WorldWideScience

Sample records for fe3o4-fecr2o4 spinel binary

  1. Immiscibility in the Fe3O4-FeCr2O4 Spinel Binary

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak; R.A. Castelli

    2003-03-20

    A recent thermodynamic model of mixing in spinel binaries, based on changes in cation disordering (x) between tetrahedral and octahedral sites, is investigated for applicability to the Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} system under conditions where incomplete mixing occurs. Poor agreement with measured consolute solution temperature and solvus is attributed to neglect of: (1) ordering of magnetic moments of cations in the tetrahedral sublattice antiparallel to the moments of those in the octahedral sublattice and (2) pair-wise electron hopping between octahedral site Fe{sup 3+} and Fe{sup 2+} ions. Disordering free energies ({Delta}G{sub D}), from which free energies of mixing are calculated, are modeled by {Delta}G{sub D} = {alpha}{chi} + {beta}{chi}{sup 2} - T(S{sub c} + {chi}{sigma}{sub el} + {gamma}{chi}{sigma}{sup mag}) where the previously-neglected effects are accommodated by: (1) adding a non-configurational entropy term to provide coupling between cation disordering and magnetic ordering and (2) revising the configurational entropy (S{sub c}) analysis. Applying the constraint {alpha} = -(2/3){beta} and regressing the existing database for Fe{sup 2+} ion disorder in Fe{sub 3}O{sub 4} gives: {beta} = -31,020 {+-} 1050 J mol{sup -1}, {sigma}{sub el}/R = -0.730 {+-} 0.081 and {gamma}, the coupling parameter between cation disordering and magnetic ordering, = -0.664 {+-} 0.075. The revised mixing model predicts a consolute solution temperature (T{sub cs}) = 600 C and a solvus at 500 C of n = 0.05 and 0.70 for the Fe(Fe{sub 1-n}Cr{sub n}){sub 2}O{sub 4} spinel binary.

  2. Immiscibility in the NiFe2O4-NiCr2O4 Spinel Binary

    Energy Technology Data Exchange (ETDEWEB)

    S Ziemniak

    2004-08-13

    The solid solution behavior of the Ni(Fe{sub 1-n}Cr{sub n}){sub 2}O{sub 4} spinel binary is investigated in the temperature range 400-1200 C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 C. Air-annealing for one year at 600 C resulted in partial phase separation in a spinel binary having n = 0.5. Spinel crystals grown from NiO, Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} reactants, mixed to give NiCrFeO{sub 4}, by Ostwald ripening in a molten salt solvent, exhibited single phase stability down to about 750 C (the estimated consolute solution temperature, T{sub cs}). A solvus exists below T{sub cs}. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.

  3. The Spinel Explorer--Interactive Visual Analysis of Spinel Group Minerals.

    Science.gov (United States)

    Luján Ganuza, María; Ferracutti, Gabriela; Gargiulo, María Florencia; Castro, Silvia Mabel; Bjerg, Ernesto; Gröller, Eduard; Matković, Krešimir

    2014-12-01

    Geologists usually deal with rocks that are up to several thousand million years old. They try to reconstruct the tectonic settings where these rocks were formed and the history of events that affected them through the geological time. The spinel group minerals provide useful information regarding the geological environment in which the host rocks were formed. They constitute excellent indicators of geological environments (tectonic settings) and are of invaluable help in the search for mineral deposits of economic interest. The current workflow requires the scientists to work with different applications to analyze spine data. They do use specific diagrams, but these are usually not interactive. The current workflow hinders domain experts to fully exploit the potentials of tediously and expensively collected data. In this paper, we introduce the Spinel Explorer-an interactive visual analysis application for spinel group minerals. The design of the Spinel Explorer and of the newly introduced interactions is a result of a careful study of geologists' tasks. The Spinel Explorer includes most of the diagrams commonly used for analyzing spinel group minerals, including 2D binary plots, ternary plots, and 3D Spinel prism plots. Besides specific plots, conventional information visualization views are also integrated in the Spinel Explorer. All views are interactive and linked. The Spinel Explorer supports conventional statistics commonly used in spinel minerals exploration. The statistics views and different data derivation techniques are fully integrated in the system. Besides the Spinel Explorer as newly proposed interactive exploration system, we also describe the identified analysis tasks, and propose a new workflow. We evaluate the Spinel Explorer using real-life data from two locations in Argentina: the Frontal Cordillera in Central Andes and Patagonia. We describe the new findings of the geologists which would have been much more difficult to achieve using the

  4. Magnesium Aluminate Spinel

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2012-01-01

    1 ScopeThis standard specifies the terms, definitions,classifications,technical requirements,test methods,inspection rules, packing, marking, transportation,storage,and quality certificate of magnesium aluminate spinel.

  5. AS Spinel toodab ja ehitab

    Index Scriptorium Estoniae

    1998-01-01

    1990. aastast tegutseb Eestis majade, suvilate, aiamajade, saunade jt. hoonete elementide komplektide valmistamisega AS Spinel. Märjamaal toodetakse freespuidust hoonete komplekte, Kõrvetagusel valmivad soojustatud puitkarkassil elemendid monteeritavate majade jaoks

  6. Development and Application of Spinel and High—alumina/Spinel Castables

    Institute of Scientific and Technical Information of China (English)

    YANGDean; CHENGGuoxiang; 等

    1998-01-01

    The development and application of domestic spinel and high-alumian/spinel(including corun-dum/spinel and calcined-bauxite/spinel) castables were disucssed in this paper,It expounded the tech-nical characters and virtues of high grade and medi-um grade spinel and the importance of the develop-met and successful application of calcined-bauxite/spinel castalbes.Because of the technical and eco-nomical feasibility,the developement and application of spinel and high-alumina/spinel castables,in which domestic refractory workers play an important role ,have been flurishing.

  7. Ternary spinel cadmium stannate, cadmium indate, and zinc stannate and binary tin oxide and indium oxide transparent conducting oxides as front contact materials for cadmium sulfide/cadmium tellurium photovoltaic devices

    Science.gov (United States)

    Mamazza, Robert, Jr.

    Transparent conducting oxides (TCO's) of Cd2SnO 4 (cadmium stannate), CdIn2O4 (cadmium indate), and Zn2SnO4 (zinc stannate) thin films were investigated from a materials and applications point of view through. All films were deposited by co-sputtering using either binary oxide or metallic (reactive sputtering) targets. The film properties were investigated as a function of film composition and stoichiometry. The effect of process parameters such as deposition temperatures, and post-deposition heat treatments on the structural and electro-optical properties of the films were also investigated extensively. All as-deposited films were found to be amorphous independent of substrate deposition temperature. The electro-optical and crystallographic properties were heavily dependant on the post deposition heat treatments. Cd2SnO4, Zn 2SnO4, and CdIn2O4 all produced highly transparent films with average transmission values (400--900 nm range) of 92%, 93%, and 90%, respectively. Cd2SnO4 and CdIn 2O4 were highly conductive with resistivity values as low as 2.01 x 10-4 O-cm and 2.90 x 10 -4 O-cm, respectively. Conversely, Zn2SnO 4 was not able to produce highly conductive films, with the lowest resistivity being 4.3 x 10-3 O-cm. CdTe solar cells were fabricated using al the above materials as front contacts or as high-ρ layers in bi-layer structures. All cells were of the superstrate configuration: Low-ρ TCO/high-ρ TCO/CdS/CdTe/Back contact. Only the TCO layers were varied; the remainder of the device was held constant. In most cases the inclusion of a high-ρ TCO layer was found to improve solar cell performance, especially in regard to the open circuit voltage. Cd2SnO4 was the exception. The incorporation of Zn2SnO4 as a high-ρ layer enabled a greatest current collection from high energy wavelengths through an apparent thinning effect on the CdS. This increased the overall short circuit current density to values in excess of 24.9 mA/cm2. The standard device consisted of

  8. Conformal ALON® and spinel windows

    Science.gov (United States)

    Goldman, Lee M.; Smith, Mark; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri

    2017-05-01

    The requirements for modern aircraft based reconnaissance systems are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the ability to produce windows in complex geometries currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows. ALON consists primarily of aluminum and oxygen, similar to that of alumina, with a small amount of nitrogen added to help stabilize the cubic gamma-AlON phase. ALON's chemical similarity to alumina, translates into a robust manufacturing process. This ease of processing has allowed Surmet to produce ALON windows and domes in a wide variety of geometries and sizes. Spinel (MgAl2O4) contains equal molar amounts of MgO and Al2O3, and is a cubic material, that transmits further into the Infrared than ALON. Spinel is produced via powder processing techniques similar to those used to produce ALON. Surmet is now applying the lessons learned with ALON to produce conformal spinel windows and domes as well.

  9. Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements.

    Science.gov (United States)

    Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata

    2014-05-19

    A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.

  10. Disordering and grain boundaries of (Ni,Fe)Cr2O4 spinels from atomistic calculations.

    Science.gov (United States)

    Chartier, Alain; Golovchuk, Bogdan; Gossé, Stéphane; Van Brutzel, Laurent

    2013-10-07

    A novel empirical potential has been developed to evaluate the thermodynamic stability of Ni(1-x)Fe(x)Cr2O4 spinels. The simulations confirm the hypothesis that the NiCr2O4-FeCr2O4 pseudo-binary has normal structure spinel up to 1000 K and stabilizes as a solid solution. However, the disordering energy (normal to inverse spinel) is found higher for FeCr2O4 than for NiCr2O4 spinel. The formation energies of tilt, twist, and random grain boundaries have been calculated in pure NiCr2O4 and FeCr2O4. The same behavior has been found for both spinels. Detail analysis of the grain boundaries structure shows that the cation coordination number is a key parameter for the stability of the grain boundaries. With this criterion, we evidenced that the structural and energetic differences are caused only by nickel and iron cations.

  11. High-pressure transformation in the cobalt spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, J., E-mail: jbc@posta.unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Consejo Superior de Investigaciones Científicas y Universidad de Zaragoza, 50009 Zaragoza (Spain); Subías, G.; García, J. [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Consejo Superior de Investigaciones Científicas y Universidad de Zaragoza, 50009 Zaragoza (Spain); Popescu, C. [CELLS-ALBA Synchrotron Light Facility, Ctra. BP1413 km 3.3, 08290 Cerdanyola del Vallès, Barcelona (Spain); Cuartero, V. [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex 9 (France)

    2015-01-15

    We report high pressure angle-dispersive x-ray diffraction measurements on Co{sub x}Fe{sub 3−x}O{sub 4} (x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a similar structural phase transformation from the cubic spinel structure to an analogous post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide pressure range (∼20–25 GPa) and the transformation is irreversible. The equation of state of the three cubic spinel ferrites was determined and our results agree with the data obtained in related oxide spinels showing the role of the pressure-transmitting medium for the accurate determination of the equation of state. Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 GPa when it decomposes yielding a new phase with poor crystallinity. Later compression does not recover either the spinel or the post-spinel phases. This phase transformation induced by pressure explains the irreversible lost of the ferrimagnetic behavior reported in these spinels. - Graphical abstract: Pressure dependence of the unit cell volume per formula unit for Co{sub 1.5}Fe{sub 1.5}O{sub 4} spinel. Circles and squares stand for spinel and postspinel phases, respectively. Dark (open) symbols: determination upon compression (decompression). - Highlights: • The pressure induces similar phase transformation in Co{sub 3−x}Fe{sub x}O{sub 4} spinels (1≤x≤2). • The postspinel phases decompose after releasing pressure. • The irreversibility of this phase transformation explains the disappearance of magnetism in these spinels after applying pressure. • Accurate equation of state can be obtained up to 10 GPa using an alcohol mixture as pressure transmitting medium. • The equation of state suggests similar elastic properties for these spinels in this composition range.

  12. Surface Electrical Conductivity of Single Crystal Spinel in Cesium Vapour.

    Science.gov (United States)

    2007-11-02

    magnesium aluminate spinel at temperatures ranging from 573K to 923K, in the presence of cesium vapour at pressures up to 1Torr. The interest in spinel has...in the core of a nuclear reactor. In contrast to magnesium oxide and alumina, electron irradiation of spinel produces no dislocation structures

  13. Dopants and defects in conductive oxide spinels

    Science.gov (United States)

    Zakutayev, Andriy; Perkins, John; Parilla, Phillip; Paudel, Tula; Lany, Staphan; Ginely, David; Zunger, Alex

    2011-03-01

    We will discuss the effects of extrinsic and intrinsic imperfections (dopants and defects) in a group of conductive oxide materials related to Co3O4. Co3O4 is a spinel with Co2+ and Co3+ on tetrahedral and octahedral sites, respectively. Doping of Co3O4 with Zn and Ni represent two limiting cases: Zn2+ ions have a preference to occupy tetrahedral (Co2+) sites and are predicted to be unable to dope effectively; Ni2+ ions have a preference to occupy octahedral (Co3+) sites, so these atoms are expected to be efficient dopants. We found that substitution of Co3O4 spinel with up to 33 percent of Zn and Ni results in formation of ZnCo2O4 normal spinel and NiCo2O4 inverse spinel, and causes 100-fold and 1000-fold increases in conductivity, respectively, matching the predicted trend. Increase in Zn and Ni concentraion up to 40 percent cause phase separation of ZnO and NiO and leveling out of the conductivity. The conductivity decreases sharply above 50-60 percent Zn and Ni substitution level. Small differences with the theoretical predictions may be explained by non-equilibrium character of the thin film deposition process. This work was supported by the ``Center for Inverse Design'' EFRC of the Department of Energy.

  14. Distinction of gem spinels from the himalayan mountain belt.

    Science.gov (United States)

    Malsy, Anna; Klemmb, Leonhard

    2010-01-01

    Gem spinel deposits in Myanmar, Vietnam and Tajikistan have their formation in association with Himalayan orogenesis. Gem-quality orange, pink, red and purple spinels from deposits at Mogok (Myanmar), Luc Yen (Vietnam), and Kuh-i-Lal (Tajikistan) have been investigated by 'standard' gemological testing and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Microscopic examination yielded apatite and calcite inclusions together with octahedral negative crystals to be most frequently present in Mogok spinels. The presence of dislocation systems and titanite inclusions are indicative inclusion features for spinels from Luc Yen. Trace elements such as Ti, Fe, Ni, Zn, Zr and Sn differ slightly in spinels from the sources investigated. A distinction of spinels from these deposits is therefore possible by trace element chemistry. This is especially helpful for gem spinels, which often show few inclusions or completely lack inclusion features.

  15. Electronic and magnetic properties of the spinel semiconductor CdCr2Se4

    Science.gov (United States)

    Continenza, Alessandra; de Pascale, Teresa; Meloni, Franco; Serra, Marina

    1994-01-01

    We present a first-principles study of the electronic and magnetic properties of the chromium spinel CdCr2Se4, a ferromagnetic semiconductor, which, for its interesting magnetic and electric properties has been the object of many experimental studies. Using calculations based on the full-potential linearized augmented plane wave relativistic scheme we are able to reproduce the structural equilibrium properties and to explain many of the features measured by resonant photoemission spectroscopy. In particular, we analyze the contribution of the Cr 3d electrons in a density-of-states study including the two spin orientations and a comparison with the binary analog CdSe.

  16. Recent developments in spinel at NRL (Conference Presentation)

    Science.gov (United States)

    Bayya, Shyam S.; Villalobos, Guillermo; Kim, Woohong; Hunt, Michael; Rock, Benjamin; Sanghera, Jasbinder S.; Sadowski, Bryan; Aggarwal, Ishwar

    2017-05-01

    Transparent magnesium aluminate spinel (MgAl2O4) ceramic has excellent transmission from the UV to mid-wave IR. It is rugged with strength that is 5x that of glass. Spinel also has better IR transmission compared to sapphire and ALON. Because of its superior mechanical and optical properties, it is considered as a sensor window for numerous military platforms. At the Naval Research Laboratory (NRL), we have focused on process developments to facilitate wider acceptance of spinel for various applications. These developments include purification of spinel to reduce the absorption and scattering losses, as well as new processes to make conformal spinel windows and also to reduce manufacturing and finishing costs. In this presentation, we will provide an update on all the spinel activities at NRL

  17. EPR, mu-Raman and Crystallographic properties of spinel type ZnCr{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Hernandez, C; Almanza, O; Jurado, J F, E-mail: cvargash@unal.edu.c [Universidad Nacional de Colombia, Manizales-Colombia Laboratorio de Propiedades Opticas de Materiales-POM (Colombia)

    2009-05-01

    Structural, vibrational and electron paramagnetic resonance (EPR) analysis for compound ZnCr{sub 2}O{sub 4} are shown in this work. These types of materials are used in technological applications as humidity sensors and piezoelectric devices. The compound was obtained by mean of solid state reaction technique from binary precursors ZnO and Cr{sub 2}O{sub 3}. After three thermal treatments the sample structure was monitoring using X ray diffraction (XRD), the spinel cubic phase has been indexed within O{sup 7}{sub h}(Fd3m) spatial group. It is observed normal spinel phase. Micro-Raman analysis revealed bands for normal vibration modes of Zn and Cr atoms in tetrahedral and octahedral environments formed by oxygen atoms at approximately 400 and 900 cm{sup -1}, respectively. Bands around 941 cm{sup -1} are associated possibly to vacancies in the tetrahedral and octahedral sites due to interaction between Zn and Cr ions. EPR signal from 150 to 300 K isothermals indicates a transition between inverse spinel to normal spinel type in a central field around 3350 G. A signal at approximately 3400 G corresponding to the C'r{sup +3} in tetrahedral sites is observed near the central field.

  18. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  19. Vanadium-spinel composites for structural applications in hostile environments

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Wetteland, C.J.; Shen, T.D. [and others

    1997-05-01

    Vanadium-spinel composites are promising materials for structural applications in radiation environments. Powders of two Vanadium-spinel composites, 20/80 vol. %, were prepared by (a) ball milling mixtures of vanadium and spinel powders (alloy VSLP) and (b) through a self-sustained reaction synthesis of vanadium, MgO, and Al powders (alloy VSHP). These powders were consolidated by hot isostatic pressing. Most of the V and spinel domains in the the compacts are sub-micron in size. The compacts have K{sub c} toughness values of 3.9, about three times the toughness obtained by hipping mixtures of commercial powders.

  20. ZnO-based spinels grown by electrodeposition

    OpenAIRE

    TORTOSA JORQUES, MARÍA DOLORES; Manjón Herrera, Francisco Javier; Mollar García, Miguel Alfonso; Marí Soucase, Bernabé

    2012-01-01

    We report on the synthesis of thin films of ZnCo 2O 4 and ZnMn 2O 4 spinels, as well as pure Co 3O 4 and Mn 3O 4 spinels, by means of electrodeposition. Spinel thin films have been analyzed by energy dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. We show that under determined deposition conditions the initial wurtzite structure of Co- and Mn-doped ZnO develops into spinel structures when the Co and Mn concentration in the films is above the solubility limit of these ions ...

  1. Slow crack growth in spinel in water

    Science.gov (United States)

    Schwantes, S.; Elber, W.

    1983-01-01

    Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.

  2. Periclase spinel bricks in the cement industry. Periklas-Spinell-Steine in der Zementindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, M.; Dobrowsky, F.

    1989-10-01

    Intensified environmental requirements are leading some countries to abandon refractory products which contain chromium. The industry is being asked to develop corresponding products which are free from chrome ore so that substitution is possible without a break. In addition to spinel bricks which are produced by a reaction between Al{sub 2}O{sub 3} and MgO when the brick is fired there are also those containing spinel which has been prepared in advance. The present article makes a partial comparison of the two types with respect to their important physical test values. Details are also given of their thermomechanical and coating behaviours including a comparison with traditional magnesia chrome bricks. The comparison shows that the refractory industry is in a position to offer a complete, chrome-free, lining for rotary cement kilns which can even show improvements in quality. (orig.).

  3. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  4. Recent developments in transparent spinel ceramic and composite windows

    Science.gov (United States)

    Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jas; Chin, Geoff; Hunt, Michael; Sadowski, Bryan; Miklos, Fritz; Aggarwal, Ishwar

    2013-09-01

    The U.S. Naval Research Laboratory has pioneered the development of sintering processes for making highly transparent optical ceramics. For example, we have demonstrated the fabrication of record low absorption loss spinel as an exit window for High Energy Laser systems and rare earth doped Y2O3 and Lu2O3 for solid-state ceramic lasers. We have also developed thick spinel windows for submarine photonic masts and predicted the performance of an imaging system using testing and modeling. More recently, we have developed a novel approach of hot pressing where a transparent ceramic is produced in the net shape without requiring post polishing. This technology will result in significant cost savings associated with polishing the final optical element. We are also developing motheye structures on spinel surface to provide rugged anti-reflective solutions. We had earlier identified a Barium GalloGermanate (BGG) glass with matching index and expansion coefficient to spinel. We had demonstrated fabrication of a laminated dome for the Joint Air to Ground Missile (JAGM) program and the technology was transitioned to industry. We have pushed this technology further by developing a BGG glass - spinel ceramic transparent micro-composite, which can be processed well below spinel sintering temperatures. To address the relatively lower strength of BGG glass compared with spinel, we developed an ion-exchange process and achieved strengths up to 450 MPa. This paper gives a summary of our recent findings.

  5. Half-magnetization plateaux in Cr spinels

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, N [H. H. Wills Physics Lab, Tyndall Av., Bristol BS8 1TL (United Kingdom); Ueda, H [ISSP, University of Tokyo, Kashiwa, 277-8581 (Japan); Motome, Y [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Penc, K [Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O.B. 49 (Hungary); Shiba, H [The Institute of Pure and Applied Physics, 2-31-22 Yushima, Bunkyo-ku, Tokyo 113-0034 (Japan); Takagi, H [Department of Advanced Materials Science, University of Tokyo, Kashiwa, 277-8651 (Japan)

    2006-11-15

    Magnetization plateaux, visible as anomalies in magnetic susceptibility at low temperatures, are one of the hallmarks of frustrated magnetism. An extremely robust halfmagnetization plateau is observed in the spinel oxides CdCr{sub 2}O{sub 4} and HgCr{sub 2}O{sub 4}, where it is accompanied by a substantial lattice distortion. We give an overview of the present state experiment for CdCr{sub 2}O{sub 4} and HgCr{sub 2}O{sub 4}, and show how such a half-magnetization plateau arises quite naturally in a simple model of these systems, once coupling to the lattice is taken into account.

  6. SYNTHESIS AND MAGNETIC PROPERTIES OF Zn SPINEL CERAMICS

    Directory of Open Access Journals (Sweden)

    Huber Š.

    2013-06-01

    Full Text Available We present the synthesis and characterization of ZnTM2O4 spinels (where TM = Cr3+, Mn3+, Fe3+ and Co3+, which are possible impurity phases in TM-doped ZnO that represent a large family of diluted magnetic semiconductors (DMS. The aim of our study was to find a uniform technique simplifying the whole synthesis of zinc spinels and their magnetic characterization. The synthesis was carried out by a conventional ceramic route with one calcination and two sintering steps. The structure of the prepared samples was proofed by X-ray diffraction analysis and magnetic properties were studied using SQUID magnetometer. Excluding the cobalt spinel, all spinels were singe phase and showed antiferromagnetic behavior.

  7. Thermal expansion of spinel-type Si3N4

    DEFF Research Database (Denmark)

    Paszkowics, W.; Minkikayev, R.; Piszora, P.

    2004-01-01

    The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K......The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K...

  8. Scale up of large ALON® and spinel windows

    Science.gov (United States)

    Goldman, Lee M.; Kashalikar, Uday; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri

    2017-05-01

    Aluminum Oxynitride (ALON® Transparent Ceramic) and Magnesia Aluminate Spinel (Spinel) combine broadband transparency with excellent mechanical properties. Their cubic structure means that they are transparent in their polycrystalline form, allowing them to be manufactured by conventional powder processing techniques. Surmet has scaled up its ALON® production capability to produce and deliver windows as large as 4.4 sq ft. We have also produced our first 6 sq ft window. We are in the process of producing 7 sq ft ALON® window blanks for armor applications; and scale up to even larger, high optical quality blanks for Recce window applications is underway. Surmet also produces spinel for customers that require superior transmission at the longer wavelengths in the mid wave infra-red (MWIR). Spinel windows have been limited to smaller sizes than have been achieved with ALON. To date the largest spinel window produced is 11x18-in, and windows 14x20-in size are currently in process. Surmet is now scaling up its spinel processing capability to produce high quality window blanks as large as 19x27-in for sensor applications.

  9. Effects of thermal metamorphism on compositions of lunar spinels

    Science.gov (United States)

    Misra, K. C.; Taylor, L. A.

    1977-01-01

    The reported study represents an attempt to evaluate experimentally the compositional and textural changes that are likely to be observed in the Fe-Ti-Cr spinels of lunar igneous rocks by subsequent thermal metamorphism. The Apollo 12 igneous rock, 12018,43, was chosen for this investigation because an earlier study of another fraction of this rock by El Goresy et al. (1971) has reported an almost continuous trend of spinel compositions between Cr-Ulvoespinel and Ti-chromite. The nature of the compositional changes in the heated spinels (and ilmenites) is found to be such that the changes cannot be explained by intragranular adjustments alone. In the heated sample, pyroxene grains adjacent to the high-Ti spinels show a decrease in FeO, and an increase in MgO and Al2O3 at the interface. This may account for the MgO depletion and a part of the FeO enrichment in the high-Ti spinels. It is believed that the heating experiment demonstrates that thermal metamorphism of lunar basalts is likely to modify the compositions of their preexisting spinels (and ilmenites).

  10. Spinel cobalt ferrite by complexometric synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Pham D. [Inorganic Materials Science, Faculty of Science and Technology, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: t.d.pham@tnw.utwente.nl; Rijnders, Guus [Inorganic Materials Science, Faculty of Science and Technology, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Blank, Dave H.A. [Inorganic Materials Science, Faculty of Science and Technology, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2005-09-15

    Magnetic fine particles of cobalt ferrite (CoFe{sub 2}O{sub 4}) have been synthesized using complexometric method in which ethylene diamine tetra acetic acid C{sub 10}H{sub 16}N{sub 2}O{sub 8} (EDTA) acts as a complexing agent. The crystallographic structure, microstructure and magnetic properties of the synthesized powder were characterized by using X-ray diffraction (XRD), particle size analysis and vibrating sample magnetometry (VSM). The material crystallized in cubic spinel structure with lattice parameter of about 8.38 A. Depending on the calcining temperature, the particle size of the powders varies in the range of hundreds of nanometers to tens of micrometers. A desired relative density above 95% of the theoretical value is obtained for the bulk sample after sintering. The calcined powders and sintered sample exhibit saturation magnetizations around 80 Am{sup 2}/kg which is expected for inverse CoFe{sub 2}O{sub 4}. With increasing calcining temperature the coercivity of these samples decreases. This simple synthesis route leads to a reproducible and stoichiometric material.

  11. Micromagnetic simulations of spinel ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Christine C., E-mail: ccdantas@iae.cta.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Gama, Adriana M., E-mail: adriana-gama@uol.com.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2010-10-15

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M{sub 1}-{sub n}Zn{sub n}Fe{sub 2}O{sub 4} (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={l_brace}Fe, Mn, Co, Ni, Mg, Cu {r_brace}; (b) for n=0.1: M = {l_brace}Fe, Mg{r_brace} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {l_brace}Mg, Cu{r_brace} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe{sub 3}O{sub 4} (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe{sub 3}O{sub 4} one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  12. Quantum mechanical method for estimating ionicity of spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ji, D.H. [Hebei Advanced Thin Films Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Tang, G.D., E-mail: tanggd@mail.hebtu.edu.cn [Hebei Advanced Thin Films Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Li, Z.Z.; Hou, X.; Han, Q.J.; Qi, W.H.; Liu, S.R.; Bian, R.R. [Hebei Advanced Thin Films Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China)

    2013-01-15

    The ionicity (0.879) of cubic spinel ferrite Fe{sub 3}O{sub 4} has been determined, using both experimental magnetization and density of state calculations from the density functional theory. Furthermore, a quantum mechanical estimation method for the ionicity of spinel ferrites is proposed by comparing the results from Phillips' ionicity. On the basis of this, ionicities of the spinel ferrites MFe{sub 2}O{sub 4} (M=Mn, Fe, Co, Ni, Cu) are calculated. As an application, the ion distribution at (A) and [B] sites of (A)[B]{sub 2}O{sub 4} spinel ferrites MFe{sub 2}O{sub 4} (M=Fe, Co, Ni, Cu) are calculated using current ionicity values. - Highlights: Black-Right-Pointing-Pointer The ionicity of Fe{sub 3}O{sub 4} was determined as 0.879 by the density functional theory. Black-Right-Pointing-Pointer The ionicities of spinel ferrites were estimated by a quantum mechanical method. Black-Right-Pointing-Pointer A quantum mechanical method estimating ionicity is suitable for II-VI compounds. Black-Right-Pointing-Pointer The ion distributions of MFe{sub 2}O{sub 4} are calculated by current ionicities values.

  13. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...... effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  14. Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation

    KAUST Repository

    Li, Peng

    2017-05-08

    The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across antiphase boundaries has been commonly employed to account for large magnetoresistance (MR) in ferrites, the magnetic anomalies, the two magnetic phases and enhanced molecular moment, are still unresolved. We observed a sizable MR in epitaxial spinel films (NiCo2O4-δ) that is much larger than that commonly observed in spinel ferrites. Detailed analysis reveals that this MR can be attributed to phase separation, in which the perfect ferrimagnetic metallic phase and ferrimagnetic insulating phase coexist. The magnetic insulating phase plays an important role in spin filtering in these phase separated spinel oxides, leading to a sizable MR effect. A spin filtering model based on Zeeman effect and direct tunneling is developed to account for MR of the phase separated films.

  15. Elastic stability of high dose neutron irradiated spinel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Chan, S.K. [Argonne National Lab., Chicago, IL (United States); Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-04-01

    The objective of this effort is to identify ceramic materials that are suitable for fusion reactor applications. Elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}) of spinel (MgAl{sub 2}O{sub 4}) single crystals irradiated to very high neutron fluences have geen measured by an ultrasonic technique. Although results of a neutron diffraction study show that cation occupation sites are significantly changed in the irradiated samples, no measurable differences occurred in their elastic properties. In order to understand such behavior, the elastic properties of a variety of materials with either normal or inverse spinel structures were studied. The cation valence and cation distribution appear to have little influence on the elastic properties of spinel materials.

  16. Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation.

    Science.gov (United States)

    Li, Peng; Xia, Chuan; Li, Jun; Zhu, Zhiyong; Wen, Yan; Zhang, Qiang; Zhang, Junwei; Peng, Yong; Alshareef, Husam N; Zhang, Xixiang

    2017-05-23

    The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across antiphase boundaries has been commonly employed to account for large magnetoresistance (MR) in ferrites, the magnetic anomalies, the two magnetic phases and enhanced molecular moment, are still unresolved. We observed a sizable MR in epitaxial spinel films (NiCo2O4-δ) that is much larger than that commonly observed in spinel ferrites. Detailed analysis reveals that this MR can be attributed to phase separation, in which the perfect ferrimagnetic metallic phase and ferrimagnetic insulating phase coexist. The magnetic insulating phase plays an important role in spin filtering in these phase separated spinel oxides, leading to a sizable MR effect. A spin filtering model based on Zeeman effect and direct tunneling is developed to account for MR of the phase separated films.

  17. The Microstructure and Properties of Alumina—Rich Spinel and Its Products

    Institute of Scientific and Technical Information of China (English)

    SHIGan; SUNGeng-chen

    1995-01-01

    The paper describes the effect of chemical composition on the microstructure and properties of spinel specimens synthesized from bauxite and magnesite,The alumina-rich spinel with higher ratio of Al2O3/MgO,with smaller spinel grain,contains more titaniferous mineral and silicate phase compared to the spinel with lower Al2O3/MgO ratio.In the products obtained from alumina-rich spinel and magnesite clinker,the ratio of Al2O3/MgO of spinel decreases,ti-taniferous mineral and silicate phase in the spinel aggregate are changed,and its content tends to degradation,contrasted with original alumina-rich spinel,The products have good high temperature properties.

  18. Cation disorder in high-dose, neutron-irradiated spinel

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, K.E.; Larson, A.C.; Yu, N. [Los Alamos National Lab., CA (United States)] [and others

    1995-04-01

    The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{times}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highese dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approx}20% while increasing by {approx}8% on octahedral sites.

  19. Enhancement of MgAl2O4 spinel formation from coprecipitated precursor by powder processing

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; S Mukherjee; B N Samaddar; P G Pal

    2011-07-01

    Although low temperature fast coprecipitation technique has been used to synthesize stoichiometric (MgO–nAl2O3, = 1) MgAl2O4 spinel forming precursor, delayed spinellization has always been the concern in this process. In this article, the precursor of this ‘fast technique’ has been used for bulk production by further processing by high speed mixing with solvents and mechanical activation by attrition milling in terms of superior spinellization. At 1000°C, MgAl2O4 – -Al2O3 solid solution and MgO phases are formed (spinel formed by 1000°C is regarded as primary spinel). At higher temperatures, due to large agglomerate size, MgO can not properly interact with the exsolved -Al2O3 from spinel solid solution to form secondary spinel; and consequently spinellization gets affected. Solvent treatment and attrition milling of the coprecipitated precursor disintegrate the larger agglomerates into smaller size (effect is more in attrition). Then MgO comes in proper contact with exsolved alumina, and therefore total spinel formation (primary + secondary) is enhanced. Extent of spinellization, for processed calcined samples where some alumina exists as solid solution with spinel, can be determined from the percentage conversion of MgO. Analysis of the processed powders suggests that the 4 h attrited precursor is most effective in terms of nano size (< 25 nm) stoichiometric spinel crystallite formation at ≤ 1100°C.

  20. Reduction of a Ni/Spinel Catalyst for Methane Reforming

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Fløystad, Jostein Bø

    2015-01-01

    A nickel/spinel (Ni/MgAl2O4) catalyst, w(Ni) = 22 wt%, was investigated in situ during reduction with wide angle X-ray scattering (WAXS) in a laboratory setup and with anomalous small angle X-ray scattering (ASAXS) at a synchrotron source. Complementary high resolution transmission electron micro...

  1. Photoelectrochemical properties of ferrites with the spinel structure

    NARCIS (Netherlands)

    Haart, L.G.J. De; Blasse, G.

    1985-01-01

    The photoelectrochemical properties of the ferrites ZnFe2O4, MgFe2O4 and Li0.5O4 with the spinel structure are reported. The ferrites seem reasonable candidates for photoanodes in a photoelectrochemical cell, because of their 2.2 eV bandgap. The results show, however, that the visible absorptivity,

  2. Infrared Transparent Spinel Films with p -Type Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Exarhos, Gregory J.; Ferris, Kim F.; Engelhard, Mark H.; Stewart, Donald C.

    2001-11-29

    Spinel oxide films containing at least two transition metal cations were found to exhibit p-type conductivity with high optical transparency from the visible to wavelengths near 15 micrometers. Resistivities as low as 0.003 ohm-cm were measured on 100 nm thick rf sputter deposited films that contained nickel and cobalt. Optical spectra, Raman scattering and XPS measurements indicated the valency of nickel localized on octahedral sites within the spinel lattice determines these properties. Electronic band structure calculations corroborated the experimental results. A resistivity minimum was found at the composition NiCo2O4 deposited from aqueous or alcoholic solutions followed by subsequent annealing at 400 degrees C in air. Solution deposited films richer in nickel than this stoichiometry always were found to phase separate into nickel oxide and a spinel phase with concomitant loss in conductivity. However, the phase stability region could be extended to higher nickel contents when rf-sputter deposition techniques were used. Sputter deposited spinel films having a nickel to cobalt ratio less than 2 were found to exhibit the highest conductivity. Results suggest that the phase stability region for these materials can be extended through appropriate choice of deposition conditions. A possible mechanism that promotes high conductivity in this system is thought to be charge transfer between the resident di- and trivalent cations that may be assisted by the magnetic nature of the oxide film.

  3. Lithium manganese spinel materials for high-rate electrochemical applications

    Institute of Scientific and Technical Information of China (English)

    Anna V. Potapenko; Sviatoslav A. Kirillov

    2014-01-01

    In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode materials are one of the most prospective candidates, especially in their nanosized form. In this article, an overview of the most recent data regarding physico-chemical and electrochemical properties of lithium manganese spinels, especially, LiMn2O4 and LiNi0.5Mn1.5O4, synthesized by means of various methods is presented, with special emphasis of their use in high-rate electrochemical applications. In particular, specific capacities and rate capabilities of spinel materials are analyzed. It is suggested that reduced specific capacity is determined primarily by the aggregation of material particles, whereas good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals. The most technologically advantageous solutions are described, existing gaps in the knowledge of spinel materials are outlined, and the ways of their filling are suggested, in a hope to be helpful in keeping lithium batteries afloat in the struggle for a worthy place among electrochemical energy systems of the 21st century.

  4. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  5. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-12-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases ( i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  6. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-09-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases (i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  7. How Rich is Rich? Placing Constraints on the Abundance of Spinel in the Pink Spinel Anorthosite Lithology on the Moon Through Space Weathering

    Science.gov (United States)

    Gross, J.; Gillis-Davis, J.; Isaacson, P. J.; Le, L.

    2015-01-01

    previously unknown lunar rock was recently recognized in the Moon Mineralogy Mapper (M(sup 3)) visible to near-infrared (VNIR) reflectance spectra. The rock type is rich in Mg-Al spinel (approximately 30%) and plagioclase and contains less than 5% mafic silicate minerals (olivine and pyroxene). The identification of this pink spinel anorthosite (PSA) at the Moscoviense basin has sparked new interest in lunar spinel. Pieters et al. suggested that these PSA deposits might be an important component of the lunar crust. However, Mg-Al spinel is rare in the Apollo and meteorite sample collections (only up to a few wt%), and occurs mostly in troctolites and troctolitic cataclastites. In this study, we are conducting a series of experiments (petrologic and space weathering) to investigate whether deposits of spinel identified by remote sensing are in high concentration (e.g. 30%) or whether the concentrations of spinel in these deposits are more like lunar samples, which contain only a few wt%. To examine the possibility of an impact-melt origin for PSA, conducted 1-bar crystallization experiments on rock compositions similar to pink spinel troctolite 65785. The VNIR spectral reflectance analyses of the low-temperature experiments yield absorption features similar to those of the PSA lithology detected at Moscoviense Basin. The experimental run products at these temperatures contain approximately 5 wt% spinel, which suggests that the spinel-rich deposits detected by M(sup 3) might not be as spinel-rich as previously thought. However, the effect of space weathering on spinel is unknown and could significantly alter its spectral properties including potential weakening of its diagnostic 2-micrometers absorption feature. Thus, weathered lunar rocks could contain more spinel than a comparison with the unweathered experimental charges would suggest. In this study, we have initiated space weathering experiments on 1) pure pink spinel, 2) spinel-anorthite mixtures, and 3) the low

  8. Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors

    Science.gov (United States)

    Hsu, Chun-Tsung; Hu, Chi-Chang

    2013-11-01

    A simple and scalable process has been developed for synthesizing spinel NiCo2O4 nanocrystals through a thermal decomposition method. The introduction of hexadecyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br) into precursor solutions significantly enhances the homogeneity and porosity of spinel NiCo2O4. The porosity and high specific surface area of NiCo2O4 preserves the brilliant pseudo-capacitive performances due to providing smooth paths for electrolyte penetration and ion diffusion into inner active sites. Morphologies and microstructures of the active materials are examined by transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of precursor solutions. The electrochemical performances of NiCo2O4 are systematically characterized by cyclic voltammetry and charge-discharge tests. Asymmetric supercapacitors are assembled with these brilliant binary oxides as the positive electrode and activated carbon as the negative electrode. The highly porous NiCo2O4 exhibits superior capacitive performances, i.e., high specific capacitance (764 F g-1 at 2 mV s-1) and long cycle life.

  9. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    Science.gov (United States)

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  10. Epitaxial growth of tungsten nanoparticles on alumina and spinel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Suarez, T; Lopez-Esteban, S; Pecharroman, C; Esteban-Cubillo, A; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz 3, 28049, Cantoblanco, Madrid (Spain); Diaz, L A; Torrecillas, R [Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones CientIficas (CSIC), C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias (Spain); Gremillard, L [Universite de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510, 20 avenue Albert Einstein, Villeurbanne F-69621 (France)], E-mail: jsmoya@icmm.csic.es

    2008-05-28

    Isolated tungsten nanoparticles ({alpha}-W and {beta}-W phase) were synthesized and epitaxially grown on alumina and spinel particle surfaces with an average tungsten size of {<=}20 nm for a low tungsten content (of {<=}1.5 vol%). Using tungsten (VI) ethoxide alcoholic solutions, tungsten trioxide hydrated precursors were attached to a ceramic grains surface as a nanoparticle coating. High-resolution transmission electron microscopy (HRTEM) micrographs showed epitaxial interfaces between alumina, spinel and metallic tungsten. This epitaxial growth is assumed to be due to the effect of water vapour on the sublimation of ortho-tungstic acid during the reduction process in a hydrogen atmosphere. The planes involved in the epitaxy were found to be (22-bar 0){sub Al2O3} parallel (121){sub W} and (311){sub MgAl2O4} parallel (110){sub W}.

  11. Raman spectroscopic studies of lithium manganates with spinel structure

    CERN Document Server

    Julien, C M

    2003-01-01

    Raman scattering spectra of a set of lithium manganospinels Li sub 1 sub - sub x sub + sub z Mn sub 2 sub - sub z O sub 4 with 0 sup<= x sup<= 1 and 0 sup<= z sup<= 0.33 are reported and analysed. Structural changes have been investigated following the evolution of Raman spectra with the concentration of lithium cations. The local structure was characterized as a function of the mean oxidation state of manganese cations. The trigonal distortion of MnO sub 6 octahedra is evidenced by insertion of lithium ions into the [B sub 2]O sub 4 spinel framework. A comparison with tetragonal Mn sub 3 O sub 4 and Fe sub 3 O sub 4 spinels shows the influence of the Jahn-Teller effect on the Raman features for this class of materials.

  12. Distribution of trace elements in spinel and garnet peridotites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China.The data presented are consistent with the suggestion that highly incompatible elements (Rb,Ba,Th,U,Sr,Nb,Ta) mainly reside in intergranular components,and to a lesser extent in fluid inclusions in minerals.The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions.Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements.There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites,suggesting a P-T control on equilibrium partition coefficients.

  13. Distribution of trace elements in spinel and garnet peridotites

    Institute of Scientific and Technical Information of China (English)

    徐义刚

    2000-01-01

    The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China. The data presented are consistent with the suggestion that highly incompatible elements (Rb, Ba, Th, U, Sr, Nb, Ta) mainly reside in intergranular components, and to a lesser extent in fluid inclusions in minerals. The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions. Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements. There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites, suggesting a P-T control on equilibrium partition coefficients.

  14. ELNES investigations of the oxygen K-edge in spinels.

    Science.gov (United States)

    Docherty, F T; Craven, A J; McComb, D W; Skakle, J

    2001-02-01

    The results of a systematic study of the oxygen K-edge electron energy-loss spectroscopy (ELNES) from a series of aluminium- and chromium-containing spinels are presented. Extra fine structure in the region up to 10 eV above the edge onset is observed for the chromium-containing compounds and is assigned to transitions to states created by mixing of oxygen 2p and metal 3d orbitals. The experimental data has been simulated using the multiple scattering code, FEFF8. Good agreement was obtained in the case of magnesium aluminate, but relatively poor agreement was obtained in the case of the chromites. The possible fingerprints in the oxygen K-edge ELNES corresponding to a high degree of inversion the spinel structure and to a tetragonal distortion of the cubic structure are discussed.

  15. Thermobarometry for spinel lherzolite xenoliths in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; Nagahara, Hiroko

    2016-04-01

    Application of geothermobarometers to peridotite xenoliths has been providing very useful information on thermal and chemical structure of lithospheric or asthenospheric mantle at the time of almost instantaneous sampling by the host magmas, based on which various thermal (e.g., McKenzie et al., 2005), chemical (e.g., Griffin et al., 2003), and rheological (e.g., Ave Lallemant et al., 1980) models of lithosphere have been constructed. Geothermobarometry for garnet or plagioclase-bearing lithologies provide accurate pressure estimation, but this is not the case for the spinel peridotites, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987). There are several geobarometers proposed for spinel lherzolite, such as single pyroxene geothermobarometer (Mercier, 1980) and geothermobarometer based on Ca exchange between olivine and clinopyroxene (Köhler and Brey, 1990), but they have essential problems and it is usually believed that appropriated barometers do not exist for spinel lherzolites (O'Reilly et al., 1997; Medaris et al., 1999). It is thus imperative to develop reliable barometry for spinel peridotite xenoliths. We have developed barometry for spinel peridotite xenoliths by exploiting small differences in pressure dependence in relevant reactions, whose calibration was made through careful evaluation of volume changes of the reactions. This is augmented with higher levels of care in application of barometer by choosing mineral domains and their chemical components that are in equilibrium as close as possible. This is necessary because such barometry is very sensitive to changes in chemical composition induced by transient state of the system possibly owing to pressure and temperature changes as well as chemical modification, forming chemical heterogeneity or zoning frequently reported from various mantle xenoliths (Smith, 1999). Thus very carful treatment of heterogeneity, which might be trivial for

  16. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  17. Integrated thick-film nanostructures based on spinel ceramics.

