sub 17] which were made by both arc melting and rapid solidification processes. The cast Sm[sub 2]Fe[sub 17] contained mixed phases of SmFe[sub 3] and [alpha]-Fe, and correspondingly formed less Sm[sub 2]Fe[sub 17]N[sub x] with a rather large amount of residual [alpha]-Fe after nitrogenation. The melt-spun Sm[sub 2]Fe[sub 17] compound, however, was single phase and exhibited a negligible amount of residual [alpha]+Fe after nitrogenation. The residual amount of free iron was found to increase as a function of milling time and to impede the development of promising permanent magnetic properties. The melt-spun Sm[sub 2]Fe[sub 17]N[sub x] compound powders exhibited a coercivity value [sub i]H[sub c] of 5 kOe, which is double that of the as-cast Sm[sub 2]Fe[sub 17]N[sub x] powders and a high remanence B[sub r]=60 e.m.u. g[sup -1]. The average magnetic moment of Fe atoms in the crystal is estimated to be 2.29 [mu][sub B] and the Fe atom in the 6c site exhibits the highest magnetic moment of 2.65 [mu][sub B]. The expansion in the c axial direction of the nitrogenated crystal was found to be mainly due to extension of Sm(6c)-Fe(c) and Fe(18f)-Fe(18f) distances. ((orig.))

  20. Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.-M. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany); Key Lab of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gebert, A. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)], E-mail: a.gebert@ifw-dresden.de; Roth, S.; Kuehn, U.; Schultz, L. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)

    2008-07-14

    This paper presents investigations on the effect of Si on the glass-forming ability, thermal stability and magnetic properties of the Fe-Co-Zr-Mo-W-B samples (group I: Fe{sub 60}Co{sub 8}Zr{sub 10}Mo{sub 5}W{sub 2}B{sub 15-x}Si{sub x}, 1 {<=} x {<=} 4; group II: Fe{sub 60}Co{sub 8}Zr{sub 10-x}Mo{sub 5}W{sub 2}B{sub 15}Si{sub x}, 0 {<=} x {<=} 4; group III: Fe{sub 60}Co{sub 8}Zr{sub 8}Mo{sub 5}W{sub 2}B{sub 17-x}Si{sub x}, 0 {<=} x {<=} 2) prepared by melt spinning, injection casting, and centrifugal casting methods. It is found that the glass-forming ability (GFA) of the alloys in group I is more deteriorated than that in group II, and that the alloys in group III can be cast into the rods of 1-3 mm diameter without crystalline reflections in their XRD patterns. For the amorphous ribbons and rods, a non-monotonic change of the nearest neighbour distance r{sub 1} with increasing Si content c{sub Si} was detected, which is parallel to that of the glass transition and crystallization temperatures T{sub g} and T{sub x}, but opposite to that of the magnetization at room temperature M{sub RT} and the Curie temperature T{sub c}. This correlation can be interpreted by a structure model presuming that iron atoms appear simultaneously in two types of local structures in the amorphous samples.

  1. Crystallization of the amorphous Fe{sub 80}Zr{sub 12}B{sub 8} alloy under controlled heating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [School of Engineering (H6), University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Shao, G. [Centre for Materials Research and Innovation, University of Bolton, Bolton BL3 5AB (United Kingdom)], E-mail: G.Shao@bolton.ac.uk; Tsakiropoulos, P. [Department of Engineering Materials, Sir Robert Hadfirld Building, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2008-07-14

    The devitrification process of amorphous Fe{sub 80}Zr{sub 12}B{sub 8} alloy ribbons were studied under controlled thermal conditions. The major crystallization event during continuous heating with differential scanning calorimetory (DSC) is dictated by diffusion controlled growth and the associated atom mobility of the slow diffusing species Zr. The existence of prior nano-crystals formed by pre-annealing below the crystallization temperature had little effect on the major crystallization temperature. The crystallization sequence during heating was: amorphous {yields} amorphous + {alpha}-Fe + Fe{sub 3}Zr(B) {yields} amorphous + {alpha}-Fe + Fe{sub 3}Zr(B) + Fe{sub 2}Zr. Different from previous findings in alloys of lower Zr and B contents, the peak for the crystallization of the {alpha}-Fe phase alone is missing in the DSC traces of this alloy.

  2. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  3. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Castellero, A.; Baricco, M.; Moya, J.A.

    2012-01-01

    Amorphous alloys with composition (at%) Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 (alloy A) and Fe 48 Cr 15 Mo 14 C 15 B 6 Y 2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  4. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  5. Magnetic properties of melt-spun FeMnAlB alloys

    International Nuclear Information System (INIS)

    Betancourt, I.; Nava, F.

    2007-01-01

    Magnetic properties of melt spun Fe 89-x Mn 11 Al x (x=2,4,8,15) and Fe 87-y Mn 11 Al 2 By(y=6,8,10) alloy series were studied by vibrating sample magnetometry and complex permeability measurements. The saturation magnetization exhibited an initial high value of 210emu/g followed by a decreasing tendency with increasing Al and B additions (up to 139emu/g). On the other hand, the initial permeability showed variations within the range 1000-2000, whereas the relaxation frequency displayed a maximum of 2MHz for the 4at% Al alloy

  6. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  7. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  8. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    International Nuclear Information System (INIS)

    Pan, Mingxiang; Zhang, Pengyue; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-01-01

    Exchange-coupled SmCo 5 /Nd 2 Fe 14 B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo 5 and Nd 2 Fe 14 B powders. The influence of Nd 2 Fe 14 B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH) max =2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo 5 single-phase magnet and SmCo 5 /Nd 2 Fe 14 B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo 5 /Nd 2 Fe 14 B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet

  9. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Kalita, M.P.C.; Perumal, A.; Srinivasan, A.

    2008-01-01

    Nanocrystalline Fe 75 Si 25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 10 17 m -2 . During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time

  10. Effect of wheel speed on the crystallization behavior of as-quenched Nd-Fe-B alloys

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2016-02-01

    Full Text Available A series of alloys composed of Nd9Fe85Nb0.5B5.5 were prepared through rapid quenching by different wheel speeds. Nanocomposite was usually obtained by subjecting the as-quenched alloys to a crystallization annealing. The crystallization behavior was investigated by differential scanning calorimetry (DSC as the primary method. The results showed that the DSC curve of sample prepared at 15 m/s had only one exothermic peak at about 690 °C. When the wheel speed increased to 18-27 m/s, one more peak at 590 °C appeared. Moreover, the intensity of this new peak enhances while the original one at 690 °C declined as the speed increases within this range. When the speed further grew up to 30, 35, or 40 m/s , only the peak at 590 °C remained while the other disappeared. This could be ascribed to the different initial phase structures of the alloys, which were found to vary with the wheel speeds. As can be seen, with increasing the wheel speed, the contents of amorphous and metastable phase increased while Nd2Fe14B phase decreased. This change resulted in a huge effect on the crystallization behavior. We could deduce the relative content of each phase from the integral areas of peaks in DSC curves in different samples and figure out the phase transition in the crystallization. The results showed that the crystallization of samples prepared by relatively high speeds, which are almost amorphous initially, manifest as only one step, while those prepared by relatively low speeds showed two. Subsequently, we analyzed the crystallization process and interpreted it from the theory of energy barrier.

  11. A Cost-Effective Approach to Optimizing Microstructure and Magnetic Properties in Ce17Fe78B₆ Alloys.

    Science.gov (United States)

    Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke; Li, Weidan; Zhang, Fang

    2017-07-28

    Optimizing fabrication parameters for rapid solidification of Re-Fe-B (Re = Rare earth) alloys can lead to nanocrystalline products with hard magnetic properties without any heat-treatment. In this work, we enhanced the magnetic properties of Ce 17 Fe 78 B₆ ribbons by engineering both the microstructure and volume fraction of the Ce₂Fe 14 B phase through optimization of the chamber pressure and the wheel speed necessary for quenching the liquid. We explored the relationship between these two parameters (chamber pressure and wheel speed), and proposed an approach to identifying the experimental conditions most likely to yield homogenous microstructure and reproducible magnetic properties. Optimized experimental conditions resulted in a microstructure with homogeneously dispersed Ce₂Fe 14 B and CeFe₂ nanocrystals. The best magnetic properties were obtained at a chamber pressure of 0.05 MPa and a wheel speed of 15 m·s -1 . Without the conventional heat-treatment that is usually required, key magnetic properties were maximized by optimization processing parameters in rapid solidification of magnetic materials in a cost-effective manner.

  12. Corrosion behaviour of Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Mummert, K.; El-Aziz, A.M.; Barkleit, G.; Schultz, L.; Rodewald, W.

    2000-01-01

    The corrosion behaviour of Nd-Fe-B permanent magnetic alloys as well as of single phases of these alloys have been investigated in sulphuric acid at room temperature and humid air at 150 C using mass loss and electrochemical techniques. Scanning electron microscopy and scanning probe microscopy were used to study the surface topography. The electrostatic surface potential was examined by scanning probe microscopy using tapping mode. A correlation between the electrostatic surface potential and the corrosion rate of these alloys was found. The higher the value of the electrostatic surface potential of the intergranular phases the higher is the corrosion sensitivity. The strength of the corrosion attack on the phases of sintered permanent magnetic alloys is as follows: Ferromagnetic phase < B-rich phase < Nd-rich phase. The differences in the chemical composition as well as in the preparation of these magnetic alloys have distinct influence on the corrosion resistance of the magnetic Nd-Fe-B alloys. (orig.)

  13. Magnetic properties of melt-spun Nd-rich NdFeB alloys with Dy and Ga substitutions

    International Nuclear Information System (INIS)

    Harland, C.L.; Davies, H.A.

    1998-01-01

    The results of a systematic investigation of the effects of Dy and Ga additions on the magnetic properties of a Nd-rich NdFeB alloy are presented and discussed. Particular attention is given to the effect of increasing Dy substitutions on the coercivity of the Nd 18 Fe 76 B 6 alloy. Substitution of 30% of the Nd by Dy resulted in a coercivity increase from 1590 to 3290 kA m -1 . However, contrary to previous suggestions, substitution of 1% of the Fe by Ga was found to have only a small influence on the magnetic properties of all the alloys in the compositional series (Nd 100-x Dy x ) 18 Fe 76 B 6 (x=0-30). (orig.)

  14. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  15. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  16. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mingxiang; Zhang, Pengyue, E-mail: Zhang_pengyue@cjlu.edu.cn; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-06-01

    Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B powders. The influence of Nd{sub 2}Fe{sub 14}B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH){sub max}=2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo{sub 5} single-phase magnet and SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet.

  17. The Effect of Substitution of Fe By Co on Rapidly Quenched (FeCoMoCuB Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Marek Paluga

    2005-01-01

    Full Text Available (Fe1-xCox79Mo8Cu1B15 amorphous alloys ware prepared in the form of ribbons by rapid quenching for x=0. 0.25 and 0.5. The effect of variation of Co/Fe ratio is analyzed with respect to the formation of amorphous state and to transformation of the structure into nancrystalline phases formed after subsequent thermal treatment. Selected properties and atomic structure in as-quenched state are studied by TEM, AFM, XRD any by measurement of magnetoresistance characteristics. The influence of heat treatment on transport and magnetic properties is shown on temperature dependencies of electrical resistivity and magnetization. It was founf that while the increase of Co content leads to the increase of Curie temperature of as-quenched structure, transition to nanocrystalline state is not affected in a significant manner. The as-quenched state for alloy without Co was found to contain thin crystal-containing layer which, however, was observed, contary to general behavior, at the side of the ribbon exposed to higher quenching rates.

  18. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau

  19. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Zemcik, T.

    1994-01-01

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  20. Analysis of grain growth process in melt spun Fe-B alloys under the initial saturated grain boundary segregation condition

    International Nuclear Information System (INIS)

    Chen, Z.; Liu, F.; Yang, X.Q.; Fan, Y.; Shen, C.J.

    2012-01-01

    Highlights: → We compared pure kinetic, pure thermodynamic and extended thermo-kinetic models. → An initial saturated GB segregation condition of nanoscale Fe-B alloys was determined. → The controlled-mechanism was proposed using two characteristic times (t 1 and t 2 ). - Abstract: A grain growth process in the melt spun low-solid-solubility Fe-B alloys was analyzed under the initial saturated grain boundary (GB) segregation condition. Applying melt spinning technique, single-phase supersaturated nanograins were prepared. Grain growth behavior of the single-phase supersaturated nanograins was investigated by performing isothermal annealing at 700 deg. C. Combined with the effect of GB segregation on the initial GB excess amount, the thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] was extended to describe the initial GB segregation condition of nanoscale Fe-B alloys. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, an initial saturated GB segregation condition was determined. The controlled-mechanism of grain growth under initial saturated GB segregation condition was proposed using two characteristic annealing times (t 1 and t 2 ), which included a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and pure thermodynamic-controlled process (t ≥ t 2 ).

  1. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  2. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  3. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  4. Preparation and properties of [(NdFeB)x/(Nb)z]n multi-layer films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Chin, T.-S.; Yao, Y.-D.; Melsheimer, A.; Fisher, S.; Drogen, T.; Kelsch, M.; Kronmueller, H.

    2003-01-01

    Multi-layer [(NdFeB) x /(Nb) z ] n films with 200 nm≥x≥10 nm, 10 nm≥z≥0, 40≥n≥2, prepared by ion beam sputtering and subsequent annealing, show significantly enhanced coercivity due to the reduced grain size that enhances the anisotropy of individual grains. After annealing at 630 deg. C, some Nd 2 Fe 14 B grains were enriched with Nb and isolated as the thickness of the Nb spacer layer increases. For multi-layer (NdFeB x /Nb z ) n films with 100 nm ≥x≥25 nm, 5 nm≥z≥2 nm, their coercivity and remanence ratio are better than that of a single NdFeB film. Up to 17.8 kOe room temperature coercivity has been obtained for a sample with x=25 nm, z=5 nm and n=16

  5. Crystallization behavior and the thermal properties of Zr63Al7.5Cu17.5Ni10B2 bulk amorphous alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.; Jiang, Y.T.; Wong, P.W.

    2003-01-01

    The ribbons of amorphous Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys with 0.1 mm thickness were prepared by melt spinning method. The thermal properties and micro structural development during the annealing of amorphous alloy have been investigated by a combination of differential thermal analysis, differential scanning calorimetry, high-temperature optical microscope, X-ray diffractometry and TEM. The glass transition temperature for the Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys are measured about 645 K (372 C). This alloy also obtains a large temperature interval ΔT x about 63 K. Meanwhile, the calculated T rg for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy presents the value of 0.57. The activation energy of crystallization for the alloy Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 was about 370± 10 kJ/mole as determined by the Kissinger and Avrami plot, respectively. These values are about 20% higher than the activation energy of crystallization for the Zr 65 Al 7.5 Cu 17.5 Ni 10 alloy (314 kJ/mol.). This implies that the boron additions exhibit the effect of improving the thermal stability for the Zr-based alloy. The average value of the Avrami exponent n were calculated to be 1.75±0.15 for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy. This indicates that this alloy presents a crystallization process with decreasing nucleation rate. (orig.)

  6. Investigation of finely dispersed grind of magnetically hard SmCo5 and Nd2Fe14B alloys

    International Nuclear Information System (INIS)

    Balalaev, Yu.N.; Kosobudskij, I.D.

    2000-01-01

    Possibility of preparation of finely dispersed powders of SmCo 5 and Nd 2 Fe 14 B allays investigated and comparison of different types of grinding processes is conducted. Results of comparison of the processes in vibrational mills and disintegrators permit to conclude that density and structure of grindable materials effect on the rate and quality of grinding of magnetically hard alloys [ru

  7. Preparation, mechanical strengths, and thermal stability of Ni-Si-B and Ni-P-B amorphous wires

    International Nuclear Information System (INIS)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-01-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni/sub 75/Si/sub 8/B/sub 17/ and Ni/sub 78/P/sub 12/B/sub 10/ alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin Al/sub 2/O/sub 3/ film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (N/sub 0.75/Si/sub 0.08/B/sub 0.17/)/sub 99/Al/sub 1/ wire and 2170 MPa and 2.4 pct for (Ni/sub 0.78/P/sub 0.12/B/sub 0.1/)/sub 99/Al/sub 1/ wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a NiSi-B-Al wire, which is higher by 0.15 pct than that of a Fe/sub 75/Si/sub 10/B/sub 15/ amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance

  8. Preparation of Cu–Ni–Fe alloy coating and its evaluation on corrosion behavior in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Zhou, Qiongyu; Jiang, Jibo; Zhong, Qingdong; Wang, Yi; Li, Ke; Liu, Huijuan

    2013-01-01

    Highlights: ► An uniform Cu–Ni–Fe alloy coating constituted of homogenous γ-phases was prepared on the surface of low-carbon steel. ► The increase of Ni has a significant promotion to produce a uniform and homogenous Cu–Ni–Fe alloy coating. ► Electrochemical test results indicated the excellent corrosion resistance of the coating with high Ni content. ► EIS test and results demonstrated the surface homogeneity or compactness of the coating with high Ni content. -- Abstract: In this paper, an attempt had been made to prepare a Cu–Ni–Fe alloy coating for improving the corrosion resistance of the low-carbon steel. The surface heat treatment of coated low-carbon steel was performed at 1000 °C for 3 h under hydrogen atmosphere. The structure and microstructure of coatings was separately analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the samples was evaluated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy (EIS). Results indicated that a compact alloy coating was formed on the surface of low-carbon steel and the Ni content had a prodigious impact to the microstructure, composition and structure of Cu–Ni–Fe alloy coating. Apart from that, significant improvements in corrosion resistance were achieved by using the Cu–Ni–Fe alloy coating, which constituting of homogeneous γ-phases

  9. Effect of niobium addition to the Fe-17% Cr alloy on the resistance to generalized corrosion in sulfuric acid

    International Nuclear Information System (INIS)

    Alonso, Neusa; Wolynec, Stephan

    1992-01-01

    The aim of present work was to investigate the influence of Nb upon the corrosion resistance to o.5 M H2 SO 4 cf 17% Cr ferritic stainless steels, to which it was added in amounts larger than those necessary for the stabilization of interstitial elements. The performance of Fe-17% Cr alloys containing 0.31%, 0.58%, 1.,62% Nb was compared to that of two other Fe-17% Cr alloys containing 0.31%, 0.58% and 1.62% Nb was compared to that of two other Fe-175 Cr alloys, one without additions and another containing 0.93% Nb. Through weight and electrochemical measurements and through morphologic examination of corroded surface it was found that in o.5 M H 2 SO 4 solution the corrosion of these alloys, with the exception of that containing molybdenum, products in two different stages. In the first stage (up to about 60 minutes the rate practically does not change with time, the lower rates being displayed by alloys containing larger mounts of Nb. In the second stage (for immersion times larger than 60 minutes) the corrosion rate increases with time. the corrosion rate of Mo containing alloy is constant with time so that for longer immersion times this alloy becomes the most resistant. The first stage was discussed in terms of electromechanical properties of Nb and its ability to combine with steel impurities, while the second stage was considered as affected by corrosion products formed on the surface of these alloys after certain time of immersion. (author)

  10. Formation of modified TbCu{sub 7} and Th{sub 2}Zn{sub 17} type structures during annealing of mechanical-alloyed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H. [Inst. fuer Festkoerper- und Werkstofforschung, Dresden (Germany)

    1998-06-26

    Compounds with the nominal composition near Sm{sub 2}Fe{sub 17} were prepared by mechanical alloying starting from the elemental powders and subsequent annealing at temperatures, T{sub A}, between 600 C and 900 C. For crystal structure investigations of the non-equilibrium phases formed at various temperatures, XRD methods with following Rietveld analysis were applied. For T{sub A} between 600 C and 750 C a modified TbCu{sub 7}-type structure of space group P6/mmm was found, in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(6l) site. Its approximate composition is SmFe{sub 8.8-9.0}. For T{sub A} between 800 C to 900 C a disordered modified Th{sub 2}Zn{sub 17} structure (space group R anti 3m) was found that is formed by introducing additional randomly occupied Fe (6c) and Sm(3a) positions, respectively. The degree of order of Sm atoms and Fe-dumbbells along the c-direction increases with increasing T{sub A}. A decrease in the Fe concentration in the cell is observed for increasing T{sub A}. The completely ordered stoichiometric Th{sub 2}Zn{sub 17}-type structure could not be reached by annealing samples prepared from the ball-milled elemental powders. (orig.) 20 refs.

  11. High damping Fe-Mn martensitic alloys for engineering applications

    International Nuclear Information System (INIS)

    Baik, S.-H.

    2000-01-01

    Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloy. Also, the alloy has advantages of good mechanical properties and is more economical than any other known damping alloys (a quarter the cost of non-ferrous damping alloy). Thus, the high damping Fe-17%Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity (SDC, 30%) and mechanical property (T.S. 700 MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit of several such applications. (orig.)

  12. Surface coating and magnetic properties of Sm2Fe17Nx materials

    International Nuclear Information System (INIS)

    Noguchi, K.; Machida, K.; Nishimura, M.; Adachi, G.

    1998-01-01

    Surface coating for finely ground Sm 2 Fe 17 N x (x=-3) powders (diameter 2 Fe 17 N x and (Zn,In)/Cu/Sm 2 Fe 17 N x , showed good oxidation-resistivity and thermal stability compared with the samples prepared without the Cu metal pre-coating, Zn/Sm 2 Fe 17 N x . The epoxy resin- or In metal-bonded magnets produced from the above coated powders, Zn/Cu/Sm 2 Fe 17 N x and (Zn,In)/Cu/Sm 2 Fe 17 N x , under warm molding conditions provided a flux loss of around -15% after standing in air at 120 C for 1000 h, but 30-40% for the conventional injection-type resin-bonded magnets prepared from Nd-Fe-B powders. (orig.)

  13. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  14. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Science.gov (United States)

    Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek

    2018-05-01

    DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  15. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  16. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  17. Internal friction of Fe-B alloys neutron irradiated at low temperature

    International Nuclear Information System (INIS)

    Kitajima, Kazunori; Futagami, Koji; Abe, Hironobu; Yoshida, Hiroyuki.

    1975-01-01

    Measurements were made on the internal friction of Fe-B alloys irradiated by neutron at 16 0 K to the dose of 3x10 16 nvt (>1 MeV) and 6x10 17 nvt (thermal). Boron was used to enhance the production of defects by the nuclear transformation B 10 (n,α)Li 7 . Relaxation peaks were found in specimens containing dispersed fine precipitates of NbB 2 in range of B 500--7200 wt ppm and Nb 2000--30000 wt ppm. The most prominent peak is the one with the peak temperature of 169 0 K at the frequency of 264 c/sec. Activation energy determined from the peak shift is 0.28+-0.01 eV, which is nearly equal to that of migration of self-interstitial reported on pure iron. However activation energy of the decay of peaks by annealing is about 0.7 eV. Interpretation was presented that the peak may be attributed to re-orientation of self-interstitials loosely bound to a boron atom. (auth.)

  18. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  19. Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shan [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China); Ahmad, Zubair [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Pengyue [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zheng, Xiaomei [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2017-09-01

    Highlights: • Nanocomposite Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} sheet magnets were synthesized by injection casting. • High coercivity of 1289 kA/m was obtained for the directly casted magnet. • Magnetic properties arise from magnetically exchange coupled soft and hard phases. - Abstract: The phase composition, magnetic and microstructural properties of Nd{sub 2}Fe{sub 14}B/(α-Fe, Fe{sub 3}B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe{sub 3}B and hard Nd{sub 2}Fe{sub 14}B/Y{sub 2}Fe{sub 14}B nanograins (20–50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m{sup 3} are obtained in directly casted Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} sheet magnets.

  20. Corrosion of martensitic steels in flowing 17Li83Pb alloy

    International Nuclear Information System (INIS)

    Flament, T.; Fauvet, P.; Hocde, B.; Sannier, J.

    1988-01-01

    Corrosion of three martensitic steels - 1.4914, HT9 and T91 - in the presence of flowing 17Li83Pb is investigated in thermal convection loops Tulip entirely made of 1.4914 steel. Two 3000-hour tests were performed at maximal temperatures of respectively 450 and 475 0 C with a δT of 60 0 C and an alloy velocity of about 0.08 m.s -1 . In both tests, corrosion is characterized by an homogeneous dissolution of the steel without formation of a corrosion layer. Corrosion rate is constant and very temperature dependent: the sound-metal loss of 1.4914 steel is 22 μm. year -1 at 450 0 C and 40 μm.year -1 at 475 0 C. Behaviours of 1.4914 and HT9 steels are very similar whereas T91 steel is about 20% less corroded

  1. Structural and magnetic properties of Fe60Al40 alloys prepared by means of a magnetic mill

    International Nuclear Information System (INIS)

    Bernal-Correa, R.; Rosales-Rivera, A.; Pineda-Gomez, P.; Salazar, N.A.

    2010-01-01

    A study on synthesis, structural and magnetic characterization of Fe 60 Al 40 (at.%) alloys prepared by means of mechanical alloying process is presented. The mechanical alloying was performed using a milling device with magnetically controlled ball movement (Uni-Ball-Mill 5 equipment) at several milling times. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The effects of milling time on the structural state, morphological evolution and magnetic behaviour of the Fe 60 Al 40 (at.%) alloys are discussed. Besides, in this current study we emphasize the result that indicating a ferro-para-ferromagnetic transition from a correlation between X-ray diffraction and magnetization data.

  2. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Directory of Open Access Journals (Sweden)

    Mariusz Hasiak

    2018-05-01

    Full Text Available DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  3. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W2B, the rod-like (Fe, W3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W3B phase. The resultant Fe-3.5B-11W (wt % alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper.

  4. Thermoelectric power measurements in liquid quenched amorphous alloys for FeZr and (FeCo)B

    International Nuclear Information System (INIS)

    Raza, S.M.; Naqvi, S.M.M.R.; Rizvi, S.; Hussain, A.; Rahman, F.

    1999-01-01

    Thermoelectric power (TEP) measurements have been carried out on six samples of LQA alloys from two different series, namely FeZr and Fe(Co)B, at relatively low temperatures. Thermoelectric power shows an overall Gaussian trend. The scattering centers are the major contributors to the residual TEP. Ziman theoretical model was used to estimate TEP. It was found that Ziman theory fails to account for quantitative TEP measurements at relatively low temperatures (77K< T<300K). (author)

  5. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  6. Nd2Fe14C-based magnet with better permanent magnetic properties prepared by a simple mechanochemical method

    Science.gov (United States)

    Geng, Hongmin; Ji, Yuan; Zhang, Jingjing; Gao, Yuchao; Yan, Yu; Wang, Wenquan; Su, Feng; Du, Xiaobo

    2017-11-01

    Nd2Fe14C-based magnet is prepared by a mechanochemical method, namely high-energy ball-milling Nd2Fe11Bx (x = 0-0.15) alloy in heptane (C7H16), followed by annealing to 850 °C in vacuum. Under the action of high-energy ball-milling, Nd2Fe11Bx react with heptane to form NdH2+δ, Fe-(CB), C, etc. H2 is released and Nd2Fe17, Nd2Fe17Cx (x = 0-3), Nd2Fe14C, Nd carbides and α-Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long time ball milling or high C content suppresses the formation of 2:17 phase and favors the formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase of α-Fe. The maximum of magnetically hard Nd2Fe14C is obtained at t = 4 h. For Nd2Fe11 samples, there exists considerable quantity of Nd carbides and α-Fe phase appears earlier and increases rapidly with extending the ball-milling time t. The addition of B element shortens the ball-milling time of the formation of maximum Nd2Fe14C and prominently suppresses the formation of Nd carbide and α-Fe. The optimum magnetic properties, coercivity iHc of 1193.7 kA/m, remanence Mr of 580.9 kA/m, maximum magnetic energy product (BH)max of 91.7 kJ/m3 is approaching to its theoretic value of 99.2 kJ/m3 for isotropic Nd2Fe14C magnet, are obtained in Nd2Fe11B0.06 alloy ball milled for 3.5 h.

  7. Preparation, thermal stability, and magnetic properties of Fe-Zr-Mo-W-B bulk metallic glass

    International Nuclear Information System (INIS)

    Liu, D.Y.; Sun, W.S.; Wang, A.M.; Zhang, H.F.; Hu, Z.Q.

    2004-01-01

    A bulk metallic glass (BMG) cylinder of Fe 60 Co 8 Zr 10 Mo 5 W 2 B 15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (T g ), crystallization temperature (T x ), supercooled liquid region (ΔT x ) between T g and T x , and reduced glass transition temperature T rg (T g /T m ) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases α-Fe, ZrFe 2 , Fe 3 B, MoB 2 , Mo 2 FeB 2 , and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Moessbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. α-Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses

  8. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  9. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, J.; Shui, J.L.; Zhang, S.L.; Wei, X.; Xiang, Y.J.; Xie, S.; Zhu, C.F.; Chen, C.H.

    2005-01-01

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship

  10. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Shui, J.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhang, S.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wei, X. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xiang, Y.J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xie, S. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhu, C.F. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Chen, C.H. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)]. E-mail: cchchen@ustc.edu.cn

    2005-04-05

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship.

  11. A comparative thermomagnetic study of melt-spun Nd-Fe-B alloys with different Nd content

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2009-01-01

    Full Text Available Changes in the phase composition and magnetic properties of three types of commercial Nd-Fe-B alloys with different Nd content - low (10-12 wt%, near stoichiometric (21-25 wt% and rich (26-29 wt% caused by thermomagnetic analysis (TM were observed in regard to optimal magnetic state. Phase compositions of investigated alloys before and after TM measurement up to 800°C were compared using 57Fe Mössbauer spectroscopy and X-Ray analysis. The TM measurements decompose all three materials and the main products of decomposition process α-Fe and Fe2B phase. Observed changes in structure and phase composition had direct influence on magnetic properties. Loss of magnetic properties induced by thermal decomposition is clearly illustrated on corresponding SQUID hysteresis loops.

