WorldWideScience

Sample records for fe-doped srtio3 single

  1. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  2. Electronic structure and lattice dynamics at the interface of single layer FeSe and SrTiO3

    Science.gov (United States)

    Ahmed, Towfiq; Balatsky, Alexander; Zhu, Jian-Xin

    Recent discovery of high-temperature superconductivity with the superconducting energy gap opening at temperatures close to or above the liquid nitrogen boiling point in the single-layer FeSe grown on SrTiO3 has attracted significant interest. It suggests that the interface effects can be utilized to enhance the superconductivity. It has been shown recently that the coupling between the electrons in FeSe and vibrational modes at the interface play an important role. Here we report on a detailed study of electronic structure and lattice dynamics in the single-layer FeSe/SrTiO3 interface by using the state-of-art electronic structure method within the density functional theory. The nature of the vibrational modes at the interface and their coupling to the electronic degrees of freedom are analyzed. In addition, the effect of hole and electron doping in SrTiO3 on the electron-mode coupling strength is also considered. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the DOE Office of Basic Energy Sciences.

  3. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3.

    Science.gov (United States)

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO 3 and iron doped SrTiO 3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO 3 and compared it to DOS of iron-doped SrTiO 3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO 3 and iron-doped SrTiO 3 . Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO 3 , are accessible only on TiO 2 terminated SrTiO 3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction.

  4. How Correlated is the FeSe /SrTiO3 System?

    Science.gov (United States)

    Mandal, Subhasish; Zhang, Peng; Ismail-Beigi, Sohrab; Haule, K.

    2017-08-01

    Recent observation of ˜10 times higher critical temperature in a FeSe monolayer compared with its bulk phase has drawn a great deal of attention because the electronic structure in the monolayer phase appears to be different than bulk FeSe. Using a combination of density functional theory and dynamical mean field theory, we find electronic correlations have important effects on the predicted atomic-scale geometry and the electronic structure of the monolayer FeSe on SrTiO3 . The electronic correlations are dominantly controlled by the Se-Fe-Se angle either in the bulk phase or the monolayer phase. But the angle sensitivity increases and the orbital differentiation decreases in the monolayer phase compared to the bulk phase. The correlations are more dependent on Hund's J than Hubbard U . The observed orbital selective incoherence to coherence crossover with temperature confirms the Hund's metallic nature of the monolayer FeSe. We also find electron doping by oxygen vacancies in SrTiO3 increases the correlation strength, especially in the dx y orbital by reducing the Se-Fe-Se angle.

  5. Thickness-dependent photovoltaic effects in miscut Nb-doped SrTiO3 single crystals

    International Nuclear Information System (INIS)

    Yue Zengji; Zhao Kun; Zhao Songqing; Lu Zhiqing; Li Xiaoming; Ni Hao; Wang Aijun

    2010-01-01

    The photovoltaic effects of Nb-doped SrTiO 3 single crystals with different thicknesses were investigated under the illumination of ultraviolet pulsed lasers. The peak photovoltage increased and then decreased quickly with the decrease in crystal thickness, and a maximum photovoltage occurred for the 180 μm-thick crystal. The photovoltaic response time decreased monotonically with decreasing crystal thickness. The present results suggested the promising potential of reducing crystal thickness in high sensitivity detectors with fast response.

  6. Investigation of the electroforming and resistive switching mechanisms in Fe-doped SrTiO3 thin films

    International Nuclear Information System (INIS)

    Menke, Tobias

    2009-01-01

    To overcome the physical limits of todays memory technologies new concepts are needed. The resistive random access memory (RRAM), which bases on a nonvolatile and repeatable change of the resistance by external electrical stimuli, seems to be one promising candidate. Within the scope of this work, the model system Strontium titanate (SrTiO 3 ) has been investigated to get a deeper understanding of the underlying physical mechanism related to the resistance change. The electrical properties of SrTiO 3 (STO) can be modulated from a band insulator to metallic conduction by a self-doping with oxygen vacancies which act as shallow donors. A local accumulation or depletion of oxygen vacancies at the vicinity of the surface will lead to a local redox process which is responsible for the resistance change. To study the influence of the interfaces on the switching properties of SrTiO 3 thin films, epitaxial films of Fe-doped SrTiO 3 were grown on different bottom electrodes (SrRuO 3 , LaNiO 3 und Nb:STO) by a ''Pulsed Laser Deposition'' technique. An atomic force microscope equipped with a conductive tip (LC-AFM) allowed studying the conductivity of the deposited films on the nanometer scale. Resistive switching of lateral structures smaller than ∝5 nm could be realized which represents the potential of this material for a further downscaling of RRAM devices. The deposition of top electrodes, made of Platinum or Titanium, allowed the electrical characterization of metal-insulator-metal (MIM) structures. An extensive investigation of pristine MIM-devices by impedance spectroscopy showed the big impact of the metal-insulator interface on the overall device resistance. Furthermore, a chemical polarization was studied by dynamical current sweeps and identified as a volatile resistance variation. Usually a forming procedure is needed to ''enable'' the resistive switching properties in MIM devices. The electroforming of these devices was extensively studied and could be

  7. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  8. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  9. Thermoelectric performance enhancement of SrTiO3 by Pr doping

    KAUST Repository

    Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2014-01-01

    We investigate Pr doping at the Sr site as a possible route to enhance the thermoelectric behavior of SrTiO3-based materials, using first principles calculations in full-potential density functional theory. The effects of the Pr dopant on the local electronic structure and resulting transport properties are compared to common Nb doping. We demonstrate a substantial enhancement of the thermoelectric figure of merit and develop an explanation for the positive effects, which opens new ways for materials optimization by substitutional doping at the perovskite B site. © 2014 the Partner Organisations.

  10. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  11. Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Lee, M; Arras, R; Warot-Fonrose, B; Hungria, T; Lippmaa, M; Daimon, H; Casanove, M J

    2017-11-01

    The structure of Ir-doped LaAlO 3 /SrTiO 3 (001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO 3 film as a function of the Ir concentration in the topmost SrTiO 3 layer. It is shown that the LaAlO 3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L 2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.

  12. Electrostatic analysis of n-doped SrTiO3 metal-insulator-semiconductor systems

    International Nuclear Information System (INIS)

    Kamerbeek, A. M.; Banerjee, T.; Hueting, R. J. E.

    2015-01-01

    Electron doped SrTiO 3 , a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO 3 systems show reasonably strong rectification even when SrTiO 3 is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO x in between the metal and n-SrTiO 3 interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO 3 ) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO 3 . The non-linear permittivity of n-SrTiO 3 leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors

  13. Electrochemical characterization and redox behavior of Nb-doped SrTiO3

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2009-01-01

    Sr-vacancy compensated Nb-doped SrTiO3 with the nominal composition Sr0.94Ti0.9Nb0.1O3 has been evaluated as a solid oxide fuel cell (SOFC) anode material in terms of redox stability and electrochemical properties. Sr0.94Ti0.9Nb0.1O3 has been synthesized with a recently developed modified glycine......-nitrate process. The phase purity and redox behavior have been analyzed with XRD and TGA. The electrochemical properties of Sr0.94Ti0.9Nb0.1O3 and a composite electrode of Sr0.94Ti0.9Nb0.1O3/YSZ have been investigated by electrochemical impedance spectroscopy (EIS) on cone shaped electrodes and on electrodes...... in a symmetrical cell configuration. The experiments indicated that the Nb-doped SrTiO3 electrodes were redox stable and showed a potential ability to be used as a part of a SOFC anode. The electrochemical activity appeared to be governed by the concentration of defect species (especially Ti3+ and V-0...

  14. Thermal infrared and microwave absorbing properties of SrTiO3/SrFe12O19/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Hosseini, Seyed Hossein; Zamani, Parisa; Mousavi, S.Y.

    2015-01-01

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO 3 /SrFe 12 O 19 /PANI exhibited electric and electromagnetic properties. • The SrTiO 3 /SrFe 12 O 19 /PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO 3 was synthesized as IR absorbent and core and then SrFe 12 O 19 as microwave absorbent was prepared on SrTiO 3 via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO 3 /SrFe 12 O 19 nanoparticles via in situ polymerization by multi core–shell structures (SrTiO 3 /SrFe 12 O 19 /PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the SrTiO 3 /SrFe 12 O 19 /PANI nanocomposites have good compatible

  15. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3−δ

    International Nuclear Information System (INIS)

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO 3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr 2 O 3 versus Pr 6 O 11 ) on the synthesis and electronic transport in Pr-doped SrTiO 3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO 3 ceramics and provide new insight on further improvement of the thermoelectric power factor

  16. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3−δ

    KAUST Repository

    Dehkordi, Arash Mehdizadeh

    2015-02-07

    Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr2O3 versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO3 ceramics and provide new insight on further improvement of the thermoelectric power factor.

  17. Microscopic characterization of Fe nanoparticles formed on SrTiO3(001 and SrTiO3(110 surfaces

    Directory of Open Access Journals (Sweden)

    Miyoko Tanaka

    2016-06-01

    Full Text Available Fe nanoparticles grown on SrTiO3 (STO {001} and {110} surfaces at room temperature have been studied in ultrahigh vacuum by means of transmission electron microscopy and scanning tunnelling microscopy. It was shown that some Fe nanoparticles grow epitaxially. They exhibit a modified Wulff shape: nanoparticles on STO {001} surfaces have truncated pyramid shapes while those on STO {110} surfaces have hexagonal shapes. From profile-view TEM images, approximate values of the adhesion energy of the nanoparticles for both shapes are obtained.

  18. Direct evidence of superconductivity and determination of the superfluid density in buried ultrathin FeSe grown on SrTiO3

    Science.gov (United States)

    Biswas, P. K.; Salman, Z.; Song, Q.; Peng, R.; Zhang, J.; Shu, L.; Feng, D. L.; Prokscha, T.; Morenzoni, E.

    2018-05-01

    Bulk FeSe is superconducting with a critical temperature Tc≅8 K and SrTiO3 is insulating in nature, yet high-temperature superconductivity has been reported at the interface between a single-layer FeSe and SrTiO3. Angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements observe a gap opening at the Fermi surface below ≈60 K. Elucidating the microscopic properties and understanding the pairing mechanism of single-layer FeSe is of utmost importance as it is a basic building block of iron-based superconductors. Here, we use the low-energy muon spin rotation/relaxation technique to detect and quantify the supercarrier density and determine the gap symmetry in FeSe grown on SrTiO3 (100). Measurements in applied field show a temperature-dependent broadening of the field distribution below ˜60 K, reflecting the superconducting transition and formation of a vortex state. Zero-field measurements rule out the presence of magnetism of static or fluctuating origin. From the inhomogeneous field distribution, we determine an effective sheet supercarrier density ns2 D≃6 ×1014cm-2 at T →0 K, which is a factor of 4 larger than expected from ARPES measurements of the excess electron count per Fe of 1 monolayer FeSe. The temperature dependence of the superfluid density ns(T ) can be well described down to ˜10 K by simple s -wave BCS, indicating a rather clean superconducting phase with a gap of 10.2(1.1) meV. The result is a clear indication of the gradual formation of a two-dimensional vortex lattice existing over the entire large FeSe/STO interface and provides unambiguous evidence for robust superconductivity below 60 K in ultrathin FeSe.

  19. Magnetism Control by Doping in LaAlO3/SrTiO3 Heterointerfaces.

    Science.gov (United States)

    Yan, Hong; Zhang, Zhaoting; Wang, Shuanhu; Wei, Xiangyang; Chen, Changle; Jin, Kexin

    2018-04-25

    Magnetic two-dimensional electron gases at the oxide interfaces are always one of the key issues in spintronics, giving rise to intriguing magnetotransport properties. However, reports about magnetic two-dimensional electron gases remain elusive. Here, we obtain the magnetic order of LaAlO 3 /SrTiO 3 systems by introducing magnetic dopants at the La site. The transport properties with a characteristic of metallic behavior at the interfaces are investigated. More significantly, magnetic-doped samples exhibit obvious magnetic hysteresis loops and the mobility is enhanced. Meanwhile, the photoresponsive experiments are realized by irradiating all samples with a 360 nm light. Compared to magnetism, the effects of dopants on photoresponsive and relaxation properties are negligible because the behavior originates from SrTiO 3 substrates. This work paves a way for revealing and better controlling the magnetic properties of oxide heterointerfaces.

  20. Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Bernuy-Lopez, Carlos; Reddy Sudireddy, Bhaskar

    2012-01-01

    Nb-doped SrTiO3 solid oxide fuel cell (SOFC) anodes, infiltrated with CGO/Ni, were investigated by electrochemical impedance spectroscopy (EIS) and high resolution microscopy techniques, upon varying production and testing parameters. The electrochemical analysis involved a combination of distrib......Nb-doped SrTiO3 solid oxide fuel cell (SOFC) anodes, infiltrated with CGO/Ni, were investigated by electrochemical impedance spectroscopy (EIS) and high resolution microscopy techniques, upon varying production and testing parameters. The electrochemical analysis involved a combination...... of distribution of relaxation times (DRT) and complex non-linear least squares (CNLS) fitting routine. These electrodes were studied as singlephase or as composites with 8YSZ. Sr0.94Ti0.9Nb0.1O3-δ/ 10 vol.% 8YSZ composite infiltrated electrodes were the best overall performers, with enhanced performance stability...

  1. Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3

    International Nuclear Information System (INIS)

    Liu, J.W.; Chen, G.; Li, Z.H.; Zhang, Z.G.

    2006-01-01

    Cr-doped SrTi 1- x Cr x O 3 (x=0.00, 0.02, 0.05, 0.10) powders, prepared by solvothermal method, were further characterized by ultraviolet-visible (UV-vis) absorption spectroscopy. The UV-vis spectra indicate that the SrTi 1- x Cr x O 3 powders can absorb not only UV light like pure SrTiO 3 powder but also the visible-light spectrum (λ>420 nm). The results of density functional theory (DFT) calculation illuminate that the visible-light absorption bands in the SrTi 1- x Cr x O 3 catalyst are attributed to the band transition from the Cr 3d to the Cr 3d+Ti 3d hybrid orbital. The photocatalytic activities of chromium-doped SrTiO 3 both under UV and visible light are increased with the increase in the amounts of chromium. -- Graphical abstract: SrTi 1- x Cr x O 3 powders, prepared by solvothermal method, can absorb not only UV light like pure SrTiO 3 powder but also the visible-light spectrum (λ>420 nm). The results of DFT calculation illuminate that the visible-light absorption bands in the SrTi 1- x Cr x O 3 catalyst are attributed to the band transition from the Cr 3d to the Cr 3d+Ti 3d hybrid orbital

  2. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  3. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  4. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3−δ

    KAUST Repository

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our

  5. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    Science.gov (United States)

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  6. Fabrication of Schottky Junction Between Au and SrTiO3

    Science.gov (United States)

    Inoue, Akira; Izumisawa, Kei; Uwe, Hiromoto

    2001-05-01

    A Schottky junction with a high rectification ratio between Au and La-doped SrTiO3 has been fabricated using a simple surface treatment. Highly La-doped (5%) SrTiO3 single crystals are annealed in O2 atmosphere at about 1000°C for 1 h and etched in HNO3 for more than five min. The HNO3 etching is performed in a globe box containing N2 to prevent pollution from the air. After the treatment, Au is deposited on the SrTiO3 surface in a vacuum (˜ 10-7 Torr) with an e-gun evaporator. The current voltage characteristics of the junction have shown excellent rectification properties, although junctions using neither annealed nor etched SrTiO3 exhibit high leak current in reverse voltage. The rectification ratio of the junction at 1 V is more than six orders of magnitude and there is no hysteresis in the current voltage spectra. The logarithm of the current is linear with the forward bias voltage. The ideal factor of the junction is estimated to be about 1.68. These results suggest that, if prevented from being pollution by the air, a good Schottky junction can be obtained by easy processes such as annealing in oxygen atmosphere and surface etching with acid.