    Science.gov (United States)

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-03-26

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications.

  18. Integrated thick-film nanostructures based on spinel ceramics

    OpenAIRE

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for...

  19. A new approach to spinel ferrites through mean field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, A. [Tarbyat Modares University, Tehran P.C 14115-175 (Iran, Islamic Republic of)]. E-mail: yazdania@modares.ac.ir; Jalilian Nosrati, M.R. [Islamic Azad University Central Tehran Branch, Tehran P.C 14168-94351 (Iran, Islamic Republic of); Ghasemi, R. [Islamic Azad University Central Tehran Branch, Tehran P.C 14168-94351 (Iran, Islamic Republic of)

    2006-09-15

    The magnetic behavior and specification of spinel ferrites regarding exchange interactions is being studied. The strength of interactions has been examined through the cation substitution with application of mean field approximation of exchange interaction J{sub ij} . Two correlation and approximation parameters have been defined: correlation length R {sub c} in super-exchange and the magnetic effect of ion on the electron fluctuation J {sub 0}.

  20. Simple and Efficient Rout for Synthesis of Spinel Nanopigments

    Directory of Open Access Journals (Sweden)

    Leila Torkian

    2013-01-01

    Full Text Available Nano-sized CoxMg1−xAl2O4 (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1 inorganic pigments were synthesized via combustion method using β-alanine, as a single and novel fuel, at 800°C in open furnace. The obtained powders were characterized by means of X-ray diffraction (XRD, energy dispersive X-ray (EDX elemental analysis, diffuse reflectance spectrum (DRS, CIE L*a*b* color measurements, and scanning electron microscope (SEM. XRD patterns show that all calcined powders have single phase cubic spinel structure. EDX analysis revealed the composition of desired spinels. The diffuse reflectance spectra of the CoxMg1−xAl2O4 (x > 0 pigments confirmed the presence of tetrahedrally coordinated Co2+ ions in the spinel lattice. The colorimetric data pointed out the formation of blue pigments (for x > 0, corresponding to highly negative values of b*, and the bluest color was produced for x = 0.8 and 1. SEM images showed nanoparticles with less than 30 nm crystallite size and flakes-like appearance of all synthesized powders.

  1. Determination of ferrous and total iron in refractory spinels

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Matyas, Josef

    2015-12-30

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.

  2. Elasticity of some mantle crystal structures. I - Pleonaste and hercynite spinel.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1972-01-01

    The elasticity of high-pressure mantle phases can be characterized by using data for chemically similar crystal compounds. The single-crystal elastic constants are determined as a function of pressure and temperature for pleonaste spinel and at room conditions for hercynite spinel. The bulk modulus increases from 1.95 Mb for pleonaste spinel to 2.10 Mb for hercynite spinel. Low or negative values of the pressure derivatives of shear constants are characteristic of the spinel structure and imply a low kinetic barrier to phase transformations and diffusion. Compressional and shear velocities of the spinel phase of olivine are estimated as a function of mean atomic weight by using the pleonaste and hercynite data.

  3. Binary mask programmable hologram.

    Science.gov (United States)

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  4. Magnetoreflection of light in CoFe2O4 magnetostrictive spinel

    Science.gov (United States)

    Sukhorukov, Yu. P.; Telegin, A. V.; Nosov, A. P.; Bessonov, V. D.; Buchkevich, A. A.

    2016-09-01

    The reflection and magnetoreflection of natural light within the infrared spectral range is studied in single crystals of CoFe2O4 ferrimagnetic ferrite spinel. Correlation between the reflection of light and magnetoelastic characteristics of this spinel is found. It is shown that the most significant magnetic-field-induced changes in the magnetoreflection of the spinel occur near the fundamental absorption edge and within the range of the phonon spectrum.

  5. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M.M.; de Kock, A.; Rossouw, M.H.; Liles, D. (Div. of Materials Science and Technology, CSIR, Pretoria 0001 (ZA)); Bittihn, R.; Hoge, D. (VARTA Batterie AG Research Center, D-6233 Kelkheim (DE))

    1992-02-01

    The electrochemical and structural properties of spinel phases in the Li-Mn-O system are discussed as insertion electrodes for rechargeable lithium batteries. In this paper the performance of button-type cells containing electrodes from the Li{sub 2}O yMnO{sub 2} system, e.g., the stoichiometric spinel Li{sub 4}Mn{sup 5}O{sub 12}(y = 2.5) and the defect spinel Li{sub 2}Mn{sub 4}O{sub 9}(y = 4.0), is highlighted and compared with a cell containing a standard LiMn{sub 2}O{sub 4} spinel electrode.

  6. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    Energy Technology Data Exchange (ETDEWEB)

    Khattab, R.M. [Refractories, Ceramics and Building Materials Dept., National Research Centre, Dokki, 12622 Giza (Egypt); Wahsh, M.M.S., E-mail: mmswahsh@yahoo.com [Refractories, Ceramics and Building Materials Dept., National Research Centre, Dokki, 12622 Giza (Egypt); Khalil, N.M. [Refractories, Ceramics and Building Materials Dept., National Research Centre, Dokki, 12622 Giza (Egypt); Department of Chemistry, Faculty of Sciences and Arts, Khulais, University of Jeddah (Saudi Arabia)

    2015-09-15

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg{sub 2}SiO{sub 4})/spinel (MgAl{sub 2}O{sub 4}) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl{sub 2}O{sub 4} spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl{sub 2}O{sub 4} spinel addition. • Volume resistivity was enhanced to 203*10{sup 13} Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  7. Determination of ferrous and total iron in refractory spinels

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, J.E. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Matyáš, J. [Material Science Department, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-03-03

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top. - Highlights: • Refractory samples, such as spinels, are the most difficult for Fe redox analysis. • Oxidimetric(Ag{sup +})/colorimetric (phen) method allows analysis of a single

  8. An Improved Experimental Calibration of the Olivine-Spinel Geothermometer

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    The calibration of the olivine-spinel geothermometer by Fabries(1979) is commonly adopted by a number of petrologists.But the temperatures calculated in this way for ultramafic focks are significantly lower than those obtained by the pyroxene geothermometers.These O1-Sp temperatures are also lower than those measured experi-mentally in the natural system (four-phase lherzolite).Different rates of cation diffusion cannot fully account for these differences.The temperature deviation is actually related to the inconsistencies between natural and experimental data which support the calibration .A re-evaluation of the calibration is proposed on the basis of a set of new experimental data.

  9. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  10. Spinels as cathodes for the electrochemical reduction of O2 and NO

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Find, D.; Lilliedal, M.

    2007-01-01

    Spinels were synthesised and investigated as electro-catalyst for the electrochemical reduction of oxygen and nitric oxide using cyclic voltammetry and cone shaped electrodes. The following four spinels were investigated; CoFe2O4, NiFe2O4, CuFe2O4 and Co3O4. The composition CuFe2O4 revealed...

  11. Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag with High CaO Content

    Science.gov (United States)

    Zhou, Wang; Xie, Bing; Tan, Wen-Feng; Diao, Jiang; Zhang, Xie; Li, Hong-Yi

    2016-09-01

    This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (>1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K-1200 K.

  12. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries.

    Science.gov (United States)

    Lee, Sanghan; Yoon, Gabin; Jeong, Minseul; Lee, Min-Joon; Kang, Kisuk; Cho, Jaephil

    2015-01-19

    The increasing use of lithium-ion batteries (LIBs) in high-power applications requires improvement of their high-temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic-spinel, tetragonal-spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90% of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.

  13. Effect of spinel content on the properties of phosphoric acid bonded high alumina castables

    Institute of Scientific and Technical Information of China (English)

    Zichun Yang; Hongwei Duan; Lin Li; Shuqin Li; Wen Ni

    2003-01-01

    In order to study the effect of fused spinel on the properties of phosphoric acid bonded high alumina castables, samples with different contents of fused spinel were prepared. The results show that when the contents of the fused spinel are between 8% and 16% (mass fraction), the castables have good properties. The castables overcome the shortages of the phosphoric acid bonded high alumina castables with bauxite cement as a hardening promoter. The experiments demonstrate that most of the service properties of the castables with fused spinel are better than those of the normal phosphoric acid bonded castables which use bauxite cement as a hardening promoter. The examination of the materials indicates that free MgO inclusions in the spinel powder can promote the hardening of the castables.

  14. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes

    Science.gov (United States)

    Roeder, Peter; Gofton, Emma; Thornber, Carl

    2006-01-01

    The volume %, distribution, texture and composition of coexisting olivine, Cr-spinel and glass has been determined in quenched lava samples from Hawaii, Iceland and mid-oceanic ridges. The volume ratio of olivine to spinel varies from 60 to 2800 and samples with >0·02% spinel have a volume ratio of olivine to spinel of approximately 100. A plot of wt % MgO vs ppm Cr for natural and experimental basaltic glasses suggests that the general trend of the glasses can be explained by the crystallization of a cotectic ratio of olivine to spinel of about 100. One group of samples has an olivine to spinel ratio of approximately 100, with skeletal olivine phenocrysts and small (olivine phenocrysts. The large number of spinel crystals included within olivine phenocrysts is thought to be due to skeletal olivine phenocrysts coming into physical contact with spinel by synneusis during the chaotic conditions of ascent and extrusion. A second group of samples tend to have large olivine phenocrysts relatively free of included spinel, a few large (>100 μm) spinel crystals that show evidence of two stages of growth, and a volume ratio of olivine to spinel of 100 to well over 1000. The olivine and spinel in this group have crystallized more slowly with little physical interaction, and show evidence that they have accumulated in a magma chamber.

  15. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    Geothermobarometry of solid fragments in kimberlite and alkali basalts, generally called "xenoliths", provides information on thermal and chemical structure of lithospheric and asthenospheric mantle, based on which various chemical, thermal, and rheological models of lithosphere have been constructed (e.g., Griffin et al., 2003; McKenzie et al., 2005; Ave Lallemant et al., 1980). Geothermobarometry for spinel-bearing peridotite fragments, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987), has essential difficulties, and it is usually believed that appropriated barometers do not exist for them (O'Reilly et al., 1997; Medaris et al., 1999). Ozawa et al. (2016; EGU) proposed a method of geothermobarometry for spinel lherzolite fragments. They applied the method to mantle fragments in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco (Raffone et al. 2009; El Azzouzi et al., 2010; Witting et al., 2010; El Messbahi et al., 2015). Ozawa et al. (2016) obtained 0.5GPa pressure difference (1.5-2.0GPa) for 100°C variation in temperatures (950-1050°C). However, it is imperative to verify the results on the basis of completely independent data. There are three types of independent information: (1) time scale of solid fragment extraction, which may be provided by kinetics of reactions induced by heating and/or decompression during their entrapment in the host magma and transportation to the Earth's surface (Smith, 1999), (2) depth of the host basalt formation, which may be provided by the petrological and geochemical studies of the host basalts, and (3) lithosphere-asthenosphere boundary depths, which may be estimated by geophysical observations. Among which, (3) is shown to be consistent with the result in Ozawa et al. (2016). We here present that the estimated thermal structure just before the fragment extraction is fully supported by the information of (1) and (2). Spera (1984) reviewed

  16. Compositional variations of chromiferous spinel in Mg-rich rocks of the Deccan Traps, India

    Indian Academy of Sciences (India)

    Leone Melluso; Roberto De’ Gennaro; Ivana Rocco

    2010-06-01

    Composition of chromiferous spinel included in olivines of Mg-rich basalts and gabbros of the Deccan Traps (Gujarat and Western Ghats) are reported here. They vary from Al-rich compositions [Al2O3 = 53wt.%; Cr#, 100Cr/(Cr + Al) = 12] to Cr-rich compositions [Cr2O3 = 51wt.%; Cr#= 84], and from Cr-Al rich compositions towards Cr-rich Ti-magnetite (TiO2 up to 23 wt.%, ulvöspinel up to 67mol.%). The Mg#[100Mg/(Mg + Fe2+)] of spinel decreases from 81 to nearly zero. The highest Cr#has been found in the Bushe Fm., Thakurvadi Fm., and some high-Ti basalts of the Pavagadh section, whereas some of the low-Ti basalts of Saurashtra have Al-rich compositions typical of spinels found in mid-ocean ridge basalts. The chemical composition of the Deccan Trap spinels is completely different compared to that observed in mantle spinel suites, with very few exceptions. The decreasing Al and increasing Fe and Ti of spinel seems to be mainly the result of decrease of Mg in the locally coexisting melts and favourable cationic substitutions in the lattice. There is barely any evidence of general relationships between the composition of the Deccan spinels and inferred mantle sources of the host magmas. Pyroxene inclusions in spinels may witness a high-pressure stage of crystallization, but the possibility of non-equilibrium crystallization, or even magma mixing, cannot be ruled out. Overall, the compositional ranges of chromiferous spinel in the Deccan Traps closely match those observed in the other Large Igneous Provinces having mafic/ultramafic intrusions and mafic magma compositions (e.g., Siberian Traps, Karoo, Emeishan).

  17. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal st

  18. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Science.gov (United States)

    Lee, Hae Ri; Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won; Lee, Kwan-Young; Oh, Si Hyoung

    2017-01-01

    Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO4 and LiMg0.5Mn1.5O4 layers on the surface of LiAl0.1Mn1.9O4. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  19. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    Science.gov (United States)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  20. Black and green pigments based on chromium-cobalt spinels

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario, Sayonara A., E-mail: sayonaraea@iq.unesp.br [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Andrade, Jeferson M. de [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Lima, Severino J.G. [Departamento de Engenharia Mecanica, CT, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Paskocimas, Carlos A. [Universidade Federal do Rio Grande do Norte, CT, Natal, RN (Brazil); Soledade, Luiz E.B. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Hammer, P.; Longo, E. [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Souza, Antonio G.; Santos, Ieda M.G. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil)

    2011-09-15

    Highlights: {yields} Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were prepared by the polymeric precursor method. {yields} Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4} displayed a dark color and CoCr{sub 2}O{sub 4} was green. {yields} The colors were related to the different oxidation states of Cr and Co. {yields} Cobalt enrichment result in an increasing presence of Co(III) and a decrease amount of Cr(VI). - Abstract: Chromium and cobalt oxides are widely used in the manufacture of industrial pigments. In this work, the Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were synthesized by the polymeric precursor method, heat treatment between 600 and 1000 deg. C. These powders were characterized by X-ray diffraction, infrared spectroscopy, colorimetry, UV-vis absorption and X-ray photoelectron spectroscopies. Even with the addition of chromium, the XRD patterns revealed that all powders crystallize in a single spinel cubic structure. The spinels with higher cobalt amount, Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4}, displayed a dark color, without the Co{sup 3+} reduction observed in Co{sub 3}O{sub 4} between 900 and 950 deg. C. The spinel with higher chromium amount, CoCr{sub 2}O{sub 4}, was green. The colors were directly related to the occupation of tetrahedral and octahedral sites by the chromophores, as well as to the different oxidation states of chromium and cobalt. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels within the band gap. X-ray photoelectron spectroscopy confirmed an increasing presence of Co(III) and a decreasing amount of Cr(VI) with cobalt enrichment.

  1. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel.

  2. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas; Bi, Wenli; Tissot, Francois L. H.; Hu, Michael Y.; Zhao, Jiyong; Alp, Esen E.

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels. This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.

  3. Enthalpy of formation of Li{sub 1+x}Mn{sub 2−x}O{sub 4} (0 < x < 0.1) spinel phases

    Energy Technology Data Exchange (ETDEWEB)

    Cupid, Damian M., E-mail: damian.cupid@kit.edu; Reif, Alexandra; Seifert, Hans J.

    2015-01-10

    Highlights: • The enthalpies of formation of Li{sub 1+x}Mn{sub 2−x}O{sub 4} spinels were measured. • High temperature oxide melt drop solution calorimetry was used. • One commercial and two sol–gel synthesized samples were investigated. • The enthalpies of formation depend on the value of x in Li{sub 1+x}Mn{sub 2−x}O{sub 4}. • The Li-rich boundary of Li{sub 1+x}Mn{sub 2−x}O{sub 4} in air was confirmed. - Abstract: The enthalpies of formation of Li{sub 1+x}Mn{sub 2−x}O{sub 4} (0 < x < 0.1) spinel phases were measured using high temperature oxide solution calorimetry in a sodium molybdate solvent at 701 °C. One commercially available LiMn{sub 2}O{sub 4} powder and two Li{sub 1+x}Mn{sub 2−x}O{sub 4} samples synthesized using the sol–gel method were used for the measurements. The enthalpies of formation of the spinels from the binary constituent oxides and from the elements become more exothermic with increasing lithium content and increasing average oxidation state of the manganese cation in the range 0 < x < 0.1. Additionally, the lithium-rich boundary of the Li{sub 1+x}Mn{sub 2−x}O{sub 4} phase for 0 < x < 0.1 was re-investigated using differential thermal analysis combined with thermogravimetric analysis.

  4. Slag-Resistance of MgAlON Spinel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The slag-resistance and microstructural changes after the slag tests of MgAlON spinel containing different amount of nitrogen were studied by means of crucible slag-resistant experiment, SEM and EDS in the work. The results show that the slag-resistance of MgAlON is dependent on the nitrogen content, and the optimum amount is 2.88%. The structure is not changed although the grains have been permeated by some silicon, calcium and iron. A glass phase which contained nitrogen formed in the metamorphic layer. The glass can improve the ability of the slag-resistance of MgAlON because of its higher viscosity.

  5. Introduction to porous spinel for refractory (high temp material

    Directory of Open Access Journals (Sweden)

    Kumar Saurav

    2016-09-01

    Full Text Available The paper examines thermal properties of materials. The transient pulse method was used for specific heat, thermal diffusivity and thermal conductivity determination. Porous MgO was synthesis by heating pellets at 1100 °C for 1 h. The resultant porous MgO was then immersed in 10 mol/L aluminum nitrate solution, dried, and reheated at 1300 °C for 2 h to convert it to spinel. The evaluation was performed with the help of mathematical apparatus used for study of fractal structures properties. The method results from generalized relations that were designed for study of physical properties of fractal structures. As it is shown these relations are in a good agreement with the equations used for the description of time responses of temperature for the pulse input of supplied heat.

  6. Modification of lithium titanate spinel by d-electron metals

    Directory of Open Access Journals (Sweden)

    Olszewska Danuta

    2017-01-01

    Full Text Available A simply and cheap solid state synthesis was used to produce powders of spinel phase Li4-xCuxTi5O12, where 0≤x≤0.2, with crystallite size in ~890 nanometers range. The as-prepared samples were verified by scanning electron microscopy and X-ray diffraction. The electrochemical performance of these samples was examined by galvanostatic and voltamperometric tests. To determine transport properties an impedance spectroscopy tests were obtained. These measurements showed excellent high-rate performance and remark- ably good cyclability of the fabricated powders. Capacity retention in Li3.85Cu0.15Ti5O12 has 77% theoretical capacity after raise the discharge current from 1C to 10C and there is less than 2% of capacity loss after 50 charge/discharge cycles at 1C current rate.

  7. On the influence of applied fields on spinel formation

    Energy Technology Data Exchange (ETDEWEB)

    KORTE,C.; FARER,J.K.; RAVISHANKAR,N.; MICHAEL,JOSEPH R.; SCHMALZRIED,J.; CARTER,C.B.

    2000-04-04

    Interfaces play an important role in determining the effect of electric fields on the mechanism of the formation spinel by solid-state reaction. The reaction occurs by the movement of phase boundaries but the rate of this movement can be affected by grain boundaries in the reactants or in the reaction product. Only by understanding these relationships will it be possible to engineer their behavior. As a particular example of such a study, MgIn{sub 2}O{sub 4} can be formed by the reaction between single-crystal MgO substrate and a thin film of In{sub 2}O{sub 3} with or without an applied electric field. High-resolution backscattered electron (BSE) imaging and electron backscattered diffraction (EBSD) in a scanning electron microscope (SEM) has been used to obtain complementary chemical and crystallographic information.

  8. Thermal behaviour of helium-implanted spinel single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Velisa, G., E-mail: gihan@tandem.nipne.ro [National Institute for Physics and Nuclear Engineering - ' Horia Hulubei' , 407 Atomistilor St., P.O. Box MG-6, 077125 Magurele-Ilfov (Romania); Debelle, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, UMR8609, Bat. 108, 91405 Orsay (France); Vincent, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, UMR8609, Bat. 108, 91405 Orsay (France); Institut d' Electronique Fondamentale, Universite Paris-Sud, UMR8622, Bat. 220, 91405 Orsay (France); Thome, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, UMR8609, Bat. 108, 91405 Orsay (France); Declemy, A. [Institut Pprime, Departement de Physique et Mecanique des Materiaux, CNRS-Universite de Poitiers-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex (France); Pantelica, D. [National Institute for Physics and Nuclear Engineering - ' Horia Hulubei' , 407 Atomistilor St., P.O. Box MG-6, 077125 Magurele-Ilfov (Romania); Antohe, S. [Faculty of Physics, University of Bucharest, 405 Atomistilor, P.O. Box MG-11, 077125 Magurele-Ilfov (Romania)

    2011-09-01

    The study of the microstructural modifications induced in spinel implanted with {sup 4}He{sup +} at 4.7 at.% and subsequently annealed at 1075 K is addressed in this paper. The combination of three analysis techniques Rutherford backscattering spectrometry in channeling geometry (RBS/C), X-ray diffraction and transmission electron microscopy was used in order to gain information about the damage depth distribution, the nature of radiation defects, and the occurrence of microstructural modifications. In as-implanted crystals the disorder level is weak, and the damage principally consists of small helium-vacancy clusters. These defects induce a tensile strain in the direction normal to the implanted crystal surface. After annealing, a surprising increase of the disorder level is measured by RBS/C. This increased backscattering yield is due to the formation of a particular type of He-vacancy clusters, namely He platelets, which also induce a relaxation of the strain.

  9. Origin of the low compressibility in hard nitride spinels

    DEFF Research Database (Denmark)

    Mori-Sánchez, P.; Marqués, M.; Beltrán, A.

    2003-01-01

    by a network of highly directional strong bonds with covalent character in gamma-C3N4 and different degrees of ionic polarization in gamma-Si3N4 and gamma-Ge3N4, (ii) nitrogen is the lowest compressible atom controlling the trend in the bulk modulus of the solids, and (iii) the group-IV counterions show strong......A microscopic investigation of first-principles electron densities of gamma-A(3)N(4) (A:C,Si,Ge) spinels reveals a clear relationship between the compressibility and the chemical bonding of these materials. Three striking findings emanate from this analysis: (i) the chemical graph is governed...

  10. Enhancing Binary Images of Non-Binary LDPC Codes

    CERN Document Server

    Bhatia, Aman; Siegel, Paul H

    2011-01-01

    We investigate the reasons behind the superior performance of belief propagation decoding of non-binary LDPC codes over their binary images when the transmission occurs over the binary erasure channel. We show that although decoding over the binary image has lower complexity, it has worse performance owing to its larger number of stopping sets relative to the original non-binary code. We propose a method to find redundant parity-checks of the binary image that eliminate these additional stopping sets, so that we achieve performance comparable to that of the original non-binary LDPC code with lower decoding complexity.

  11. Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study

    Science.gov (United States)

    Zhang, Yanyao; Liu, Xi; Shieh, Sean R.; Bao, Xinjian; Xie, Tianqi; Wang, Fei; Zhang, Zhigang; Prescher, Clemens; Prakapenka, Vitali B.

    2016-09-01

    Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to 24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to 21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high-P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus (K T) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative K_{T}' as 3.8(6) and 4.37(4), respectively. The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as K T = 150(2) GPa (K_{T}' = 5.4(2); for the volume), K T-a = 173(2) GPa (K_{{T-}a}' = 3.9(1); for the a-axis), K T-b = 74(2) GPa (K_{{T-}b}' = 7.0(2); for the b-axis), and K T-c = 365(8) GPa (K_{{T-}c}' = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as 10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.

  12. Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study

    Science.gov (United States)

    Zhang, Yanyao; Liu, Xi; Shieh, Sean R.; Bao, Xinjian; Xie, Tianqi; Wang, Fei; Zhang, Zhigang; Prescher, Clemens; Prakapenka, Vitali B.

    2017-02-01

    Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to 24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to 21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high- P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus ( K T) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative K_{{T}}' as 3.8(6) and 4.37(4), respectively. The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as K T = 150(2) GPa (K_{{T}}' = 5.4(2); for the volume), K T- a = 173(2) GPa (K_{{{T-}}a}' = 3.9(1); for the a-axis), K T- b = 74(2) GPa (K_{{{T-}}b}' = 7.0(2); for the b-axis), and K T- c = 365(8) GPa (K_{{{T-}}c}' = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as 10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.

  13. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  14. The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure

    Science.gov (United States)

    Barnes, S. J.

    1986-01-01

    The Cr distributions for a synthetic silicate melt equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151 C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wuestite buffers are studied. The occurrence, chemical composition, and structure of the orthopyroxene-silicate melt and the spinel-silicate melt are described. It is observed that the Cr content between bronzite and the melt increases with falling temperature along a given oxygen buffer and decreases with falling oxygen fugacity at a given temperature; however, the Cr content of the melt in equilibrium with spinel decreases with falling temperature and increases with lower oxygen fugacity.

  15. Mineral chemistry and alteration characteristics of spinel in serpentinised peridotites from the northern central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, Dwijesh; Ishii, T.

    in producing the chromium spinel-bearing peridotites (Dick and Bullen, 1984; Arai, 1994, Hellebrand et al., 2002). Previous studies on the residual spinel chemistry were mainly focused on those from the different segments of Mid-Atlantic Ridge (MAR), Hess..., Serpentinite 10 30 17-49 69 59-74 MAR 3 MARK ODP site 920 Serpentinised harzburgite and lherzolite 115 29 28-31 71 70-72 SWIR 4 Axial valley Dredge 52-68ºE Spinel lherzolite/ Harzburgite 8 27 19-37 68 64-73 EPR 5 Hess Deep ODP site 895...

  16. Kuiper Binary Object Formation

    CERN Document Server

    Nazzario, R C; Covington, C; Kagan, D; Hyde, T W

    2005-01-01

    It has been observed that binary Kuiper Belt Objects (KBOs) exist contrary to theoretical expectations. Their creation presents problems to most current models. However, the inclusion of a third body (for example, one of the outer planets) may provide the conditions necessary for the formation of these objects. The presence of a third massive body not only helps to clear the primordial Kuiper Belt but can also result in long lived binary Kuiper belt objects. The gravitational interaction between the KBOs and the third body causes one of four effects; scattering into the Oort cloud, collisions with the growing protoplanets, formation of binary pairs, or creation of a single Kuiper belt object. Additionally, the initial location of the progenitors of the Kuiper belt objects also has a significant effect on binary formation.

  17. Kuiper Binary Object Formation

    OpenAIRE

    Nazzario, R. C.; Orr, K.; Covington, C.; Kagan, D.; Hyde, T. W.

    2005-01-01

    It has been observed that binary Kuiper Belt Objects (KBOs) exist contrary to theoretical expectations. Their creation presents problems to most current models. However, the inclusion of a third body (for example, one of the outer planets) may provide the conditions necessary for the formation of these objects. The presence of a third massive body not only helps to clear the primordial Kuiper Belt but can also result in long lived binary Kuiper belt objects. The gravitational interaction betw...

  18. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility....

  19. Eclipsing Binary Pulsars

    CERN Document Server

    Freire, P C C

    2004-01-01

    The first eclipsing binary pulsar, PSR B1957+20, was discovered in 1987. Since then, 13 other eclipsing low-mass binary pulsars have been found, 12 of these are in globular clusters. In this paper we list the known eclipsing binary pulsars and their properties, with special attention to the eclipsing systems in 47 Tuc. We find that there are two fundamentally different groups of eclipsing binary pulsars; separated by their companion masses. The less massive systems (M_c ~ 0.02 M_sun) are a product of predictable stellar evolution in binary pulsars. The systems with more massive companions (M_c ~ 0.2 M_sun) were formed by exchange encounters in globular clusters, and for that reason are exclusive to those environments. This class of systems can be used to learn about the neutron star recycling fraction in the globular clusters actively forming pulsars. We suggest that most of these binary systems are undetectable at radio wavelengths.

  20. Normal and Inverse Ferrite Spinels: A Set of Solid State Chemistry Related Experiments.

    Science.gov (United States)

    Chaumont, C.; Burgard, M.

    1979-01-01

    Presents one of the themes of a French chemistry college laboratory course, which concerns the field of solid state chemistry and is focused on the study of the cation distribution in the case of certain spinel ferrites. (HM)

  1. Study on Synthesis and Electrochemical Properties of Nanophase Li-Mo-spinel

    Institute of Scientific and Technical Information of China (English)

    冯传启; 张克立

    2003-01-01

    Li-Mn-spinel was synthesized using the rheological phase recation method,First,the precursor was prepared by rheological phase reaction.The it was decomposed to form Li-Mn-spine,which was characterized by X-ray diffraction analysis and IR spectra.The particle size of Li-Mn-spinel was determined by the method of the transmission electron microscopy.The synthesized materials are of nanometer size with 30-100nm in the average diameter.The electrochemical properties of the Li-Mn-spinel were also studied.It proved that this method not only provided a simple practicable and effective route for the synthesis of Li-Mn-spinel,but also had many advantages such as lower sintering temperature,shorter sintering time,fine particles and particularly excellent electrochemical performances.

  2. The Effect of Cr content on the Reflectance Properties of Mg-Spinel

    Science.gov (United States)

    Williams, K. B.; Jackson, C.; Cheek, L.; Prissel, T. C.; Parman, S. W.; Pieters, C. M.

    2012-12-01

    Recent analyses of Moon Mineralogy Mapper (M3) data have identified an Mg-spinel lithology previously unobserved on the lunar surface [1,2]. Although some examples of chromite have been identified in M3 spectra for the Sinus Aestuum region [3], most spinel observations thus far appear to be Mg-Al spinel. This study seeks to identify the influence of chromium content on spectral characteristics of synthetic spinel in order to provide a calibration for interpreting spinel composition from M3 observations. Experiments to constrain the Cr and Fe content of the Mg-rich spinel will help characterize the melt involved in its formation, providing valuable information for models of its petrogenesis. Previous studies indicate that spinel displays a 2 μm absorption, corresponding to tetrahedrally coordinated Fe2+. At FeO contents ≥5 wt% [4], synthetic spinel have a 1 μm octahedral absorption due to the availability of Fe2+ to occupy additional sites in the mineral structure [5]. A separate absorption, centered at 0.55 μm, has been attributed to Cr3+. Given the competition between Cr3+ and Al3+ for octahedral crystallographic sites in spinel, the presence of Cr may influence the strength of the 1 μm iron absorption. Fe content and grain size have well-known effects on spectral reflectance band depth, however due to competition for octahedral sites the effect of Cr on reflectance properties within the 0.55-1 μm wavelengths has yet to be clearly identified. Two preliminary experiments successfully produced Mg-spinel containing Cr in octahedral sites, as evidenced by a well-defined 0.55 μm absorption in the spectra. The samples were produced by mixing reagent-grade oxide powders in approximately stoichiometric proportions, and sintering in a horizontal gas mixing furnace at fO2 IW for 72 hours. Sample 1 (mixed with Al2O3 in excess) resulted in spinel with 6% Cr2O3, 6% FeO. Sample 2 (mixed with stoichiometric Al2O3) contained 5% Cr2O3, 5% FeO. Microprobe analyses of this

  3. Insertion/removal kinetics of lithium ion in spinel LiCuxMn2-xO4

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The insertion/removal processes of lithium ion in spinel lithium manganese oxide(LiMn2O4) and copper doped spinel lithium manganese oxide (LiCuxMn2-xO4) on a powder microelectrode were studied by electrochemical impedance spectroscopy(EIS), cyclic voltammetry(CV) and X-ray diffractometry(XRD). The insertion/removal process of lithium ion in the spinel oxides consists of three steps: charge transfer of lithium ion on the surface of the spinel oxides, diffusion and occupation of lithium ion in the lattice of the spinel oxide. Similar to chromium, the doping of copper in spinel lithium manganese oxide results in the increase of the charge transfer resistance and the double layer capacitance for lithium insertion or removal, and the decrease of the diffusion coefficient of lithium ion in the lattice of spinel oxide. However, the insertion capacitance, a parameter reflecting the occupation of lithium ion in the lattice of the spinel oxide, is hardly influenced by the doping of copper. The influence of the doped copper on the kinetic process of lithium insertion/removal in spinel lithium manganese oxide is related to the contraction of spinel lattice.

  4. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    OpenAIRE

    Pošarac Milica; Devečerski A.; Volkov-Husović T.; Matović B.; Minić D.M.

    2009-01-01

    The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4) obtained by the modified glycine nitrate procedure (MGNP). Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase...

  5. Influence of Various Zirconia Additives on High Temperature Properties of Magnesia Spinel Brick

    Institute of Scientific and Technical Information of China (English)

    SUNJialin; LIZhijian; 等

    1997-01-01

    Magnesia spinel refractory is a promising material because of its good properties at high temperature,good exfoliation-and coorosion-resistances,Three kinds of additives containing ZrO2 were added o magnesia spinel refacto-ries to get better exfoliation resistance,corrosion resistance and adhensiveness,Three kinds of ZrO2-containing additives added to optimize the properties of the material are particularly discussed in this paper.

  6. Effects of Several Factors on Viscosity of Alumina-spinel Slurries

    Institute of Scientific and Technical Information of China (English)

    SHA Jianmin; LIU Kaiqi; LIU Zuocai

    2004-01-01

    The effects of several commercial dispersants, including AN- 2000, ammonium polyacrylate , sodium tripolyphosphate, sodium hexametaphosphate, and of solids loading and of electro-fused magnesia on rheological propertiesof aqueous alumina-spinel slurries were studied.The results reveal that AN- 2000 is the most effective one among the selected dispersants for alumina-spinel slurries.With 0.5% weight of AN-2000, the 57vol% solids loadobtained at shear rate of 50s-1 .

  7. Correlating capacity loss of stoichiometric and nonstoichiometric lithium manganese oxide spinel electrodes with their structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Vincent, C.A.; Bruce, P.G.

    1999-10-01

    It is known that stoichiometric spinel, LiMn{sub 2}O{sub 4}, was used as a lithium-ion battery cathode, exhibits significant capacity fade on cycling at room temperature, whereas by making the spinel slightly nonstoichiometric the capacity retention on cycling is improved to a great extent. To help understand this difference in performance, X-ray diffraction (XRD) was used to investigate the spinel structure during lithium extraction and reinsertion. The stoichiometric spinel shows degradation during the first lithium extraction which becomes more severe at high rates. The XRD pattern measured at the end of 50 cycles showed significant low of structural integrity, with several prominent peaks that were not present prior to cycling. In contrast, the nonstoichiometric spinel showed no evidence of degradation up to at least 300 cycles, even at high rates. It is suggested that in the case of stoichiometric spinel, {lambda}-MnO{sub 2}, which forms upon extraction of lithium, accumulates during cycling and, becomes disconnected from the active electrode, capacity fade is significant.

  8. Synthesis and Characterization of Porous Magnesium Aluminate Spinel by Hydrothermal Process

    Institute of Scientific and Technical Information of China (English)

    WANG Xiuhui; DUAN Jinxia; LU Shengbo; YIN Jianlong; SU Zhenguo; GAO Hong; YANG Jinlong

    2015-01-01

    Magnesium aluminate spinel has a great prospect in catalyst supports due to the porousstructure, good cata-lytic activity, high thermal stability and the presence of two active centers as acid and alkaline. The magnesium alumi-nate spinel powders were synthesized by a hydrothermal process. The samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2adsorption-desorption isotherms, respectively. The particle surface with the laminated structure increases with the increase of hydrothermal temperature and hydro-thermal time. The spinel has a worm-like porous structure, and the pores become smaller and well-distributed under hexadecyl trimethyl ammonium bromide condition. The phase of the spinel appears at 450°C and the perfect crystalline structure emerges at 600°C. The percentage of MgAl2O4spinel increases with the increase of heat treatment temperature. The spinel has a great specific surface area (i.e., 245.68–58.65 m2/g) when the calcinating temperature increases from 500 to 1200°C. Moreover, the specific surface area is 195.11 m2/g 1 at.% hexadecyl trimethyl ammonium bromide.

  9. Synthesis and Characterization of Porous Magnesium Aluminate Spinel by Hydrothermal Process

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiuhui; DUAN; Jinxia; LU; Shengbo; YIN; Jianlong; SU; Zhenguo; GAO; Hong; YANG; Jinlong

    2015-01-01

    Magnesium aluminate spinel has a great prospect in catalyst supports due to the porous structure, good catalytic activity, high thermal stability and the presence of two active centers as acid and alkaline. The magnesium aluminate spinel powders were synthesized by a hydrothermal process. The samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2 adsorption-desorption isotherms, respectively. The particle surface with the laminated structure increases with the increase of hydrothermal temperature and hydrothermal time. The spinel has a worm-like porous structure, and the pores become smaller and well-distributed under hexadecyl trimethyl ammonium bromide condition. The phase of the spinel appears at 450°C and the perfect crystalline structure emerges at 600°C. The percentage of Mg Al2O4 spinel increases with the increase of heat treatment temperature. The spinel has a great specific surface area(i.e., 245.68–58.65 m2/g) when the calcinating temperature increases from 500 to 1200°C. Moreover, the specific surface area is 195.11 m2/g 1 at.% hexadecyl trimethyl ammonium bromide.

  10. Effects of metal source in metal substitution of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali [Laboratory of Electrochemistry, Materials and Energy Research Center, P.O. Box, 14155-4777, Tehran (Iran, Islamic Republic of)]. E-mail: eftekhari@merc.ac.ir; Moghaddam, Abdolmajid Bayandori [Laboratory of Electrochemistry, Materials and Energy Research Center, P.O. Box, 14155-4777, Tehran (Iran, Islamic Republic of); Yazdani, Bahareh [Laboratory of Electrochemistry, Materials and Energy Research Center, P.O. Box, 14155-4777, Tehran (Iran, Islamic Republic of); Moztarzadeh, Fathollah [Laboratory of Electrochemistry, Materials and Energy Research Center, P.O. Box, 14155-4777, Tehran (Iran, Islamic Republic of)

    2006-12-01

    Usefulness of W substitution for improvement of battery performance of LiMn{sub 2}O{sub 4} cathode was investigated. Small amounts of tungsten were incorporated into LiMn{sub 2}O{sub 4} spinel instead of available Mn. For this purpose, two sources of tungsten (metallic W or WO{sub 3}) were examined. W concentration and source have significant influence on both morphology and electrochemical behavior of W-substituted LiMn{sub 2}O{sub 4} spinels. W substitution of LiMn{sub 2}O{sub 4} spinel can lead to the formation of uniform spinel particles and improved battery performance. Cyclic voltammetric behaviors of the samples were examined in an aqueous solution, and Li diffusion process was investigated for different cases. The best case was the LiW{sub 0.01}Mn{sub 1.99}O{sub 4} spinel prepared from metallic W powder, as exhibits excellent rate capability, but better cycleability was observed for the LiW{sub 0.01}Mn{sub 1.99}O{sub 4} spinel prepared from WO{sub 3}. This means that because of significant influence of the dopant source, this parameter should be chosen in respect with the desire improvement.

  11. Spinel-embedded lithium-rich oxide composites for Li-ion batteries

    Science.gov (United States)

    Park, Kwangjin; Yeon, Donghee; Kim, Jung Hwa; Park, Jin-Hwan; Doo, Seokgwang; Choi, Byungjin

    2017-08-01

    Spinel-embedded lithium-rich oxides are synthesized and their structural phases are analyzed. The type of spinel LiM0.5Mn1.5O4 (M = Ni, Co, Mn) embedded is varied by controlling the spinel composition and content. Of the various composites fabricated with different spinel phases, the LiCo0.5Mn1.5O4-embedded over-lithiated layered oxide (OLO) shows the best electrochemical performance as a cathode because of the absence of a parasitic phase and its high structural stability. The formation energy of the LiCo0.5Mn1.5O4-embedded oxide is determined through first-principles calculations and is found to be lower than that of the pristine oxide as well as other spinel-phase-embedded oxides. It is also observed that use of OLO with optimal embedded spinel LiCo0.5Mn1.5O4 in a cylindrical 18650-type cell results in improvement in the full-cell electrochemical performance.

  12. Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors

    Science.gov (United States)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-03-01

    Hierarchical mesoporous spinel NiCo2O4 was synthesized by a facile hydrothermal method assisted by polyvinylpyrrolidone (PVP) and a post annealing treatment. The synthesized hierarchical mesoporous NiCo2O4 presents a hierarchical mesoporous structure with diameters of 5.0 and 25 nm, respectively. Compared to conventional flower-like NiCo2O4, the hierarchical mesoporous structured NiCo2O4 exhibits excellent supercapacitor performance. The specific capacitance can reach 1619.1 F g-1 at a current density of 2.0 A g-1. When the current density is increased to 10.0 A g-1, a specific capacitance of 571.4 F g-1 can be obtained. Furthermore, the hierarchical mesoporous structured NiCo2O4 presents excellent stability. The outstanding electrochemical performance of the hierarchical mesoporous NiCo2O4 reveals its potential to be a promising material for use in supercapacitors, and also inspires continued research on binary metal oxides as energy transformation materials.

  13. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  14. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  15. Binary Popldation Synthcsis Study

    Institute of Scientific and Technical Information of China (English)

    HAN Zhanwen

    2011-01-01

    Binary population synthesis (BPS), an approach to evolving millions of stars (including binaries) simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis (EPS) model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.

  16. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  17. Synthesis and optical property of zinc aluminate spinel cryogels

    Directory of Open Access Journals (Sweden)

    Lifen Su

    2016-06-01

    Full Text Available Zinc aluminate spinel cryogels with various molar ratio of Al/Zn are synthesized by sol–gel technology followed by vacuum freeze drying. The structures and optical properties are both found to be affected by the molar ratios of Al/Zn and annealed temperatures. The peaks of zinc oxide (ZnO and zinc dialuminum oxide (ZnAl2O4 are both obtained for the samples with more Zn content annealed at 750 °C or upward. The composites have a large surface area (137 m2/g with mesoporous structure after annealing at 750 °C. The SEM images reveal that the ZnAl2O4 crystals formed a multilayer structure with redundant ZnO particles which deposited on it. Furthermore, the maximum infrared reflectance is about 80% with an improvement of 35% in the infrared region after annealing at 950 °C compared with that of 450 °C, which indicates that these porous cryogels have a potential application as thermal insulating materials at a high temperature.

  18. Giant orthorhombic distortions by Cu+ in ferrimagnetic spinel Mn334

    Science.gov (United States)

    Chung, Jae-Ho; Lee, Kee Hwan; Chang, Hun; Hwang, In Yong; Kang, Hyun Wook; Kim, Su Jae; Lee, Seongsu

    2015-03-01

    Mn3O4 is a tetragonal (c > a) spinel that exhibits noncollinear Yafet-Kittel ferrimagnetic ordering at low temperatures. We report large orthorhombic distortions in its ferrimagnetic phase stabilized by a few percent of Cu doping. The orthorhombic strains of the ferrimagnetic phases increased linearly to the doping and reached up to ɛ ~ 8 . 2 ×10-3 for x = 0.19, which is three times larger than the saturated value under external magnetic fields. For high doping (xagt 0 . 17), the distortions first appeared in the paramagnetic phases and underwent further enhancement simultaneously with the onset of the noncollinear ferrimagnetic ordering. We present the rich magnetostructural phase diagram of CuxMn3-xO4, and argue that the diluted t2 orbital degeneracy of Cu2+ under tetrahedral crystal field breaks the global symmetry and triggers the orthorhombic instability inherent in Mn3O4. This work was supported by the National Research Foundation of Korea through the ARCNEX (NRF-2011-0031933).

  19. Charging regime of pur spinel studied by secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Boughariou, A., E-mail: aicha_boughariou@yahoo.fr [LaMaCoP, Université de Sfax pour le sud, Faculté des Sciences, 3038 Sfax (Tunisia); Kallel, A. [LaMaCoP, Université de Sfax pour le sud, Faculté des Sciences, 3038 Sfax (Tunisia); Blaise, G. [LPS, Université Paris-Sud XI, Batiment 510, Orsay 91405 (France)

    2013-04-01

    Insulators are currently used in high technological devices. They are chosen because of their electrical properties of insulation and their thermal properties. It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Charging phenomena of insulator were studied thanks to a scanning electron microscope (SEM) which allows the injection of few electrons doses in a large domain of energies. SEM permits also the measurements of the secondary electron emission and the induced current created in the sample holder by the charges generated in the sample. The results showed that the secondary electron emission yield (SEE) σ is a very sensitive parameter to characterize the charging state of an insulator. In this work we investigate the charging effect of insulator surfaces like pur spinel (MgAl{sub 2}O{sub 4}) during 1.1, 5 and 15 keV. The results showed that the fundamental parameter controlling the charging kinetic is the current density J{sub 0}. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ=1) were observed as a function of current density. At 15 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole–Frenkel effect.