  12. New developments in NdFeB-based permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z.W.

    2011-01-01

    NdFeB based alloys have been used as permanent magnets for almost thirty years. The recent researches aim at optimizing the composition, microstructure and properties, reducing cost, and developing new processes. The demand for sintered magnet is increasing. Efforts are directed towards improving properties by controlling grain boundary diffusion, minimizing the rare earth (RE) content and also improving production yield. As for bonded magnets, to enhance remanence and energy product, nanocrystalline powders are employed. High thermal stability has been realized by mixing NdFeB with hard ferrite powders. For nanocrystalline and nano composite NdFeB based alloys, both compositional modification and microstructural optimization have been carried out. New approaches have also been proposed to prepare NdFeB magnets with idea structure. Surfactant assisted ball milling is a good top-down method to obtain nano sized hard magnetic particles and anisotropic nano flakes. Synthesis of NdFeB nanoparticles and NdFeB/Fe (Co) nano composite powders by bottom-up techniques, such as chemical reduction process and co-precipitation, has been successful very recently. To assemble nanocrystalline NdFeB powders or nanoparticles into bulk magnets, various novel consolidation processes including spark plasma sintering and high velocity press have been employed. Hot deformation can be selected as the process to achieve anisotropy in nanocrystalline magnets. (author)

  13. NdFeB nanoparticles prepared by wet-milling

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane; Lyubina, Julia; Woodcock, Thomas; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden (Germany)

    2010-07-01

    Since the prediction of a giant energy product of textured nanocomposite magnets those materials where believed to be the next generation of permanent magnets. For effective exchange-coupling in such two-phase magnets grain sizes need to be in the range of the domain wall width of the hard magnetic phase. That makes a homogenous phase distribution and a microstructure with nanograins necessary. One option of preparing such materials is the synthesis of magnetic nanoparticles which further could be aligned and compacted to a bulk magnet. For this we performed wet-milling experiments of a NdFeGaNbB alloy. XRD studies revealed that by using a surfactant and a solvent during the high energy ball milling process amorphization sets in later than compared to dry milling experiments under the same conditions. Dynamic Light Scattering investigations showed a Gauss distribution of the particle size with a mean diameter of about 12nm which was also proven by TEM. Magnetic properties were measured with SQUID and showed so far rather poor coercivity values.

  14. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  15. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  16. Westendorf effect in the magnet alloy Nd-Dy-Fe-Co-B

    International Nuclear Information System (INIS)

    Piskorskij, V.P.; Valeev, R.A.; Sychev, I.V.

    2006-01-01

    Sintered magnets of the composition as follows, at. %: (Nd 0.6 Dy 0.4 ) 15 (Fe 1-x Co x ) rest Al 1 B 8 , are under study. It is revealed that the course of coercive force dependence on the temperature of heat treatment varies with a cobalt content increase (within a range of 0.19 - 0.26). The dependence of coercive force on heat treatment temperature for the alloys studied has a pronounced minimum at 700 deg C which is known as a Westendorf effect. This effect is taken to be due to the presence of R(Fe, Co) 4 B phase where R is the sum of REM [ru

  17. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  18. Low temperature thermal conductivity of amorphous (Fe, Ni, Co) (P, B, Si) alloys and their change by heat treatment

    International Nuclear Information System (INIS)

    Pompe, G.; Gaafar, M.; Buettner, P.; Francke, T.

    1983-01-01

    The thermal conductivity of amorphous metallic alloys (Fe, Ni, Co)/sub 1-x/ (B, P, Si)/sub x/ is measured in the temperature range 2 to 100 K in the as-produced and heat-treated states. By taking into account the results of Matey and Anderson the influence of the nature of the metalloid and the number of metallic components can be discussed. The change of the thermal conductivity due to a structural relaxation caused by a heat treatment is very different. In the whole range of temperature a rise of the phonon thermal conductivity of the Fe-Co-B alloy is obtained, whereas no change is observed for the Fe-B alloy. At low temperature ( 80 B 20 is investigated. (author)

  19. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  20. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    International Nuclear Information System (INIS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S.K.; Oraon, Ramesh

    2015-01-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of −7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed −13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to −22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy. - Highlights: • FeCoB coated Graphene Oxide (GO) was synthesized by co-precipitation method. • GO, FeCoB and GO@FeCoB based microwave absorbers were developed with Epoxy matrix. • GO and FeCoB/Epoxy absorbers showed −7.86 & −13.30 dB reflection loss, respectively. • Maximum Reflection loss of −22.24 dB was achieved with GO@FeCoB/Epoxy absorber

  1. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  2. Influence of annealing and nitrogenation on structure and magnetic properties of mechanically alloyed Sm-Fe powders

    International Nuclear Information System (INIS)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H.

    1998-01-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm 2 Fe 17+x and Sm 2 Fe 17+x N y , respectively, formed at the various annealing temperatures T A , XRD with following Rietveld analysis was used. For T A between 600 C and 750 C a modified hexagonal TbCu 7 structure (space group P6/mmm) was found in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(61) site. The approximated composition is SmFe 8.8-9.0 . The nitrogenated alloys crystallize in the same structure for 600 C A A ≤ 900 C a disordered modified Th 2 Zn 17 structure (space group R anti 3m) was found that is formed by introducing additional Fe (6c) and Sm(3a) positions. The degree of order of the Sm- and Fe-atoms in c-direction increases with increasing annealing temperature. The completely ordered stoichiometric Sm 2 Fe 17 structure could not be reached by annealing the ball milled elemental powders. The nitrided alloys already form this intermediate structure at T A = 750 C. The interstitial nitrogen occupies the 9e site. The estimated nitrogen content is higher in the hexagonal phases than in the rhombohedral phase. Optimum magnetic properties, in particular a coercitivity μ 01 H C = 3.7 T and a good squareness of the demagnetization curve, were obtained for T A = 750 C. Here we found a nitrogen content of y = 3 for Sm 2 Fe 17+x N y . (orig.)

  3. Heat treatment influence on the structural and magnetic properties of the intermetallic Fe56.25Al43.75 alloy prepared by mechanical alloying and arc-melted

    Science.gov (United States)

    Trujillo Hernández, J. S.; Tabares, J. A.; Pérez Alcázar, G. A.

    2014-04-01

    Alloys of the Fe56.25Al43.75 system were prepared by mechanical alloying (MA) using a high energy planetary ball mill, with milling times in the range from 12 up to 96 h named MA0 samples. The sample milled for 48 hours was heat treated at 700 °C for 9 days. Then this sample was milled for times of 1, 4, 8, 12, 24, and 48 h, named MA1 samples. Additionally, and for comparison, it was prepared a Fe56.25Al43.75 sample by arc-melting method. For all samples, the structural and magnetic study was conducted by X-rays diffraction (XRD) and Mössbauer spectrometry (MS). The XRD results show that the system is nanostructured and the MA0 samples present only the BCC disordered phase, whose lattice parameter remains relatively constant with milling time. For MA1 samples it was identify the FeAl, Fe3Al, FeO and α-Fe phases. The Mössbauer spectra for all samples were fitted by using a hyperfine magnetic field distribution (HMFD), and a paramagnetic site for all the times used here. The ferromagnetism increases when milling time increases, and this is a consequence of the structural disorder induced by mechanical alloying.

  4. Effect of hydrogenation disproportionation conditions on magnetic anisotropy in Nd-Fe-B powder prepared by dynamic hydrogenation disproportionation desorption recombination

    Directory of Open Access Journals (Sweden)

    Masao Yamazaki

    2017-05-01

    Full Text Available Various anisotropic Nd-Fe-B magnetic powders were prepared by the dynamic hydrogenation disproportionation desorption recombination (d-HDDR treatment with different hydrogenation disproportionation (HD times (tHD. The resulting magnetic properties and microstructural changes were investigated. The magnetic anisotropy was decreased with increasing tHD. In the d-HDDR powders with higher magnetic anisotropy, fine (200–600 nm and coarse (600–1200 nm Nd2Fe14B grains were observed. The coarse Nd2Fe14B grains showed highly crystallographic alignment of the c-axis than fine Nd2Fe14B grains. In the highly anisotropic Nd2Fe14B d-HDDR powder, a large area fraction of lamellar-like structures consisting of NdH2 and α-Fe were observed after HD treatment. Furthermore, the mean diameter of the lamellar-like regions, where lamellar-like structures orientate to the same direction in the HD-treated alloys was close to that of coarse Nd2Fe14B grains after d-HDDR treatment. Thus, the lamellar-like regions were converted into the crystallographically aligned coarse Nd2Fe14B grains during desorption recombination treatment, and magnetic anisotropy is closely related to the volume fraction of lamellar-like regions observed after HD treatment.

  5. Otimização do banho eletrolítico da liga Fe-W-B resistente à corrosão Optimization of the electrolytic bath for electrodeposition of corrosion resistant Fe-W-B alloys

    Directory of Open Access Journals (Sweden)

    Renato Alexandre Costa de Santana

    2007-04-01

    Full Text Available A study on optimization of bath parameters for electrodeposition of Fe-W-B alloys from plating baths containing ammonia and citrate is reported. A 2³ full factorial design was successfully employed for experimental design analysis of the results. The corrosion resistance and amorphous character were evaluated. The bath conditions obtained for depositing the alloy with good corrosion resistance were: 0.01 M iron sulfate, 0.10 M sodium tungstate and 0.60 M ammonium citrate. The alloy was deposited at 12% current efficiency. The alloy obtained had Ecorr -0.841 V and Rp 1.463 x 10(4 Ohm cm². The deposit obtained under these conditions had an amorphous character and no microcracks were observed on its surface. Besides this, the bath conditions obtained for depositing the alloy with the highest deposition efficiency were: 0.09 M iron sulfate, 0.30 M sodium tungstate and 0.50 M ammonium citrate. The alloy was deposited at 50% current efficiency, with an average composition of 34 wt% W, 66 wt% Fe and traces of boron. The alloy obtained had Ecorr -0.800 V and Rp 1.895 x 10³ Ohm cm². Electrochemical corrosion tests verified that the Fe-W-B alloy deposited under both conditions had better corrosion resistance than Fe-Mo-B.

  6. Preparation of nanocrystalline Ce1-xSmx(Fe,Co)11Ti by melt spinning and mechanical alloying

    Science.gov (United States)

    Wuest, H.; Bommer, L.; Huber, A. M.; Goll, D.; Weissgaerber, T.; Kieback, B.

    2017-04-01

    Permanent magnetic materials based on Ce(Fe, Co)12-xTix with the ThMn12 structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd2Fe14B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce1-xSmxFe11-yCoyTi (x=0-1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 Hc,J values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm.

  7. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  8. Magnetoresistance in amorphous NdFeB/FeB compositionally modulated multilayers

    International Nuclear Information System (INIS)

    Peral, G.; Briones, F.; Vicent, J.L.

    1991-01-01

    Resistance measurements have been done in amorphous Nd 12 Fe 80 B 8 sputtered films and in amorphous sputtered Nd 26 Fe 68 B 6 /Fe 92 B 8 multilayers between 6 and 150 K with applied magnetic field parallel (LMR) and perpendicular (TMR) up to 7 T. The samples were grown by dc triode sputtering, with nominal unequal (2:1) layer thicknesses. The layered character of the samples have been tested by x-ray diffraction. Longitudinal magnetoresistance (LMR) is positive and transverse magnetoresistance (TMR) is negative. The magnetoresistance values are higher than in amorphous ferromagnets, and multilayering of these alloys produces much larger magnetoresistance values than either alloy alone and there is a strong dependence on the multilayer wavelength. The MR shows a weak temperature dependence in the temperature interval that was investigated

  9. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    International Nuclear Information System (INIS)

    Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.

    2003-01-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed

  10. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83B17 During Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Quirinale, D.G.; Messina, D.; Rustan, G.E.; Kreyssig, A.; Prozorov, R.; Goldman, A.I. (Ames); (Iowa State)

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  11. Mean field analysis of exchange coupling in amorphous DyFe2-B alloy ribbons

    International Nuclear Information System (INIS)

    Lee, J.M.; Jung, J.K.; Lim, S.H.

    2001-01-01

    Experimental magnetization-temperature curves for melt-spun ribbons of amorphous alloys (Dy 0.33 Fe 0.67 ) 1-x B x with x=0, 0.05, 0.1 and 0.15 (in atomic fraction) are fitted with theoretical equations based on the mean field theory in order to investigate exchange couplings between constituent elements as a function of the B content. The sign of the exchange coupling between Dy and Fe is negative, indicating that the magnetization direction of Dy is antiparallel to that of Fe. The sign of the other two couplings are positive. The exchange coupling between Fe ions are greatest, while that between Dy ions is negligible. The exchange couplings between Fe ions, and between Dy and Fe increase with increasing B content, the increase of the latter being much greater than the former. Resulting, the exchange coupling between Dy and Fe becomes about one half of that between Fe ions at the highest B content. The increase of the exchange coupling between Fe ions may be explained by the increase of the Fe-Fe separation with the increase of the B content. The total magnetization is dominated by the Dy sublattice magnetization. As the B content increases, the magnetization decreases over the whole temperature range, and the Curie temperature also decreases

  12. Joule heating of Fe-B metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, M.; Sitek, J.; Lipka, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava, Slovak Republic (Czechoslovakia))

    1993-04-01

    Amorphous Fe[sub 80]B[sub 20] and Fe[sub 83]B[sub 17] ribbons were heated in air and in vacuum, respectively, by a dc electric current passing through the specimen. During the Joule heating, [sup 57]Fe transmission Moessbauer spectra were recorded. Ribbons of the same geometrical dimensions, cut from a natural iron foil, were treated in the same way as a reference. The influence of the current-induced magnetic field in addition to the Joule heating is supposed to cause fluctuations in a short-range order observed. Changes in the hyperfine magnetic fields are compared with those obtained by a conventional heating in a vacuum furnace. (orig.).

  13. Joule heating of Fe-B metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Lipka, J.

    1993-01-01

    Amorphous Fe 80 B 20 and Fe 83 B 17 ribbons were heated in air and in vacuum, respectively, by a dc electric current passing through the specimen. During the Joule heating, 57 Fe transmission Moessbauer spectra were recorded. Ribbons of the same geometrical dimensions, cut from a natural iron foil, were treated in the same way as a reference. The influence of the current-induced magnetic field in addition to the Joule heating is supposed to cause fluctuations in a short-range order observed. Changes in the hyperfine magnetic fields are compared with those obtained by a conventional heating in a vacuum furnace. (orig.)

  14. Preparation and properties of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Ma, XiuHua [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Li, Qiang, E-mail: qli@xju.edu.cn [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Zhang, Jijun [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Dong, Yaqiang; Chang, Chuntao [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-09-01

    Highlights: • Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20–50 at.%) BMGs were prepared by fluxing and J-quenching techniques. • The highest GFA is reached at x = 40 and the corresponding critical diameter is up to 2.5 mm. • The present FeNi-based BMGs exhibit very large ε{sub p} and the ε{sub p} of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG is 11.7%. • The present FeNi-based BMGs have much higher corrosion resistance than stainless steel. - Abstract: Bulk Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) glassy alloy rods with the diameters of 1.0–2.5 mm were synthesized by combining fluxing technique and J-quenching technique. The glassy alloy rods were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). It is found that the range of supercooled liquid region (ΔT{sub x}) is 27–32 K. The saturation magnetization of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) bulk glassy alloys gradually decreases from 1.13 T to 0.58 T with increasing Ni content from x = 20 to x = 50. More importantly, the present quaternary FeNiPB bulk metallic glasses (BMGs) shows a significant plastic strain, in particular, the plastic strain of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG reaches as high as 11.7%. The corrosion resistance of the present FeNiPB BMGs was studied by weight-loss method, potentiodynamic polarization curves and scanning electron microscopy (SEM). It is shown that the corrosion resistance of the present FeNiPB BMGs in 0.5 M NaCl and 1 M HCl solution increases with Ni content, and further the present FeNiPB BMGs exhibit larger E{sub corr} values and lower I{sub corr} values, i.e. higher corrosion resistances, than that of stainless steel.

  15. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  16. Composition-dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.; Zhao, L.Z.; Zhang, C.; Jiao, D.L.; Zhong, X.C.; Liu, Z.W.

    2016-02-15

    Aiming at high-performance low-cost NdFeB magnets, the magnetic properties and microstructure for melt spun nanocrystalline (Nd{sub 1−x}M{sub x}){sub 10}Fe{sub 84}B{sub 6} (M=La, Ce, or La{sub 0.5}Ce{sub 0.5}; x=0–0.7) alloys were investigated. Relatively, LaCe-substituted alloys show high values of the remanent magnetization M{sub r}, the maximum energy product (BH){sub max} and the coercivity H{sub c}, up to 114 emu/g (1.07 T), 147 kJ/m{sup 3} and 471 kA/m, respectively, at x=0.1. The unusual increase in coercivity for the alloys with 10% La or 10% La{sub 0.5}Ce{sub 0.5} substitution is possibly attributed to the phase segregation in alloys with certain La or LaCe contents. The reduced Curie temperature and spin-reorientation temperature were obtained for La, Ce or LaCe substituted alloys. Transmission electron microscope analysis has revealed that a fine and uniform distributed grain structure leads to remanence enhancement for La{sub 0.5}Ce{sub 0.5} substituted alloys. The present results indicate that partially substituting Nd by La or/and Ce cannot only effectively reduce the cost of nanocrystalline NdFeB based magnetic powders but also can maintain a relatively good combination of magnetic properties.

  17. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  18. High coercivity in Fe-Nb-B-Dy bulk nanocrystalline magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, Grzegorz; Chrobak, Artur; Klimontko, Joanna [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice (Poland); Chrobak, Dariusz; Rak, Jan [Institute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow (Poland); Zivotsky, Ondrej; Hendrych, Ales [Department of Physics, VSB-TU Ostrava, Ostrava (Czech Republic)

    2016-11-15

    The paper refers to structural and magnetic properties of the (Fe{sub 80}Nb{sub 6}B{sub 14}){sub 1-x}Dy{sub x} (x = 0.08, 0.10, 0.12, 0.16) bulk nanocrystalline alloys prepared by making use of the vacuum suction casting technique. The samples are in a form of rods with different diameters d = 1.5, 1, and 0.5 mm. The phase structure was investigated by XRD technique and reveals an occurrence of magnetically hard Dy{sub 2}Fe{sub 14}B as well as other relatively soft Dy-Fe, Fe-B, and Fe phases dependently on the Dy content. The alloys show hard magnetic properties with high coercive field up to 5.5 T (for x = 0.12 and d = 0.5 mm). The observed magnetic hardening effect with the increase of cooling rate (decrease of sample diameter d) can be attributed to a formation of ultra-hard magnetic objects as well as increasing role of low dimensional microstructure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Impact of the B2 ordering behavior on the mechanical properties of a FeCoMo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Turk, C., E-mail: chris.turk@unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Leitner, H.; Kellezi, G. [Böhler Edelstahl GmbH & Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Clemens, H. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Gan, W.M.; Staron, P. [German Engineering Materials Science Centre, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht (Germany); Primig, S. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria)

    2016-04-26

    A Fe - 25 at% Co - 9 at% Mo alloy can be hardened by nm-sized (Fe, Co){sub 7}Mo{sub 6} µ-phase precipitates which is accomplished by solution annealing in the austenite region followed by rapid quenching to room temperature and subsequent aging below the austenite transition temperature. In overaged condition the Mo-content in the remaining matrix drops towards zero and, therefore, the matrix consist of 71 at% Fe and 29 at% Co. The binary Fe-Co system shows a disorder-order, A2↔B2 transition at a critical ordering temperature between 25 at% and 72 at% Co. It is expected that the remaining matrix of an overaged Fe - 25 at% Co - 9 at% Mo alloy also exhibits such an ordering reaction. It will be demonstrated that the formation of a B2 ordered FeCo phase can be delayed or completely prevented by rapid quenching from temperatures above the critical ordering temperature. This has a strong impact on the mechanical properties of this alloy which have been studied by means of tensile, impact toughness and hardness testing. The evidence for a disorder-order transition in this alloy has been given by neutron diffraction as well as high resolution transmission electron microscopy.

  20. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  1. Influence of Microstructure on Microhardness of Fe81Si4B13C2 Amorphous Alloy after Thermal Treatment

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica, M.; Blagojević, V.; Minić, Dušan M.; Gavrilović, A.; Rafailović, L.; Žák, Tomáš

    42A, č. 13 (2011), s. 4106-4112 ISSN 1073-5623 R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z2041904 Keywords : bulk metallic-glass * mechanical properties * Fe81B13SI4C2 alloy * B alloys * alpha-Fe * crystallization * phase * nanocrystallization * behavior Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.545, year: 2011

  2. Effect of niobium addition to the Fe-17% Cr alloy on the resistance to generalized corrosion in sulfuric acid; Efeito da adicao de niobio a liga Fe-17% Cr sobre a resistencia a corrosao generalizada em acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Neusa; Wolynec, Stephan

    1993-12-31

    The aim of present work was to investigate the influence of Nb upon the corrosion resistance to o.5 M H2 SO{sub 4} cf 17% Cr ferritic stainless steels, to which it was added in amounts larger than those necessary for the stabilization of interstitial elements. The performance of Fe-17% Cr alloys containing 0.31%, 0.58%, 1.,62% Nb was compared to that of two other Fe-17% Cr alloys containing 0.31%, 0.58% and 1.62% Nb was compared to that of two other Fe-175 Cr alloys, one without additions and another containing 0.93% Nb. Through weight and electrochemical measurements and through morphologic examination of corroded surface it was found that in o.5 M H{sub 2} SO{sub 4} solution the corrosion of these alloys, with the exception of that containing molybdenum, products in two different stages. In the first stage (up to about 60 minutes) the rate practically does not change with time, the lower rates being displayed by alloys containing larger mounts of Nb. In the second stage (for immersion times larger than 60 minutes) the corrosion rate increases with time. the corrosion rate of Mo containing alloy is constant with time so that for longer immersion times this alloy becomes the most resistant. The first stage was discussed in terms of electromechanical properties of Nb and its ability to combine with steel impurities, while the second stage was considered as affected by corrosion products formed on the surface of these alloys after certain time of immersion. (author) 24 refs., 1 fig., 3 tabs.

  3. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  4. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  5. Surface modification and its role in the preparation of FeSi gradient alloys with good magnetic property and ductility

    Science.gov (United States)

    Yu, Haiyuan; Bi, Xiaofang

    2018-04-01

    Realization of the effective Si penetration at a lower processing temperature is a challenge, but of significance in reducing the strict requirements for the equipment and realizing cost-cutting in production. In this work, we have modified the surface microstructure of Fe-3 wt%Si alloy by using surface mechanical attrition treatment. The modified surface microstructure is characteristic of nanocrystalline, which is found to significantly enhance the efficiency of subsequent Si penetration into the alloy, and successively leading to the decrease of penetration temperature up to 200 °C. As a consequence, the Si gradient distribution across thickness can be readily controlled by changing penetration time, and FeSi alloys with various gradients are prepared by chemical vapor deposition along with subsequent annealing process. The dependence of magnetic and mechanical properties on Si gradient for demonstrates that the increase of Si gradient reduces core losses, especially at higher frequencies, and meanwhile improves ductility of FeSi alloys as well. The mechanism underlying the effect of Si gradient is clarified by combining magnetostriction measurement and domain structure observations. This work provides a facile and effective way for achieving gradient FeSi alloys with good magnetic property and ductility.

  6. Ce-didymium-Fe-B sintered permanent magnets

    International Nuclear Information System (INIS)

    Homma, M.; Okada, M.; Sugimoto, S.

    1985-01-01

    Present works report the development of the low cost R-Fe-B permanent magnets. The best magnetic properties obtained in this studies are Br=13.5 kG, iHc=10.2 kOe and (BH)max=40 MGOe with an Fe-33.5wt%(5Ce-Didymium)-1wt% B alloy. Topics considered in this paper include cerium alloys, boron alloys, fabrication, capitalized cost, iron alloys, permanent magnets, and magnetic properties

  7. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  8. Structural and magnetic properties of Fe{sub 60}Al{sub 40} alloys prepared by means of a magnetic mill

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Correa, R. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Rosales-Rivera, A., E-mail: arosalesr@unal.edu.c [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Pineda-Gomez, P. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Universidad de Caldas, Manizales (Colombia); Salazar, N.A. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia)

    2010-04-16

    A study on synthesis, structural and magnetic characterization of Fe{sub 60}Al{sub 40} (at.%) alloys prepared by means of mechanical alloying process is presented. The mechanical alloying was performed using a milling device with magnetically controlled ball movement (Uni-Ball-Mill 5 equipment) at several milling times. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The effects of milling time on the structural state, morphological evolution and magnetic behaviour of the Fe{sub 60}Al{sub 40} (at.%) alloys are discussed. Besides, in this current study we emphasize the result that indicating a ferro-para-ferromagnetic transition from a correlation between X-ray diffraction and magnetization data.

  9. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  10. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  11. Secondary particles precipitates in Be-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru; Petrov, V. I.; Martynenko, S. S.; Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    Mössbauer spectra of monocrystalline Be-Fe alloy (0.85 % Fe) were obtained with the use of resonant detector after isothermal annealing at 600 °C for total duration of 2659 hours, and Mössbauer spectra of coarse-grained Be-Fe alloys (0,09-0,80 % Fe) samples were obtained after annealing at 500-600 °C for different durations. The alloys were prepared from the beryllium of different purity. Spectra of phases were fitted by a convolution equation of the three Lorentz lines. The coherent analysis of the solid solution decomposition process by means of the kinetic law classification and the secondary particles precipitate growth processes based on the diffusion models has been implemented. Nucleation on the numerous dislocation clusters and diffusion growth of the FeBe {sub 11} nano-particles are the dominant processes in the analyzed materials. The phase distribution, the incubation period and the diffusion path were obtained. The dependence between the impurity concentration and Mössbauer parameters of the phases is discussed.

  12. Secondary particles precipitates in Be-Fe alloys

    International Nuclear Information System (INIS)

    Filippov, V. P.; Petrov, V. I.; Martynenko, S. S.; Salomasov, V. A.

    2016-01-01

    Mössbauer spectra of monocrystalline Be-Fe alloy (0.85 % Fe) were obtained with the use of resonant detector after isothermal annealing at 600 °C for total duration of 2659 hours, and Mössbauer spectra of coarse-grained Be-Fe alloys (0,09-0,80 % Fe) samples were obtained after annealing at 500-600 °C for different durations. The alloys were prepared from the beryllium of different purity. Spectra of phases were fitted by a convolution equation of the three Lorentz lines. The coherent analysis of the solid solution decomposition process by means of the kinetic law classification and the secondary particles precipitate growth processes based on the diffusion models has been implemented. Nucleation on the numerous dislocation clusters and diffusion growth of the FeBe _1_1 nano-particles are the dominant processes in the analyzed materials. The phase distribution, the incubation period and the diffusion path were obtained. The dependence between the impurity concentration and Mössbauer parameters of the phases is discussed.

  13. Microstructure and tensile properties of Fe-40 at. pct Al alloys with C, Zr, Hf, and B additions

    Science.gov (United States)

    Gaydosh, D. J.; Draper, S. L.; Nathal, M. V.

    1989-01-01

    The influence of small additions of C, Zr, and Hf, alone or in combination with B, on the microstructure and tensile behavior of substoichiometric FeAl was investigated. Tensile properties were determined from 300 to 1100 K on powder which was consolidated by hot extrusion. All materials possessed some ductility at room temperature, although ternary additions generally reduced ductility compared to the binary alloy. Adding B to the C- and Zr-containing alloys changed the fracture mode from intergranular to transgranular and restored the ductility to approximately 5 percent elongation. Additions of Zr and Hf increased strength up to about 900 K. Fe6Al6Zr and Fe6Al6Hf precipitates, both with identical body-centered tetragonal structures, were identified as the principal second phase in these alloys. Strength decreased steadily as temperature increased above 700 K, as diffusion-assisted mechanisms became operative. Although all alloys had similar strengths at 1100 K, Hf additions significantly improved high-temperature ductility by suppressing cavitation.