  7. Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3

    Directory of Open Access Journals (Sweden)

    K. X. Jin

    2012-12-01

    Full Text Available We report on the tunable photovoltaic effect of self-doped single-crystal SrTiO3 (STO, a prototypical perovskite-structured complex oxide, and evaluate its performance in Schottky junction solar cells. The photovaltaic characteristics of vacuum-reduced STO single crystals are dictated by a thin surface layer with electrons donated by oxygen vacancies. Under UV illumination, a photovoltage of 1.1 V is observed in the as-received STO single crystal, while the sample reduced at 750 °C presents the highest incident photon to carrier conversion efficiency. Furthermore, in the STO/Pt Schottky junction, a power conversion efficiency of 0.88% was achieved under standard AM 1.5 illumination at room temperature. This work establishes STO as a high-mobility photovoltaic semiconductor with potential of integration in self-powered oxide electronics.

  8. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    KAUST Repository

    Amin, B.

    2013-07-16

    The electronic structure and thermoelectric properties of strained (biaxially and uniaxially) Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 are investigated in the temperature range from 300 K to 1200 K. Substitutions of Pr at the Sr site and Nb at the Ti site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for SrTi0.95Nb0.05O3 at room temperature in the case of 5% biaxial strain. At 1200 K, we predict figures of merit of 0.58 and 0.55 for 2.5% biaxially strained Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 , respectively, which are the highest values reported for rare earth doped SrTiO3.

  9. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    KAUST Repository

    Amin, B.; Alshareef, Husam N.; Schwingenschlö gl, Udo; Singh, Nirpendra; Tritt, T. M.

    2013-01-01

    site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for Sr

  10. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  11. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    Science.gov (United States)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  12. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Chen, Min-Hua; Lin, Feng-Huei; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Tanaka, Junzo; Hanagata, Nobutaka

    2014-01-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications. (paper)

  13. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles.

    Science.gov (United States)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  14. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Toft Sørensen, O.

    1998-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a PO2 dependence according to R proportional to PO2-1/4 in the considered PO2 range(2.5 x 10(-5) bar

  15. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  16. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Sørensen, Ole Toft

    2000-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a P-o2 dependence according to R proportional to p(o2)(-1/4) in the considered P-o2 range(2.5 x 10(-5) bar

  17. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, Warawat

    2010-01-01

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  18. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.

    2012-03-08

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  19. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.; Upadhyay Kahaly, M.; Sarath Kumar, S. R.; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2012-01-01

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  20. XPS Analysis of Ni and Oxygen in Single-Sintered SrTiO3 Multifunction Ceramic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    XPS analyses have been performed to investigate the chemical conditions of Ni and oxygen on grain surfaces in single-sintered SrTiO3 capacitor-varistor ceramic doped with Nb2O5 and NiO. It is ascertained that Ni is in form of Ni2+ ions, which substitute for Ti4+ ions on grain surfaces during the oxidizing annealing. Moreover, it is confirmed that three kinds of chemically adsorbed oxygen such as O2-, O- and O~ are formed on grain surfaces. It is proposed that these behaviors contribute greatly to the generation of multiple types of grain boundary acceptor states in the ceramic.

  1. Resistive switching phenomena of extended defects in Nb-doped SrTiO3 under influence of external gradients

    International Nuclear Information System (INIS)

    Rodenbuecher, Christian

    2014-01-01

    Redox-based memristive materials have attracted much attention in the last decade owing to their ability to change the resistance upon application of an electric field making them promising candidates for future non-volatile memories. However, a fundamental understanding of the nature of the resistive switching effect, which is indispensable for designing future technological applications,is still lacking. As a prototype material of a memristive oxide, strontium titanate (SrTiO 3 ) has been investigated intensively and it was revealed that the valence change of a Ti ''d'' electron plays an important role during resistive switching related to insulator-to-metal transition. Such a transition can be induced by electrical gradients, by chemical gradients, by a combination of these gradients or by donor doping. Hence, SrTiO 3 doped with the donor Nb should have metallic properties and is used commonly as a conducting substrate for the growth of functional oxide thin films. Nevertheless,the resistive switching effect has also be observed in Nb-doped SrTiO 3 . This paradoxical situation offers a unique opportunity to gain an insight into the processes during the insulator-to metal transition. In this thesis, a comprehensive study of the influence of external gradients on SrTiO 3 :Nb single crystals is presented. The focus is especially set on the investigation of the crystallographic structure, the chemical composition, the electronic structure, the lattice dynamics and the electronic transport phenomena using surface-sensitive methods on the macro- and nanoscale. On the as-received epi-polished single crystals, the evolution of a surface layer having a slight excess of strontium and - in contrast to the bulk of the material - semiconducting properties are observed. Hence, the key for understanding of the resistive switching effect is the knowledge of the nature of the surface layer. On the basis of systematic studies of the influence of external

  2. Magnetism and metal-insulator transition in oxygen deficient SrTiO3

    Science.gov (United States)

    Lopez-Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter

    2015-03-01

    We report new findings in the electronic structure and magnetism of oxygen vacancies in SrTiO3. By means of first-principles calculations we show that the appearance of magnetism in oxygen-deficient SrTiO3 is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. While an isolated vacancy behaves as a non-magnetic double donor, manipulation of the doping conditions allows the stability of a single donor state with emergent local moments. Strong local lattice distortions enhance the binding of this state. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient SrTiO3, which may have important implications in the design of switchable magneto-optic devices. AL-B and PBL were supported by DOE-BES under Contract No. DE-AC02-06CH11357. PG was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT- Battelle, LLC, for the US Department of Energy.

  3. Structure and cation distribution of (Mn0.5Zn0.5)Fe2O4 thin films on SrTiO3(001)

    Science.gov (United States)

    Welke, M.; Brachwitz, K.; Lorenz, M.; Grundmann, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.

    2017-06-01

    A comprehensive study on growth of ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) films on single crystalline strontium titanate(001) (SrTiO3) substrates was carried out. Under the optimized conditions, a thin film with a layer thickness of 200 nm was deposited, and the structural properties were investigated. Contrary to data published in literature, no buffer layer was necessary to achieve epitaxial growth of a poorly lattice-matched layer. This was confirmed for Mn0.5Zn0.5Fe2O4(001) on SrTiO3(001) by x-ray diffraction and the adjoined phi scans, which also revealed a lattice compression of 1.2% of the manganese zinc ferrite film in the out-of-plane direction. Using x-ray photoelectron spectroscopy, the near surface stoichiometry of the film could be shown to agree with the intended one within the uncertainty of the method. X-ray absorption spectroscopy showed an electronic structure close to that published for bulk samples. Additional x-ray magnetic circular dichroism investigations were performed to answer detailed structural questions by a comparison of experimental data with the calculated ones. The calculations took into account ion sites (tetrahedral vs. octahedral coordination) as well as the charge of Fe ions (Fe2+ vs. Fe3+). Contrary to the expectation for a perfect normal spinel that only Fe3+ ions are present in octahedral sites, hints regarding the presence of additional Fe2+ in octahedral sites as well as Fe3+ ions in tetrahedral sites have been obtained. Altogether, the layer could be shown to be mostly in a normal spinel configuration.

  4. Giant Polarization Rotation in BiFeO3/SrTiO3 Thin Films.

    Science.gov (United States)

    Langner, M. C.; Chu, Y. H.; Martin, L. M.; Gajek, M.; Ramesh, R.; Orenstein, J.

    2008-03-01

    We use optical second harmonic generation to probe dynamics of the ferroelectric polarization in (111) oriented BiFeO3 thin films grown on SrTiO3 substrates. The second harmonic response indicates 3m point group symmetry and is consistent with a spontaneous polarization normal to the surface of the film. We measure large changes in amplitude and lowering of symmetry, consistent with polarization rotation, when modest electric fields are applied in the plane of the film. At room temperature the rotation is an order of magnitude larger than expected from reported values of the dielectric constant and increases further (as 1/T) as temperature is lowered. We propose a substrate interaction model to explain these results.

  5. Ferroelectricity of Sn-doped SrTiO3 perovskites with tin at both A and B sites

    Science.gov (United States)

    Suzuki, Shoichiro; Honda, Atsushi; Iwaji, Naoki; Higai, Shin'ichi; Ando, Akira; Takagi, Hiroshi; Kasatani, Hirofumi; Deguchi, Kiyoshi

    2012-08-01

    We successfully obtained Sn-doped SrTiO3 (SSTO) perovskites, and clarified their ferroelectricity and structural properties by using first-principles theoretical calculations. The ferroelectricity of SSTO was confirmed by the appearance of a dielectric permittivity maximum and a clear hysteresis loop of the relationship between the external electric field and the electric flux density below 180 K. X-ray diffraction and Raman spectra revealed the structural phase transition of SSTO at approximately 200 K. We directly observed by spherical aberration corrected scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy that Sn ions are doped into both Sr and Ti sites (SnA and SnB), and that SnA is located at an off-centered position. We also performed theoretical analyses of SSTO and related perovskites, and found that SnA is preferentially located in an off-centered position and that SnA and the O6 octahedron, which includes SnB in its center, oscillate along the antiphase direction in the soft mode. Thus, we propose that the ferroelectricity of SSTO originates from the antiphase off-centering, which induces ferroelectric nanoregions in paraelectric SrTiO3.

  6. Defect engineering of SrTiO3 thin films for resistive switching applications

    International Nuclear Information System (INIS)

    Wicklein, Sebastian

    2013-01-01

    As a matter of fact, the importance of (transition) metal oxides for modern applications in the field of energy and information technology (IT) for e.g. novel energy storage systems and solid state electronic devices is increasing. Previous studies discovered the importance of defects in an oxide for their functionality and emphasized the impact of stoichiometry on the oxide performance. A new field of interest of the memory technology sector is the so-called resistive switching phenomena where a voltage stimulus causes a thin oxide (≤10 nm) to change its resistance state from a high resistance state to a low resistance state and back. So called resistive RAM (ReRAM or RRAM) are deemed to be the future replacement (2015) for contemporary FLASH memory technology due to its extremely low energy consumption, its very fast read/write time (ns) and its possible node size 3 was used as an oxide model material and was deposited by pulsed laser deposition (PLD) onto doped and undoped SrTiO 3 single crystals to investigate the formation of defects as a function of the process parameters. By combining structural and chemical thin film analysis with detailed PLD plume diagnostics and modeling of the laser plume dynamics, it was possible to elucidate the different physical mechanisms determining the stoichiometry of SrTiO 3 during PLD. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O 2 background gas. It is shown that the SrTiO 3 system reacts to a non-stoichiometry with the systematic incorporation of titanium and strontium vacancies which could be detected by positron annihilation lifetime spectroscopy. The role of extrinsic dopands such as Fe is shown to have more complicated effects on the SrTiO 3 system than portrayed by theoretical considerations. The effect of defects on the resistive

  7. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh

    2014-05-12

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  8. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  9. Near-surface effects of transient oxidation and reduction on Nb-doped SrTiO3 epitaxial thin films

    Science.gov (United States)

    Chang, C. F.; Chen, Q. Y.; Wadekar, P. V.; Lozano, O.; Wong, M. S.; Hsieh, W. C.; Lin, W. Y.; Ko, H. H.; Lin, Q. J.; Huang, H. C.; Ho, N. J.; Tu, L. W.; Liao, H. H.; Chinta, P. V.; Chu, W. K.; Seo, H. W.

    2014-03-01

    We studied the effects of transient oxidation and reduction of Nb-doped epitaxial thin films through variations of PAr and PO2. The samples were prepared by co-sputtering of Nb and SrTiO3 on LaAlO3 substrates. The Nb-content were varied from 0-33.7%, as determined by PIXE. Contact resistance, sheet resistance, and optical properties are used to discriminate the effects.

  10. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  11. Optical properties of SrTiO3 films

    International Nuclear Information System (INIS)

    Agasiyev, A.A.; Magerramov, E.M.; Mammadov, M.Z.; Sarmasov, S.M.

    2010-01-01

    The spectrums of optical absorption of amorphous and single crystalline films SrTiO 3 at temperatures : 105 K, 300 K, 400 K are investigated. The temperature dependences of slope absorption edge, forbidden gap and characteristic constant of Urbah rule are obtained. The forbidden gap of single crystalline film SrTiO 3 and average shift shift of absorption edge degree are defined. It is established that edge of optical absorption of SrTiO 3 film is obeyed to Urbah rule and the absorption in the investigated region is caused by the transition of electron interacting with phonon

  12. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China); Luo, Heng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China)

    2017-03-15

    The single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2–18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi{sub 1-x}Nd{sub x}FeO{sub 3}. Electromagnetic measurement suggested that both microwave permeability μ′ and magnetic loss tanδ{sub m} increased remarkably over 2–18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.15) and Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.2). Results show that Nd substitution is an effective way to push BiFeO{sub 3} to become microwave absorbing materials with high performance. - Highlights: • Single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} samples were prepared by a sol-gel method. • Strong dielectric loss peak was observed in BiFeO{sub 3} with high doping content. • Significant enhancement of microwave absorption property was found in Nd-doped BiFeO{sub 3}.

  13. H+ irradiation effect in Co-doped BaFe2As2 single crystals

    International Nuclear Information System (INIS)

    Nakajima, Y.; Tsuchiya, Y.; Taen, T.; Tamegai, T.; Kitamura, H.; Murakami, T.

    2011-01-01

    The effect of H + irradiation on the suppression of Tc in Co-doped BaFe 2 As 2 . H + irradiation introduces nonmagnetic scattering centers. Critical Scattering rate is much higher than that expected in s±-pairing scenario. We report the suppression of the critical temperature T c in single crystalline Ba(Fe 1-x Co x ) 2 As 2 at under-, optimal-, and over-doping levels by 3 MeV proton irradiation. T c decreases and residual resistivity increases monotonically with increasing the dose. The low-temperature resistivity does not show the upturn in contrast with the α-particle irradiated NdFeAs(O,F), which suggests that proton irradiation introduces nonmagnetic scattering centers. Critical scattering rates for all samples obtained by three different ways are much higher than that expected in s±-pairing scenario based on inter-band scattering due to antiferro-magnetic spin fluctuations.

  14. Electrochemical sensing behaviour of Ni doped Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025 (India); Vijayalakshmi, L. [Annai Veilankanni' s College for Women (Arts and Science), Saidapet, Chennai 600015 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2014-01-28

    Ni doped Fe{sub 3}O{sub 4} nanoparticles were synthesized by simple hydrothermal method. The prepared nanomaterials were characterized by X-ray diffraction analysis, DRS-UV-Visible spectroscopy and field emission scanning electron microscopy. The XRD confirms the phase purity of the synthesized Ni doped Fe{sub 3}O{sub 4} nanoparticles. The optical property of Ni doped Fe{sub 3}O{sub 4} nanoparticles were studied by DRS UV-Visible analysis. The electrochemical sensing property of pure and Ni doped Fe{sub 3}O{sub 4} nanoparticles were examined using uric acid as an analyte. The obtained results indicated that the Ni doped Fe{sub 3}O{sub 4} nanoparticles exhibited higher electrocatalytic activity towards uric acid.