  20. Garnet - Spinel Peridotites from Potrok Aike: An insight into the Patagonian Lithospheric Mantle

    Science.gov (United States)

    Schrott, C.; Ntaflos, T.; Bjerg, E. A.; Tschegg, C.

    2009-04-01

    The mantle-xenolith bearing hyaloclastic tephra from Potrok Aike, located 68 km SW of Río Gallegos, Argentina, provide good opportunities for studying the lithospheric mantle beneath southern Patagonia. The Potrok Aike maar belongs to the Pliocene to Holocene Pali Aike volcanic field located east of the Andean volcanic arc. The studied samples are spinel-bearing and garnet + spinel-bearing lherzolites and harzburgites. The entire suite of the studied mantle-xenoliths have protogranular to protogranular-equigranular textures. The most interesting textural features are the kelyphitic rims around both garnet and spinel, that clearly demonstrate break-down of garnet in spinel bearing xenoliths. Detailed petrographic investigations showed different degrees of kelyphitisation. Another feature is the intergranular growth of clinopyroxene, representing a late metasomatic event. No hydrous minerals were so far found in the studied xenoliths. The Potrok Aike clinopyroxenes are Cr-diopsides with Al2O3 contents ranging from 3.2 to 7.1 wt %, whereas the garnets show pyrope composition (Alm16.3Py69.3Gros13.7 Spess0.7). The spinel shows broad range of compositional variation with Cr# varying between 0.1 and 0.5. The bulk chemistry points out the fertile character of the lherzolithes (Al2O3 2.6 - 3.6 wt % and CaO 2.5 - 2.9 wt %), while the harzburgites indicate a depleted character (Al2O3 0.7 - 2.5 wt % and CaO 0.33 - 2.14 wt %). According to the REE patterns, the Protok Aike peridotites can be divided into three groups: group I, non-metasomatised peridotites with Lan/Smn from 0.76 to 0.91 and Tbn/Ybn from 0.70 to 0.71; group II, slightly metasomatised peridotites with Lan/Smn from 0.95 to 1.27 and Tbn/Ybn from 0.96 to 1.18; and group 3, metasomatised peridotites with Lan/Smn from 1.36 to 3.2 and Tbn/Ybn from 1.06 to 2.12. LA-ICP-MS analyses on clinopyroxenes from spinel-peridotites have convex upward REE patterns resembling those from the spinel-garnet-bearing peridotites

  1. The Improvement of the Slag Resistance of Corundum—Spinel Castable with Addition of Aluminum Oxynitride (AlON)

    Institute of Scientific and Technical Information of China (English)

    LIYawei; LINan; 等

    1999-01-01

    The slag corrosion resisance of corundum-spinel castable has been increased by adding aluminum oxynitride spinel (AlON) powder ,Its results show that corrosion resistance of this castable is remarkably imroved when 3 wt% of the AlON powder added ,It was assumed that solid solution between aluminum oxynitride and magnesium aluminate spinel occurred to prevent the slag penetration into castable and increase the corrosion resistance of the corundum-spinel castable However,the experimental resultsd suggest such castable containing AlON powder be much more appropriate to be used in non-oxidation condition rather than in oxidation atmosphere.

  2. Eclipsing Binary Update, No. 2.

    Science.gov (United States)

    Williams, D. B.

    1996-01-01

    Contents: 1. Wrong again! The elusive period of DHK 41. 2. Stars observed and not observed. 3. Eclipsing binary chart information. 4. Eclipsing binary news and notes. 5. A note on SS Arietis. 6. Featured star: TX Ursae Majoris.

  3. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  4. Orbits for sixteen binaries

    Directory of Open Access Journals (Sweden)

    Cvetković Z.

    2006-01-01

    Full Text Available In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361−2954 + HJ 3447, WDS 02333+5219 = STT 42 AB,WDS 04362+0814 = A 1840 AB,WDS 08017−0836 = A 1580, WDS 08277−0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 = STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  5. Equational binary decision diagrams

    NARCIS (Netherlands)

    Groote, J.F.; Pol, J.C. van de

    2000-01-01

    We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin

  6. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  7. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  8. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  9. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  10. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tauto

  11. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  12. Spinels from tuffites of the Bulkur anticline: comparative analysis of macro- and microcrysts

    Science.gov (United States)

    Biller, Anastasia; Oleinikov, Oleg; Babushkina, Svetlana

    2017-04-01

    The northeastern Siberian platform is famous for a unique association of placer diamonds including specific diamond varieties (V-VII, following the classification by L.Yu. Orlov (1973). Such diamonds have been found in none of the kimberlite pipes of Yakutia. The petrochemical nature of the primary source for these placer deposits and the conditions of their formation in the mantle are as yet poorly understood. Diamonds with a large amount of associate minerals such as garnets and chrome-spinels occur in the basal horizon of the volcanogenic-sedimentary rocks aged at 226-228 Ma (U-Pb zircon dating, Grakhanov, Smelov, 2011). This paper presents the results of studying spinel macrocrysts and microcrysts from the tuffites' groundmass. The analyses were performed on a JEOL JSM 64800 LV scanning electron microscope with an Oxford INCA Energy Dispersive Spectrometer at the Diamond and Precious Metals Geology Institute, SB RAS. Chemically, the microcrystal spinels are characterized by a wide range of their major components: 17.14-56.53 wt% Cr2O3, 3.57-24.96 wt% Al2O3, 0.82-11.32 wt% TiO2, and 1.74-13.31 wt% MgO.Comparison between the microcrystal spinels from the tuffites and those from the Yakutian Kimberlite Province (YaKP) showed that the bulk of the spinels belong to high-Cr and medium-Cr picrochromites that are also typical of the diamondiferous kimberlites in the region. On the diagrams after Mitchel and Bergman (1991) they tend to the lamprophyric rocks trend. Chemical composition of the macrocrystal spinels also exhibits large variations: 24.9-60.5 wt% Cr2O3, 4.32-8.99 wt% TiO2 (with rare grains containing less than 1 wt%), 1.39-36.06 wt% Al2O3, and 13.53-55.67 wt% Fe(total). There is no essential difference in composition between the macrocrystal spinels with inclusions and those without them. For comparison, we plotted on various diagrams the compositions of spinels from the highly diamondiferous Mir pipe. It was found that compositions of spinels from the

  13. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  14. Experimental study of spinel-garnet phase transition in upper mantle and its significance

    Institute of Scientific and Technical Information of China (English)

    樊祺诚; 刘若新; 谢鸿森; 张月明; 徐平; 林卓然

    1997-01-01

    Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel lherzolite-garnet lherzolite phase transition ( T = 1100℃ and P = 1.8-2.0 GPa) is consistent with the P-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55-70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyrox-enite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed.

  15. Adsorption of Pb(2+) from aqueous solution using spinel ferrite prepared from steel pickling sludge.

    Science.gov (United States)

    Fang, Binbin; Yan, Yubo; Yang, Yang; Wang, Fenglian; Chu, Zhen; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2016-01-01

    In this paper, spinel ferrite with high crystallinity and high saturation magnetization was successfully prepared from steel pickling sludge by adding iron source and precipitator in the hydrothermal condition. The obtained spinel ferrite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), and Zeta potential methods and investigated as an adsorbent for removal of Pb(2+) from aqueous solution. Batch experiments were performed by varying the pH values, contact time, temperature and initial metal concentration. The result of pH impact showed that the adsorption of Pb(2+) was a pH dependent process, and the pH 5.8 ± 0.2 was found to be the optimum condition. The achieved experimental data were analyzed with various kinetic and isotherm models. The kinetic studies revealed that Pb(2+) adsorption onto spinel ferrite followed a pseudo-second order model, and the Langmuir isotherm model provided the perfect fit to the equilibrium experimental data. At different temperatures, the maximum Pb(2+) adsorption capacities calculated from the Langmuir equation were in the range of 126.5-175.4 mg/g, which can be in competition with other adsorbents. The thermodynamic results showed that the spinel ferrite could spontaneously and endothermically adsorb Pb(2+) from aqueous solution. The regeneration studies showed that spinel ferrite could be used five times (removal efficiency (%) >90%) by desorption with HNO3 reagent.

  16. Syndeformation Chrome Spinels Inclusions in the Plastically Deformed Olivine Aggregates (Kraka Ophiolites, the Southern Urals

    Directory of Open Access Journals (Sweden)

    D. E. Saveliev

    2015-12-01

    Full Text Available This article presents the results of structural, petrographic, mineralogical and chemical studies of dunite veinlets in spinel peridotite from the Kraka ophiolites. It is demonstrated that plastic deformation of polycrystalline olivine, which form dunite, was accompanied by precipitation of impurities (aluminum and chrome as newly formed chrome spinels. The thinnest acicular inclusions of 0.3-0.5 micron thick are aligned in olivine grains along [010] axis. Bigger elongated irregular chrome spinel grains usually occur along grain and sub-grain olivine boundaries, and, occasionally, inside the grains along [100] axis. Alteration from the fine xenomorphic grains of chrome spinels to the bigger idiomorphic crystals was observed. Analogically to dynamic ageing (dispersion hardening in metals, the structural and chemical alterations in dunites are interpreted as deformation induced segregation of impurities. It is suggested that the euhedral chrome spinel grains typical for ophiolitic dunites were formed by coalescence and spheroidization. This process may be a key factor in the formation of ophiolitic chrome ore deposits.

  17. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    Science.gov (United States)

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed.

  18. Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets.

    Science.gov (United States)

    Krishnan, Manu; Tiwari, Brijesh; Seema, Saraswathy; Kalra, Namitha; Biswas, Papiya; Rajeswari, Kotikalapudi; Suresh, Madireddy Buchi; Johnson, Roy; Gokhale, Nitin M; Iyer, Satish R; Londhe, Sanjay; Arora, Vimal; Tripathi, Rajendra P

    2014-11-01

    Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.

  19. Structural and magnetic properties of ZnxMn3-xO4 spinels

    Science.gov (United States)

    Nádherný, Ladislav; Maryško, Miroslav; Sedmidubský, David; Martin, Christine

    2016-09-01

    To study structural and magnetic properties of spinels a series of ceramic samples with a different Zn:Mn ratio was prepared by high-temperature annealing in air followed by quenching in liquid nitrogen. The spinels with nominal composition of ZnxMn3-xO4 (x=0-1.29) were characterized by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy and SQUID magnetometry. Two tetragonal spinels of the same I41/amd space-group were identified based on the crystallographic, vibrational and grain-morphology point of view and described in detail. The unit-cell parameters and phase ratio of the spinel phases were determined using Rietveld refinement. According to the factor-group analysis the majority of the vibrational modes were identified in the Raman spectra. The magnetic properties of ZnxMn3-xO4 spinels are in agreement with a model of nanoscale ferrimagnetic Mn3O4 clusters in the antiferromagnetic ZnMn2O4 matrix (TN≈60 K). New features are a constricted hysteresis loop for x=0.3, and the effect of defects on magnetic properties for high Zn content which points to a good quality of the samples prepared by a solid state reaction.

  20. Mechanical properties, anisotropy and hardness of group IVA ternary spinel nitrides

    Science.gov (United States)

    Ding, Ying-Chun; Chen, Min

    2013-10-01

    In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress-strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt-Reuss-Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.

  1. Analytical Description of Degradation-Relaxation Transformations in Nanoinhomogeneous Spinel Ceramics

    Science.gov (United States)

    Shpotyuk, O.; Brunner, M.; Hadzaman, I.; Balitska, V.; Klym, H.

    2016-11-01

    Mathematical models of degradation-relaxation kinetics are considered for jammed thick-film systems composed of screen-printed spinel Cu0.1Ni0.1Co1.6Mn1.2O4 and conductive Ag or Ag-Pd alloys. Structurally intrinsic nanoinhomogeneous ceramics due to Ag and Ag-Pd diffusing agents embedded in a spinel phase environment are shown to define governing kinetics of thermally induced degradation under 170 °C obeying an obvious non-exponential behavior in a negative relative resistance drift. The characteristic stretched-to-compressed exponential crossover is detected for degradation-relaxation kinetics in thick-film systems with conductive contacts made of Ag-Pd and Ag alloys. Under essential migration of a conductive phase, Ag penetrates thick-film spinel ceramics via a considerable two-step diffusing process.

  2. The effect of high-level waste glass composition on spinel liquidus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Riley, Brian J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hrma, Pavel [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2012-11-15

    Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni, Mn, Zn, and Ru. The liquidus temperature (T{sub L}d) of spinel as the primary crystallization phase is a function of glass composition, and the spinel solubility (c{sub o}) is a function of both glass composition and temperature (T). Previously reported models of T{sub L} as a function of composition are based on T{sub L} measured directly, which requires laborious experimental procedures. Viewing the curve of c{sub o} versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates T{sub L} as a function of composition based on c{sub o} data obtained with the X-ray diffraction technique.

  3. Simulated magnetocaloric properties of MnCr2O4 spinel

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Hamad

    2016-03-01

    Full Text Available The magnetocaloric properties of MnCr2O4 spinel have been simulated based on a phenomenological model. The simulation of magnetization as function of temperature is used to explore magnetocaloric properties such as magnetic entropy change, heat capacity change, and relative cooling power. The results imply the prospective application of MnCr2O4 spinel to achieve magnetocaloric effect at cryogenic temperatures (20–60 K near Curie temperatures (38–44 K. According to the obtained results it is recommended that MnCr2O4 spinel can be used as a promising practical material in the active magnetic regenerator cycle that cools hydrogen gas.

  4. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Ali [Ceramic Division, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)], E-mail: ASaberi@IUST.ac.ir; Golestani-Fard, Farhad; Sarpoolaky, Hosein [Ceramic Division, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Willert-Porada, Monika; Gerdes, Thorsten [Chair of Materials Processing, University of Bayreuth, Bayreuth (Germany); Simon, Reinhard [Chair of Ceramic Materials Engineering, University of Bayreuth, Bayreuth (Germany)

    2008-08-25

    Nanocrystalline magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) was synthesized using metal nitrates, citric acid and ammonium solutions. The precursor and the calcined powders at different temperatures were characterized by X-ray diffraction (XRD), simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The combustion mechanism was also studied by a quadrupole mass spectrometer (QMS) which coupled to STA. The generated heat through the combustion of the mixture of ammonium nitrate and citrate based complexes decreased the synthesis temperature of MgAl{sub 2}O{sub 4} spinel. The synthesized MgAl{sub 2}O{sub 4} spinel at 900 deg. C has faced shape with crystallite size in the range of 18-24 nm.

  5. Solid state synthesis of extra phase-pure Li4Ti5O12 spinel

    Directory of Open Access Journals (Sweden)

    Veljković I.

    2011-01-01

    Full Text Available Extra phase-pure Li4Ti5O12 spinel with particle sizes less than 500 nm was synthesized by solid state reaction of mechanochemicaly activated mixture of nano anatase and Li2CO3 for a very short annealing time, 4 h at 800°C. Structural and microstructural properties, the mechanism of solid state reaction between anatase and Li2CO3 as well as thermal stability of prepared spinel were investigated using XRPD, SEM and TG/DSC analysis. The mechanism of reaction implies decomposition of Li2CO3 below 250ºC, formation of monoclinic Li2TiO3 as intermediate product between 400 and 600°C and its transformation to Li4Ti5O12 between 600-800ºC. The spinel structure is stable up to 1000ºC when it is decomposed due to Li2O evaporation.

  6. Study of cation distribution of spinel zinc nano-ferrite by X-ray

    Science.gov (United States)

    Najafi Birgani, Azadeh; Niyaifar, Mohammad; Hasanpour, Ahmad

    2015-01-01

    A set of zinc ferrite samples with ZnFe2O4 chemical composition were synthesized in 400, 500, and 1100 °C using conventional solid state synthesis method. The X-ray diffraction pattern of all the three samples was studied at room temperature. This diffraction pattern confirmed the existence of a single-phase cubic spinel structure with lattice parameters of 8.451, 8.448, and 8.437 Å, respectively. Oxygen position and cation distribution of the samples between the tetrahedral site, A and the octahedral site, B were examined using R-Factor method. The results showed that cation distribution of zinc ferrite samples changes from a normal spinel mode into a mixed spinel mode with the decrease of particle size. Moreover, the ratio of zinc divalent cations migrating from the tetrahedral site to the octahedral site was calculated.

  7. Effect of Addition of Al and Mg on properties of Periclase-Spinel-Carbon Brick

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Periclase-spinel-carbon brick was made from sintered spinel,fused magnesia and flake graphite as principal raw materials,the influence of Mg/Al(w/w) ratio and the addition of Al,Mg in the matrix of periclas-spinel-carbon brikc on the carbonization and thermal expansion coeffi-cient and the weight los of the brick after heating at 1500℃ in a flowing stream of dry N2for 1.5 h have been studied.The results show that to control Mg/Al(w/w) ration and to add both Al and Mg appropriately can obvi-ously improve the properties of the bricks.

  8. Anisotropy of Expansion Coefficient and Slag Resistance of Spinel Carbon Bricks

    Institute of Scientific and Technical Information of China (English)

    YANG Ding'ao; YUAN Shouqian; JIANG Mingxue; DONG Sunzhen; ZHAO Zijian

    2006-01-01

    Effects of the pressure direction on the thermal expansion and slag corrosion resistance were investigated and anisotropic microstructures of flaky graphite in spinel carbon bricks were examined. The experimental results show that slag corrosion velocities in the direction parallel to the pressure direction display a decrease of 34% compared to those in the vertical direction. Meantime, the linear expansion coefficient in the direction parallel to the pressure direction is 2.45 times as large as that in the vertical pressure direction. Slag corrosion velocities of spinel carbon bricks soaked in the AOD melting slag display a 46%-47% decrease compared to those of magnesia carbon bricks. The microstructure observation shows that spinel carbon bricks have a high degree of preferred orientation.

  9. Binary Tetrahedral Flavor Symmetry

    CERN Document Server

    Eby, David A

    2013-01-01

    A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

  10. The Binary Garrote

    CERN Document Server

    Kappen, H J

    2011-01-01

    In this paper, I present a new model and solution method for sparse regression. The model introduces binary selector variables $s_i$ for the features $i$ in a way that is similar to Breiman's Garrote model. I refer to this method as the binary Garrote (BG). The posterior probability for $s_i$ is computed in the variational approximation. The BG is compared numerically with the Lasso method and with ridge regression. Numerical results on synthetic data show that the BG yields more accurate predictions and more accurately reconstructs the true model than the other methods. The naive implementation of the BG requires the inversion of a modified covariance matrix which scales cubic in the number of features. We indicate how for sparse problem the solution can be computed linear in the number of features.

  11. Binary Love Relations

    CERN Document Server

    Yagi, Kent

    2015-01-01

    When in a tight binary, the mutual tidal deformations of neutron stars imprint onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the gravitational wave model. We here resolve this problem by discovering approximately universal relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the gravitational wave model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between equation-of-state models, and improve tests of General Relativity and cosmology.

  12. Binary Love relations

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás

    2016-07-01

    When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.

  13. Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China

    Science.gov (United States)

    Guo, Guolin; Liu, Xiaodong; Yang, Jingsui; Pan, Jiayong; Fan, Xiujun; Zhou, Wenting; Duan, Gehong

    2016-11-01

    The peridotites of the Northeastern Jiangxi Province Ophiolite (NJO), including dunite, harzburgite and clinopyroxene-bearing harzburgite, are strongly altered under serpentinization, except for minor aggregations of partially-altered olivines, chromian spinels and pyroxenes. The forsterite content of olivines in dunites (Fo 93.6) is slightly higher than in harzburgites (Fo 91.4). Chromian spinels in harzburgites and dunites are very refractory, with restricted chemical compositions of high-Cr varieties. The unaltered cores of chromian spinels have low Al2O3 and TiO2 content, and display a large range of Mg# (100× [Mg/(Mg + Fe)], 41-64) and Cr# (100× [Cr/(Cr + Al)], 53-83) values, suggesting that the peridotites originated from a highly-depleted mantle. The spinels plotted in "olivine-spinel mantle array" (OSMA) diagram and Cr# versus. Mg# diagram both indicate the peridotite of NJO experienced a >25 % partial melting. The positive correlation between the Cr# and the TiO2 content probably resulted from the reaction between boninitic melt and mantle peridotite, as a consequence of melt-mantle interaction within the arc setting. The oxygen fugacity (ƒO2), calculated using chromian spinel-olivine pairs, indicates that the peridotites in the NJO were formed under relatively low oxidizing conditions quite different from those commonly found in supra-subductions zones (SSZ). This might be explained by the reaction between fore-arc magmas and residual mantle in a back-arc oceanic basin during a rapid subduction process. The Neoproterozoic subduction between the Yangtze and Cathaysia blocks was therefore probably rapid, and the addition of water and other volatiles to the mantle wedge beneath the island arc would have enhanced melting, leading to the production of highly depleted boninitic melts.

  14. Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China

    Science.gov (United States)

    Guo, Guolin; Liu, Xiaodong; Yang, Jingsui; Pan, Jiayong; Fan, Xiujun; Zhou, Wenting; Duan, Gehong

    2017-06-01

    The peridotites of the Northeastern Jiangxi Province Ophiolite (NJO), including dunite, harzburgite and clinopyroxene-bearing harzburgite, are strongly altered under serpentinization, except for minor aggregations of partially-altered olivines, chromian spinels and pyroxenes. The forsterite content of olivines in dunites (Fo 93.6) is slightly higher than in harzburgites (Fo 91.4). Chromian spinels in harzburgites and dunites are very refractory, with restricted chemical compositions of high-Cr varieties. The unaltered cores of chromian spinels have low Al2O3 and TiO2 content, and display a large range of Mg# (100× [Mg/(Mg + Fe)], 41-64) and Cr# (100× [Cr/(Cr + Al)], 53-83) values, suggesting that the peridotites originated from a highly-depleted mantle. The spinels plotted in "olivine-spinel mantle array" (OSMA) diagram and Cr# versus. Mg# diagram both indicate the peridotite of NJO experienced a >25 % partial melting. The positive correlation between the Cr# and the TiO2 content probably resulted from the reaction between boninitic melt and mantle peridotite, as a consequence of melt-mantle interaction within the arc setting. The oxygen fugacity (ƒO2), calculated using chromian spinel-olivine pairs, indicates that the peridotites in the NJO were formed under relatively low oxidizing conditions quite different from those commonly found in supra-subductions zones (SSZ). This might be explained by the reaction between fore-arc magmas and residual mantle in a back-arc oceanic basin during a rapid subduction process. The Neoproterozoic subduction between the Yangtze and Cathaysia blocks was therefore probably rapid, and the addition of water and other volatiles to the mantle wedge beneath the island arc would have enhanced melting, leading to the production of highly depleted boninitic melts.

  15. Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1–xMnxCr2O4 spinel solid solutions, and its origin and implication

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-12-01

    Full Text Available The compressibility of the spinel solid solutions, (Mg1−xMnxCr2O4 with x = 0.00 (0, 0.20 (0, 0.44 (2, 0.61 (2, 0.77 (2 and 1.00 (0, has been investigated by using a diamond-anvil cell coupled with synchrotron X-ray radiation up to ∼10 GPa (ambient T. The second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding the following values for the isothermal bulk moduli (KT, 198.2 (36, 187.8 (87, 176.1 (32, 168.7 (52, 192.9 (61 and 199.2 (61 GPa, for the spinel solid solutions with x = 0.00 (0, 0.20 (0, 0.44 (2, 0.61 (2, 0.77 (2 and 1.00 (0, respectively (KT′ fixed as 4. The KT value of the MgCr2O4 spinel is in good agreement with existing experimental determinations and theoretical calculations. The correlation between the KT and x is not monotonic, with the KT values similar at both ends of the binary MgCr2O4MnCr2O4, but decreasing towards the middle. This non-monotonic correlation can be described by two equations, KT = −49.2 (11x + 198.0 (4 (x ≤ ∼0.6 and KT = 92 (41x + 115 (30 (x ≥ ∼0.6, and can be explained by the evolution of the average bond lengths of the tetrahedra and octahedra of the spinel solid solutions. Additionally, the relationship between the thermal expansion coefficient and composition is correspondingly reinterpreted, the continuous deformation of the oxygen array is demonstrated, and the evolution of the component polyhedra is discussed for this series of spinel solid solutions. Our results suggest that the correlation between the KT and composition of a solid solution series may be complicated, and great care should be paid while estimating the KT of some intermediate compositions from the KT of the end-members.

  16. Neutron scattering studies of a frustrated spinel antiferromagnet in zero and high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2006-11-15

    A review is given of the neutron scattering studies on a frustrated spinel antiferromagnet CdCr{sub 2}O{sub 4}. As observed in ZnCr{sub 2}O{sub 4}, which has been most extensively studied in the Cr-based spinel oxides, CdCr{sub 2}O{sub 4} also shows an antiferromagnetic phase transition and a structural phase transition simultaneously, indicating a strong spin-lattice coupling. The magnetic structure of CdCr{sub 2}O{sub 4}was determined by neutron scattering studies. The neutron scattering study in magnetic field up to 10 T indicates an orientation of magnetic domains.

  17. Simulated magnetocaloric properties of MnCr2O4 spinel

    OpenAIRE

    2016-01-01

    The magnetocaloric properties of MnCr2O4 spinel have been simulated based on a phenomenological model. The simulation of magnetization as function of temperature is used to explore magnetocaloric properties such as magnetic entropy change, heat capacity change, and relative cooling power. The results imply the prospective application of MnCr2O4 spinel to achieve magnetocaloric effect at cryogenic temperatures (20–60 K) near Curie temperatures (38–44 K). According to the obtained results it is...

  18. Spinel dissolution via addition of glass forming chemicals. Results of preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    Increased loading of high level waste in glass can lead to crystallization within the glass. Some crystalline species, such as spinel, have no practical impact on the chemical durability of the glass, and therefore may be acceptable from both a processing and a product performance standpoint. In order to operate a melter with a controlled amount of crystallization, options must be developed for remediating an unacceptable accumulation of crystals. This report describes preliminary experiments designed to evaluate the ability to dissolve spinel crystals in simulated waste glass melts via the addition of glass forming chemicals (GFCs).

  19. Evolution of an alumina-magnesia/self-forming spinel castable. Part II: physico-chemical and mechanical properties

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Campos D.

    1999-01-01

    Full Text Available This study was carried out in conjunction with the investigation, reported in Part I, on the microstructural characteristics of an alumina-spinel castable with several percentages of MgO content. Bulk density and cold crushing strength of samples were evaluated dried and at three fired states (1000, 1200, 1400 °C. Results indicate little influence of MgO additions on physico-chemical properties of the alumina-magnesia/self-forming spinel castable. Characteristics compared with those reported for conventional alumina-spinel castables did not show large difference in values. Therefore, the alumina-magnesia/self-forming spinel castable could be a possible material for substitution of the conventional alumina-spinel castable.

  20. Binary-Signal Recovery

    Science.gov (United States)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  1. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  2. Visual binary stars: data to investigate formation of binaries

    Science.gov (United States)

    Kovaleva,, D.; Malkov,, O.; Yungelson, L.; Chulkov, D.

    Statistics of orbital parameters of binary stars as well as statistics of their physical characteristics bear traces of star formation history. However, statistical investigations of binaries are complicated by incomplete or missing observational data and by a number of observational selection effects. Visual binaries are the most common type of observed binary stars, with the number of pairs exceeding 130 000. The most complete list of presently known visual binary stars was compiled by cross-matching objects and combining data of the three largest catalogues of visual binaries. This list was supplemented by the data on parallaxes, multicolor photometry, and spectral characteristics taken from other catalogues. This allowed us to compensate partly for the lack of observational data for these objects. The combined data allowed us to check the validity of observational values and to investigate statistics of the orbital and physical parameters of visual binaries. Corrections for incompleteness of observational data are discussed. The datasets obtained, together with modern distributions of binary parameters, will be used to reconstruct the initial distributions and parameters of the function of star formation for binary systems.

  3. Chaos in Binary Category Computation

    CERN Document Server

    Gonçalves, Carlos Pedro

    2010-01-01

    Category computation theory deals with a web-based systemic processing that underlies the morphic webs, which constitute the basis of categorial logical calculus. It is proven that, for these structures, algorithmically incompressible binary patterns can be morphically compressed, with respect to the local connectivities, in a binary morphic program. From the local connectivites, there emerges a global morphic connection that can be characterized by a low length binary string, leading to the identification of chaotic categorial dynamics, underlying the algorithmically random pattern. The work focuses on infinite binary chains of C2, which is a category that implements an X-OR-based categorial logical calculus.

  4. Rotational mixing in close binaries

    CERN Document Server

    de Mink, S E; Langer, N; Yoon, S -Ch; Brott, I; Glebbeek, E; Verkoulen, M; Pols, O R

    2008-01-01

    Rotational mixing is a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40 solar mass) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.

  5. Evolution of Close Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  6. Low autocorrelation binary sequences

    Science.gov (United States)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  7. Microlensing modulation by binaries

    CERN Document Server

    Dubath, F; Durrer, R; Dubath, Florian; Gasparini, Maria Alice; Durrer, Ruth

    2006-01-01

    We compute the effect of the lens quadrupole on microlensing. The time dependence of the quadrupole can lead to specific modulations of the amplification signal. We study especially binary system lenses in our galaxy. The modulation is observable if the rotation period of the system is smaller than the time over which the amplification is significant and if the impact parameter of the passing light ray is sufficiently close to the Einstein radius so that the amplification is very large. Observations of this modulation can reveal important information on the quadrupole and thus on the gravitational radiation emitted by the lens.

  8. Structural Characterization of Spinel Zinc Aluminate Nanoparticles Prepared By Coprecipitation Method

    Science.gov (United States)

    Sunder, Shyam; Rohilla, Sunil; Kumar, Sushil; Aghamkar, Praveen

    2011-12-01

    Zinc aluminate is well known wide bandgap semiconductor with cubic spinel structure and transparent for wavelength greater than 320 nm. Therefore, ZnAl2O4 can be used for ultraviolet photoelectronic devices. Furthermore, spinel zinc aluminate is useful in many reactions as catalytic support. Moreover, zinc aluminate can be used as second phase in glaze layer of white ceramics to improve wear resistance and to preserve whiteness. In present study cubic spinel zinc aluminate nanoparticles have been synthesized from aqueous solution of Zn(NO3)2.6H2O (0.1 M) and Al(NO3)2.9H2O (0.2 M) using chemical coprecipitation technique. Ammonium hydroxide was used as precipitating agent and pH was maintained between 8 to 9. The precipitated slurry was filtered and washed several times with deionized double distilled water and dried at 110 °C. The fine powder was annealed at different temperatures from 600 °C to 900 °C for 4h in temperature controlled furnace. Structural characterization of annealed samples was carried out via X-ray Diffraction (XRD), and Fourier Transform Infrared spectroscopy (FTIR). XRD patterns reveal that zinc aluminate samples were cubic spinel nanoparticles and grain size determined by Debye-Scherrer formula is from 5 to 16 nm.

  9. Chemical and physical characterizations of spinel ferrite nanoparticles containing Nd and B elements.

    Science.gov (United States)

    Iwamoto, Takashi; Komorida, Yuki; Mito, Masaki; Takahara, Atsushi

    2010-05-15

    We first succeeded in synthesizing ferrite nanoparticles containing Nd and B elements by a chemical route using a polyol process. The lattice constants of the ferrite nanoparticles were equivalent to 8.39Å of the lattice constant for Fe(3)O(4) with the spinel structure in a bulk state independently of the size in diameter and composition (Fe:Nd:B). The size in diameter was actually dominated by the amount of ligands (oleic acid and oleylamine) coating the nanoparticles and easily tuned by changing refluxing-time under reaction. The spinel-structured ferrite nanoparticles containing Nd and B elements showed large coercivity as compared to Fe(3)O(4) nanoparticles with the spinel structure, which were prepared by the same chemical method. By doping Nd and B elements into the spinel structure of ferrite, magnetic anisotropy increased in comparison with Fe(3)O(4) nanoparticles. According to the analysis of magnetization curve using the modified Langevin function, the ferrite nanoparticles displayed the coexistence of superparamagnetic and antiferromagnetic phases. The ferrite nanoparticles containing Nd and B elements exhibited magnetic core/shell structure on the basis of various magnetic properties. The interface effect between the superparamagnetic core and antiferromagnetic shell might enhance the effective magnetic anisotropy of the ferrite nanoparticles containing Nd and B elements.

  10. Synthesis and structural characterization of defect spinels in the Lithium-Manganese-Oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesised by the reaction of MnCO3 and Li2CO3 at 400...

  11. Synthesis of lithium-manganese-oxide spinels: A study by thermal analysis

    CSIR Research Space (South Africa)

    Thackeray, MM

    1994-12-01

    Full Text Available demonstrated that lithium-manganese-oxide spinel compounds that fall within the solid solution range XLi1-xMn2-2xO4 (0 < = X < = 0.11) can be synthesized by reaction of MnCO3 and Li2CO3 in air at moderate temperatures. It is difficult, however, to control...

  12. The bulk modulus of cubic spinel selenides: an experimental and theoretical study

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J.S.

    2009-01-01

    It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...

  13. Study of cation distribution of spinel zinc nano-ferrite by X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Najafi Birgani, Azadeh, E-mail: a.najafibirgani@gmail.com; Niyaifar, Mohammad; Hasanpour, Ahmad

    2015-01-15

    A set of zinc ferrite samples with ZnFe{sub 2}O{sub 4} chemical composition were synthesized in 400, 500, and 1100 °C using conventional solid state synthesis method. The X-ray diffraction pattern of all the three samples was studied at room temperature. This diffraction pattern confirmed the existence of a single-phase cubic spinel structure with lattice parameters of 8.451, 8.448, and 8.437 Å, respectively. Oxygen position and cation distribution of the samples between the tetrahedral site, A and the octahedral site, B were examined using R-Factor method. The results showed that cation distribution of zinc ferrite samples changes from a normal spinel mode into a mixed spinel mode with the decrease of particle size. Moreover, the ratio of zinc divalent cations migrating from the tetrahedral site to the octahedral site was calculated. - Highlights: • The average crystallite size of a set of zinc ferrite samples compared. • The cation distribution of the samples were studied. • A fraction of zinc ions migrated to the octahedral site. • This migration due to reduced power of ligands. • Their spinel structure of samples change by this migration.

  14. Synthesis and characterization of inverse spinels, intercalation materials for Li-ion batteries

    NARCIS (Netherlands)

    Van Landschoot, N.

    2006-01-01

    Chapter 2 describes the solid-state synthesis of LiNiVO4 and LiCoVO4. The materials are prepared at 800C and are phase pure, as shown by X-ray diffraction and have the inverse spinel structure. Due to the solid-state synthesis the particle size is quite large and the particle size distribution is la

  15. SPINEL METAL INTERFACES IN LASER COATED STEELS - A TRANSMISSION ELECTRON-MICROSCOPY STUDY

    NARCIS (Netherlands)

    ZHOU, XB; DEHOSSON, JTM

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 co

  16. Spinel/Metal Interfaces in Laser Coated Steels : A Transmission Electron Microscopy Study

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 co

  17. Pressure-induced frustration in charge ordered spinel AlV2O4

    Science.gov (United States)

    Kalavathi, S.; Vennila Raju, Selva; Williams, Quentin; Sahu, P. Ch; Sastry, V. S.; Sahu, H. K.

    2013-07-01

    AlV2O4 is the only spinel compound so far known that exists in the charge ordered state at room temperature. It is known to transform to a charge frustrated cubic spinel structure above 427 ° C. The presence of multivalent V ions in the pyrochlore lattice of the cubic spinel phase brings about the charge frustration that is relieved in the room temperature rhombohedral phase by the clustering of vanadium into a heptamer molecular unit along with a lone V atom. The present work is the first demonstration of pressure-induced frustration in the charge ordered state of AlV2O4. Synchrotron powder x-ray diffraction studies carried out at room temperature on AlV2O4 subjected to high pressure in a diamond anvil cell show that the charge ordered rhombohedral phase becomes unstable under the application of pressure and transforms to the frustrated cubic spinel structure. The frustration is found to be present even after pressure recovery. The possible role of pressure on vanadium t2g orbitals in understanding these observations is discussed.

  18. Sintering behavior, microstructure and mechanical properties of vacuum sintered SiC/spinel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoqiang, E-mail: lguoqi1@lsu.edu [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States); Tavangarian, Fariborz [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2014-12-05

    Highlights: • Bulk SiC/spinel nanocomposite was synthesized from talc, aluminum and graphite powders. • Sintering behavior and mechanical properties of SiC/spinel nanocomposite was studied. • The obtained bulk SiC/spinel nanocomposite had a mean crystallite size of about 34 nm. - Abstract: A mixture of SiC and spinel (MgAl{sub 2}O{sub 4}) nanopowder was prepared through the ball milling of talc, aluminum and graphite powder. The powder was uniaxially pressed into the form of pellets and the prepared specimens were annealed at various temperatures for different holding times. The prepared samples were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), nanoindentation test, cold crushing strength (CCS) test and Archimedes principle test. The obtained results showed that the hardness, CCS and bulk density did not follow the same trend at different temperatures due to the interaction among various parameters. The detailed investigation of microstructure, phase changes and experimental conditions revealed the mechanisms behind these behaviors. The best sample obtained after annealing at 1200 °C for 1 h in vacuum had the mean hardness of 1.6 GPa and the mean CCS of 118 MPa.

  19. Preliminary Study on MgO· Al2O3 Spinel Fiber

    Institute of Scientific and Technical Information of China (English)

    YANG Daoyuan; GUO Xinrong; ZHONG Xiangchong

    2004-01-01

    MgO· Al2O3 spinel fibers may be obtained by thermal treatment of pressed specimens composed of Mg-Al-O materials with appropriate oxide-metal ratio at high temperature under controlled atmosphere. Their phase composition and microstructure have been examined.

  20. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesized by the reaction of MnCO3 and Li2CO3 at 400°C...

  1. In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4...

  2. Theory of the formation of P4132(P4332)-phase spinels

    Science.gov (United States)

    Talanov, V. M.; Talanov, M. V.; Shirokov, V. B.

    2016-03-01

    A group-theoretical, thermodynamic, and structural study of the formation of P4132( P4332) spinel modification has been performed. In particular, the occurrence of unique hyper-kagome atomic order is analyzed. The critical order parameter inducing a phase transition is established. It is shown that the calculated structure of the low-symmetry P4132( P4332) phase is formed as a result of displacements of atoms of all types and due to the cation and anion ordering. The problem of the occurrence of unique hyper-kagome atomic order in the structures of P4132( P4332) spinel modifications is considered theoretically. It is proven within the Landau theory of phase transitions that the P4132( P4332) phase can be formed from the high-symmetry Fd3 m phase with an ideal spinel structure only as a result of first-order phase transition. Therefore, the formation of hyper-kagome sublattice in the P4132( P4332) phase is accompanied by a significant transformation of the spinel structure.

  3. Detection of structural varieties of red gem spinels from Ratnapura, Sabaragamuwa province of Sri Lanka

    NARCIS (Netherlands)

    Lagerwey, A.A.F.

    1974-01-01

    A new instrumental method for spectrographical detection of particularities of crystal fields around optically active ions, such as the trivalent chromium ion, was applied to an investigation of red magnesium-spinels from the Ratnapura gem gravels; also from Kangaiyam in India and some other sources

  4. Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O ...

    African Journals Online (AJOL)

    Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O 4 using Waste Polypropylene as Reductant in a Microwave Oven. ... The residual casing was dismantled and scrap iron, plastic and paper separated. The removed mixture ...

  5. Spinel from Apollo 12 Olivine Mare Basalts: Chemical Systematics of Selected Major, Minor, and Trace Elements

    Science.gov (United States)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Spilde, M. N.

    2002-01-01

    Spinels from Apollo 12 Olivine basalts have been studied by Electron and Ion microprobe techniques. The zoning trends of major, minor and trace elements provide new insights into the conditions under which planetary basalts form. Additional information is contained in the original extended abstract.

  6. Synthesis and characterization of inverse spinels, intercalation materials for Li-ion batteries

    NARCIS (Netherlands)

    Van Landschoot, N.

    2006-01-01

    Chapter 2 describes the solid-state synthesis of LiNiVO4 and LiCoVO4. The materials are prepared at 800C and are phase pure, as shown by X-ray diffraction and have the inverse spinel structure. Due to the solid-state synthesis the particle size is quite large and the particle size distribution is

  7. Flotation Behaviors of Perovskite, Titanaugite, and Magnesium Aluminate Spinel Using Octyl Hydroxamic Acid as the Collector

    Directory of Open Access Journals (Sweden)

    Weiqing Wang

    2017-08-01

    Full Text Available The flotation behaviors of perovskite, titanaugite, and magnesium aluminate spinel (MA-spinel, using octyl hydroxamic acid (OHA as the collector, were investigated using microflotation experiments, zeta-potential measurements, Fourier transform infrared (FT-IR analyses, X-ray photoelectron spectroscopy (XPS analyses, and flotation experiments on artificially mixed minerals. The microflotation experiments show that the floatability of perovskite is clearly better than titanaugite and MA-spinel at around pH 5.5, while titanaugite possesses certain floatability at pH 6.0–6.5, and MA-spinel displays good floatability at pH > 8.0. The results of the FT-IR and XPS analyses show that OHA mainly interacts with Ti, resulting in perovskite flotation, and that the Al on titanaugite, as well as the Mg and Al on the MA-spinel surface, chemically react with OHA under acidic conditions. However, OHA mainly reacts with the Ti and Ca on the perovskite surface, Ca and Mg on the titanaugite surface, and Mg and Al on the MA-spinel surface under alkaline conditions. The results of the artificially mixed mineral flotation experiment show that the concentrate of TiO2 grade increased from 19.73% to 30.18% at pH 5.4, which indicates that a weakly acidic solution is the appropriate condition for the flotation separation of perovskite from titanaugite and MA-spinel. The results of the modified slag flotation experiments show that the TiO2 grade of concentrate increased from 18.13% to 23.88% at pH 5.4, through the open circuit test of “one roughing and one cleaning”. OHA displays selectivity toward perovskite in the modified slag flotation, but the consumption of H2SO4 is very high. The CaSO4 precipitate covered on the mineral surfaces results in poor TiO2 grade and recovery.

  8. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  9. Chromian spinel-rich black sands from eastern shoreline of Andaman Island, India: Implication for source characteristics

    Indian Academy of Sciences (India)

    Koyel Bhatta; Biswajit Ghosh

    2014-08-01

    Black sands rich in chromian spinel commonly occur in pockets along the eastern shoreline of Andaman Island where various types of peridotites and volcanics belonging to the Andaman ophiolite suite are exposed in close vicinity. The chemistry of these detrital chromian spinels has been extensively used here in identifying the source rocks vis-à-vis deciphering the source characteristics. The composition of the chromian spinels (Cr#: 0.20–0.88, Mg#: 0.26–0.77, Al2O3: 5.04–48.21 wt.%, TiO2: up to 1.39 wt.% and Fe2+/Fe3+: 1.73–9.12) varies widely signifying multiple sources, of which mantle peridotites and volcanic rocks are relevant in an ophiolitic terrain. The volcanic chromian spinels are relatively fresh, commonly euhedral, sometimes with compositional variations, and contain inclusions in contrast to the mantle peridotitic chromian spinels which are rounded, extensively fractured, and altered. We used a number of geochemical bivariate plots in order to know the provenance protoliths. The volcanic chromian spinels show geochemical characters of MORB, related to spreading centers (either MOR or back-arc) and also boninites/arc-tholeiites, related to active subduction. On the other hand, the peridotitic spinels indicate partially depleted lherzolite and depleted harzburgite source of the ophiolite suite.

  10. Co3+-modified Surface of LiMn2O4 Spinel for its Improvement of Electrochemical Properties

    Institute of Scientific and Technical Information of China (English)

    Zishan ZHENG; Zilong TANG; Zhongtai ZHANG; Junbiao LU; Wanci SHEN

    2003-01-01

    Cobalt was used to modify the surface of spinel LiMn2O4 by a solution technique to produce Co3+-modified surface material (COMSM). Cobalt was only doped into the surface of LiMn2O4 spinel. XPS(X-ray photoelectron spectroscopy) analysis confirms the valence state of Co3+. COMSM has stable spinel structure and can prevent active materials from the corrosion of electrolyte. The ICP(inductively coupled plasma) determination of the spinel dissolution in electrolyte showed the content of Mn dissolved from COMSM was smaller than that from the pure spinel. AC impedance patterns show that the charge-transfer resistance (Rct) for COMSM is smaller than that for pure spinel. The particles of COMSM are bigger in size than those of pure spinel according to the micrographs of SEM(scanning electron microscopy). The determinations of the electrochemical characterization show that COMSM has both good cycling performance and high initial capacity of 124.1 mA/h at an average capacity loss of 0.19 mAh/g per cycle.