  14. High Temperature Creep of an Al-8,5Fe-1,3V-1,7Si Alloy

    Czech Academy of Sciences Publication Activity Database

    Kuchařová, Květa; Zhu, S. J.; Čadek, Josef

    2002-01-01

    Roč. 40, č. 2 (2002), s. 69-84 ISSN 0023-432X R&D Projects: GA AV ČR IBS2041001 Institutional research plan: CEZ:AV0Z2041904 Keywords : Al-8,5Fe 1,3V 1,7Si alloy * creep behavior , true threshold stress Subject RIV: JI - Composite Materials Impact factor: 0.493, year: 2002

  15. A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study.

    Science.gov (United States)

    Čapek, Jaroslav; Msallamová, Šárka; Jablonská, Eva; Lipov, Jan; Vojtěch, Dalibor

    2017-10-01

    Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  17. Application of a dynamic-nanoindentation method to analyze the local structure of an Fe-18 at.% Gd cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Baik, Youl [Dept. of Materials Science and Technology, Dankook University, Cheonan(Korea, Republic of); Moon, Byung M. [Liquid Processing and Casting Technology R and D Group, KITECH, Incheon (Korea, Republic of); Sohn, Dong Seong [Nuclear Engineering Department, UNIST, Ulsan (Korea, Republic of)

    2017-04-15

    A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of Fe9Gd. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% Fe3Gd, 6.58 at.% Fe5Gd, 16.22 at.% Fe9Gd, 1.87 at.% Fe2Gd, and 39.49 at.% β-Fe17Gd2. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

  18. Pr2Fe14B/α-Fe nanocomposites for thermal applications

    International Nuclear Information System (INIS)

    Silva, Suelanny Carvalho da

    2012-01-01

    In this work, Pr x Fe 94 - x B 6 (x = 6, 8, 10 and 12) nanostructured powders were prepared by a combination of hydrogenation, disproportionation, desorption and recombination (HDDR) process with high energy milling applied to the mixture of an as-cast alloy (Pr 14 Fe 80 B 6 ) and α-Fe. The produced nanoparticles showed magnetic properties comparable to those reported in hyperthermia studies. The optimal time to obtain the magnetic nanoparticles is 5 hours (at 900 rpm). It was verified that longer milling times cause an increase in carbon percentage on the particles. The carbon is derived from oleic acid added as a surfactant in the milling step. The nanocomposites exhibit coercive force ranging from 80 Oe (6.5 kAm -1 ) to 170 Oe (13.5 kAm -1 ) and magnetic moments in the range of 81 129 Am2kg -1 . From the X-ray diffraction analyses, only two phases were found in all samples: α-Fe and the magnetic phase Pr 2 Fe 14 B. Individual nanoparticles with diameter of about 20 nm were verified. The samples studied presented heating when exposed to an alternating magnetic field (f = 222 kHz e H max ∼3.7 kAm -1 ) comparable to reported in literature. Temperature variations (ΔT) of the powders were: 51 K for Pr 6 Fe 88 B 6 , 41 K for Pr 8 Fe 86 B 6 , 38 K for Pr 10 Fe 8 4 B 6 and T = 34 K for Pr 12 Fe 82 B 6 . The specific absorption rates (SARs) of the powders were 201 Wkg -1 for Pr 6 Fe 88 B 6 composition, 158 Wkg -1 on the composition Pr 8 Fe 86 B 6 , and 114 Wkg -1 for Pr 10 Fe 84 B 6 and Pr 12 Fe 82 B 6 compositions. (author)

  19. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  20. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  1. Interface interaction in the B4C/(Fe-B-C) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wetting behavior in the B 4 C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B 4 C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B 4 C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations

  2. The changes in the electronic structure of B2 FeAl alloy with a Fe antisite and absorbed hydrogen

    International Nuclear Information System (INIS)

    Gonzalez, E.A.; Jasen, P.V.; Luna, R.; Bechthold, P.; Juan, A.; Brizuela, G.

    2009-01-01

    The electronic structure and bonding in a B2 FeAl alloy with and without hydrogen interaction with a Fe antisite were computed using a density functional theoretical method. The hydrogen absorption turns out to be a favorable process. The hydrogen was found close to an octahedral site where one of its Al capped is replaced by a Fe antisite. The Fe-H distance is of 1.45 A same as the Al-H distance. The density of states (DOS) curves show several peaks below the d metal band which is made up mostly of hydrogen based states (>50% H 1s ) while the metal contribution in this region includes mainly s and p orbitals. An electron transfer of nearby 0.21e - comes from the metal to the H. The overlap population values reveal metal-metal bond breaking, the intermetallic bond being the most affected. The H bond mainly with the Al atom and the reported Fe-H overlap population is much lower than that corresponding to FePd alloys and BCC Fe. The changes in the overlap population show the Fe-Al bond is weakened nearly 41.5% after H absorption, while the Fe-Fe bond is only weakened 34.5%. H also develops a stronger bond with the Al atoms. The main bond is developed with Al being twice stronger than Fe-H.

  3. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe{sub 78}Si{sub 9}B{sub 13} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhanwei, Liu; Dunbo, Yu, E-mail: yudb2008@126.com; Kuoshe, Li; Yang, Luo; Chao, Yuan; Zilong, Wang; Liang, Sun; Kuo, Men

    2017-08-15

    Highlights: • Thermal stability of Fe-Si-B amorphous alloy is enhanced by Y addition. • Y addition can improve soft magnetic properties of Fe-Si-B amorphous alloy. • Decomposition of metastable Fe{sub 3}B phase is related to Y content in Fe-Si-B matrix. - Abstract: A series of amorphous Fe-Si-B ribbons with various Y addition were prepared by melt-spinning. The effect of Y addition on crystallization behavior, thermal and magnetic properties was systematically investigated. With the increase of Y content, the initial crystallization temperature shifted to a higher temperature, indicating that the thermal stability of amorphous state in Fe-Si-B-Y ribbon is enhanced compared to that of Fe-Si-B alloy. Meanwhile, compared to the two exothermic peaks in the samples with lower Y content, a new exothermic peak was found in the ribbons with Y content higher than 1 at%, which corresponded to the decomposition of metastable Fe{sub 3}B phase. Among all the alloys, Fe{sub 76.5}Si{sub 9}B{sub 13}Y{sub 1.5} alloy exhibits optimized magnetic properties, with high saturation magnetization M{sub s} of 187 emu/g and low coercivity H{sub cJ} of 7.6 A/m.

  4. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy modification

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Jin, Jiaying; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2014-04-15

    To improve coercivity without sacrificing other magnetic performance of NdFeB sintered magnets, a low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced as an intergranular additive. Magnetic properties and microstructure of the magnets with different Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} contents were studied. At the optimum addition of 3 wt%, coercivity H{sub cj} was enhanced from 12.7 to 15.2 kOe, the maximum magnetic energy product (BH){sub max} was simultaneously increased from 46.6 to 47.8 MG Oe, accompanied by a slight reduction in remanence B{sub r}. Further investigation on microstructure and grain boundary composition indicated that the enhanced H{sub cj} and (BH){sub max} could be attributed to the refined and uniform 2:14:1 phase grains, continuous grain boundaries and a (Nd,Dy){sub 2}Fe{sub 14}B hardening shell surrounding the 2:14:1 phase grains. - Highlights: • Low melting-point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced to NdFeB magnets. • The doped magnet exhibits enhanced coercivity and maximum energy product. • (Nd,Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • The continuous grain boundary layer formed between neighboring Nd{sub 2}Fe{sub 14}B grains.

  5. Hyperfine Interactions and Some Magnetic Properties of Nanocrystalline Co40Fe50Ni10 and Co50Fe45Ni5 Alloys Prepared by Mechanical Synthesis and Subsequently Heat Treated

    International Nuclear Information System (INIS)

    Pikula, T.; Oleszak, D.; Pekala, M.

    2011-01-01

    Co 40 Fe 50 Ni 10 and Co 50 Fe 45 Ni 5 ternary alloys were prepared by mechanical alloying method. To check the stability of their structure thermal treatment was applied subsequently. As X-ray diffraction studies proved the final products of milling were the solid solutions with bcc lattice and the average grain sizes ranged of tens of nanometers. After heating of the Co 50 Fe 45 Ni 5 alloy up to 993 K the mixture of two solid solutions with bcc and fcc lattices was formed. In other cases thermal treatment did not change the type of the crystalline lattice. Moessbauer spectroscopy revealed hyperfine magnetic field distributions which reflected the different possible atomic surroundings of 57 Fe isotopes. Results of the macroscopic magnetic measurements proved that both investigated alloys had relatively good soft magnetic properties. (authors)

  6. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Curie temperature rising by fluorination for Sm2Fe17

    Directory of Open Access Journals (Sweden)

    Matahiro Komuro

    2013-02-01

    Full Text Available Fluorine atoms can be introduced to Sm2Fe17 using XeF2 below 423 K. The resulting fluorinated Sm2Fe17 powders have ferromagnetic phases containing Sm2Fe17FY1(0Fe17FY2 (1Fe17, and α-Fe. The unit cell for Sm2Fe17 is elongated by the fluorination. The largest unit cell volume among the rhombohedral Sm2Fe17 compounds is 83.8 nm3, which is 5.8% larger than Sm2Fe17. The rhombohedral Sm2Fe17 with the largest unit cell volume is dissociated above 873 K, and fluorination increases Curie temperature from 403 K for Sm2Fe17 to 675 K. This increase can be explained by the magneto-volume effect.

  8. Chemical synthesis of magnetic Fe-B and Fe-Co-B particles and chains

    International Nuclear Information System (INIS)

    Fulmer, P.; Kim, J.; Manthiram, A.; Sanchez, J.M.

    1999-04-01

    With an objective to develop magnetic materials with high saturation magnetization for the Magnetically Assisted Chemical Separation (MACS) process the chemical synthesis of Fe-B and Fe-Co-B alloys by reducing iron and cobalt chloride solutions with potassium borohydride has been investigated systematically. The influence of the concentration of the reactants, applied magnetic field, reaction atmosphere, and method of mixing the reactants on the microstructure, particle size, composition and magnetic properties has been studied. Both M-B (M = Fe and Co) particles and elongated chains composed of nanometer size M-B particles have been obtained depending on the reaction conditions. The Fe-B samples exhibit saturation magnetization of M S of 120--190 emu/g, remanent magnetization M r of 10--22 emu/g, and coercive field H c of 400--900 Oe. A high M S value of 190 emu/g, which is close to the theoretical value of 218 emu/g for pure Fe, has been achieved particularly for samples with well-defined chain structures. Increasing the Co content in the Fe-Co-B alloys increases the boron content and thereby decreases the crystallinity and M S values although marginal increase in H c (1,250 Oe) and M r (36 emu/g) values could be made in some Fe-Co-B compositions. The chain structure with high M S may be attractive for other magnetic separation processes as well

  9. The microstructure and magnetic properties of Nd8.5Tb1.5Fe83Zr1B6 ribbons obtained at various cooling rates

    Directory of Open Access Journals (Sweden)

    Dośpiał Marcin

    2015-03-01

    Full Text Available The paper presents results of microstructure and magnetic properties studies of Nd8.5Tb1.5Fe83Zr1B6 ribbons obtained by melt-spinning technique. The samples were produced using the rapid cooling of liquid alloy on the copper wheel, by applying three different linear velocities 20, 30, and 35 m/s. The microstructure of obtained ribbons was examined using X-ray diffractometry and Mössbauer spectroscopy. Magnetic measurements were performed using LakeShore vibrating sample magnetometer. The microstructure measurements were used for quantitative and qualitative analysis of phase composition. Basing on results of structure studies combined with magnetic measurements, the influence of phase composition on hysteresis loop behavior was described.

  10. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  11. High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Abbas, Nadeem; Fang, Qiuli; Wang, Fang; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-11-01

    Hard magnetic NdFeB submicro/nanoflakes were successfully prepared by surfactant-assisted ball milling at low temperature (SABMLT) by specially using 2-methyl pentane and trioctylamine (TOA) as solvent and surfactant, respectively. Influences of the amount of TOA and milling temperature on the crystal structure, morphology and magnetic performances of the as-prepared NdFeB powders were investigated systematically. There is significant difference on morphology between the NdFeB powders milled at room and low temperature. The NdFeB powders with flaky morphology could be obtained even with a small amount of TOA by SABMLT, which could not be achieved by surfactant-assisted ball milling at room temperature (SABMRT). The better crystallinity, better grain alignment, higher coercivity, larger saturation magnetization and remanence ratio were achieved in the samples prepared by SABMLT. Furthermore, the final NdFeB powders prepared by SABMLT possessed a lower amount of residual TOA than those prepared by SABMRT. It was demonstrated that SABMLT is a promising way to fabricate rare-earth-transition metal nanoflakes with high anisotropy for permanent magnetic materials. The effective method of preparing NdFeB flakes by lowering temperature will be also useful to fabricate flakes of other functional materials.

  12. Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A.; Völkl, R.; Wanderka, N.; Glatzel, U.

    2013-12-01

    Microstructure evolution and tensile behavior of the high-entropy alloy Al8Co17Cr17Cu8Fe17Ni33 (at.%) are investigated at room temperature and at 500°C in the as-cast state and under different heat-treatment conditions. Detailed microstructural characterizations are carried out using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The equilibrium phase evolution as a function of temperature was calculated using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden) integrated with TTNi-7 database. The observed majority phase is a face-centered cubic solid solution for all tested specimens. Tensile ductility at room temperature and at elevated temperature is enhanced by heat treatment at 1150°C. An embrittlement phenomenon has been observed after a heat treatment at 700°C resulting in significant degradation in tensile properties.

  13. Surface properties of a nanocrystalline Fe-Ni-Nb-B alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Pavuk, M.; Sitek, J.; Sedlackova, K.

    2014-01-01

    In this work, we studied the impact of a neutron radiation on the surface properties of the nanocrystalline (Fe_0_._2_5Ni_0_._7_5)_8_1Nb_7B_1_2 alloy. Changes in topography and domain structure were observed by means of magnetic force microscopy (MFM). (authors)

  14. Nanocomposite permanent magnetic materials Nd-Fe-B type: The influence of nanocomposite on magnetic properties

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2005-01-01

    Full Text Available The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others – the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.

  15. Development of crystal texture in R-lean RFeCoNbB (R = Nd, Pr) alloy during melt spinning processes

    International Nuclear Information System (INIS)

    Li, Wei; Li, Lanlan; Liu, Yanguo; Zhang, Xiangyi

    2012-01-01

    Highlights: ► We study the texture development during the melt spinning processes of R-lean alloys. ► A strong (0 0 l) texture parallel to the ribbon plane for (Nd,Pr) 2 Fe 14 B is obtained. ► The texture for R 2 Fe 14 B crystals can develop by a seeding effect of α-Fe texture. ► The anisotropic nanocomposite magnet yields M r = 0.78M s and large (BH) max = 25.2 MGOe. - Abstract: The formation of crystal texture of R 2 Fe 14 B nanocrystals in R–Fe–B (R = rare earth) alloys with low R content ( 2 Fe 14 B nanocrystals during the melt spinning processes of Nd 3.6 Pr 5.4 Fe 80 Co 3 NbB 7 by effectively employing the seeding effect of α-Fe nanocrystal texture. The (Nd,Pr) 2 Fe 14 B nanocrystals produced from the R-lean alloy at a wheel speed of 18 m/s show a strong (0 0 l) texture parallel to the ribbon plane, which yields a high remanence M r = 0.78M s and a large energy product (BH) max = 25.2 MGOe for the α-Fe/(Nd,Pr) 2 Fe 14 B nanocomposite ribbons. The present study provides a promising approach to prepare anisotropic nanocomposite magnets from R-lean alloys.

  16. Influence of annealing and nitrogenation on structure and magnetic properties of mechanically alloyed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-07-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm{sub 2}Fe{sub 17+x} and Sm{sub 2}Fe{sub 17+x}N{sub y}, respectively, formed at the various annealing temperatures T{sub A}, XRD with following Rietveld analysis was used. For T{sub A} between 600 C and 750 C a modified hexagonal TbCu{sub 7} structure (space group P6/mmm) was found in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(61) site. The approximated composition is SmFe{sub 8.8-9.0}. The nitrogenated alloys crystallize in the same structure for 600 C < T{sub A} < 700 C. In this case the interstitial nitrogen randomly occupies the 3f site partially (1/3). For 800 C {<=} T{sub A} {<=} 900 C a disordered modified Th{sub 2}Zn{sub 17} structure (space group R anti 3m) was found that is formed by introducing additional Fe (6c) and Sm(3a) positions. The degree of order of the Sm- and Fe-atoms in c-direction increases with increasing annealing temperature. The completely ordered stoichiometric Sm{sub 2}Fe{sub 17} structure could not be reached by annealing the ball milled elemental powders. The nitrided alloys already form this intermediate structure at T{sub A} = 750 C. The interstitial nitrogen occupies the 9e site. The estimated nitrogen content is higher in the hexagonal phases than in the rhombohedral phase. Optimum magnetic properties, in particular a coercitivity {mu}{sub 01}H{sub C} = 3.7 T and a good squareness of the demagnetization curve, were obtained for T{sub A} = 750 C. Here we found a nitrogen content of y = 3 for Sm{sub 2}Fe{sub 17+x}N{sub y}. (orig.)

  17. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  18. Interface interaction in the B{sub 4}C/(Fe-B-C) system

    Energy Technology Data Exchange (ETDEWEB)

    Aizenshtein, M. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); Frage, N. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)], E-mail: nfrage@bgu.ac.il

    2008-11-15

    The wetting behavior in the B{sub 4}C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B{sub 4}C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B{sub 4}C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations.

  19. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan, E-mail: liyan@buaa.edu.cn

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe{sub 81}Ga{sub 19}, (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5}, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0{sub 3} phases were detected for the three types of Fe-Ga alloys, and additional Fe{sub 2}B and TaC phases were found in the (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5} alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe{sub 81}Ga{sub 19} alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4 h and 24 h. - Highlights: • Fe-Ga alloys showed a higher degradation rate than pure Fe. • Fe-Ga alloys exhibited good cytocompatibility for the MC3T3-E1 cells. • The MC3T3-E1 cells were tolerable to the corrosion products of Fe-Ga alloys.

  20. Short range order in FeCo-X alloys

    International Nuclear Information System (INIS)

    Fultz, B.

    1988-01-01

    Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)

  1. Magnetic and Moessbauer studies of amorphous Fe72-xYxHo8B20 alloys

    International Nuclear Information System (INIS)

    Krishnan, R.; Dumond, Y.; Ajan, A.; Shringi, S.N.; Prasad, S.

    1996-01-01

    We have carried out magnetic and Moessbauer studies of amorphous Fe 72-x Y x Ho 8 B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x=16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions J Fe-Fe , J Fe-Ho , etc. The Moessbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment. (orig.)

  2. Microstructural characterization of spray formed Fe-based amorfizable alloy; Caracterizacao microestrutural de ligas ferrosas amorfizaveis processadas por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, A.H.G.; Ananias, M.Jr. da S.; Lucena, F.A.; Santos, L.S. dos; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.; Afonso, C.R.M., E-mail: guimaraes.andreh@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil)

    2014-07-01

    Iron-based amorphous alloys show outstanding characteristics such as high hardness and wear resistance, with microstructure partially amorphous, making them favorable to spray forming process (SF), which has cooling rates between 10{sup 3}-10{sup 5} K/s. Thus, this work aims to use the SF in one of the alloy cast iron present in this project, being chosen the alloy with a better set of results, through the performed characterizations. The alloys studied in this project were: (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 100-x}B{sub x} (x = 5, 8 and 12% at) and (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 88}Nb{sub 4}B{sub 8} (at.%), being all processed through Discovery® Plasma and 'melt- spinning' and characterized using: TEM, SEM, DSC, XRD and microhardness test. The cast iron alloy selected were (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 88}Nb{sub 4}B+8, getting by the spray forming process, deposit and overspray powder. With them, were realized almost the same characterizations, except for the TEM. The results showed 1044±102 (HV1) in Vickers microhardness and nanocrystalline overspray powder from 20-45 μm to > 180 μm. (author)

  3. Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe-based powders

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.; Roth, S.

    2007-01-01

    Ball milling of CoFeZrB ribbons and subsequent compaction of the resulting powders were used to prepare bulk amorphous samples. Further, two sets of powder samples were prepared by cryomilling of FeCuNbMoSiB alloy in amorphous and nanocrystalline state. Amorphous and nanocrystalline FeCuNbMoSiB powders were blended with CoFeZrB powder at different concentrations. Such powder mixtures were consolidated and several bulk nanocomposites have been synthesized. An addition of nanocrystalline or amorphous FeCuNbMoSiB powder to amorphous CoFeZrB powder caused a decrease of the magnetostriction of the resultant bulk samples, while the coercivity shows an opposite behavior. Our results show that the powder consolidation by hot pressing is an alternative method for the preparation of bulk metallic glasses, which are difficult to prepare by casting methods

  4. Magnetic structure at the surface of a FeZrB alloy

    International Nuclear Information System (INIS)

    Pavuk, M.; Miglierini, M.; Sitek, J.

    2013-01-01

    The aim of this work was to examine two structural states of the "5"7Fe_9_0Zr_7B_3 alloy from the point of view of their domain structure. As the method for obtaining the image of a domain structure we used the magnetic force microscopy (MFM). Its advantage is that besides the image of a domain structure, it also records the image of topography. Another advantage is the high spatial resolution. From both of these advantages, one can benefit in the study of nanocrystalline alloys. Nevertheless, the use of MFM in the study of nanocrystalline materials is so far only rare. Additional structural characterization was obtained by the help of Conversion Electron Moessbauer Spectrometry (CEMS). (authors)

  5. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  6. Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application.

    Science.gov (United States)

    Périgo, E A; Silva, S C; de Sousa, E M B; Freitas, A A; Cohen, R; Nagamine, L C C M; Takiishi, H; Landgraf, F J G

    2012-05-04

    Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd(2)Fe(14)BH(x) during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H(max) ~ 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K ≤ ΔT(max) ≤ 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as ~2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 µg ml(-1)) due to the coating applied during milling.

  7. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  8. Magnetic properties and microstructure of as-spun Fe3B/Nd2Fe14B nanocomposite permanent magnets produced by low-speed melt spinning technique

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kanekiyo, H.; Ping, D.H.; Hono, K.

    1998-01-01

    Thick permanent magnet flakes of Fe 3 B/Nd 2 Fe 14 B nanocomposites have been produced directly from molten alloys by means of the low surface-velocity melt spinning technique. The thickness of the flakes varies from 70 to 300 μm depending on the surface velocity (V s ) of a quenching copper roll. Melt-spun flakes of Nd 4 Fe 77.5 B 18.5 alloy exhibit the intrinsic coercivity of 276 kA/m at V s of 5 m/s. X-ray diffraction and transmission electron microscopy results have revealed that this material is composed of nanocrystalline Fe 3 B and Nd 2 Fe 14 B grains ranging from 10 to 50 nm in diameter. The melt-spun alloy produced at V s = 3 m/s contains large grains of Nd 2 Fe 14 B, small grains of Fe 3 B, and large dendritic α-Fe of a few μm in length. In contrast, at V s = 7 m/s, a large portion of the quenched alloy is amorphous. These melt-spun alloys do not possess a hard magnetic property. We have also found that small additions of additives affect the optimum range of V s that give rise to hard magnetic properties in the as-melt-spun condition. Cr has a large effect in shifting the optimum V s values down to a 2-3 m/s range. Simultaneous addition of Co and Ga is effective in extending the optimum values of V s . A platelet permanent magnet with a thickness of 240 μm and magnetic properties of (BH) max = 131 kJ/m 3 , H cJ = 400 kA/m, and B r = 1.15 T has been produced from a Nd 3.5 Dy 1 Fe 73 Co 3 Ga 1 B 18.5 alloy. (orig.)

  9. Soft magnetic properties of FeRuGaSi alloy films: SOFMAX

    International Nuclear Information System (INIS)

    Hayashi, K.; Hayakawa, M.; Ishikawa, W.; Ochiai, Y.; Iwasaki, Y.; Aso, K.

    1988-01-01

    To advance new soft magnetic materials of an FeGaSi alloy into the commercial world, improvements on various properties were designed by introducing additive elements without sacrificing its high saturation magnetic induction. The detailed studies on the diversified properties, such as saturation magnetic induction, film internal stress, wear resistivity, and so on, were performed. High-frequency permeability of the laminated structure film was also investigated. As a result, the Ru-added FeRuGaSi alloy films, whose typical compositions are Fe 72 Ru 4 Ga 7 Si 17 and Fe 68 Ru 8 Ga 7 Si 17 (at. %), prove to be excellent soft magnetic materials especially appropriate for the magnetic recording/playback head core use

  10. Preparation and Characterization of TiB2-(Supra-Nano-Dual-Phase High-Entropy Alloy Cermet by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Shulei Zhang

    2018-01-01

    Full Text Available This paper introduces the preparation method and characterization results of TiB2 ceramics with CoCrFeNiAl high-entropy alloy (HEA as a sintering aid by Spark Plasma Sintering (SPS. Good wettability between HEA and TiB2 was proved by the sessile drop method, indicating promising prospects for this composite. The sintering results showed that the addition of HEA could dramatically promote the sinterability of TiB2. TiB2-5 wt. % HEA dense ceramics prepared at the optimal temperature of 1650 °C showed fine morphology without formation of brittle phases. The liquid phase in the ceramics was highly consistent with the so-called “supra-nano-dual-phase materials (SNDPM”, with near-ideal strength. This study represents the first time that a ceramic-SNDPM composite has been fabricated since the invention of such structures.

  11. Thermophysical properties of the Li(17)Pb(83) eutectic alloy

    International Nuclear Information System (INIS)

    Jauch, U.; Haase, G.; Schulz, B.

    1986-01-01

    Methods of measurements and results for the following properties of Li(17)Pb(83) are presented: density, specific heat, latent heat of fusion, surface energy, thermal conductivity and diffusivity, electrical conductivity and viscosity. The range of the temperature for extrapolation of the physical properties is discussed. (orig.)

  12. Short-range order of amorphous FeNiB alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Baluch, S.; Cirak, J.; Lipka, J.

    1990-01-01

    Transmission Moessbauer spectroscopy was used to study irradiation-induced changes in the short-range order of an amorphous Fe 80-x Ni x B 20 alloy. Neutron irradiation led to an increase of the width of a hyperfine field distribution implying atomic rearrangement towards disordering. Changes in a mean value of a HFD and Moessbauer line areas can be associated with a reorientation of spins due to radiation damage. (orig.)

  13. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  14. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  15. Texturing for bulk α-Fe/Nd2Fe14B nanocomposites with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Lou, L.; Hou, F.C.; Wang, Y.N.; Cheng, Y.; Li, H.L.; Li, W.; Guo, D.F.; Li, X.H.; Zhang, X.Y.

    2014-01-01

    In the present study, the texturing of bulk α-Fe/Nd 2 Fe 14 B nanocomposites produced from Nd-lean amorphous Nd x Fe 92.5−x Cu 1.5 B 6 (x=9 to 11.5 at%) via a hot deformation under a uniaxial stress of ∼350 MPa at 973 K has been studied. An enhanced (00l) texture of the hard phase is observed with increasing Nd content, which results in an increase in the magnetic anisotropy of the nanocomposite magnets. As a result, both the coercivity and the remanence of the magnets increase simultaneously with increasing Nd content from x=9–11.5 at%, yielding a significant enhancement of the maximum energy product from (BH) max =13.2 to 17.5 MGOe in the direction parallel to stress axis. - Highlights: • Textured bulk α-Fe/Nd 2 Fe 14 B nanocomposites have been produced from Nd-lean alloys. • Nd content has an effect on the texturing of α-Fe/Nd 2 Fe 14 B nanocomposite magnets. • An enhanced (00l) texture of hard phase is observed with increasing Nd content. • Both the coercivity and remanence increase simultaneously with Nd content

  16. Effect of γ-(Fe,Ni) crystal-size stabilization in Fe-Ni-B amorphous ribbon

    Science.gov (United States)

    Gorshenkov, M. V.; Glezer, A. M.; Korchuganova, O. A.; Aleev, A. A.; Shurygina, N. A.

    2017-02-01

    The effect of stabilizing crystal size in a melt-quenched amorphous Fe50Ni33B17 ribbon is described upon crystallization in a temperature range of 360-400°C. The shape, size, volume fraction, and volume density have been investigated by transmission electron microscopy and X-ray diffraction methods. The formation of an amorphous layer of the Fe50Ni29B21 compound was found by means of atomic-probe tomography at the boundary of the crystallite-amorphous phase. The stabilization of crystal sizes during annealing is due to the formation of a barrier amorphous layer that has a crystallization temperature that exceeds the crystallization temperature of the matrix amorphous alloy.

  17. Crystallization processes in an amorphous Co-Fe-Cr-Si-B alloy under isothermal annealing

    Science.gov (United States)

    Fedorets, A. N.; Pustovalov, E. V.; Plotnikov, V. S.; Modin, E. B.; Kraynova, G. S.; Frolov, A. M.; Tkachev, V. V.; Tsesarskaya, A. K.

    2017-09-01

    Research present the crystallization processes investigation of the amorphous Co67Fe3Cr3Si15B12 alloy. In-situ experiments on heating in a transmission electron microscope (TEM) column were carried out. Critical temperatures influencing material structure are determined. The onset temperature of material crystallization was determined.

  18. Polarization and resistivity measurements of post-crystallization changes in amorphous Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Chattoraj, I.; Bhattamishra, A.K.; Mitra, A.

    1993-01-01

    The effects of grain growth and compositional changes on the electrochemical behavior and the resistivity of amorphous iron-boron-silicon (Fe 77.5 B 15 Si 7.5 ) alloys after crystallization were studied. Deterioration of the protective passive film was observed, along with increased annealing. Potentiodynamic polarization provided excellent information about microstructural and chemical changes. It was concluded that electrochemical measurements could be used in conjunction with resistivity measurements in direct studies of grain growth and chemical changes occurring in different phases of the devitrified alloy

  19. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  20. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  1. Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/{alpha}-Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu Ying, E-mail: Liuying5536@163.com [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China) and Key Laboratory of Advanced Special Material and Technology, Ministry of Education, Chengdu 610065 (China); Ma Yilong [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2012-07-15

    Bulk anisotropic NdFeB/{alpha}-Fe nano-composites were obtained directly from alloys of Nd{sub 11}Dy{sub 0.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd{sub 11}Dy{sub 0.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nb has great influence on the microstructure and magnetic properties of (NdDy){sub 11.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0-2.0) nanocomposites. Black-Right-Pointing-Pointer Most of Nb atoms gather in the grain boundary to form Nb-rich amorphous intergranular phase, not NbFeB boride. Black-Right-Pointing-Pointer Furthermore, grain alignment can be prompt by the Nb-rich solid intergranular phase during deform. Black-Right-Pointing-Pointer Remanence, coercivity and (BH){sub m} of deformed (NdDy){sub 11.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposite is 1.04T, 563 kA/m and 146 kJ/m{sup 3} respectively. Black-Right-Pointing-Pointer This study provides an alternative method for prepare anisotropic nanocomposite direct from Nd-lean alloys with low cost.