  15. Structural and photodegradation behaviors of Fe{sup 3+}-doping TiO{sub 2} thin films prepared by a sol–gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Jiuan; Yang, Tien-Syh [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2014-10-15

    Highlights: • Pure and various Fe{sup 3+}-doped TiO{sub 2} thin films have been successfully fabricated. • The phase of all thin films was single phase of anatase TiO{sub 2} when calcined at 823 K. • The crystallinity of TiO{sub 2} thin films decreased as Fe{sup 3+}-doping increased. • The photodegradation of each sample increased as the irradiation time increased. • The photodegradation increased as Fe{sup 3+}-doping increased at a fixed irradiation time. - Abstract: Pure and various Fe{sup 3+}-doping TiO{sub 2} thin films have been successfully fabricated on glass substrate prepared by a sol–gel spin coating route. The structural and photodegradation behavior of these films after calcined at various temperatures for 1 h were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectrum and degradation of 1.0 × 10{sup −5} M methylene blue solution. When all thin films after calcined at 823 K for 1 h, the crystalline phase are comprised only contained single phase of anatase TiO{sub 2}. The crystallinity of various Fe{sup 3+}-doping TiO{sub 2} thin films decreases with Fe{sup 3+}-doping concentration increased. The PL intensity of all thin films also decreases with Fe{sup 3+}-doping concentration increased. When all various Fe{sup 3+}-doping TiO{sub 2} thin films after calcined at 823 K for 1 h, the photodegradation of each sample increases with irradiation time increased. Moreover, the photodegradation also increases with Fe{sup 3+}-doping concentration increased when fixed at constant irradiation time.

  16. Evolution of the SrTiO3/MoO3 interface electronic structure: An in situ photoelectron spectroscopy study

    KAUST Repository

    Du, Yuanmin; Peng, Haiyang; Mao, Hongying; Jin, Kexin; Wang, Hong; Li, Feng; Gao, Xingyu; Chen, Wei; Wu, Tao

    2015-01-01

    Modifying the surface energetics, particularly the work function, of advanced materials is of critical importance for a wide range of surface- and interface-based devices. In this work, using in situ photoelectron spectroscopy, we investigated the evolution of electronic structure at the SrTiO3 surface during the growth of ultrathin MoO3 layers. Thanks to the large work function difference between SrTiO3 and MoO3, the energy band alignment on the SrTiO3 surface is significantly modified. The charge transfer and dipole formation at the SrTiO3/MoO3 interface leads to a large modulation of work function and an apparent doping in SrTiO3. The measured evolution of electronic structure and upward band bending suggest that the growth of ultrathin MoO3 layers is a powerful tool to modulate the surface energetics of SrTiO3, and this surface-engineering approach could be generalized to other functional oxides.

  17. Evolution of the SrTiO3/MoO3 interface electronic structure: An in situ photoelectron spectroscopy study

    KAUST Repository

    Du, Yuanmin

    2015-05-12

    Modifying the surface energetics, particularly the work function, of advanced materials is of critical importance for a wide range of surface- and interface-based devices. In this work, using in situ photoelectron spectroscopy, we investigated the evolution of electronic structure at the SrTiO3 surface during the growth of ultrathin MoO3 layers. Thanks to the large work function difference between SrTiO3 and MoO3, the energy band alignment on the SrTiO3 surface is significantly modified. The charge transfer and dipole formation at the SrTiO3/MoO3 interface leads to a large modulation of work function and an apparent doping in SrTiO3. The measured evolution of electronic structure and upward band bending suggest that the growth of ultrathin MoO3 layers is a powerful tool to modulate the surface energetics of SrTiO3, and this surface-engineering approach could be generalized to other functional oxides.

  18. Doping effect on the physical properties of Ca10Pt3As8(Fe2As2)5 single crystals

    Science.gov (United States)

    Pan, Jiayun; Karki, Amar; Plummer, E. W.; Jin, Rongying

    2017-12-01

    Ca10Pt3As8(Fe2As2)5 is a unique parent compound for superconductivity, which consists of both semiconducting Pt3As8 and metallic FeAs layers. We report the observation of superconductivity induced via chemical doping in either Ca site using rare-earth (RE) elements (RE  =  La, Gd) or Fe site using Pt. The interlayer distance and the normal-state physical properties of the doped system change correspondingly. The coupled changes include (1) superconducting transition temperature T c increases with increasing both doping concentration and interlayer distance, (2) our T c value is higher than previously reported maximum value for Pt doping in the Fe site, (3) both the normal-state in-plane resistivity and out-of-plane resistivity change from non-metallic to metallic behavior with increasing doping concentration and T c, and (4) the transverse in-plane magnetoresistance (MRab) changes from linear-field dependence to quadratic behavior upon increasing T c. For La-doped compound with the highest T c (~35 K), upper critical fields (Hc2ab , Hc2c ), coherence lengths (ξ ab, ξ c), and in-plane penetration depth (λ ab) are estimated. We discuss the relationship between chemical doping, interlayer distance, and physical properties in this system.

  19. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

    Science.gov (United States)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Imam, N. G.

    2018-01-01

    The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2- x Fe x O3 ( x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2- x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

  20. SYNTHESIS OF M–Nd DOPED Fe3O4 NANOPARTICLES (M = Co ...

    African Journals Online (AJOL)

    Preferred Customer

    nanoparticles were spherical shaped with inverse spinel structure. ... To obtain nano sized spinel ferrite particles, various preparation techniques have been ... SEM images of (a) Fe3O4, (b) Fe3O4 doped with Nd3+ and Co2+, (c) Fe3O4 doped with. Nd3+ .... Nayar, S.; Mir, A.; Ashok, A.; Sharma, A. J. Bionic Eng. 2010, 7, 29.

  1. Tuning the electronic structure of SrTiO3/SrFeO3−x superlattices via composition and vacancy control

    Directory of Open Access Journals (Sweden)

    Robert F. Berger

    2014-04-01

    Full Text Available Using density functional theory-based calculations, we explore the effects of oxygen vacancies and epitaxial layering on the atomic, magnetic, and electronic structure of (SrTiO3n(SrFeO3−x1 superlattices. While structures without oxygen vacancies (x = 0 possess small or non-existent band gaps and ferromagnetic ordering in their iron layers, those with large vacancy concentrations (x = 0.5 have much larger gaps and antiferromagnetic ordering. Though the computed gaps depend numerically on the delicate energetic balance of vacancy ordering and on the value of Hubbard U eff used in the calculations, we demonstrate that changes in layering can tune the band gaps of these superlattices below that of SrTiO3 (3.2 eV by raising their valence band maxima. This suggests the possibility that these superlattices could absorb in the solar spectrum, and could serve as water-splitting photocatalysts.

  2. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    Science.gov (United States)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  3. Enhanced photocatalytic property of BiFeO_3/N-doped graphene composites and mechanism insight

    International Nuclear Information System (INIS)

    Li, Pai; Li, Lei; Xu, Maji; Chen, Qiang; He, Yunbin

    2017-01-01

    Highlights: • A hydrothermal process was used to prepare BiFeO_3/N-doped graphene composites. • BiFeO_3/N-doped graphene exhibits superior photocatalytic activity and stability. • The energy band of BiFeO_3 bends downward by ∼1.0 eV at the composite interface. • Downward band bending leads to rapid electron transfer at the composite interface. • Holes and ·OH are predominant active species in the photo-degradation process. - Abstract: A series of BiFeO_3/(N-doped) graphene composites are prepared by a facile hydrothermal method. BiFeO_3/N-doped graphene shows photocatalytic performance superior to that of BiFeO_3/graphene and pristine BiFeO_3. The enhanced photo-degradation performance of BiFeO_3/N-doped graphene are mainly attributable to the improved light absorbance of the composite, abundant active adsorption sites and high electrical charge mobility of N-doped graphene, and the downward band bending of BiFeO_3 at the composite interface. In particular, X-ray photoelectron spectroscopy analyses reveal that the electron energy band of BiFeO_3 is downward bent by 1.0 eV at the interface of BiFeO_3/N-doped graphene, because of different work functions of both materials. This downward band bending facilitates the transfer of photogenerated electrons from BiFeO_3 to N-doped graphene and prompts the separation of photo-generated electron-hole pairs, leading eventually to the enhanced photocatalytic performance.

  4. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    Science.gov (United States)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  5. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    Science.gov (United States)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  6. Electron paramagnetic resonance investigations of Fe3+ doped layered TiInS2 and TiGaSe2 single crystals

    International Nuclear Information System (INIS)

    Faik, Mikailov; Bulat, Rameev; Sinan, Kazan; Bekir, Aktash; Faik, Mikailov; Bulat, Rameev

    2005-01-01

    Full text : TiInS 2 and TiGaSe 2 single crystals doped by paramagnetic Fe ions have been studied at room temperature by Electron Paramagnetic Resonance (EPR) technique. A fine structure of EPR spectra of paramagnetic Fe 3 + ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe 3 + centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe 3 + site and CF parameters were determined. It was established that symmetry axis of the axial component in the CF is making an angle of about 48 and 43 degree with the plane of layers of TiInS 2 and TiGaSe 2 crystals respectively. Experimental results indicate that the Fe ions substitute In (GA) at the center of InS 4 (GaSe 4 ) tetrahedrons, and the rhombic distortion of the CF is caused by the TI ions located in the trigonal cavities between the tethedral complexes

  7. Thickness-dependent resistance switching in Cr-doped SrTiO3

    Science.gov (United States)

    Kim, TaeKwang; Du, Hyewon; Kim, Minchang; Seo, Sunae; Hwang, Inrok; Kim, Yeonsoo; Jeon, Jihoon; Lee, Sangik; Park, Baeho

    2012-09-01

    The thickness-dependent bipolar resistance-switching behavior was investigated for epitaxiallygrown Cr-doped SrTiO3 (Cr-STO). All the pristine devices of different thickness showed polarity-independent symmetric current-voltage characteristic and the same space-charge-limited conduction mechanism. However, after a forming process, the resultant conduction and switching phenomena were significantly different depending on the thickness of Cr-STO. The forming process itself was highly influenced by resistance value of each pristine device. Based on our results, we suggest that the resistance-switching mechanism in Cr-STO depends not only on the insulating material's composition or the contact metal as previously reported but also on the initial resistance level determined by the geometry and the quality of the insulating material. The bipolar resistance-switching behaviors in oxide materials of different thicknesses exhibit mixed bulk and interface switching. This indicates that efforts in resistance-based memory research should be focused on scalability or process method to control a given oxide material in addition to material type and device structure.

  8. Effect of manganese doping on remnant polarization and leakage current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 epitaxial thin films on SrTiO3

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.

  9. Rectifying characteristics and magnetoresistance in La0.9Sr0.1MnO3/Nb-doped SrTiO3 heterojunctions

    International Nuclear Information System (INIS)

    Luo, Z.; Gao, J.

    2007-01-01

    Manganite-based heterojunctions have attracted lots of attention as one of the most promising practical applications of colossal magnetoresistance materials. In this work, heterojunctions were fabricated by depositing La 0.9 Sr 0.1 MnO 3 (LSMO) films on substrates of 0.7 wt.% Nb-doped SrTiO 3 using pulsed laser deposition technique. X-ray diffraction spectra confirmed that the grown films are of single phase and have an orientation with the c-axis perpendicular to the substrate surface. As temperature decreases, the resistivity of LSMO films first increases gradually and then increases abruptly at temperature lower than 150 K. These junctions showed clear rectifying characteristics and strong temperature dependent current-voltage relation. Diffusion voltage decreases as temperature increases. Under forward bias, current is proportion to exp(eV/nkT). Ideal factor increases quickly and tunneling current plays more and more important role as temperature decreases. At 50 K, tunneling current becomes nearly dominant. Large magnetoresistance was observed. The sign and value of such magnetoresistance depends on the direction and value of current

  10. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  11. XAFS Studies of Fe Doped PhTiO3 Nanoparticles

    International Nuclear Information System (INIS)

    Shibata, Tomohiro; Chattopadhyay, Soma; Lin Bin; Palkar, V. R.

    2007-01-01

    Fe K and Ti K edge XAFS studies are reported on Fe doped PbTiO3 nanoparticles down to the 10 nm size. Fe forms Fe3+ ions and substitute for Ti4+ ions. For 18 nm nanoparticles, the Fe and Ti environment is found to be quite different. For PbFe0.5Ti0.5O3, locally the structure remains distorted from bulk to 10 nm size although the average structure changes

  12. The phase diagram and magnetic properties of Co and Ti co-doped (1−x)BiFeO_3–xLaFeO_3 solid solutions

    International Nuclear Information System (INIS)

    Wu, Jiangtao; Xu, Jun; Li, Nan; Jiang, Yaqi; Xie, Zhaoxiong

    2015-01-01

    Single phase Co and Ti co-doped Bi_1_−_xFeO_3−La_xFeO_3 (x = 0–1) solid solutions were prepared by the sol–gel method. Room temperature x-ray powder diffraction (XRD) patterns showed that the structures of as-prepared Bi_1_−_xLa_xFe_0_._9_0Co_0_._0_5Ti_0_._0_5O_3 solid solutions transformed from rhombohedral R3c to tetragonal P4mm and then to orthorhombic Pnma, with increasing La concentration from 0 to 1. In situ high-temperature XRD (HTXRD) analysis further revealed that rhombohedral structure R3c (x ≤ 0.16) and tetragonal structure P4mm (0.17 ≤ x ≤ 0.40) changed to orthorhombic Pnma along with increasing temperature, and the phase transition temperature decreased with the increase of La doping concentration. However, the orthorhombic structure Pnma (x ≥ 0.41) kept stable even when the temperature reached 850 °C. The phase diagram of as-prepared binary solid solutions of Bi_1_−_xLa_xFe_0_._9_0Co_0_._0_5Ti_0_._0_5O_3(x = 0–1) was drawn on the basis of XRD and HTXRD analysis. Magnetic measurement revealed that the magnetic properties are greatly enhanced with the increase of La content. - Highlights: • Single phase Co and Ti co-doped (1−x)BiFeO_3–xLaFeO_3 (x = 0–1) solid solutions were synthesized. • The phase transitions were investigated by tuning composition and temperature. • Phase diagram was constructed according to the results of XRD for the first time. • The magnetization of solid solution can be enhanced when increasing La content.

  13. Superconductivity in Sm-doped CaFe2As2 single crystals

    Science.gov (United States)

    Dong-Yun, Chen; Bin-Bin, Ruan; Jia, Yu; Qi, Guo; Xiao-Chuan, Wang; Qing-Ge, Mu; Bo-Jin, Pan; Tong, Liu; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    In this article, the Sm-doping single crystals Ca1 - x Sm x Fe2As2 (x = 0 ˜ 0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset T c varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x > 0.10. The doping dependences of the c-axis length and onset T c were summarized. The high-T c observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution. Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

  14. Research Update: Conductivity and beyond at the LaAlO3/SrTiO3 interface

    Directory of Open Access Journals (Sweden)

    S. Gariglio

    2016-06-01

    Full Text Available In this review, we focus on the celebrated interface between two band insulators, LaAlO3 and SrTiO3, that was found to be conducting, superconducting, and to display a strong spin-orbit coupling. We discuss the formation of the 2-dimensional electron liquid at this interface, the particular electronic structure linked to the carrier confinement, the transport properties, and the signatures of magnetism. We then highlight distinctive characteristics of the superconducting regime, such as the electric field effect control of the carrier density, the unique tunability observed in this system, and the role of the electronic subband structure. Finally we compare the behavior of Tc versus 2D doping with the dome-like behavior of the 3D bulk superconductivity observed in doped SrTiO3. This comparison reveals surprising differences when the Tc behavior is analyzed in terms of the 3D carrier density for the interface and the bulk.