  11. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic.

    Science.gov (United States)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-05

    A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr1.32Fe0.19Al0.49O4. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr2O3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste.

  12. Investigation of AISI 441 Ferritic Stainless Steel and Development of Spinel Coatings for SOFC Interconnect Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenguo; Xia, Guanguang; Wang, Chong M.; Nie, Zimin; Templeton, Joshua D.; Singh, Prabhakar; Stevenson, Jeffry W.

    2008-05-30

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare and spinel coated AISI 441 were studied in terms of metallurgical characteristics, oxidation behavior, and electrical performance. The conventional melt metallurgy used for the bulk alloy fabrication leads to significant processing cost reduction and the alloy chemistry with the presence of minor alloying additions of Nb and Ti facilitate the strengthening by precipitation and formation of Laves phase both inside grains and along grain boundaries during exposure in the intermediate SOFC operating temperature range. The Laves phase formed along the grain boundaries also ties up Si and prevents the formation of an insulating silica layer at the scale/metal interface during prolonged exposure. The substantial increase in ASR during long term oxidation due to oxide scale growth suggested the need for a conductive protection layer, which could also minimize Cr evaporation. In particular, Mn1.5Co1.5O4 based surface coatings on planar coupons drastically improved the electrical performance of the 441, yielding stable ASR values at 800ºC for over 5,000 hours. Ce-modified spinel coatings retained the advantages of the unmodified spinel coatings, and also appeared to alter the scale growth behavior beneath the coating, leading to a more adherent scale. The spinel protection layers appeared also to improve the surface stability of 441 against the anomalous oxidation that has been observed for ferritic stainless steels exposed to dual atmosphere conditions similar to SOFC interconnect environments. Hence, it is anticipated that, compared to unmodified spinel coatings, the Ce-modified coatings may lead to superior structural stability and electrical performance.

  13. Evolution of Binaries in Dense Stellar Systems

    CERN Document Server

    Ivanova, Natalia

    2011-01-01

    In contrast to the field, the binaries in dense stellar systems are frequently not primordial, and could be either dynamically formed or significantly altered from their primordial states. Destruction and formation of binaries occur in parallel all the time. The destruction, which constantly removes soft binaries from a binary pool, works as an energy sink and could be a reason for cluster entering the binary-burning phase. The true binary fraction is greater than observed, as a result, the observable binary fraction evolves differently from the predictions. Combined measurements of binary fractions in globular clusters suggest that most of the clusters are still core-contracting. The formation, on other hand, affects most the more evolutionary advanced stars, which significantly enhances the population of X-ray sources in globular clusters. The formation of binaries with a compact objects proceeds mainly through physical collisions, binary-binary and single-binary encounters; however, it is the dynamical for...

  14. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  15. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  16. PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS

    Institute of Scientific and Technical Information of China (English)

    XuChengqian; ZhaoXiaoqun

    2002-01-01

    A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP)is proposed .A new class of block design-Difference Family Pair (DFP)is also proposed .The relationship between PCSP and DFP,the properties and exising conditions of PCSP and the recursive constructions for PCSP are given.

  17. PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS

    Institute of Scientific and Technical Information of China (English)

    Xu Chengqian; Zhao Xiaoqun

    2002-01-01

    A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.

  18. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  19. Spin Correlation in Binary Systems

    CERN Document Server

    Farbiash, N; Farbiash, Netzach; Steinitz, Raphael

    2004-01-01

    We examine the correlation of projected rotational velocities in binary systems. It is an extension of previous work (Steinitz and Pyper, 1970; Levato, 1974). An enlarged data basis and new tests enable us to conclude that there is indeed correlation between the projected rotational velocities of components of binaries. In fact we suggest that spins are already correlated.

  20. Evolutionary Memory in Binary Systems?

    CERN Document Server

    Steinitz, N F R

    2004-01-01

    Correlation between the spins (rotational velocities) in binaries has previously been established. We now continue and show that the degree of spin correlation is independent of the components' separation. Such a result might be related for example to Zhang's non-linear model for the formation of binary stars from a nebula.

  1. Restitic or not? Insights from trace element content and crystal - Structure of spinels in African mantle xenoliths

    Science.gov (United States)

    Lenaz, Davide; Musco, Maria Elena; Petrelli, Maurizio; Caldeira, Rita; De Min, Angelo; Marzoli, Andrea; Mata, Joao; Perugini, Diego; Princivalle, Francesco; Boumehdi, Moulay Ahmed; Bensaid, Idris Ali Ahmadi; Youbi, Nasrrddine

    2017-05-01

    The lithospheric architecture of Africa consists of several Archean cratons and smaller cratonic fragments, stitched together and flanked by polycyclic fold belts. Here we investigate the structure and chemistry of spinels from lithospheric mantle xenoliths from distinct tectonic settings, i.e. from the Saharan metacraton in Libya (Waw-En-Namus) which could show archaic chemical features, Cameroon (Barombi Koto and Nyos Lakes) where the Sub Continental Lithospheric Mantle was modified during the Pan-African event and fluxed by asthenospheric melts of the Tertiary Cameroon Volcanic Line and Morocco (Tafraoute, Bou-Ibalrhatene maars) in the Middle Atlas where different metasomatic events have been recorded. From a structural point of view it is to notice that the Libyan spinels can be divided into two groups having different oxygen positional parameter (u > 0.2632 and u different among the different samples with one Libyan group (LB I) showing Tc in the range 490-640 °C and the other 680-950 °C (LB II). Cameroon and Morocco spinels show a Tc in the range 630-760 °C. About 150 different spinels have been studied for their trace element content and it can be seen that many of them are related to Cr content, while Zn and Co are not and clearly distinguish the occurrences. Differences in the trace element chemistry, in the structural parameters and in the intracrystalline closure temperatures suggest that a different history should be considered for Cameroon, Morocco and LB I and LB II spinels. Even if it was not considered for this purpose, we tentatively used the Fe2 +/Fe3 + vs. TiO2 diagram that discriminate between peridotitic and the so-called ;magmatic; spinels, i.e. spinel crystallized from melts. LB I and LB II spinels plot in the peridotitic field while Cameroon and Morocco spinels fall in the magmatic one. Consequently, the xenoliths sampled from a probably juvenile SCLM at the edge of the most important lithospheric roots (i.e. Cameroon and Morocco

  2. Observing binary inspiral with LIGO

    CERN Document Server

    Finn, L S

    1994-01-01

    Gravitational radiation from a binary neutron star or black hole system leads to orbital decay and the eventual coalescence of the binary's components. During the last several minutes before the binary components coalesce, the radiation will enter the bandwidth of the United States Laser Inteferometer Gravitational-wave Observatory (LIGO) and the French/Italian VIRGO gravitational radiation detector. The combination of detector sensitivity, signal strength, and source density and distribution all point to binary inspiral as the most likely candidate for observation among all the anticipated sources of gravitational radiation for LIGO/VIRGO. Here I review briefly some of the questions that are posed to theorists by the impending observation of binary inspiral.

  3. Signature Visualization of Software Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  4. Pairing mechanisms for binary stars

    CERN Document Server

    Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L; 10.1002/asna.200811061

    2008-01-01

    Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments. Binarity is also a key ingredient in stellar population studies and is a prerequisite to calibrate the binary evolution channels. In these proceedings we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as the pairing function. Many pairing functions are frequently used by observers and computational astronomers, either for the mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. These quantities, when derived from a binary survey with a mass-limited sample of target stars, ...

  5. Magnetic activity of interacting binaries

    Science.gov (United States)

    Hill, Colin A.

    2017-10-01

    Interacting binaries provide unique parameter regimes, both rapid rotation and tidal distortion, in which to test stellar dynamo theories and study the resulting magnetic activity. Close binaries such as cataclysmic variables (CVs) have been found to differentially rotate, and so can provide testbeds for tidal dissipation efficiency in stellar convective envelopes, with implications for both CV and planet-star evolution. Furthermore, CVs show evidence of preferential emergence of magnetic flux tubes towards the companion star, as well as large, long-lived prominences that form preferentially within the binary geometry. Moreover, RS CVn binaries also show clear magnetic interactions between the two components in the form of coronal X-ray emission. Here, we review several examples of magnetic interactions in different types of close binaries.

  6. Eccentric Binary Millisecond Pulsars

    CERN Document Server

    Freire, Paulo C C

    2009-01-01

    In this paper we review the recent discovery of several millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses (1.3 to > 2 solar masses) than the normal and mildly recycled pulsars found in double neutron star (DNS) systems (1.25 < Mp < 1.44 solar masses). This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 ($1.67 +/- 0.01 solar masses) excludes several "soft" equations of state for dense matter.

  7. Towards Physarum binary adders.

    Science.gov (United States)

    Jones, Jeff; Adamatzky, Andrew

    2010-07-01

    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al. (2004) experimentally demonstrated that basic logical gates can be implemented in foraging behaviour of the plasmodium. We simplify the original designs of the gates and show - in computer models - that the plasmodium is capable for computation of two-input two-output gate x, y-->xy, x+y and three-input two-output x,y,z-->x yz,x+y+z. We assemble the gates in a binary one-bit adder and demonstrate validity of the design using computer simulation.

  8. Towards Physarum Binary Adders

    CERN Document Server

    Jones, Jeff; 10.1016/j.biosystems.2010.04.005

    2010-01-01

    Plasmodium of \\emph{Physarum polycephalum} is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al (2004) experimentally demonstrated that basic logical gates can be implemented in foraging behaviour of the plasmodium. We simplify the original designs of the gates and show --- in computer models --- that the plasmodium is capable for computation of two-input two-output gate $ \\to $ and three-input two-output $ \\to $. We assemble the gates in a binary one-bit adder and demonstrate validity of the design using computer simulation.

  9. Dynamical Evolution of Wide Binaries

    Directory of Open Access Journals (Sweden)

    Esmeralda H. Mallada

    2001-01-01

    Full Text Available We simulate numerically encounters of wide binaries with field stars and Giant Molecular Clouds (GMCs by means of the impulse approximation. We analyze the time evolution of the distributions of eccentricities and semimajor axes of wide binaries with given initial conditions, at intervals of 109 yr, up to 1010 yr (assumed age of the Galaxy. We compute the fraction of surviving binaries for stellar encounters, for GMC encounters and for a combination of both, and hence, the dynamical lifetime for different semimajor axes and different masses of binaries (0.5, 1, 1.2, 1.5, 2.5, and 3 Msolar. We find that the dynamical lifetime of wide binaries considering only GMCs is half than that considering only stars. For encounters with GMCs we analyze the influence of the initial inclination of the orbital plane of the binary with respect to the plane perpendicular to the relative velocity vector of the binary and the GMC. We find that the perturbation is maximum when the angle is minimum.

  10. Studies on the Influence of Sintering Temperature on Crystalline Structures of Mg-Al Spinel Synthesized by Waste Aluminum Slag

    Institute of Scientific and Technical Information of China (English)

    YU Yan; RUAN Yu-Zhong; WU Ren-Ping

    2007-01-01

    Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of sintering temperature on crystalline structure and microstructure of Mg-Al spinel has been mainly discussed. The crystalline structure of sample is characterized by using XRD, SEM and relevant analytical software. The experimental results show that compared to the conventional synthetic method, the application of waste aluminum slag as the raw material can greatly decrease the synthetic tem-perature. The content of Mg-Al spinel first increases and then decreases with the rise of sintering temperature, and its purity can reach as high as 96wt% at 1550 ℃, which is therefore determined to be the optimum synthetic temperature. SEM observations demonstrate that as the rise of sintering temperature, the grain of Mg-Al spinel grows up obviously with typical octahedral characteristic appearance.

  11. Radiation resistance of (Ni,Fe)Cr{sub 2}O{sub 4} spinels by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Van Brutzel, Laurent, E-mail: laurent.vanbrutzel@cea.fr; Alvarez, Pierre; Chartier, Alain

    2014-05-01

    Molecular dynamics simulations are carried out to study primary radiation damage in NiCr{sub 2}O{sub 4} and FeCr{sub 2}O{sub 4} spinels, which are part of the corrosion layer of the vapour generators used in nuclear reactors. The radiation resistance of both spinels is evaluated by studying point defect recombination processes, threshold displacement energies, and 20 keV displacement cascades initiated with different PKA masses. Results are mainly in agreement with previous studies involving MgAl{sub 2}O{sub 4} showing that radiation facilitates the transition to inverse spinel structure or NaCl structure. However, we find some differences between the two studied spinels indicating that NiCr{sub 2}O{sub 4} is more sensitive to radiation.

  12. Chaotic zones around gravitating binaries

    CERN Document Server

    Shevchenko, Ivan I

    2014-01-01

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound bodies (a double star, a double black hole, a binary asteroid, etc.) is estimated analytically, in function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the binary periods. The binary's mass ratio, above which such a chaotic zone is universally present, is also estimated.

  13. Modified evolution of stellar binaries from supermassive black hole binaries

    Science.gov (United States)

    Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei

    2017-04-01

    The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ∼70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ∼10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.

  14. Binary Oscillatory Crossflow Electrophoresis

    Science.gov (United States)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  15. High-pressure crystal structure investigation of synthetic Fe2SiO4 spinel

    DEFF Research Database (Denmark)

    Nestola, F.; Balic Zunic, Tonci; Koch-Müller, M.;

    2011-01-01

    The crystal structure of Fe2SiO4 spinel at room temperature was investigated at seven different pressures by X-ray diffraction, using a diamond anvil cell to examine the influence of Fe substitution on ringwoodite behaviour at high pressure. The results compared with those of a pure Mg endmember...... show that the substitution of Fe into the spinel structure causes only small changes in the compression rate of coordination polyhedra and the distortion of the octahedron. The data show that the compression rate for the octahedron and tetrahedron in (Mg,Fe)2SiO4 can be considered statistically equal...... for FeO6 and MgO6, as well as for SiO4 in both the endmembers. This shows why almost identical bulk moduli are reported along the solid solution in recent literature....

  16. Contemporary artists' spinel pigments: Non-invasive characterization by means of electronic spectroscopy

    Science.gov (United States)

    Angelin, Eva Mariasole; Bacci, Mauro; Bartolozzi, Giovanni; Cantisani, Emma; Picollo, Marcello

    2017-02-01

    The identification of artistic materials represents a fundamental step in supporting the conservation of cultural heritage objects. The importance of their appropriate characterization is particularly relevant in modern-contemporary art, since they could be affected by the occurrence of rapid changes in chemical formulation over time. This paper focuses on an investigation of a series of contemporary blue-green commercial acrylic paints constituted of spinel pigments, using non-invasive spectroscopic techniques. The spectroscopic and color measurements obtained make it possible to characterize the acrylic paints under investigation and to compare the results obtained with those reported in the literature and in spectral databases. To be more precise, the proposed UV-vis-NIR reflectance spectroscopic technique was sensitive enough to characterize the acrylic paints according to their d-d ligand field and the charge transfer (CT) electronic transitions involved in the spinel structures. In addition, an overview of this class of inorganic pigments is also given.

  17. Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles

    Science.gov (United States)

    Anandan, S.; Selvamani, T.; Prasad, G. Guru; M. Asiri, A.; J. Wu, J.

    2017-06-01

    In this research, inverse spinel copper ferrite nanoparticles (CuFe2O4 NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (Ms = 20.62 emu g-1), remnant magnetization (Mr = 11.66 emu g-1) and coercivity (Hc = 63.1 mTesla) revealed that the synthesized CuFe2O4 NPs have a typical ferromagnetic behaviour. Also tested CuFe2O4 nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  18. Effect of LiF on the Optical Transmittance of Magnesium Aluminate Spinel

    Institute of Scientific and Technical Information of China (English)

    LI Fahui; LIN Hong; LI Jianbao; LEI Muyun; HUANG Cunxin; WEN Fang

    2012-01-01

    The effect of LiF as a sintering aid to the optical transparency of magnesium aluminate (MgAl2O4) spinel ceramics is studied.The spinel ceramics is prepared in a process proved to be suitable for commercial production.LiF,in different concentrations ranging from 0-2.5 wt%,is doped into MgAl2O4powders prepared by sol-gel method.Sample MgAl2O4 ceramic discs are fabricated by ball milling,cold pressing,and hot-pressing,or hot-isostatic-pressing of the powder mixtures.Optical transparency measurements show that,hot-pressed samples exhibit higher transparency when more LiF is added,While for hot-isostatic pressed samples,excessive LiF content leads to a decrease in optical transparency.The optimal LiF doping quantity is suggested for the present technique.

  19. Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process

    Directory of Open Access Journals (Sweden)

    Li-Zhai Pei

    2010-09-01

    Full Text Available Magnesium oxide and magnesium aluminate (MgAl2O4 spinel (MAS powders have been synthesized by a simple aqueous sol-gel process using citrate polymeric precursors derived from magnesium chloride, aluminium nitrate and citrate. The thermal decomposition of the precursors and subsequent formation of cubic MgO and MAS were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, thermogravimetry-differential scanning calorimetry (TG-DSC and Fourier transform infrared spectra (FTIR. The single phase cubic MgO powder and MAS powder form after heat treatment at 800 and 1200 °C, respectively. The particle size of the MgO and MAS powders is about 100 nm and several micrometers, respectively. Ball milling eliminates the size of MgO and MgAl2O4 spinel powders by decreasing the conglomeration of the powders.

  20. Convergent beam electron diffraction study on ge-based oxide spinels

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S I; Umeyama, N [Nanoelectronics Research Institute, AIST, Tsukuba (Japan); Matsuhata, H [Energy Semiconductor Electronics Research Laboratory, AIST, Tsukuba (Japan); Tominaga, A; Sato, H [Department of Physics, Chuo University, Tokyo (Japan); Hara, S [Art, Science and Technology Center for Cooperative Research, Kyushu University, Fukuoka (Japan); Watanabe, T [Department of Physics, Nihon University, Tokyo (Japan); Tomiyasu, K [IMR, Tohoku University, Sendai (Japan); Crawford, M K, E-mail: ikeda-shin@aist.go.j [DuPont Co., Wilmington, Delaware (United States)

    2009-03-01

    Transition metal oxides with spinel crystal structure exhibit intriguing and non trivial magnetic phenomena owing to magnetic frustration between spins having antiferromagnetic coupling interaction on triangle or kagome lattice. GeCo{sub 2}O{sub 4}(GCO) and GeNi{sub 2}O{sub 4}(GNO), which belong to above category, are very rare normal spinels containing Ge ion. Both reveal antiferromagnetic-like phase transitions at 20 K and 12 K, respectively. According to previous neutron and x-ray diffraction measurements, GNO keeps its cubic structural symmetry down to 2 K which is not natural because such a magnetic transition tends to associate with symmetry breaking structural transitions. In order to know whether the structural transition or symmetry change occur or not at the magnetic transition in detail, convergent beam electron diffraction measurements is employed for the compounds.

  1. The influence of {gamma}-irradiation on electrophysical properties of spinel-based oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kovalskiy, A.P.; Shpotyuk, O.I. E-mail: karat@ipm.lviv.ua; Hadzaman, I.V.; Mrooz, O.Ya.; Vakiv, M.M

    2000-05-02

    The influence of {sup 60}Co {gamma}-irradiation with 1.25 MeV average energy and 1 MGy absorbed dose on electrophysical properties of Cu-, Ni-, Co- and Mn-based spinel ceramic materials in the Cu{sub x}Ni{sub 1-x-y}Co{sub 2y}Mn{sub 2-y}O{sub 4} (0,1{<=}x{<=}0,8;0,1{<=}y{<=}0,9-x) system is investigated. The {gamma}-induced increasing of the electrical resistance is observed for the investigated samples of various compositions. It is supposed that these changes are explained by cationic redistribution in the spinel sublattices of the ceramics.

  2. Surface modification and characterization of F-Co doped spinel LiMn2O4

    Institute of Scientific and Technical Information of China (English)

    YAO Yaochun; DAI Yongnian; YANG Bin; MA Wenhui; WATANABE Takayuki

    2006-01-01

    Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and charge-discharge test in this paper. The results show that a good clad coated on parent material can be synthesized by the sol-gel method, and the materialswith modification have perfect spinel structure. LiCo0.09Mn1.91O3.92F0.08 materials coated by LiCoO2 improve the stability of crystal structure and decrease the dissolution of Mn into electrolyte. With the LiCoO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity loss is also suppressed distinctly even at 55 ℃.

  3. Stability of binaries. Part II: Rubble-pile binaries

    Science.gov (United States)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  4. Binary star database: binaries discovered in non-optical bands

    Science.gov (United States)

    Malkov, Oleg Yu.; Tessema, Solomon B.; Kniazev, Alexei Yu.

    The Binary star Database (BDB) is the world's principal database of binary and multiple systems of all observational types. In particular, it should contain data on binaries discovered in non-optical bands, X-ray binaries (XRBs) and radio pulsars in binaries. The goal of the present study was to compile complete lists of such objects. Due to the lack of a unified identification system for XRBs, we had to select them from five principal catalogues of X-ray sources. After cross-identification and positional cross-matching, a general catalogue of 373 XRBs was constructed for the first time. It contains coordinates, indication of photometric and spectroscopic binarity, and extensive cross-identification. In the preparation of the catalogue, a number of XRB classification disagreements were resolved, some catalogued identifiers and coordinates were corrected, and duplicated entries in the original catalogues were found. We have also compiled a general list of 239 radio pulsars in binary systems. The list is supplied with indication of photometric, spectroscopic or X-ray binarity, and with cross-identification data.

  5. Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar

    Science.gov (United States)

    Chopelas, A.; Hofmeister, A. M.

    1991-12-01

    Single-crystal Raman and infrared reflectivity data including high pressure results to over 200 kbar on a natural, probably fully ordered MgAl2O4 spinel reveal that many of the reported frequencies from spectra of synthetic spinels are affected by disorder at the cation sites. The spectra are interpreted in terms of factor group analysis and show that the high energy modes are due to the octahedral internal modes, in contrast to the behavior of silicate spinels, but in agreement with previous data based on isotopic and chemical cation substitutions and with new Raman data on gahnite (˜ ZnAl2O4) and new IR reflectivity data on both gahnite and hercynite (˜Fe0.58Mg0.42Al2O4). Therefore, aluminate spinels are inappropriate as elastic or thermodynamic analogs for silicate spinels. Fluorescence sideband spectra yield complementary information on the vibrational modes and provide valuable information on the acoustic modes at high pressure. The transverse acoustic modes are nearly pressure independent, which is similar to the behavior of the shear modes previously measured by ultrasonic techniques. The pressure derivative of all acoustic modes become negative above 110 kbar, indicating a lattice instability, in agreement with previous predictions. This lattice instability lies at approximately the same pressure as the disproportionation of spinel to MgO and Al2O3 reported in high temperature, high pressure work.

  6. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue

    2017-04-25

    Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe2O4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co2+ and Fe3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe2O4 nanofibres, further confirming results from TEM.

  7. Mechanochemical synthesis of Li-Mn-O spinels: positive electrode for lithium batteries

    Science.gov (United States)

    Soiron, S.; Rougier, A.; Aymard, L.; Tarascon, J.-M.

    Li-Mn-O oxides were synthesized by mechanochemistry from a stoichiometric mixture of Li 2O and MnO 2 using various grinding times (0grinding a value of 8.24 Å similar to stoichiometric LiMn 2O 4. As a matter of fact, after 8 h of milling, mechanosynthesized Li-Mn-O spinel-type oxide shows quasi-identical electrochemical performances as high temperature LiMn 2O 4 ground for 1 h.

  8. Millimeter Waveband Dielectric Properties of Nanocomposite Materials Based on Opal Matrices with Particles of Spinels

    Science.gov (United States)

    Rinkevich, A. B.; Perov, D. V.; Pakhomov, Ya A.; Samoylovich, M. I.; Kuznetsov, E. A.

    2016-09-01

    The dielectric properties of 3D nanocomposites based on opal matrices containing the particles of compounds with spinel structure have been studied. Microwave measurements have been carried out in the frequency range from 26 to 38 GHz. The frequency dependences of transmission and reflection coefficients are obtained. The values of the real and imaginary parts of complex dielectric permittivity have been retrieved. The X-ray phase analysis of the nanocomposites is performed and their structures are studied.

  9. Magnetic properties of nanocomposites based on opal matrices with embedded ferrite-spinel nanoparticles

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Klescheva, S. M.; Perov, D. V.

    2016-02-01

    Magnetic properties of nanocomposites based on opal matrices with ferrite-spinel nanoparticles embedded have been investigated in temperature range from 2 to 300 K. The magnetization curves and hysteresis loops as well as the temperature dependence of magnetic moment and the temperature and frequency dependences of AC susceptibility have been measured. The results of magnetic measurements are compared to X-ray analysis and electron microscopy investigations.

  10. Metal ferrite spinel energy storage devices and methods for making and using same

    Science.gov (United States)

    Weimer, Alan W.; Perkins, Christopher; Scheffe, Jonathan; George, Steven M.; Lichty, Paul

    2013-03-19

    1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.

  11. High-pressure phase of the cubic spinel NiMn2O4

    DEFF Research Database (Denmark)

    Åsbrink, S.; Waskowska, A.; Olsen, J. Staun

    1998-01-01

    It has been observed that the fee spinel NiMn2O4 transforms to a tetragonal structure at about 12 GPa. The tetragonal phase does not revert to the cubic phase upon decompression and its unit-cell constants at ambient pressure are a(0)=8.65(8) and c(0)=7.88(15) Angstrom (distorted fee). Within thr......). The bulk modulus of the cubic phase is 206(4) GPa....

  12. Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process

    OpenAIRE

    Li-Zhai Pei; Wan-Yun Yin; Ji-Fen Wang; Jun Chen; Chuan-Gang Fan; Qian-Feng Zhang

    2010-01-01

    Magnesium oxide and magnesium aluminate (MgAl2O4) spinel (MAS) powders have been synthesized by a simple aqueous sol-gel process using citrate polymeric precursors derived from magnesium chloride, aluminium nitrate and citrate. The thermal decomposition of the precursors and subsequent formation of cubic MgO and MAS were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and Fourier transform infrared spectr...

  13. Synthesis and properties of a spinel cathode material for lithium ion battery with flat potential plateau

    OpenAIRE

    AL-TABBAKH, AHMED ABDULRAHMAN AHMED; Kamarulzaman, Norlida; AL-ZUBAIDI, ASEEL

    2015-01-01

    A potential cathode material for lithium ion battery was synthesised by combustion reaction. The thermal behaviour of the as-synthesised precursor was measured using a thermogravimetric analyser and the range of calcination temperature from 500 $^{\\circ}$C to 800 $^{\\circ}$C was determined. X-ray diffraction analysis showed that all calcined powders crystallised in the cubic spinel structure of the $Fd\\bar{3}m$ space group. The particle size distributions and morphologies of the p...

  14. An introduction to computational crystallography: the relationship between aluminum-based spinel structures and their morphologies

    Institute of Scientific and Technical Information of China (English)

    施尔畏; 元如林; 陈之战; 郑燕青; 童怀水; 李汶军; 仲维卓

    2003-01-01

    The computational crystallography is proposed. Its basic concept and research method are systematically introduced, with aluminum-based spinel (ABS) as an example, through (ⅰ) selecting basic crystal structural unit, (ⅱ) determining the mathematical expression of crystal structure, (ⅲ) computing the stability energy of growth unit and finding out which is (are) favorable one(s), and (ⅳ) describing the formation process of crystal morphology. The morphology of ABS deduced from the computation is in excellent agreement with that from hydrothermal experiments.

  15. Spinel ferrite thin-film synthesis by spin-spray ferrite plating

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Tran Hoang; Van, Ha Thi Bich; Phong, Tran Canh; Abe, Masanori

    2003-04-01

    By spin-spray ferrite plating with optimizing conditions in the oxidizing and reaction solutions, we can synthesize polycrystalline ferrite film of spinel type (Fe, M){sub 3}O{sub 4}, where M=Fe, Co, Ni, Zn, etc., in low temperatures (<100 deg. C). By this method we can synthesize Co, Co-Ni ferrite for perpendicular magnetic recording media with high coercivity H{sub c} in the plane perpendicular to the film.

  16. Spinel versus layered structures for lithium cobalt oxide synthesized at 400-degrees-c

    CSIR Research Space (South Africa)

    Gummow, RJ

    1993-03-01

    Full Text Available Rietveld refinements of X-ray data of LiCoO2 prepared at 400-degrees-C and a chemically-delithiated product Li0.5CoO2 using space group symmetries R3mBAR and Fd3m are reported. Refinements in both R3mBAR (layered-type structure) and Fd3m (spinel...

  17. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution.

    Science.gov (United States)

    Ge, Xiaoming; Liu, Yayuan; Goh, F W Thomas; Hor, T S Andy; Zong, Yun; Xiao, Peng; Zhang, Zheng; Lim, Suo Hon; Li, Bing; Wang, Xin; Liu, Zhaolin

    2014-08-13

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential reactions for energy-storage and -conversion devices relying on oxygen electrochemistry. High-performance, nonprecious metal-based hybrid catalysts are developed from postsynthesis integration of dual-phase spinel MnCo2O4 (dp-MnCo2O4) nanocrystals with nanocarbon materials, e.g., carbon nanotube (CNT) and nitrogen-doped reduced graphene oxide (N-rGO). The synergic covalent coupling between dp-MnCo2O4 and nanocarbons effectively enhances both the bifunctional ORR and OER activities of the spinel/nanocarbon hybrid catalysts. The dp-MnCo2O4/N-rGO hybrid catalysts exhibited comparable ORR activity and superior OER activity compared to commercial 30 wt % platinum supported on carbon black (Pt/C). An electrically rechargeable zinc-air battery using dp-MnCo2O4/CNT hybrid catalysts on the cathode was successfully operated for 64 discharge-charge cycles (or 768 h equivalent), significantly outperforming the Pt/C counterpart, which could only survive up to 108 h under similar conditions.

  18. An adaptable binary entropy coder

    Science.gov (United States)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  19. Discs in misaligned binary systems

    CERN Document Server

    Rawiraswattana, Krisada; Goodwin, Simon P

    2016-01-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-...

  20. Simulating relativistic binaries with Whisky

    Science.gov (United States)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  1. Magnetic braking in ultracompact binaries

    CERN Document Server

    Farmer, Alison

    2010-01-01

    Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...

  2. Binary nucleation beyond capillarity approximation

    NARCIS (Netherlands)

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption

  3. Cryptography with DNA binary strands.

    Science.gov (United States)

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.

  4. Improving the Performance of Lithium-Ion Batteries by Using Spinel Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. C. Arrebola

    2008-01-01

    Full Text Available In this work, we examined the use of nanospinels to construct batttery electrodes. We chose two spinels suitable as cathode materials (LiMn2O4 and LiNi0.5Mn1.5O4, which are representative of 4 and 5 V versus Li metal, resp. and one providing good results as anode (Li4Ti5O12. In order to ensure good cell performance, nanometric particles must meet another requirement; thus they should contain few surface or bulk defects (i.e., they should be highly crystalline. Because the synthesis of such spinels usually requires a thermal treatment, ensuring that they will meet both requirements entails accuratly controlling in the synthesis conditions. Thermal decomposition of nanooxalate in the spinel-conaining elements obtained by mechanochenical activation in the presence of polymers provides a simple, effective route for this purpose. We prepared two types of hybrid lithium-ion batteries using LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials, and Li4Ti5O12 as anode material. The electrochemical properties of these cells were compared with those of a similar configuration made from micrometric particles. The nano-nano configuration exhibited higher reversibility and better performance than the micro-micro configuartion in both types of cells, possibly as a result of lithium ions in the former being able to migrate more easily into the electrode material.

  5. Reaction temperature variations on the crystallographic state of spinel cobalt aluminate.

    Science.gov (United States)

    Taguchi, Minori; Nakane, Takayuki; Hashi, Kenjiro; Ohki, Shinobu; Shimizu, Tadashi; Sakka, Yoshio; Matsushita, Akiyuki; Abe, Hiroya; Funazukuri, Toshitaka; Naka, Takashi

    2013-05-21

    In this study, we report a rapid and simple technique for obtaining cobalt aluminate having a spinel structure. The products were prepared from a hydroxide precursor synthesized by coprecipitation of cobalt (Co(2+)) and aluminum (Al(3+)) nitrates with an alkaline solution. The chosen precursor enabled low temperature fabrication of cobalt aluminate with a spinel structure by sintering it for 2 hours at low temperatures (>400 °C). Crystallographic and thermal analyses suggest that the low-temperature-sintered products contain Co(3+) ions stabilized by chemisorbed water and/or hydroxide groups, which was not observed for products sintered at temperatures higher than 1000 °C. The color of the products turned from clear blue (Thenard's blue) to dark green when sintering temperatures were below 1000 °C. Magnetic quantities, Curie constants, and Weiss temperatures show a strong dependence on the sintering temperature. These findings suggest that there are mixed valent states, i.e. Co(2+) and Co(3+), and unique cation distributions at the different crystallographic sites in the spinel structure, especially in the products sintered at lower temperatures.

  6. Helium and Argon Isotopes in Spinel Lherzolite from Damaping,Northern Zhangjiakou

    Institute of Scientific and Technical Information of China (English)

    张建珍; 杜建国; 等

    1999-01-01

    Spinel lhezolite found in Damaping,northern Zhangjiakou,Hebei Province occurs as xenoliths in the Hannuoba basalts that consist of alkali basalt and tholeiite.Spinel lherzolites contain50%-70% olivine(Fo:90%),10%-20% clinopyroxene(predominantly Di),10%-30% orthopyroxene(predominantly En),and less than 5%spinl ,3He/4He and 40Ar/38Ar ratios in the olivine are 7.56×10-7and 299.1 respectively,3He/4He and 40Ar/38Ar ratios in the orthopyroxene(enstatite)are 9.1×10-7and 307,respectively,Olivine grains are fractured irregularly,and pyroxene grains characterized by well developed cleavages,which would have resulted from explosion during the rapid eruption of lava from the deep interior to the surface.The lower isotope ratios of helium and argon may indicate that the spinel lherzolite xenoliths were derived from the strongly degassed and depleted upper mantle,and that the mantle is inhomogeneous.3He losses to some extent might affect the helium isotope ratios.

  7. Orbital and spin ordering physics of the Mn3O4 spinel

    Science.gov (United States)

    Pal, Santanu; Lal, Siddhartha

    2017-08-01

    Motivated by recent experiments, we present a comprehensive theoretical study of the geometrically frustrated strongly correlated magnetic insulator Mn3O4 spinel oxide based on a microscopic Hamiltonian involving lattice, spin, and orbital degrees of freedom. Possessing the physics of degenerate eg orbitals, this system shows a strong Jahn-Teller effect at high temperatures. Further, careful attention is paid to the special nature of the superexchange physics arising from the 90∘ Mn-O-Mn bonding angle. The Jahn-Teller and superexchange-based orbital-spin Hamiltonians are then analyzed in order to track the dynamics of orbital and spin ordering. We find that a high-temperature structural transition results in orbital ordering the nature of which is mixed with respect to the two originally degenerate eg orbitals. This ordering of orbitals is shown to relieve the intrinsic geometric frustration of the spins on the spinel lattice, leading to ferrimagnetic Yafet-Kittel ordering at low temperatures. Finally, we develop a model for a magnetoelastic coupling in Mn3O4 , enabling a systematic understanding of the experimentally observed complexity in the low-temperature structural and magnetic phenomenology of this spinel. Our analysis predicts that a quantum fluctuation-driven orbital-spin liquid phase may be stabilized at low temperatures upon the application of pressure.

  8. Microstructure of Swift Heavy Ion Irradiated MgAl(Sub 2)O(Sub 4) Spinel

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, H.; Skuratov, V.A.; Zinkle, S.J.

    1998-11-30

    Plan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1 x 10{sup 16}/m{sup 2} (single track regime) to 1 x 10{sup 20}/m{sup 2}. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of {approximately}35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1 x 10{sup 19}/m{sup 2}. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.

  9. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chao; Feng, Zhenxing; Scherer, Günther G.; Barber, James; Shao-Horn, Yang; Xu, Zhichuan J. (Nanyang); (ICL); (Oregon State U.); (TUM-CREATE); (MIT)

    2017-04-10

    Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal–air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2O4, the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including MnxCo3-xO4 (x = 2, 2.5, 3), LixMn2O4 (x = 0.7, 1), XCo2O4 (X = Co, Ni, Zn), and XFe2O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.

  10. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  11. AN IMPROVED DESIGN OF REVERSIBLE BINARY TO BINARY CODED DECIMAL CONVERTER FOR BINARY CODED DECIMAL MULTIPLICATION

    Directory of Open Access Journals (Sweden)

    Praveena Murugesan

    2014-01-01

    Full Text Available Reversible logic gates under ideal conditions produce zero power dissipation. This factor highlights the usage of these gates in optical computing, low power CMOS design, quantum optics and quantum computing. The growth of decimal arithmetic in various applications as stressed the need to propose the study on reversible binary to BCD converter which plays a greater role in decimal multiplication for providing faster results. The different parameters such as gate count,garbage output and constant input are more optimized in the proposed fixed bit binary to binary coded decimal converter than the existing design.

  12. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  13. Origin of spinel lamella and/or inclusions in olivine of harzburgite form the Pauza ultramafic rocks from the Kurdistan region, northeastern Iraq

    Science.gov (United States)

    Mohammad, Y.; Maekawa, H.; Karim, K.

    2009-04-01

    Exsolution lamellae and octahedral inclusions of chromian spinel occur in olivine of harzburgite of the Pauza ultramafic rocks, Kurdistan region, northeastern Iraq. The lamella is up to 80μm long and up to 50 μm wide. The lamellae and octahedral inclusions of chromian spinel are distributed heterogeneously in the host olivine crystal. They are depleted in Al2O3 relative to the subhedral spinel grains in the matrix and spinel lamella in orthopyroxene. Olivine (Fo92 - 93) with spinel lamellae occurs as fine-grained crystals around orthopyroxene, whereas olivine (Fo90-91) free from spinel is found in matrix. Based on back-scattered images analyses, enrichments of both Cr # and Fe+3 in the chromian spinel lamella in olivine (replacive olivine) relative to that in adjacent orthopyroxene. As well as the compositions of chromian spinel lamellae host olivine are more Mg-rich than the matrix olivine. Furthermore the restriction of olivine with spinel lamellae and octahedral inclusions on around orthopyroxene, and the similarity of spinel lamella orientations in both olivine and adjacent orthopyroxene. This study concludes that the spinel inclusions in olivine are remnant (inherited from former orthopyroxene) spinel exsolution lamella in orthopyroxene, that has been formed in upper mantle conditions ( T = 1200 °C, P = 2.5 GPa ). Replacive olivine are formed by reaction of ascending silica poor melt and orthopyroxene in harzburgite as pressure decrease the solubility of silica-rich phase (orthopyroxene) in the system increase, therefore ascending melt dissolve pyroxene with spinel exsolution lamella and precipitate replacive olivine with spinel inclusions. We can conclude that the olivines with spinel lamella are not necessary to be original and presenting ultrahigh-pressure and/or ultra deep-mantle conditions as previously concluded. It has been formed by melting of orthopyroxene (orthopyroxene with spinel exsolution lamella = olivine with spinel lamellae and octahedral

  14. Residue arithmetic in binary systems

    OpenAIRE

    Barsi, Ferruccio

    1988-01-01

    A natural approach to the problem of performing mod m computations in a binary system is presented and a solution is suggested which is based upon a straightforward relation between the residues of a same integer X with respect to different moduli. The proposed solution proves fruitful in various applications, such as converting binary integers to residue notation and mod m addition or multiplication. Even if the most usual implementation approach for mod m processors is based on look-up tabl...

  15. Coevolution of Binaries and Gaseous Discs

    CERN Document Server

    Fleming, David P

    2016-01-01

    The recent discoveries of circumbinary planets by $\\it Kepler$ raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc, and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc that drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for $10^4$ binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentri...

  16. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    Science.gov (United States)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  17. Unsupervised learning of binary vectors

    Science.gov (United States)

    Copelli Lopes da Silva, Mauro

    In this thesis, unsupervised learning of binary vectors from data is studied using methods from Statistical Mechanics of disordered systems. In the model, data vectors are distributed according to a single symmetry-breaking direction. The aim of unsupervised learning is to provide a good approximation to this direction. The difference with respect to previous studies is the knowledge that this preferential direction has binary components. It is shown that sampling from the posterior distribution (Gibbs learning) leads, for general smooth distributions, to an exponentially fast approach to perfect learning in the asymptotic limit of large number of examples. If the distribution is non-smooth, then first order phase transitions to perfect learning are expected. In the limit of poor performance, a second order phase transition ("retarded learning") is predicted to occur if the data distribution is not biased. Using concepts from Bayesian inference, the center of mass of the Gibbs ensemble is shown to have maximal average (Bayes-optimal) performance. This upper bound for continuous vectors is extended to a discrete space, resulting in the clipped center of mass of the Gibbs ensemble having maximal average performance among the binary vectors. To calculate the performance of this best binary vector, the geometric properties of the center of mass of binary vectors are studied. The surprising result is found that the center of mass of infinite binary vectors which obey some simple constraints, is again a binary vector. When disorder is taken into account in the calculation, however, a vector with continuous components is obtained. The performance of the best binary vector is calculated and shown to always lie above that of Gibbs learning and below the Bayes-optimal performance. Making use of a variational approach under the replica symmetric ansatz, an optimal potential is constructed in the limits of zero temperature and mutual overlap 1. Minimization of this potential

  18. Evaluation of IKTS Transparent Polycrystalline Magnesium Aluminate Spinel (MgAl2O4) for Armor and Infrared Dome/Window Applications

    Science.gov (United States)

    2013-03-01

    4 Figure 3. Various magnification SEM images of spinels etched in boiling phosphoric acid : left...30,000X Figure 3. Various magnification SEM images of spinels etched in boiling phosphoric acid : left column, sample 205 (0.6 µm); right column...specimens were polished to a 0.25-µm finish and then chemically etched by immersing them in boiling phosphoric acid —30 s for the small-grained spinel

  19. Morphology and composition of spinel in Pu'u 'O'o lava (1996-1998), Kilauea volcano, Hawaii

    Science.gov (United States)

    Roeder, P.L.; Thornber, C.; Poustovetov, A.; Grant, A.

    2003-01-01

    The morphology and composition of spinel in rapidly quenched Pu'u 'O'o vent and lava tube samples are described. These samples contain glass, olivine phenocrysts (3-5 vol.%) and microphenocrysts of spinel (~0.05 vol.%). The spinel surrounded by glass occurs as idiomorphic octahedra 5-50 μm in diameter and as chains of octahedra that are oriented with respect to each other. Spinel enclosed by olivine phenocrysts is sometimes rounded and does not generally form chains. The temperature before quenching was calculated from the MgO content of the glass and ranges from 1150oC to 1180oC. The oxygen fugacity before quenching was calculated by two independent methods and the log f O2 ranged from -9.2 to -9.9 (delta QFM=-1). The spinel in the Pu'u'O'o samples has a narrow range in composition with Cr/(Cr+Al)=0.61 to 0.73 and Fe2+/(Fe2++Mg) =0.46 to 0.56. The lower the calculated temperature for the samples, the higher the average Fe2+/(Fe2++Mg), Fe3+ and Ti in the spinel. Most zoned spinel crystals decrease in Cr/(Cr+Al) from core to rim and, in the chains, the Cr/(Cr+Al) is greater in the core of larger crystals than in the core of smaller crystals. The occurrence of chains and hopper crystals and the presence of Cr/(Cr+Al) zoning from core to rim of the spinel suggest diffusion-controlled growth of the crystals. Some of the spinel crystals may have grown rapidly under the turbulent conditions of the summit reservoir and in the flowing lava, and the crystals may have remained in suspension for a considerable period. The rapid growth may have caused very local (μm) gradients of Cr in the melt ahead of the spinel crystal faces. The crystals seem to have retained the Cr/(Cr+Al) ratio that developed during the original growth of the crystal, but the Fe2+/(Fe2++Mg) ratio may have equilibrated fairly rapidly with the changing melt composition due to olivine crystallization. Six of the samples were collected on the same day at various locations along a 10-km lava tube and the

  20. Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results

    CERN Document Server

    Samaras, N; 10.1613/jair.1776

    2011-01-01

    A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive op...

  1. Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyao; Liu, Xi; Shieh, Sean R.; Bao, Xinjian; Xie, Tianqi; Wang, Fei; Zhang, Zhigang; Prescher, Clemens; Prakapenka, Vitali B.