  2. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite

    International Nuclear Information System (INIS)

    Liu, K.M.; Lu, D.P.; Zhou, H.T.; Atrens, A.; Zou, J.; Yang, Y.L.; Zeng, S.M.

    2010-01-01

    This paper studied Ag micro-alloying in the deformation-processed Cu-14Fe in situ composite, by a comparison of Cu-14Fe and Cu-14Fe-0.06Ag. Each alloy was prepared by casting and processed into an in situ composite by hot and cold working. The microstructures were documented using light microscopy and scanning electron microscopy (SEM). The mechanical properties were measured with a tensile-testing machine. The electrical conductivity was measured with a micro-ohmmeter. For both alloys, the as-cast microstructure consisted of a Cu matrix and Fe dendrites; after hot and cold working the microstructure consisted of a Cu matrix containing Fe fibres elongated in the working direction. The as-cast Ag-containing alloy contained finer Fe dendrites. The Ag-containing in situ composite had thinner Fe fibres, higher tensile strength, higher ductility, and higher conductivity. The cold worked Cu-14Fe-0.06Ag in situ composite with cumulative cold deformation strain η = 7.8 (where η = ln(A 0 /A) and A 0 and A are the original and final cross-section areas, respectively), achieved a tensile strength of 930 MPa and a conductivity of 56%IACS (International Annealed Copper Standard; 17.241 nΩ m is defined as 100%IACS). The Ag micro-alloyed in situ composite had a combination of properties comparable to that of a much more expensive alloy containing much more Ag. After 1 h heat treatment at 300 deg. C, the tensile strength was increased to 950 MPa and the conductivity was increased to 56.4%IACS.

  3. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  4. NMR and Moessbauer studies of the amorphous system Fe79P/sub 21-x/B/sub x/

    International Nuclear Information System (INIS)

    Amamou, A.; Durand, J.

    1977-05-01

    Combined NMR, spin-echo and Moessbauer experiments have been performed to obtain hyperfine field distributions of the transition metal and metalloid elements in splat-cooled amorphous Fe 79 P 21 /sub -x/B/sub x/ alloys. These distributions are related to the local environments of the elements. The NMR signals are observed in the low frequency range 20-60 MHz and all the nuclei, i.e. Fe, P and B, may contribute to the spectral distribution. The resolution of the spectra into that due to Fe and (P + B) nuclei was made possible by using samples prepared with an Fe 56 isotope. The Fe distribution thus obtaned shows general agreement with the Moessbauer field distribution. From a careful analysis of the NMR data, the hyperfine field at the B nuclei in these amorphous alloys is found to range from 24 to 26 KG increasing with B content. An upper limit of 8 KG for the half-width is attributed to this distribution. The Moessbauer spectra of the Fe 57 nuclei resemble those for the crystalline Fe 75 P 25 /sub -x/B/sub x/ alloys. A fit of the spectra shows a field distribution which suggests the presence of structure. Such a structure may correspond to various Fe sites, also seen in the crystalline alloys. The distributions generally lie between about 160 and 330 KG, with a maximum at about 260 KG. These spectra do not show the presence of Fe nuclei with essentially zero hyperfine field as was obtained for amorphous Fe-Pd-P by Sharon et al. and for amorphous Fe-P by Logan et al. With increasing B content the center of gravity of the Fe distribution shifts to higher values. From a systematic study of the NMR lines and other considerations it is concluded that the P field distribution is broad and its hyperfine field is between 20 and 35 KG for the higher P concentration alloys

  5. 4 CFR 83.17 - Fees.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Fees. 83.17 Section 83.17 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS PRIVACY PROCEDURES FOR PERSONNEL RECORDS § 83.17 Fees. (a) Generally, GAO's policy... discretion may charge a fee when the cost for copying the record (at a rate of 20 cents per page) would be in...

  6. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  7. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    Science.gov (United States)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  8. Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing

    International Nuclear Information System (INIS)

    Podgornykh, S. M.; Svyazhin, A. D.; Shreder, E. I.; Marchenkov, V. V.; Dyakina, V. P.

    2007-01-01

    We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe 2 VAl and Fe 2 CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe 2 VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties

  9. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  11. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  12. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  13. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  14. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  15. The effect of phase constitution on the magnetic structure of nanophase NdFeB alloys observed by magnetic force microscopy

    Science.gov (United States)

    Al-Khafaji, M. A.; Rainforth, W. M.; Gibbs, M. R. J.; Davies, H. A.; Bishop, J. E. L.

    1998-09-01

    Magnetic force microscopy (MFM) has been employed to image the magnetic structure in nanocrystalline melt spun ribbon samples of NdFeB alloys of three markedly different and contrasting compositions: Low-Nd (Nd 9.5Fe 84.5B 6) containing Nd 2Fe 14B and α-Fe phases, stoichiometric (Nd 11.8Fe 82.3B 5.9), and high-Nd (Nd 18Fe 76B 6) containing Nd 2Fe 14B and Nd-rich phases. It was found that the magnetic domain length scale is significantly larger than the mean Nd 2Fe 14B grain size (˜35 nm) in each case, although small changes in force gradient occurred down to ˜20 nm. However, both the domain length scale and the tip-sample interaction `strength' were found to decrease with increasing Nd-content. An interpretation of these results in terms of the microstructure is given.

  16. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  17. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  18. NdFeB thick films prepared by tape casting

    International Nuclear Information System (INIS)

    Pawlowski, B.; Schwarzer, S.; Rahmig, A.; Toepfer, J.

    2003-01-01

    NdFeB films of thickness between 100 and 800 μm were prepared by tape casting of a slurry containing 84-95 wt% of commercial NdFeB powder (MQP-B, -Q and -S). After curing the flexible green tapes at 120 deg. C non-porous magnetic films are obtained. The remanence of the films is in the range of 350-450 mT and the coercivity is between 300 and 800 kA/m depending on the type of MQP powder used. The magnetic properties of the films are discussed in relation to film composition and type of magnetic material. For MEMS applications the thick films are magnetized with a multi-pole stripe pattern with 1 mm pole pitch. The induction at the surface of the films was measured with a Hall probe and compared to theoretical calculations. The results indicate that the films are completely magnetized regardless of the film thickness. Tape-casted NdFeB thick films are promising candidates for applications in micro-systems or actuators. Miniaturization of the magnet components is one of the key issues in the development of electromagnetic micro-systems, thus creating a need for replacement of small sintered magnets by magnetic thick film components. Other applications include encoders

  19. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    International Nuclear Information System (INIS)

    Nadutov, V.M.; Kosintsev, S.G.; Svystunov, Ye.O.; Garamus, V.M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2011-01-01

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)x10 -6 K -1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy T C =195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Moessbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature Θ D =180 K was estimated using the temperature dependence of the integral intensity of Moessbauer spectra for specified temperature range. The inequality B eff =(0.7-0.9)B ext was obtained in external field Moessbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to B ext . Nano length scale magnetic inhomogeneities nearby and far above T C were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond. - Highlights: → Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy. → Carbon expanded the temperature range of anti-Invar behavior in Fe-Ni-based alloy. → Moessbauer data point to mixed interspin interaction and low the Dedye temperature. → The SANS experiments reveal nano length scale magnetic inhomogeneities ≤6 nm. → Anti-Invar behavior of Fe-Ni-C alloy explained by thermally varied magnetic order.

  20. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  1. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    International Nuclear Information System (INIS)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-01-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction

  2. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  3. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  4. Comparative study on microstructures and mechanical properties of the heat-treated Al–5.0Cu–0.6Mn–xFe alloys prepared by gravity die casting and squeeze casting

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, WeiWen; Lou, ZhaoHui; Zhang, DaTong; Li, YuanYuan

    2014-01-01

    Highlights: • Only two kind Fe-rich intermetallics are found in the heat-treated Al–5.0Cu–0.6Mn–xFe alloys. • Squeeze cast Al–5.0Cu–0.6Mn alloys containing 1.5% Fe have desirable mechanical properties. • The difference between gravity die cast and squeeze cast Al–5.0Cu–0.6Mn–xFe alloys. - Abstract: The Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents were prepared by gravity die casting and squeeze casting. The difference in microstructures and mechanical properties of the T5 heat-treated alloys was examined by tensile test, optical microscopy, deep etching technique, scanning electron microscope and electron probe micro-analyzer. The results show that both β-Fe and α (CuFe) are observed in T5 heat-treated gravity die cast alloy and only α (CuFe) appears in the squeeze cast alloy when the Fe content is 0.5 wt%. When the Fe content is more than 1.0 wt%, the main Fe-rich intermetallics is α (CuFe) in both squeeze cast and gravity die cast alloys. The mechanical properties of both the gravity die cast and squeeze cast alloys decrease gradually with the increase of Fe content due to the decreased volume fraction of precipitation particles, the increased volume fraction of Fe-rich intermetallics and the increased size of α (Al) dendrites. The squeeze cast alloys with different Fe contents have superior mechanical properties compared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity and refinement of Fe-rich intermetallics and α (Al) dendrite. In particularly, the elongation of the squeeze cast alloys is less sensitive to the Fe content than that of the gravity die cast alloys. An elongation level of 13.7% is obtained in squeeze cast alloy even when the Fe content is as high as 1.5%, while that of the gravity die cast alloy is only 5.3%

  5. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  6. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    Science.gov (United States)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  7. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.Z.; Hong, Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Fang, X.G. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Qiu, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.S. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2016-06-15

    High coercivity Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} (x=7–15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd{sub 2}(FeCoAl){sub 14}B, Nd-rich, and Nd{sub 1+ε}(FeCo){sub 4}B{sub 4} phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity H{sub cj} of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest H{sub cj} of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties. - Highlights: • 2 mm hard magnetic Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} rods were prepared by direct casting. • High coercivity of 1.78 T was achieved in x=11 sample after heat treatment. • Small grains are responsible for the significant increase in H{sub C} after annealing. • Nd{sub 2}Fe{sub 14}B grains with two different sizes lead to two-step demagnetization process.

  8. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    International Nuclear Information System (INIS)

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost non-existent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials show that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated

  9. An investigation of domains and walls in two NdFeB alloys by transmission electron microscopy

    International Nuclear Information System (INIS)

    Young, S.; Chapman, J.N.

    1993-01-01

    Transmission Electron Microscopy (TEM) has been used to investigate the domain structure in NdFeB alloy ampersand The variation of domain period in thinned sections has been studied for two different alloys and an energy minimization model has been used to calculate the specific domain wall energy (σ) for each alloy. For the basic alloy (A) a value for σ of 20.4mJ/m 2 Was found, whilst the alloy with additions of Dy (B) had a value which was ∼10% lower. This apparently surprising result is attributed to a decrease in the RE-TM exchange energy which more than offsets the increase in anisotropy resulting from the addition of Dy. The behavior of domains as they approach a grain boundary has also been investigated. It has been observed that the relative orientation of the c-axes of two adjacent grains is extremely important in determining the behavior of the domain structure at the grain boundary

  10. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  11. Magnetic properties of amorphous alloys of Fe with La, Lu, Y, and Zr

    International Nuclear Information System (INIS)

    Heiman, N.; Kazama, N.

    1979-01-01

    In order to study the systematics of the Fe-Fe exchange in amorphous rare-earth--Fe alloys, without the complications associated with the magnetic characteristics of the rare-earth elements, amorphous films of Fe alloyed with La, Lu, Y, and Zr have been prepared with a wide range of Fe concentrations. Magnetization and Moessbauer-effect measurements were made. The magnetic properties of the alloys depended critically on the choice of rare earth (or rare-earth-like element). YFe and LuFe alloys were found to have spin-glass characteristics while LaFe and ZrFe alloys were found to be ferromagnetic, but with evidence that exchange fluctuations were nearly as large as the average exchange. Thus the nature of the Fe-Fe exchange interaction depends critically upon the species of the rare earth. The most important parameter in determining the magnetic behavior of these alloys appears to be the size of the rare-earth atom, with large rare-earth atoms resulting in a smaller ratio of exchange fluctuations to exchange. The same dependence of the magnetic properties upon rare-earth size appears to be important in the case of magnetic-rare-earth atoms; however, the effect of rare-earth--Fe exchange also becomes important and these effects are discussed

  12. Hydriding properties of amorphous Ni-B alloy studied by DSC and thermogravimetry

    International Nuclear Information System (INIS)

    Spassov, T.; Rangelova, V.

    1999-01-01

    The hydrogenation behaviour of melt-spun Ni 81.5 B 18.5 amorphous alloy was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG) and compared with the hydriding properties of a Fe-B-Si glass. It was found that the amorphous Ni-B alloy absorbs larger amounts of hydrogen than the Fe-B-Si glass, as the initial kinetics of hydrogen absorption and desorption of both the alloys are comparable. Hydrogen absorption and desorption reactions in Ni-B were observed to proceed with similar rates at ca. 300 K. The hydrogen desorption is revealed in DSC as an endothermic peak in the 350-450 K range, preceding the crystallization peak of the amorphous alloy. The enthalpy of hydrogen desorption (ΔH des =22 kJ/mol H 2 ) for Ni-B was found to be smaller than that for the Fe-B-Si glass, which finding is in contrast to the results on hydrogen diffusion in crystalline αFe and Fe-based alloys and Ni and Ni-based alloys. The hydrogen desorption temperature and enthalpy for Ni 81.5 B 18.5 were found to be independent of the amount of hydrogen absorbed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  14. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  15. Phase formation and crystallization behavior of melt spun Sm-Fe-based alloys

    International Nuclear Information System (INIS)

    Shield, J.E.

    1999-01-01

    The phase formation and microstructures of Sm-Fe alloys have been investigated at Sm levels of 11 and 17 atomic percent and with alloying additions of Ti and C. At lower Sm content, virtually phase pure SmFe 7 formed, while higher Sm content resulted in the formation of SmFe 7 , SmFe 2 and amorphous phases. The addition of Ti and C resulted in greater stability and a larger volume fraction of the amorphous phase. The binary Sm-Fe alloys at both Sm levels had tremendously variable microstructures, with large discrepancies in grain size and phase distribution from region to region. The addition of Ti and C tended to result in a more homogeneous microstructure, as well as a refinement in the microstructural scale. (orig.)

  16. The Magnetization Reversal Processes Of Bulk (Nd, Y-(Fe, Co-B Alloy In The As-Quenched State

    Directory of Open Access Journals (Sweden)

    Dośpiał M.

    2015-09-01

    Full Text Available The magnetization reversal processes of bulk Fe64Co5Nd6Y6B19 alloy in the as-quenched state have been investigated. From the analysis of the initial magnetization curve and differential susceptibility versus an internal magnetic field it was deduced, that the main mechanism of magnetization reversal process is the pinning of domain walls at the grain’s boundaries of the Nd2Fe14B phase. Basing on the dependence of the reversible magnetization component as a function of magnetic field it was found that reversible rotation of a magnetic moment vector and motion of domain walls in multi-domain grains result in high initial values of the reversible component. The presence of at least two maxima on differential susceptibility of irreversible magnetization component in function of magnetic field imply existence of few pinning sites of domain walls in Fe64Co5Nd6Y6B19 alloy. The dominant interactions between particles have been determined on the basis of the Wohlfarth dependence. Such a behavior of Wohlfarth’s plot implies that the dominant interaction between grains becomes short range exchange interactions.

  17. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  18. Improvements of room temperature tensile properties in cast TiAl-Fe-V-B alloy by microstructural control; Fe, V, B tenka TiAl gokin no soshiki seigyo ni yoru joon hippari tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishikiori, S.; Matsuda, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-05-01

    Conditions of homogenization to follow the HIP (hot isostatic press) treatment of the TiAl alloy are tested and discussed for the optimization of the relationship between mechanical properties and the structure resulting from heat treatment. Fe, V, and B are added for improved castability to a TiAl alloy newly developed in this report, and this allows {beta} precipitation to take place which does not occur in the two-element alloy. Attention is paid to this {beta} phase, and the effect of homogenizing conditions and the amount of oxygen is investigated from the metallographic point of view. Some findings obtained are mentioned below. The {beta} phase size 30-50{mu}m emerges in the vicinity of {gamma} grains, containing more Fe and V in the solid solution state than the other structural phases. The {beta} phase rich in Fe and V concentration is high in Vickers hardness, and is supposedly brittle at room temperature. The added oxygen reduces the amount of {beta} phase precipitation for the stabilization of the {alpha} phase. The TiAl alloy containing Fe, V, and B exhibits a duplex structure after HIP treatment and the homogenization process to follow. It has a tensile strength of 550MPa, proof stress of 390MPa, and elongation of 1.80%, on the average at room temperature. 14 refs., 10 figs., 1 tab.

  19. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1994-01-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√ bar m to 30.8 MPa√ bar m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√ bar m to 18.5 MPa√ bar m for the as-deposited condition and from 19.8 MPa√ bar m to 21.0 MPa√ bar m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces

  20. Corrosion of ferrous alloys exposed to thermally convective Pb-17 at. % Li

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1986-01-01

    A type 316 stainless steel thermal convection loop with type 316 stainless steel coupons and a Fe-9 Cr-1 Mo steel loop containing Fe-12 Cr-1 MoVW steel specimens circulated molten Pb-17 at. % Li at a maximum temperature of 500 0 C. Specimens were exposed for greater than 6000 h. Mass loss and surface characterization data were compared for these two alloys. At any particular exposure time, the corrosion of type 316 stainless steel by Pb-17 at. % Li was more severe, and of a different type than that of similarly exposed Fe-12 Cr-1 MoVW steel. The austenitic alloy suffered nonuniform penetration and dissolution by the lead-lithium, whereas the Fe-12 Cr-1 MoVW steel tended to be more uniformly corroded. The presence of a ferritic layer on the type 316 stainless steel, and its susceptibility to spalling during specimen cleaning, were shown to be important in evaluating the data and in comparing corrosion losses for the type types of alloys. A model for the nonuniform penetration of type 316 stainless steel by Pb-17 at. % Li was suggested

  1. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  2. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  3. Influence of cooling rate on microstructure of NdFeB strip casting flakes

    Energy Technology Data Exchange (ETDEWEB)

    Binglin Guo; Bo Li; Dongling Wang; Xiaojun Yu [Central Iron and Steel Research Inst., Beijing, BJ (China); Jifan Hu [Shandong Univ., Jinan (China)

    2005-07-01

    In this paper, flakes of NdFeB cast alloys were prepared by using the strip casting technique. Microstructure and composition of phases in NdFeB SC flakes were studied by SEM and energy spectra. Especially, the influences of cooling rate on the microstructure of SC flakes were discussed, helping us to master strip casting technology. The results show that the cooling rate plays an important role in obtaining the perfect microstructure of SC flakes, which thickness is supposed not less than 0.32mm in these studies. (orig.)

  4. Study of the magnetic and structural properties of nanostructured powders of Nd{sub 2}Fe{sub 14}B mechanically alloyed

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, L.E.; Perez Alcazar, G.A. [Department of Physics, University of Valle, A.A. 25360, Cali (Colombia); Rojas, Y.A.; Bustos, H. [Department of Physics, University of Tolima, A.A. 546, Ibague (Colombia); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS6087, 72085 Le Mans Cedex 9 (France); Oyola Lozano, D.

    2007-07-01

    In this work we report the magnetic and structural properties obtained by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction, of powder of Nd{sub 2}Fe{sub 14}B prepared by mechanical alloying. The mixtures were ball milled during 48 hours and submitted to heat treatments between 500 and 900 C under an argon atmosphere. Structural parameters were derived from high statistics X-ray patterns. The Moessbauer spectra registered at 300 K for samples without heat treatment were fitted by means of a sextet and a hyperfine field distribution, associated to a residual pure iron phase ({alpha}-Fe) and a disordered iron-based phase, respectively. From the spectra at 300 K the formation of the Fe{sub 3}C phase is observed for samples heat treated at 900 C. A quenching above 900 C accelerates the formation of the Fe{sub 3}C phase. The hysteresis loops allow to conclude that these samples behave as soft ferromagnets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. A study of the process of Nd{sub 15} Fe{sub 77} B{sub 8} magnetic alloy preparation by calciothermic reduction diffusion (R/D); Estudo do processo de obtencao da liga magnetica Nd{sub 15} Fe{sub 77} B{sub 8} por reducao-difusao (R/D) calciotermica

    Energy Technology Data Exchange (ETDEWEB)

    Graca Guilherme, Eneida da; Paschoal, Jose O.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1992-12-31

    In this work the manufacturing of Nd{sub 15}, Fe{sub 77}, B{sub 8} alloy powder for high-performance permanent magnets by reduction-diffusion process was investigated. The effect of variables such as the excess amount of neodymium oxide, the removal of calcium oxide by selective leaching and milling of alloy was examined. (author). 8 refs., 8 figs., 5 tab.s.

  6. Influence of nitrogenation on structure development and magnetic properties of mechanically alloyed and annealed Sm-Fe powders

    International Nuclear Information System (INIS)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Gruner, W.; Mueller, K.-H.

    1999-01-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm 2 Fe 17+y N x , formed at various annealing temperatures T A for 1 h, X-ray diffraction with following Rietveld analysis was used. A volume expansion of 6.2% was observed after nitrogenation. As for the non-nitrided Sm-Fe alloys a modified TbCu 7 -type structure (space group P6/mmm) and a modified Th 2 Zn 17 -type structure (space group R anti 3m) have been observed. However, for nitrogenated Sm-Fe samples the modified Th 2 Zn 17 -type structure forms already for annealing at T A =750 C prior to nitrogenation. For samples annealed, prior to nitrogenation, between T A =600 and 700 C the modified TbCu 7 -type structure was found, in which the nitrogen occupies randomly the 3f position with an occupancy larger than 1/3. The partially ordered, modified Th 2 Zn 17 -type structure formed for 750 C A 2 Zn 17 -type structure by introducing additional Fe(6c) and Sm(3a) positions. The degree of order of the Sm atoms and Fe-dumbbells increases with increasing T A . The nitrogen occupies the octahedral interstitial positions 9e in the latter cases. The nitrogen content is higher in the hexagonal phase than in the rhombohedral phase. Optimum magnetic properties were obtained for T A =750 C. Here we found a coercivity μ 0J H c =3.7 T and a good squareness of the demagnetization curve. (orig.)

  7. Magnetic properties of the Ce2Fe17-x Mn x helical magnets up to high magnetic fields

    International Nuclear Information System (INIS)

    Kuchin, A.G.; Mushnikov, N.V.; Bartashevich, M.I.; Prokhnenko, O.; Khrabrov, V.I.; Lapina, T.P.

    2007-01-01

    Magnetic properties of the Ce 2 Fe 17- x Mn x , x=0-2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5-1 are helical antiferromagnets and those with 1 B that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce 2 Fe 17- x Mn x compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce 2 Fe 17- x Mn x helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce 2 Fe 17- x Mn x , x=0.5-2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated

  8. XMCD study of the local magnetic and structural properties of microcrystalline NdFeB-based alloys

    Science.gov (United States)

    Menushenkov, A. P.; Ivanov, V. G.; Shchetinin, I. V.; Zhukov, D. G.; Menushenkov, V. P.; Rudnev, I. A.; Ivanov, A. A.; Wilhelm, F.; Rogalev, A.; Savchenko, A. G.

    2017-01-01

    X-ray Magnetic Circular Dichroism (XMCD) technique was used to investigate local magnetic properties of microcrystalline Nd10.4Zr4.0Fe79.2B6.4 samples, oriented along either easy or hard magnetization direction. The Nd L 2,3 and Fe K edge XMCD spectra were measured at room temperature under a magnetic field of T. A very strong dependence of XMCD spectra on the sample orientation has been observed at the Nd L 2,3-edges, whereas the Fe K-edge XMCD spectra are found to be practically isotropic. This result indicates that magnetic anisotropy of NdFeB-based alloys originates from the Nd sublattice. In addition, element selective magnetization curves have been recorded by measuring the intensity of XMCD signals as a function of an applied magnetic field up to T. To find a correlation between local and macroscopic magnetic properties of studied samples we compared these data with magnetization curves, measured by vibrating sample magnetometer up to T. Results are important for understanding the origin of high-coercivity state in NdFeB-based intermetallic compounds.

  9. Crystallization of an amorphous Fe72Ni9Si8B11 alloy upon laser heating and isothermal annealing

    International Nuclear Information System (INIS)

    Girzhon, V.V.; Smolyakov, A.V.; Yastrebova, T.S.

    2003-01-01

    With the use of methods of x-ray diffraction, resistometric and metallographic analyses specific features of crystallization and phase formation in amorphous alloy Fe 72 Ni 9 Si 8 B 11 are studied under various heating conditions. It is shown that laser heating results in alloy crystallization by an explosive mechanism when attaining a certain density of irradiation power. It is stated that ribbon surface laser heating with simultaneous water cooling of an opposite surface allows manufacturing two-layer amorphous-crystalline structures of the amorphous matrix + α-(Fe, Si) - amorphous matrix type [ru

  10. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  11. Effect of crystallization on corrosion behavior of Fe40Ni38B18Mo4 amorphous alloy in 3.5% sodium chloride solution

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Wu, J.K.

    2008-01-01

    After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix.......After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix....

  12. Optimization of the boron content in FeAl (40 at. % Al) alloys

    International Nuclear Information System (INIS)

    Webb, G.; Juliet, P.; Lefort, A.

    1993-01-01

    FeAl intermetallic alloys are of interest for several high temperature applications due to excellent oxidation resistance, low density, and relatively low cost. Attempts to further increase the ductility of iron-rich FeAl have met with, at best, marginal success. Of the ductilization techniques employed, B doping appears to be a promising method for obtaining enhanced ductility and high strength in iron rich FeAl. Boron additions enhance the ductility of these alloys by increasing the grain boundary cohesive strength which reduces the tendency for intergranular fracture. The goal of the present work was to determine the optimum B concentration for increasing ambient temperature ductility. To accomplish this, a series of three iron rich FeAl alloys of similar Fe stoichiometries were doped with different levels of B (0,12, and 80 wppm). Secondary ion mass spectrometry (SIMS) was conducted on these alloys for evaluation of the B partitioning after consolidation by extrusion. Ambient temperature tensile testing and SEM fractography were then used to evaluate the effect of such additions on ambient temperature ductility in air. The results of these experiments indicate that optimum ductility is obtained from a homogeneous distribution of boron in which boride precipitation is limited

  13. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  14. Phase martensitic transformation study in mechanically alloyed Ti{sub 50}Ni{sub 25}Fe{sub 25} alloy via high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Joao Cardoso de; Ferreira, Ailton da Silva, E-mail: joao.cardoso.lima@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil); Rovani, Pablo Roberto; Pereira, Altair Soria [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: Alloys based on titanium and nickel with shape memory effect (SME) have been widely investigated due to potential use in different areas of science and technology, such as electronics, medicine, and space.1 Among them, the superalloys Ti-Ni-Fe show high corrosion resistance and good mechanical properties even at high temperatures that make them suitable for use in applications such as power plant components that work under aggressive conditions. At room temperature, the TiNi alloy has a monoclinic (B19'), known as the martensitic phase. With increasing temperature, the B19' phase transforms into a trigonal/hexagonal (B19) phase, known as the R- or pre martensitic phase, which, in its turn, transforms into a cubic (B2) structure, known as the austenitic phase. On cooling to room temperature, the reverse B2→B19→B19' phase transformations are observed. Since the B19↔B19' transformation occurs at a temperature low enough to inhibit diffusion-controlled processes, it belongs to a class of diffusionless phase transformations known as martensitic transformations. For this study, a Ti{sub 50}Ni{sub 25}Fe{sub 25} (B2) alloy was prepared by mechanical alloying, and the effects of high pressures up to 18 GPa will be presented. The structural changes with increasing pressure were followed by recording in situ angle-dispersive X-ray diffraction (ADXRD) diffractograms, in transmission geometry, using a long fine focus Mo X-ray tube and an imaging plate detector. The obtained results were already reported in Ref [1]. (1) A. S. Ferreira, P. R. Rovani, J. C. de Lima, A. S. Pereira, J. Appl. Phys. 117 (2015). (author)

  15. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  16. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  17. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  18. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  19. Preparation, mechanical strengths, and thermal

    Science.gov (United States)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-05-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni75Si8B17 and Ni78P12B10 alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin A12O3 film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (Ni0.75Si0.08B0.17 99Al1) wire and 2170 MPa and 2.4 pct for (Ni0.78P0.12B0.1)99Al1 wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a Ni-Si-B-Al wire, which is higher by 0.15 pct than that of a Fe75Si10B15 amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance.

  20. Corrosion study of the passive film of amorphous Fe-Cr-Ni-(Si, P, B alloys

    Directory of Open Access Journals (Sweden)

    López, M. F.

    1996-12-01

    Full Text Available Amorphous Fe62Cr10Ni8X20 (X = P, B, Si alloys in 0.01M HCl solution have been investigated by means of standard electrochemical measurements in order to evaluate their corrosion resistance. The study reveals that the best corrosion behaviour is given by the Si containing amorphous alloy. X-ray photoelectron spectroscopy (XPS and Auger electron spectroscopy (AJES have been employed to study the composition of the passive layers, formed on the surface of the different amorphous alloys. The results on Fe62Cr10Ni8X20 show that a protective passive film, mainly consisting of oxidized chromium, greatly enhances its corrosion resistance.

    La resistencia a la corrosión de las aleaciones amorfas Fe62Cr10Ni8X20 (X = P, B, Si inmersas en HCl 0,01M se evaluó usando técnicas electroquímicas. Las técnicas de espectroscopia de fotoemisión de rayos X y espectroscopia Auger se emplearon para estudiar la composición de las capas pasivas, formadas en aire sobre la superficie de las aleaciones amorfas. Del estudio realizado se concluye que el mejor comportamiento frente a la corrosión viene dado por la aleación amorfa que contiene como metaloide Si. Esto es debido a que la capa pasiva de dicha aleación está formada principalmente de óxido de cromo, lo cual confiere una alta resistencia a la corrosión.