  15. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...... samples showed that the average grain size increased drastically in reducing conditions with increasing La content (and associated A‐site vacancies). By incorporating 2 mol.% La, the electronic conductivity significantly improved from 80 to 135 S cm−1 at 1,000 °C, and even larger improvements were...... observed at lower temperatures. These observations demonstrate the flexibility in tailoring the microstructure and electronic transport properties by doping small amounts of La into the Nb‐doped SrTiO3 and show that Sr1–3x/2LaxTi0.9Nb0.1O3 is a potential electrode material for solid oxide cells....

  16. Large piezoelectricity in electric-field modified single crystals of SrTiO3

    Science.gov (United States)

    Khanbabaee, B.; Mehner, E.; Richter, C.; Hanzig, J.; Zschornak, M.; Pietsch, U.; Stöcker, H.; Leisegang, T.; Meyer, D. C.; Gorfman, S.

    2016-11-01

    Defect engineering is an effective and powerful tool to control the existing material properties and produce completely new ones, which are symmetry-forbidden in a defect-free crystal. For example, the application of a static electric field to a single crystal of SrTiO3 forms a strained near-surface layer through the migration of oxygen vacancies out of the area beneath the positively charged electrode. While it was previously shown that this near-surface phase holds pyroelectric properties, which are symmetry-forbidden in centrosymmetric bulk SrTiO3, this paper reports that the same phase is strongly piezoelectric. We demonstrate the piezoelectricity of this phase through stroboscopic time-resolved X-ray diffraction under alternating electric field and show that the effective piezoelectric coefficient d33 ranges between 60 and 100 pC/N. The possible atomistic origins of the piezoelectric activity are discussed as a coupling between the electrostrictive effect and spontaneous polarization of this near-surface phase.

  17. Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.V.; Deus, R.C. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil); Foschini, C.R.; Longo, E. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Bauru, Dept. de Eng. Mecânica, Av. Eng. Luiz Edmundo C. Coube 14-01, 17033-360 Bauru, SP (Brazil); Cilense, M. [Universidade Estadual Paulista, UNESP, Instituto de Química – Laboratório Interdisciplinar em Cerâmica (LIEC), Rua Professor Francisco Degni s/n, 14800-90 Araraquara, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil)

    2014-04-01

    Calcium (Ca)-doped bismuth ferrite (BiFeO{sub 3}) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements. Structural studies by XRD and TEM reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO{sub 3} where enhanced ferroelectric and piezoelectric properties are produced by internal strain. Resistive switching is observed in BFO and Ca-doped BFO which are affected by the barrier contact and work function of multiferroic materials and Pt electrodes. A high coercive field in the hysteresis loop is observed for the BiFeO{sub 3} film. Piezoelectric properties are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO{sub 3}. - Highlights: • Ca doped BiFeO{sub 3} thin films were obtained by the polymeric precursor method. • Co-existence of distorted rhombohedral and tetragonal phases are evident. • Enhanced ferroelectric and piezoelectric properties are produced by the internal strain in the Ca doped BiFeO{sub 3} film.

  18. Structural and luminescent properties of Fe3+ doped PVA capped CdTe nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravindranadh K.

    2017-07-01

    Full Text Available During recent decades, magnetic and semiconductor nanoparticles have attracted significant attention of scientists in various fields of engineering, physics, chemistry, biology and medicine. Fe3+ doped PVA capped CdTe nanoparticles were prepared by co-precipitation method and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Fe3+ ions in the host lattice and the luminescent properties of prepared sample. Powder XRD data revealed that the crystal structure belongs to a cubic system and its lattice cell parameters were evaluated. The average crystallite size was estimated to be 8 nm. The morphology of prepared samples was analyzed by using SEM and TEM investigations. Functional groups of the prepared sample were observed in FT-IR spectra. Optical absorption and EPR studies have shown that on doping, Fe3+ ions enter the host lattice in octahedral site symmetry. PL studies of Fe3+ doped PVA capped CdTe nanoparticles revealed UV and blue emission bands. CIE chromaticity coordinates were also calculated from the emission spectrum of Fe3+ doped PVA capped CdTe nanoparticles.

  19. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-01-01

    SnO 2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO 2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO 2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO 2 , were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO 2 single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO 2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system

  20. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    Science.gov (United States)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  1. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  2. Physical characteristics and magnetic properties of BaFe12O19/SrTiO3 based composites derived from mechanical alloying

    International Nuclear Information System (INIS)

    Widodo, Rahmat Doni; Manaf, Azwar

    2016-01-01

    A composite system BaFe 12 O 19 /SrTiO 3 with ferrimagnetic BaFe 12 O 19 phase (BHF) and ferroelectric SrTiO 3 phase (STO) have been prepared by mechanical alloying and subsequent heat treatment. The composite powders were studied by Particle Size Analyze, X-ray diffraction and magnetic measurement. It was found that the particle size of composite powders initially increased due to laminated layers formation of a composite and then decreased to an asymptotic value of ∼8 µm as the milling time extended even to a relatively longer time. However, based on results of line broadening analysis the mean grain size of the particles was found in the nanometer scale. We thus believed that mechanical blending and milling of mixture components for the composite materials has promoted heterogeneous nucleation and only after successive sintering at 1100°C the milled powder transformed into particles of nanograin. In this report, microstructure as well as magnetic properties for the composite is also briefly discussed.

  3. Coexistence of nonvolatility and volatility in Pt/Nb-doped SrTiO3/In memristive devices

    International Nuclear Information System (INIS)

    Yang, M; Bao, D H; Li, S W

    2013-01-01

    Memristive devices are triggering innovations in the fields of nonvolatile memory, digital logic, analogue circuits, neuromorphic engineering, and so on. Creating new memristive devices with unique characteristics would be significant for these emergent applications. Here we report the coexistence of nonvolatility and volatility in Pt/Nb-doped SrTiO 3 (NSTO)/In memristive devices. The Pt/NSTO interface contributes a nonvolatile resistive switching behaviour, whereas the NSTO/In interface displays a volatile hysteresis loop. Combining the two interfaces in the Pt/NSTO/In devices leads to the unique coexistence of nonvolatility and volatility. The results imply more opportunities to invent new memristive devices by engineering both interfaces in metal/insulator/metal structures. (paper)

  4. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction

    Science.gov (United States)

    Guo, Dakai; Han, Sancan; Wang, Jiacheng; Zhu, Yufang

    2018-03-01

    N-doped porous Fe/Fe3C@C electrocatalysts were prepared by the pyrolysis of the hexamethylenetetramine (HMT)-incorporated MIL-100-Fe at different temperatures (700-1000 °C) under N2 atmosphere. Rotary evaporation of MIL-100-Fe and HMT solution could make more N-enriched HMT molecules enter into the pores of MIL-100-Fe, thus improving nitrogen contents of the final pyrolyzed samples. All pyrolyzed samples show porous textures with middle specific surface areas. The X-ray photoelectron spectroscopy (XPS) results demonstrate the successful introduction of N atoms into carbon framework. Sample Fe-N2-800 prepared by annealing the precursors with the HMT/MIL-100-Fe weight ratio of 2 at 800 °C exhibits the best electrocatalytic activity towards the oxygen reduction reaction (ORR) in terms of onset potential and current density because of high graphitic N and pyridinic N content. The enwrapped Fe/Fe3C nanoparticles and Fe-Nx active sites in these samples could also boost the ORR activity synergistically. Moreover, sample Fe-N2-800 demonstrates a dominant four electron reduction process, as well as excellent long-term operation stability and methanol crossover resistance. Thus, the N-doped Fe/Fe3C@C composites derived from the HMT-incorporated MIL-100-Fe are promising electrocatalysts to replace Pt/C for ORR in practical applications.

  5. Universality of electron mobility in LaAlO3/SrTiO3 and bulk SrTiO3

    Science.gov (United States)

    Trier, Felix; Reich, K. V.; Christensen, Dennis Valbjørn; Zhang, Yu; Tuller, Harry L.; Chen, Yunzhong; Shklovskii, B. I.; Pryds, Nini

    2017-08-01

    Metallic LaAlO3/SrTiO3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, ns, is poorly understood. Here, we derive a simple expression for the three-dimensional electron density near the interface, n3 D , as a function of ns and find that the mobility for LAO/STO-based interfaces depends on n3 D in the same way as it does for bulk doped STO. It is known that undoped bulk STO is strongly compensated with N ≃5 ×1018 cm-3 background donors and acceptors. In intentionally doped bulk STO with a concentration of electrons n3 DN , the mobility collapses because scattering happens on n3 D intentionally introduced donors. For LAO/STO, the polar catastrophe which provides electrons is not supposed to provide an equal number of random donors and thus the mobility should be larger. The fact that the mobility is still the same implies that for the LAO/STO, the polar catastrophe model should be revisited.

  6. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2014-04-08

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  7. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna K.; Darroudi, Taghi; Graff, Jennifer W.; Schwingenschlö gl, Udo; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  8. Synthesis and properties of iridium-doped hematite ({alpha}-Fe{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko, E-mail: krehul@irb.hr [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Stefanic, Goran [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Zadro, Kreso [Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, 10000 Zagreb (Croatia); Kratofil Krehula, Ljerka [Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, 10000 Zagreb (Croatia); Marcius, Marijan; Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-12-25

    Highlights: Black-Right-Pointing-Pointer Ir-doped hematites were prepared by heating Ir-doped goethites. Black-Right-Pointing-Pointer Ir-doping in hematite led to an increase in unit cell and a decrease in crystallite size. Black-Right-Pointing-Pointer Ir-doping significantly affected magnetic, infrared and UV-Vis properties of hematite. Black-Right-Pointing-Pointer The Morin transition temperature increased with an increase in Ir-doping. Black-Right-Pointing-Pointer Ir ions brought about changes in the size and shape of the formed hematite particles. - Abstract: The effect of the incorporation of Ir{sup 3+} ions on the properties of {alpha}-Fe{sub 2}O{sub 3} formed by dehydroxylation of {alpha}-FeOOH was investigated using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), {sup 57}Fe Moessbauer, UV-Vis-NIR and FT-IR spectroscopies, SQUID magnetometer, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Pure and Ir-doped hematite samples were obtained by heating of pure and Ir-doped goethites ({alpha}-FeOOH) formed by precipitation from mixed Fe(III)-Ir(III) chloride solutions in a highly alkaline medium. The incorporation of Ir{sup 3+} ions into the {alpha}-Fe{sub 2}O{sub 3} structure led to changes in unit-cell dimensions, crystallinity, particle size and shape, as well as changes in the magnetic, infrared and UV-Vis properties. An increase in the temperature of the Morin transition with an increase in Ir-doping was observed by Moessbauer spectroscopy and magnetic measurements.

  9. Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons

    Directory of Open Access Journals (Sweden)

    Lipeng Hou

    2016-12-01

    Full Text Available Spin-related emission properties have important applications in the future information technology; however, they involve microscopic ferromagnetic coupling, antiferromagnetic or ferrimagnetic coupling between transition metal ions and excitons, or d state coupling with phonons is not well understood in these diluted magnetic semiconductors (DMS. Fe3+ doped ZnSe nanoribbons, as a DMS example, have been successfully prepared by a thermal evaporation method. Their power-dependent micro-photoluminescence (PL spectra and temperature-dependent PL spectra of a single ZnSe:Fe nanoribbon have been obtained and demonstrated that alio-valence ion doping diminishes the exciton magnetic polaron (EMP effect by introducing exceeded charges. The d-d transition emission peaks of Fe3+ assigned to the 4T2 (G → 6A1 (S transition at 553 nm and 4T1 (G → 6A1 (S transition at 630 nm in the ZnSe lattice have been observed. The emission lifetimes and their temperature dependences have been obtained, which reflected different spin–phonon interactions. There exists a sharp decrease of PL lifetime at about 60 K, which hints at a magnetic phase transition. These spin–spin and spin–phonon interaction related PL phenomena are applicable in the future spin-related photonic nanodevices.

  10. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    SU Bitao; WANG Ke; BAI Jie; MU Hongmei; TONG Yongchun; MIN Shixiong; SHE Shixiong; LEI Ziqiang

    2007-01-01

    Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradia-tion. The influence of doping amount of Fe3+ (ω: 0.00%-3.00%) on photocatalytic activities of TiO2 was investigated.Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorptionspectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation.

  11. Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries

    International Nuclear Information System (INIS)

    Lai, Yanqing; Chen, Wei; Zhang, Zhian; Qu, Yaohui; Gan, Yongqing; Li, Jie

    2016-01-01

    Graphical abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene are prepaed by a one-step carbonization process, with MOF as the structure-directing agent. The method provides a simple and scalable route for preparing 3-D porous graphene materials.The as-prepared material possesses an excellent bi-functional electrocatalytic activity. While applied as the cathode materials of Li–O 2 batteries, the cell exihibits high capacity and considerable rate capability. - Highlights: • A facile simple strategy is employed to in-situ fabricate Fe/Fe 3 C decorated 3-D porous nitrogen-doped graphene. • MIL-100(Fe), a kind of metal-organic framework, is proved playing a structure-directing role in this advanced synthesis route. • This material possesses excellent bi-functional electro-catalytic activity for ORR and OER and shows good electrochemical performance while used as cathode material for Li–O 2 batteries. • The MOF-assisted synthesis method would be a promising new strategy for the synthesis of 3-D porous graphene materials. - Abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene (F-PNG) is designed and synthesized via a one-step carbonization route. During the process, MIL-100(Fe), a kind of metal organic frameworks (MOFs) plays a structure-directing role. It is found that F-PNG with 3-D porous structure is constituted by N-doped graphene and extremely small Fe/Fe 3 C particles uniformly distribute on the surface of graphene. This rationally designed F-PNG possesses excellent oxygen reduction reaction and oxygen evolution reaction bifunctional electrocatalytic activity. While the material is explored as a cathode of Li–O 2 batteries, it exhibits excellent electrochemical performances, delivering a discharge voltage platform of ∼2.91 V and a charge voltage platform of ∼3.52 V at 0.1 mA cm −2 , showing a good cycle performance and having a discharge capacity of ∼7150 mAh g −1 carbon+catalyst at 0.1 mA cm −2 . The excellent performance of

  12. Fe-doping effect on the Bi{sub 3}Ni superconductor microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Silvio Henrique; Monteiro, Joao Frederico Haas Leandro; Leal, Adriane Consuelo da Silva; Andrade, Andre Vitor Chaves de; Souza, Gelson Biscaia de; Siqueira, Ezequiel Costa; Serbena, Francisco Carlos; Jurelo, Alcione Roberto, E-mail: arjurelo@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica

    2017-05-15

    The substitution effects of Fe ion on the structure of the intermetallic Bi{sub 3}Ni{sub 1-x}Fe{sub x} (0 ≤ x ≤ 0.10) superconductor were studied. The morphology of samples consists of an inhomogeneous laminar slab-like microstructure. The main phase corresponds to Bi{sub 3}Ni{sub 1-x}Fe{sub x} with an orthorhombic structure (Pnma), but with very small quantities of impurities of BiNi and Bi as revealed by X-ray diffraction. SEM and AFM reveal that the Bi3{sub N}i1{sub -x}Fe{sub x} phase consists of two regions. One region is Bi richer and Ni and Fe poorer than the other region.Raman spectroscopy revealed two phonon modes at room temperature. No significant changes were observed in the spectra with Fe doping and in different regions of the Bi{sub 3}Ni{sub 1-x}Fe{sub x} phase. Superconductivity is observed below a transition temperature T{sub C} = 4 K and regardless of iron doping. (author)

  13. Adsorptive and photocatalytic properties of S-doped SrTiO3 under simulated solar irradiation

    Science.gov (United States)

    Huynh, Phu Chi; Le, Vien Minh

    2017-09-01

    S-doped SrTiO3 (SSTO) nanoparticles were synthesized using the sol-gel method with Sr(NO3)2, n- Ti(OC4H9)4, and Thiourea as precursors. Several analytical techniques including XRD, SEM, BET were employed to characterize the physical properties of the product. High crystalline perovskite of SSTO powder was synthesized at 700 °C calcined temperature with the specific surface area of 20.71 m2/g. UV-Vis diffuse reflectance spectra results of STO and 5SSTO present band gap energy of 3.2 and 2.95 eV respectively. Photocatalytic activity was determined through the photodegradation of Congo Red at the initial concentrations of 70 ppm under simulated solar irradiation using 26W mercury lamp (120V - 60Hz). The decompositions of approximately 90.4% was obtained after 210 minutes of illumination. The photocatalyst was stable in aqueous solution that its photocatalytic activity was merely reduced by 9% even after 4 reusing iterations.