    2016-09-16

    Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to ~24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to ~21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high-P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus (KT) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative K'TKT' as 3.8(6) and 4.37(4), respectively. The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as KT = 150(2) GPa (K'TKT' = 5.4(2); for the volume), KT-a = 173(2) GPa (K'T-aKT-a' = 3.9(1); for the a-axis), KT-b = 74(2) GPa (K'T-bKT-b' = 7.0(2); for the b-axis), and KT-c = 365(8) GPa (K'T-cKT-c' = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as ~10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.

  2. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C.; Wu, Jinsong; Dravid, Vinayak P.; Yan, Pengfei; Wang, Chongmin; Kim, Soo; Wolverton, Christopher; Benedek, Roy; Dogan, Fulya; Park, Joong Sun; Croy, Jason R.; Thackeray, Michael M.

    2016-10-19

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li0) relative to manganese oxide spinels (~2.9 V vs. Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0x0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

  3. Exploring Lithium-Cobalt-Nickel-Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells.

    Science.gov (United States)

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C; Wu, Jinsong; Dravid, Vinayak P; Yan, Pengfei; Wang, Chongmin; Kim, Soo; Wolverton, Christopher; Benedek, Roy; Dogan, Fulya; Park, Joong Sun; Croy, Jason R; Thackeray, Michael Makepeace

    2016-10-04

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3●(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li(0)) relative to manganese oxide spinels (~2.9 V vs. Li(0)) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0≤x≤0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 °C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

  4. Investigation of Synthetic Mg(1.3)V(1.7)O4 Spinel with MgO Inclusions: Case Study of a Spinel with an Apparently occupied Interstitial Site

    Science.gov (United States)

    Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong

    2007-01-01

    A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.

  5. Formation of Kuiper Belt Binaries

    CERN Document Server

    Goldreich, P; Sari, R; Goldreich, Peter; Lithwick, Yoram; Sari, Re'em

    2002-01-01

    It appears that at least several percent of large Kuiper belt objects are members of wide binaries. Physical collisions are too infrequent to account for their formation. Collisionless gravitational interactions are more promising. These provide two channels for binary formation. In each, the initial step is the formation of a transient binary when two large bodies penetrate each other's Hill spheres. Stabilization of a transient binary requires that it lose energy. Either dynamical friction due to small bodies or the scattering of a third large body can be responsible. Our estimates favor the former, albeit by a small margin. We predict that most objects of size comparable to those currently observed in the Kuiper belt are members of multiple systems. More specifically, we derive the probability that a large body is a member of a binary with semi-major axis of order a. The probability depends upon sigma, the total surface density, Sigma, the surface density of large bodies having radius R, and theta=10^-4, t...

  6. Exoplanets Bouncing Between Binary Stars

    CERN Document Server

    Moeckel, Nickolas

    2012-01-01

    Exoplanetary systems are found not only among single stars, but also binaries of widely varying parameters. Binaries with separations of 100--1000 au are prevalent in the Solar neighborhood; at these separations planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet--planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then this planet may be able to transition from the ...

  7. Petrogenesis and tectonic setting of the Bondla mafic-ultramafic complex, western India: Inferences from chromian spinel chemistry

    Science.gov (United States)

    Ishwar-Kumar, C.; Rajesh, V. J.; Windley, B. F.; Razakamanana, T.; Itaya, T.; Babu, E. V. S. S. K.; Sajeev, K.

    2016-11-01

    Crustal-scale shear/suture zones hold prime importance because they are one of the critical parameters used for paleogeographic configurations of supercontinental assemblies. The Kumta suture, located on the western margin of peninsular India, has been interpreted as the eastern extension of the Betsimisaraka suture zone of Madagascar. This suture separates the Karwar block (ca. 3200 Ma tonalite-trondhjemite-granodiorite (TTG) and amphibolite) in the west from a quartzite-dominated shelf that overlies ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block in the east. The NW/SE-trending Bondla ultramafic-mafic complex, situated in the arc just west of the Kumta suture, comprises gabbro, troctolite, wehrlite, dunite, peridotite, pyroxenite, chromitite and chromian spinel-bearing serpentinite. In this paper, we study the chemistry of Cr-spinels in chromitites and serpentinites to help understand their paleo-tectonic environments. The Cr-spinel in Bondla chromitites and serpentinites shows variations in Cr# [Cr/(Cr + Al)] ranging from 0.54 to 0.58 and 0.56 to 0.64 respectively; also, the Mg# [Mg/(Mg + Fe)] varies from 0.56 to 0.67 and 0.41 to 0.63 respectively. The Cr-spinels in serpentinites have strong chemical zoning with distinctive ferrian chromite rims (Mg# 0.41-0.63), whereas the Cr-spinels in chromitites are generally homogeneous with only occasional weak zoning. The spinel-core crystallization temperature in the serpentinite is estimated to be above 600 °C (the spinel stability field was calculated for equilibrium with Fo90 olivine), which suggests the core composition is chemically unaltered. The Cr-spinels in all studied samples have low-Al2O3 (15-23 wt%) and moderate to high-Cr# (0.54-0.69), suggesting derivation from a supra-subduction zone arc setting. The chemistry of clinopyroxene in serpentinite indicates a wide range of crystallization temperatures from 969 °C to 1241 °C at 1.0 GPa. The calculated parental magma composition was similar to

  8. Ruby-sapphire-spinel mineralization in marble of the middle and southern Urals: Geology, mineralogy, and genesis

    Science.gov (United States)

    Kisin, A. Yu.; Murzin, V. V.; Tomilina, A. V.; Pritchin, M. E.

    2016-07-01

    Ruby and spinel occurrences hosted in marble on the eastern slope of the Urals are considered. Ruby- and spinel-bearing marble is a specific rock in granite-gneiss complexes of the East Ural Megazone, which formed at the Late Paleozoic collision stage of the evolution of the Urals. Organogenic marine limestone is the protolith of the marble. No relict sedimentary bedding has been retained in the marble. The observed banding is a secondary phenomenon related to crystallization and is controlled by flow cleavage. Magnesian metasomatism of limestone with the formation of fine-grained dolomite enriched in Cr, V, Ti, Mn, Cu, Zn, Ga, and REE took place at the prograde stage of metamorphism. Dedolomitization of rocks with the formation of background calcite marble also developed at the prograde stage. Mg-calcite marble with spinel and ruby of the first type formed in the metamorphic fluid circulation zone. Magnesian metasomatism with the formation of bicarbonate marble with ruby, pink sapphire, and spinel of the second type developed at the early retrograde stage. The formation of mica-bearing mineralized zones with corundum and spinel of the third type controlled by cleavage fractures is related to the pneumatolytic-hydrothermal stage. The data on ruby-bearing marble in the Urals may be used for forecasting and prospecting of ruby and sapphire deposits hosted in marble worldwide.

  9. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  10. Marangoni Convection in Binary Mixtures

    CERN Document Server

    Zhang, J; Oron, A; Behringer, Robert P.; Oron, Alexander; Zhang, Jie

    2006-01-01

    Marangoni instabilities in binary mixtures are different from those in pure liquids. In contrast to a large amount of experimental work on Marangoni convection in pure liquids, such experiments in binary mixtures are not available in the literature, to our knowledge. Using binary mixtures of sodium chloride/water, we have systematically investigated the pattern formation for a set of substrate temperatures and solute concentrations in an open system. The flow patterns evolve with time, driven by surface-tension fluctuations due to evaporation and the Soret effect, while the air-liquid interface does not deform. A shadowgraph method is used to follow the pattern formation in time. The patterns are mainly composed of polygons and rolls. The mean pattern size first decreases slightly, and then gradually increases during the evolution. Evaporation affects the pattern formation mainly at the early stage and the local evaporation rate tends to become spatially uniform at the film surface. The Soret effect becomes i...

  11. Evaporative Instability in Binary Mixtures

    Science.gov (United States)

    Narayanan, Ranga; Uguz, Erdem

    2012-11-01

    In this talk we depict the physics of evaporative convection for binary systems in the presence of surface tension gradient effects. Two results are of importance. The first is that a binary system, in the absence of gravity, can generate an instability only when heated from the vapor side. This is to be contrasted with the case of a single component where instability can occur only when heated from the liquid side. The second result is that a binary system, in the presence of gravity, will generate an instability when heated from either the vapor or the liquid side provided the heating is strong enough. In addition to these results we show the conditions at which interfacial patterns can occur. Support from NSF OISE 0968313, Partner Univ. Fund and a Chateaubriand Fellowship is acknowledged.

  12. Black Hole Binaries in Quiescence

    CERN Document Server

    Bailyn, Charles D

    2016-01-01

    I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in the optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-rary binaries, which has taken on a new importance in the era of gravitational wave astronomy.

  13. Influence of the composition on MA spinel properties%材料组成对镁铝尖晶石化行为的影响

    Institute of Scientific and Technical Information of China (English)

    裴春秋; 石干

    2012-01-01

    以菱镁石、轻烧氧化镁和工业氧化铝细粉为原料,采用半干压法成型,在不同温度下煅烧处理,研究材料组成对镁铝尖晶石化行为的影响.结果表明,富铝尖晶石的尖晶石化反应滞后于富镁尖晶石,两类尖晶石化反应完成温度相差约100℃;富铝尖晶石的尖晶石化反应分两步进行,即在形成理论尖晶石的基础上再固溶氧化铝,最终形成富铝尖晶石;富铝尖晶石烧结程度较富镁尖晶石的低,形成较小的晶粒和气孔.%Magnesium aluminate spinel material was synthesized in different proportions and different sintering temperatures from magnesite, light calcined magnesia and industrial alumina. The influence of MA spinel composition (magnesia- and alumina-rich spinel) on the spinellization behaviour was studied. The results indicate that, the spinel reaction of alumina-rich spinel samples lags behind that of magnesium-rich spinel samples for about 100 ℃ , and the reaction of alumina-rich samples falls into two steps. Stoichiometric composition spinel is formed first. On this basis, solid solution reaction occurs between alumina and stoichimetric composition spinel, and alumina-rich spinel is formed at last. Alumina-rich spinel has lower sintering, smaller grain size and pore size.

  14. Practical Binary Adaptive Block Coder

    CERN Document Server

    Reznik, Yuriy A

    2007-01-01

    This paper describes design of a low-complexity algorithm for adaptive encoding/ decoding of binary sequences produced by memoryless sources. The algorithm implements universal block codes constructed for a set of contexts identified by the numbers of non-zero bits in previous bits in a sequence. We derive a precise formula for asymptotic redundancy of such codes, which refines previous well-known estimate by Krichevsky and Trofimov, and provide experimental verification of this result. In our experimental study we also compare our implementation with existing binary adaptive encoders, such as JBIG's Q-coder, and MPEG AVC (ITU-T H.264)'s CABAC algorithms.

  15. Statistical Study of Visual Binaries

    CERN Document Server

    Abdel-Rahman, H I; Elsanhoury, W H

    2016-01-01

    In this paper, some statistical distributions of wide pairs included in Double Star Catalogue are investigated. Frequency distributions and testing hypothesis are derived for some basic parameters of visual binaries. The results reached indicate that, it was found that the magnitude difference is distributed exponentially, which means that the majority of the component of the selected systems is of the same spectral type. The distribution of the mass ratios is concentrated about 0.7 which agree with Salpeter mass function. The distribution of the linear separation appears to be exponentially, which contradict with previous studies for close binaries.

  16. Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Kleshcheva, S. M.; Perov, D. V.

    2016-02-01

    The magnetic properties of 3D nanocomposites representing Mn-Zn, Ni-Zn, Co-Zn, La-Co-Zn, and Nd-Co-Zn spinel ferrite particles embedded in the interspherical spaces of opal matrices are studied. Experimental data are obtained in the temperature interval 2-300 K by measuring the magnetization at a static magnetic field strength of up to 50 kOe and the ac magnetic susceptibility at an alternating magnetic field amplitude of 4 kOe and a frequency of 80 Hz.

  17. Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells.

    Science.gov (United States)

    Shao, Lin; Wang, Qi; Fan, Lishuang; Wang, Pengxiang; Zhang, Naiqing; Sun, Kening

    2016-06-30

    CuCo2O4 spinel prepared via an EDTA-citric acid process was studied as a candidate solid oxide fuel cell (SOFC) cathode material at intermediate temperatures (IT). CuCo2O4 cathodes were measured using thermal gravimetric analysis, X-ray diffraction and scanning electron microscopy. AC impedance spectroscopy and DC polarization measurements were used to study the electrode performance. The obtained value of the polarization resistances at 800 °C was 0.12 Ω cm(2) with a maximum power density of 972 mW cm(-2).

  18. Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Belous, A. G., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Solopan, S. O., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Yelenich, O. V., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net [Institute of General and Inorganic Chemistry, prospekt Palladina 32-34, 03142 Kyiv (Ukraine); Tovstolytkin, A. I., E-mail: atov@imag.kiev.ua [Institute of Magnetism, bulvar Vernadskoho 36-b, 03142 Kyiv (Ukraine); Kolodiazhnyi, T. V., E-mail: kolodiazhnyi.taras@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Osinsky, S. P., E-mail: osion@onconet.kiev.ua, E-mail: bybnovskayal@ukr.net; Bubnovskaya, L. N., E-mail: osion@onconet.kiev.ua, E-mail: bybnovskayal@ukr.net [R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, vul. Vasylkivska 45, 03022 Kyiv (Ukraine)

    2014-11-05

    In this work, nanoparticles of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} compounds with perovskite structure and AFe{sub 2}O{sub 4} (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from diethylene glycol and microemulsion using Triton X-100 surfactant. Comparative X-ray diffraction and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP)

  19. Development of Highly Effective Nanoparticle Spinel Catalysts for Aerobic Oxidation of Benzylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    JI,Hong-Bing(纪红兵); WANG,Le-Fu(王乐夫)

    2002-01-01

    Spinel catalyst MnFe1.8Cu0.15Ru0.05O4 with particle size of about 42 nm is an effective heterogeneous catalyst for the oxidation of benzylic alcohols. The substitution of Fe for Cu improves its catalytic activity. Based on the characterization of BET, XPS and EXAFS, two factors influencing the structure and texture of the catalyst caused by the substitution of Cu for Fe may be assumed: physical factor responsible for the increasing of surface area; chemical factor responsible for the transformation of Ru-O bonds to Ru = O bonds. β-Elimination is considered to be an important step in the reaction.

  20. Computational design of axion insulators based on 5d spinel compounds.

    Science.gov (United States)

    Wan, Xiangang; Vishwanath, Ashvin; Savrasov, Sergey Y

    2012-04-06

    Based on density functional calculation using the local density approximation+U method, we predict that osmium compounds such as CaOs(2)O(4) and SrOs(2)O(4) can be stabilized in the geometrically frustrated spinel crystal structure. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D Weyl semimetal and Mott insulator are also shown to occur.

  1. Solvothermal Synthesis Of Electrochemically Active Nanocrystalline Li-Ti-O Spinel

    Science.gov (United States)

    2001-11-01

    Parallel experiments were performed on anatase (PKP 5538) and mixture of anatase and rutile (1:3, P25 Bayer). All other chemicals in all experiments...of: a) the starting TiO2 (mixture of rutile and anatase 1:3), b) product of the reaction in water, c) product of the reaction in ethanol. In both... anatase and Li4Ti5O12 spinel make prospective materials for 2V lithium ion batteries. Solvothermal synthsis in Ti oxides chemistry is usually used to

  2. In vitro biological and tribological properties of transparent magnesium aluminate (Spinel) and aluminum oxynitride (ALON®).

    Science.gov (United States)

    Bodhak, Subhadip; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit; Kashalikar, Uday; Jha, Santosh K; Sastri, Suri

    2011-06-01

    The purpose of this first generation investigation is to evaluate the in vitro cytotoxicity, cell-materials interactions and tribological performance of Spinel and ALON® transparent ceramics for potential wear resistant load bearing implant applications. Besides their non-toxicity, the high surface energy of these ceramics significantly enhanced in vitro cell-materials interactions compared to bioinert commercially pure Ti as control. These transparent ceramics with high hardness in the range of 1334 and 1543 HV showed in vitro wear rate of the order of 10⁻⁶ mm³ Nm⁻¹ against Al₂O₃ ball at a normal load of 20 N.

  3. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  4. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels

    Science.gov (United States)

    McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.

    2017-08-01

    Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.

  5. Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst

    OpenAIRE

    Battiston,Suellen; Rigo,Caroline; Severo,Eric da Cruz; Mazutti,Marcio Antonio; Kuhn,Raquel Cristine; Gündel,André; Foletto,Edson Luiz

    2014-01-01

    ZnAl2O4 spinel was synthesized by co-precipitation using ammonia as precipitating agent, followed by thermal treatment at 750 ºC. The structural properties of particles were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), differential thermal analysis (DTA), and N2 adsorption/desorption isotherms (BET) techniques. The photocatalytic activity was evaluated in the degradation of organic pollutant in aqueous solution under sunlight. The results showed that the ZnAl2O4 par...

  6. Effect of Molding Press Direction on Properties of Periclase-spinel-carbon Brick

    Institute of Scientific and Technical Information of China (English)

    YANG Ding'ao; YU Zhiming; CHEN Shufeng; ZHANG Zunyu

    2004-01-01

    The effect of press direction on the thermal expansion, slag resistance, etc. of periclase-spinel-carbon brick has been studied in this article. The results show that the therma1 expansion rate in the direction parallel to the press axis is larger than that in the direction perpendicular to the press axis and the slag resistance in the direction parallel to the press axis is much better than that in the perpendicular direction. The directional distribution of graphite in the specimen is observed with the microscope.

  7. Studies on Spinel LiMn2O4 Cathode Material Synthesized from Different Mn Sources

    Institute of Scientific and Technical Information of China (English)

    唐致远; 冯季军; 彭亚宁

    2004-01-01

    The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.

  8. NOVEL SPINEL-FAMILY REFRACTORIES FOR HIGH-TEMPERATURE, HIGH-ALKALINE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Colavito, [Minteq International, Inc.; Rodrigues-Schroer, Angela [Minteq International, Inc.

    2010-01-01

    Many factors often limit the application of currently available refractory materials. Such factors may include chemical attack, mechanical degradation, temperature limitations, and installation or repair issues. Additionally, energy losses may be associated with the above considerations as well as environmental impacts. The research objectives of this project are to develop innovative refractory compositions based on the spinel crystal structure or advanced alumino-silicate systems utilizing novel aggregates, binder systems (bonds), methods of phase formation, and refractory application systems. Efforts to this end and results to date are discussed along with future plans for industrial validation trials.

  9. In-situ study of ferric iron distribution in synthetic spinels by electron microprobe analysis

    Science.gov (United States)

    Goncharov, Alexey; Olga, Sinelshikova; Rustam, Lukmanov

    2017-04-01

    The iron oxidation state in mantle minerals is a key value in oxygen fugacity calculation and the most widely used analytical approach for Fe3+/ΣFe determination is Mössbauer spectroscopy, which is a bulk method and there is a lack of information on Fe3+/ΣFe zonation in individual mineral grains and Fe3+/ΣFe in inclusions. Here we present application of the flank method using the electron microprobe by analysing the FeLα and FeLβ X-ray emission spectra to a suite of 20 synthetic MgAl2O2-Cr2O3-Fe2O3(FeO) spinels. Materials were done with 5 - 25 FeO wt.%, and 2-70 Cr2O3 wt.% and Fe3+/ΣFe = 0.10 to 0.80, where Fe3+/ΣFe was determined independently using Mössbauer spectroscopy on the same grains used for the flank method measurements. Synthesis of the samples produced using a pyrolysis method of organic salt compositions in MgAl2O2-Cr2O3-Fe2O3(FeO) system with following heating in corundum crucibles at 1300 ° C for 5 -10 hours under controlled oxygen fugacity. All synthetic materials were investigated by X-ray and Mössbauer spectroscopy to examine a phase and iron oxidation state features. In terms of chemical composition and Fe3+/ΣFe resulting synthetic material covers a whole range of spinels derived in mantle peridotites and pyroxenites. These synthetic products were used as a standard sample to investigate co-variations of ratios of intensities measured on the flanks of FeLα and Lβ peaks and Fe3+/ΣFe, FeO content and Cr#. The obtained correlations can be used to perform in-situ studies of ferric iron distribution in natural mantle spinels. The presented approach will allow investigating the difference in mantle spinel Fe3+/ΣFe at a microscale from core to rim in individual grain, inclusion, melting pocket and in intergrows with other mantle mineral assemblage. The reported study was funded by RFBR according to the research project № 16-35-60076 mol_a_dk.

  10. Ultrasound velocity measurements in orbital-degenerate frustrated spinel MgV2O4

    Science.gov (United States)

    Ishikawa, T.; Watanabe, T.; Hara, S.; Islam, A. T. M. N.; Wheeler, E. M.; Lake, B.

    2015-03-01

    Ultrasound velocity measurements of the orbital-degenerate frustrated spinel MgV2O4 are performed in the disorder-free high-purity single crystal which exhibits successive structural and antiferromagnetic phase transitions, and in the disorder-introduced single crystal which exhibits spin-glass-like behavior. The measurements reveal coexisting two types of anomalous temperature dependence of the elastic moduli in the cubic paramagnetic phase: Curie-type softening with decreasing temperature, and softening with a characteristic minimum with decreasing temperature. These elastic anomalies should respectively originate from the coexisting orbital fluctuations and spin-cluster excitations.

  11. Binary stars in the RAVE survey

    Directory of Open Access Journals (Sweden)

    Zwitter T.

    2012-02-01

    Full Text Available We searched the sample of RAVE survey spectra for both types of spectroscopic binary stars in order to estimate their number in the sample and perform a study on newly discovered binaries.

  12. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Orosz, J. A. [Department of Astronomy, San Diego State University, San Diego, CA 92182-1221 (United States); Peters, G. J., E-mail: gies@chara.gsu.edu, E-mail: rmatson@chara.gsu.edu, E-mail: guo@chara.gsu.edu, E-mail: lester@chara.gsu.edu, E-mail: jorosz@mail.sdsu.edu, E-mail: gjpeters@mucen.usc.edu [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States)

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.

  13. Binary/BCD-to-ASCII data converter

    Science.gov (United States)

    Miller, A. J.

    1977-01-01

    Converter inputs multiple precision binary words, converts data to multiple precision binary-coded decimal, and routes data back to computer. Converter base can be readily changed without need for new gate structure for each base changeover.

  14. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries

    Science.gov (United States)

    Liang, Yan-Yu; Bao, Shu-Juan; Li, Hu-Lin

    2006-07-01

    A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+, F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle.

  15. Complementary use of ERDA and RBS/C for the determination of implanted atom and damage distributions in spinel

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, D. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest Magurele (Romania)]. E-mail: pantel@ifin.nipne.ro; Ionescu, P. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest Magurele (Romania); Negoita, F. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest Magurele (Romania); Scintee, N. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest Magurele (Romania); Thome, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3-CNRS, 91405 Orsay (France); Enescu, S.E. [HH National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest Magurele (Romania); Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3-CNRS, 91405 Orsay (France); Jagielski, J. [Institute of Electronic Materials Technology, 01-919 Warsaw (Poland); Andrzej Soltan Institute for Nuclear Studies, 05-400 Swierk/Otwock (Poland)

    2005-10-15

    Crystalline oxide ceramics (particularly, zirconia and spinel) are promising matrices for nuclear waste immobilization and/or transmutation. The behavior of implanted ions and of radiation damage is a very important issue in the qualification of nuclear matrices. Ion beams provide very efficient tools for such an evaluation. This paper presents the results obtained for spinel single crystals implanted with He and Ar ions at fluences of 10{sup 17} and 2 x 10{sup 16} cm{sup -2}, respectively. He and Ar depth profiles were measured by ERDA using high-energy Cu ions. The Ar depth profile was also determined by RBS. The evaluation of the amount of radiation damage induced in Al, Mg and O sublattices of spinel single crystals by ion implantation was done using both a classical analytical procedure and Monte-Carlo simulations of channeling data. The disorder depth profiles using the two methods are compared and correlated with He and Ar depth profiles.

  16. MgGa2O4 spinel barrier for magnetic tunnel junctions: Coherent tunneling and low barrier height

    Science.gov (United States)

    Sukegawa, Hiroaki; Kato, Yushi; Belmoubarik, Mohamed; Cheng, P.-H.; Daibou, Tadaomi; Shimomura, Naoharu; Kamiguchi, Yuuzo; Ito, Junichi; Yoda, Hiroaki; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro

    2017-03-01

    Epitaxial Fe/magnesium gallium spinel oxide (MgGa2O4)/Fe(001) magnetic tunnel junctions (MTJs) were fabricated by magnetron sputtering. A tunnel magnetoresistance (TMR) ratio up to 121% at room temperature (196% at 4 K) was observed, suggesting a TMR enhancement by the coherent tunneling effect in the MgGa2O4 barrier. The MgGa2O4 layer had a spinel structure and it showed good lattice matching with the Fe layers owing to slight tetragonal lattice distortion of MgGa2O4. Barrier thickness dependence of the tunneling resistance and current-voltage characteristics revealed that the height of the MgGa2O4 barrier is much lower than that of an MgAl2O4 barrier. This study demonstrates the potential of Ga-based spinel oxides for MTJ barriers having a large TMR ratio at a low resistance area product.

  17. Structural and magnetic properties of Zn{sub x}Mn{sub 3−x}O{sub 4} spinels

    Energy Technology Data Exchange (ETDEWEB)

    Nádherný, Ladislav, E-mail: ladislav.nadherny@vscht.cz [Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Maryško, Miroslav [Institute of Physics of the Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6 (Czech Republic); Sedmidubský, David [Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Martin, Christine [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Bd. du Maréchal Juin, 14050 Caen Cedex 4 (France)

    2016-09-01

    To study structural and magnetic properties of spinels a series of ceramic samples with a different Zn:Mn ratio was prepared by high-temperature annealing in air followed by quenching in liquid nitrogen. The spinels with nominal composition of Zn{sub x}Mn{sub 3−x}O{sub 4} (x=0–1.29) were characterized by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy and SQUID magnetometry. Two tetragonal spinels of the same I4{sub 1}/amd space-group were identified based on the crystallographic, vibrational and grain-morphology point of view and described in detail. The unit-cell parameters and phase ratio of the spinel phases were determined using Rietveld refinement. According to the factor-group analysis the majority of the vibrational modes were identified in the Raman spectra. The magnetic properties of Zn{sub x}Mn{sub 3−x}O{sub 4} spinels are in agreement with a model of nanoscale ferrimagnetic Mn{sub 3}O{sub 4} clusters in the antiferromagnetic ZnMn{sub 2}O{sub 4} matrix (T{sub N}≈60 K). New features are a constricted hysteresis loop for x=0.3, and the effect of defects on magnetic properties for high Zn content which points to a good quality of the samples prepared by a solid state reaction. - Highlights: • Nanoscale ferromagnetic hausmannite clusters in the antiferromagnetic spinel matrix. • The Zn{sub 0.3}Mn{sub 2.7}O{sub 4} constricted magnetic loop. • Structural changes corresponding to the various Zn/Mn ratio described by Raman spectroscopy – 9 of 10 theoretical modes detected.

  18. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel.

    Science.gov (United States)

    Yang, Shijian; Xiong, Shangchao; Liao, Yong; Xiao, Xin; Qi, Feihong; Peng, Yue; Fu, Yuwu; Shan, Wenpo; Li, Junhua

    2014-09-02

    The mechanism of N2O formation during the low-temperature selective catalytic reduction reaction (SCR) over Mn-Fe spinel was studied. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and transient reaction studies demonstrated that the Eley-Rideal mechanism (i.e., the reaction of adsorbed NH3 species with gaseous NO) and the Langmuir-Hinshelwood mechanism (i.e., the reaction of adsorbed NH3 species with adsorbed NOx species) both contributed to N2O formation. However, N2O selectivity of NO reduction over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism was much less than that through the Eley-Rideal mechanism. The ratio of NO reduction over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism remarkably increased; therefore, N2O selectivity of NO reduction over Mn-Fe spinel decreased with the decrease of the gas hourly space velocity (GHSV). As the gaseous NH3 concentration increased, N2O selectivity of NO reduction over Mn-Fe spinel increased because of the promotion of NO reduction through the Eley-Rideal mechanism. Meanwhile, N2O selectivity of NO reduction over Mn-Fe spinel decreased with the increase of the gaseous NO concentration because the formation of NH on Mn-Fe spinel was restrained. Therefore, N2O selectivity of NO reduction over Mn-Fe spinel was related to the GHSV and concentrations of reactants.

  19. Eccentricity distribution of wide binaries

    CERN Document Server

    Tokovinin, Andrei

    2015-01-01

    A sample of 477 solar-type binaries within 67pc with projected separations larger than 50AU is studied by a new statistical method. Speed and direction of the relative motion are determined from the short observed arcs or known orbits, and their joint distribution is compared to the numerical simulations. By inverting the observed distribution with the help of simulations, we find that average eccentricity of wide binaries is 0.59+-0.02 and the eccentricity distribution can be modeled as f(e) ~= 1.2 e + 0.4. However, wide binaries containing inner subsystems, i.e. triple or higher-order multiples, have significantly smaller eccentricities with the average e = 0.52+-0.05 and the peak at e ~ 0.5. We find that the catalog of visual orbits is strongly biased against large eccentricities. A marginal evidence of eccentricity increasing with separation (or period) is found for this sample. Comparison with spectroscopic binaries proves the reality of the controversial period-eccentricity relation. The average eccentr...

  20. The Meritfactor of Binary Seqences

    DEFF Research Database (Denmark)

    Høholdt, Tom

    1999-01-01

    Binary sequences with small aperiodic correlations play an important role in many applications ranging from radar to modulation and testing of systems. Golay(1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture is s...

  1. Binary typing of staphylococcus aureus

    NARCIS (Netherlands)

    W.B. van Leeuwen (Willem)

    2002-01-01

    textabstractThis thesis describes the development. application and validation of straindifferentiating DNA probes for the characterization of Staphylococcus aureus strains in a system. that yields a binary output. By comparing the differential hybridization of these DNA probes to staphylococcal geno

  2. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Ivan I., E-mail: iis@gao.spb.ru [Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje ave. 65, St. Petersburg 196140 (Russian Federation)

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  3. Bayesian analysis of binary sequences

    Science.gov (United States)

    Torney, David C.

    2005-03-01

    This manuscript details Bayesian methodology for "learning by example", with binary n-sequences encoding the objects under consideration. Priors prove influential; conformable priors are described. Laplace approximation of Bayes integrals yields posterior likelihoods for all n-sequences. This involves the optimization of a definite function over a convex domain--efficiently effectuated by the sequential application of the quadratic program.

  4. Coevolution of binaries and circumbinary gaseous discs

    Science.gov (United States)

    Fleming, David P.; Quinn, Thomas R.

    2017-01-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc which drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for 104 binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentric binaries which strongly couple to the disc develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance which corresponds to an alignment of gas particle longitude of periastrons. All systems display binary semimajor axis decay due to dissipation from the viscous disc.

  5. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  6. Synthesis and Electrochemical Studies on Spinel Phase LiMn2O4 Cathode Materials Prepared by Different Processes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Three kinds of processes, high temperature solid state reaction, precipitation and sol-gel technique were used to synthsize spinel phase LiMn2O4. XRD, DTA-TG results show that phase-pure spinel LiMn2O4 could be synthesized under the lowest calcined temperature by the sol-gel technique compared to the precipitation method and solid state reaction. BET, SEM and electrochemical measurements results demonstrate that the features of the powders affect directly the electrochemical capacities; large specific area and small homogeneous grain size are of advantage for the lithium ion insertion and extraction in the charge and discharge process.

  7. Synthesis and Electrochemical Performance of Spinel LiMn2O4-x(SO4)x Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    CHEN,Zhao-Yong(陈召勇); HE,Yi(贺益); LI,Zhi-Jie(李志杰); GAO,Li-Zhen(高利珍); JIANG,Qi(江奇); YU,Zuo-Long(于作龙)

    2002-01-01

    The spinel LiMn2O4-x(SO4)x compound cathode materials were synthesized by solid-state reaction of the calculated amounts of LiOH@H2O,MnO2 and MnSO4.The results of the electrochemical test demonstrated that these materials exhibited excellent electrochemical properties.The highest reversible capacity of these series of cathode materials was~120mAh/g,and after 50 cycles,this reversible capacity was still around 116 mAh/g with nearly 100% reversible efficiency,which revealed that doped sulfate ion could improve the structural stability of spinel.

  8. Electrochemical and spectroscopic characterization of lithium titanate spinel Li{sub 4}Ti{sub 5}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Holger; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.ch [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-10-30

    Herein we describe electrochemical and spectroscopic properties of lithium titanate spinel as well as an easy method based on colorimetry to determine the lithium content of electrodes containing lithium titanate spinel as active material. Raman microspectrometry measurements have been performed to follow lithium insertion into and extraction from the active material, respectively. The Raman signals display a pronounced fading of intensity already at low levels of lithium intercalation and disappear at a SOC higher than {approx}10%. However, the colorimetric method can be used up to a SOC of 50%.

  9. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    CERN Document Server

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this description leads to a binary erasure decoding algorithm of non-binary LDPC codes, whose complexity depends linearly on the cardinality of the alphabet. We also give insights into the structure of stopping sets for non-binary LDPC codes, and discuss several aspects related to upper-layer FEC applications.

  10. Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haoyi, E-mail: manofchina@gmail.com; Jin, Yahong

    2016-05-01

    Herein we report a luminescent phenomenon of Eu{sup 2+} in the spinel MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} samples which are successfully synthesized via a combustion method. The XRD shows cubic spinel structure is obtained from the prepared samples. The mean crystal sizes estimated from XRD data are 30 and 10 nm for MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} respectively, and the large grain particles are the agglomeration of crystallites. The Eu{sup 2+} ions show a blue emission at around 480 nm and an afterglow phenomenon is observed after the removal of excitation. The afterglow spectrum of MgAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+} shows two emissions at 480 and 520 nm while only one at 480 nm is observed in ZnAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+}. The afterglow intensity and the persisting duration can be substantially enhanced by the Dy{sup 3+} incorporation because the trapping ability of the electron traps is reinforced. This is confirmed by the TL curves of the samples.

  11. High-pressure phase transition and properties of spinel ZnMn2O4

    DEFF Research Database (Denmark)

    Åbrink, S.; Waskowska, A.; Gerward, Leif

    1999-01-01

    X-ray photoelectron spectroscopy, magnetic measurements, and a single-crystal x-ray structure determination at normal pressure have shown that Jahn-Teller active manganese ions in ZnMn2O4 are present in one valence state (III) on the octahedral sites of the spinel structure. The high-pressure beh...... of the Mn3+ ions is moved to the d(x2-y2) level, which is revealed as an abrupt fall of observed magnitude of the distortion of the bulk crystal above P-c. [S0163-1829(99)08341-1].......X-ray photoelectron spectroscopy, magnetic measurements, and a single-crystal x-ray structure determination at normal pressure have shown that Jahn-Teller active manganese ions in ZnMn2O4 are present in one valence state (III) on the octahedral sites of the spinel structure. The high......-pressure behavior of ZnMn2O4 was investigated up to 52 GPa using the energy-dispersive x-ray diffraction technique and synchrotron radiation. The structural first-order phase transition from the body-centered to primitive-tetragonal cell takes place at P-c = 23 GPa. The high-pressure phase is metastable down...

  12. Sol-Gel Synthesis of Normal Spinel LiMn2O4 and Its Characteristics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Normal spinel LiMn2O4 was synthesized by sol-gel method using lithium nitrate,manganese nitrate,citric acid and ethylene glycol as raw materials. LiMn2O4 was characterized by XRD,TG-DTA,IR,SEM and AAS.The optimum conditions for the synthesis were explored.Citric acid and ethylene glycol were mixed with molar ratio of 0.25,and the mixture was esterified at 140℃ for 4 hours.Then lithium nitrate and manganese nitrate were added with molar ratio of 0.6. In the system,the total molar of cations was equal to that of citric acid. At last, reflux the system at 105℃ for 2 hours. Dried gel was fired at 600℃ for 8 hours. Particle diameters of raw product were about 100 nm mainly. Further research shows that lithium ion of LiMn2O4 is easy to be extracted,and normal spinel λ-MnO2 can be obtained after lithium ion extraction.

  13. Size effects in the Li(4+x)Ti(5)O(12) spinel.

    Science.gov (United States)

    Borghols, W J H; Wagemaker, M; Lafont, U; Kelder, E M; Mulder, F M

    2009-12-16

    The nanosized Li(4+x)Ti(5)O(12) spinel is investigated by electrochemical (dis)charging and neutron diffraction. The near-surface environment of the nanosized particles allows higher Li ion occupancies, leading to a larger storage capacity. However, too high surface lithium storage leads to irreversible capacity loss, most likely due to surface reconstruction or mechanical failure. A mechanism where the large near-surface capacity ultimately leads to surface reconstruction rationalizes the existence of an optimal particle size. Recent literature attributes the curved voltage profiles, leading to a reduced length of the voltage plateau, of nanosized electrode particles to strain and interface energy from the coexisting end members. However, the unique zero-strain property of the Li(4+x)Ti(5)O(12) spinel implies a different origin of the curved voltage profiles observed for its nanosized crystallites. It is proposed to be the consequence of different structural environments in the near-surface region, depending on the distance from the surface and surface orientation, leading to a distribution of redox potentials in the near-surface area. This phenomenon may be expected to play a significant role in all nanoinsertion materials displaying the typical curved voltage curves with reduced length of the constant-voltage plateau.

  14. Structural phase transition in CuFe{sub 2}O{sub 4} spinel

    Energy Technology Data Exchange (ETDEWEB)

    Balagurov, A. M., E-mail: bala@nf.jinr.ru; Bobrikov, I. A.; Maschenko, M. S.; Sangaa, D.; Simkin, V. G. [Joint Institute for Nuclear Research (Russian Federation)

    2013-09-15

    A structural transition with a reduction in symmetry of the high temperature cubic phase (sp. gr. Fd3m) to the tetragonal phase (sp. gr. I4{sub 1}/amd) and the appearance of a ferrimagnetic structure occur in CuFe{sub 2}O{sub 4} copper ferrite at T Almost-Equal-To 440 Degree-Sign C. It is established by an experiment on a high-resolution neutron diffractometer that the temperature at which long-range magnetic order occurs is higher than that of tetragonal phase formation. When cooling CuFe{sub 2}O{sub 4} spinel from 500 Degree-Sign C, the equilibrium coexistence of both phases is observed in a fairly wide temperature range ({approx}40 Degree-Sign C). The composition studied is a completely inverse spinel in the cubic phase, and in the tetragonal phase the inversion parameter does not exceed few percent (x = 0.06 {+-} 0.04). At the same time, the phase formed upon cooling has a classical value of tetragonal distortion ({gamma} Almost-Equal-To 1.06). The character of temperature changes in the structural parameters during the transition from cubic to tetragonal phase indicates that this transition is based on the Jahn-Teller distortion of (Cu,Fe)O{sub 6} octahedra rather than the mutual migration of copper and iron atoms.

  15. Geochemical, Petrographic and Magnetic Characteristics of Spinel Lherzolite Mantle Xenoliths from Jabal Remah Volcano, Jordan

    Directory of Open Access Journals (Sweden)

    Ahmad Al-Malabeh

    2009-01-01

    Full Text Available Peridotite ultramafic mantle xenoliths are occurring abundantly in the Harrat Al-Shaam basaltic province. Jabal Remah volcano is located in the Jordanian parts of the plateau and contains considerable amounts of mantle xenoliths within its pyroclastic successions. Mineralogical investigations show that the xenoliths are mostly of the spinel lherzolite type, which are characterized by a protogranular texture. Modally, the xenoliths are composed of olivine (55-65%, orthopyroxene (12-16%, clinopyroxene (10-15% and spinel (~ 5%. The xenoliths are classified as Type I and belong to the Cr-diopside group. They are characterized by a high content of MgO (42.1-43.2%, Cr (2465-2538 ppm and Ni (2196-2301 ppm. Three selected mantle-xenolith samples were analyzed for their magnetic characteristics. They were found to behave similarly in their ferrimagnetic phase, as indicated by their narrow hysteresis curves and because they never reach saturation even at high applied field. They exhibit ferrimagnetic hystertesis curves similar to world known mantle xenoliths, which is due to the presence of Fe in the form of oxides.

  16. From supernova to Solar System: Few years only; first Solar System components apatite and spinel determined

    Science.gov (United States)

    Jungck, Matthias H. A.; Niederer, Franz R.

    2017-03-01

    We show data for the very first years of our Solar System development after an interaction between undisturbed, cold interstellar dust and supernova type II explosion gases. All manual work was done in 1976-1982 as part of 3 theses works but fundamentally new data interpretation was reached within the last three years. From the CI1 meteorite Orgueil, we are able to separate 1.4 per mill of material containing supernova related noble gases He, Ne and Ar as well as P. We separate minerals using essentially density gradient centrifugation followed by stepwise heating noble gas analysis. Our procedure loses nearly no material and is in sharp contrast to the otherwise used dissolution of >99% of material to obtain single presolar grains (Anders and Zinner, 1993). Our method safeguards minerals considerably more fragile than SiC or TiC presolar grains, such as apatite, Mg-Al-spinel, graphite clusters and even apatite coated graphite clusters. We find graphite, apatite and Mg-Al-spinel containing highly anomalous noble gases. For the first time, apatite, containing anomalous Ar with an isotope ratio for 38Ar/36Ar of 0.35, twice the normal ratio, is reported. Such a ratio is produced by a 20 solar mass type II supernova in the C-O-Ne-burning shell. Unmatched pure Ne-E from 22Na measured in the same samples sets the timeframe for this interaction to a maximum of only a few years.

  17. In-situ synchrotron PXRD study of spinel LiMn2O4 formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Spinel LiMn2O4 is a well-known cathode material for Li-ion batteries. It is considered to be a safer, more environmentally friendly and cheaper alternative to the widely used LiCoO2 cathode material. During charging/discharging of a Li-ion battery it is necessary for the Li-ions to be extracted....../inserted into the cathode material. The specific capacity of the cathode material is determined by how many Li-ions can diffuse in and out of the cathode material structure per mass unit. Furthermore the rate of the electrochemical reaction (and therefore the power output of the battery) can be limited by how fast the Li......-ions can diffuse in and out of the structure. The spinel structure of LiMn2O4 allows for a three dimensional Li-ion diffusion via tetrahedral and octahedral holes in the cubic close packed oxide structure. By using LiMn2O4 nanoparticles as a cathode material for Li-ion batteries instead of micronsized...

  18. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  19. Cation disordering in magnesium aluminate spinel crystals induced by electron or ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Takeshi E-mail: soeda@regroup5.nucl.kyushu-u.ac.jp; Matsumura, Syo; Kinoshita, Chiken; Zaluzec, Nestor J

    2000-12-01

    Structural changes in magnesium aluminate spinel (MgO {center_dot} nAl{sub 2}O{sub 3}) single crystals, which were irradiated with 900 keV electrons or 1 MeV Ne{sup +} ions at 873 K, were examined by electron channeling enhanced X-ray microanalysis. Unirradiated MgO {center_dot} Al{sub 2}O{sub 3} has a tendency to form the normal spinel configuration, where Mg{sup 2+} ions and Al{sup 3+} ions occupy mainly the tetrahedral and the octahedral sites, respectively. Electron irradiation induces simple cation disordering between the tetrahedral sites and the octahedral sites in MgO {center_dot} Al{sub 2}O{sub 3}. In addition to cation disordering, slight evacuation of cations from the tetrahedral sites to the octahedral sites occurs in a peak-damaged area in MgO {center_dot} Al{sub 2}O{sub 3} irradiated with Ne{sup +} ions. In contrast, cation disordering is suppressed in MgO {center_dot} 2.4Al{sub 2}O{sub 3} irradiated with electrons. The structural vacancies, present in the non-stoichiometric compound, appear to be effective in promoting irradiation damage recovery through interstitial-vacancy recombination.

  20. Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau

    Science.gov (United States)

    Grissa, R.; Martinez, H.; Cotte, S.; Galipaud, J.; Pecquenard, B.; Cras, F. Le

    2017-07-01

    Lithium-rich spinel Li1.2Mn1.8O4 thin film electrodes operated at 3 V/Li+/Li are studied by means of X-ray photoelectron spectroscopy (XPS), mainly on the basis of the evolution of the Mn2p XPS peak during the electrode cycling. The analysis of this core peak has long been debated in literature given its complex character. Based on manganese oxide references, MnO (Mn2+), Mn2O3(Mn3+) and Li2MnO3(Mn4+), we propose a deconvolution method to identify each Mn oxidation state. This method is then used for the deconvolution of Mn2p XPS peaks of bulk lithium-rich spinels Li1+xMn2-xO4 (0 ≤ x ≤ 0.25) for validation before proceeding to the study of cycled Li1.2Mn1.8O4 thin film electrodes. Electrochemical measurements exhibit significant capacity loss during the first cycle. Based on XPS analyses, this phenomenon could be explained by mechanical breakup of parts of the electrode. A stable behavior during subsequent cycles is then observed. The presence of Mn2+ species (XPS) at the most top surface of the electrode and the significant polarization observed during the discharge illustrate the kinetical limitation of the two-phase reaction, despite the reduced thickness of the electrode material.