  1. Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Wang, Fang; Fang, Qiuli; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-02-01

    Hard magnetic NdFeB submicron and nanoflakes were successfully prepared by surfactant-assisted ball milling at room temperature (SABMRT) and low temperature (SABMLT) by using oleic acid (OA), oleylamine (OLA) and trioctylamine (TOA) as surfactant, respectively. Among the surfactants used, OA and OLA have similar effects on the morphology of the NdFeB nanoflakes milled at both room and low temperature. In the case of TOA, irregular micron-sized particles and submirco/nanoflakes were obtained for the NdFeB powders prepared by SABMRT and SABMLT, respectively. Samples prepared by SABMLT show better crystallinity and better degree of grain alignment than that prepared by SABMRT with the same surfactant. Comparing with the samples milled at RT, higher coercivity and larger remanence ratio were achieved in the NdFeB samples prepared at LT. The amounts of residual surfactants in final NdFeB powders were also calculated, which reveals that the final NdFeB powders milled at LT possess lower amount of residual surfactants than those milled at RT. It was found that lowering milling temperature of SABM would be a promising way for fabricating permanent magnetic materials with better hard magnetic properties.

  2. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.M. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chang, C.T. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Chang, Z.Y.; Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shen, B.L.; Inoue, A. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-07-28

    In this work, quaternary Fe{sub 72-x}M{sub x}Y{sub 6}B{sub 22} (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe{sub 68}Mo{sub 4}Y{sub 6}B{sub 22} cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions.

  3. Structural relaxations in the bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Błoch, K., E-mail: 23kasia1@wp.pl; Nabiałek, M.; Gondro, J.

    2017-05-01

    The paper presents studies of annealing effect on the disaccommodation phenomenon in bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}. The investigated sample was prepared by suction-casting method in the form of rod. The annealing process has been performed at temperature well below the crystallisation temperature. The amorphous structure has been confirmed using X-ray diffractometer. The susceptibility and its disaccommodation were determined using completely automated set up. The disaccommodation curve was decomposed into three elementary processes, each of them was described by Gaussian distribution of relaxation times. The obtained results indicate that the disaccommodation phenomenon in studied alloy is related with directional ordering of atom pairs near the free volumes; this is in agreement with H. Kronmüller's theorem.

  4. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  5. Phase composition, structure and magnetic behaviour of low neodymium rapid-quenched Nd-Fe-B alloys

    Czech Academy of Sciences Publication Activity Database

    Ćosović, V.; Žák, Tomáš; Talijan, N.; Grujić, A.; Stajić-Trošić, J.

    2008-01-01

    Roč. 456, 1-2 (2008), s. 251-256 ISSN 0925-8388 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : multiphase Nd(Pr)-Fe-B alloys * rapid solidification * magnetic measurements * Mossbauer spectroscopy * X-ray diffraction * Nanocrystalline composite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  6. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  7. Damage rates in neutron irradiated FeCo and FeCo2V ordered and disordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1979-01-01

    Ordered and disordered samples of FeCo and FeCo2V alloys have been irradiated at liquid hydrogen temperature with fission neutrons up to an integrated dose of about 7.2 x 10 17 n/cm 2 (E > 1 MeV). During the irradiation, the resistivity increases continuously due to point defect production. (author)

  8. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  9. Defects and related phenomena in electron irradiated ordered or disordered Fe-Co and Fe-Co-V alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.; Desarmot, G.

    1983-01-01

    Two B 2 type alloys Fe 50 at.%-Co 50 at.% and Fe 49 at.%-Co 49 at.%-V 2 at.% either in the ordered or the disordered state have been irradiated with 2.5 MeV electrons at liquid hydrogen temperature. The recovery of the resistivity damage was studied during subsequent isochronal annealing up to 700 K. The resistivity damage rates for both initially disordered Fe-Co and Fe-Co-V alloys are interpreted in terms of point defect production. The intrinsic resistivities rhosub(F) of Frenkel pairs and the effective recombination volumes V 0 are determined. In the Fe-Co ordered alloy point defect production superimposed with a disordering process can account for the resistivity damage. The effective displacement rate causing disordering is determined, indicating that replacement collisions are the dominant disordering mechanism. A calculation of the average number of replacements along directions per Frenkel pair is proposed. During the recovery of the radiation induced resistivity three main stages are observed in both ordered and disordered alloys. The particular resistivity behavior of the Fe-Co-V alloy complicates the interpretation of production and recovery data. (author)

  10. Influence of nitrogenation on structure development and magnetic properties of mechanically alloyed and annealed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Gruner, W.; Mueller, K.-H. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1999-11-15

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm{sub 2}Fe{sub 17+y}N{sub x}, formed at various annealing temperatures T{sub A} for 1 h, X-ray diffraction with following Rietveld analysis was used. A volume expansion of 6.2% was observed after nitrogenation. As for the non-nitrided Sm-Fe alloys a modified TbCu{sub 7}-type structure (space group P6/mmm) and a modified Th{sub 2}Zn{sub 17}-type structure (space group R anti 3m) have been observed. However, for nitrogenated Sm-Fe samples the modified Th{sub 2}Zn{sub 17}-type structure forms already for annealing at T{sub A}=750 C prior to nitrogenation. For samples annealed, prior to nitrogenation, between T{sub A}=600 and 700 C the modified TbCu{sub 7}-type structure was found, in which the nitrogen occupies randomly the 3f position with an occupancy larger than 1/3. The partially ordered, modified Th{sub 2}Zn{sub 17}-type structure formed for 750 C17}-type structure by introducing additional Fe(6c) and Sm(3a) positions. The degree of order of the Sm atoms and Fe-dumbbells increases with increasing T{sub A}. The nitrogen occupies the octahedral interstitial positions 9e in the latter cases. The nitrogen content is higher in the hexagonal phase than in the rhombohedral phase. Optimum magnetic properties were obtained for T{sub A}=750 C. Here we found a coercivity {mu}{sub 0J}H{sub c}=3.7 T and a good squareness of the demagnetization curve. (orig.)

  11. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  12. Correlated spin glass generated by structural disorder in the amorphous Dy6Fe74B20 alloy

    Science.gov (United States)

    Tejada, J.; Martinez, B.; Labarta, A.; Chudnovsky, E. M.

    1991-10-01

    Magnetic properties of the amorphous Dy-Fe-B alloy are studied in terms of the correlated-spin-glass approach of Chudnovsky et al.$-- Features predicted by the theory are clearly observed in the experiment. It is shown that the magnetization law may be presented in the form where it is determined by the dimensionless correlation function of structural disorder, C(y), only. The analysis of the magnetization curve allows one to distinguish between different models of disorder in amorphous solids. Experimental data on Dy-Fe-B are in favor of C=exp(-1/2y2).

  13. Correlated spin glass generated by structural disorder in the amorphous Dy6Fe74B20 alloy

    International Nuclear Information System (INIS)

    Tejada, J.; Martinez, B.; Labarta, A.; Chudnovsky, E.M.

    1991-01-01

    Magnetic properties of the amorphous Dy-Fe-B alloy are studied in terms of the correlated-spin-glass approach of Chudnovsky et al.$---- Features predicted by the theory are clearly observed in the experiment. It is shown that the magnetization law may be presented in the form where it is determined by the dimensionless correlation function of structural disorder, C(y), only. The analysis of the magnetization curve allows one to distinguish between different models of disorder in amorphous solids. Experimental data on Dy-Fe-B are in favor of C=exp(-1/2y 2 )

  14. Microstructure evolution and coercivity enhancement in Nd-Fe-B thin films diffusion-processed by R-Al alloys (R=Nd, Pr)

    Science.gov (United States)

    Xie, Yigao; Yang, Yang; Zhang, Tongbo; Fu, Yanqing; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang

    2018-05-01

    Diffusion process by Nd-Al and Pr-Al alloys was compared and investigated in Nd-Fe-B thin films. Enhanced coercivity 2.06T and good squareness was obtained by using Pr85Al15 and Nd85Al15 alloys as diffusion sources. But the coercivity of diffusion-processed thin films by Pr70Al30 and Pr55Al45 alloys decreased to 2.04T and 1.82T. High ambient coercivity of 2.26T was achieved in diffusion-processed thin film by Nd70Al30 leading to an improved coercivity thermal stability because Nd2Fe14B grains were enveloped by Nd-rich phase as seen by transmission electron microscopy Nd-loss image. Meanwhile, microstructure-dependent parameters α and Neff were improved. However, high content of Al in diffusion-processed thin film by Nd55Al45 lead to degraded texture and coercivity.

  15. Magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys

    Science.gov (United States)

    Krishnan, R.; Driouch, L.; Lassri, H.; Dumond, Y.; Ajan, Antony; Shringi, S. N.; Prasad, Shiva

    1996-11-01

    We have carried out magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x = 16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions JFe-Fe, JFe-Ho, etc. The Mössbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment.

  16. EXAFS study of short range order in Fe-Zr amorphous alloys

    International Nuclear Information System (INIS)

    Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.

    1995-01-01

    Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)

  17. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  18. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching; Lee, Chih-Jhan; Ho, Wen-Fu

    2010-01-01

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable β phase began. However, when 4 mass% Fe or greater was added, the β phase was entirely retained with a bcc crystal structure. Moreover, the ω phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of ω phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9 o ) and Ti-5Nb-5Fe (29.5 o ) alloys were greater than that of c.p. Ti (2.7 o ) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  19. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Changhua 51591, Taiwan (China); Lee, Chih-Jhan [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Ho, Wen-Fu, E-mail: fujii@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China)

    2010-09-15

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable {beta} phase began. However, when 4 mass% Fe or greater was added, the {beta} phase was entirely retained with a bcc crystal structure. Moreover, the {omega} phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of {omega} phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9{sup o}) and Ti-5Nb-5Fe (29.5{sup o}) alloys were greater than that of c.p. Ti (2.7{sup o}) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  20. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  1. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  2. Mössbauer spectroscopic studies in U-Fe and U-Fe-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Alaka; Singh, L. Herojit; Rajagopalan, S.; Govindaraj, R., E-mail: govind@igcar.gov.in; Ramachandran, Renjith; Kalavathi, S.; Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2016-05-23

    {sup 57}Fe Mössbauer studies have been carried out in an alloy of U and Fe with atomic percentage in the ratio of 68%:32% in order to understand the local structure and valence of Fe atoms associated with different phases that may get formed. The effect of changes in the hyperfine parameters such as isomer shift and quadrupole splitting at Fe sites due to additional alloying of Zr has been studied in an alloy of U, Fe and Zr in the ratio of 44%:33%:23% respectively with respect to that of the U-Fe alloy chosen in the present study. Possible effect of solute clustering in these systems has been addressed in an analogous alloy of uranium and zirconium using positron lifetime spectroscopy.

  3. The practical limits for enhancing magnetic property combinations for bulk nanocrystalline NdFeB alloys through Pr, Co and Dy substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.W. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (Singapore)]. E-mail: phylz@nus.edu.sg; Davies, H.A. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (Singapore)

    2007-06-15

    Pr, Co and Dy additions have been employed to improve the combinations of magnetic properties for nanocrystalline Nd {sub x} Fe{sub 94-} {sub x} B{sub 6} melt spun alloys. The dependences of the magnetic properties on the solute element concentrations have been extensively investigated and the relationships between the measured remanence, maximum energy product (BH){sub max} and intrinsic coercivity for several compositional series are discussed. The composition ranges for these elemental substitutions which can be used to achieve the highest values of (BH){sub max} are identified. It is found that, when we employ individual or combined substitutions of Pr and Dy for Nd and Co for Fe in NdFeB alloys with various RE:Fe ratios, the practical limit of (BH){sub max} lies in the range {approx}160-180 kJ/m{sup 3}, combined with a coercivity in the range {approx}400-800 kA/m.

  4. Mössbauer study of alloy Fe{sub 67.5}Ni{sub 32.5}, prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Rodríguez, Edson Daniel, E-mail: edbenitezr@ut.edu.co; Bustos Rodríguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrail Antonio [University of Tolima, Department of Physics (Colombia); Pérez Alcázar, German Antonio [University of Valle, Department of Physics (Colombia)

    2015-06-15

    We present the study of effect of the particle size on the structural and magnetic properties of the Fe{sub 67.5}Ni{sub 32.5} alloy, prepared by mechanical alloying (MA). After milling the powders during 10 hours they were separated by sieving using different meshes. The refinement of the X-ray patterns showed the coexistence of the BCC (Body Centered Cubic) and the FCC (Face Centered Cubic) phases in all samples with lattice parameters and crystallite sizes independent of the mean particle size. However, big particles presented bigger volumetric fraction of BCC grains. The Mossbauer spectra were fitted with a broad sextet corresponding to the ferromagnetic BCC phase, a hyperfine magnetic field distribution and a broad singlet which correspond to the ferromagnetic and paramagnetic sites of the FCC phase, respectively. Hysteresis loops showed a magnetically, soft behavior for all the samples, however, the saturation magnetization values are smaller for the original powder and for the powders with small, mean, particle size due to the dipolar magnetic interaction and the smaller mean magnetic moment, respectively. These effects were proved by Henkel plots that were made to the samples.

  5. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  6. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  7. Magnetic properties of nanocrystallized Fe-Pt-B melt-spun ribbons

    International Nuclear Information System (INIS)

    Yamamoto, Tokujiro; Omori, Akihiro; Kimura, Hisamichi; Inoue, Akihisa

    2007-01-01

    L1 0 FePt nanoparticles have been prepared by etching grain boundaries of heat-treated melt-spun Fe-19Pt-25B (at.%) alloy ribbons. It is revealed that an L1 0 FePt nanocrystalline phase is directly formed from the Fe-Pt-B amorphous ribbons by long-time heat treatment at low temperatures in the vicinity of 723 K. With increasing heat treatment time, dimensions of the nanocrystallized FePt grains increase, accompanied by a change from soft ferromagnetic to hard ferromagnetic. The ribbon crystallized at 723 K for 1.8 ks consists of only an FePt L1 0 phase and its coercivity is as low as 0.381 kA/m. However, it increases to 372 kA/m with increasing grain size of precipitated L1 0 phase to about 30 nm by heat treatment for 86.4 ks, while the saturation magnetic flux density remains constant at about 0.4 T. Etching boundaries in heat-treated ribbons has been performed to obtain ferromagnetic L1 0 FePt nanoparticles and several particles were observed by means of transmission electron microscopy

  8. Effect of Nb and Cr incorporation on the structural and magnetic properties of rapidly quenched FeCoSiB microwires

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Partha; Roy, R.K.; Mitra, A. [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Panda, A.K., E-mail: akpanda@nmlindia.org [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Churyukanova, Margarita; Kaloshkin, Sergey [National University of Science and Technology, MISIS, Leninsky Prospect, 4, Moscow 119049 (Russian Federation)

    2012-08-15

    Rapidly quenched microwires with a nominal composition of Fe{sub 39}Co{sub 39}Si{sub 8}B{sub 14} (A{sub O}), Fe{sub 37}Co{sub 37}Nb{sub 4}Si{sub 8}B{sub 14} (A{sub N}) and Fe{sub 36}Co{sub 36}Nb{sub 4}Cr{sub 2}Si{sub 8}B{sub 14} (A{sub NC}) have been investigated. Devitrification of as-quenched microwires showed that crystallization temperatures increased with simultaneous incorporation of Nb and Cr as in A{sub NC} alloy. Addition of these elements also contributed to an increase in activation energy in A{sub N} and A{sub NC} alloys. Nb addition reduced the particle size, which became much finer in the case of the Cr-containing alloy. Although Nb addition did not have much effect on lowering the Curie temperature T{sub C} of the amorphous phase, Cr substitution lowered T{sub C} to 698 K from high values of 785 K and 787 K observed in the no. A{sub O} and A{sub NC} alloys, respectively. However, the Cr addition revealed a better Giant magneto-impedance (GMI) response compared to the other alloys. Such improved GMI properties in the Cr-containing alloy are attributed to lower values of the coercivity and magnetostriction in the alloy containing both Nb and Cr. - Highlights: Black-Right-Pointing-Pointer FeCoSiB based rapidly quenched microwires prepared by in-rotating-water quenching system. Black-Right-Pointing-Pointer Effect of Nb and Cr on the thermal and GMI behavior of FeCoSiB microwires has been investigated. Black-Right-Pointing-Pointer Effect of Nb and Cr on magnetic properties has also been investigated.

  9. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    International Nuclear Information System (INIS)

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  10. Formation and stability of Fe-rich precipitates in dilute Zr(Fe) single-crystal alloys

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.; Schultz, R.J.

    1993-02-01

    The formation and stability of Fe-rich precipitates in two α-Zr(Fe) single-crystal alloys with nominal compositions (I, 50 ppma Fe, and II, 650 ppma Fe) have been investigated (the maximum solid solubility of Fe in α-Zr is 180 ppma - 800 C). Optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to examine the characteristics of Fe-rich precipitates. SEM and TEM micrographs show that in as-grown alloy II, Zr 2 Fe precipitates are located at 'stringers'. Precipitates were not observed in as-grown alloy I. During annealing, below the solvus, Fe diffuses to the surfaces to form Zr 3 Fe precipitates in both alloys. The precipitates on the surfaces of alloy I tend to be star-like (0001) or pyramidal (1010), and their distribution is heterogeneous. Dissolution of Zr 3 Fe surface precipitates of alloy I (annealing above the solvus) leaves precipitate-like features on the surfaces. Zr 2 Fe precipitates in as-grown alloy II can be dissolved only by β-phase annealing. (Author) 8 figs., 18 refs

  11. Effect of solute atoms on glass-forming ability for Fe–Y–B alloy: An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Han, J.J.; Wang, W.Y.; Liu, X.J.; Wang, C.P.; Hui, X.D.; Liu, Z.K.

    2014-01-01

    The glass-forming abilities of Fe 78 B 22 , Fe 70 Y 6 B 24 , Fe 72 Y 6 B 22 and Fe 72.5 Y 3.5 B 24 alloys were characterized comprehensively using ab initio molecular dynamics simulations. The calculated results were correlated with the properties and atomic structures. It was found that the Fe 72 Y 6 B 22 alloy consists of both the most stable and the least deformed body centered cubic atomic packing structures in the supercooled liquid and glassy states. It was observed that the local compositions in the Fe 72 Y 6 B 22 alloy significantly deviate from the compositions of stable crystalline phases, indicating that the Fe 72 Y 6 B 22 alloy has the best glass-forming ability among the alloys studied. However, Fe 72 Y 6 B 22 alloy has two flaws in terms of glass-forming ability, i.e. relatively large atomic diffusivity and insufficiently close atomic packing. The best performance in these two aspects is observed in the Fe 72.5 Y 3.5 B 24 alloy. Thus, the theoretical study predicts that the best glass former for the Fe–Y–B system is within the compositional range of 22–24 at.% B and 3.5–6 at.% Y

  12. Fabrication, magnetostriction properties and applications of Tb-Dy-Fe alloys: a review

    Directory of Open Access Journals (Sweden)

    Nai-juan Wang

    2016-03-01

    Full Text Available As an excellent giant-magnetostrictive material, Tb-Dy-Fe alloys (based on Tb0.27-0.30Dy0.73-0.70Fe1.9-2 Laves compound can be applied in many engineering fields, such as sonar transducer systems, sensors, and micro-actuators. However, the cost of the rare earth elements Tb and Dy is too high to be widely applied for the materials. Nowadays, there are two different ways to substitute for these alloying elements. One is to partially replace Tb or Dy by cheaper rare earth elements, such as Pr, Nd, Sm and Ho; and the other is to use non-rare earth elements, such as Co, Al, Mn, Si, Ce, B, Be and C, to substitute Fe to form single MgCu2-type Laves phase and a certain amount of Re-rich phase, which can reduce the brittleness and improve the corrosion resistance of the alloy. This paper systemically introduces the development, the fabrication methods and the corresponding preferred growth directions of Tb-Dy-Fe alloys. In addition, the effects of alloying elements and heat treatment on magnetostrictive and mechanical properties of Tb-Dy-Fe alloys are also reviewed, respectively. Finally, some possible applications of Tb-Dy-Fe alloys are presented.

  13. The Effect of Nano-TiC Addition on Sintered Nd-Fe-B Permanent Magnets

    DEFF Research Database (Denmark)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets....... It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop...

  14. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  15. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  16. Nanocrystal Growth in Thermally Treated Fe75Ni2Si8B13C2 Amorphous Alloy

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Blagojević, V.; Minić, Dušan M.; David, Bohumil; Pizúrová, Naděžda; Žák, Tomáš

    43A, č. 9 (2012), s. 3062-3069 ISSN 1073-5623 R&D Projects: GA MŠk 1M0512 Institutional support: RVO:68081723 Keywords : Nanocrystal growth * Fe75Ni2Si8B13C2 * Amorphous alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.627, year: 2012

  17. A study on electrodeposited NixFe1−x alloy films

    Indian Academy of Sciences (India)

    Several techniques such as X-ray diffraction [9], VSM. [10], Mössbauer spectroscopy [11], four-point probe [12] etc. are used to investigate the crystallographic, magnetic and magnetotransport properties of NiFe systems. In this study our aim is to prepare NiFe alloy films relatively thicker (in µm scale) than those reported in ...

  18. The effects of Ni substitution on the magnetic properties of as-cast and annealed Fe-Co amorphous alloy wires

    International Nuclear Information System (INIS)

    Pinitsoontorn, S.; Badini Confalonieri, G.A..; Davies, H.A.; Gibbs, M.R.J.

    2005-01-01

    Amorphous alloy wires of composition (Co x Fe y Ni z ) 72.5 Si 12.5 B 15 , with Ni substituted for both Co and Fe, were prepared by the rotating water bath chill cast technique. The maximum Ni content that can be substituted in order to cast amorphous wire is reported. The effects of Ni addition on the hysteresis loop parameters and the major magnetic properties of the as-cast wire are reported

  19. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  20. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface

    Directory of Open Access Journals (Sweden)

    PANG Jie

    2018-02-01

    Full Text Available Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3 on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.

  1. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  2. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    International Nuclear Information System (INIS)

    Yamaura, Shin-ichi; Nakajima, Takashi; Satoh, Takenobu; Ebata, Takashi; Furuya, Yasubumi

    2015-01-01

    Highlights: • The as-forged Fe 25 Co 75 alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe 25 Co 75 alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe 1−x Co x (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe 25 Co 75 alloy was 108 ppm and that of the as-cold rolled Fe 25 Co 75 alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe 25 Co 75 alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe 25 Co 75 and Fe 20 Co 80 alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction

  3. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in

    2017-04-15

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μ{sub B} and 814 μ{sub B}, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects. - Highlights: • Synthesis of capped nanocrystalline Fe-Pt alloys via chemical routes. • Ordered fct phase were obtained at 600 °C. • Microstructural studies were carried out using SEM and TEM. • Investigation on evolution of magnetic properties from fcc to fct state. • Maximum values of coercivities up to 10,792 Oe were observed.

  4. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Science.gov (United States)

    Wang, Ke; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-01

    Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  5. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  6. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  7. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy

    Science.gov (United States)

    Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.

    2018-06-01

    The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.

  8. Irradiation effects in Fe-30%Ni alloy during Ar ion implantation

    International Nuclear Information System (INIS)

    Soukieh, Mohamad; Al-Mohamad, Ali

    1993-12-01

    The use of metallic thin films for studying the processes which take place during ion irradiation has recently increased. For example, ion implantation is widely used to study the structural defects in transition metallic thin films such as (Fe, Ni, Co), because it can simulate the effects occurring in nuclear reactors during neutron irradiation especially the swelling of reactor materials. The swelling of metals and alloys is strongly related to the material structure and to the irradiation conditions. The general feature of formation of structural defects as a function of irradiation dosage and annealing temperature is well known. However, the detailed mechanisms are still not well understood. For example, the swelling of iron alloy with 30-35% nickel is very small in comparison with other Ni concentrations, and there is no clear information on the possibility of phase transitions in fe-Ni alloys during irradiation. The aim of this work is to study the phase-structural changes in Fe-30% Ni implanted by high dose of argon ions. The effect of irradiation with low energy argon ions (40 KeV, and fluences of 10.E15 to 10.E17 ions/cm) on the deposited thin films of Fe-30% Ni alloy was investigated using RBS and TEM techniques. The thicknesses of these films were about 65+-10 nm deposited on ceramic, KBr, and Be fiols substrates. Gas bubble formation and profile distribution of the implanted argon ions were investigated. Formation of an ordered phase Fe 3 Ni during irradiation appears to inhibit gas bubble formations in the film structure. (author). 17 refs., 15 figs., 7 tabs

  9. Temperature compensation of NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.

    1997-01-01

    Permanent magnet blocks of NdFeB have a relatively high maximum energy product. Because of its relatively low Curie temperature, however, NdFeB has a large temperature coefficient for its residual induction. The temperature coefficients of the relative magnetic fields (ΔB/B)/ΔT in the air gap of NdFeB dipole magnets were reduced from -1.1 x 10 -3 /c to less than 2 x 10 -5 /degree C under operating temperatures of ± 6 C. This was achieved passively by using 1.25-mm-thick strips of 30%-Ni-Fe alloy as flux shunts for the NdFeB blocks. The magnets with soft-steel poles and flux-return yokes were assembled and measured in a temperature-controlled environment

  10. Collaborative analysis for certification of zirconium and zirconium base alloy reference materials JAERI-Z11 to Z16

    International Nuclear Information System (INIS)

    1985-03-01

    The second Sub-Committee on Zircaloy Analysis was organized in April 1978, under the Committee on Analytical Chemistry on Nuclear Fuels and Reactor Materials, JAERI, for the renewal of zirconium and zirconium base alloy certified reference materials (CRMs). The Sub-Committee carried out collaborative analysis among 13 participating laboratories for the certification of the CRMs, JAERI-Z11 to Z18, after development, improvement and evaluation of analytical methods during the period of May 1978 to June 1982. As the result of the collaborative analysis, the certified value was given for 18 elements (Sn, Fe, Ni, Cr, B, Cd, U, Cu, Co, Mn, Pb, Al, Ti, Si, Mo, W, Hf, C) in the CRMs. The first part of this report includes general discussion, the second part principles of certification, the third part development and verification of analytical methods, and the fourth part evaluation of analytical results on 17 elements. Preparation of Z11 to Z18, and certification for carbon in JAERI-Z17 and Z18 were reported separately in JAERI-M 83-241 and M 83-035, respectively. (author)

  11. Nanophase intermetallic FeAl obtained by sintering after mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, L., E-mail: luisa.dangelo@gmail.co [Departamento de Mecanica, UNEXPO, Luis Caballero Mejias, Charallave (Venezuela, Bolivarian Republic of); D' Onofrio, L. [Facultad de Ciencias, Dpto. Fisica, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Gonzalez, G., E-mail: gemagonz@ivic.v [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas, Apdo. 21827, Caracas 1020A (Venezuela, Bolivarian Republic of)

    2009-08-26

    The preparation of bulk nanophase materials from nanocrystalline powders has been carried out by the application of sintering at high pressure. Fe-50 at.%Al system has been prepared by mechanical alloying for different milling periods from 1 to 50 h, using vials and balls of stainless steel and a ball-to-powder weight ratio (BPR) of 8:1 in a SPEX 8000 mill. Sintering of the 5 and 50 h milled powders was performed under high uniaxial pressure at 700 deg. C. The characterization of powders from each interval of milling was performed by X-ray diffraction, Moessbauer spectroscopy, scanning and transmission electron microscopy. After 5 h of milling formation of a nanocrystalline alpha-Fe(Al) solid solution that remains stable up to 50 h occurs. The grain size decreases to 7 nm after 50 h of milling. The sintering of the milled powders resulted in a nanophase-ordered FeAl alloys with a grain size of 16 nm. Grain growth during sintering was very small due to the effect of the high pressure applied.

  12. Intrinsic evolution of novel (Nd, MM)2Fe14B-system magnetic flakes

    Science.gov (United States)

    Yu, Xiaoqiang; Zhu, Minggang; Liu, Weiqiang; Li, Yanfeng; Zhang, Jiuxing; Yue, Ming; Li, Wei

    2018-01-01

    The Nd-substituted (Nd x MM1- x )-Fe-B strip-casting flakes were prepared by induction melting in the vacuum furnace and then subsequently by strip-casting technology. The microstructure and magnetic properties of (Nd x MM1- x )-Fe-B alloys are related to the Nd substitution. 2:14:1 main phases and minor impure phases coexist in the MM-Fe-B flake. For example, La2O3 and CeFe2 impure phases are obviously detected in the x = 0 specimen. As an increase of the Ce concentration is inversely accompanied with the decrease of the Nd content ( x) in (Nd x MM1- x )2Fe14B main phases (0 ≤ x ≤ 1), XRD analysis shows that the overall diffraction peaks of the main phases shift to right domestically because of smaller radius Ce4+. The melting point, spin reorientation phase transition temperature, Curie temperature, magneto-crystalline anisotropy field (at 300 K), and the magnetization ( M 9T) for MM-Fe-B/(Nd0.4MM0.6)-Fe-B/(Nd0.7MM0.3)-Fe-B/Nd-Fe-B strip-casting alloys are 1376.15/1414.15/1439.15/1458.15 K, 74/113/124/135 K, 493.2/538.4/559.7/582.3 K, 48/55.2/64.4/70.1 kOe and 136.5/143.7/151.5/153.7 emu/g, respectively. Due to the varied composition of hard magnetic main phases, M 9T increases gradually with the increase of Nd content ( x). SEM observation and EDX results demonstrate that more Nd and Pr elements aggregate into the 2:14:1 ferromagnetic phase, while less La and Ce elements are prone to the RE-rich region compared with the nominal ratio. As a result, the growth of M 9T becomes extraordinary under maximum external field 9 T, indicating that the (Nd0.7MM0.3)-Fe-B flake may display relatively good magnetic properties and those with higher Nd content have evident effect on magnetization, compositions, and microstructures of hard magnetic main phases. Therefore, practical application of (Nd x MM1- x )-Fe-B-sintered magnets will be very prospective.