  14. Superparamagnetic behavior of Fe-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y. [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501 (Japan)

    2014-02-20

    SnO{sub 2} is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO{sub 2} nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO{sub 2} nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO{sub 2}, were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO{sub 2} single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO{sub 2} is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  15. Physics of SrTiO3-based heterostructures and nanostructures: a review.

    Science.gov (United States)

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2017-08-30

    1 Overview 1 1.1 Introduction 1 1.1.1 Oxide growth techniques are rooted in search for high-Tc superconductors 2 1.1.2 First reports of interface conductivity 2 1.2 2D physics 2 1.3 Emergent properties of oxide heterostructures and nanostructures 3 1.4 Outline 3 2 Relevant properties of SrTiO3 3 2.1 Structural properties and transitions 3 2.2 Ferroelectricity, Paraelectricity and Quantum Paraelectricity 4 2.3 Electronic structure 5 2.4 Defects 6 2.4.1 Oxygen vacancies 6 2.4.2 Terraces 7 2.5 Superconductivity 7 3 SrTiO3-based heterostructures and nanostructures 8 3.1 Varieties of heterostructures 8 3.1.1 SrTiO3 only 9 3.1.2 LaAlO3/SrTiO3 9 3.1.3 Other heterostructures formed with SrTiO3 10 3.2 Thin-film growth 10 3.2.1 Substrates 10 3.2.2 SrTiO3 surface treatment 11 3.2.3 Pulsed Laser Deposition 11 3.2.4 Atomic Layer Deposition 13 3.2.5 Molecular Beam Epitaxy 14 3.2.6 Sputtering 15 3.3 Device Fabrication 15 3.3.1 "Conventional" photolithography - Thickness Modulation, hard masks, etc. 15 3.3.2 Ion beam irradiation 16 3.3.3 Conductive-AFM lithography 16 4 Properties and phase diagram of LaAlO3/SrTiO3 16 4.1 Insulating state 16 4.2 Conducting state 17 4.2.1 Confinement thickness (the depth profile of the 2DEG) 17 4.3 Metal-insulator transition and critical thickness 18 4.3.1 Polar catastrophe ( electronic reconstruction) 18 4.3.2 Oxygen Vacancies 19 4.3.3 Interdiffusion 20 4.3.4 Polar Interdiffusion + oxygen vacancies + antisite pairs 20 4.3.5 Role of surface adsorbates 21 4.3.6 Hidden FE like distortion - Strain induced instability 21 4.4 Structural properties and transitions 21 4.5 Electronic band structure 22 4.5.1 Theory 22 4.5.2 Experiment 23 4.5.3 Lifshitz transition 24 4.6 Defects, doping, and compensation 25 4.7 Magnetism 25 4.7.1 Experimental evidence 25 4.7.2 Two types of magnetism 27 4.7.3 Ferromagnetism 27 4.7.4 Metamagnetism 28 4.8 Superconductivity 28 4.9 Optical properties 29 4.9.1 Photoluminesce

  16. Facile synthesis of Sm-doped BiFeO{sub 3} nanoparticles for enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zijun; Chen, Da, E-mail: dchen_80@hotmail.com; Wang, Sen; Zhang, Ning; Qin, Laishun, E-mail: qinlaishun@cjlu.edu.cn; Huang, Yuexiang

    2017-06-15

    Highlights: • Effective Sm doping into BiFeO{sub 3} nanoparticles was obtained by a facile sol-gel route. • Band gap of Sm-doped BiFeO{sub 3} nanoparticles was regulated by the dopant concentration. • Sm-doped BiFeO{sub 3} nanoparticles exhibited superior photocatalytic activities. • The possible photocatalytic mechanism of Sm-doped BiFeO{sub 3} nanospheres was discussed. - Abstract: In this work, the effect of Sm doping on the structural and photocatalytic properties of BiFeO{sub 3} (BFO) was investigated. A series of Sm doped BFO nanoparticles containing different Sm dopant contents (Bi{sub (1−x)}Sm{sub x}FeO{sub 3}, x = 0.00, 0.01, 0.03, 0.05, 0.07, 0.10) were synthesized via a simple sol-gel route. It was revealed that Sm{sup 3+} ions were successfully doped into BFO nanoparticles, and the band gap value was gradually decreased when increasing Sm dopant concentration. The photocatalytic activity of Sm-doped BFO photocatalyst was significantly affected by the Sm doping content. Compared to pure BFO, the Sm-doped BFO samples exhibited much higher photocatalytic activity. The improved photocatalytic activity of Sm-doped BFO could be attributed to the enhanced visible light absorption and the efficient separation of photogenerated electrons and holes derived from Sm dopant trapping level in the Sm-doped BFO samples. In addition, the possible photocatalytic mechanism of Sm-doped BFO photocatalyst was also proposed.

  17. Preparation of Nd-doped BiFeO{sub 3} films and their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Meng [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Tan Guoqiang, E-mail: tan3114@163.com [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Xue Xu; Xia Ao; Ren Huijun [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China)

    2012-09-01

    The Nd-doped BiFeO{sub 3} thin films were prepared on SnO{sub 2}(FTO) substrates spin-coated by the sol-gel method using Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O, Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O and Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O as raw materials. The microstructure and electric properties of the BiFeO{sub 3} thin films were characterized and tested. The results indicate that the diffraction peak of the Nd-doped BiFeO{sub 3} films is shifted towards right as the doping amounts are increased. The structure is transformed from the rhombohedral to pseudotetragonal phase. The crystal grain is changed from an elliptical to irregular polyhedron. Structure transition occurring in the Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} films gives rise to the largest Pr of 64 {mu}C/cm{sup 2}. The leakage conductance of the Nd doped thin films is reduced. The dielectric constant and dielectric loss of Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} thin film at 10 kHz are 190 and 0.017 respectively.

  18. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    International Nuclear Information System (INIS)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R.J.; Phase, D.M.

    2016-01-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn_0_._9_7Al_0_._0_3O, Zn_0_._9_5Fe_0_._0_5O and Zn_0_._9_2Al_0_._0_3Fe_0_._0_5O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments. - Highlights: • Al, Fe, Al–Fe co-doped and undoped films of ZnO are deposited on Si by PLD. • Single phase (002) oriented Wurtzite ZnO phase is formed for all films. • Fe doped and Fe–Al co-doped ZnO films reveal magnetic hysteresis at 300 K. • Negative magnetoresistance is observed in undoped and Fe–Al co-doped ZnO film. • It is apparent that charge carriers are coupled with the local magnetic moment.

  19. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    Science.gov (United States)

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  20. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  1. Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3

    KAUST Repository

    Abutaha, Anas I.

    2015-03-24

    Thermoelectric (TE) metal oxides overcome crucial disadvantages of traditional heavy-metal-alloy-based TE materials, such as toxicity, scarcity, and instability at high temperatures. Here, we report the TE properties of metal oxide superlattices, composed from alternating layers of 5% Pr3+-doped SrTiO3-δ (SPTO) and 20% Nb5+-doped SrTiO3-δ (STNO) fabricated using pulsed laser deposition (PLD). Excellent stability is established for these superlattices by maintaining the crystal structure and reproducing the TE properties after long-time (20 h) annealing at high temperature (∼1000 K). The introduction of oxygen vacancies as well as extrinsic dopants (Pr3+ and Nb5+), with different masses and ionic radii, at different lattice sites in SPTO and STNO layers, respectively, results in a substantial reduction of thermal conductivity via scattering a wider range of phonon spectrum without limiting the electrical transport and thermopower, leading to an enhancement in the figure-of-merit (ZT). The superlattice composed of 20 SPTO/STNO pairs, 8 unit cells of each layer, exhibits a ZT value of 0.46 at 1000 K, which is the highest among SrTiO3-based thermoelectrics. © 2015 American Chemical Society.

  2. Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Li, Kun; Dehkordi, Arash Mehdizadeh; Tritt, Terry M.; Alshareef, Husam N.

    2015-01-01

    Thermoelectric (TE) metal oxides overcome crucial disadvantages of traditional heavy-metal-alloy-based TE materials, such as toxicity, scarcity, and instability at high temperatures. Here, we report the TE properties of metal oxide superlattices, composed from alternating layers of 5% Pr3+-doped SrTiO3-δ (SPTO) and 20% Nb5+-doped SrTiO3-δ (STNO) fabricated using pulsed laser deposition (PLD). Excellent stability is established for these superlattices by maintaining the crystal structure and reproducing the TE properties after long-time (20 h) annealing at high temperature (∼1000 K). The introduction of oxygen vacancies as well as extrinsic dopants (Pr3+ and Nb5+), with different masses and ionic radii, at different lattice sites in SPTO and STNO layers, respectively, results in a substantial reduction of thermal conductivity via scattering a wider range of phonon spectrum without limiting the electrical transport and thermopower, leading to an enhancement in the figure-of-merit (ZT). The superlattice composed of 20 SPTO/STNO pairs, 8 unit cells of each layer, exhibits a ZT value of 0.46 at 1000 K, which is the highest among SrTiO3-based thermoelectrics. © 2015 American Chemical Society.

  3. Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting

    International Nuclear Information System (INIS)

    Fujiwara, Rei; Sano, Hiroyuki; Shimizu, Mikio; Kuwabara, Makoto

    2009-01-01

    A quantitative spectral analysis of the ultraviolet (UV) broad excitation bands, which are located in the range 300-400 nm, for red emissions at around 610 nm in Pr-doped CaTiO 3 , SrTiO 3 :Al and BaTiO 3 :Mg phosphors has been carried out using a peak fitting technique. The obtained results demonstrate that the UV broad band of CaTiO 3 :Pr consists of four primary excitation bands centered around 330, 335, 365 and 380 nm and those of both SrTiO 3 :Al and BaTiO 3 :Mg consist of three primary bands centered around 310, 345 and 370 nm. Based on the behavior patterns and the values of the respective primary excitation bands' parameters, i.e. center gravity (λ top ), maximum height (I max ) and full-width at half-maximum (FWHM), the UV-to-red relaxation processes in these titanate phosphors can be explained to be essentially the same, except for the existence of an additional relaxation pathway via electron-trap states in CaTiO 3 :Pr, which gives a characteristic shape of its UV excitation spectrum in the wavelength range of >360 nm

  4. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    Science.gov (United States)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  5. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  6. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  7. Different doping effect on physical properties of non-magnetic Pt and Ga in CaFe4As3

    International Nuclear Information System (INIS)

    Wu, Dapeng

    2015-01-01

    Highlights: • CaFe 3.64 Pt 0.36 As 3 and CaFe 3.64 Ga 0.36 As 3 were grown using Sn flux method. • The two magnetic transition temperatures of CaFe 4 As 3 remain untouched upon Pt or Ga doping. • The effects of Pt and Ga doping give a different modification of physical properties and electronic structure in CaFe 4 As 3 . • The magnetic structure of CaFe 4 As 3 is insusceptible to non-magnetic dopants. - Abstract: We have successfully doped Pt and Ga into CaFe 4 As 3 and investigated the structure and physical properties of CaFe 3.64 X 0.36 As 3 (X = Pt, Ga). Two magnetic transition temperatures remain unchanged upon Pt or Ga doping, as confirmed by specific heat, electrical resistivity and magnetic susceptibility. The electrical resistivity of CaFe 4 As 3 is reduced by approximately half with Pt dopant but increases by an order of magnitude with Ga doping, consistent with the changes in their Hall coefficients, which indicates the effects of Pt and Ga doping give us a different modification on physical properties and electronic structure in CaFe 4 As 3

  8. Structural, optical, and magnetic properties of Fe doped In{sub 2}O{sub 3} powders

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603 104, Tamilnadu (India); Rao, N. Madhusudhana; Krishnamoorthi, C.; Kuppan, M.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu (India); Reddy, D. Sreekantha [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-01-15

    Highlights: • Synthesis of Fe doped In{sub 2}O{sub 3} powders using a solid state reaction. • Characterization of the samples using XRD, UV–vis-NIR, FT-IR, and VSM. • All Fe doped In{sub 2}O{sub 3} powders exhibited the cubic structure of In{sub 2}O{sub 3}. • All the Fe doped In{sub 2}O{sub 3} samples exhibited room temperature ferromagnetism. - Abstract: Iron doped indium oxide dilute magnetic semiconductor (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.00, 0.03, 0.05, and 0.07) powders were synthesized by standard solid state reaction method followed by vacuum annealing. The effect of Fe concentration on structural, optical, and magnetic properties of the (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} powders have been systematically studied. X-ray diffraction patterns confirmed the polycrystalline cubic structure of all the samples. An optical band gap increases from 3.12 eV to 3.16 eV while Fe concentration varying from 0.03 to 0.07. Magnetic studies reveal that virgin/undoped In{sub 2}O{sub 3} is diamagnetic. However, all the Fe-doped In{sub 2}O{sub 3} samples are ferromagnetic. The saturation magnetization (M{sub s}) of ferromagnetic (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.03, 0.05, and 0.07) samples increases from 11.56 memu/g to 148.64 memu/g with x = 0.03–0.07. The observed ferromagnetism in these samples was attributed to magnetic nature of the dopant (Fe) as well as defects created in the samples during vacuum annealing.

  9. Structural, optical, and magnetic properties of Mn and Fe-doped Co3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    C. Stella

    2015-08-01

    Full Text Available Mn and Fe-doped Co3O4 nanoparticles were prepared by a simple precipitation method. The synthesized particles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, and vibrating sample magnetometer (VSM techniques. XRD analysis showed the cubic structure of Co3O4. SEM and TEM images confirmed the formation of interconnected nanoparticles. Mn and Fe-doped Co3O4 showed broad absorption in the visible region compared to undoped sample and the band gap values are red shifted. Five Raman active modes were observed from the Raman spectra. FTIR spectra confirmed the spinel structure of Co3O4 and the doping of Mn and Fe shifts the vibrational modes to lower wave number region. The magnetic measurements confirmed that Fe-doped Co3O4 shows a little ferromagnetic behavior compared to undoped and Mn-doped Co3O4, which could be related to the uncompensated surface spins and the finite size effects.