  1. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.

  2. Synthesis, Characterization, and Sensor Applications of Spinel ZnCo2O4 Nanoparticles

    Science.gov (United States)

    Morán-Lázaro, Juan Pablo; López-Urías, Florentino; Muñoz-Sandoval, Emilio; Blanco-Alonso, Oscar; Sanchez-Tizapa, Marciano; Carreon-Alvarez, Alejandra; Guillén-Bonilla, Héctor; Olvera-Amador, María de la Luz; Guillén-Bonilla, Alex; Rodríguez-Betancourtt, Verónica María

    2016-01-01

    Spinel ZnCo2O4 nanoparticles were synthesized by means of the microwave-assisted colloidal method. A solution containing ethanol, Co-nitrate, Zn-nitrate, and dodecylamine was stirred for 24 h and evaporated by a microwave oven. The resulting solid material was dried at 200 °C and subsequently calcined at 500 °C for 5 h. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, confirming the formation of spinel ZnCo2O4 nanoparticles with average sizes between 49 and 75 nm. It was found that the average particle size decreased when the dodecylamine concentration increased. Pellets containing ZnCo2O4 nanoparticles were fabricated and tested as sensors in carbon monoxide (CO) and propane (C3H8) gases at different concentrations and temperatures. Sensor performance tests revealed an extremely high response to 300 ppm of CO at an operating temperature of 200 °C. PMID:27999315

  3. Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla

    2013-01-01

    As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  4. SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla

    2013-01-01

    Oak Ridge National Laboratory, in collaboration with refractory manufacturer Minteq International, Inc., academic partner Missouri University of Science and Technology and refractory end users have developed novel refractory systems and techniques to reduce energy consumption of refractory lined vessels. The objective of this U.S. DOE funded project was to address the need for innovative refractory compositions by developing MgO-Al 2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Materials have been developed specifically for coal gasification environments and work has been performed to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the service environment and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the systematic development of these materials, laboratory testing and evaluation of these materials, and relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  5. DEVELOPMENT OF NOVEL SPINEL REFRACTORIES FOR USE IN COAL GASIFICATION ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla

    2011-01-01

    Work has been performed by Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturer (Minteq International, Inc.), academic research partner (Missouri University of Science and Technology) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in industries such as aluminum, chemical, glass, and pulp and paper. The objective of the project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel structured unshaped refractory compositions (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. As part of the four-year project funded by the U.S. Department of Energy (DOE), materials have been developed specifically for coal gasification environments. Additionally, work has been performed to develop and apply low cost coatings using a colloidal approach for protection against corrosion attack of the refractory brick and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the development of these materials, along with preliminary results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment.

  6. First-principles investigation of boron defects in nickel ferrite spinel

    Science.gov (United States)

    Rák, Zs.; O'Brien, C. J.; Brenner, D. W.

    2014-09-01

    The accumulation of boron within the porous nickel ferrite (NiFe2O4, NFO) deposited on nuclear reactor fuel rods is a major technological problem with important safety and economical implications. In this work, the electronic structure of nickel ferrite spinel has been investigated using first-principles methods, and the theoretical results have been combined with experimental data to analyze B incorporation into the spinel structure of NFO. Under thermodynamic solid-solid equilibrium between NFO and atomic reservoirs of Ni and Fe, our calculations predict that the incorporation of B into the NFO structure is unfavorable. The main factors that limit B incorporation are the narrow stability domain of NFO and the precipitation of B2O3, Fe3BO5, and Ni3B2O6 compounds as secondary phases. The B incorporation energies depend sensitively on the electron chemical potential (EF) and the charge state of the defect. In n-type NFO, the most stable defect is the Ni vacancy VNi2- while in p-type material lowest the formation energy belongs to the interstitial B occupying a tetrahedrally coordinated site BT2+. Because of these limiting conditions it is more thermodynamically favorable for B to form secondary phases with Fe, Ni and O (e.g. B2O3, Fe3BO5, and Ni3B2O6) than it is to form point defects in NFO.

  7. Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production

    Directory of Open Access Journals (Sweden)

    Aysun Özkan

    2016-07-01

    Full Text Available Sustainable use of natural resources in the production of construction materials has become a necessity both in Europe and Turkey. Construction products in Europe should have European Conformity (CE and Environmental Product Declaration (EPD, an independently verified and registered document in line with the European standard EN 15804. An EPD certificate can be created by performing a Life Cycle Assessment (LCA study. In this particular work, an LCA study was carried out for a refractory brick production for environmental assessment. In addition to the LCA, the Life Cycle Cost (LCC analysis was also applied for economic assessment. Firstly, a cradle-to-gate LCA was performed for one ton of magnesia spinel refractory brick. The CML IA method included in the licensed SimaPro 8.0.1 software was chosen to calculate impact categories (namely, abiotic depletion, global warming potential, acidification potential, eutrophication potential, human toxicity, ecotoxicity, ozone depletion potential, and photochemical oxidation potential. The LCC analysis was performed by developing a cost model for internal and external cost categories within the software. The results were supported by a sensitivity analysis. According to the results, the production of raw materials and the firing process in the magnesia spinel brick production were found to have several negative effects on the environment and were costly.

  8. Synthesis, Characterization, and Sensor Applications of Spinel ZnCo2O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Juan Pablo Morán-Lázaro

    2016-12-01

    Full Text Available Spinel ZnCo2O4 nanoparticles were synthesized by means of the microwave-assisted colloidal method. A solution containing ethanol, Co-nitrate, Zn-nitrate, and dodecylamine was stirred for 24 h and evaporated by a microwave oven. The resulting solid material was dried at 200 °C and subsequently calcined at 500 °C for 5 h. The samples were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Raman spectroscopy, confirming the formation of spinel ZnCo2O4 nanoparticles with average sizes between 49 and 75 nm. It was found that the average particle size decreased when the dodecylamine concentration increased. Pellets containing ZnCo2O4 nanoparticles were fabricated and tested as sensors in carbon monoxide (CO and propane (C3H8 gases at different concentrations and temperatures. Sensor performance tests revealed an extremely high response to 300 ppm of CO at an operating temperature of 200 °C.

  9. Capacity fading of spinel LiMn2O4 during cycling at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A normal spinel LiMn2O4 as cathode material for lithium-ion cells was cycled galvanostatically (0.2 C) at 55℃. To determine the contribution of each voltage plateau to the total capacity fading of the cathode upon repeated cycling, the capacities in each plateau were separated by differentiation of voltage vs. capacity. The results showthat the capacity fading in the upper voltage plateau is more rapidlythan that in the lower during discharging, while in charging process,it fades slower than that in the lower voltage range. The increased capacity shift and aggravated self-discharge/electrolyte oxidation during discharging contribute to a high fading rate in the upper step. Capacity shift also takes place during charging process, which again enhancing the fading rate of the lower voltage plateau. An increase in capacity shift, as a result of an increase in polarization of the cell, plays a major role in determining the fading rate in each voltage plateau, further reflecting the thickening of the passivation layer on the active particles, and the accumulation of electrolyte decomposition. The relative capacity loss for modified spinels is well correlated withthe relative increase in the polarization of the half-cells, confirming the above causes for capacity fade of this kind of cathode material.

  10. Thermodynamics of spinel Li xTiO 2 from first principles

    Science.gov (United States)

    Wagemaker, M.; Van Der Ven, A.; Morgan, D.; Ceder, G.; Mulder, F. M.; Kearley, G. J.

    2005-10-01

    The thermodynamic and structural properties of Li xTiO 2 spinel are investigated by means of a cluster expansion based on pseudopotential ground state energy calculations in the Generalized Gradient approximation (GGA). The cluster expansion enables a Monte Carlo simulation of configurational thermodynamics, giving the Li configurations, chemical potential and the insertion potential as function of Li composition at 300 K. For 1/2 LiTiO 2 Li occupies the crystallographic 8a and 16c sites, respectively. This site occupation and the changes in the unit cell dimensions compare well with X-ray and neutron diffraction experiments. For x < 1/2 in Li xTiO 2 solid solution behavior is found and Li extraction can only occur at higher potentials. The potential step at Li 1/2TiO 2 is calculated to be 1.4 V, in good agreement with experiment, but considerably higher than in the comparable Co and Mn-spinel.

  11. Automated NanoSIMS Measurements of Spinel Stardust from the Murray Meteorite

    CERN Document Server

    Gyngard, Frank; Nittler, Larry R; Morgand, Alain; Stadermann, Frank J; Hynes, K Mairin

    2010-01-01

    We report new O isotopic data on 41 presolar oxide grains, 38 MgAl2O4 (spinel) and 3 Al2O3 from the CM2 meteorite Murray, identified with a recently developed automated measurement system for the NanoSIMS. We have also obtained Mg-Al isotopic results on 29 of the same grains (26 spinel and 3 Al2O3). The majority of the grains have O isotopic compositions typical of most presolar oxides, fall well into the four previously defined groups, and are most likely condensates from either red giant branch or asymptotic giant branch stars. We have also discovered several grains with more unusual O and Mg compositions suggesting formation in extreme astrophysical environments, such as novae and supernovae. One of these grains has massive enrichments in 17O, 25Mg, and 26Mg, which are isotopic signatures indicative of condensation from nova ejecta. Two grains of supernova origin were also discovered: one has a large 18O/16O ratio typical of Group 4 presolar oxides; another grain is substantially enriched in 16O, and also ...

  12. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods.

    Science.gov (United States)

    Sun, Genban; Sun, Lingna; Wen, He; Jia, Zhiqian; Huang, Kunlin; Hu, Changwen

    2006-07-13

    Mg-Al spinel (MgAl2O4) nanorods and nanoplatelets transformed from Mg-Al layered double hydroxide (Mg-Al-LDHs) were synthesized via a combined hydrothermal method and calcination route using Al(NO3).9H2O and Mg(NO3)2.6H2O as raw materials. The nanorods and nanoplatelets were characterized by means of physical techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), selected-area electron diffraction (SAED), Fourier transform infrared spectra (FT-IR), thermogravimetric (TG), and nitrogen adsorption-desorption isotherms. XRD patterns reveal that the Mg-Al-LDHs nanostructures were obtained under a hydrothermal reaction temperature of 200 degrees C and Mg-Al spinel nanostructures were fabricated via calcination of the Mg-Al-LDHs nanostructures at 750 degrees C. It can be seen from TEM that the sizes of the Mg-Al-LDHs nanoplatelets were about 20-40 nm and the diameters of the MgAl2O4 nanorods were ca. 6 nm. The HRTEM images indicate that the crystal lattice spaces of the MgAl2O4 nanorods and nanoplatelets are 0.282 and 0.287 nm, respectively.

  13. Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics

    Science.gov (United States)

    Gritsyna, V. T.; Kazarinov, Yu. G.; Kobyakov, V. A.; Reimanis, I. E.

    2006-09-01

    Radioluminescence (RL) and thermoluminescence (TL) in spinel crystals and ceramics were investigated to elucidate the radiation-induced electronic processes in single crystals grown by Verneuil and Czochralski methods as well as transparent and translucent ceramics. Both RL and TL spectra demonstrate a UV-band related to electron-hole recombination luminescence at intrinsic defects; green and red luminescence are identified with emission of Mn 2+- and Cr 3+-ions, respectively. The kinetics of growth of different RL luminescence bands depending on dose at the prolonged X-irradiation shows the competitive character of charge and energy transfer between defects and impurity ions. The dependence of RL intensity on the temperature of the sample was measured in the range of 300-750 K and compared with TL for different emission bands. The variety of maxima in the temperature dependence of RL and in the glow curves of TL measured for different luminescence bands in spinels of different origins and crystalline forms is used to show that charge carrier traps and luminescence centers are not isolated defects but are complexes of defects and impurities. The formation, structure and properties of these complexes depend on the processing conditions.

  14. Element exchange between minerals at hydrothermal conditions: A case study with spinel

    Science.gov (United States)

    Jonas, L.; Muller, T.; Dohmen, R.

    2013-12-01

    It is generally believed that the presence of a fluid phase enhances the reactivity of minerals and promotes exchange reactions between minerals that are physically separated from each other. Two end-member mechanisms can be considered for the bulk equilibration of the mineral with the fluid: volume diffusion and dissolution-precipitation. A key parameter, which may control the overall kinetic behavior, is the solubility of the relevant elements within the fluid (e.g., [1]). We investigated the reaction mechanism of a model system to identify the role of the various parameters, in particular those controlling the solubility. Two polished spinel crystals (hercynite with xFe=0.6 and synthetic Mg-spinel) react in the presence of H2O at 750 °C and 0.2 GPa in a welded-shut Au-capsule for 1-24 hrs. The crystals are physically separated by a tube of noble metal dividing the capsule into two connected chambers. The surface of the reacted crystals is analyzed using optical methods and SEM and the near surface chemistry is studied via RBS. From the latter we are able to extract Fe-concentration depth profiles. First results show an increasing surface concentration of Fe in Mg-spinel with time. The depth profiles for experiments up to 8 hours reveal a decrease of Fe-concentration within the first 100 nm from the surface towards the center of the Mg-spinel. The Fe depth profiles can be simulated with a simplified diffusion model, assuming a fixed surface concentration and their shapes indicate that the inter-diffusion coefficient in spinel is concentration dependent. Our derived Fe-Mg diffusion coefficient [D(Fe-Mg) ≈ 1x10-19 m2/s for pure MgAl2O4) and its compositional dependence is consistent with an independent experimental study using thin film diffusion couples that were annealed at dry conditions at 1 atm [2]. The observed kinetic behavior of the experimental system was simulated using the model of [1]. The model geometry is identical to the present experimental setup

  15. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurepin, V.A.; Kulik, D.A.; Hitpold, A.; Nicolet, M

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO{sub 2} by incremental additions of O{sub 2} in H{sub 2}O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni

  16. Gravitational Microlensing of Binary and Binary and Multiple Stars

    Science.gov (United States)

    Cherepashchuk, A. M.

    1995-08-01

    Recent observations of the effect of microlensing of stars of large Magellanic Clouds by dark bodies of Galactic Halo have led to the discovery of new population in our galaxy - dark bodies with amsses ~ 0.1 M(sun). As a consequence, astronomers have gained a unique possibility of using gravitational microlensing as an effective extraterestrial telescope with extremely high angular resolution. Application of this to binary stars is discussed. of particular interest is to apply microlensing to search for planetary stars . Planets and stars move about the center of gravity of the system , so the appaarent motion of a star in nonuniform and the light curve is asymetrical and colour dependent. This allows to determin basic parameters of binary system

  17. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  18. Electrocatalysis of oxygen reduction on Cu{sub x}Mn{sub 3-x}O{sub 4} (1.0 {<=} x {<=} 1.4) spinel particles/polypyrrole composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rios, E.; Abarca, S.; Daccarett, P.; Gautier, J.L. [Laboratorio de Fisicoquimica y Electroquimica de Solidos, Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Nguyen Cong, H.; Martel, D. [Laboratoire commun au CNRS et a l' Universite Louis Pasteur, LC 3, UMR 7177,1-4 rue Blaise Pascal, 67000 Strasbourg (France); Marco, J.F.; Gancedo, J.R. [Instituto de Quimica-Fisica ' ' Rocasolano' ' , CSIC, c/Serrano, 119, 28006 Madrid (Spain)

    2008-10-15

    Spinel-type binary transition metal oxides of copper and manganese with composition Cu{sub x}Mn{sub 3-x}O{sub 4} (with x = 1.0; 1.1; 1.2; 1.3 and 1.4) were prepared in powder forms by thermal decomposition of nitrate precursors at different temperatures. Their structural properties have been examined by X-ray powder diffraction (XRD), oxidation power and X-ray Photoelectron Spectroscopy (XPS) measurements. To study the effects of solid state properties of the spinel-type compounds on their electrocatalytic activity for the oxygen reduction reaction (orr) in aqueous KCl-KOH solutions, the cathodic polarization characteristics were investigated on composite electrodes of copper and manganese spinel-type oxides nanoparticles embedded in an electrically conductive polymer. These electrodes consisted of multilayered composite electrodes on conductive glass (CG), having the structure CG/PPy/PPy (Ox)/PPy, where PPy is the polypyrrole and Ox is a mixed valence oxide with the general composition Cu{sub x}Mn{sub 3-x}O{sub 4} (1.0 {<=} x {<=} 1.4). The data have shown that the substitution of Mn by Cu increases the catalytic activity, the maximum being that exhibited by Cu{sub 1.4}Mn{sub 1.6}O{sub 4}. Correlations between solid state chemistry and electrocatalytical reactivities towards the oxygen reduction reaction in alkaline media were also investigated on the composite powder electrodes of Cu{sub x}Mn{sub 3-x}O{sub 4} (1.0 {<=} x {<=} 1.4). The results have indicated that the copper content promotes not only the Mn{sup 4+} formation but also the increase of the Mn{sup 4+}/Mn{sup 3+} relation. The change of the Mn{sup 4+}/Mn{sup 3+} ratio as a function of x has been correlated to the electrocatalytical parameters of the orr. The enhanced activity that is observed is related to the higher occurrence of the Mn{sup 4+}/Mn{sup 3+} solid state redox couple in octahedral sites. (author)

  19. Populating the Galaxy with close Be binaries

    CERN Document Server

    Kiel, P D; Murray, J R; Hayasaki, K

    2007-01-01

    Be/X-ray binaries comprise roughly two-thirds of the high-mass X-ray binaries (HMXBs), which is a class of X-ray binaries that results from the high mass of the companion or donor star (> 10 solar masses). Currently the formation and evolution of X-ray producing Be binaries is a matter of great debate. Modelling of these systems requires knowledge of Be star evolution and also consideration of how the evolution changes when the star is in close proximity to a companion. Within this work we complete a full population synthesis study of Be binaries for the Galaxy. The results for the first time match aspects of the observational data, most notably the observed upper limit to the period distribution. We conclude that greater detailed studies on the evolution of Be stars within X-ray binaries needs to be completed, so that rapid binary evolution population synthesis packages may best evolve these systems.

  20. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wogelius, R.A. [Argonne National Lab., IL (United States); Fraser, D.G. [Oxford Univ. (United Kingdom). Dept. of Earth Sciences

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  1. Slim Sets of Binary Trees

    CERN Document Server

    Grünewald, Stefan

    2010-01-01

    A classical problem in phylogenetic tree analysis is to decide whether there is a phylogenetic tree $T$ that contains all information of a given collection $\\cP$ of phylogenetic trees. If the answer is "yes" we say that $\\cP$ is compatible and $T$ displays $\\cP$. This decision problem is NP-complete even if all input trees are quartets, that is binary trees with exactly four leaves. In this paper, we prove a sufficient condition for a set of binary phylogenetic trees to be compatible. That result is used to give a short and self-contained proof of the known characterization of quartet sets of minimal cardinality which are displayed by a unique phylogenetic tree.

  2. Desktop setup for binary holograms

    Science.gov (United States)

    Ginter, Olaf; Rothe, Hendrik

    1996-08-01

    Binary gratings as holograms itself or as photographic masking tools for further fabrication steps can fulfill a lot of applications. The commonly used semiconductor technologies for direct writing of high resolution structures are often too expensive. On the other hand computer plots at a reasonable price with photographic reduction do not meet the needs of precision e.g. for interferometric inspection. The lack of cheap and reliable instruments for direct writing in an appropriate resolution is still a problem in fabricating synthetic holograms. Using off-the-shelf components a direct writing plotter for binary patterns can be built at moderate costs. Typical design rules as well as experimental results are given and the final setup is introduced.

  3. Mass transfer between binary stars

    Science.gov (United States)

    Modisette, J. L.; Kondo, Y.

    1980-01-01

    The transfer of mass from one component of a binary system to another by mass ejection is analyzed through a stellar wind mechanism, using a model which integrates the equations of motion, including the energy equation, with an initial static atmosphere and various temperature fluctuations imposed at the base of the star's corona. The model is applied to several situations and the energy flow is calculated along the line of centers between the two binary components, in the rotating frame of the system, thereby incorporating the centrifugal force. It is shown that relatively small disturbances in the lower chromosphere or photosphere can produce mass loss through a stellar wind mechanism, due to the amplification of the disturbance propagating into the thinner atmosphere. Since there are many possible sources of the disturbance, the model can be used to explain many mass ejection phenomena.

  4. Information graphs for binary predictors.

    Science.gov (United States)

    Hughes, G; McRoberts, N; Burnett, F J

    2015-01-01

    Binary predictors are used in a wide range of crop protection decision-making applications. Such predictors provide a simple analytical apparatus for the formulation of evidence related to risk factors, for use in the process of Bayesian updating of probabilities of crop disease. For diagrammatic interpretation of diagnostic probabilities, the receiver operating characteristic is available. Here, we view binary predictors from the perspective of diagnostic information. After a brief introduction to the basic information theoretic concepts of entropy and expected mutual information, we use an example data set to provide diagrammatic interpretations of expected mutual information, relative entropy, information inaccuracy, information updating, and specific information. Our information graphs also illustrate correspondences between diagnostic information and diagnostic probabilities.

  5. Close supermassive binary black holes

    Science.gov (United States)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  6. Binary neuron with optical devices

    Science.gov (United States)

    Degeratu, Vasile; Degeratu, Ştefania; Şchiopu, Paul; Şchiopu, Carmen

    2009-01-01

    In this paper the authors present a model of binary neuron, a model of McCulloch-Pitts neuron with optical devices. This model of neuron can be implemented not only in the optic integrated circuits but also in the classic optical circuits it being cheap and immune not only into electromagnetic fields but also into any kind of radiation. The transfer speed of information through the neuron is very higher, it being limited only by the light speed from the received medium.

  7. Classification with binary gene expressions

    OpenAIRE

    Tuna, Salih; Niranjan, Mahesan

    2009-01-01

    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  8. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    Science.gov (United States)

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  9. High-pressure behaviour of selenium-based spinels and related structures - an experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Waskowska, A [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50 422 Wroclaw (Poland); Gerward, L [Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark (Denmark); Olsen, J Staun [Niels Bohr Institute, Oersted Laboratory, University of Copenhagen, 2100 Copenhagen (Denmark); Feliz, M [Universitat Jaume I - Campus de Riu Sec, Departament de Ciences Experimentals, Apartat 224, Castellon (Spain); Llusar, R [Universitat Jaume I - Campus de Riu Sec, Departament de Ciences Experimentals, Apartat 224, Castellon (Spain); Gracia, L [Universitat Jaume I - Campus de Riu Sec, Departament de Ciences Experimentals, Apartat 224, Castellon (Spain); Marques, M [Departamento de QuImica FIsica y AnalItica, Universidad de Oviedo, E-33006 Oviedo (Spain); Recio, J M [Departamento de QuImica FIsica y AnalItica, Universidad de Oviedo, E-33006 Oviedo (Spain)

    2004-01-14

    The high-pressure structural behaviour of the cubic spinel CdCr{sub 2}Se{sub 4} (space group Fd3barm) and tetragonal CdGa{sub 2}Se{sub 4} (I4bar) has been investigated experimentally and theoretically in order to understand the large difference in compressibility between the two selenides. The experimental values of the bulk modulus for these compounds are 101(2) and 48(2) GPa, respectively. These values compare well with 92 and 44 GPa obtained from first-principles calculations based on the density functional theory formalism. The observed difference in compressibility between the cubic and tetragonal structures can be understood in terms of polyhedral analysis. In a hypothetical cubic spinel structure Fd3barm), the calculated bulk modulus for CdGa{sub 2}Se{sub 4} is 85 GPa. This value together with the experimental and theoretical results for CdCr{sub 2}Se{sub 4} suggest that the selenium-based cubic spinels should have a bulk modulus about 100 GPa, which is half the value found for the oxide spinels.

  10. Atomic Structure of a Spinel-like Transition Al2O3 (100) Surface

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Helveg, Stig

    2014-01-01

    We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies...

  11. Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications

    DEFF Research Database (Denmark)

    Venkatachalam, Vinothini; Molin, Sebastian; Kiebach, Wolff-Ragnar

    2014-01-01

    of the promising candidates to prevent chromium outward diffusion, improve oxidation resistance and ensure high electrical conductivity over the lifetime of interconnects. In the present study, uniform and well adherent Mn-Co spinel coatings were produced on Crofer 22APU using electrophoretic deposition (EPD...

  12. IN-SITU SYNCHROTRON PXRD STUDY OF SPINEL TYPE LiMn2O4 NANOCRYSTAL FORMATION

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4...

  13. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kukkadapu, Ravi K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schreiber, Daniel K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kruger, Albert A. [Office of River Protection, Richland, WA (United States)

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals were extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fetotal ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.

  14. Ferrimagnetism and spin excitation in a Ni–Mn partially inverted spinel prepared using a modified polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael A. [Programa de Pos-Graduação em Ciência e Tecnologia de Materiais (POSMAT), Universidade Estadual Paulista, Faculdade de Ciências, Caixa Postal 473, 17033-360 Bauru, São Paulo (Brazil); Institut des Sciences Chimiques de Rennes – UMR 6226, Université de Rennes 1, F-35042 Rennes (France); Tedesco, Julio C.G.; Birk, Jonas O. [The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Kalceff, Walter, E-mail: wkalceff@uts.edu.au [School of Physics and Advanced Materials, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Yokaichiya, Fabiano [Laboratório Nacional de Luz Síncrotron (LNLS), Caixa Postal 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Comissao Nacional de Energia Nuclear (CNEN), Instituto de Pesquisas Energeticas e Nucleares (IPEN), Reactor Multiproposito Brasileiro - RMB, Avenida Lineo Prestes 2242, Bloco A, Cidade Universitaria Armando Salles de Oliveira, Sao Paulo (Brazil); Rasmussen, Nina [The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Peña, Octavio [Institut des Sciences Chimiques de Rennes – UMR 6226, Université de Rennes 1, F-35042 Rennes (France); Henry, Paul F. [European Spallation Source ESS AB, Box 176, 22100 Lund (Sweden); Simeoni, Giovanna G. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Bordallo, Heloisa N. [The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); European Spallation Source ESS AB, Box 176, 22100 Lund (Sweden); and others

    2014-07-01

    We demonstrate that a Ni–Mn oxide partially inverted spinel (Ni{sub 1−ν}Mn{sub ν})[Ni{sub ν}Mn{sub 2−ν}]O{sub 4} having inversion degree ν ≈ 0.8 and produced by a modified polymeric precursor method exhibits behaviour previously reported only in monophased samples. The structure of the specimen was determined using Rietveld analysis of X-ray and neutron powder diffraction data, showing that at room temperature the material crystallizes in the Fd3{sup ¯}m space group with a lattice constant a = 8.392 Å. Combining magnetization measurements with neutron powder diffraction, we show that the magnetic structure of this spinel is associated with the interplay between the ferromagnetic and antiferromagnetic lattices which coexist due to the cations' presence on both tetrahedral and octahedral sites. Our analysis of the neutron diffraction data confirms the postulated magnetic structure involving a star-like moment arrangement, arising from competition for the B (octahedral) spinel sites by the Ni and Mn cations. Finally, we show that strong magnetic fluctuations are observed in the inelastic neutron scattering data. - Highlights: • Ni–Mn oxide partially-inverted spinel made by modified polymeric precursor method. • Magnetic measurements showed a ferrimagnetic and a parasitic magnetic transition. • NPD revealed a magnetic structure consistent with a star-like moment arrangement. • INS measurements indicated four distinct temperature-dependent magnetic regimes.

  15. Theoretical Investigation of the Structural, Elastic, and Thermodynamic Properties of MgAl2O4 Spinel under High Pressure

    Science.gov (United States)

    Mao, Xiao-Chun; Liu, Ke; Hou, Bao-Sen; Tan, Jiao; Zhou, Xiao-Lin

    2016-11-01

    The structural and elastic properties of MgAl2O4 spinel under high pressure are investigated through the first-principles calculations. The lattice parameters and elastic constants are in good agreement with the available experimental and theoretical results. The polycrystalline elastic moduli of MgAl2O4 spinel are calculated using the Voigt-Reuss-Hill approximation. By the elastic stability criteria, the MgAl2O4 spinel is mechanically stable within 80 GPa. MgAl2O4 possesses ductile nature, and the ductility is enhanced with the increase of pressure. The sound velocities over a wide range of pressures are also obtained. Furthermore, the elastic anisotropies of MgAl2O4 are investigated via the various anisotropic indexes and the 3D surface constructions. It is found that MgAl2O4 is isotropic for bulk modulus, while is anisotropic for shear modulus and Young's modulus, and the elastic anisotropy of MgAl2O4 increases due to the applying pressure. Besides, the directions with smaller values of shear modulus for MgAl2O4 will deform preferentially under high hydrostatic pressure. Through the quasi-harmonic Debye model, we also investigated the thermodynamic properties of MgAl2O4 spinel.

  16. Be/X-ray binaries

    CERN Document Server

    Reig, Pablo

    2011-01-01

    The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called "Be phenomenon", such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass transfer. Until recently, it was thought that the Be stars' disc was not significantly affected by the neutron star. In this review, I present the observational evidence accumulated in recent years on the interaction between the circumstellar disc and the compact companion. The most obvious effect is the tidal truncation of the disc. As a result, the equatorial discs in Be/X-ray binaries are smaller and denser than those around isolat...

  17. Close Binaries, Triples, and Eclipses

    Science.gov (United States)

    Sanborn, Jason; Zavala, R. T.

    2013-01-01

    Observations of the variable radio source b Per (HR1324) are part of an ongoing survey of close binary systems using the Navy Precision Optical Interferometer. Historical observations of b Per include sparse photometric and spectroscopic observations dating back to 1923, clearly showing this object to be a non-eclipsing, single-lined ellipsoidal variable. This is where the story for b Per stopped until recent inclusion of optical interferometric data which led to the detection of a third, long-period component. As the interferometric observations continue to build up so to is the understanding of this binary system, with the modeled orbital parameters pointing to an edge-on orientation that may allow for the detection of an eclipse by the long-period component. These types of eclipse events are quite rare for long-period binaries due to the nearly edge-on orientation required for their detection, leaving open the opportunity for more traditional methods of observation to add to the body of knowledge concerning this understudied system. Here we present the latest observational data of the b Per system along with an introduction to the best fit orbital parameters governing the eclipsing nature of this complex triple-system.

  18. Thermoelastic properties of spinels. - Is there a soft mode phase transition at 15 GPa in Gahnite?

    Science.gov (United States)

    Wehber, M.; Lathe, C.; Reichmann, H. J.; Speziale, S.; Schilling, F. R.

    2010-12-01

    Spinels are a large mineral group with the general formula AB2X4. They play important roles in geosciences as well as in technical applications. Spinels crystallize in the cubic space group Fd-3m. Magnetite (Fe2+Fe3+2O4), franklinite (Zn2+Fe3+2O4) and gahnite (Zn2+Al3+2O4) were investigated at the DESY/HASYLAB (Hamburg, Germany) using synchrotron radiation. The experiments were carried out at MAX80 (F2.1 Beamline) and at MAX200x (W2 Beamline). Both multi anvil presses use energy-dispersive X-ray diffraction. Isothermal experiments were performed up to 15 GPa with MAX200x, compression experiments using MAX80 apparatus were conducted up to 5 GPa at temperatures of 298, 500, 700, 900 and 1100 K. The bulk moduli for each sample were calculated using second and third order Birch-Murnaghan equation of state, respectively. In addition, the thermal expansion coefficient and thermal Grüneisenparameter were calculated from the high-pressure/high-temperature data. Results are shown in table 1. At the GFZ German Research Center for Geosciences a single crystal of the same gahnite sample was investigated using Brillouin-scattering. The velocities of the p- and s-waves were measured up to 21.4 GPa in a diamond anvil cell. The following values were found at room pressure: C11 = 295 GPa, C12 = 163 GPa, C44 = 139 GPa and KS = 207 GPa. The pressure derivatives C’11 and C’12 have similar values up to 15 GPa (3.9 and 4.2), whereas C’44 shows a clearly lower value of 0.6. Above 15 GPa the values for C’11 and C’12 increases to 19.5 and 16.8, while C’44 (-3.4) changed to a negative slope. This behavior points towards a soft mode phase transition. At room temperature the transition is observed at about 15 GPa.Table 1: Results of the multi-anvil experiments. KT is the isothermal bulk modulus, calculated with the second (2nd) and third (3rd) order Birch-Murnaghan equation of state. K’ is the pressure derivative of the bulk modulus, α0 the thermal expansion coefficient and

  19. Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, H.M., E-mail: dakdik2001@yahoo.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Physics, Faculty of Science, Zagazig University, Zagazig (Egypt); Al-Heniti, S.H. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Elmosalami, T.A. [Department of Physics, Faculty of Science, Zagazig University, Zagazig (Egypt)

    2015-06-05

    Highlights: • Nano ferrite Mg{sub 0.5}Zn{sub 0.5−x}Cu{sub x}Fe{sub 2}O{sub 4} were prepared through co-precipitation route. • Structural investigations of XRD and FTIR revealed formation of spinel structure. • Lattice constant decrease while saturation magnetization increase. • Correlated barrier-hopping (CBH) is the dominant conduction mechanism. • Dielectric properties make sample appropriate for multilayer inductor applications. - Abstract: Nano-crystalline Mg{sub 0.5}Zn{sub 0.5−x}Cu{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) ferrite powders were synthesized using co-precipitation method. The influence of Cu{sup 2+} ions substitution on the structural and magnetic properties was investigated. X-ray diffraction measurements revealed the formation of nano-crystalline ferrite with single cubic spinel phase. The lattice constant was found to decrease with increasing Cu{sup 2+} ions content. Infrared spectral analysis confirmed formation of the spinel structure for the respective ferrite system. Magnetic data showed that the saturation magnetization (M{sub s}) increases with Cu{sup 2+} concentration up to x = 0.2 and then decreases with further increase of Cu{sup 2+} ions in this ferrite system. The proposed cation distribution deduced from X-ray diffraction, infrared spectra and magnetization data indicated mixed ferrite type. Dielectric constants ε′, dielectric loss ε′′, dielectric loss tangent tan δ and ac conductivity, σ{sub ac}, were investigated as a function of frequency and temperature. Influence of Cu{sup 2+} substation on the ac conductivity exhibited significant behavior at low frequencies and low temperatures, T ⩽ 100 °C. Both dielectric constants (ε′, ε″) found to increase with the increase of the temperature. At low temperatures, dielectric loss tan δ indicated a decrease with frequency with slight change at high temperatures.

  20. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    Science.gov (United States)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation

  1. Improvement of rate capability of spinel lithium titanate anodes using microwave-assisted zinc nanocoating

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Bi-Sheng; Lin, Jia-Yi; Juang, Ruey-Shin [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Microwave-assisted Zn layers onto Li{sub 4}Ti{sub 5}O{sub 12} crystals serves as superior anode materials. Black-Right-Pointing-Pointer Microwave heating is capable of depositing Zn layers over the surface of spinel Li{sub 4}Ti{sub 5}O{sub 12} within 6 min. Black-Right-Pointing-Pointer The thickness of Zn layer is an increasing function of zinc nitrate concentration. Black-Right-Pointing-Pointer The deposition of Zn coating shows a positive effect on the rate-capability improvement of anodes. - Abstract: In this study, the deposition of microwave-assisted Zn layers onto spinel lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12}) crystals as superior anode materials for Li-ion batteries has been investigated. Microwave heating is capable of rapidly depositing Zn layers over the surface of spinel Li{sub 4}Ti{sub 5}O{sub 12} within 6 min. The thickness of Zn layer (i.e., 1-10 nm) is an increasing function of zinc nitrate concentration under the microwave irradiation. The charge-discharge curve of Zn-Li{sub 4}Ti{sub 5}O{sub 12} anode still maintains the plateau at 1.5 V, contributing to the major portion in the overall specific capacity. The presence of Zn coating significantly facilitates the capacity retention (78.1% at 10 C/0.2 C) of the composite anodes with high Coulombic efficiency (>99.9%), indicating an excellent reversibility of insertion/de-insertion of Li ions. This can be ascribed to the fact that well-dispersed Zn layer offers an electronic pathway over the Li{sub 4}Ti{sub 5}O{sub 12} powder, thus imparting electronic conduction and reducing cell polarization. Accordingly, the deposition of Zn coating, prepared by the rapid microwave heating, shows a positive effect on the rate-capability improvement of Li{sub 4}Ti{sub 5}O{sub 12} anodes.

  2. Visual Binaries in the Orion Nebula Cluster

    CERN Document Server

    Reipurth, Bo; Connelley, Michael S; Bally, John

    2007-01-01

    We have carried out a major survey for visual binaries towards the Orion Nebula Cluster using HST images obtained with an H-alpha filter. Among 781 likely ONC members more than 60" from theta-1 Ori C, we find 78 multiple systems (75 binaries and 3 triples), of which 55 are new discoveries, in the range from 0.1" to 1.5". About 9 binaries are likely line-of-sight associations. We find a binary fraction of 8.8%+-1.1% within the limited separation range from 67.5 to 675 AU. The field binary fraction in the same range is a factor 1.5 higher. Within the range 150 AU to 675 AU we find that T Tauri associations have a factor 2.2 more binaries than the ONC. The binary separation distribution function of the ONC shows unusual structure, with a sudden steep decrease in the number of binaries as the separation increases beyond 0.5", corresponding to 225 AU. We have measured the ratio of binaries wider than 0.5" to binaries closer than 0.5" as a function of distance from the Trapezium, and find that this ratio is signifi...

  3. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    Science.gov (United States)

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  4. Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus

    Directory of Open Access Journals (Sweden)

    Barak Ratzker

    2016-06-01

    Full Text Available A spark plasma sintering (SPS apparatus was used for the first time as an analytical testing tool for studying creep in ceramics at elevated temperatures. Compression creep experiments on a fine-grained (250 nm polycrystalline magnesium aluminate spinel were successfully performed in the 1100–1200 °C temperature range, under an applied stress of 120–200 MPa. It was found that the stress exponent and activation energy depended on temperature and applied stress, respectively. The deformed samples were characterized by high resolution scanning electron microscope (HRSEM and high resolution transmission electron microscope (HRTEM. The results indicate that the creep mechanism was related to grain boundary sliding, accommodated by dislocation slip and climb. The experimental results, extrapolated to higher temperatures and lower stresses, were in good agreement with data reported in the literature.

  5. Pressurizing the HgCr{sub 2}Se{sub 4} spinel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Efthimiopoulos, Ilias; Wang, Yuejian, E-mail: ywang235@oakland.edu [Department of Physics, Oakland University, Rochester, Michigan 48309 (United States); Yaresko, Alexander [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Tsurkan, Vladimir [Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg (Germany); Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028, Chisinau, Republic of Moldova (Moldova, Republic of); Deisenhofer, Joachim; Loidl, Alois [Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg (Germany); Park, Changyong [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2014-01-06

    The cubic HgCr{sub 2}Se{sub 4} spinel undergoes two structural transitions upon pressure increase. Initially, the ambient-pressure Fd-3m phase transforms into a tetragonal I4{sub 1}/amd structure above 15 GPa. We speculate that this Fd-3m-I4{sub 1}/amd transition is accompanied by an insulator-to-metal transition, resulting in the vanishing of the Raman signal after the structural transformation. Further compression of HgCr{sub 2}Se{sub 4} leads to structural disorder beyond 21 GPa. Our spin-resolved band structure calculations reveal significant changes in the electronic structure of HgCr{sub 2}Se{sub 4} after the Fd-3m-I4{sub 1}/amd transition, whereas the ferromagnetic interactions are found to dominate in both structures.

  6. Activities of the components in a spinel solid solution of the Fe-Al-O system

    Science.gov (United States)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  7. Microscopic experimental evidence of sublattice decoupling and negative magnetization in a spinel ferrite

    Science.gov (United States)

    Kumar, Amit; Yusuf, S. M.

    2017-06-01

    We have observed the phenomenon of negative magnetization in spinel ferrites, CoCr2-xFexO4. The x = 0.15 compound lies in the interesting region of the composition (Fe) driven magnetic phase diagram as it shows two magnetic ordering temperatures along with a negative magnetization behavior. We have given a microscopic experimental proof of magnetic sublattice decoupling and temperature-induced negative magnetization using the neutron diffraction technique. The present study supports the Belov's hypothesis of a "weak" magnetic sublattice for an explanation of negative magnetization, where the "weak" octahedral sublattice deviates from the Brillouin function type behavior of sublattice magnetization as envisioned by Néel in his theory of ferrimagnetism. A physics concept for a possible application of such a negative magnetization phenomenon in spin transfer torque based magnetic random access memory has been outlined.

  8. Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods

    Directory of Open Access Journals (Sweden)

    Liu Shaomin

    2011-01-01

    Full Text Available Abstract Spinel zinc manganese oxide (ZnMn2O4 nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

  9. Effect of agglomeration during coprecipitation: Delayed spinellization of magnesium aluminate hydrate

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; S Mukherjee; B N Samaddar; P G Pal

    2010-08-01

    Precipitation of magnesium aluminate hydrate with faster addition of ammonia at desired pH causes agglomeration. Agglomerated powder, without any further treatment, on calcination forms intermediate compounds at low temperatures (≤ 900°C). The intermediate compounds on further heat treatment (≥ 1000°C) decompose into MgO, MgAl2O4 and -Al2O3. Effect of agglomeration and absorption of foreign ions such as Cl–, SO$^{2-}_{4}$, and NH$^{+}_{4}$ in complex compounds probably cause loss of Al3+ and Mg2+ ions during heat treatment, and stoichiometry changes. Powders prepared by continuous method with better control of process parameters than batch process yields better spinellization.

  10. Magnetic properties of (Zn,Cd,Cu) Co Fe Ti spinel oxides

    Science.gov (United States)

    Moyo, T.; Giordanengo, B.; de Melo, M. A. C.; Takeuchi, A. Y.; Silva, P. R. J.; Saitovitch, H.; Baggio-Saitovitch, E.

    1999-09-01

    AC susceptibility, magnetization and Mössbauer spectra have been measured for (Zn,Cd,Cu)0.5Co0.9Fe1.2Ti0.4O4 and Zn0.3Co0.9Fe1.4Ti0.4O4 spinel oxides. The variation of coercive field below the spin glass transition temperature Tsg is found to fit a double exponential function of the form H_c left( T right) = H_{1e} ^{ - β _1 T} + H_{2e} ^{ - β _2 T} , where Hi and βi are constants. Mössbauer spectra and analysis show superparamagnetic fluctuations associated with magnetic clusters. Symmetric doublets above Tsg are decomposed into quadrupole doublets associated with tetrahedral (A) and octahedral (B) sites.

  11. Research of High Temperature Crystalline Structure and Property Evolution of Magnesium Aluminate Spinel

    Institute of Scientific and Technical Information of China (English)

    YU Yan; RUAN Yu-Zhong; WU Ren-Ping; LIU Sheng; ZENG Hua-Rui

    2008-01-01

    Magnesium aluminate spinel (MgAl2O4) with high purity has been prepared by materials to discuss the change laws and characteristics of crystalline structure, microstructures and properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM), together with relevant analysis software, were used to characterize the crystal phases and microstructures so as to get MgAl2O4. Results show that when increasing the holding time the amount of MgAl2O4 increases firstly and then keeps stable, but bulk density and bending strength increase firstly and then decrease.The best holding time is determined to be 3 h because at this time the corresponding MgAl2O4 content is up to 93%, bulk density 3.23 g.cm-3, apparent porosity 4.6% and bending strength 122.4 MPa.

  12. Combining Hydraulic and Phosphate Bonds to Improve Properties of Alumina-spinel Low Cement Castables

    Institute of Scientific and Technical Information of China (English)

    M.Paghandeh; A.Monshi; R.Emadi

    2009-01-01

    A basic alumina-spinel low cement castables (castables A) and another castables (castables B) with 5% addition of sodium hexametaphosphate were prepared and heat treated at 110 ℃,900 ℃ and 1 400 ℃.It is shown that after heat treating at 110 ℃,cold crushing strength (CCS) of castables B is more than 3 times of castables A and apparent porosity (AP) is less than half of castables A.The presence of 800-1 000 ℃ that hydraulic bond reverses to dehydrate condition and castables A becomes weak with high porosity,castables B shows a CCS more than 4 times of castables A.Needles of magnesium phosphate are responsible for reinforcing microstructure of castables B at 900 ℃.After firing at 1 400 ℃,castables B shows extra ordinary CCS of mare than 100 MPa.Reasons were discussed with X-ray diffraction and scanning electron microscopy.

  13. Local structural evidence for strong electronic correlations in spinel LiRh2O4

    Science.gov (United States)

    Knox, K. R.; Abeykoon, A. M. M.; Zheng, H.; Yin, W.-G.; Tsvelik, A. M.; Mitchell, J. F.; Billinge, S. J. L.; Bozin, E. S.