  13. Influence of cooling rate on the microstructure and corrosion behavior of Al–Fe alloys

    International Nuclear Information System (INIS)

    Dorin, T.; Stanford, N.; Birbilis, N.; Gupta, R.K.

    2015-01-01

    Highlights: • Increasing the cooling rate from 0.1 to 500 °C/s, mass loss rate decreased by 6 times. • Increase in corrosion resistance was attributed to the refined Fe-intermetallics. • Increased cooling rate resulted in increased Fe content in solid solution. • Direct strip casting can produce alloys with higher acceptable content of impurities. • Direct Strip Casting is a potential candidate to improve recyclability of Al alloys - Abstract: The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al–Fe alloys prepared with wide-ranging cooling rates (0.1 °C/s to 500 °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al–Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

  14. Thermal treatment of the Fe78 Si9 B13 alloy and the analysis of it magnetic properties through Moessbauer spectroscopy and Positronium annihilation

    International Nuclear Information System (INIS)

    Lopez M, A.

    2005-01-01

    The present work is divided in five chapters. In the first one a general vision of the amorphous alloys is given from antecedents, structure, obtaining methods, properties and problems that at the moment, focusing us in a certain moment to the iron base alloys and the anomalous problem of hardness that it presents the alloy Fe 78 Si 9 B 13 like previously mention us. The second chapter tries on the basic theory of the techniques of Moessbauer spectroscopy and Positron Annihilation spectroscopy, used for the characterization of our alloy as well as the complementary technique of X-ray diffraction (XRD) to observe that the amorphous phase was even studying. The third chapter describes the experimental conditions that were used to study the alloy Fe 78 Si 9 B 13 in each one of their thermal treatments. In the fourth chapter the obtained results and their discussion are presented. In the fifth chapter the conclusions to which were arrived after analyzing the results are presented. (Author)

  15. Nd-Fe-B/Sm-M/Nd-M (M = Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability

    Science.gov (United States)

    Grigoras, M.; Lostun, M.; Urse, M.; Borza, F.; Chiriac, H.; Lupu, N.

    2018-02-01

    Hybrid magnets of Nd12Fe82B6(2:14:1-phase)/Nd9.4Fe59Co25.3Ti6.3(3:29-phase) and Nd12Fe82B6/Sm11.1Co65.8Fe8.9Cu10.7Zr3.5(2:17-phase) with different weight ratio have been prepared by spark plasma sintering pressing technique from ball-milled powders obtained from melt-spun ribbons. Influence of the ratio between the two phases on the magnetic properties and thermal stability of the hybrid magnets was studied. It has been found that the ratio has a remarkable influence, especially on the thermal stability of the bulk magnets. However, the magnetic properties of such type of hybrid magnets result not only from the type and ratio of components but also from the interaction between them. It was found that in NdFeB/3:29 hybrid magnets with 15% content of 3:29-phase, the temperature coefficients of remanence (α) and of coercivity (β) are improved from -0.095 to -0.082 (%/°C) and from -0.57 to -0.47 (%/°C), respectively, as compared to the Nd2Fe14B single-phase counterpart. While for the NdFeB/2:17 hybrid magnets the content of 2:17-phase is not significantly influencing the temperature coefficient of induction (α), the temperature coefficient of °C (β) increases up to -0.41 (%/°C) for 10% content of 2:17-phase. The increase in the reversible temperature coefficients of hybrid magnets indicate a remarkable improvement of their thermal stability.

  16. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  17. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  18. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  19. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    Science.gov (United States)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  20. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  1. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  2. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  3. Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: huili@shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang [Institute of Materials, Shanghai University, Shanghai 200072 (China); Liu, Wenqing [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Tingguang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China)

    2013-08-15

    Highlights: • Impurities segregated at grain boundaries were observed by atom probe tomography. • The comparison of segregation features in two Ni–Cr–Fe alloys was studied by APT. • C and Cr atoms co-segregated at grain boundaries before carbide precipitation. -- Abstract: Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni–Cr–Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni–Cr–Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni–Cr–Fe alloys were carried out based on the experimental results.

  4. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  5. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  6. On the structural and magnetic properties of amorphous Fe84-xWxB16 alloys in dependence of W content

    International Nuclear Information System (INIS)

    Novakova, A.A.; Sidorova, G.V.; Katsnelson, A.A.; Szasz, A.; Kojnok, J.

    1990-01-01

    A series of rapidly solidificated amorphous Fe 84-x W x B 16 (x=0-5) alloys have been studied. A strictly linear decrease of H eff versus concentration of W has been observed by Moessbauer spectroscopy. (orig.)

  7. The nonaqueous inhibition of Fe-Co-B-Si amorphous electrodes: An a.c. impedance study in HCl solutions

    International Nuclear Information System (INIS)

    Habib, K.; Abdullah, A.

    1995-01-01

    An electrochemical study on Fe-Co-B-Si amorphous electrodes has been conducted. The study was focused on determining the electrochemical impedance spectroscopy (EIS) of four different alloys of Fe-Co-B-Si in various HCl acid solutions. The A.C. impedance and the capacitance of Fe-Co-B-Si, Co-Fe-Ni-B-Si, Co-Fe-Mn-B-Si, and Co-Fe-Ni-Mo-B-Si alloys were obtained in 25, 50, 75 and 100% of HCl acid at room temperature. Electrochemical parameters, i.e., impedance, were found to vary depending on additions of the Ni, Mn, Ni-Mo to Fe-Co-B-Si alloy, the acid concentration, and the nanoscopic surface roughness of the electrodes. Consequently, a correlation between the obtained data is established

  8. Selective Internal Oxidation and Severe Plastic Deformation of Multiphase Fe-Y Alloys

    Science.gov (United States)

    Kachur, Stephen J.

    Oxide dispersion strengthened (ODS) alloys are known for their desirable mechanical properties and unique microstructures. These alloys are characterized by an even dispersion of oxide phase throughout a metallic matrix, and exhibit high strength and enhanced creep properties at elevated temperatures. This makes them ideal candidate materials for use in many structural applications, such as coal-fired power plants or in next generation nuclear reactors. Currently most often produced by mechanical alloying, a powder metallurgy based process that utilizes high energy ball milling, these alloys are difficult and costly to produce. One proposed method for forming ODS alloys without high-energy ball milling is to internally oxidize a bulk alloy before subjecting it to severe plastic deformation to induce an even oxide distribution. This work examines such a processing scheme with a focus on the internal oxidation behavior. Internal oxidation has been shown to occur orders of magnitude faster than expected in multi-phase alloys where a highly reactive oxidizable solute has negligible solubility and diffusivity in other, more-noble, phases. Commonly referred to as in situ oxidation, this accelerated oxidation process has potential for use in a processing scheme for ODS alloys. While in situ oxidation has been observed in many different alloy systems, a comprehensive study of alloy composition and microstructure has not been performed to describe the unusual oxidation rates. This work used Fe-Y binary alloys as model system to study effects of composition and microstructure. These alloys have been shown to exhibit in situ oxidation, and additionally, Y is typically introduced during mechanical alloying to form Y-rich oxides in Fe-based ODS alloys. Alloys with Y content between 1.5 and 15 wt% were prepared using a laboratory scale arc-melting furnace. These alloys were two phase mixtures of Fe and Fe17Y2. First, samples were oxidized between 600 and 800 °C for 2 to 72

  9. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  10. A FeNiMnC alloy with strain glass transition

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2018-02-01

    Full Text Available Recent experimental and theoretical investigations suggested that doping sufficient point defects into a normal ferroelastic/martensitic alloy systems could lead to a frozen disordered state of local lattice strains (nanomartensite domains, thereby suppressing the long-range strain-ordering martensitic transition. In this study, we attempt to explore the possibility of developing novel ferrous Elinvar alloys by replacing nickel with carbon and manganese as dopant species. A nominal Fe89Ni5Mn4.6C1.4 alloy was prepared by argon arc melting, and XRD, DSC, DMA and TEM techniques were employed to characterize the strain glass transition signatures, such as invariance in average structure, frequency dispersion in dynamic mechanical properties (storage modulus and internal friction and the formation of nanosized strain domains. It is indicated that doping of Ni, Mn and C suppresses γ→α long-range strain-ordering martensitic transformation in Fe89Ni5Mn4.6C1.4 alloy, generating randomly distributed nanosized domains by strain glass transition. Keywords: Strain glass transition, Elinvar alloys, Point defects, Nanosized domains

  11. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 743...... to 823 K for one hour was observed, i.e. the grain size of the FeSi phase slightly decreases when the annealing temperature increases from 743 K ot 823 K. The mechanism of the anomalous grain growth may be due to the different nucleation and volume diffusion rates in the samples anneales at low and high...

  12. Relations microstructure - magnetic properties - squareness factor of PrFeB and NdFeB sintered magnets prepared with hydrogen

    International Nuclear Information System (INIS)

    Perigo, Elio Alberto

    2009-01-01

    In this work, it has firstly been evaluated the preparation of Pr 16 Fe 76 B 8 sintered permanent magnets (% at.) by means of high-energy milling using a planetary ball mill. The influence of both milling speed and time has been verified. The best magnetic properties [J R = (1.02 ± 0.02) T, μ 0J H c = (1.42 ± 0.03) T and (BH) max = (200 ± 4) kJm -3 ] have been found for a permanent magnet prepared with the magnetic alloy milled during 75 minutes using a rotational milling speed of 200 rpm. In order to improve the remanence, the hydrogen decrepitation process time has been reduced from 60 minutes to 2 minutes. In this case, it has been obtained a sintered magnet with J R = (1.14 ± 0.02) T, μ 0J H c = (1.44 ± 0.03) T and (BH) max = (250 ± 5) kJm -3 due to the improvement of crystallographic alignment of the hard magnetic phase. During such investigation, a new methodology to quantify the parameter has been developed. Subsequently, for the first time, a quantitative correlation between the microstructure and the squareness factor in anisotropic sintered RE 16 Fe 76 B 8 (RE = Nd or Pr) magnets has been proposed. The presented expression utilizes the mean size, the mean elongation and the mean roundness of the hard magnetic grains as well as their respective standard deviations. The squareness factor can be improved with a microstructure with rounder grains and with a sharp grain size distribution. The grain size homogeneity is more important to enhance the squareness factor compared to grain shape homogeneity. Furthermore, it has also been verified that the annealing after sintering improves the grain shape homogeneity and the milling enhances the grain size homogeneity. Moreover, the effect of the temperature on the squareness factor of anisotropic sintered magnets has also been evaluated. Such parameter is mainly controlled by the sample's microstructure, in agreement with the proposed expression. Furthermore, a quantitative correlation between the maximum

  13. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  14. Uniform magnetization reversal in dual main-phase (Ce,Nd)2Fe14B sintered magnets with inhomogeneous microstructure

    International Nuclear Information System (INIS)

    Zhang, Le-le; Li, Zhu-bai; Zhang, Xue-feng; Ma, Qiang; Liu, Yan-li; Li, Yong-feng; Zhao, Qian

    2017-01-01

    The element distribution and the magnetic properties were investigated in (Ce,Nd)–Fe–B sintered magnets prepared by mixing Nd 13.5 Fe 80 B 6.5 and Ce 9 Nd 4.5 Fe 80 B 6.5 powders with different mass ratios. Two main phases exist, but element diffusion is evident, and the chemical composition of the main phase is widely different from that of the master alloy. The Ce element tends to be expelled from the Ce-rich Re 2 Fe 14 B phase. Compared with the Ce-rich main phase, the Nd-rich Re 2 Fe 14 B phase is more stable in structure. Although the microstructure is inhomogeneous and the magnetocrystalline anisotropy is variable, the magnetization reversal is uniform in these dual main-phase magnets, which should ascribe to the existence of the exchange coupling, and magnetization reversal undergoes the nucleation of the reversed domain in irreversible magnetization. It is expected to further improve the coercivity by optimizing the distribution of the Nd-rich main phase in preparing the resource-saving (Ce,Nd) 2 Fe 14 B sintered magnets. (paper)

  15. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  16. Structural Relaxation in Fe78Nb2B20 Amorphous Alloy Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Hanc, A.; Rasek, J.; Haneczok, G.; Pajak, L.; Stoklosa, Z.; Kwapulinski, P.

    2011-01-01

    It was shown that soft magnetic properties of Fe 78 Nb 2 B 20 amorphous alloy can be significantly improved by applying 1-h annealing at temperature 623 K (permeability increases even about 8 times). The Moessbauer Spectroscopy technique indicated that the optimized microstructure (corresponding to the maximum magnetic permeability) is free of iron nanograins and should be attributed to annealing out of free volume and a reduction of internal stresses i.e. to the relaxed amorphous phase. (authors)

  17. Structure and magnetism of the Sm{sub 7.5}Y{sub 2.5}Fe{sub 90−x}Si{sub x} (x=0.0, 2.5, 5.0, 7.5 and 10) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.Y.; Zhao, H.; Lai, Y.F.; Du, H.L.; Liu, S.Q.; Wang, C.S.; Han, J.Z.; Yang, Y.C. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Yu, X.; Qi, Z.Q. [GanZhou Fortune Electronic Co. Ltd., Jiangxi (China); Yang, J.B. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2017-03-15

    Sm{sub 7.5}Y{sub 2.5}Fe{sub 90−x}Si{sub x} (x=0.0, 2.5, 5.0, 7.5 and 10) alloys have been prepared by arc melting method and equilibrium disordered Th{sub 2}Zn{sub 17}-type phases, (Sm,Y){sub 2−y}(Fe,Si){sub 17+2y}, with relative lower rare-earth content than the ordered Th{sub 2}Zn{sub 17}-type phase, have been obtained. Compared to the ordered Th{sub 2}Zn{sub 17}-type structure, the X-ray diffraction (XRD) intensity of the superstructure lines of the (Sm,Y){sub 2−y}(Fe,Si){sub 17+2y} decreases with the increase of the Si content and becomes zero for x=10. According to the refinement with the disordered Th{sub 2}Zn{sub 17}-type structure, the occupation rates of the R atoms at (3a) and (6c) sites tend to reach the same value with the increase of the Si content, and the lattice parameter a decreases while the lattice parameter c increases, leading to an increase of c/a. It was found that the atomic ratio of Fe(Si)/Sm(Y) in the disordered Th{sub 2}Zn{sub 17}-type structure increases with the increase of Si content and reaches a maximum value of 9.07 with x=10. The XRD diagrams of the magnetic aligned samples indicate that the easy magnetization direction (EMD) of the (Sm,Y){sub 2−y}(Fe,Si){sub 17+2y} is in the a-b plane, and the change of the EMD in a-b plane has also been observed due to the Si preferred site occupation. The remanence ratios along the easy direction are higher than that along hard direction; however, all the remanence ratios are less than 0.5. The magnetocrystalline anisotropy constant K increases first and then decreases with increasing the Si content. The Curie temperature of Sm{sub 7.5}Y{sub 2.5}Fe{sub 90−x}Si{sub x} alloys increases by about 65 K per Si. The saturation magnetization increases first and then decreases with a maximum of 135.5 emu/g observed for x=2.5 at room temperature. - Highlights: • Equilibrium disordered Th{sub 2}Zn{sub 17}-type phases (Sm,Y){sub 2-y}(Fe,Si){sub 17+2y} have been obtained. • The atomic ratio of

  18. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  19. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    Science.gov (United States)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  20. Preparation of hard magnetic materials based on nitrogenated rare-earth iron alloys

    International Nuclear Information System (INIS)

    Guilherme, Eneida da Graca

    1999-01-01

    Nd Fe 11 Ti, Nd Fe 10.5 Mo 1.5 and Nd Fe 10.75 Mo 1.25 alloys were synthesized by reduction-diffusion calciothermic process (RDC) from neodymium chloride (NdCl 3 ), iron, titanium, molybdenum and reduction agent (metallic calcium). The effect of process variables, like temperature, time, excess amount of NdCl 3 , heating rate, and composition variation of the Nd Fe 12-x Mo x (1 ≥ x ≥ 2). Mother alloys in which 1:12 phase is major were nitrogenated by gas-solid reaction with N 2 and by chemical reaction with sodium zide (Na N 3 ). In addition, the influence of reducing particle size of the powdered mother alloys in the nitrogenation step with Na N 3 were studied. As prepared and interstitially modified Nd Fe 11 Ti, Nd Fe 10.5 Mo 1.5 and Nd Fe 10.75 Mo 1.25 alloys with nitrogen , were characterized by X-ray diffraction, Moessbauer spectroscopy, thermomagnetic, SEM and EDS. Nitrogenation by gas-solid reaction with N 2 is found to be not promising, since resulted Curie temperatures (Tc) were lower than literature values. However, nitrogenation by chemical reaction with Na N 3 was efficient with higher or same Tc than previous reported results. The average increases on Tc and volumetric expansion were 200 deg C and 4%, respectively. Milling of the mother alloys before nitrogenation at 330 deg C is preferred because reaction kinetics is enhanced. Nevertheless, at 450 deg C, a competition between the interstitially modified compound formation (alloy + N) and alloy dissociation has occurred, resulting in a Fe-α phase increase. (author)

  1. Effect of grain alignment distribution on magnetic properties in (MM, Nd)-Fe-B sintered magnets

    Science.gov (United States)

    Yu, Xiaoqiang; Yue, Ming; Zhu, Minggang; Liu, Weiqiang; Li, Yuqing; Xi, Longlong; Li, Jiajie; Zhang, Jiuxing; Li, Wei

    2018-03-01

    H cj of (MM x Nd1-x )-Fe-B sintered magnets decreases distinctly with x increasing when misch metal (MM) content (x) ranges from 0.3 to 1. Practical application is taken into consideration so that the (MM0.6Nd0.4)-Fe-B components are chosen to analyze the changes in behavior of the magnetic properties. Both Magnet II and Magnet III belong to (MM0.6Nd0.4)-Fe-B sintered magnets, however, it should be noted that Magnet II is prepared by the single alloying method (SAM) and Magnet III is prepared by the double main phase alloy method (DMPAM). Core-shell structures of the magnets prepared by DMPAM can result in the higher H cj and lower knee-point coercivity (H k) compared with that by SAM. Furthermore, for Magnet II, the abnormal grain growth contributes to a better grain alignment and smaller distribution coefficient (σ) defined as the degree of grain alignment, which will enforce a higher tendency of the H cj decreasing and H k increasing. The expression of their normalized coercivity h(σ) is deduced by combining Gao’s starting field model with Kronmüller’s nucleation mechanism. Based on the overall h(σ) ~ σ curve, the best desirable h(σ) value is calculated when σ  =  0.09. Theoretically, for Magnet III, the resultant larger σ should be attributed to the more uniform grain alignment. In addition, the deviations of grain size distributions on the c-plane become more remarkable with more MM concentrates, which can be presented by SEM images. Meanwhile, by means of the pole figures, it is also verified that the grain alignment distribution becomes much more diverse with x increasing. Therefore, it can be predicted whether the grain alignment distribution is significant for H k and H cj of (MM x Nd1-x )-Fe-B sintered magnets (x  ≠  0.6) prepared by SAM/DMPAM or not.

  2. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: VFeFe, Co and Cu can improve the ductility of YAg alloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  3. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  4. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  5. Magnetic and frequency properties for nanocrystalline Fe-Ni alloys prepared by high-energy milling method

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Jincang; Yu, Liming; Jia Guangqiang; Jing Chao; Cao Shixun

    2005-01-01

    Fe-based nano-crystalline soft magnetic alloy with Ni-doping was fabricated successfully by high-energy milling. It was proved that a Fe-Ni solid solution is formed and the evaluated average grain size is about 20 nm. The effect of doping Ni on the frequency properties was systematically investigated. From the magnetic measurement results, it can be concluded that, the nickel doped decreases the resonance frequency of Fe-Ni alloy, but Ni doping enhances the frequency stability. The corresponding value of initial permeability as a function of Ni doping concentration was given at 10 kHz and the result indicates that the peak value of initial permeability shifts to the region of low Ni concentration for the samples milled for 72 h

  6. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Perez Alcazar, G. A.; Bustos Rodriguez, H.; Oyola Lozano, D.

    2005-01-01

    In this work we report a comparative study of the magnetic and structural properties of Fe 50 Al 50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe 50 Al 50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  7. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-12-20

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al{sub 7}Cu{sub 2}Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al{sub m}Fe, α-Fe or Al{sub 6}(FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al{sub 7}Cu{sub 2}Fe or Al{sub 7}Cu{sub 2}(FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al{sub 20}Cu{sub 2}Mn{sub 3}), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively.

  8. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    International Nuclear Information System (INIS)

    Zhang, Weiwen; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-01-01

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al 7 Cu 2 Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al m Fe, α-Fe or Al 6 (FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al 7 Cu 2 Fe or Al 7 Cu 2 (FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al 20 Cu 2 Mn 3 ), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively

  9. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  10. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  11. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    Science.gov (United States)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  12. Preparation of nanocrystalline Ce{sub 1−x}Sm{sub x}(Fe,Co){sub 11}Ti by melt spinning and mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Huber, A.M., E-mail: arne.huber@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Goll, D., E-mail: dagmar.goll@htw-aalen.de [Aalen University, Materials Research Institute, Beethovenstr. 1, 73430 Aalen (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2017-04-15

    Permanent magnetic materials based on Ce(Fe, Co){sub 12−x}Ti{sub x} with the ThMn{sub 12} structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd{sub 2}Fe{sub 14}B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce{sub 1−x}Sm{sub x}Fe{sub 11−y}Co{sub y}Ti (x=0−1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 H{sub c,J} values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm. - Highlights: • CeFe{sub 11}Ti nanocrystalline samples demonstrate values of H{sub c,J} up to 77 kA/m. • SmFe{sub 11}Ti nanocrystalline samples demonstrate values of H{sub c,J} up to 392 kA/m. • Dependence of H{sub c,J} on x in Ce{sub 1−x}Sm{sub x(}Fe, Co){sub 11}Ti obeys non-linear dependence. • Optimum annealing shifts to from 800 °C for CeFe{sub 11}Ti to 900 °C for SmFe{sub 11}Ti.

  13. Compositional optimization for nanocrystalline hard magnetic MRE–Fe–B–Zr alloys via modifying RE and B contents

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.Y.; Hussain, M.; Zheng, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-06-15

    To reduce the rare earth content and maintain good magnetic properties for NdFeB based alloys, the effects of RE and B contents on the micro-structure and magnetic properties of nanocrystalline MRE{sub 11−y}Fe{sub 79.5}B{sub 8+y}Zr{sub 1.5} (MRE=Nd{sub 0.8}(Dy{sub 0.5}Y{sub 0.5}){sub 0.2}, y=0–3) alloys have been investigated. Increasing B concentration leads to the appearance and increase of soft magnetic Fe{sub 3}B phase and reduced grain size. With decreasing MRE and increasing B concentrations, the coercivity decreased from 1159.8 kA/m for y=0 to 619.0 kA/m for y=3. The saturation magnetization and remanence increased with B content until y=2 then decreases. The B content also has effects on the exchange coupling, microstructure and thermal stability. While comparing MRE{sub 10}Fe{sub 82.5}B{sub 6}Zr{sub 1.5} alloy with MRE{sub 11−y}Fe{sub 79.5}B{sub 8+y}Zr{sub 1.5} (y=1 and 2) alloys, the alloy with 9 at% MRE can achieve similar magnetic properties as that with 10 at% MRE. The magnetic properties with coercivity of 792.2 kA/m, (BH){sub max} of 128 kJ/m{sup 3} and good thermal stability have been obtained for MRE{sub 9}Fe{sub 79.5}B{sub 10}Zr{sub 1.5} alloy. - Highlights: • Nanocomposite NdFeB composition is optimized to reduce RE from 10 to 9 at.%. • Increasing B content benefits microstructure, exchange coupling, thermal stability. • Alloy with 9% RE has H{sub c}=792kA/m, (BH){sub max}=128kJ/m{sup 3} and low temperature coefficients.

  14. Pressure-induced preferential growth of nanocrystals in amorphous Nd9Fe85B6

    International Nuclear Information System (INIS)

    Wu Wei; Li Wei; Sun Hongyu; Li Hui; Zhang Xiangyi; Li Xiaohong; Liu Baoting

    2008-01-01

    Control over the growth and crystallographic orientation of nanocrystals in amorphous alloys is of particular importance for the development of advanced nanocrystalline materials. In the present study, Nd 2 Fe 14 B nanocrystals with a strong crystallographic texture along the [410] direction have been produced in Nd-lean amorphous Nd 9 Fe 85 B 6 under a high pressure of 6 GPa at 923 K. This is attributed to the high pressure inducing the preferential growth of Nd 2 Fe 14 B nanocrystals in the alloy. The present study demonstrates the potential application of high-pressure technology in controlling nanocrystalline orientation in amorphous alloys

  15. First-principles investigation of Cr-doped Fe2B: Structural, mechanical, electronic and magnetic properties

    Science.gov (United States)

    Wei, Xiang; Chen, Zhiguo; Zhong, Jue; Wang, Li; Wang, Yipeng; Shu, Zhongliang

    2018-06-01

    The structural, mechanical, electronic and magnetic properties of Fe8-xCrxB4 (x = 0, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8) have been investigated by first-principles calculation. It was found that the calculated structural parameters are well consistent with available experimental data. Moreover, all studied compounds are thermodynamically stable phases. On the whole, the moduli of the compounds firstly increase and then decrease with the increase of Cr concentration, whereas the variation of hardness exhibits more fluctuations. All Cr-doped Fe2B have better ductility than Fe2B except Fe2Cr6B4 and Fe5Cr3B4. Interestingly, Fe4Cr4B4 is of not only the slightly larger hardness, but also much better ductility than Fe2B. As the Cr concentration is lower than 20 wt%, the hardness of Cr-doped Fe2B slightly decreases with increasing Cr, whereas the sharply increased hardness of (Fe, Cr)2B in Fe-B alloys or boriding layer should be attributed to the multiple alloying effects resulting from Cr and the other alloying elements. The electronic structures revealed that the Fe-B and/or Cr-B bonds are mainly responsible for their mechanical properties, and the M-N (M = Fe or Cr, N = Fe or Cr) bonds in 〈2 2 0〉 and 〈1 1 3〉 orientations show covalent character. Additionally, the magnetic moments (Ms) of the compounds do not monotonically decrease with increasing Cr.

  16. Preparation of poly (styrene)-b-poly (acrylic acid)/{gamma}-Fe{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.D. [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Liu, W.L., E-mail: wlliu@sdu.edu.cn [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Xiao, C.L.; Yao, J.S.; Fan, Z.P.; Sun, X.L.; Zhang, X.; Wang, L. [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Wang, X.Q. [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-12-15

    The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified {gamma}-Fe{sub 2}O{sub 3}, and subsequently the magnetic nanocomposite was achieved. The products were characterized by {sup 1}H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately. - Highlights: > Magnetic composites were prepared using {gamma}-Fe{sub 2}O{sub 3} and PS-b-PAA. > PS-b-PAA was synthesized by atom transfer radical polymerization. > The obtained composite exhibited soft magnetism.

  17. Preparation of U-Si/U-Me (Me = Fe, Ni, Mn) aluminum-dispersion plate-type fuel (miniplates) for capsule irradiation

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Itoh, Akinori; Akabori, Mitsuo

    1993-06-01

    Details of equipment installed, method adopted and final products were described on the preparation of uranium silicides and other fuels for capsule irradiation. Main emphasis was placed on the preparation of laboratory-scale aluminum-dispersion plate-type fuel (miniplates) loaded to the first and second JMTR silicide capsules. Fuels contained in the capsules are as follows: (A) uranium-silicide base alloys U 3 Si 2 , Mo- added U 3 Si 2 , U 3 Si 2 +U 3 Si, U 3 Si 2 +USi, U 3 Si, U 3 (Si 0.8 Ge 0.2 ), U 3 (Si 0.6 Ge 0.4 ) (B) U 6 Me-type alloys with higher uranium density U 6 Mn, U 6 Ni, U 6 (Fe 0.4 Ni 0.6 ), U 6 (Fe 0.6 Mn 0.4 ) The powder-metallurgical picture-frame method was adopted and laboratory-scale technique was established for the preparation of miniplates. As a result of inspection for capsule irradiation, miniplates were prepared to meet the requirements of specification. (author)

  18. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  19. NdFeB magnets with zero temperature coefficient of induction

    International Nuclear Information System (INIS)

    Ma, B.M.; Narasimhan, K.S.V.L.; Hurt, J.C.