  10. Local structure of vanadium in doped LiFePO4

    International Nuclear Information System (INIS)

    Zhao, Ting; Xu, Wei; Ye, Qing; Cheng, Jie; Zhao, Haifeng; Chu, Wangsheng; Wu, Ziyu; Univ. of Science and Technology of China, Hefei; Xia, Dingguo

    2010-01-01

    LiFePO 4 composites with 5 at.% vanadium doping are prepared by solid state reactions. X-ray absorption fine-structure spectroscopy is used as a novel technique to identify vanadium sites. Both experimental analyses and theoretical simulations show that vanadium does not enter into the LiFePO 4 crystal lattice. When the vanadium concentration is lower then 1 at.%, the dopant remains insoluble. Thus, a single-phase vanadium-doped LiFePO4 cannot be formed and the improved electrochemical properties of vanadium doped LiFePO 4 previously reported cannot be associated with crystal structure changes of the LiFePO 4 via vanadium doping. (orig.)

  11. Synthesis and pressure effects on the La doped CaFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo Hyun; Park, Tuson [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Shang, T.; Yuan, H. Q. [Dept. of physics, Zhejiang University, Hangzhou (China)

    2014-09-15

    We have synthesized La doped CaFe2As{sub 2} single crystals with Sn flux in an evacuated quartz ampule. Doping and pressure effects on the magnetic and superconducting properties of the under-doped Ca{sub 1-x}La{sub x}Fe{sub 2}As{sub 2} (x=0.08, 0.1) were studied by measuring electrical resistivity under quasi-hydrostatic pressure up to 21 kbar. Magnetic transition temperatures for all studied concentrations were sharply suppressed with slight amplitude of pressure, less than 3 kbar, while superconducting transition temperatures were robust against pressure. In this communication, we report temperature-pressure phase diagram for the La-doped CaFe{sub 2}As{sub 2} single crystals.

  12. Doping dependence of magnetic and transport properties in single crystalline Co-doped BaFe2As2

    International Nuclear Information System (INIS)

    Nakajima, Yasuyuki; Taen, Toshihiro; Tamegai, Tsuyoshi

    2010-01-01

    We report the doping dependence of transport and magnetic properties in Co-doped BaFe 2 As 2 . With increasing Co concentration x, structural and magnetic transitions are suppressed and superconductivity emerges in the range of 0.3 c at low temperatures and low fields obtained from bulk magnetization is reasonably large and the doping dependence shows a maximum at x∼0.07 similar to T c . The values of J c at low temperatures reach about 1x10 6 A/cm 2 around the optimally doped region, which is potentially attractive for technological applications.

  13. Half-metallic ferromagnetism in Fe-doped Zn3P2 from first-principles calculations

    International Nuclear Information System (INIS)

    Jaiganesh, G.; Jaya, S. Mathi

    2014-01-01

    Using the first-principles calculations based on the density functional theory, we have studied the magnetism and electronic structure of Fe-doped Zinc Phosphide (Zn 3 P 2 ). Our results show that the half-metallic ground state and ferromagnetic stability for the small Fe concentrations considered in our study. The stability of the doped material has been studied by calculating the heat of formation and analyzing the minimum total energies in nonmagnetic and ferromagnetic phases. A large value of the magnetic moment is obtained from our calculations and our calculation suggests that the Fe-doped Zn 3 P 2 may be a useful material in semiconductor spintronics

  14. Synthesis, electronic transport and optical properties of Si:α-Fe2O3 single crystals

    NARCIS (Netherlands)

    Rettie, A.J.E.; Chemelewski, W.D.; Wygant, B.R.; Lindemuth, J.; Lin, J.F.; Eisenberg, D.; Brauer, C.S.; Johnson, T.J.; Beiswenger, T.N.; Ash, R.D.; Li, X.; Zhou, J.; Mullins, C.B.

    2016-01-01

    We report the synthesis of silicon-doped hematite (Si:alpha-Fe2O3) single crystals via chemical vapor transport, with Si incorporation on the order of 1019 cm(-3). The conductivity, Seebeck and Hall effect were measured in the basal plane between 200 and 400 K. Distinct differences in electron

  15. Influence of Fe doped on the magnetocaloric behavior of La_{{2}/{3}} Ca_{{1}/{3}} Mn1-x Fe x O3 compounds: a Monte Carlo simulation

    Science.gov (United States)

    Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.

    2018-02-01

    The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x  =  0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.

  16. A versatile light-switchable nanorod memory: Wurtzite ZnO on perovskite SrTiO3

    KAUST Repository

    Kumar, Anup Bera; Peng, Haiyang; Lourembam, James; Shen, Youde; Sun, Xiaowei; Wu, Tao

    2013-01-01

    heterojunction memory made of wurtzite ZnO nanorods grown on perovskite Nb-doped SrTiO3 (NSTO) is reported, the electronic properties of which can be drastically reconfigured by applying a voltage and light. Despite of the distinct lattice structures of Zn

  17. EPR of photochromic Mo3+ in SrTiO3

    NARCIS (Netherlands)

    Kool, Th.W.

    2010-01-01

    In single crystals of SrTiO_3, a paramagnetic center, characterized by S = 3/2 and hyperfine interaction with an I = 5/2 nuclear spin has been observed in the temperature range 4.2K-77K by means of EPR. The impurity center is attributed to Mo3+. No additional line splitting in the EPR spectrum due

  18. Doping effects of Fe ion on magnetic anisotropy of YBa2Cu3Oy

    International Nuclear Information System (INIS)

    Ugawa, T.; Horii, S.; Maeda, T.; Haruta, M.; Shimoyama, J.

    2013-01-01

    Highlights: •We clarified orientation effects of Fe-doped Y123 in modulated rotating fields. •Y123 showed two different hard magnetic axes due to twin microstructures. •The two hard magnetic axes in Fe-doped Y123 were [1 0 0] and [1 1 0] directions. •Magnetic anisotropy of the [1 1 0] grain was higher than that of the [1 0 0] grain. -- Abstract: We report magnetic alignment of YBa 2 (Cu 1−x Fe x ) 3 O y (Fe-doped Y123, x = 0–0.1) powders under modulated rotation magnetic fields (MRFs) and roles of Fe ion as a determination factor of magnetic anisotropy in Y123. The Fe-free and Fe-doped Y123 powder samples aligned in the MRF of 10 T showed two different orientation types of the hard axis in Y123 grains. From an X-ray rocking curve measurement for the magnetically aligned powder samples of the Fe-doped Y123, inplane magnetic anisotropy for Y123 grains with the hard axis parallel to the [1 1 0] direction was found to be higher than that for Y123 grains with the hard axis parallel to the [0 1 0] direction

  19. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3

    Science.gov (United States)

    Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.

    2018-03-01

    Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.

  20. Ni doped Fe3O4 magnetic nanoparticles.

    Science.gov (United States)

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  1. Synthesis and electrochemical properties of Ti4+ doped Li3-xFe2-xTix(PO4)3/C cathode materials

    International Nuclear Information System (INIS)

    Liu Zhanqiang; Huang Fuqiang; Sun Junkang

    2011-01-01

    Highlights: → Li 3-x Fe 2-x Ti x (PO 4 ) 3 /C composite cathodes were prepared by ball-milling method. Ti-doping can improve the electrochemical property of Li 3 Fe 2 (PO 4 ) 3 . → The optimized doping level was found to be x = 0.2. → The second phase of LiTi 2 (PO 4 ) 3 will emerge if the doping level higher than 0.2. - Abstract: Li 3-x Fe 2-x Ti x (PO 4 ) 3 /C (x = 0-0.4) cathodes designed with Fe doped by Ti was studied. Both Li 3 Fe 2 (PO 4 ) 3 /C (x = 0) and Li 2.8 Fe 1.8 Ti 0.2 (PO 4 ) 3 /C (x = 0.2) possess two plateau potentials of Fe 3+ /Fe 2+ couple (around 2.8 V and 2.7 V vs. Li + /Li) upon discharge observed from galvanostatic charge/discharge and cyclic voltammetry. Li 2.8 Fe 1.8 Ti 0.2 (PO 4 ) 3 /C has higher reversibility and better capacity retention than that of the undoped Li 3 Fe 2 (PO 4 ) 3 /C. A much higher specific capacity of 122.3 mAh/g was obtained at C/20 in the first cycle, approaching the theoretical capacity of 128 mAh/g, and a capacity of 100.1 mAh/g was held at C/2 after the 20th cycle.

  2. Structural transitions and multiferroic properties of high Ni-doped BiFeO3

    Science.gov (United States)

    Betancourt-Cantera, L. G.; Bolarín-Miró, A. M.; Cortés-Escobedo, C. A.; Hernández-Cruz, L. E.; Sánchez-De Jesús, F.

    2018-06-01

    Nickel doped bismuth ferrite powders, BiFe1-x NixO3 (0 ≤ x ≤ 0.5), were synthesized by high-energy ball milling followed by an annealing at 700 °C. A detailed study about the substitution of Fe3+ by Ni2+ on the crystal structure and multiferroic properties is presented. The X-ray diffraction patterns reveal the formation of rhombohedral structure with small amounts of Bi2Fe4O9 as a secondary phase for x behavior indicates the frustration of the G-antiferromagnetic order typical of the un-doped BiFeO3, caused by the presence of small amounts of Ni2+ (x Behavior modifications of electrical conductivity, permittivity and dielectric loss versus frequency are related with crystal structure transformations, when nickel concentration is increased.

  3. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe

    Science.gov (United States)

    Zhang, Ziyue; haq, Mahmood; Wen, Zhen; Ye, Zhizhen; Zhu, Liping

    2018-03-01

    WO3 mesoporous hollow nanospheres doped with Fe synthesized by a facile method have mesoporous hollow nanospherical like morphology, small grain size (10 nm), high crystalline quality and ultrahigh surface area (165 m2/g). XRD spectra and Raman spectra indicate the Fe doping leading to the smaller cell parameters as compared to pure WO3, and the slight distortion in the crystal lattice produces a number of defects, making it a better candidate for gas sensing. XPS analysis shows that Fe-doped WO3 mesoporous hollow nanospheres have more oxygen vacancies than pure WO3, which is beneficial to the adsorption of oxygen and NO2 and its surface reaction. The gas sensor based on Fe-WO3 exhibited excellent low ppb-level (10 ppb) NO2 detecting performance and outstanding selectivity.

  4. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyeona Mun

    2015-03-01

    Full Text Available The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb and dopants (Fe. An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects.

  5. Different doping effect on physical properties of non-magnetic Pt and Ga in CaFe{sub 4}As{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng

    2015-02-25

    Highlights: • CaFe{sub 3.64}Pt{sub 0.36}As{sub 3} and CaFe{sub 3.64}Ga{sub 0.36}As{sub 3} were grown using Sn flux method. • The two magnetic transition temperatures of CaFe{sub 4}As{sub 3} remain untouched upon Pt or Ga doping. • The effects of Pt and Ga doping give a different modification of physical properties and electronic structure in CaFe{sub 4}As{sub 3}. • The magnetic structure of CaFe{sub 4}As{sub 3} is insusceptible to non-magnetic dopants. - Abstract: We have successfully doped Pt and Ga into CaFe{sub 4}As{sub 3} and investigated the structure and physical properties of CaFe{sub 3.64}X{sub 0.36}As{sub 3} (X = Pt, Ga). Two magnetic transition temperatures remain unchanged upon Pt or Ga doping, as confirmed by specific heat, electrical resistivity and magnetic susceptibility. The electrical resistivity of CaFe{sub 4}As{sub 3} is reduced by approximately half with Pt dopant but increases by an order of magnitude with Ga doping, consistent with the changes in their Hall coefficients, which indicates the effects of Pt and Ga doping give us a different modification on physical properties and electronic structure in CaFe{sub 4}As{sub 3}.

  6. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  7. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  8. Superconductivity and electronic structure in single-layer FeSe on SrTiO{sub 3} probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jandke, Jasmin; Dressner, Jonas; Wulfhekel, Wulf [Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Yang, Fang; Gao, Chunlei [Fudan Universitaet, Shanghai (China)

    2016-07-01

    We use high-resolution scanning tunneling spectroscopy (STS) to study single-layer FeSe on Nb-doped SrTiO{sub 3} (001). Features of bosonic excitations were observed in the measured quasiparticle density of states. Furthermore, using STS, quasiparticle interference (QPI) imaging was performed in order to map the multiband electronic structure of FeSe. Compared to previous measurements, an additional feature is visible in our measured QPI maps on a single-layer FeSe/SrTiO{sub 3}. The origin of this feature will be discussed.

  9. Aspects of electron-phonon interactions with strong forward scattering in FeSe Thin Films on SrTiO3 substrates

    Science.gov (United States)

    Wang, Y.; Nakatsukasa, K.; Rademaker, L.; Berlijn, T.; Johnston, S.

    2016-05-01

    Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small {q}) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system.

  10. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  11. Photoconductive response of a single Au nanorod coupled to LaAlO3/SrTiO3 nanowires

    International Nuclear Information System (INIS)

    Jnawali, Giriraj; Chen, Lu; Huang, Mengchen; Lee, Hyungwoo; Ryu, Sangwoo; Podkaminer, Jacob P.; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    2015-01-01

    Terahertz (THz) spectroscopy is an important tool that provides resonant access to free carrier motion, molecular rotation, lattice vibrations, excitonic, spin, and other degrees of freedom. Current methods using THz radiation suffer from limits due to diffraction or low-sensitivity, preventing application at the scale of single nanoscale objects. Here, we present coupling between plasmonic degrees of freedom in a single gold nanorod and broadband THz emission generated from a proximal LaAlO 3 /SrTiO 3 nanostructure. A strong enhancement of THz emission is measured for incident radiation that is linearly polarized along the long axis of the nanorod. This demonstration paves the way for the investigation of near-field plasmonic coupling in a variety of molecular-scale systems

  12. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics ...

    Indian Academy of Sciences (India)

    Administrator

    Fourier transform infrared spectroscopy (FTIR), and magnetic and optical property ... Among many perovskite ceramics, LaFeO3 is of cur- ... example, in anode-supported SOFCs, doped LaFeO3 used ... doped with K+, synthesized by a simple combustion ... single phase formation was limited to ... magnetic field of 1000 Oe.

  13. Structure and magnetic properties of Fe doped In{sub 2}O{sub 3} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamilnadu -603104 (India)

    2015-06-24

    Pure and Fe (7 at.%) doped In{sub 2}O{sub 3} thin films were grown onto the glass substrates by electron beam evaporation technique. The structural and magnetic properties of the pure and Fe doped In{sub 2}O{sub 3} thin films have been studied. The undoped and Fe doped In{sub 2}O{sub 3} thin films shown ferromagnetic property at room temperature. A magnetization of 24 emu/cm{sup 3} was observed for pure In{sub 2}O{sub 3} thin films. The magnetization of 38.23 emu/cm{sup 3} was observed for the Fe (7 at.%) doped In{sub 2}O{sub 3} thin films.

  14. The metallic interface between the two band insulators LaGaO3 and SrTiO3

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo; Singh, Nirpendra

    2011-01-01

    The formation of metallic interface states between the two band insulators LaGaO3 and SrTiO3 is studied by the full-potential linearized augmented plane-wave method based on density functional theory.Structural optimization of the atomic positions points to only small changes of the chemical bonding at the interface. The n-type (LaO/TiO2) and p-type (GaO2/SrO) interfaces turn out to be metallic. Reduction of the O content increases the conductivity of the n-type interface, while the p-type interface can be turned gradually from a hole doped into an electron doped state.

  15. The metallic interface between the two band insulators LaGaO3 and SrTiO3

    KAUST Repository

    Nazir, Safdar

    2011-06-28

    The formation of metallic interface states between the two band insulators LaGaO3 and SrTiO3 is studied by the full-potential linearized augmented plane-wave method based on density functional theory.Structural optimization of the atomic positions points to only small changes of the chemical bonding at the interface. The n-type (LaO/TiO2) and p-type (GaO2/SrO) interfaces turn out to be metallic. Reduction of the O content increases the conductivity of the n-type interface, while the p-type interface can be turned gradually from a hole doped into an electron doped state.