    2013-11-01

    The local structure of the spinel LiRh2O4 has been studied using atomic-pair distribution function analysis of powder x-ray diffraction data. This measurement is sensitive to the presence of short Rh-Rh bonds that form due to dimerization of Rh4+ ions on the pyrochlore sublattice, independent of the existence of long-range order. We show that structural dimers exist in the low-temperature phase, as previously supposed, with a bond shortening of Δr˜0.15 Å. The dimers persist up to 350 K, well above the insulator-metal transition, with Δr decreasing in magnitude on warming. Such behavior is inconsistent with the Fermi-surface nesting-driven Peierls transition model. Instead, we argue that LiRh2O4 should properly be described as a strongly correlated system.

  14. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications.

    Science.gov (United States)

    Peng, Shengjie; Li, Linlin; Hu, Yuxiang; Srinivasan, Madhavi; Cheng, Fangyi; Chen, Jun; Ramakrishna, Seeram

    2015-02-24

    A facile and general method is developed to fabricate one-dimensional (1D) spinel composite oxides with complex architectures by using a facile single-spinneret electrospinning technique. It is found that precursor polymers and heating rates could control the structures of the products, such as 1D solid, nanotube and tube-in-tubes structures. Especially, the tube-in-tube structures have been successfully fabricated for various mixed metal oxide, including CoMn2O4, NiCo2O4, CoFe2O4, NiMn2O4 and ZnMn2O4. Benefiting from the unique structure features, the tube-in-tube hollow nanostructures possess superior electrochemical performances in asymmetric supercapacitors and Li-O2 batteries.

  15. Re4As6S3, a thio-spinel-related cluster system

    DEFF Research Database (Denmark)

    Besnard, Celine; Svensson, Christer; Ståhl, Kenny

    2003-01-01

    We have synthesized a new compound with formula Re4As6S3 and characterized its crystal structure by Rietveld powder diffraction methods. Re4As6S3 crystallizes in an face-centered cubic unit cell, space group F (4) over bar 3m (no. 216), with lattice constant a = 9.8608(1) Angstrom and Z = 4....... The rhenium atoms form tetrahedral clusters linked via tetrahedral arsenic clusters to produce an NaCl-type arrangement. The oxidation state of rhenium is IV and the number of electrons shared by the rhenium atoms in the cluster is 12. The structure is based on an ordered defect thio-spinel A((1-x))B(2)X(4......) where the B-type atoms form tetrahedral clusters....

  16. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  17. NOVEL SPINEL-FAMILY REFRACTORIES FOR HIGH-TEMPERATURE, HIGH-ALKALINE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-01-01

    Work was performed by Oak Ridge National Laboratory (ORNL), in collaboration with the industrial refractory manufacturer Minteq International, Inc. (MINTEQ), academic research partner Missouri University of Science and Technology (MS&T) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in industries such as aluminum, chemical, glass, and pulp and paper. The project aim was to address factors which limit the applicability of currently available refractory materials such as chemical attack, mechanical degradation, use temperature, and installation or repair issues. To this end, new innovative unshaped refractory compositions (gunnables) were developed based on MgO-Al 2O3 spinel and alumino-silicate based structures utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Development efforts, materials validation, and results to date of current industrial validation trials a discussed.

  18. The metamorphosis of heterometallic trinuclear antiferromagnetic complexes into nano-sized superparamagnetic spinels.

    Science.gov (United States)

    Vasylenko, Inna V; Gavrylenko, Konstiantyn S; Il'yin, Vladimir G; Golub, Vladimir; Goloverda, Galina; Kolesnichenko, Vladimir; Addison, Anthony W; Pavlishchuk, Vitaly V

    2010-05-15

    Thermal decomposition of the trinuclear heterometallic oxoacetates [Fe(2)M(μ(3)-O)(CH(3)COO)(6)(H(2)O)(3)] has been used as a single-precursor method for synthesis of the spinel-structured ternary oxides MFe(2)O(4) (M = Mn(II), Co(II), and Ni(II)). This facile process occurring at 320 °C results in the formation of nanocrystalline, (7-20 nm) highly pure stoichiometric ferrites in quantitative yield. The magnetic properties of these nanoparticulate ferrites were studied in the 10-300 K temperature range, revealing superparamagnetic behaviour for the Ni and Mn particles and ferromagnetic behavior for the Co ones at room temperature. Their blocking temperatures follow the order: CoFe(2)O(4) > MnFe(2)O(4) > NiFe(2)O(4).

  19. The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites

    Science.gov (United States)

    Farid, Muhammad Tahir; Ahmad, Ishtiaq; Kanwal, Muddassara; Murtaza, Ghulam; Ali, Irshad; Khan, Sajjad Ahmad

    2017-04-01

    Spinel ferrites with composition MgPryFe2-yO4 (y=0.0, 0.025, 0.05, 0.075, 0.10) were successfully synthesized using sol-gel auto-combustion technique. The structural prisoperties of a prepared sintered powder were characterized with the help of X-ray Diffraction (XRD) and then also by using Scanning electron microscopy (SEM). Electrical measurements demonstrate that resistivity and activation energy increases with the Praseodymium substitution while dc resistivity decreases with the rise of temperature showing the semiconductor nature of the synthesized ferrites. Remanence and the saturation magnetization (Ms) decrease while coercivity (Hc) also increases with the increase in praseodymium contents. Anisotropic constant is observed to exhibit similar behavior as HC. The above mentioned parameters suggest that the synthesized samples are favorable for microwave absorbing purposes.

  20. Elastic Anomalies in Orbital-Degenerate Frustrated Spinel CoV2O4

    Science.gov (United States)

    Watanabe, Tadataka; Yamada, Shogo; Koborinai, Rui; Katsufuji, Takuro

    Ultrasound velocity measurements were performed on a single crystal of the orbital-degenerate frustrated spinel CoV2O4 in all the symmetrically-independent elastic moduli of the cubic crystal. The measurements of temperature dependence of the elastic moduli observed discontinuous elastic anomalies due to a ferrimagnetic transition at TC = 165 K and another phase transition at T* = 50 K. Additionally, the measurements observed anomalous temperature dependence of the elastic moduli, specifically, non-monotonic temperature dependence in the magnetically-ordered phase below TC, and magnetic-field-sensitive elastic softening with decreasing temperature in the paramagnetic phase above TC. These anomalous temperature variations below and above TC should be driven by the coupling of lattice to magnetic excitations.

  1. Ultrasound measurements in the spinel compound GeCo2O4

    Science.gov (United States)

    Sasame, H.; Yoshimoto, H.; Takahashi, Y.; Watanabe, T.; Takase, K.; Takano, Y.; Hara, S.; Ikeda, Si

    2007-12-01

    Elastic properties of the spinel compound GeCo2O4 were investigated by the ultrasound velocity measurements in the single crystal. Absence of the elastic softening in (C11- C12)/2 in the paramagnetic state suggests the Jahn-Teller inactive character of Co2+, despite the presence of the orbital degree of freedom. The pronounced C44 anomaly in the paramagnetic state near TN alternatively suggests that the ultrasound dominantly couple to the exchange interactions among Co2+ ions by the exchange striction effect. The present results conclude that Co2+ adopts the high spin state in this substance. In the antiferromagnetic phase, new elastic anomalies were observed only in (C11- C12)/2 implying the occurrence of the magnetic transitions triggered by the exchange interactions within the Co2+ bonds along [110] directions.

  2. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    Science.gov (United States)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  3. Local symmetry lowering in CdMn{sub 2}O{sub 4} spinel

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G. N. P.; Lopes, A. M. L., E-mail: armandina.lima.lopes@cern.ch [CFNUL - Centro de Física Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Teixeira, R.; Silva, M. R. [CFNUL - Centro de Física Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Mendonça, T. M.; Araújo, J. P., E-mail: jearaujo@fc.up.pt [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Correia, J. G. [C2TN, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal)

    2014-12-14

    This work presents an atomic scale study of the electric field gradient (EFG) in the tetragonally distorted CdMn{sub 2}O{sub 4} spinel manganite. The EFG temperature dependence at the Cd and Mn sites was followed via perturbed angular correlation measurements with the {sup 111}In and {sup 111m}Cd probes, from 873 down to 12 K at Isolde-CERN. The results show that in the 12–600 K temperature range, a single Jahn-Teller distorted local phase exists. However above 100 K, a dynamic lattice distortion, evidenced by time dependent EFG fluctuations, sets in suggesting a structural instability. Above 600 K, a local MnO{sub 6} octahedra with relaxed Jahn-Teller distortions emerge and grow in the low temperature matrix, although no macroscopic tetragonal to cubic phase transition was observed.

  4. Magnetic properties of TM-Co-Fe-Ti spinel oxides (abstract)

    Science.gov (United States)

    Giordanengo, B.; de Melo, M. A. C.; Takeuchi, A. Y.; Silva, P. R. J.; Saitovitch, H.; Baggio-Saitovitch, E.; Moyo, T.

    1997-04-01

    Spin glass-like behavior has been recently observed in a ceramic Zn0.5Co0.9Fe1.2Ti0.4O4 spinel oxide.1 This motivated our interest to study how the spin glass-like behavior of magnetic clusters in a diamagnetic matrix correlates to that of nonmagnetic or weakly magnetic clusters in a ferromagnetic matrix, Mössbauer effect, ac susceptibility, field cooled and zero field cooled magnetization, hysteresis loops, and γ-γ perturbed angular correlation (PAC) have been measured for TM0.5-xCo0.9Fe1.2+xTi0.4O4 (x=0.0 and 0.2) spinel oxide with TM=Zn and Cu. The variation of coercive field with temperature has been found to fit a double exponential function form Hc(T)=H1e-β1T+H2e-β2T where Hi and βi are constants for the sample with x=0.0 and TM=Zn. The exponential increase in coercive field can be linked to increased effective clusters arising from ions occupying A and B sites with Fe on both sites. This is in agreement with the Mössbauer measurements which show superparamagnetic fluctuations. The ac susceptibility and Mössbauer spectra for Zn0.5Co0.9Fe1.2Ti0.4O4 show a glass transition temperature (about 320 K). Room temperature PAC measurements on Hf doped samples with TM=Zn showed different interaction frequencies, consistent with magnetic order in the Fe enriched case. Different behavior is observed in the sample with Cu for which the ordering temperature is about 480 K.

  5. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria.

    Science.gov (United States)

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-17

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  6. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    Science.gov (United States)

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  7. Synthesis and equation of state of high pressure phase of chromium-bearing spinel

    Science.gov (United States)

    Shieh, S. R.; Khan, T.; Prescher, C.; Prakapenka, V.; MI, Z.

    2015-12-01

    Chromium-bearing spinel (Mg,Fe)Cr2O4 can be found in the Earth's crust, upper mantle, and even in meteorites. Mantle derived chromium-bearing spinel suggests that its high pressure phase may be existing at deep mantle but however its high pressure elastic property is not well understood yet. In situ synchrotron X-ray diffraction studies of magnesiochromite and chromite using the laser-heated diamond anvil cell were performed at GSECARS, Advanced Photon Source, to explore their high pressure phases and elastic property. Our results on magnesiochromite showed dissociation of MgCr2O4 to Cr2O3+MgO at ~15 GPa and to modified Ludwigite (mLd)-type Mg2Cr2O5+Cr2O3 below and above ~1500 K, respectively. At above 20 GPa, only a single phase CaTi2O4-type structure of MgCr2O4 was observed at 1400-2000 K. Pressure-volume data of CaTi2O4 type structure of MgCr2O4 fitted to Birch-Murnaghan equation of state yield zero-pressure volume (V0) = 264.4(8) Å3, bulk modulus (K0) = 185.4(4) GPa, and pressure derivative (K0') = 4; and mLd-type Mg2Cr2O5 yields: V0 = 338.9(8) Å3, K0 = 186.5(6) GPa, K0' = 4. For CaTi2O4 type structure of natural chromite, our fitted P-V data show V0 = 261(1) Å3, K0 = 175.4(2) GPa, and K0' = 4.

  8. Effect of spinel properties on slag resistance of unfired corundum-spinel brick%尖晶石性质对刚玉-尖晶石不烧砖抗渣性的影响

    Institute of Scientific and Technical Information of China (English)

    方选明; 李楠; 鄢文

    2011-01-01

    Slag resistances of three kinds of unfired corundum-spinel bricks containing different spinels were researched using static crucible method. The effects of grain size and lattice distortion of spinel on slag resistance were investigated by XRD,SEM and EDAX. The results show that: ( 1 )the grain size of spinel remarkably affects the corrosion resistance, and the corrosion resistance increases with grain size increasing; (2)the spinel with higher lattice distortion can absorb more Fe and Mn ions on the interface of slag and refractories; (3)the lattice distortion affects the penetration resistance,the spinel with high lattice distortion can absorb more cations,change the slag composition, make slag with rich silicon and high viscosity,and inhibit the further penetration of slag.%采用静态坩埚法研究了添加3种不同性质尖晶石的刚玉-尖晶石不烧砖的抗渣性能,并通过XRD、SEM和EDAX分析了尖晶石的晶粒尺寸、晶格畸变对试样抗渣性的影响.结果表明:(1.尖晶石的晶粒尺寸影响试样的抗侵蚀能力,晶粒尺寸越大,试样抗侵蚀能力越强;(2.晶格畸变较大时,尖晶石在渣/耐火材料界面处吸收熔渣中Fe、Mn离子能力更强;(3)尖晶石的晶格畸变影响试样的抗渗透性能,当晶格畸变较大时,可吸收渣中更多的阳离子,改变渗透渣的成分,使渣富硅化,黏度增大,阻碍了熔渣进一步渗透.

  9. Detection of unresolved binaries with multicolor photometry

    CERN Document Server

    Chulkov, D; Malkov, O; Sichevskij, S; Krussanova, N; Mironov, A; Zakharov, A; Kniazev, A

    2016-01-01

    The principal goal of this paper is to specify conditions of detection of unresolved binaries by multicolor photometry. We have developed a method for estimating the critical distance at which an unresolved binary of given mass and age can be detected. The method is applied to the photometric system of the planned Lyra-B spaceborne experiment. We have shown that some types of unresolved binary stars can be discovered and distinguished from single stars solely by means of photometric observations.

  10. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  11. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    We evaluate the binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery procedure works robustly to induce risk neutrality when subjects are given one risk task defined over...... objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...... of subjective probabilities in subjects with certain Non-Expected Utility preference representations that satisfy weak conditions that we identify....

  12. Multiplicatively Repeated Non-Binary LDPC Codes

    CERN Document Server

    Kasai, Kenta; Poulliat, Charly; Sakaniwa, Kohichi

    2010-01-01

    We propose non-binary LDPC codes concatenated with multiplicative repetition codes. By multiplicatively repeating the (2,3)-regular non-binary LDPC mother code of rate 1/3, we construct rate-compatible codes of lower rates 1/6, 1/9, 1/12,... Surprisingly, such simple low-rate non-binary LDPC codes outperform the best low-rate binary LDPC codes so far. Moreover, we propose the decoding algorithm for the proposed codes, which can be decoded with almost the same computational complexity as that of the mother code.

  13. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  14. Risks vs Return with Binary Option Trading

    OpenAIRE

    Kiiskinen, Eemi

    2016-01-01

    Binary options are derivative instruments associated with high risks and high profits. A binary option is similar to a normal “vanilla” option where the value of the derivative is based on the value of the underlying asset. The main difference to a vanilla option is the payout of the trades. As binary trading is a relatively new way of investing, it is still uncommon for many private investors. The purpose of the thesis is to introduce the binary option as an investment method for novice ...

  15. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  16. Structural relaxation and colour in the spinel-magnesiochromite (MgAl2O4-MgCr2O4) and gahnite-zincochromite (ZnAl2O4-ZnCr2O4) solid solution series

    Science.gov (United States)

    Hålenius, U.; Andreozzi, G. B.; Skogby, H.

    2009-04-01

    Recent studies on binary mineral solid solution series utilising synchrotron based x-ray absorption spectroscopies have indicated strong structural relaxation. For instance, it has been suggested that the real Cr-O bond distances remain nearly constant (relaxation parameter (ɛ) of 0.85, where ɛ=1 equals full relaxation) over the entire compositional range of the MgAl2O4-MgCr2O4 series (Juhin et al. 2007). In the present study we have measured room temperature optical absorption spectra of synthetic single crystals of the ZnAl2-2xCr2xO4 (0.03?x?1) and MgAl2-2xCr2xO4(0.02?x?1) series with the aim to explore the real architecture of the structure and in particular the Cr-O distance as function of composition. Our crystals were synthesized by means of flux-growth methods under atmospheric pressure and temperature profiles resulting in an estimated cation ordering temperature of ca 850 °C. Crystals close to the spinel (sensu stricto) and gahnite end-member compositions were faintly red in colour. With increasing Cr-content the crystals become more intensely red-coloured and at the higher Cr-contents there is a distinct shift towards a dark greenish colouration. These colour changes are reflected in the measured optical spectra by the position and intensity of the two spin-allowed electronic d-d transitions in octahedrally coordinated Cr3+ at ca 18000 (4A2g -4T2g (4F) transition) and 25000 cm-1(4A2g -4T1g (4F) transition). The energy of the first transition (?1-band) is ca 1200 cm-1 lower in magnesiochromite than in weakly Cr-doped spinel (x=0.02) and ca 1400 cm-1 lower in zincochromite than in gahnite with the lowest Cr-content (x=0.03). Concomitantly the energy of the second transition (?2-band) decreases with increasing Cr-content in both series by ca. 1800 cm-1. From the position of the ?1-band, a decrease in crystal field splitting, 10Dq, for six-coordinated Cr3+ with increasing Cr-content in the MgAl2-2xCr2xO4 and ZnAl2-2xCr2xO4 series of 6.5 and 7

  17. R144 : a very massive binary likely ejected from R136 through a binary-binary encounter

    CERN Document Server

    Oh, Seungkyung; Banerjee, Sambaran

    2013-01-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from a R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of $\\approx$ 355 Msun and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km/s at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with an other massive binary or single star. In addition, we discuss all massive binaries and sin...

  18. Synthesis of Nano Crystalline MgAl2O4Spinel Powder by Microwave Assisted Combustion%Synthesis of Nano Crystalline MgAl2O4 Spinel Powder by Microwave Assisted Combustion

    Institute of Scientific and Technical Information of China (English)

    Leila Torkian; Mostafa M Amini; Zohreh Bahrami

    2011-01-01

    Stoichiometric MgAl2O4 spinel nanoparticles were synthesized by microwave assisted combustion reaction from aluminium nitrate nanohydrate (Al(NO3)3.9H2O) and Sol-Gel prepared magnesium hydroxide (Mg(OH)2) in the presence of urea ((NH2)2CO) as a fuel, in about 20 min of irradiation. X-ray diffraction (XRD) studies reveal that microwave assisted combustion synthesis route yields single-phase spinel nanoparticles with larger crystalline size (around 75 nm) than other conventional heating methods. Scanning electronic microscope (SEM) images show nanoparticles with spherical shape and homogenous morphology. The surface area measurements (SBET) show crystals with 2.11 m2/g and 0.0033 mL/g pore volume.

  19. Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels; synthesis, structural characterization and electrical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mendez M, F.; Lima, E.; Bosch, P.; Pfeiffer, H. [UNAM, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gonzalez, F., E-mail: pfeiffer@iim.unam.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-07-01

    This work presents the structural characterization and electrical evaluation of Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels, which are materials presented as secondary phases into the vari stor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn{sub 2}O{sub 4} spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels, as secondary phases into the vari stor materials, may compromise significantly the vari stor efficiency. (Author)

  20. Interacting Jets from Binary Protostars

    CERN Document Server

    Murphy, G C; O'Sullivan, S; Spicer, D; Bacciotti, F; Rosén, A

    2007-01-01

    We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly pa...

  1. Millisecond Pulsars in Close Binaries

    CERN Document Server

    Tauris, Thomas M

    2015-01-01

    In this Habilitationsschrift (Habilitation thesis) I present my research carried out over the last four years at the Argelander Institute for Astronomy (AIfA) and the Max Planck Institute for Radio Astronomy (MPIfR). The thesis summarizes my main findings and has been written to fulfill the requirements for the Habilitation qualification at the University of Bonn. Although my work is mainly focused on the topic of millisecond pulsars (MSPs), there is a fairly broad spread of research areas ranging from the formation of neutron stars (NSs) in various supernova (SN) events, to their evolution, for example, via accretion processes in binary and triple systems, and finally to their possible destruction in merger events. The thesis is organized in the following manner: A general introduction to neutron stars and millisecond pulsars is given in Chapter 1. A selection of key papers published in 2011-2014 are presented in Chapters 2-10, ordered within five main research areas (ultra-stripped SNe in close binaries, ma...

  2. The Young Visual Binary Database

    Science.gov (United States)

    Prato, Lisa A.; Avilez, Ian; Allen, Thomas; Zoonematkermani, Saeid; Biddle, Lauren; Muzzio, Ryan; Wittal, Matthew; Schaefer, Gail; Simon, Michal

    2017-01-01

    We have obtained adaptive optics imaging and high-resolution H-band and in some cases K-band spectra of each component in close to 100 young multiple systems in the nearby star forming regions of Taurus, Ophiuchus, TW Hya, and Orion. The binary separations for the pairs in our sample range from 30 mas to 3 arcseconds. The imaging and most of our spectra were obtained with instruments behind adaptive optics systems in order to resolve even the closest companions. We are in the process of determining fundamental stellar and circumstellar properties, such as effective temperature, Vsin(i), veiling, and radial velocity, for each component in the entire sample. The beta version of our database includes systems in the Taurus region and provides plots, downloadable ascii spectra, and values of the stellar and circumstellar properties for both stars in each system. This resource is openly available to the community at http://jumar.lowell.edu/BinaryStars/. In this poster we describe initial results from our analysis of the survey data. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  3. Planets transiting non-eclipsing binaries

    Science.gov (United States)

    Martin, David V.; Triaud, Amaury H. M. J.

    2014-10-01

    The majority of binary stars do not eclipse. Current searches for transiting circumbinary planets concentrate on eclipsing binaries, and are therefore restricted to a small fraction of potential hosts. We investigate the concept of finding planets transiting non-eclipsing binaries, whose geometry would require mutually inclined planes. Using an N-body code we explore how the number and sequence of transits vary as functions of observing time and orbital parameters. The concept is then generalised thanks to a suite of simulated circumbinary systems. Binaries are constructed from radial-velocity surveys of the solar neighbourhood. They are then populated with orbiting gas giants, drawn from a range of distributions. The binary population is shown to be compatible with the Kepler eclipsing binary catalogue, indicating that the properties of binaries may be as universal as the initial mass function. These synthetic systems produce transiting circumbinary planets occurring on both eclipsing and non-eclipsing binaries. Simulated planets transiting eclipsing binaries are compared with published Kepler detections. We find 1) that planets transiting non-eclipsing binaries are probably present in the Kepler data; 2) that observational biases alone cannot account for the observed over-density of circumbinary planets near the stability limit, which implies a physical pile-up; and 3) that the distributions of gas giants orbiting single and binary stars are likely different. Estimating the frequency of circumbinary planets is degenerate with the spread in mutual inclination. Only a minimum occurrence rate can be produced, which we find to be compatible with 9%. Searching for inclined circumbinary planets may significantly increase the population of known objects and will test our conclusions. Their presence, or absence, will reveal the true occurrence rate and help develop circumbinary planet formation theories.

  4. Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle

    OpenAIRE

    Downes, Hilary; Vries, C. de; Wittig, N.

    2015-01-01

    \\ud \\ud Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zr–Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotit...

  5. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  6. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  7. Bayesian analysis of exoplanet and binary orbits

    OpenAIRE

    Schulze-Hartung, Tim; Launhardt, Ralf; Henning, Thomas

    2012-01-01

    We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.

  8. Binaries with the eyes of CTA

    NARCIS (Netherlands)

    Paredes, J.M.; Bednarek, W.; Bordas, P.; Bosch-Ramon, V.; De Cea del Pozo, E.; Dubus, G.; Funk, S.; Hadasch, D.; Khangulyan, D.; Markoff, S.; Moldón, J.; Munar-Adrover, P.; Nagataki, S.; Naito, T.; de Naurois, M.; Pedaletti, G.; Reimer, O.; Ribó, M.; Szostek, A.; Terada, Y.; Torres, D.F.; Zabalza, V.; Zdziarski, A.A.

    2013-01-01

    The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray

  9. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...... of subjective probabilities in subjects with certain Non-Expected Utility preference representations that satisfy weak conditions that we identify....

  10. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  11. Measurement system analysis for binary tests

    NARCIS (Netherlands)

    Akkerhuis, T.S.

    2016-01-01

    Binary tests classify items into two categories such as reject/accept, positive/negative or guilty/innocent. A binary test’s proneness to measurement error is usually expressed in terms of the misclassification probabilities FAP (false acceptance probability) and FRP (false rejection probability).

  12. Cosmological distance indicators by coalescing binaries

    CERN Document Server

    De Laurentis, Mariafelicia; De Martino, Ivan; Formisano, Michelangelo

    2011-01-01

    Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as "standard candles" providing an excellent probe of cosmic distances up to z < 0.1 and thus complementing other indicators of cosmological distance ladder.

  13. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a mo

  14. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, J.; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a mo

  15. Speech perception of noise with binary gains

    DEFF Research Database (Denmark)

    Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed...

  16. Binary Structure in David Lodge's Novels

    Institute of Scientific and Technical Information of China (English)

    高萍

    2008-01-01

    David Lodge is one of the most renowned modern English writers.He is known for the binary structure in his novels.In this paper,the writer will try to the binary structure in some of his novels to show his reflections on Catholicism and culture conflicts.

  17. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  18. The Evolution of Compact Binary Star Systems.

    Science.gov (United States)

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  19. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  20. Binary Representations of Fingerprint Spectral Minutiae Features

    NARCIS (Netherlands)

    Xu, Haiyun; Veldhuis, Raymond N.J.

    2010-01-01

    A fixed-length binary representation of a fingerprint has the advantages of a fast operation and a small template storage. For many biometric template protection schemes, a binary string is also required as input. The spectral minutiae representation is a method to represent a minutiae set as a fixe

  1. Hydrostatic pressure dependence on the collapsing of heptamer clusters in the charge ordered spinel AlV2O4

    Science.gov (United States)

    Kalavathi, S.; Vennila Raju, Selva; Chandra, Sharat; Williams, Quentin; Sahu, P. Ch.

    2017-01-01

    Charge frustrated spinels have engaged the interest of condensed matter studies due to the novel formation of multimer molecular sub units that lifts the degeneracy in the ground state. An exhaustive study on the stability of these molecular sub units is not available in the literature. In the present study, evidence has been obtained for the first time that hydrostatic pressure beyond 21 GPa, destabilizes the vanadium heptamer molecular sub units reversibly in the unique ambient temperature charge ordered spinel AlV2O4. The bulk modulus and its pressure derivative of the charge ordered phase are constrained. In addition a systematic structural analysis as a function of temperature shows destabilization of vanadium trimers those stack up to make the heptamer units. The crystal structure and total energy have been calculated using first principles density functional formalism (GGA approximation) as a function of pressure. The results obtained corroborate the stability of the frustrated phase beyond 20 GPa.

  2. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    Science.gov (United States)

    Andrade, Angela L.; Fabris, José D.; Pereira, Márcio C.; Domingues, Rosana Z.; Ardisson, José D.

    2013-04-01

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  3. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Angela L. [Federal University of Ouro Preto (UFOP), Department of Chemistry (Brazil); Fabris, Jose D., E-mail: jdfabris@ufmg.br [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM) (Brazil); Pereira, Marcio C. [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Institute of Science, Engineering and Technology (Brazil); Domingues, Rosana Z. [Federal University of Minas Gerais (UFMG), Department of Chemistry (Brazil); Ardisson, Jose D. [Development Center of Nuclear Technology (CNEN/CDTN), Laboratory of Applied Physics (Brazil)

    2013-04-15

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Moessbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  4. A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation

    Science.gov (United States)

    Chou, Wei-Yu; Jin, Yi-Chun; Duh, Jenq-Gong; Lu, Cheng-Zhang; Liao, Shih-Chieh

    2015-11-01

    The electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode combined with different binders at elevated temperature is firstly investigated. The water soluble binder, such as sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), is compared with the polyvinylidene difluoride (PVdF) binder used in non-aqueous process. The aqueous process can meet the need of Li-ion battery industry due to environmental-friendly and cost effectiveness by replacing toxic organic solvent, such as N-methyl-pyrrolidone (NMP). In this study, a significantly improved high temperature cycling performance is successfully obtained as compared to the traditional PVdF binder. The aqueous binder can serve as a protective film which inhibits the serious Ni and Mn dissolution especially at elevated temperature. Our result demonstrates a facile approach to solve the problem of capacity fading for high voltage spinel cathodes.

  5. Experimental mineral/liquid partition coefficients of the rare earth elements /REE/, Sc and Sr for perovskite, spinel and melilite

    Science.gov (United States)

    Nagasawa, H.; Schreiber, H. D.; Morris, R. V.

    1980-01-01

    Experimental determinations of the mineral/liquid partition coefficients of REE (La, Sm, Eu, Gd, Tb, Yb and Lu), Sc and Sr are reported for the minerals perovskite, spinel and melilite in synthetic systems. Perovskite concentrates light REE with respect to the residual liquid but shows no preference for heavy REE. Spinel greatly discriminates against the incorporation of REE, especially light REE, into its crystal structure. The partition of REE into melilite from a silicate liquid is quite dependent upon both the bulk melt and melilite solid-solution (gehlenite and akermanite components) compositions. As such, melilite can be enriched in REE or will reject REE with corresponding strong negative or strong positive Eu anomalies, respectively.

  6. Effect of particle size on microstructure and strength of porous spinel ceramics prepared by pore-forming in situ technique

    Indian Academy of Sciences (India)

    Wen Yan; Nan Li; Yuanyuan Li; Guangping Liu; Bingqiang Han; Juliang Xu

    2011-08-01

    The porous spinel ceramics were prepared from magnesite and bauxite by the pore-forming in situ technique. The characterization of porous spinel ceramics was determined by X-ray diffractometer (XRD), scanning electron microscopy(SEM), mercury porosimetry measurement etc and the effects of particle size on microstructure and strength were investigated. It was found that particle size affects strongly on the microstructure and strength. With decreasing particle size, the pore size distribution occurs from multi-peak mode to bi-peak mode, and lastly to mono-peak mode; the porosity decreases but strength increases. The most apposite mode is the specimens from the grinded powder with a particle size of 6.53 m, which has a high apparent porosity (40%), a high compressive strength (75.6MPa), a small average pore size (2.53 m) and a homogeneous pore size distribution.

  7. Raman studies of cation distribution and thermal stability of epitaxial spinel NiCo2O4 films

    Science.gov (United States)

    Iliev, M. N.; Silwal, P.; Loukya, B.; Datta, R.; Kim, D. H.; Todorov, N. D.; Pachauri, N.; Gupta, A.

    2013-07-01

    Epitaxial thin films of spinel NiCo2O4 (NCO) grown on MgAl2O4 (001) substrates are reported to exhibit dramatic changes in the magnetic and transport properties with deposition temperature. While films grown at lower temperatures (<450°C) are ferrimagnetic with metallic characteristics, those grown at higher temperatures are non-magnetic and insulating. Detailed polarized Raman spectroscopy studies indicate that the higher temperature films have close to the ideal inverse spinel cation distribution, Co3+[Ni2+Co3+]O42-, whereas those deposited at lower temperature are characterized by mixed cation/charge distribution at both the tetragonal (A) and octahedral (B) sites. Additionally, temperature-dependent Raman studies demonstrate that, unlike bulk polycrystalline samples, all the NCO films are robust against thermal treatment with full reversibility after annealing at 600°C in oxygen and air. However, partial decomposition is observed after annealing in vacuum.

  8. Simultaneous determination of epinephrene and paracetamol at copper-cobalt oxide spinel decorated nanocrystalline zeolite modified electrodes.

    Science.gov (United States)

    Samanta, Subhajyoti; Srivastava, Rajendra

    2016-08-01

    In this study, CuCo2O4 and CuCo2O4 decorated nanocrystalline ZSM-5 materials were prepared. For comparative study, a series of MCo2O4 spinels were also prepared. Materials were characterized by the complementary combination of X-ray diffraction, N2-adsorption, UV-visible, and electron microscopic techniques. A simple and rapid method for the simultaneous determination of paracetamol and epinephrine at MCo2O4 spinels modified electrodes is presented in this manuscript. Among the materials investigated in this study, CuCo2O4 decorated nanocrystalline ZSM-5 exhibited the highest electrocatalytic activity with excellent stability, sensitivity, and selectivity. Analytical performance of the sensor was demonstrated in the determination of epinephrine and paracetamol in the commercial pharmaceutical samples.

  9. Nickel-aluminium complex: a simple and effective precursor for nickel aluminate (NiAl2O4 spinel

    Directory of Open Access Journals (Sweden)

    Apirat Laobuthee

    2008-01-01

    Full Text Available A reaction of aluminium hydroxide, nickel nitrate and triethanolamine in ethylene glycol provided, in one step, a simple and effective nickel-aluminium complex precursor for NiAl2O4 spinel. On the basis of 1H-, 13C-NMR spectroscopy, and mass spectrometry, the possible structure of the complex was proposed as a trimetallic double alkoxide consisting of two four-coordinate TEA-Al (alumatrane moieties linked via a bridging TEA group enfolding the Ni2+ cation. Transformation of the nickel-aluminium complex to pure spinel occurred when the complex precursor was pyrolysed at 1000C for 5 h. The BET surface area of the pyrolysed product was found to be 31 m2/g. In addition, the morphology of the powder product was examined by SEM.

  10. Structural phase stability, magnetism and microwave properties of Co{sub 2}FeO{sub 4} spinel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Meriakri, V; Parckhomenko, M; Gratowski, S Von [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino (Russian Federation); Bhowmik, R N; Muthuselvam, I Panneer, E-mail: v-meriakri@gmx.ne, E-mail: rnbhowmik.phy@pondiuni.edu.i [Department of Physics, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry-605014 (India)

    2010-01-01

    Correlation between crystal structure and physical properties for Co{sub 2}FeO{sub 4} spinel oxide are studied. There are two coexisting phases, Fe rich and Co rich spinels, for S80, S86, S100 samples. The S90 and S95 samples showed single phase nature. A small signature of second phase is noted for S95 sample from the temperature dependence of magnetization measurement. The single phase with single Curie temperature at about 453 K is confirmed for S90 sample. Interestingly, S95 sample showed minimum magnetic energy loss. The complex magnetic permittivity and dielectric permeability at 4.6 GHz and 7.2 GHz has been measured for all samples. There is a correlation between annealing temperature for the samples and measured electromagnetic properties.

  11. Enhancing the performance of high-voltage LiCoMnO4 spinel electrodes by fluorination

    Science.gov (United States)

    Windmüller, Anna; Tsai, Chih-Long; Möller, Sören; Balski, Matthias; Sohn, Yoo Jung; Uhlenbruck, Sven; Guillon, Olivier

    2017-02-01

    With the aim of improving the electrochemical properties of the LiCoMnO4 high-voltage spinel for lithium ion battery applications, LiCoMnO4-yFy (y = 0, 0.05, 0.1) compounds were synthesized by a two-step solid-state reaction at 800 °C. The stoichiometry of the samples was verified by nuclear reaction analysis for the fluorine stoichiometry, inert gas fusion analysis for the oxygen stoichiometry, and inductively coupled plasma optical emission spectroscopy for the cation stoichiometry. X-ray diffraction analysis and scanning electron microscopy revealed increasing phase purity and changing microstructure upon fluorine incorporation. Electrochemical characterizations were carried out in battery test cells using a liquid electrolyte. The samples show poor coulombic efficiency, due to liquid electrolyte decomposition. However, fluorinated spinels demonstrated significantly improved capacities of up to 18% and improved cycling stability of up to 20%, compared to their non-fluorinated counterparts.

  12. Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic

    Science.gov (United States)

    Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong

    2017-09-01

    Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.

  13. Synthesis of single-crystalline spinel LiMn2 O4 Nanorods for lithium-ion batteries with high rate capability and long cycle life.

    Science.gov (United States)

    Xie, Xiuqiang; Su, Dawei; Sun, Bing; Zhang, Jinqiang; Wang, Chengyin; Wang, Guoxiu

    2014-12-15

    The long-standing challenge associated with capacity fading of spinel LiMn2 O4 cathode material for lithium-ion batteries is investigated. Single-crystalline spinel LiMn2 O4 nanorods were successfully synthesized by a template-engaged method. Porous Mn3 O4 nanorods were used as self-sacrificial templates, into which LiOH was infiltrated by a vacuum-assisted impregnation route. When used as cathode materials for lithium-ion batteries, the spinel LiMn2 O4 nanorods exhibited superior long cycle life owing to the one-dimensional nanorod structure, single-crystallinity, and Li-rich effect. LiMn2 O4 nanorods retained 95.6 % of the initial capacity after 1000 cycles at 3C rate. In particular, the nanorod morphology of the spinel LiMn2 O4 was well-preserved after a long-term cycling, suggesting the ultrahigh structural stability of the single crystalline spinel LiMn2 O4 nanorods. This result shows the promising applications of single-crystalline spinel LiMn2 O4 nanorods as cathode materials for lithium-ion batteries with high rate capability and long cycle life. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Binary Planetary Nebulae Nuclei towards the Galactic Bulge. I. Sample Discovery, Period Distribution and Binary Fraction

    CERN Document Server

    Miszalski, B; Moffat, A F J; Parker, Q A; Udalski, A

    2009-01-01

    Binarity has been hypothesised to play an important, if not ubiquitous, role in the formation of planetary nebulae (PNe). Yet there remains a severe paucity of known binary central stars required to test the binary hypothesis and to place strong constraints on the physics of the common-envelope (CE) phase of binary stellar evolution. Large photometric surveys offer an unrivalled opportunity to efficiently discover many binary central stars. We have combined photometry from the OGLE microlensing survey with the largest sample of PNe towards the Galactic Bulge to systematically search for new binaries. A total of 21 periodic binaries were found thereby more than doubling the known sample. The orbital period distribution was found to be best described by CE population synthesis models when no correlation between primary and secondary masses is assumed for the initial mass ratio distribution. A comparison with post-CE white dwarf binaries indicates both distributions are representative of the true post-CE period ...

  15. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M⊙ star and a 6 M⊙ star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  16. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    黄润乾; 曾艺蓉

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M star and a 6 M star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  17. Simulations of binary black hole mergers

    Science.gov (United States)

    Lovelace, Geoffrey

    2017-01-01

    Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.

  18. Planet Scattering Around Binaries: Ejections, Not Collisions

    CERN Document Server

    Smullen, Rachel A; Shannon, Andrew

    2016-01-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Asid...

  19. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Anil V., E-mail: nano9993@gmail.com [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Kurmude, D.V. [Milind College of Science, Aurangabad 431004, (M.S.) India (India); Shengule, D.R. [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, (M.S.) India (India)

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  20. Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications

    OpenAIRE

    Venkatachalam, Vinothini; Molin, Sebastian; Kiebach, Wolff-Ragnar; Ming CHEN; Hendriksen, Peter Vang

    2014-01-01

    Chromia forming ferritic stainless steels (SS) are being considered for intermediate temperature solid oxide fuel cell interconnect applications. However, protective coatings are in general needed to avoid chromium volatilization and poisoning of cathodes from chromium species. Mn-Co spinel is one of the promising candidates to prevent chromium outward diffusion, improve oxidation resistance and ensure high electrical conductivity over the lifetime of interconnects. In the present study, unif...

  1. Effect of MnO2 on properties of NiFe2O4 spinel based inert anode

    Institute of Scientific and Technical Information of China (English)

    XI; Jin-hui; YAO; Guang-chun; LIU; Yi-han; ZHANG; Xiao-ming

    2005-01-01

    In order to improve the properties of NiFe2O4 spinel based inert anode, some additive MnO2 were added to raw materials. NiFe2O4 spinel with MnO2 was made by solid-phase reaction at 1200℃for 6 h. XRD were carried out and the effects of MnO2 on density, conductivity and corrosion resistance were measured. XRD shows when MnO2 was added no new phases exist and MnO2 and NiFe2O4 formed solid solution; Mn4+ replaced parts of Fe3+ and the sample still had the structure of NiFe2O4 spinel. The crystal lattice of NiFe2 O4 spinel became aberrated when MnO2 was added, which can promote sintering, and improve density. Because Mn4+ replaces parts of Fe3+ and produces conduction electron, which can improve conductivity.The corrosion resistance of the samples was enhanced. When MnO2 is 1.0%, the sample's corrosion rate is 1/5 of that of the sample without MnO2. The reason is that Al2 O3 in the melt reacts with Mn4+ in the sample to produce MnAl2O4. MnAl2 O4 forms a dense protecting coat, which can prevent melt from eroding further.Because the key problem with inert anodes is anode corrosion, so we consider the optimal amount of MnO2 is 1.0%.

  2. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  3. Magnetic properties of TM{endash}Co{endash}Fe{endash}Ti spinel oxides (abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, B.; de Melo, M.A.; Takeuchi, A.Y.; Silva, P.R.; Saitovitch, H.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Moyo, T. [Department of Physics, University of Natal, Durban (South Africa)

    1997-04-01

    Spin glass-like behavior has been recently observed in a ceramic Zn{sub 0.5}Co{sub 0.9}Fe{sub 1.2}Ti{sub 0.4}O{sub 4} spinel oxide. This motivated our interest to study how the spin glass-like behavior of magnetic clusters in a diamagnetic matrix correlates to that of nonmagnetic or weakly magnetic clusters in a ferromagnetic matrix, Moessbauer effect, ac susceptibility, field cooled and zero field cooled magnetization, hysteresis loops, and {gamma}{endash}{gamma} perturbed angular correlation (PAC) have been measured for TM{sub 0.5{minus}x}Co{sub 0.9}Fe{sub 1.2+x}Ti{sub 0.4}O{sub 4} (x=0.0 and 0.2) spinel oxide with TM=Zn and Cu. The variation of coercive field with temperature has been found to fit a double exponential function form H{sub c}(T)=H{sub 1}e{sup {minus}{beta}1T}+H{sub 2}e{sup {minus}{beta}2T} where H{sub i} and {beta}{sub i} are constants for the sample with x=0.0 and TM=Zn. The exponential increase in coercive field can be linked to increased effective clusters arising from ions occupying A and B sites with Fe on both sites. This is in agreement with the Moessbauer measurements which show superparamagnetic fluctuations. The ac susceptibility and Moessbauer spectra for Zn{sub 0.5}Co{sub 0.9}Fe{sub 1.2}Ti{sub 0.4}O{sub 4} show a glass transition temperature (about 320 K). Room temperature PAC measurements on Hf doped samples with TM=Zn showed different interaction frequencies, consistent with magnetic order in the Fe enriched case. Different behavior is observed in the sample with Cu for which the ordering temperature is about 480 K. {copyright} {ital 1997 American Institute of Physics.}

  4. Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures

    Science.gov (United States)

    George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato

    2011-11-01

    We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains.We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains. Electronic supplementary information (ESI) available: TEM/HRTEM images of (i) aliquots at the earliest stages of the growth of Au-FexOy HSs; (ii) Au-FexOy HSs synthesized at low DDAB concentrations; (iii) spherical iron oxide nanocrystals synthesized under the same conditions as the HSs, but in the absence of Au seeds; (iv) Au-FexOy urchin like nanostructures, also after attempts to leach out Au; (v) Au-FexOy HSs after treatment with hydrazine; (vi) FexOy HSs after Au leaching from Au-FexOy HSs; additional optical absorption spectra; additional I-V curves, also from films made of Au-FexOy dumbbells; and additional SEM images; vii) X-ray diffraction (XRD) pattern of a sample of Au

  5. Terrestrial Planet Formation in Binary Star Systems

    Science.gov (United States)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  6. Spinel CuCo2O4 Nanoparticles: Facile One-Step Synthesis, Optical, and Electrochemical properties

    Science.gov (United States)

    Silambarasan, M.; Padmanathan, N.; Ramesh, P. S.; Geetha, D.

    2016-09-01

    Nanocrystalline CuCo2O4 spinel structure was prepared by a facile one-step route without any surfactant. The materials physio-chemical properties were systematically investigated with different analytical methods. It is observed that the spinel type CuCo2O4 nanoparticles showed interesting multi-functional features for both optical and electrochemical applications.Typical x-ray diffraction pattern indicates the growth of well-crystalline CuCo2O4 nanoparticles with a cubic spinel structure. From the transmission electron microscope images, a uniform particle distribution with an average size of ˜20 nm can be seen. UV-visible spectrum shows the absorption maximum at 264.5 nm and exhibits an optical band gap 4.02 eV. Electrochemical analysis further reveals the pseudo-capacitive behaviour with the specific capacitance of 290 F g-1 at 2 mA cm-2. In addition, the magnetic study of CuCo2O4 substantiates the presence of room temperature weak ferromagnetic ordering at low magnetic field strength.