    1986-01-01

    Temperature compensation for the induction of NdFeB type magnets has been investigated. A computer assisted alloy selection method was adopted to identify composition of zero temperature coefficient of induction over -50 to 200 0 C. Selected alloys were processed into magnet by the conventional powder metallurgy method. The experimental temperature coefficient on the sintered magnet correlated with the prediction satisfactory. Holmium is an essential ingredient required for temperature compensation of NdFeB magnets. A magnet, (Nd/sub 0.23/Ho/sub 0.64/Dy/sub 0.13/)/sub 15/Fe/sub 79/B/sub 6/ with B/sub r/ of 7,700 Gauss, H/sub c/ of 7,700 Oe, H/sub ci/ of 20,600 Oe, Bh/sub max/ of 14.8 MGOe and temperature coefficient of -0.029% per 0 C over -50 to +150 was obtained

  20. {gamma}-Fe phase plasma-induced on the surface of thin S3A alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; Garcia-Sosa, I., E-mail: irma.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica (Mexico); Nava, N., E-mail: tnava@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas (Mexico); Camps, E., E-mail: enrique.camps@inin.gob.mx; Escobar, Luis, E-mail: luis.escobar@inin.gov.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica (Mexico); Lopez-Castanarez, R., E-mail: rlc@anuies.mx; Olea-Cardoso, O., E-mail: olc@anuies.mx [Universidad Autonoma del Edo. de Mexico, Facultad de Quimica (Mexico)

    2011-11-15

    Amorphous alloy ribbons of Fe{sub 77}Cr{sub 2}B{sub 16}Si{sub 5} were exposed to cold plasmas of N{sub 2} and Ar-N{sub 2} at temperatures lower than T{sub x} = 808 K. The conversion X-ray Moessbauer spectra of the plasma-exposed ribbons consist of a singlet and a broadened magnetic sextet. The singlet with isomer shift {delta} = -0.11 mm/s can be assigned to {gamma}-Fe austenite phase. Minor bulk magnetic changes in the alloy were measured as a consequence of these treatments; e.g. the relative intensities A23 of the transmission Moessbauer spectra of the untreated and treated samples, were 3.22 and 3.56, respectively, the B{sub hf} values changed from 22.9 T (untreated sample) to 22.4 T (plasma treated samples). Unexpectedly, the {gamma}-Fe phase can also be produced by simply heating the alloy ribbons under N{sub 2} flux at temperatures as low as 423 K. Moessbauer data of the crystallized samples are also reported, and a qualitative assessment on the mechanical properties of the Fe{sub 77}Cr{sub 2}B{sub 16}Si{sub 5} alloy associated with the plasma and/or temperature surface induced {gamma}-Fe phase is given.

  1. Structural transformations in quenched Fe-Ga alloys

    International Nuclear Information System (INIS)

    Lograsso, T.A.; Ross, A.R.; Schlagel, D.L.; Clark, A.E.; Wun-Fogle, M.

    2003-01-01

    It has been speculated that the large increase in magnetostriction in Fe-Ga alloys results from local short-range ordering of the Ga atoms along specific crystallographic directions in the disordered Fe structure. The structural transitions associated with different cooling rates from the high temperature disordered state were investigated with X-ray diffraction of oriented single crystals of Fe-19 at% Ga. Results are presented for long-range ordering during slow cooling and indirect evidence of local short-range ordering of Ga atoms in the disordered state when the alloys are quenched is also presented. In the latter case, the short-range ordering of Ga atoms leads to a tetragonal distortion of the lattice. The dependence of the magnetostrictive response of Fe-Ga alloys on thermal history has been found to be directly related to these structural transformations in Fe-19 at% Ga alloys and experimental support for the proposed magnetostriction model based on Ga-Ga pairing along [100] crystallographic directions is presented

  2. Magnetic properties of magnetic glass-like carbon prepared from furan resin alloyed with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazumasa, E-mail: naka@sss.fukushima-u.ac.jp [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Okuyama, Kyoko [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Takase, Tsugiko [Institute of Environmental Radioactivity (IER), Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)

    2017-03-01

    Magnetic glass-like carbons that were heat-treated at different temperatures or were filled with different magnetic nanoparticle contents were prepared from furan resin alloyed with magnetic fluid (MF) or Fe{sub 3}O{sub 4} powder in their liquid-phase states during mixing. Compared to the Fe{sub 3}O{sub 4} powder-alloyed carbon, the MF-alloyed carbon has highly dispersed the nanoparticles, and has the excellent saturation magnetization and coercivity. It is implied that saturation magnetizations are related to changes in the types of phases for the nanoparticles and the relative intensities of X-ray diffraction peaks for iron and iron-containing compounds in the carbons. Additionally, the coercivities are possibly affected by the size and crystallinity of the nanoparticles, the relative amounts of iron, and the existence of amorphous compounds on the carbon surfaces. - Highlights: • Magnetic glass-like carbons were prepared from furan resin alloyed with magnetic fluid. • The nanoparticles of MF-alloyed GLCs were highly dispersed. • MF-alloyed GLCs had excellent magnetic properties compared to powder-alloyed ones. • The magnetic properties changed with treatment temperature and nanoparticle content. • The changes in magnetic properties were investigated with XRD and FE-SEM.

  3. The effect of boron doping on the magnetostriction of Fe-Ga and Fe-Al samples

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [TU Dresden, Institut fuer Festkoerperphysik (Germany); Teodoro dos Santos, Claudio; Bormio-Nunes, Cristina [Universidade de Sao Paulo, Escola de Engenharia de Lorena, Lorena (Brazil)

    2011-07-01

    Fe-Ga (Galfenol) based alloys are used in a number of magnetomechanical applications because of the high magnetostriction values of more than 100 ppm at room temperature. The addition of boron inhibits the crystallographic ordering of the alloys and stabilizes the disordered A2 structure that is responsible for the high striction values. Especially, polycrystalline and rapid cooled Fe-Ga-B and Fe-Al-B samples were investigated in our project. Magnetization and longitudinal as well as transversal magnetostriction measurements at temperatures of 5 K, 80 K and 300 K show a similar effect of the amount of B as found on single crystals. Whereas the saturation magnetization is nearly the same and mainly determined by the Fe content, a dependence of the striction values on the amount of B is visible (more than 10% in the Fe-Al system). The results illustrate the influence of the stoichiometry and the preparation conditions on the magnetomechanical properties.

  4. Structural and magnetic properties of Fe76P5(Si0.3B0.5C0.2)19 amorphous alloy

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Tiberto, P.; Baricco, M.; Sirkin, H.; Moya, J.A.

    2012-01-01

    Highlights: ► Fe 76 P 5 (Si 0.3 B 0.5 C 0.2 ) 19 amorphous alloy in ribbons and 1 mm and 2 mm rod samples. ► Good glass forming ability with ΔT = 50 K and γ = 0.37 and off-eutectic composition. ► Good soft magnetic properties with magnetization saturation of 1.44 T. ► Geometrical factors are the primary causes of magnetic losses in frequencies above 10 Hz. - Abstract: Recently, bulk amorphous alloys were produced in the Fe–B–Si–P–C system with high glass forming ability, excellent magnetic properties and the advantage of containing no expensive glass-forming elements, such as Ga, Y, Cr or Nb, having, therefore, a good perspective of commercial applications. In the present work, the Fe 76 P 5 (Si 0.3 B 0.5 C 0.2 ) 19 amorphous alloy prepared by two quenching techniques has been studied. Amorphous ribbons of about 40 μm thick were obtained by planar-flow casting together with cylinders having 1 and 2 mm diameter produced by copper mold injection casting. All the samples appear fully amorphous after X-ray diffraction analysis. A comprehensive set of thermal data (glass, crystallization, melting and liquidus temperatures) were obtained as well as a description of the melting and solidification processes. Mechanical microhardness tests showed that the samples have a hardness of 9.7 ± 0.3 GPa. Good soft-magnetic properties were obtained, including a high magnetization of 1.44 T and a low coercivity (4.5 A/m for ribbons and 7.5 A/m in the case of 1 mm rod samples, both in as-cast state). Thermomagnetic studies showed a Curie temperature around 665 K and the precipitation of new magnetic phases upon temperatures of 1000 K. Furthermore, the frequency dependence of magnetic losses at a fixed peak induction was studied. The results suggest the occurrence of a fine magnetic domain structure in bulk samples. The good soft magnetic properties of the bulk metallic glass obtained by copper mold casting for this particular Fe-based composition suggests possible

  5. Tuning the Magnetic Properties and Structural Stabilities of the 2-17-3 Magnets Sm2Fe17X3 (X =C , N) by Substituting La or Ce for Sm

    Science.gov (United States)

    Pandey, Tribhuwan; Du, Mao-Hua; Parker, David S.

    2018-03-01

    Designing a permanent magnet with reduced critical rare-earth content is of paramount importance in the development of cost-effective modern technologies. By performing comprehensive first-principles calculations, we investigate the potential avenues for reducing the critical rare-earth content in Sm2Fe17N3 and Sm2Fe17C3 by making a La or Ce substitution for Sm. The calculated magnetic properties of base compounds are in good agreement with the previous low-temperature (4.2-K) experimental measurements, and they show a large axial anisotropy. Although La or Ce substitution results in a slight reduction of magnetic anisotropy, the magnetic moments of Fe atoms mostly remain unchanged. Specifically, large axial anisotropies of 7.2 and 4.1 MJ /m3 are obtained for SmCeFe17 N3 and SmLaFe17 N3 , respectively. These values of anisotropies are comparable to the state-of-the-art permanent magnet Nd2 Fe14 B . The foremost limitation of Sm2 Fe17X3 magnets for practical application is the formation nitrogen or carbon vacancies at high temperatures. By calculating the N- (C)- vacancy formation energy, we show that La or Ce substitution enhances the vacancy formation energy. This enhanced vacancy formation energy will likely improve the thermodynamic stability of these alloys at high temperatures. Therefore, La- or Ce-substituted Sm2Fe17C3 and Sm2Fe17N3 compounds are promising candidates for high-performance permanent magnets with substantially reduced rare-earth content.

  6. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  7. Defects spectroscopy by means of the simple trapping model of the Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Lopez M, A.; Cabral P, A.; Garcia S, S.F.

    2007-01-01

    In this work it is analyzed quantitatively the results of the positron annihilation in the Fe 78 Si 9 B 13 alloy by means of the simple trapping model. From this analysis its are derived: a reason of positron trapping in the defects (K), the defects concentration (C d ) and the electronic density associated to the defect (n d ); both first parameters, (K, C d ) its increase and n d diminishes when increasing the alloy temperature. From this analysis it is also inferred that the defect consists of a multi vacancy of between 15 and 20 mono vacancies. (Author)

  8. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFe

  9. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  10. Crystallization characteristics of amorphous alloys of FeZr

    International Nuclear Information System (INIS)

    Rozhan, M. Idrus; Grundy, P.J.

    1993-01-01

    The crystallization characteristics of sputter-deposited amorphous alloys of Fe 100-x Zr x prepared at zirconium concentrations between 9 and 89 at.% was investigated. The transformation of the alloys from the amorphous to the crystalline state has been examined by thermal analysis, electrical resistance and X-ray diffraction. The crystallization temperatures were determined by differential scanning calorimetry (DSC) and electrical resistance as a function of temperature. The final phases were determined by X-ray diffraction. The activation energies were calculated from the Kissinger plots and the heats of crystallization were calculated and correlations between the thermal analysis and the resistance results are presented

  11. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated.

  12. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  13. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  14. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Wen, Haiming; Zhang, Dalong; Chen, Zhen; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.

    2016-01-01

    We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA.

  15. Diffusion in ordered Fe-Si alloys

    International Nuclear Information System (INIS)

    Sepiol, B.; Vogl, G.

    1995-01-01

    The measurement of the diffusional Moessbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D0 3 structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe 3 Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe 3 Si to the iron-rich side is discussed. (orig.)

  16. Plastic anomaly of the B2 ordered Fe-40Al alloy

    International Nuclear Information System (INIS)

    Calonne, O.

    2002-05-01

    The plastic behaviour of Fe-40Al (B2-ordered) alloys was studied. This material has the particularly of exhibiting a yield stress that increases in a given temperature range ('yield stress anomaly'). This anomaly is usually associated with a zero strain rate sensitivity in the very same temperature range. These two peculiarities can be explained as a whole by a thermally activated exhaustion of the mobile dislocations. In this work, the macroscopic mechanical behaviour of the FeAl alloys was first characterised. Then, slip geometry was studied in a large temperature range using oriented single crystals. Finally, the elementary deformation processes were studied through an analysis of dislocation structures in deformed materials using TEM post-mortem and in-situ techniques. Our results show that the yield stress anomaly stems from superdislocations exhaustion through the formation of antiphase boundary tubes, due to vacancy absorption. The number of antiphase boundary tubes produced during dislocation motion depends on vacancy concentration, that in turn increases with temperature. This is believed to be the main reason for thermally activated exhaustion. In addition, the anomaly peak and the related stress fall-off at higher temperatures can be ascribed to superdislocation decomposition, which provides the material with ordinary dislocations that cannot generate antiphase boundary tubes. Superdislocations exhaustion seems to be the catalyzing factor for decomposition. We have proposed a basis for an exhaustion/multiplication model. Considering a classical Frank-Read type multiplication mechanism, we express the yield stress as a function of temperature and we show that this results in an anomaly. Moreover, supposing that boron modifies vacancy migration energy, we suggest that the influence of boron on the stress anomaly stems from an increase of vacancy capture radius by mobile superdislocations. (authors)

  17. The influence of ingot annealing on the corrosion resistance of a PrFeCoBNbP alloy

    International Nuclear Information System (INIS)

    Oliveira, M.C.L.; Takiishi, H.; Faria, R.N.; Costa, I.

    2008-01-01

    The influence of the annealing time on the corrosion resistance of a Pr-Fe-Co-B-Nb alloy with the addition of 0.1 wt% P was investigated here using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The cast ingot alloys were annealed at 1100 deg. C for 10, 15 and 20 h. The specimens were immersed for 30 days in naturally aerated 0.02 M Na 2 HPO 4 solution at room temperature, during which period the evolution of the electrochemical behavior was assessed using EIS. The results indicated that the corrosion resistance of the Pr 14 Fe bal Co 16 B 6 Nb 0.1 P 0.25 alloy was related to the annealing time and, hence, to its microstructure. Annealing at 1100 deg. C for 10 h was insufficient to eliminate the Fe-α phase from the alloy microstructure, whereas annealing for 15 and 20 h removed an increasing amount of Fe-α phase, thereby increasing the alloy's corrosion resistance

  18. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys

    Science.gov (United States)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet

    2018-02-01

    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  19. Preparation of Mn-Zn nanoferrite by mechanical alloying

    International Nuclear Information System (INIS)

    Nasresfahani, M.

    2007-01-01

    Full text: In this research Mn-Zn nanoferrite (Mn x Zn 1-x Fe 2 O 4 ;X=0.3,0.5,0.7)were prepared by mechanical alloying of a mixture of 2 single phase ferrites, MnFe 2 O 4 and ZnFe 2 O 4 . First, ZnFe 2 O 4 and MnFe 2 O 4 were obtained by conventional ceramic technique. In this technique a mixture of related raw materials(ZnO and MnO 2 from merck company and Fe 2 O 3 domestic source) was first mixed and calcined at 1100 C for 3h in air. The starting materials used to prepare Mn-Zn nanoferrite were MnFe 2 O 4 and ZnFe 2 O 4 mixed in the ratio appropriate for the reaction: xMnFe 2 O 4+(1-x) ZnFe 2 O 4 MnxZn 1-x Fe 2 O 4 and milled at different times in SPEX8000M mixer/mill. XRD investigations was used to study the phase formation of the as-milled mixed ferrite. Using XRD patterns and Scherrer's formula, mean crystallite size of the single phase samples were calculated and were in the 10-20 nm. Saturation magnetization(Ms) of the powders was measured at room temperature by a very sensitive home made permeameter. The measured Ms values show that they are smaller than the Ms values associated with the same compound prepared by conventional ceramic technique. The decrease is due to the surface effect in nanoparticles, which can be explained on core-sell model. (authors)

  20. A preparation method and effects of Al–Cr coating on NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Lin, Min; Xia, Qingping

    2012-01-01

    A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: ► The Al–Cr coating can be prepared by dipping in solution, shaking dry and heating. ► The coating morphology shows to be an intense overlapping structure. ► The barrier effect combines with passivation and cathodic protection. ► The anticorrosion abilities improve while magnetic properties change little. ► Compared with other surface treatments, this method is convenient and low cost.

  1. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  2. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  3. Nanocrystalline (Fe{sub 60}Al{sub 40}){sub 80}Cu{sub 20} alloy prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Krifa, M.; Mhadhbi, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia); Escoda, L.; Güell, J.M. [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Suñol, J.J., E-mail: joanjosep.sunyol@udg.edu [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Llorca-Isern, N.; Artieda-Guzmán, C. [Dept. CMEM, Universitat de Barcelona, Martí Franques 1, 08028 Barcelona (Spain); Khitouni, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia)

    2013-03-25

    Highlights: ► Nanocrystalline Fe(Al, Cu) powdered alloy (10 nm) has been synthesized by MA. ► Decreasing the crystallite size increases coercivity and squareness ratio. ► As low crystallites size stronger hard ferromagnetic material results. -- Abstract: A nanostructured disordered Fe(Al, Cu) solid solution was obtained from prealloyed FeAl and elemental Cu powders using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. The transformation of the phase depends upon the milling time. With the increase of milling time all Cu atoms became dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe(Al, Cu) solid solution with a mean crystallite size of 10 nm. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Magnetic properties were also investigated and were related to the microstructural changes. The system showed hard magnetic behavior.

  4. Microstructure and composition in rapidly quenched NdFeB-based hard magnet alloys

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Krishnan, K.M.; Lewis, L.H.; Zhu, Y.; Welch, D.O.

    1996-01-01

    A detailed study of the microstructure and composition in hot-pressed (MQ-2) and die-upset (MQ-3) magnet alloys based on the Nd 2 Fe 14 B composition, utilizing high resolution and analytical transmission electron microscopy, is reported. The initial magnetic properties of the two samples show different behaviors, which are attributed to the difference in the anisotropy of the grain structure and the grain boundaries. The hot-pressed sample shows faceted grains of the 2-14-1 phase, while die-upset sample shows plate-like grains, together with larger equiaxed grains that contain a speckling of precipitates in the grain interior. The grain structure and composition remain rather similar in the two samples. The grain boundary phase averages ∼1 endash approx-gt 10 nm in width. The thicker grain boundaries are Nd-rich, while the thinner grain boundaries in the hot-pressed sample exhibit an Fe-rich composition near that of the NdFe 3 phase. Nd-rich phases are found at the grain boundary junctions of both samples, with the Nd:Fe ratio near 7:3 in the die-upset sample, and up to 3:2 in the hot-pressed sample. The significance of the microstructure and the grain boundary phases on the magnetic behavior in the two samples is discussed. copyright 1996 American Institute of Physics

  5. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  6. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  7. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  8. Analysis of NdFeB thin films prepared by facing target sputtering

    International Nuclear Information System (INIS)

    Shivalingappa, L.; Mohan, S.; Ghantasala, M.K.; Sood, D.K.

    1999-01-01

    In this paper, we present the details of our work on the deposition and characterization of NdFeB thin films. These films were prepared using facing target sputtering technique. The silicon(100) substrates were maintained at a substrate temperature of 400 to 600 deg C during deposition. Film structure, composition and magnetic properties are analyzed using Rutherford Backscattering Spectroscopy (RBS) and X-ray Diffraction (XRD) techniques. Films deposited below 400 deg C were x-ray amorphous, while the onset of crystallinity was observed with the films deposited at 500 deg C. Typical film composition was Nd:Fe:B = 2.2:12.5:2. Film composition appear to be a function of deposition conditions. Oxygen has been found to be the main impurity in the films. Oxygen content in the film reduced as the substrate temperature is increased

  9. Studies of magnetic properties of permalloy (Fe-30%Ni) prepared by SLM technology

    International Nuclear Information System (INIS)

    Zhang Baicheng; Fenineche, Nour-Eddine; Zhu Lin; Liao Hanlin; Coddet, Christian

    2012-01-01

    In the present study, a high permeability induction Fe-30%Ni alloy cubic bulk was prepared by the selective laser melting process. In order to reveal the microstructure effect on soft magnetic properties, the microstructure and magnetic properties of the Fe-30%Ni alloy were carefully investigated by scanning electron microscopy, X-ray diffraction and hysteresis measurements. The bcc-Fe (Ni) phase formation is identified by X-ray diffraction. Meanwhile, it was found that low bcc lattice parameter and high grain size could be obtained when high laser scanning velocity and low laser power were used. Moreover, the lowest value of coercivity is 88 A/m, and the highest value of saturation magnetization is 565 Am 2 /kg, which can be obtained at a low laser scanning velocity of 0.4 m/s and high laser power input at 110 W. - Highlights: → Proper Fe-30%Ni alloy (permalloy) using selective laser melting technology. → Microstructure of Fe-30%Ni alloy exhibits fine cellular structure of approximately 100 nm. → Magnetic properties can be controlled by laser parameter. → Lowest coercivity is 88 A/m and highest saturation magnetization is 565 Am 2 /kg.

  10. Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaodong [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Guo, Shuai; Chen, Kan; Chen, Renjie; Lee, Don [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); You, Caiyin, E-mail: caiyinyou@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2016-12-01

    A dual-alloy method was applied to tune the distribution of Ce for enhancing the performance of Nd-Ce-Fe-B sintered magnets with a nominal composition of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B. In comparison to the single alloy of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B, the coercivity was enhanced from 10.3 kOe to 12.1 kOe and the remanence was increased from 13.1 kG to 13.3 kG for the magnets with a dual-alloy method. In addition, the remanence temperature coefficient α and coercivity temperature coefficient β were also slightly improved for the magnet with the dual alloys. The results of microstructure characterizations show the uniform distribution of Ce for the magnet with a single alloy, and the coexistence of the Ce-rich and Ce-lean regions for the magnet with the dual alloys. In combinations with the nucleation of reversal domains and magnetic recoil curves, the property enhancement of magnets with a dual-alloy method was well explained. - Highlights: • Improved magnetic properties were obtained in dual-alloy magnet. • This is due to the tuning of Ce distribution and the change in microstructure. • The magnetic hardening effect can be observed in dual-alloy magnet.

  11. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  12. Crystallization of amorphous Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Jakubczyk, E; Krajczyk, A; Jakubczyk, M

    2007-01-01

    The crystallization process of Fe 78 Si 9 B 13 metallic glass was investigated by DSC, X-ray diffraction, electrical resistivity, Hall effect and TEM methods. The investigations proved two-stages crystallization. By means of non-isothermal DSC experiments the activation energy and the Avrami exponent were determined for both stages. The created phases: α-Fe(Si) and (Fe,Si) 2 B were identified on the basis of X-ray and TEM investigations. However, TEM observations showed also a little amount of the FeB 49 phase as well as some rest of the amorphous phase. The electrical and Hall resistivities decrease abruptly after the creation of the phases out of the amorphous matrix

  13. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  14. Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa

    International Nuclear Information System (INIS)

    Liu, Z.H.; Ma, X.Q.; Zhu, Z.Y.; Luo, H.Z.; Liu, G.D.; Chen, J.L.; Wu, G.H.; Zhang Xiaokai; Xiao, John Q.

    2011-01-01

    The magnetoresistance (MR){=[R(H)-R(0)]/R(0)} properties in ferromagnetic shape memory alloy of NiMnFeGa ribbons and single crystals, and NiFeGa ribbons have been investigated. It is found that the NiMnFeGa melt-spun ribbon exhibited GMR effect, arising from the spin-dependent scattering from magnetic inhomogeneities consisting of antiferromagnetically coupled Mn atoms in B2 structure. In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C , regardless of sample structures. This may be explained by the s-d model. At low temperatures, conventional AMR behaviors due to the spin-orbital coupling are observed. This is most likely due to the diminished MR from s-d model because of much less spin fluctuation, and is not associated with martensite phase. MR anomaly at intermediate field (ρ perpendicular >ρ || ) is also observed in single crystal samples, which may be related to unique features of Heusler alloys. - Highlights: → NiMnFeGa melt-spun ribbon exhibited GMR effect with a large negative MR up to -13%. → GMR behavior is arising from the spin-dependent scattering from magnetic inhomogeneities. → In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C . → Conventional AMR behaviors due to the spin-orbital coupling are observed in NiMnFeGa single crystal and Ni 2 FeGa ribbon samples at low temperatures.

  15. Study on tribological behaviors of Fe+ ion implanted in 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Zhang Aimin; Chen Jianmin; Shi Weidong; Liu Zhenmin

    2000-01-01

    2024 aluminum alloy was implanted with Fe + ions at a dose of 7x10 16 -3 x 10 17 Fe + /cm 2 . The depth profile of Fe element was investigated by Auger electron spectroscopy (AES). The composition of the surface layer was investigated by XRD with sample-tilting diffraction (STD) mode. The worn out surface was observed by scanning electron microscopy (SEM). Micro-hardness, friction and wear properties have been studied before and after Fe + implantation. An AES analysis shows Fe display Gaussian shape distributions. STD shows Al 5 Fe 2 formed during the implantation. Micro-hardness of surface layer was reduced after implantation, but it did not simply decrease with the increasing implantation doses. The friction and wear tests of implanted and unimplanted samples were carried out on a static-dynamic friction precise measuring apparatus. After implantation, the friction coefficient was reduced from 0.7 to 0.1; the wear resistance was improved remarkably, but decreased with increasing implantation dose. The wear mechanism of the unimplanted sample was adhesive wear, abrasive wear and plastic deformation. The wear reducing effect of Fe + ion induced on 2024 aluminum alloy is mainly attributed to tribooxidation of iron and transfixion of line defect. These two factors prevent the adhesive wear, abrasive wear and plastic deformation of 2024 aluminum alloy

  16. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  17. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  18. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si₉B13 Glass Particles.

    Science.gov (United States)

    Guo, Lingyu; Liu, Yan; Shen, Kechang; Song, Chaoqun; Yang, Min; Kim, Kibuem; Wang, Weimin

    2015-08-07

    The AA6061-T6 aluminum alloy samples including annealed Fe 78 Si₉B 13 particles were prepared by friction stir processing (FSP) and investigated by various techniques. The Fe 78 Si₉B 13 -reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200) plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE) for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe 78 Si₉B 13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe 78 Si₉B 13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure.

  19. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  20. Comparative Study by MS and XRD of Fe{sub 50}Al{sub 50} Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Bustos Rodriguez, H.; Oyola Lozano, D., E-mail: doyolalozano@yahoo.com.mx [University of Tolima, Department of Physics (Colombia)

    2005-02-15

    In this work we report a comparative study of the magnetic and structural properties of Fe{sub 50}Al{sub 50} alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe{sub 50}Al{sub 50} sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  1. First principle investigations on Boron doped Fe2VAl Heusler alloy

    International Nuclear Information System (INIS)

    Venkatesh, Ch.; Srivastava, S.K.; Rao, V.V.

    2014-01-01

    The role of atomic size of sp-element is investigated through theoretical calculations and basic experiments to understand the physical properties of Boron doped Fe 2 VAl alloy. The results of ab-initio calculations on ordered L2 1 structure of Fe 2 VAl 1-x B x (x=0, 0.5, 1) alloys have been compared to understand the role of sp-element size on the hybridization among their respective valance states. Interestingly, semi-metallic and paramagnetic like ground states were found in the Boron doped alloys in similar to Fe 2 VAl, eliminating the role of size of the doppent sp-atom. These calculations result in hybridization where the covalent distribution of valance states among the atoms is responsible to produce a finite pseudo-gap at the Fermi level. The observed features could be explained on the basis of covalent theory of magnetism in which an amount of spectral weight transfer occurs in the DOS spectrum among the same spin orbitals, leading to symmetric distribution of bonding and anti-bonding states. However, the obtained experimental findings on Boron doped alloys are in contrast with these calculations, indicating that experimentally the alloy formation into an ideal L2 1 lattice does not happen while doping with Boron. Further, the micro structural analysis shows Boron segregation across the grain boundaries that may form magnetic inhomogeneities in the lattice of Boron doped Fe 2 VAl alloys which preferably cause these experimental anomalies

  2. Amorphous and nanocrystalline fraction calculus for the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Moya, J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina) and Carrera del Investigador, CONICET (Argentina)]. E-mail: vcremas@fi.uba.ar; Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina)

    2007-09-01

    We studied the relationship between the saturation magnetization (M {sub S}) of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy and its nanocrystalline structure. Amorphous ribbons obtained by the melt spinning technique were heat-treated for 1 h at different temperatures. The optimal treatment to obtain a homogeneous structure of Fe{sub 3}(Si,Ge) nanocrystals with a grain size of around 10 nm embedded in an amorphous matrix involved heating at 540 C for 1 h. We calculated the magnetic contribution of the nanocrystals to the heat treated alloy using a linear model and measured the M {sub S} of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} nanocrystalline and of an amorphous alloy of the same composition of the amorphous matrix: Fe{sub 58}Si{sub 0.5}Ge{sub 3.5}Cu{sub 3}Nb{sub 9}B{sub 26}. Using experimental data and theoretical calculations, we obtained the amorphous and crystalline fraction of the heat-treated ribbons.

  3. Thermomagnetic behaviour and microstructure of a rapidly quenched Nd4.5Fe77B18.5 alloy

    Czech Academy of Sciences Publication Activity Database

    Talijan, N.; Ćosović, V.; Grujić, A.; Stajić-Trošić, J.; Žák, Tomáš

    2008-01-01

    Roč. 113, č. 1 (2008), s. 525-528 ISSN 0587-4246. [Czech and Slovak Conference on Magnetism /13./ (CSMAG'07). Košice, 09.08.2007-12.08.2007] R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : Thermomagnetic behaviour * NdFeB alloy * Mossbauer effect * X-ray Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  4. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D'Angelo, L.; Villalba, R.

    2009-01-01

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  5. Study of U - Pu - Fe alloys (Masurca critical experiment)

    International Nuclear Information System (INIS)

    Barthelemy, P.; Boucher, R.