  16. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  17. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  18. Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, A; Behr, G; Griessmann, H; Teichert, S; Lange, H

    1997-07-01

    The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

  19. Electronic conduction in doped multiferroic BiFeO3

    Science.gov (United States)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  20. The Formation of Lithiated Ti-Doped α-Fe2O3 Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    International Nuclear Information System (INIS)

    Widatallah, H. M.; Gismelseed, A. M.; Bouziane, K.; Berry, F. J.; Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E.

    2004-01-01

    The milling of spinel-related Ti-doped Li 0.5 Fe 2.5 O 4 for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped α-Fe 2 O 3 nanocrystalline particles via an intermediate γ-LiFeO 2 -related phase. The role played by the dopant Ti-ion in the process is emphasized.

  1. Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution

    International Nuclear Information System (INIS)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • Doping of Ce into Fe 3 O 4 was achieved based on a facile solvothermal method. • After doping, the removal capacity was increased by 5 times for “Sb(V)” and 2 times for “Sb(III)”. • Decreasing pH improved adsorption of Sb(V) but decreased adsorption of Sb(III). • Antimony sorption mechanisms on Ce-doped Fe 3 O 4 were illustrated. - Abstract: Aqueous antimony (Sb) pollution from human activity is of great concern in drinking water due to its adverse health effect. Magnetic Fe 3 O 4 particles, with high separation ability from solution, have been considered as a low-cost Sb adsorbent for contaminants. However, the limited adsorption capacity has restricted its practical application. In this study, a solvothermal approach was developed for doping Ce(III) into Fe 3 O 4 , thereby increasing the adsorption efficacy for both Sb(III) and Sb(V). In contrast to un-doped Fe 3 O 4 , the adsorption capacity towards Sb(III) and Sb(V) in Ce-doped materials increased from 111.4 to 224.2 mg/g and from 37.2 to 188.1 mg/g at neutral pH, respectively. Based on the combined results of XPS, XRD, and FTIR, it confirmed that Ce atom successfully doped into the Fe 3 O 4 structure, resulting in the decreased particle size, increased the surface area, and isoelectric point. Furthermore, the vibrating sample magnetometer (VSM) results showed that the Ce doping process had some side effects on the primitive magnetic property, but remaining the high separation potential during water treatment. According to the high removal efficiency and magnetic property, the Ce-doped Fe 3 O 4 of great simplicity should be a promising adsorbent for aqueous Sb removal.

  2. Identification of ε-Fe{sub 2}O{sub 3} nano-phase in borate glasses doped with Fe and Gd

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.S.; Ivantsov, R.D. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Petrakovskaja, E.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Velikanov, D.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.V. [NRC “Kurchatov Institute”, 123182 Moscow (Russian Federation); Zaikovskii, V.I. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Stepanov, S.A. [Vavilov State Optical Institute, All-Russia Research Center, 192371 Petersburg (Russian Federation)

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe{sub 2}O{sub 3}, γ-Fe{sub 2}O{sub 3}, or Fe{sub 3}O{sub 4} nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe{sub 2}O{sub 3}. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles’ nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics. - Highlights: • Alumina-potassium-borate glasses co-doped with Fe and Gd are studied. • Magnetic nanoparticles with structure close to ε-Fe{sub 2}O{sub 3} are shown to arise in glasses • Magnetic hysteresis loops and EMR evidence on the ferromagnetic and paramagnetic nano-phases coexistence. • Magnetic circular dichroism for ε-Fe{sub 2}O{sub 3} is studied for the first time.

  3. Electronic Properties of LiFePO4 and Li doped LiFePO4

    International Nuclear Information System (INIS)

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-01-01

    The potential use of different iron phosphates as cathode materials in lithium-ion batteries has recently been investigated.1 One of the promising candidates is LiFePO4. This compound has several advantages in comparison to the state-of-the-art cathode material in commercial rechargeable lithium batteries. Firstly, it has a high theoretical capacity (170 mAh/g). Secondly, it occurs as mineral triphylite in nature and is inexpensive, thermally stable, non-toxic and non-hygroscopic. However, its low electronic conductivity (∼10-9 S/cm) results in low power capability. There has been intense worldwide research activity to find methods to increase the electronic conductivity of LiFePO4, including supervalent ion doping,2 introducing non-carbonaceous network conduction3 and carbon coating, and the optimization of the carbon coating on LiFePO4 particle surfaces.4 Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL has yield electronic conductivity increase up to 106.5 We studied electronic structure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-ray emission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes the unoccupied partial density of states, while XES the occupied partial density of states. By combining XAS and XES measurements, we obtained information on band gap and orbital character of both LiFePO4 and Li doped LiFePO4. The occupied and unoccupied oxygen partial density of states (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented in Fig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (∼ 4 eV). This value is much larger than what is predicted by DFT calculation. For 5 percent Li doped LiFePO4, a new doping state was created closer to the Fermi level, imparting p-type conductivity, consistent with thermopower measurement. Such observation substantiates the suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 is due to available number of charge carriers in the material

  4. Fe-doping induced Griffiths-like phase in La0.7Ba0.3CoO3

    International Nuclear Information System (INIS)

    Wan-Guo, Huang; Xiang-Qun, Zhang; Guo-Ke, Li; Young, Sun; Qing-An, Li; Zhao-Hua, Cheng

    2009-01-01

    The effect of Fe-doping on the magnetic properties of the ABO 3 -type perovskite cobaltites La 0.7 Ba 0.3 Co 1–y Fe y O 3 (0 ≤ y ≤ 0.80) is reported. With no apparent structural change in any doped sample, the Curie temperature (T C ) and the magnetization (M) are greatly suppressed for y ≤ 0.30 samples, while a distinct increase in T C for the y = 0.40 sample is observed. With the further increase of Fe concentration, T C increases monotonically. Griffiths-like phases in 0.40 ≤ y ≤ 0.60 samples are confirmed. The formation of the Griffiths-like phase is ascribed to B-site disordering induced isolation of ferromagnetic (FM) clusters above T C . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Impacts of Co-doping on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystal studied by the electrical transport.

    Science.gov (United States)

    Urata, Takahiro; Tanabe, Yoichi; Heguri, Satoshi; Tanigaki, Katsumi

    2015-03-01

    In the FeSe with the simplest crystal structure in the Fe-based superconductor families, although both the superconductivity and the orbital ordering states are investigated, the relation between them is still unclear. Here, we report Co doping effects on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystals. The electrical transport measurements demonstrated that the superconductivity vanishes at 4 % Co doping while the orbital ordering state may be robust against Co doping. Present results suggest that the orbital ordering state is not related to the emergence of the superconductivity in FeSe.

  6. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    Science.gov (United States)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  7. Synthesis, characterization and gas sensing properties of undoped and Zn-doped γ-Fe2O3-based gas sensors

    International Nuclear Information System (INIS)

    Jing Zhihong

    2006-01-01

    In this study, undoped and Zn-doped γ-Fe 2 O 3 nanopowders have been prepared using Fe(NO 3 ) 3 .9H 2 O and Zn(NO 3 ) 2 .6H 2 O as starting materials and lauryl alcohol as anhydrous medium. Thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron micrograph (TEM) were employed to characterize the products. Sensitivity characteristics of the undoped and Zn-doped γ-Fe 2 O 3 semiconductor gas sensors have been investigated. The results show that both of the undoped and 15 mol% Zn-doped γ-Fe 2 O 3 -based gas sensors present good sensitivity and selectivity to acetone and ethanol in presence of CH 4 , H 2 and CO at the operating temperatures of 240 and 270 deg. C, respectively. After being doped with 15 mol% Zn addition, the γ-Fe 2 O 3 -based gas element displays higher sensitivity and selectivity as well as shorter response-recovery time compared with the undoped, suggesting that the promoting effect of ZnO is excellent. So, it seems that the γ-Fe 2 O 3 -based gas sensor doped with 15 mol% Zn is expected to be a promising sensor for detecting acetone and ethanol

  8. Variation in band gap of lanthanum chromate by transition metals doping LaCr0.9A0.1O3 (A:Fe/Co/Ni)

    International Nuclear Information System (INIS)

    Naseem, Swaleha; Khan, Wasi; Saad, A. A.; Shoeb, M.; Ahmed, Hilal; Naqvi, A. H.; Husain, Shahid

    2014-01-01

    Transition metal (Fe, Co, Ni) doped lanthanum chromate (LaCrO 3 ) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 800°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible and photoluminescence techniques. The energy band gap was calculated and the variation was observed with the doping of transition metal ions. Photoluminescence spectra show the emission peak maxima for the pure LaCrO 3 at about 315 nm. Influence of Fe, Co, Ni doping was studied and compared with pure lanthanum chromate nanoparticles

  9. Electrical and magnetic behavior of iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam, E-mail: veerajendran@gmail.com

    2016-01-01

    Iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer–Emmett–Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m{sup 2} g{sup −1}. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (H{sub c}) 867–462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe{sup 3+}/NiTiO{sub 3} nanoparticles at higher Fe content. - Highlights: • Iron doped nickel titanate magnetic nanoparticles. • Ferromagnetic magnetism behavior with higher magnitude of coercivity. • Dielectric behavior of ferromagnetic nanoparticles with increase of Fe content.

  10. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  11. Control of oxygen octahedral rotation in BiFeO3 films using modulation of SrRuO3 bottom electrode layer

    Science.gov (United States)

    Lee, Sungsu; Jo, Ji Young

    2015-03-01

    Oxygen octahedral rotation of multiferroic BiFeO3 (BFO) has attracted great attention due to changes of electrical and magnetic properties. Coupling of octahedral rotation in BFO-bottom electrode layer interface remains unexplored. Recently, there have been reported the control of octahedral rotation in SrRuO3 (SRO) film on SrTiO3 (001) substrate by coherently controlling the oxygen pressure during growth and interfacial coupling. Here we demonstrate that the octahedral rotation of BFO film is changed using tetragonal a0a0c- tilted-SRO bottom electrodes. In this work, BFO/SRO heterostructure is fabricated to SrTiO3 (001) single crystal substrates by pulsed laser deposition at different oxygen partial pressures. The rotation pattern of FeO6 and the structural symmetry are identified from half-integer reflections using high-resolution X-ray diffraction. The effects depending on octahedral tilting of BFO films on the magnetic and ferroelectric properties will be presented.

  12. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.

    Science.gov (United States)

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  13. Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr doped CaCu3Ti4O12 thin films prepared by the sol–gel method

    Directory of Open Access Journals (Sweden)

    Dong Xu

    2015-10-01

    Full Text Available This paper focuses on the effects of alkline-earth metal titante AETiO3 (AE=Mg, Ca, Sr doping on the microstructure and electric characteristics of CaCu3Ti4O12 thin films prepared by the sol–gel method. The results showed that the grain size of CCTO thin films could be increased by MgTiO3 doping. The movement of the grain boundaries was impeded by the second phases of CaTiO3 and SrTiO3 concentrating at grain boundaries in CaTiO3 and SrTiO3 doped CCTO thin films. Rapid ascent of dielectric constant could be observed in 0.1Mg TiO3 doped CCTO thin films, which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed. In addition, the nonlinear coefficient (α, threshold voltage (VT and leakage current (IL of AETiO3 doped CCTO thin films (AE=Mg, Ca, Sr showed different variation with the increasing content of the MgTiO3, CaTiO3 and SrTiO3.

  14. First-principles investigation of Fe-doped MgSiO3-ilmenite

    International Nuclear Information System (INIS)

    Stashans, Arvids; Rivera, Krupskaya; Pinto, Henry P.

    2012-01-01

    First principles density functional theory and generalised gradient approximation (GGA) have been exploited to investigate Fe-doped ilmenite-type MgSiO 3 mineral. Strong electron correlation effects not included in a density-functional formalism are described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach). Microstructure of equilibrium geometries, electronic band structures as well as magnetic properties are computed and discussed in detail. Hartree-Fock methodology is used as an extra tool to study optical properties of the same system. For equilibrium state of the doped mineral we find zigzag-type atomic rearrangements around the Fe impurity. The inclusion of correlation effects leads to an improved description of the electronic properties. In particular, it is discovered that Fe incorporation produces local energy levels within the band-gap of the material. Using ΔSCF method optical absorption energies are found to be equal to 2.2 and 2.6 eV leading to light absorption at longer wavelengths compared to the undoped MgSiO 3 . Our results provide evidence on the occurrence of local magnetic moment in the region surrounding iron dopant. According to the outcomes, the Fe⇒Mg reaction can be described as substitutionally labile with Fe 2+ complex being found in the high-spin state at low pressure MgSiO 3 -ilmenite conditions.

  15. Unusually high critical current of P-doped BaFe{sub 2}As{sub 2} single crystalline thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz; Engelmann, Jan; Schultz, Ludwig [IMW, IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Tarantini, Chiara; Jaroszynski, Jan [ASC, NHMFL, Florida (United States); Grinenko, Vadim; Reich, Elke; Huehne, Ruben [IMW, IFW Dresden, Dresden (Germany); Haenisch, Jens [IMW, IFW Dresden, Dresden (Germany); ITEP, KIT, Karlsruhe (Germany); Mori, Yasohiro; Sakagami, Akihiro; Kawaguchi, Takahiko; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Nagoya (Japan); Holzapfel, Bernhard [ITEP, KIT, Karlsruhe (Germany); Iida, Kazumasa [IMW, IFW Dresden, Dresden (Germany); Department of Crystalline Materials Science, Nagoya University, Nagoya (Japan)

    2015-07-01

    Microstructurally clean, isovalently P-doped BaFe{sub 2}As{sub 2} single crystalline thin films have been prepared by molecular beam epitaxy. These films show a superconducting transition temperature (T{sub c}) of over 30 K and high transport self-field critical current densities (J{sub c}) of over 6 MA/cm{sup 2} at 4.2 K, which are among the highest for Fe based superconductors. In-field J{sub c} exceeds 0.1 MA/cm{sup 2} at μ{sub 0}H = 35 T for H parallel ab and μ{sub 0}H = 18 T for H parallel c, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T{sub c}. This unusually high J{sub c} makes P-doped Ba-122 very favorable for high-field magnet applications.

  16. Enhanced magnetic and dielectric behavior in Co doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Kaushik; Sarkar, Babusona; Ashok, Vishal Dev [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Chaudhuri, Sheli Sinha [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); De, S.K., E-mail: msskd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-05-01

    Magnetic and dielectric properties of Co doped BiFeO{sub 3} (BFO) nanoparticles (13 nm) have been investigated. The dopant Co{sup 2+} converts spherical morphology to cubic nanostructures. The significant changes in temperature dependence of magnetization may be due to magnetic disorder phase induced by divalent Co. The substitution of Fe by Co disrupts cycloidal spin structure of BFO and improves the ferromagnetic property. Enhancement of the saturation magnetization and coercivity by about 10 times in doped BFO are due to changes in morphology. High dielectric constant of about 670 and low loss at room temperature show Co doped BFO as promising material for multifunctional devices.

  17. Optical properties of single doped Cr3+ and co-doped Cr3+-Nd3+ aluminum tantalum tellurite glasses

    International Nuclear Information System (INIS)

    Rodriguez-Mendoza, U.R.; Speghini, A.; Jaque, D.; Zambelli, M.; Bettinelli, M.