  7. Influence of Spinel head window thickness on the performance characteristics of a submarine panoramic infrared imaging system

    Science.gov (United States)

    Nichols, Jonathan M.; Waterman, Jim R.; Bayya, Shyam; Sanghera, Jas S.; Aggarwal, Ish D.

    2011-06-01

    This work explores the influence of head window thickness on the performance of a mid-wave infrared, panoramic periscope imager. Our focus is on transparent spinel ceramic as the head window material. Spinel is an attractive material for IR applications due to its good strength and transmission properties (visible through mid-wave). However, there is some degradation in spinel transmission near the high end of the mid-wave band ( 5μm) as the head window thickness increases. In this work we predict the relationship between head window thickness and imager performance, as quantified by the Noise Equivalent Temperature Difference, and compare these predictions to values estimated from experimental data. We then discuss the implications for imager design and demonstrate a possible approach to correcting for the headwindow-induced losses. The imager used in this study is a compact, catadioptric, camera that provides a 360o horizontal azimuth by -10o to +30o elevation field of view and uses a 2048 x 2048, 15μm pitch InSb detector.

  8. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo2O4) electrode material for supercapacitors

    Science.gov (United States)

    Naveen, A. Nirmalesh; Selladurai, S.

    2015-06-01

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  9. Electrophoretic deposition of (Mn,Co)3O4 spinel coating for solid oxide fuel cell interconnects

    Science.gov (United States)

    Zhang, Hui; Zhan, Zhaolin; Liu, Xingbo

    2011-10-01

    We discuss here our attempt to develop (Mn,Co)3O4 spinel coatings on the surface of Cr-containing steel through electrophoretic deposition (EPD) followed by reduced-atmosphere sintering for solid oxide fuel cell (SOFC) interconnect application. The effects of EPD voltages and sintering atmospheres on the microstructure, electrical conductivity and long-term stability of the coated interconnects are examined by means of scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and four-probe resistance techniques. For the spinel coatings generated using smaller voltage than 400 V, the interconnect surfaces exhibit good packing behavior and high conductivity. The reduced atmosphere during sintering has a beneficial impact on the minimizing chromia subscale formation and thus reducing the area specific resistance (ASR) of the coated interconnects. Moreover, it is interesting to note that a more stable long-term performance is achieved for the spinel coating sintered in H2/H2O atmosphere with thin chromia sub-scale and no Cr penetration. Based on the current results, EPD followed by reduced-atmosphere sintering is a fast and economic way to deposit (Mn,Co)3O4 coating for SOFC interconnect applications.

  10. Impact of Nano-Cr2O3 Addition on the Properties of Aluminous Cements Containing Spinel

    Directory of Open Access Journals (Sweden)

    Sasan Otroj

    2015-03-01

    Full Text Available In this paper, the effect of nano-Cr2O3 addition on the properties of aluminous cement containing MgAl2O4 spinel was investigated. For this reason, the raw dolomite was used as raw material along with calcined alumina for the preparation of the aluminous cement. Then, the compositions containing different amounts of nano-Cr2O3 particles were fired at   1450 °C and their mineralogical compositions and microstructures were investigated. The setting times of prepared cements were measured after grounding and ball-milling. Besides, the slag resistance of refractory castables containing prepared cements was evaluated. The results showed that nano-Cr2O3 addition has effect on the increasing of spinel and CA2 and decreasing of CA and C12A7 phases in the cement composition. The decreasing of C12A7 leads to increasing of setting times of cement. Besides, the slag resistance of refractory castables containing prepared cements is improved due to increasing of spinel and decreasing of C12A7 amount in the cement composition.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5211

  11. Binary Cepheids from optical interferometry

    CERN Document Server

    Gallenne, A; Mérand, A; Monnier, J D; Pietrzyński, J Breitfelder G; Gieren, W

    2013-01-01

    Classical Cepheid stars have been considered since more than a century as reliable tools to estimate distances in the universe thanks to their Period-Luminosity (P-L) relationship. Moreover, they are also powerful astrophysical laboratories, providing fundamental clues for studying the pulsation and evolution of intermediate-mass stars. When in binary systems, we can investigate the age and evolution of the Cepheid, estimate the mass and distance, and constrain theoretical models. However, most of the companions are located too close to the Cepheid (1-40 mas) to be spatially resolved with a 10-meter class telescope. The only way to spatially resolve such systems is to use long-baseline interferometry. Recently, we have started a unique and long-term interferometric program that aims at detecting and characterizing physical parameters of the Cepheid companions, with as main objectives the determination of accurate masses and geometric distances.

  12. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo

    2015-01-01

    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  13. Record-Breaking Eclipsing Binary

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  14. Stability of multiplanet systems in binaries

    Science.gov (United States)

    Marzari, F.; Gallina, G.

    2016-10-01

    Context. When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman & Wiegert (1999, AJ, 117, 621) within which planets are stable against the binary perturbations, and the Hill stability limit Δ determining the minimum separation beyond which two planets will avoid mutual close encounters. Both these parameters are derived in different contexts, i.e. Δ is usually adopted for computing the stability limit of two planets around a single star while ac is computed for a single planet in a binary system. Aims: Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. Methods: We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. Results: First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability and it does not account for planets trapped in resonance with the companion star well beyond ac. For two-planet systems, the value of Δ is close to that computed for planets around single stars, but the level of chaoticity close to it substantially increases for smaller semimajor axes and higher eccentricities of the binary orbit. In these configurations ac also begins to be unreliable and non-linear secular resonances with the stellar companion lead to chaotic behaviour well within ac, even for single planet systems. For two planet systems, the superposition of mean motion resonances, either mutual or with the binary companion, and non-linear secular resonances may lead to chaotic behaviour in all cases. We have developed a parametric semi-empirical formula determining the minimum value of the binary semimajor axis, for a given

  15. Magnetism at spinel thin film interfaces probed through soft x-ray spectroscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, R.V.; Liberati, M.; Takamura, Y.; Kourkoutis, L. Fitting; Bettinger, J. S.; Nelson-Cheeseman, B. B.; Arenholz, E.; Doran, A.; Scholl, A.; Muller, D. A.; Suzuki, Y.

    2009-12-16

    Magnetic order and coupling at the interfaces of highly spin polarized Fe{sub 3}O{sub 4} heterostructures have been determined by surface sensitive and element specific soft x-ray spectroscopy and spectromicroscopy techniques. At ambient temperature, the interface between paramagnetic CoCr{sub 2}O{sub 4} or MnCr{sub 2}O{sub 4} and ferrimagnetic Fe{sub 3}O{sub 4} isostructural bilayers exhibits long range magnetic order of Co, Mn and Cr cations which cannot be explained in terms of the formation of interfacial MnFe{sub 2}O{sub 4} or CoFe{sub 2}O{sub 4}. Instead, the ferrimagnetism is induced by the adjacent Fe{sub 3}O{sub 4} layer and is the result of the stabilization of a spinel phase not achievable in bulk form. Magnetism at the interface region is observable up to 500 K, far beyond the chromite bulk Curie temperature of 50-95 K.

  16. Electrochemical performance of nanostructured spinel LiMn 2O 4 in different aqueous electrolytes

    Science.gov (United States)

    Tian, Lei; Yuan, Anbao

    A nanostructured spinel LiMn 2O 4 electrode material was prepared via a room-temperature solid-state grinding reaction route starting with hydrated lithium acetate (LiAc·2H 2O), manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, followed by calcination of the precursor at 500 °C. The material was characterized by X-ray diffraction (XRD) and transmission electron microscope techniques. The electrochemical performance of the LiMn 2O 4 electrodes in 2 M Li 2SO 4, 1 M LiNO 3, 5 M LiNO 3 and 9 M LiNO 3 aqueous electrolytes was studied using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. The LiMn 2O 4 electrode in 5 M LiNO 3 electrolyte exhibited good electrochemical performance in terms of specific capacity, rate dischargeability and charge/discharge cyclability, as evidenced by the charge/discharge results.

  17. [Copper leaching in catalytic wet oxidation of phenol with Cu-containing spinel].

    Science.gov (United States)

    Xu, Ai-hua; He, Song-bo; Yang, Min; Du, Hong-zhang; Sun, Cheng-lin

    2008-09-01

    The Cu0.10, Zn0.90 Al1.90 Fe0.10 O4 spinel type catalyst prepared by sol-gel method was tested for catalytic wet air oxidation of phenol. The performances of Cu0.10 Zn0.90 Al1.90 Fe0.10 O4 catalyst in TPR experiment, the influence of phenol as reducer, reaction temperature and phenol-to-catalyst mass ratio on copper leaching were checked respectively. According to the experimental results, it is suggested that the reduced active species can not be easily re-oxidized under low reaction temperature and high phenol-to-catalyst mass ratio are the main reasons for copper leaching. Under high enough reaction temperature and low phenol-to-catalyst mass ratio, the copper leaching reduces remarkably. At 190 degrees C in the presence of 100 mL aqueous solution of 4.29 g x L(-1) of phenol and 2.5 g catalyst, the copper leaching was only 0.96 mg x L(-1) after 2 h of reaction.

  18. Karakterisasi Membran Polimer Dengan Adsorben Inorganik Lithium Mangan Spinel Untuk Ekstraksi Lithium Dari Lumpur Sidoarjo

    Directory of Open Access Journals (Sweden)

    Sheila Pramusiwi Rozitawati

    2014-09-01

    Full Text Available Berdasarkan penelitian ilmuwan dari Jepang, Lumpur Sidoarjo mengandung unsur Lithium yang besar dan dapat dimanfaatkan sebagai bahan elektroda baterai ion lithium. Dari berbagai macam metode ekstraksi, dipilih metode adsorpsi dengan membran polimer karena lebih effisien. Membran polimer yang digunakan berbahan dasar PP (Polypropylene dengan nama dagang Kimtech, Polyester non-woven, dan PVDf (Polyvinyllidene difluoride hasil dari sintesa laboratorium dengan metode NIPS yang dikombinasikan dengan fiberglass, dengan adsorben inorganik Lithium-Mangan Spinel yang terbungkus di setiap membran. Dari karakterisasi membran polimer yang dilakukan diketahui bahwa membran PVDf 10:90 5%FG karena memenuhi persyaratan sebagai membran untuk ekstraksi lithium dari Lumpur Sidoarjo. Hasil pengujian menunjukkan hasil uji water uptake mencapai 61,95% lebih tinggi dari membran PVDf lainnya yang didukung dengan hasil SEM menunjukkan membran PVDf 10:90 5%FG ini dimana hasil SEM terlihat banyak pori. kemudian nilai kekuatan tariknya 139,594 N/mm2 cukup tinggi jika dibandingkan dengan nilai kimtech 6,09385 N/mm2 dan poliester non-woven 5,42757 N/mm2. Dan hasil uji ICP juga menunjukkan hasil paling baik yakni 3,55 ppm (mg/L yang berarti dapat mengadsorpsi lithium 60,68% dari lumpur Sidoarjo. Dari semua membran, PVDf 10:90 5%FG yang memenuhi persyaratan sebagai membran untuk ekstraksi Lithium.

  19. Facile synthesis of inverse spinel NiFe2O4 nanocrystals and their superparamagnetic properties

    Directory of Open Access Journals (Sweden)

    Jie Tan

    2013-02-01

    Full Text Available Spinel NiFe2O4 nanocrystals have been obtained by means of a novel composite-hydroxide-salt-mediated approach, which is based on a reaction between metallic salt and metallic oxide in the solution of composite-hydroxide-salt eutectic at ~225 ºC and normal atmosphere without any organic dispersant or capping agent. The obtained products are characterized by an X-ray diffraction (XRD, a transmission electron microscopy (TEM and an alternating gradient magnetometer (AGM. The formation process of NiFe2O4 nanosheet is proposed to begin with a ‘‘dissolution-recrystallization’’ which is followed by an ‘‘Ostwald ripening’’ mechanism. The NiFe2O4 nano-octahedrons can be obtained through adjusting the reaction water content in the hydroxide melts at constant temperature. At 300 K, magnetic hysteresis loops at an applied field of 15 kOe show zero coercivity, indicating the superparamagnetic behavior of the as-prepared NiFe2O4 nanocrystals.

  20. Settling of Spinel in a High-Level Waste Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Schill, Pert; Nemec, Lubomir

    2002-01-18

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150?C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel (a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occur in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters.

  1. Settling of Spinel in A High-Level Waste Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters.

  2. Magnetic properties of (Zn,Cd,Cu)-Co-Fe-Ti spinel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Moyo, T.; Giordanengo, B.; Melo, M.A.C. de; Takeuchi, A.Y.; Silva, P.R.J.; Saitovitch, H.; Baggio-Saitovitch, E. [University of Natal, Department of Physics (South Africa)

    1999-09-15

    AC susceptibility, magnetization and Moessbauer spectra have been measured for (Zn,Cd,Cu){sup 0.5}Co{sub 0.9}Fe{sub 1.2}Ti{sub 0.4}O{sub 4} and Zn{sub 0.3}Co{sub 0.9}Fe{sub 1.4}Ti{sub 0.4}O{sub 4} spinel oxides. The variation of coercive field below the spin glass transition temperature T{sub sg} is found to fit a double exponential function of the form H{sub c}(T)=H{sub 1e}{sup -{beta}{sub 1}}{sup T}+H{sub 2e}{sup -{beta}{sub 2}}{sup T}, where H{sub i} and {beta}{sub i} are constants. Moessbauer spectra and analysis show superparamagnetic fluctuations associated with magnetic clusters. Symmetric doublets above T{sub sg} are decomposed into quadrupole doublets associated with tetrahedral (A) and octahedral (B) sites.

  3. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  4. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  5. Aqueous slip casting of MgAl2O4 spinel powder

    Indian Academy of Sciences (India)

    Ibram Ganesh

    2011-04-01

    A stoichiometric MgAl2O4 spinel (MAS) powder was synthesized by calcining a compacted mixture of -Al2O3 and calcined caustic MgO at 1400°C for 1 h and was surface treated against hydrolysis using an ethanol solution of H3PO4 and Al(H2PO4)3 after fine grinding. Aqueous suspensions with 41–45 vol.% treated powder were prepared using tetra methyl ammonium hydroxide (TMAH) and an ammonium salt of polyacrylic acid (Duramax D-3005) as dispersing agents. These stable suspensions were consolidated in plaster moulds by slip casting (SC) route for the first time. For comparison purposes, the treated powder was also compacted by die-pressing technique after converting into freeze-dried granules and sintered along with slip cast samples at 1550–1650°C for 1–2 h. The MAS ceramics fabricated by slip casting and die-pressing exhibited comparable properties.

  6. Facile synthesis of inverse spinel NiFe2O4 nanocrystals and their superparamagnetic properties

    Directory of Open Access Journals (Sweden)

    Jie Tan

    2012-01-01

    Full Text Available Spinel NiFe2O4 nanocrystals have been obtained by means of a novel composite-hydroxide-salt-mediated approach, which is based on a reaction between metallic salt and metallic oxide in the solution of composite-hydroxide-salt eutectic at ~225 ºC and normal atmosphere without any organic dispersant or capping agent. The obtained products are characterized by an X-ray diffraction (XRD, a transmission electron microscopy (TEM and an alternating gradient magnetometer (AGM. The formation process of NiFe2O4 nanosheet is proposed to begin with a ‘‘dissolution-recrystallization’’ which is followed by an ‘‘Ostwald ripening’’ mechanism. The NiFe2O4 nano-octahedrons can be obtained through adjusting the reaction water content in the hydroxide melts at constant temperature. At 300 K, magnetic hysteresis loops at an applied field of 15 kOe show zero coercivity, indicating the superparamagnetic behavior of the as-prepared NiFe2O4 nanocrystals.

  7. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  8. Experimental Study on the Solubility of Cr2+ in Olivine,Orthopyroxene and Spinel Solid Solutions

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr2+ in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO+B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr3+ in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr2+ solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr2+ between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.

  9. Influence of mechanical activation of AL2O3 on synthesis of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Zhihui Zhang

    2004-01-01

    Full Text Available Magnesium aluminate (MA spinel is synthesized by reaction sintering from alumina and magnesia. The effects of mechanical activation of Al2O3 on reaction sintering were investigated. Non-milled a - Al2O3 and a - Al2O3 high-energy ball milled for 12h, 24h and 36h were mixed with a MgO analytical reagent according to the stoichiometric MA ratio, respectively and pressed into billets with diameters of 20mm and height of 15mm. The green-body billets were then sintered at high temperature in an air atmosphere. The results show that bulk density, relative content of MA and grain size of MA increase with increasing high-energy ball milling time of Al2O3. However prolonged milling time over 24h has a small beneficial effect on the densification of MA. Bulk density and grain size of a sample of a- Al2O3 milled for 24h are 3.30g/cm3 and 4-5 mm, respectively.

  10. Spin-spray plating of spinel ferrite films on semiconductor substrates

    Science.gov (United States)

    Yoo, Kee C.; Talisa, Salvador H.

    1990-10-01

    The possibility of monolithic integration of microwave magnetic and semiconductor electronic components has been investigated by growing spinel ferrite films on GaAs and Si using the spin-spray plating (SSP) technique. Since film deposition by SSP is performed at temperatures as low as 100 C, this process facilitates deposition of ferrite material without any thermal deterioration of the underlying GaAs devices. This was demonstrated by depositing and patterning a Ni-Zn ferrite film on a portion of a GaAs wafer containing several MMIC circuits. X-ray diffraction analysis of SSP-grown ferrite films indicated that the films formed different crystallographic textures at different growth temperatures. To achieve the thicker films required for practical device applications, deposition of a 25-pm-thick Ni-Zn ferrite film was demonstrated by a multiple deposition method with intermediate drying processes. The magnetic properties of these films, measured by ferrpmagnetic resonance (FMR) , compared well to those of commercially available polycrystalline material. The electrical resistivity of the films varied as a function of their chemical composition. The dielectric loss tangent (tan 5) of the as-deposited film was observed to be greater than ten. However, the measured resistivity dependence of dielectric loss tangent showed that the dominant microwave loss mechanism was not due to conduction alone. Post-growth annealing experiments indicated that moisture in the films trapped during the SSP process caused high dielectric losses, and that annealing could reduce the loss tangent value.

  11. Low-temperature electrical resistivity in paramagnetic spinel LiV2O4

    Science.gov (United States)

    Yushankhai, V.; Takimoto, T.; Thalmeier, P.

    2010-08-01

    The 3d -electron spinel compound LiV2O4 exhibits heavy fermion behavior below 30 K which is related to antiferromagnetic spin fluctuations strongly enhanced in an extended region of momentum space. This mechanism explains enhanced thermodynamic quantities and nearly critical NMR relaxation in the framework of the self-consistent renormalization (SCR) theory. Here we show that the low- T Fermi-liquid behavior of the resistivity and a deviation from this behavior for higher T may also be understood within that context. We calculate the temperature dependence of the electrical resistivity ρ(T) assuming that two basic mechanisms of the quasiparticle scattering, resulting from impurities and spin fluctuations, operate simultaneously at low temperature. The calculation is based on the variational principle in the form of a perturbative series expansion for ρ(T) . A peculiar behavior of ρ(T) in LiV2O4 is related to properties of low-energy spin fluctuations whose T dependence is obtained from SCR theory.

  12. Liquidus Temperature of High-Level Waste Borosilicate Glasses with Spinel Primary Phase

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Crum, Jarrod V.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Robert W. Smith; David W. Shoesmith

    2000-01-01

    Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310?C. Component additions increased the TL (per mass%) as Cr2O3 261?C, NiO 85?C, TiO2 42?C, MgO 33?C, Al2O3 18?C, and Fe2O3 18?C and decreased the TL (per mass%) as Na2O -29?C, Li2O -28?C, K2O -20?C, and B2O3 -8?C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

  13. Cr3+ NMR for Multiferroic Chromium spinel ZnCr2Se4

    Science.gov (United States)

    Park, Sejun; Kwon, Sangil; Lee, Soonchil; Khim, Seunghyun; Bhoi, Dilip Kumar; Kim, Kee Hoon

    Multiferroic systems including ZnCr2Se4, the chromium spinel with helical spin structure, have been in huge interest for decades due to its physical variety and applicability. In the temperature range between 21K and 80K, this material shows negative thermal expansion. Due to the bond frustration, the spins of the chromium ions order helically below the transition temperature, 21K, though the exchange constant tends to make a ferro-order. The anomalous 1storder-like magnetic transition is yet clarified and still an interesting topic. To probe microscopic origin of these features, we measured zero-field NMR of Cr3+ ions having nuclear spin 3/2. Six peaks were observed revealing Nuclear Quadrupole Resonance(NQR) and anisotropic hyperfine field at chromium sites. The NQR spectrum reveals that the structure is highly distorted below the magnetic transition temperature where the normal Jahn-Teller distortion is absent. Temperature dependence of the spectrum is also measured to obtain the magnetization as a function of temperature.

  14. Stresses and Cracking During Chromia-Spinel-NiO Cluster Formation in TBC Systems

    Science.gov (United States)

    Eriksson, Robert; Gupta, Mohit; Broitman, Esteban; Jonnalagadda, Krishna Praveen; Nylén, Per; Lin Peng, Ru

    2015-08-01

    Thermal barrier coatings (TBC) are used in gas turbines to reduce the temperatures in the underlying substrate. There are several mechanisms that may cause the TBC to fail; one of them is cracking in the coating interface due to extensive oxidation. In the present study, the role of so called chromia-spinel-NiO (CSN) clusters in TBC failure was studied. Such clusters have previously been found to be prone to cracking. Finite element modeling was performed on a CSN cluster to find out at which stage of its formation it cracks and what the driving mechanisms of cracking are. The geometry of a cluster was obtained from micrographs and modeled as close as possible. Nanoindentation was performed on the cluster to get the correct Young's moduli. The volumetric expansion associated with the formation of NiO was also included. It was found that the cracking of the CSN clusters is likely to occur during its last stage of formation as the last Ni-rich core oxidizes. Furthermore, it was shown that the volumetric expansion associated with the oxidation only plays a minor role and that the main reason for cracking is the high coefficient of thermal expansion of NiO.

  15. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    Science.gov (United States)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  16. Ab-initio optical properties and dielectric response of open-shell spinel zinc ferrite

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-02-01

    In the present work, we predict the optical properties and the dielectric response spectrum of the spinel zinc ferrite Zn2Fe4O8, and show in particular the impact of many-body effects on the absorption spectrum, using advanced many-body perturbation approach. The excitonic effects remarkably redistribute the spectral weights causing a red-shift of 1.6 eV of the maximum of the independent particle G 0 W 0 (IP- G 0 W 0) towards the electron-hole affected spectrum. The excitation spectrum of the zinc ferrite exhibits a low lying doubly degenerated bound dark exciton at 1.84 eV with a fully symmetric excited-state density, and a narrow optical gap setting on at 1.93 eV. We further analyse the electronic transitions and exciton density distributions giving insights to the nature of excitations. The dielectric response of Zn2Fe4O8 shows a particular sensitivity to the excitations higher than the electronic band gap, however it abruptly becomes passive to the incoming electro-magnetic wave and propagates to the negative regions at high energy regimes.

  17. Spinel LiMn2O4 nanorods as lithium ion battery cathodes.

    Science.gov (United States)

    Kim, Do Kyung; Muralidharan, P; Lee, Hyun-Wook; Ruffo, Riccardo; Yang, Yuan; Chan, Candace K; Peng, Hailin; Huggins, Robert A; Cui, Yi

    2008-11-01

    Spinel LiMn2O4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline beta-MnO2 nanorods and their chemical conversion into free-standing single-crystalline LiMn2O4 nanorods using a simple solid-state reaction. The LiMn2O4 nanorods have an average diameter of 130 nm and length of 1.2 microm. Galvanostatic battery testing showed that LiMn2O4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn2O4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3 V.

  18. CoMn2O4 spinel from a MOF: synthesis, structure and magnetic studies.

    Science.gov (United States)

    Mahata, Partha; Sarma, Debajit; Madhu, C; Sundaresen, A; Natarajan, Srinivasan

    2011-03-07

    A hydrothermal reaction of Mn(OAc)(2)·4H(2)O, Co(OAc)(2)·4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 °C for 24 h gives rise to a mixed metal MOF compound, [CoMn(2){C(6)H(3)(COO)(3)}(2)], I. The structure is formed by the connectivity between octahedral CoO(6) and trigonal prism MnO(6) units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M(2+) ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn(2)O(4), with particle sizes in the nano regime at 400 °C. The particle size of the CoMn(2)O(4) can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn(2)O(4) compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.

  19. Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    KAUST Repository

    Kim, Do Kyung

    2008-11-12

    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.

  20. Structural, Optical, and Magnetic Characterization of Spinel Zinc Chromite Nanocrystallines Synthesised by Thermal Treatment Method

    Directory of Open Access Journals (Sweden)

    Salahudeen A. Gene

    2014-01-01

    Full Text Available The present study reports the structural and magnetic characterization of spinel zinc chromite (ZnCr2O4 nanocrystallines synthesized by thermal treatment method. The samples were calcined at different temperatures in the range of 773 to 973 K. Polyvinylpyrrolidone was used to control the agglomeration of the nanoparticles. The average particle size of the synthesized nanocrystals was determined by powder X-ray diffraction which shows that the crystallite size increases from 19 nm at 773 K to 24 nm at 973 K and the result was in good agreement with the transmission electron microscopy images. The elemental composition of the samples was determined by energy dispersed X-ray spectroscopy which confirmed the presence of Zn, Cr, and O in the final products. Fourier transform infrared spectroscopy also confirmed the presence of metal oxide bands for all the samples calcined at different temperature. The band gap energy was calculated from UV-vis reflectance spectra using the Kubelka-Munk function and the band gap energy of the samples was found to decrease from 4.03 eV at 773 K to 3.89 eV at 973 K. The magnetic properties were also demonstrated by electron spin resonance spectroscopy, the presence of unpaired electrons was confirmed, and the resonant magnetic field and the g-factor of the calcined samples were also studied.

  1. Frustration effects in spinel compound GeCo2O4 studied by ultrasound velocity measurements

    Science.gov (United States)

    Watanabe, Tadataka; Hara, Shigeo; Ikeda, Shin-Ichi

    2009-03-01

    Ultrasound velocity measurements of the cubic spinel GeCo2O4 in the single crystal have been performed for the investigations of shear and compression moduli. The shear moduli reveal the absence of Jahn-Teller activity despite the presence of the orbital degeneracy in the Co2+ ions. This Jahn-Teller inactivity indicates that the intersite orbital-orbital interaction is much stronger than the Jahn-Teller coupling. The compression moduli reveal that the dominant path of the exchange interactions for the antiferromagnetic transition lies in the [111] direction. This exchange-path anisotropy is consistent with the antiferromagnetic structure with the wave vector q parallel [111], suggesting the presence of bond frustration among several ferromagnetic and antiferromagientic interactions. In the JT-inactive condition, the bond frustration can be induced by geometrical orbital frustration of t2g-t2g interaction between the Co2+ ions which can be realized in the pyrochlore lattice of the high spin Co2+ with t2g -orbital degeneracy. In GeCo2O4, the tetragonal elongation below TN releases the orbital frustration by quenching the orbital degeneracy.

  2. Ultrasound measurements in the spinel compound GeCo{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sasame, H [Nihon University, Chiyoda-ku, 101-8308 Tokyo (Japan); Yoshimoto, H [Nihon University, Chiyoda-ku, 101-8308 Tokyo (Japan); Takahashi, Y [Nihon University, Chiyoda-ku, 101-8308 Tokyo (Japan); Watanabe, T [Nihon University, Chiyoda-ku, 101-8308 Tokyo (Japan); Takase, K [Nihon University, Chiyoda-ku, 101-8308 Tokyo (Japan); Takano, Y [Nihon University, Chiyoda-ku, 101-8308 Tokyo (Japan); Hara, S [AIST, Tsukuba, 305-8568 Ibaraki (Japan); Ikeda, Si [AIST, Tsukuba, 305-8568 Ibaraki (Japan)

    2007-12-15

    Elastic properties of the spinel compound GeCo{sub 2}O{sub 4} were investigated by the ultrasound velocity measurements in the single crystal. Absence of the elastic softening in (C{sub 11}- C{sub 12})/2 in the paramagnetic state suggests the Jahn-Teller inactive character of Co{sup 2+}, despite the presence of the orbital degree of freedom. The pronounced C{sub 44} anomaly in the paramagnetic state near T{sub N} alternatively suggests that the ultrasound dominantly couple to the exchange interactions among Co{sup 2+} ions by the exchange striction effect. The present results conclude that Co{sup 2+} adopts the high spin state in this substance. In the antiferromagnetic phase, new elastic anomalies were observed only in (C{sub 11}- C{sub 12})/2 implying the occurrence of the magnetic transitions triggered by the exchange interactions within the Co{sup 2+} bonds along [110] directions.

  3. Ultrasound Velocity Measurements in the Orbital-Degenerate Frustrated Spinel MgV2O4

    Science.gov (United States)

    Watanabe, Tadataka; Ishikawa, Takashi; Hara, Shigeo; Islam, A. T. M. Nazmul; Wheeler, Elisa M.; Lake, Bella

    2014-03-01

    Magnesium vanadate spinel MgV2O4 is a geometrically frustrated magnet with t2 g-orbital degeneracy of V3+ (3d2), which undergoes a cubic-to-tetragonal structural transition at Ts = 65 K and an antiferromagnetic (AF) transition at TN = 42 K. For MgV2O4, it is considered that the occurrence of t2 g-orbital order at Ts causes the release of frustration by the AF ordering at TN lower than Ts. We performed ultrasound velocity measurements in high-purity single crystal of MgV2O4. Temperature dependence of the tetragonal shear modulus (C11 -C12)/2 exhibits huge Curie-type softening in the cubic paramagnetic (PM) phase (T >Ts), which should be a precursor to the cubic-to-tetragonal lattice distortion at Ts. The trigonal shear modulus C44(T) exhibits softening with an upturn curvature in the cubic PM phase, indicating a coupling of the lattice to magnetic excitations. These softenings suggest the coexistence of the dynamical Jahn-Teller effect and the dynamical magnetic state in the cubic PM phase.

  4. Elastic properties of the vanadate spinel MnV2O4

    Science.gov (United States)

    Keppens, V.; Luan, Y.; Garlea, V. O.; Jin, R.; Mandrus, D.

    2008-03-01

    Spinel vanadates AV2O4 are known to undergo a cubic-to-tetragonal structural phase transition (SPT) at temperature TS and order magnetically at lower temperature TN. ZnV2O4 is characteristic of the entire series and has received extensive theoretical attention. When Mn occupies the A site there is an additional superexchange interaction between Mn and V. This superexchange interaction leads to ferrimagnetic order at about 56 K, involving a ferromagnetic configuration of the V spins. The current work focuses on the elastic properties of MnV2O4. Resonant Ultrasound Spectroscopy (RUS) has been used to measure the elastic response of the sample, as a function of temperature (5-300K) and magnetic field (0-7 Tesla). The temperature dependence of the frequencies is found to be quite unusual, displaying a softening over a large temperature range. Measurements in magnetic field reveal an additional feature near 50 K, which could represent a striking manifestation of direct spin-orbital coupling.

  5. Ultrasound Velocity Measurements in the Geometrically Frustrated Spinel MgCr2O4

    Science.gov (United States)

    Watanabe, Tadataka; Kousaka, Yusuke; Tomiyasu, Keisuke

    2012-02-01

    Magnesium chromite spinel MgCr2O4 is a geometrically frustrated magnet with the Néel temperature TN˜13 K, and the Weiss temperature θW= -390 K. Recent inelastic neutron scattering experiments provided a compelling evidence for the spin molecular ground states in not only the paramagnetic phase but also the antiferromagnetic phase. We performed ultrasound velocity measurements of MgCr2O4 in all the symmetrically independent elastic moduli of C11, (C11-C12)/2, and C44. Temperature dependence of all of these elastic moduli exhibits a remarkable softening in the paramagnetic phase. Taking into account the absence of orbital degrees of freedom in Cr^3+ (3d^3) in MgCr2O4, the spin degrees of freedom should play a significant role for the elastic softening. The most probable origin for the elastic softening in the paramagnetic phase is the strong coupling of the acoustic phonons to the molecular spin fluctuations.

  6. Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures

    Indian Academy of Sciences (India)

    B P Singh; H Chandra; R Shyam; A Singh

    2012-08-01

    We have presented an analysis of the volume expansion data for periclase (MgO), lime (CaO), corundum (Al2O3) and spinel (MgAl2O4) determined experimentally by Fiquet et al (1999) from 300K up to 3000K. The thermal equation of state due to Suzuki et al (1979) and Shanker et al (1997) are used to study the relationships between thermal pressure and volume expansion for the entire range of temperatures starting from room temperature up to the melting temperatures of the solids under study. Comparison of the results obtained in the present study with the corresponding experimental data reveal that the thermal pressure changes with temperature almost linearly up to quite high temperatures. At extremely high temperatures close to the melting temperatures thermal pressure deviates significantly from linearity. This prediction is consistent with other recent investigations. A quantitative analysis based on the theory of anharmonic effects has been presented to account for the nonlinear variation of the thermal pressure at high temperatures.

  7. A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel.

    Science.gov (United States)

    Gilbert, C A; Smith, R; Kenny, S D; Murphy, S T; Grimes, R W; Ball, J A

    2009-07-08

    Point and small cluster defects in magnesium aluminate spinel have been studied from a first principles viewpoint. Typical point defects that occur during collision cascade simulations are cation anti-site defects, which have a small formation energy and are very stable, O and Mg split interstitials and vacancies. Isolated Al interstitials were found to be energetically unfavourable but could occur as part of a split Mg-Al pair or as a three atom-three vacancy Al 'ring' defect, previously observed in collision cascades using empirical potentials. The structure and energetics of the defects were investigated using density functional theory (DFT) and the results compared to simulations using empirical fixed charge potentials. Each point defect was studied in a variety of supercell sizes in order to ensure convergence. It was found that empirical potential simulations significantly overestimate formation energies, but that the type and relative stability of the defects are well predicted by the empirical potentials both for point defects and small defect clusters.

  8. Synthesis, characterization and photocatalytic properties of Mg1-xZnxAl2O4 spinel nanoparticles

    Science.gov (United States)

    Li, Hui; Liu, Yuqin; Tang, Junkai; Deng, Yanxi

    2016-08-01

    Mg1-xZnxAl2O4 spinel nanoparticles with x = 0, 0.05, 0.10, 0.15 and 0.20 were prepared via the chemical coprecipitation method. The obtained samples were characterised by thermal gravimetric and differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, UV-Vis diffuse reflection spectrum, transmission electron microscopy and 27Al MAS-NMR spectroscopy. Mg1-xZnxAl2O4 spinel powders with the mean crystallite size of around 11 nm-14 nm were obtained. The crystallinity of the MgAl2O4 samples increases with the increase in the calcination temperature. At the same calcination temperature, higher amount of Zn2+ substitution leads to the higher level of crystallinity, but has no apparent influence on the mean crystallite size of the samples. The photocatalytic activity of the obtained Mg1-xZnxAl2O4 spinel nanoparticles was evaluated by monitoring the degradation of methylene blue under UV light. The degradation rates of methylene blue using the MgAl2O4 nanoparticles prepared at the calcination temperatures of 700 °C and 800 °C are much higher than those prepared at 900 °C and 1000 °C. The photocatalytic activities of the spinel powders with lower level of Zn2+ substitution such as Mg0.95Zn0.05Al2O4 are inferior to that of MgAl2O4. Results of 27Al MAS-NMR spectroscopy analysis and the first principle total density of state calculations reveal that this is probably due to the substitutions of Zn2+ decreasing the degree of Al3+ ions inversion over the sites of tetrahedral and octahedral coordination. With the increase in the amounts of Zn2+ substitution, the effects of Zn2+ additions on the photocatalytic activities become gradually predominant, leading to the increases in the degradation rates. The methylene blue degraded by 99% within 4 h using the Mg0.8Zn0.2Al2O4 spinel powders.

  9. The origin of very wide binary stars

    CERN Document Server

    Kouwenhoven, M B N; Davies, Melvyn B; Parker, Richard J; Kroupa, P; Malmberg, D

    2011-01-01

    A large population of fragile, wide (> 1000 AU) binary systems exists in the Galactic field and halo. These wide binary stars cannot be primordial because of the high stellar density in star forming regions, while formation by capture in the Galactic field is highly improbable. We propose that these binary systems were formed during the dissolution phase of star clusters (see Kouwenhoven et al. 2010, for details). Stars escaping from a dissolving star cluster can have very similar velocities, which can lead to the formation of a wide binary systems. We carry out N-body simulations to test this hypothesis. The results indicate that this mechanism explains the origin of wide binary systems in the Galaxy. The resulting wide binary fraction and semi-major axis distribution depend on the initial conditions of the dissolving star cluster, while the distributions in eccentricity and mass ratio are universal. Finally, since most stars are formed in (relatively tight) primordial binaries, we predict that a large fract...

  10. Formation of wide binaries by turbulent fragmentation

    Science.gov (United States)

    Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.

    2017-08-01

    Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.

  11. Binary dynamics near a massive black hole

    CERN Document Server

    Hopman, Clovis

    2009-01-01

    We analyze the dynamical evolution of binary stars that interact with a static background of single stars in the environment of a massive black hole (MBH). All stars are considered to be single mass, Newtonian point particles. We follow the evolution of the energy E and angular momentum J of the center of mass of the binaries with respect to the MBH, as well as their internal semi-major axis a, using a Monte Carlo method. For a system like the Galactic center, the main conclusions are the following: (1) The binary fraction can be of the order of a few percent outside 0.1 pc, but decreases quickly closer to the MBH. (2) Within ~0.1 pc, binaries can only exist on eccentric orbits with apocenters much further away from the MBH. (3) Far away from the MBH, loss-cone effects are the dominant mechanism that disrupts binaries with internal velocities close to the velocity dispersion. Closer to the MBH, three-body encounters are more effective in disrupting binaries. (4) The rate at which hard binaries become tighter ...

  12. Interrupted Binary Mass Transfer in Star Clusters

    CERN Document Server

    Leigh, Nathan W C; Toonen, Silvia

    2016-01-01

    Binary mass transfer is at the forefront of some of the most exciting puzzles of modern astrophysics, including Type Ia supernovae, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this time-scale to the mean time for stable mass transfer to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing mass transfer that are expected to be disrupted as a function of the host cluster pro...

  13. Interrupted Binary Mass Transfer in Star Clusters

    Science.gov (United States)

    Leigh, Nathan W. C.; Geller, Aaron M.; Toonen, Silvia

    2016-02-01

    Binary mass transfer (MT) is at the forefront of some of the most exciting puzzles of modern astrophysics, including SNe Ia, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this timescale to the mean time for stable MT to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing MT that are expected to be disrupted as a function of the host cluster properties. We find that for lower-mass clusters (≲ {10}4 {M}⊙ ), on the order of a few to a few tens of percent of binaries undergoing MT are expected to be interrupted by an interloping single, or more often binary, star, over the course of the cluster lifetime, whereas in more massive globular clusters we expect \\ll 1% to be interrupted. Furthermore, using numerical scattering experiments performed with the FEWBODY code, we show that the probability of interruption increases if perturbative fly-bys are considered as well, by a factor ˜2.

  14. Petrogenesis of spinel peridotite suite xenoliths from northern Santa Cruz province, Argentina; implication for the Patagonian Lithospheric Mantle

    Science.gov (United States)

    Ntaflos, Theodoros; Mundl, Andrea; Bjerg, Ernesto; Tschegg, Cornelius; Kosler, Jan

    2010-05-01

    Mantle xenoliths from Don Camilo, an area located on the North margin of the Deseado Masiff in Patagonia, comprise spinel bearing lherzolites, harburgites and dunites, wehrlites, clinopyroxenites and gabbros. The most common rock type in our collection is spinel-lherzolite followed by dunites. Harzurgites, wehrlites and gabbros are less widespread. Spinel-lherzolites and harzburgites have protogranular textures whereas dunites have equigranular to equigranular tabular textures. There are two kinds of dunites: mantle dunites and cumulate dunites. The olivine mg# in the mantle dunites vary within a narrow range, from 90.5 to 91.5 and the NiO content from 0.39 to 0.42 wt%, whereas in the cumulate dunites the mg# ranges from 87 to 90.5 and the NiO content from 0.22 to 0.40 wt%. Both types of dunites contain fine grained interstitial diopside. Hydrous phases, besides one sample that contains amphibole, were so far not found. The spinel peridotites have whole rock REE abundances depleted in LREE [(La/Yb)N=0.34-0.85)] and the dunites are LREE enriched [(La/Yb)N=3.49]. LA-ICP-MS analyses of cpx show that a number of the studied spinel peridotite xenoliths experienced cryptic metasomatism. Three groups of xenoliths have been recognized according to REE and other incompatible trace element patterns in cpx: group I has depleted LREE abundances, group II is highly enriched in LREE (20-30 x PM) and group 3 has moderate LREE enrichments. The core of some clinopyroxenes in group II has depleted LREE similar to those in group I, apparently representing relictic cores not affected by metasomatism. In addition the metasomatized clinopyroxenes are significantly enriched in Sr, Th and U. Evidently, the metasomatic agent was a H2O-rich fluid (high LREE, Sr, Th and U). Clinopyroxene Sr and Nd isotopic ratios vary largely from 0.702671 to 0.705788 and from 0.51229 to 0.513251 respectively. Mantle and cumulate dunites have experienced modal metasomatism. In both types of dunites the

  15. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2014-01-01

    We evaluate a binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Prior research has shown this procedure to robustly induce risk neutrality when subjects are given a single risk task defined over objective probabilities. Drawing a sample from...... the same subject population, we find evidence that the binary lottery procedure also induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation of subjective probabilities in subjects...... with popular non-expected utility preference representations that satisfy weak conditions....

  16. Dynamical mass transfer in cataclysmic binaries

    Science.gov (United States)

    Melia, Fulvio; Lamb, D. Q.

    1987-01-01

    When a binary comes into contact and mass transfer begins, orbital angular momentum is stored in the accretion disk until the disk couples tidally to the binary system. Taam and McDermott (1987) have suggested that this leads to unstable dynamical mass transfer in many cataclysmic variables in which mass transfer would otherwise be stable, and that it explains the gap between 2 and 3 h in the orbital period distribution of these systems. Here the consequences of this hypothesis for the evolution of cataclysmic binaries are explored. It is found that systems coming into contact longward of the period gap undergo one or more episodes of dynamical mass transfer.

  17. Blind iterative deconvolution of binary star images

    CERN Document Server

    Saha, S K

    1997-01-01

    The technique of Blind Iterative De-convolution (BID) was used to remove the atmospherically induced point spread function (PSF) from short exposure images of two binary stars, HR 5138 and HR 5747 obtained at the cassegrain focus of the 2.34 meter Vainu Bappu Telescope(VBT), situated at Vainu Bappu Observatory (VBO), Kavalur. The position angles and separations of the binary components were seen to be consistent with results of the auto-correlation technique, while the Fourier phases of the reconstructed images were consistent with published observations of the binary orbits.

  18. Binary Cu-Zr Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Mei-Bo; ZHAO De-Qian; PAN Ming-Xiang; WANG Wei-Hua

    2004-01-01

    @@ We report that bulk metallic glasses (BMGs) can be produced up to 2 mm by a copper mould casting in Cux Zr1-x binary alloy with a wide glass forming composition range (45 < x < 60 at.%). We find that the formation mechanism for the binary Cu-Zr binary BMG-forming alloy is obviously different from that of the intensively studied multicomponent BMGs. Our results demonstrate that the criteria for the multicomponent alloys with composition near deep eutectic and strong liquid behaviour are no longer the major concern for designing BMGs.

  19. Fast algorithms for generating binary holograms

    CERN Document Server

    Stuart, Dustin; Kuhn, Axel

    2014-01-01

    We describe three algorithms for generating binary-valued holograms. Our methods are optimised for producing large arrays of tightly focussed optical tweezers for trapping particles. Binary-valued holograms allow us to use a digital mirror device (DMD) as the display element, which is much faster than other alternatives. We describe how our binary amplitude holograms can be used to correct for phase errors caused by optical aberrations. Furthermore, we compare the speed and accuracy of the algorithms for both periodic and arbitrary arrangements of traps, which allows one to choose the ideal scheme depending on the circumstances.

  20. Discovery of a 2 Kpc Binary Quasar

    OpenAIRE

    Shields, G. A.; Junkkarinen, V.; Beaver, E. A.; Burbidge, E. M.; Cohen, R. D.; Hamann, F.; Lyons, R. W.

    2001-01-01

    LBQS 0103$-$2753 is a binary quasar with a separation of only 0.3 arcsec. The projected spacing of 2.3 kpc at the distance of the source (z = 0.848) is much smaller than that of any other known binary QSO. The binary nature is demonstrated by the very different spectra of the two components and the low probability of a chance pairing. LBQS 0103$-$2753 presumably is a galaxy merger with a small physical separation between the two supermassive black holes. Such objects may provide important con...