    1965-01-01

    Three compositions have been studied: 73.5 U - 25 Pu - 1.5 Fe (weight %) 74 U - 25 Pu - 1 Fe 74.5 U - 25 Pu - 0.5 Fe Elaboration and Casting are easy. After two weeks in air 74.5 U - 25 Pu - 0.5 Fe alloys are reduced in powder. As-cast alloys containing 1 and 1,5% Fe are kept undamaged during several months. A rapid oxidisation of the alloys is however observed when the samples undergo the phase transformation (at 595 deg. C and 590 deg. C respectively). Ignition tests in the presence of air show that the oxidisation starts at about 250 deg. C and that the reaction does not spread. Ignition is not observed during heating from 20 to 660 deg. C. The transformation temperature, the melting temperature and the thermal expansion coefficients have been determined by dilatometry. Below the transformation temperature, the principal phases are U-Pu zeta and (U, Pu) 6 Fe. Thermal conductibility, Young modulus, density and heat of fusion have been measured. Compatibility tests show that between U-Pu-Fe and stainless steel a phase of (U, Pu) 6 Fe type is formed. The 74 U - 25 Pu - 1% Fe alloy seems to behave better than 73.5 U - 25 Pu - 1.5% Fe alloy because the (U, Pu) 6 Fe layer is two or three times smaller. Finally, the thermal stability has been studied with the 74 U - 25 Pu - 1% Fe alloy. A dilatometric anomaly (very weak expansion) occurs when the sample is heated above transformation temperature and cooled. But there is no anomaly by thermal cycling from 50 deg. C to 400 deg. C and there is no deterioration of alloys by heat treatments at 100 deg. C, 200 deg. C, 300 deg. C during 5 months under vacuum. (authors) [fr

  6. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke, E-mail: K.Wang@hqu.edu.cn; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-15

    Highlights: • Significant increase in magnetization is observed in TbFeCo upon crystallization. • The crystallization temperature is determined in the range between 400 and 450 °C. • The activation barriers for structural changes are obtained successfully. • Better thermal stability against crystallization and oxidation is demonstrated in FeCo-rich sample than Tb-rich type. - Abstract: Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  7. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  8. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  9. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  10. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Lin, Min, E-mail: linm@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, 519 Road Zhuangshi, District Zhenghai, Ningbo 315201, People' s Republic of China (China); Xia, Qingping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-11-15

    A 50 {mu}m Al-Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 Degree-Sign C. The morphology and composition of the Al-Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al-Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al-Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al-Cr coating moves positively from -0.67 to -0.48 V, which is in accordance with Nyquist and Bode plots. The Al-Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: Black-Right-Pointing-Pointer The Al-Cr coating can be prepared by dipping in solution, shaking dry and heating. Black-Right-Pointing-Pointer The coating morphology shows to be an intense overlapping structure. Black-Right-Pointing-Pointer The barrier effect combines with passivation and cathodic protection. Black-Right-Pointing-Pointer The anticorrosion abilities improve while magnetic properties change little. Black-Right-Pointing-Pointer Compared with other surface treatments, this method is convenient and low cost.

  11. Large tunnel magnetoresistance at room temperature with a Co2FeAl full-Heusler alloy electrode

    International Nuclear Information System (INIS)

    Okamura, S.; Miyazaki, A.; Sugimoto, S.; Tezuka, N.; Inomata, K.

    2005-01-01

    Magnetic tunnel junctions (MTJs) with a Co 2 FeAl Heusler alloy electrode are fabricated by the deposition of the film using an ultrahigh vacuum sputtering system followed by photolithography and Ar ion etching. A tunnel magnetoresistance (TMR) of 47% at room temperature (RT) are obtained in a stack of Co 2 FeAl/Al-O x /Co 75 Fe 25 magnetic tunnel junction (MTJ) fabricated on a thermally oxidized Si substrate despite the A2 type atomic site disorder for Co 2 FeAl. There is no increase of TMR in MTJs with the B2 type Co 2 FeAl, which is prepared by the deposition on a heated substrate. X-ray photoelectron spectroscopy (XPS) depth profiles in Co 2 FeAl single layer films reveal that Al atoms in Co 2 FeAl are oxidized preferentially at the surfaces. On the other hand, at the interfaces in Co 2 FeAl/Al-O x /Co 75 Fe 25 MTJs, the ferromagnetic layers are hardly oxidized during plasma oxidation for a formation of Al oxide barriers

  12. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  13. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  14. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  15. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  16. Microstructural and magnetic properties study of Fe–P rolled sheet alloys

    International Nuclear Information System (INIS)

    Jafari, S.; Beitollahi, A.; EftekhariYekta, B.; Kanada, Keiu; Ohkubo, T.; Gopalan, R.; Herzer, Giselher; Hono, K.

    2014-01-01

    In the work presented here, the soft magnetic properties of Fe 1−x P x (x=0.36, 0.7, 1.1 at%) rolled sheet alloys were investigated. In this respect, the as-rolled sheets were subjected to a two steps annealing processes; the first one between 800 and 1000 °C for 1 h referred as first stage annealing and the second one at lower temperatures (500 and 600 °C) for 30 min, referred as second step annealing. BH tracer measurements at 50 Hz showed that for all of the phosphorous containing alloys, in general, the magnitude of coercivity decreased by applying these two annealing steps compared to those of as-rolled samples. For all of the studied samples, the B 50 values measured at 50 Hz were in the range of 1.6–1.7 tesla (T). Samples having highest amount of phosphorous (1.1 at%) exhibited lower eddy current loss compared to the rest of the specimens due to the increased electrical resistivity. Besides, microstructural studies revealed that the prepared samples were free from Fe 3 P phase precipitation and the average grain size increased (∼three times) with increasing the phosphorous content giving rise to the decrease of hysteresis losses. Further, amongst the whole prepared samples, the alloy containing 1.1 at% P showed the lowest hysteresis loss (6.99 W/kg), eddy current loss (9.25 W/kg) as well as the highest magnetic induction (1.7 T) at 5000 A/M (B 50 ). - Highlights: • We have studied magnetic properties and microstructure of Fe 1−x P x rolled sheet alloys. • Increasing phosphorous content increases the B 50 from 1.65 to 1.70 T. • Increasing phosphorous content causes the decline of the eddy current loss. • The grain size increases about 3 times with increasing phosphorous concentration. • The hysteresis loss decreases with increasing the phosphorous content (88%)

  17. Microstructural and magnetic properties study of Fe–P rolled sheet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, S. [Center of Excellence for Ceramics in Energy and Environment, School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Beitollahi, A., E-mail: beitolla@iust.ac.ir [Center of Excellence for Ceramics in Energy and Environment, School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); EftekhariYekta, B. [Center of Excellence for Ceramics in Energy and Environment, School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Kanada, Keiu [Toyota Motor Corporation, Aichi Prefecture, Toyota (Japan); Ohkubo, T.; Gopalan, R. [Magnetic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Herzer, Giselher [Vacuumschmelze GmBH, D-63450 Hanau (Germany); Hono, K. [Magnetic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2014-05-01

    In the work presented here, the soft magnetic properties of Fe{sub 1−x}P{sub x} (x=0.36, 0.7, 1.1 at%) rolled sheet alloys were investigated. In this respect, the as-rolled sheets were subjected to a two steps annealing processes; the first one between 800 and 1000 °C for 1 h referred as first stage annealing and the second one at lower temperatures (500 and 600 °C) for 30 min, referred as second step annealing. BH tracer measurements at 50 Hz showed that for all of the phosphorous containing alloys, in general, the magnitude of coercivity decreased by applying these two annealing steps compared to those of as-rolled samples. For all of the studied samples, the B{sub 50} values measured at 50 Hz were in the range of 1.6–1.7 tesla (T). Samples having highest amount of phosphorous (1.1 at%) exhibited lower eddy current loss compared to the rest of the specimens due to the increased electrical resistivity. Besides, microstructural studies revealed that the prepared samples were free from Fe{sub 3}P phase precipitation and the average grain size increased (∼three times) with increasing the phosphorous content giving rise to the decrease of hysteresis losses. Further, amongst the whole prepared samples, the alloy containing 1.1 at% P showed the lowest hysteresis loss (6.99 W/kg), eddy current loss (9.25 W/kg) as well as the highest magnetic induction (1.7 T) at 5000 A/M (B{sub 50}). - Highlights: • We have studied magnetic properties and microstructure of Fe{sub 1−x}P{sub x} rolled sheet alloys. • Increasing phosphorous content increases the B{sub 50} from 1.65 to 1.70 T. • Increasing phosphorous content causes the decline of the eddy current loss. • The grain size increases about 3 times with increasing phosphorous concentration. • The hysteresis loss decreases with increasing the phosphorous content (88%)

  18. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  19. Electronic structure of disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Krause, J.C.; Paduani, C.; Schaff, J.; Costa, M.I. Jr. da

    1998-01-01

    The first-principles discrete variational method is employed to investigate the electronic structure and local magnetic properties of disordered Fe-V alloys. The spin-polarized case is considered in the formalism of the local-spin-density approximation, with the exchange-correlation term of von Barth endash Hedin. The effect on the local magnetic properties of adding V atoms in the immediate neighborhood of iron atoms is investigated. The partial density of states, hyperfine field (H c ), magnetic moment (μ), and isomer shift are obtained for the central atom of the cluster. For the impurity V atom in the bcc iron host the calculated values for H c and μ are -203 kG and -0.86μ B , respectively. The isolated Fe atom in a bcc vanadium host exhibits a collapsed moment and acts as a receptor for electrons. In ordered alloys the calculations indicate also a vanishing moment at iron sites. copyright 1998 The American Physical Society

  20. Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling

    Science.gov (United States)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.

    2018-05-01

    The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.

  1. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  3. Effect of Co content on structure and magnetic behaviors of high induction Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rajat K., E-mail: rajat@nmlindia.org; Panda, Ashis K.; Mitra, Amitava

    2016-11-15

    The replacement of Fe with Co is investigated in the (Fe{sub 1−x}Co{sub x}){sub 79}Si{sub 8.5}B{sub 8.5}Nb{sub 3}Cu{sub 1} (x=0, 0.05, 0.2, 0.35, 0.5) amorphous alloys. The alloys are synthesized in the forms of ribbons by single roller melt spinning technique, and the structural and magnetic properties of annealed ribbons are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), B–H curve tracer, respectively. All as-cast alloys are structurally amorphous, however, their magnetic properties are varying with Co addition. The Co addition within 5–20 at% results in moderate thermal stability, saturation induction, Curie temperature and lowest coercivity, while 35 at% Co causes highest saturation induction, coercivity, Curie temperature and lowest thermal stability. On devitrification, the magnetic properties change with the generation of α-FeCo nanocrystallites and (FeCo){sub 23}B{sub 6}, Fe{sub 2}B phases during primary and secondary crystallization stages, respectively. A small amount Co is advantageous for maintaining finer nanocrystallites in amorphous matrix even after annealing at 600 °C, leading to high saturation magnetization (>1.5 T) and low coercivity (~35 A/m). The improved magnetic properties at elevated temperatures indicate these alloys have a potential for high frequency transformer core applications. - Highlights: • The structural and magnetic behaviors of Fe based amorphous alloys have been investigated with the effect of Co content. • The Co has no adverse effect on amorphization of alloys. • A small amount Co causes the superior improvement of magnetic properties at elevated temperatures. • Therefore, it is important not only for academic research but also for industrial applied research.

  4. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  5. Coercivity and induced magnetic anisotropy by stress and/or field annealing in Fe- and Co- based (Finemet-type) amorphous alloys

    International Nuclear Information System (INIS)

    Miguel, C.; Zhukov, A.; Val, J.J. del; Gonzalez, J.

    2005-01-01

    Uniaxial magnetic anisotropy has been induced in amorphous Fe 73.5 Cu 1 Nb 3 Si 15.5 B 7 (Fe-rich) and (Co 77 Si 13.5 B 9.5 ) 90 Fe 7 Nb 3 (Co-rich) ferromagnetic alloys by annealing under stress and/or magnetic field. Such anisotropy plays a crucial role on the magnetization process and, consequently, determine the future applications of these materials. The mechanisms involved on the origin of such induced magnetic anisotropy showed significant differences between Fe-rich and Co-rich amorphous alloys. This work provides a comparative study of the coercive field and induced magnetic anisotropy in Fe-rich and Co-rich (Finemet) amorphous alloys treated by stress and/or field

  6. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  7. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  8. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structure with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.

  9. Synthesis, characterization and electromagnetic properties of SnO-coated FeNi alloy nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingling; Li, Honglin; Xu, Taotao; Nie, Yu, E-mail: lml771212@163.com [College of Chemistry and Material Engineering, Chaohu University (China)

    2016-11-15

    SnO-coated FeNi alloy nanocapsules have been synthesized by an arc-discharge method. High resolution transmission electron microscopy and x-ray photoelectron spectroscopy analysis show that the nanocapsules have a shell/core structure with FeNi alloy nanoparticles as the core and amorphous SnO as the shell. Dielectric relaxation of SnO shell and the interfacial relaxation between SnO shell and FeNi core lead to the dual nonlinear dielectric resonance. The natural resonance in the SnO coated FeNi nanocapsules shifts to 14.0 GHz. Reflection loss (RL) reaches -46.1 dB at 14.8 GHz for a matching thickness of 1.95 mm, while it exceeds-20 dB over the 13.6 -16.7 GHz range and it exceeds -10 dB in the whole Ku-band (12.4-18 GHz). In addition, the optimal RL values at 5.0-7.6 GHz with the absorbing thickness of 3.4-5.0 mm just exhibit a slight fluctuation. (author)

  10. Upgrade Fe-50%Ni alloys for open-loop DC current sensor: Design and alloy-potential characteristics

    International Nuclear Information System (INIS)

    Waeckerle, Thierry; Fraisse, Herve; Furnemont, Quentin; Bloch, Frederic

    2006-01-01

    This paper deals with the DC current sensor with open loop and high accuracy, and describes the relationship between the latter and the core-material magnetic properties in the case of Fe-50%Ni alloys. It is pointed out that air-gap precision, nonlinearity B-H and hysteresis are the main sources of accuracy; the influences of mechanical stress and temperature on coercive field are quantified and have to be taken into account in the design of the sensor. It is shown by dedicated choice of grades and annealing that Fe-50%Ni alloys may vary their coercive field from 4-6 A/m down to 1.5-4 A/m depending on the final annealing treatment used

  11. Effects of Zn additions to highly magnetoelastic FeGa alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lograsso, Thomas A., E-mail: lograsso@ameslab.gov [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States); Jones, Nicholas J.; Wun-Fogle, Marilyn; Restorff, James B. [Metallurgy and Fasteners Branch, Naval Surface Warfare Center, Carderock Division, Maryland 20817 (United States); Schlagel, Deborah L. [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Petculescu, Gabriela [University of Louisiana at Lafayette, Louisiana 70504 (United States); Clark, Arthur E. [Clark Associates, Adelphi, Maryland 20783 (United States); Hathaway, Kristl B. [Spectrum Technology Group, Inc., Gaithersburg, Maryland 20877 (United States)

    2015-05-07

    Fe{sub 1−x}M{sub x} (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination of magnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are needed. Of the possible candidates, only Be and Zn have sufficient solubility. Single crystals of bcc Fe-Ga-Zn have been grown with up to 4.6 at. % Zn in a Bridgman furnace under elevated pressure (15 bars) in order to overcome the high vapor pressure of Zn and obtain homogeneous crystals. Single-crystal measurements of magnetostriction and elastic constants allow for the direct comparison of the magnetoelastic coupling constants of Fe-Ga-Zn with those of other magnetoelastic alloys in its class. The partial substitution of Ga with Zn yields values for the magnetoelastic coupling factor, −b{sub 1}, comparable to those of the binary Fe-Ga alloy.

  12. Initial stages of solid solution decomposition in Fe-Ti and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Ustinovshchikov, Yu.I.; Chen Shiren; Shirobokova, M.S.

    1993-01-01

    Structural analysis of Fe-Ti and Fe-Nb systems is performed. Formation of Laves phases proceed through the stage of the formation of a structure representing a periodic sequence of the regions enriched and depleted in alloying element. Abnormal changes in the properties of alloys of the given systems are noted; there changes reside in a decrease of alloy hardness during the formation of the above structure

  13. Mechanical behaviour of Zn-Fe alloy coated mild steel

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Agathocleous, P.E.; Giannakopoulos, K.I.

    2009-01-01

    Zinc alloy coatings containing various amounts of Fe were deposited by electrodeposition technique on a mild steel substrate. The concentration of Fe in the produced alloy coatings ranged from 0 to 14 wt.%, whereas the thickness of the coatings was about 50 μm. Structural and metallurgical characterization of the produced coatings was performed with the aid of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. This study aims in investigating the mechanical behaviour of Zn-Fe coated mild steel specimens, as no research investigation concerning the tensile behaviour of Zn alloy coated ferrous alloys has been reported in the past. The experimental results indicated that the ultimate tensile strength of the Zn-Fe coated mild steel was lower than the bare mild steel. In addition, the ductility of the Zn-Fe coated mild steel was found to decrease significantly with increasing Fe content in the coating.

  14. Structural and magnetic properties of rapidly quenched and as-cast bulk NdFeBCu alloys

    International Nuclear Information System (INIS)

    Sanchez Ll, J.L.; Bustamante S, R.; Barthem, V.M.T.S.; Miranda, P.E.V. de

    2005-01-01

    A study of the structural and magnetic properties of as-cast and melt spun (x)Nd 2 Fe 14 B(100-x)Nd 70 Cu 30 alloys (x=10, 50 and 75%wt.) is presented. In as-cast alloys for x=10wt%. the formation of a high coercivity phase, referred to as N (T C =240 deg. C, i H C =4.9kOe) is found. N is a (Nd-Fe)-based phase with a Fe/Nd ratio lower than that of phase Nd 2 Fe 14 B (φ). It is suggested that this phase is related to the A 1 phase found in binary Nd-Fe alloys. In melt-spun alloys, at the same x value of 10wt%, another hard phase is found which is suggested to be the Nd 6 Fe 13 Cu δ-phase (T C =192 deg. C, i H C =4.8kOe). Transmission electron microscope (TEM) micrographs of the ribbons with x=10wt% shows the formation of nanograins with a non-uniform grain size distribution. In cast alloys with x=50 and 75wt% large slab-like grains of φ are formed, in the inter-granular region a Nd-Cu eutectic phase and Nd grains, are observed. High coercivities are obtained in ribbons with x=50wt% ( i H C =19.7kOe) and 75wt% ( i H C =13.0kOe). A slight reduction in the Curie temperature of the φ-phase with respect to the bulk value is found in these ribbons

  15. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  16. Crystallization study of amorphous system Fe84-xWxB16 (x = 3;5)

    International Nuclear Information System (INIS)

    Novakova, A.A.; Sidorova, G.V.; Kiseleva, T.Yu.; Szasz, A.

    1992-01-01

    A complex study of the crystallization process of the amorphous system was carried out by Moessbauer spectroscopy, X-ray diffraction and DTA. Alloy samples crystallized at 600deg C contain the following phases: α-Fe, Fe 3 B and solid solution (Fe, W) 3 B. (orig.)

  17. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    Science.gov (United States)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  18. Crystallisation kinetics of amorphous Fe72.5-xCu1Nb4.5Si10+x+yB12-y alloy

    International Nuclear Information System (INIS)

    Miglierini, M.; Lipka, J.; Sitek, J.

    1994-01-01

    Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 and Fe 72.5-x Cu 1 Nb 4.5 Si 10+x+y B 12-y alloys are compared from the point of view of crystallisation behaviour and changes in the short-range order in the amorphous reminder. The increase in Nb to 4.5 at.% in the latter system slows down the formation of nanocrystals to approximately 40% even after 16 hours of anneal at 550 C for x = 0.5, y = 3. Segregation-induced changes in the short-range order are manifested via hyperfine field distributions corresponding to the amorphous reminder. (orig.)

  19. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  20. Magneto-caloric effect in the pseudo-binary intermetallic YPrFe{sub 17} compound

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pablo [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Gorria, Pedro, E-mail: pgorria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Sanchez Llamazares, Jose L. [Division de Materiales Avanzados, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis Potosi (Mexico); Perez, Maria J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Franco, Victorino [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Reiffers, Marian; Kovac, Jozef [Institute of Experimental Physics, Watsonova 47, SK-04001 Kosice (Slovakia); Puente-Orench, Ines [Institute Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer YPrFe{sub 17} exhibits a broad {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). Black-Right-Pointing-Pointer We obtain |{Delta}S{sub M}| Almost-Equal-To 2.3 J kg{sup -1} K{sup -1} and RCP Almost-Equal-To 100 J kg{sup -1}for a magnetic field change of 1.5 T. Black-Right-Pointing-Pointer A single master curve for {Delta}S{sub M} is found when compared with other isostructural R{sub 2}Fe{sub 17} binary alloys. - Abstract: We have synthesized the intermetallic YPrFe{sub 17} compound by arc-melting. X-ray and neutron powder diffraction show that the crystal structure is rhombohedral with R3{sup Macron }m space group (Th{sub 2}Zn{sub 17}-type). The investigated compound exhibits a broad isothermal magnetic entropy change {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). The |{Delta}S{sub M}| ( Almost-Equal-To 2.3 J kg{sup -1} K{sup -1}) and the relative cooling power ( Almost-Equal-To 100 J kg{sup -1}) have been calculated for applied magnetic field changes up to 1.5 T. A single master curve for {Delta}S{sub M} under different values of the magnetic field change can be obtained by a rescaling of the temperature axis. The results are compared and discussed in terms of the magneto-caloric effect in the isostructural R{sub 2}Fe{sub 17} (R = Y, Pr and Nd) binary intermetallic alloys.

  1. Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V.; Kaloshkin, S.D.; Gunderov, D.V.; Afonina, E.A.; Brodova, I.G.; Stolyarov, V.V.; Baldokhin, Yu.V.; Shelekhov, E.V.; Tomilin, I.A

    2004-07-15

    Aluminium-based Al-Fe alloys with Fe content of 2, 8, and 10 wt.% were prepared by rapid quenching (RQ) from the melt at a rate of 10{sup 6} K/s. Structure of the alloys was examined by X-ray diffraction (XRD) and Moessbauer spectroscopy. Phase transformations of RQ alloys by high pressure torsion (HPT) were studied. Dependences of phase composition on the intensity of HPT were investigated. Microhardness measurements of HPT alloys show a considerable structural heterogeneity of specimens, the dependence of microhardness on the radius of the pills was found out. Phase composition and microhardness during the heating were investigated. At the initial step of heating (120-150 deg. C), an increase in microhardness was observed, whereas further heating leads to a decrease in the microhardness.

  2. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  3. Preparation and Properties of Anisotropic Nano-crystalline NdFeB Powders Made by Hydrogen Decrepitation of Die Upsetting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yi, P P; Lee, D; Yan, A R, E-mail: ypp@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2011-01-01

    Anisotropic nanocrystalline NdFeB powders were prepared by hydrogen decrepitation (HD) of die upsetting magnets. The effects of varying temperatures of HD on the microstructure and magnetic properties of the anisotropic NdFeB particles were studied. It shows that the powders which obtained by HD process at higher temperature were larger than that at lower temperature, and the HD powders show a well anisotropy at 723 K, the remanence (B{sub r}) was more than 12.46 kG, the maximum energy product ((BH){sub max}) was 19.06 MGOe, and the coercivity (H{sub cj}) was 7.2 kOe. The microstructure of the anisotropic powders revealed that with a reasonable HD temperature, the platelet grains were not destroyed. They were nearly 150-300 nm long and 30-50 nm wide. The results indicate that HD process was an effective way to prepare the anisotropic NdFeB powders.

  4. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  5. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  6. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  7. Pressure-induced preferential growth of nanocrystals in amorphous Nd{sub 9}Fe{sub 85}B{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Wu Wei; Li Wei; Sun Hongyu; Li Hui; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Li Xiaohong; Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-07-16

    Control over the growth and crystallographic orientation of nanocrystals in amorphous alloys is of particular importance for the development of advanced nanocrystalline materials. In the present study, Nd{sub 2}Fe{sub 14}B nanocrystals with a strong crystallographic texture along the [410] direction have been produced in Nd-lean amorphous Nd{sub 9}Fe{sub 85}B{sub 6} under a high pressure of 6 GPa at 923 K. This is attributed to the high pressure inducing the preferential growth of Nd{sub 2}Fe{sub 14}B nanocrystals in the alloy. The present study demonstrates the potential application of high-pressure technology in controlling nanocrystalline orientation in amorphous alloys.

  8. Formation of SmFe5(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    International Nuclear Information System (INIS)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmFe 5 (0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe 5 structure forming an alloy compound of Sm(Fe,Cu) 5 . The Sm(Fe,Cu) 5 film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  9. Influence of M=Al, Ga and Si on microstructure and HDDR-processing of Sm2(Fe,M)17 and magnetic properties of their nitrides and carbides

    International Nuclear Information System (INIS)

    Kubis, M.; Gutfleisch, O.; Gebel, B.; Mueller, K.-H.; Schultz, L.

    1999-01-01

    Microstructural investigations by means of scanning electron microscopy and X-ray diffraction showed that the formation of high amounts of α-Fe in as-cast Sm 2 (Fe,M) 17 alloys can be suppressed by using the substitutions M=Al or Si together with excess Sm. Ga, on the other hand, does not induce this beneficial effect. The hydrogen absorption and desorption behaviour was investigated by temperature-pressure-analysis and hydrogen differential thermal analysis. Decreasing amounts of hydrogen were absorbed in Sm 2 (Fe,M) 17 for increasing contents of all substitutions M=Ga, Al and Si due to their stabilising effect on the 2:17 phase with regard to its disproportionation. Compared with the homogenised alloys, the as-cast materials show a weaker interstitial hydrogen absorption and a stronger disproportionation reaction at lower temperatures due to the higher content of Sm-rich phases in the as-cast alloys. A second cycle of the hydrogenation-disproportionation-desorption-recombination (HDDR) process leads to a faster disproportionation reaction at lower temperatures due to the grain refinement during the first cycle. Magnetic properties of as-cast and homogenised materials were investigated after HDDR treatment and nitrogenation or carburisation of pre-milled powders. Nitrogenated and carburised samples showed coercivities up to 3.0 T and 2.3 T, respectively. There were only slight differences of the magnetic properties of materials prepared from homogenised and from as-cast samples. (orig.)

  10. Thermally activated formation of martensite in Fe-C alloys and Fe-17%Cr-C stainless steels during heating from boiling nitrogen temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2016-01-01

    The thermally activated austenite-to-martensite transformation was investigated by magnetometry in three Fe-C alloys and in two 17%Cr stainless steels. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequent (re......)heating to room temperature. Different tests were performed applying heating rates from 0.5 K/min to 10 K/min. An additional test consisted in fast (re)heating the samples by immersion in water. Thermally activated martensite formation was demonstrated for all investigated materials by a heating rate......-dependent transformation curve. Moreover, magnetometry showed that the heating rate had an influence on the fraction of martensite formed during sub-zero Celsius treatment. The activation energy for thermally activated martensite formation was quantified in the range 11‒21 kJ/mol by a Kissinger-like method....

  11. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  12. A study for preparation of Ti-Fe coating by high temperature sintering method

    International Nuclear Information System (INIS)

    Hu Yonghai

    1995-03-01

    A new technology for preparation of Ti-Fe alloy coating on the steel substrate was investigated by high temperature sintering method. The pulp of titanium hydride powder was coated on the cleaned steel substrate, then heated in vacuum for desorption of hydrogen and sintered at high temperature in argon atmosphere for forming Ti-Fe alloy coating. The electron probe analysis shows a strong coherent diffusion layer formed between the elements of titanium and iron. X-ray diffraction analysis indicates that the coating consists of α-Ti, TiFe and TiFe 2 three phases. The wear resistance of the coating is twice as large as that of grey cast iron and the hardness determined can reach 7300∼7800 N/mm 2 . The coating is almost porous free. The corrosion potential increases with the time and the corrosion resistance is near to that of pure titanium. The working life of ridge-type diaphragm valve coated by Ti-Fe alloy for carbonization tower of alkali factories is five times higher than that of valve made of grey cast iron. Therefore, this new technology can be widely used in metallurgical, chemical and nuclear industries. (9 figs., 10 tabs.)

  13. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    OpenAIRE

    Pavel Novák; Alena Michalcová; Milena Voděrová; Ivo Marek; Dalibor Vojtěch

    2013-01-01

    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by...

  14. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  15. Study of the structural, electronic and magnetic properties of ScFeCrT (T=Si, Ge) Heusler alloys by first principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Muhammad Nasir [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Javed, Athar, E-mail: athar.physics@pu.edu.pk [Department of Physics, University of the Punjab, Lahore 54590 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan)

    2017-03-15

    Spin polarized structural, electronic, magnetic and bonding properties of ScFeCrT (T=Si, Ge) Heusler alloys are studied by employing density functional theory. The total energy calculation (for a static lattice) shows that both alloys are structurally stable in ferromagnetic phase with compressibility C{sub ScFeCrSi}>C{sub ScFeCrGe}. The electronic and band structure analysis show that the ScFeCrT alloys exhibit half-metallic ferromagnetic (HMF) behaviour for spin ↑ channel while semiconducting behaviour in spin ↓ channel. Both alloys exhibit total magnetic moment, M{sub Total}=3.0 µ{sub B}/cell obeying the Slater Pauling rule, M{sub SPR}=(N{sub v} –18)μ{sub B}. For ScFeCrSi and ScFeCrGe alloys, the charge density and interatomic bonding character show highly covalent and polar covalent character, respectively. For both alloys, 100% spin polarization (for spin ↑ state) is expected which is an indication of their suitability for applications in spintronic devices. - Highlights: • Heusler alloys ScFeCrT (T= Si, Ge) are studied by first principles approach. • Structural, electronic, magnetic and bonding properties are reported. • Both alloys show half-metallicity and ferromagnetic behaviour. • Combination of properties shows the suitability of alloys in spintronic devices.

  16. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  17. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  18. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    Science.gov (United States)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  19. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  20. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.