    2004-01-01

    The optical properties for single doped Cr 3+ and co-doped Cr 3+ -Nd 3+ aluminum tantalum tellurite glasses have been studied as a function of temperature. For the single doped glass, the existence of two bands in the emission spectra at low temperature indicates the presence of two different sites for the Cr 3+ ions, labelled as usual as low- and high-field sites. The broad band centred in the Near Infrared region, corresponds to low-field sites transition 4 T 2 → 4 A 2 , and the narrow band centred at approximately 715 nm to the high-field sites transition 2 E→ 4 A 2 . The emission intensity for both high- and low-field sites shows a strong decrease with increasing temperature, with the emission for the former sites vanishing at RT. In both cases the quenching observed with the increase of temperature can be ascribed to the presence of non-radiative relaxation mechanisms. Experimental observations for the co-doped glass show that both radiative and non-radiative energy transfer processes from Cr 3+ to Nd 3+ are present

  18. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  19. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh, E-mail: skphysics@yahoo.co.in [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Deepika [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Tripathi, Malvika [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India); Vaibhav, Pratyush [Jaypee University of Engineering and Technology, Guna 473226, Madhya Pradesh (India); Kumar, Aman [Indian Institute of Technology, Roorkee (India); Kumar, Ritesh [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Choudhary, R.J., E-mail: ram@csr.res.in [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India); Phase, D.M. [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India)

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn{sub 0.97}Al{sub 0.03}O, Zn{sub 0.95}Fe{sub 0.05}O and Zn{sub 0.92}Al{sub 0.03}Fe{sub 0.05}O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments. - Highlights: • Al, Fe, Al–Fe co-doped and undoped films of ZnO are deposited on Si by PLD. • Single phase (002) oriented Wurtzite ZnO phase is formed for all films. • Fe doped and Fe–Al co-doped ZnO films reveal magnetic hysteresis at 300 K. • Negative magnetoresistance is observed in undoped and Fe–Al co-doped ZnO film. • It is apparent that charge carriers are coupled with the local magnetic moment.

  20. First-principles investigation of Fe-doped MgSiO{sub 3}-ilmenite

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Rivera, Krupskaya [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Escuela de Geologia y Minas, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Pinto, Henry P. [Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Jackson State University, Jackson, Mississippi 39217-0510 (United States)

    2012-06-15

    First principles density functional theory and generalised gradient approximation (GGA) have been exploited to investigate Fe-doped ilmenite-type MgSiO{sub 3} mineral. Strong electron correlation effects not included in a density-functional formalism are described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach). Microstructure of equilibrium geometries, electronic band structures as well as magnetic properties are computed and discussed in detail. Hartree-Fock methodology is used as an extra tool to study optical properties of the same system. For equilibrium state of the doped mineral we find zigzag-type atomic rearrangements around the Fe impurity. The inclusion of correlation effects leads to an improved description of the electronic properties. In particular, it is discovered that Fe incorporation produces local energy levels within the band-gap of the material. Using {Delta}SCF method optical absorption energies are found to be equal to 2.2 and 2.6 eV leading to light absorption at longer wavelengths compared to the undoped MgSiO{sub 3}. Our results provide evidence on the occurrence of local magnetic moment in the region surrounding iron dopant. According to the outcomes, the Fe Rightwards-Double-Arrow Mg reaction can be described as substitutionally labile with Fe{sup 2+} complex being found in the high-spin state at low pressure MgSiO{sub 3}-ilmenite conditions.

  1. Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr,Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes

    International Nuclear Information System (INIS)

    Kumar, M.; Srikanth, S.; Ravikumar, B.; Alex, T.C.; Das, S.K.

    2009-01-01

    Pure and Sr-doped LaGaO 3 , LaFeO 3 and LaCoO 3 and Sr,Mg-doped LaGaO 3 were synthesized by various wet chemical routes, namely combustion, co-precipitation and citrate-gel methods. The effect of the various process parameters on the phase purity, particle size and surface area and morphology of the synthesized powders were determined by XRD, simultaneous TG-DTA, laser light scattering, BET and scanning electron microscopy. The stability of the synthesized pure phases in oxidizing and reducing atmosphere was also studied by thermogravimetry. It was observed that pure and Sr-doped single perovskite phases of lanthanum ferrite, cobaltite and gallate and Sr,Mg-doped lanthanum gallate could be synthesized by combustion and citrate-gel methods under suitable process conditions. Synthesis using the co-precipitation method yielded incomplete reaction irrespective of the calcination temperature adopted. The citrate-gel method yielded better powder properties in terms of particle size and morphology and surface area compared to combustion synthesis. It was found that pure and Sr-doped lanthanum ferrite, lanthanum cobaltite, lanthanum gallate and Sr,Mg-doped lanthanum gallate were stable in the oxidizing atmosphere. In the reducing atmosphere, pure and Sr-doped lanthanum ferrite and Sr,Mg-doped lanthanum gallate was found to be stable at least during the timeframe of the thermogravimetric experiment whereas pure and Sr-doped lanthanum cobaltite was partially reduced in hydrogen atmosphere

  2. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    Science.gov (United States)

    Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G

    2009-08-01

    BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.

  3. Contributions of conduction band offset to the enhanced separation efficiency of photoinduced charges for SrTiO3/Bi2O3 heterojunction semiconductor

    International Nuclear Information System (INIS)

    Zhang, Zhenlong; Zhu, Jichun; Li, Shengjun; Mao, Yanli

    2014-01-01

    SrTiO 3 /Bi 2 O 3 heterojunction semiconductor was prepared and characterized by X-ray diffraction, UV–vis absorption spectrum, and scanning electron microscope, surface photovoltage spectroscopy, and photoluminescence spectroscopy. The surface photovoltage spectra indicate that the separation efficiency of photoinduced charges for SrTiO 3 /Bi 2 O 3 was enhanced compared with that of SrTiO 3 or Bi 2 O 3 . The energy band diagram of SrTiO 3 /Bi 2 O 3 heterojunction was directly determined with X-ray photoelectron spectroscopy, and the conduction band offset between SrTiO 3 and Bi 2 O 3 was quantified to be 0.28±0.03 eV. The photoluminescence spectra display that the recombination rate of photoinduced carriers for SrTiO 3 /Bi 2 O 3 decreases compared with that of SrTiO 3 or Bi 2 O 3 , which is mainly due to the energy levels matching between them. Therefore the enhanced separation efficiency of photoinduced charges is resulting from the energy difference between the conduction band edges of SrTiO 3 and Bi 2 O 3 . -- Graphical abstract: Enhanced separation efficiency for SrTiO 3 /Bi 2 O 3 is resulting from the energy difference between the conduction band edges. Highlights: ●Heterojunction semiconductor of SrTiO 3 /Bi 2 O 3 was prepared. ●SrTiO 3 /Bi 2 O 3 presents enhanced separation efficiency. ●Conduction band offset between SrTiO 3 and Bi 2 O 3 is quantified. ●Recombination rate of SrTiO 3 /Bi 2 O 3 decreases compared with single phases

  4. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  5. Structural phase transition and magnetic properties of Er-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Li, Y T; Zhang, H G; Dong, X G; Li, Q; Mao, W W; Dong, C L; Ren, S L; Li, X A; Wei, S Q

    2013-01-01

    The structural phase transition and local structural distortion of Er-doped BiFeO 3 nanoparticles have been discussed in order to understand the variation of magnetic properties in this system. The X-ray diffraction patterns and X-ray absorption fine structure of these samples demonstrate that there is structural phase transition and no obvious local structural distortion with the increasing of doping concentration. Unfortunately, no ferromagnetic properties have been observed even at a lower temperature. And the X-ray absorption spectra of Fe 2p core level of these samples are totally same, especially the energy positions do not shift which means the consistent valence states of Fe ions.

  6. Study of cerium doped magnetite (Fe 3O 4:Ce)/PMMA nanocomposites

    Science.gov (United States)

    Padalia, Diwakar; Johri, U. C.; Zaidi, M. G. H.

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3O 4) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3O 4) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature ( Tg). The magnetic results suggest that coercivity ( HC) and squareness ( Mr/ Ms) of the loop increases with increasing doping percent of cerium.

  7. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  8. Synthesis of Ce(III)-doped Fe{sub 3}O{sub 4} magnetic particles for efficient removal of antimony from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zenglu; Joshi, Tista Prasai [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Ruiping, E-mail: liuruiping@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huijuan [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Qu, Jiuhui [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-05

    Highlights: • Doping of Ce into Fe{sub 3}O{sub 4} was achieved based on a facile solvothermal method. • After doping, the removal capacity was increased by 5 times for “Sb(V)” and 2 times for “Sb(III)”. • Decreasing pH improved adsorption of Sb(V) but decreased adsorption of Sb(III). • Antimony sorption mechanisms on Ce-doped Fe{sub 3}O{sub 4} were illustrated. - Abstract: Aqueous antimony (Sb) pollution from human activity is of great concern in drinking water due to its adverse health effect. Magnetic Fe{sub 3}O{sub 4} particles, with high separation ability from solution, have been considered as a low-cost Sb adsorbent for contaminants. However, the limited adsorption capacity has restricted its practical application. In this study, a solvothermal approach was developed for doping Ce(III) into Fe{sub 3}O{sub 4}, thereby increasing the adsorption efficacy for both Sb(III) and Sb(V). In contrast to un-doped Fe{sub 3}O{sub 4}, the adsorption capacity towards Sb(III) and Sb(V) in Ce-doped materials increased from 111.4 to 224.2 mg/g and from 37.2 to 188.1 mg/g at neutral pH, respectively. Based on the combined results of XPS, XRD, and FTIR, it confirmed that Ce atom successfully doped into the Fe{sub 3}O{sub 4} structure, resulting in the decreased particle size, increased the surface area, and isoelectric point. Furthermore, the vibrating sample magnetometer (VSM) results showed that the Ce doping process had some side effects on the primitive magnetic property, but remaining the high separation potential during water treatment. According to the high removal efficiency and magnetic property, the Ce-doped Fe{sub 3}O{sub 4} of great simplicity should be a promising adsorbent for aqueous Sb removal.

  9. Research by Moessbauer and infrared spectroscopy of films of polyacrylonitrile doped with FeCl2 and FeCl3

    International Nuclear Information System (INIS)

    Santos, Vadilson M. dos; Silva Filho, Eloi A. da; Nunes Filho, Evaristo

    2009-01-01

    The heating effect on films of polyacrylonitrile and doping of the ions Fe(II) and Fe (III) may reveal important aspects of the use of this polymer in the search for new materials. This paper was done the doping of the films of PAN with ions Fe(II) and Fe (III), with thermo heating is range of 60 a 90 deg C e de 90 a 170 deg C through the alkaline and acid hydrolysis of the CN groups used spectroscopy of FTIR and Moessbauer techniques to evaluate the structural changes results of doping process this polymer. The results showed that the FTIR spectral have a strong interaction of the ions Fe(II) and Fe (III) with PAN and confirmed by Moessbauer data. (author)

  10. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    Science.gov (United States)

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  11. Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination

    International Nuclear Information System (INIS)

    Elghniji, Kais; Atyaoui, Atef; Livraghi, Stefano; Bousselmi, Latifa; Giamello, Elio; Ksibi, Mohamed

    2012-01-01

    Graphical abstract: Schematic diagram illustrating the charge transfer from excited TiO 2 to the different states of Fe 3+ ions; C B and V B refer to the energy levels of the conduction and valence bands of TiO 2 , respectively. Highlights: ► In this study we examine the Iron as catalyst precursor to synthesize the Fe 3+ doped TiO 2 nanoparticles. ► The Fe 3+ doped TiO 2 catalysts show the presence of a mixed phase of anatase. ► The iron is completely absent in the XRD pattern of the doped iron TiO 2 powder. ► The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . ► Fe 3+ doping can efficiently separate the photo-generated electrons and holes. - Abstract: Undoped TiO 2 and Fe 3+ doped (0.1, 0.3, 0.6 and 1 wt.%) TiO 2 nanoparticles have been synthesized by the acid-catalyzed sol–gel method. Iron cations are introduced in the initial solution, before gelification, what promotes their lattice localization. The Fe 3+ doped TiO 2 films have been fabricated using a dip-coating technique. The effect of iron content on the crystalline structure, phase transformation and grain growth were determined by X-ray diffraction (XRD), Raman spectroscopy, UV–visible diffused reflectance spectroscopy (DRS) and Electron paramagnetic resonance (EPR) spectroscopy. It has demonstrated that all catalysts are composed of mixed-phase crystals of anatase and brookite with anatase as dominant phase. The crystallinity of the brookite and anatase phases decreased with increasing the iron content. The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . It was demonstrated that Fe 3+ ion in the TiO 2 films plays a role as the intermediate for the efficient separation of photogenerated hole–electron pairs and increases the photocurrent response of the film under UV light irradiation. The maximum photocurrent is obtained on the Fe 3+ doped Ti

  12. The Formation of Lithiated Ti-Doped {alpha}-Fe{sub 2}O{sub 3} Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hisham@ictp.trieste.it [Khartoum University, Department of Physics (Sudan); Gismelseed, A. M.; Bouziane, K. [Sultan Qaboos University, Department of Physics (Oman); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E. [Sultan Qaboos University, Department of Physics (Oman)

    2004-12-15

    The milling of spinel-related Ti-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped {alpha}-Fe{sub 2}O{sub 3} nanocrystalline particles via an intermediate {gamma}-LiFeO{sub 2}-related phase. The role played by the dopant Ti-ion in the process is emphasized.

  13. Magnetic, electrical transport and electron spin resonance studies of Fe-doped manganite LaMn0.7Fe0.3O3

    International Nuclear Information System (INIS)

    Liu, X.J.; Li, Z.Q.; Yu, A.; Liu, M.L.; Li, W.R.; Li, B.L.; Wu, P.; Bai, H.L.; Jiang, E.Y.

    2007-01-01

    We have investigated the magnetic, electrical transport and electron spin resonance (ESR) properties of polycrystalline Fe-doped manganite LaMn 0.7 Fe 0.3 O 3+ δ prepared by sol-gel method. A typical cluster-glass feature is presented by DC magnetization and AC susceptibility measurements and a sharp but shallow memory effect was observed. Symmetrical Lorentzian lines of the Mn/Fe spectra were detected above 120 K, where the sample is a paramagnetic (PM) insulator. When the temperature decreases from 120 K, magnetic clusters contributed from ferromagnetic (FM) interaction between Mn 3+ and Mn 3+ /Fe 3+ ions develop and coexist with PM phase. At lower temperature, these FM clusters compete with antiferromagnetic (AFM) ones between Fe 3+ ions, which are associated with a distinct field-cooled (FC) effect in characteristic of cluster-glass state

  14. 3d-metal doping (Fe,Co,Ni,Zn) of the high Tc perovskite YBa2Cu3O(7-y)

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Greene, L.H.; Hull, G.W.; Bagley, B.G.

    1988-01-01

    The structural, magnetic and superconducting properties of the mixed compounds YBa 2 Cu(3-x)M(x)O(7-y) (M = Ni,Zn,Fe, and Co) are reported. Values of y, determined by titration, are found to be dependent on the nature and amount of the doping. The range of solubility is greater for the Fe and Co compounds (x = 1) than for those with Ni or Zn (x = 0.3). The undoped material is orthorhombic and remains orthorhombic after substitution for Cu by Ni or Zn, whereas a tetragonal phase is observed when Fe, Co are substituted for Cu. DC resistance and AC susceptibility measurements show that Tc is depressed from 90K (x = 0) to 45K (x = 0.2) for both the Ni- and Zn-doped compounds, and Tc is destroyed in the Fe- and Co-doped compounds when x reaches 0.4. It is suggested that a valence of two be assigned to the Ni and Zn and three to the Fe and Co ions. 8 references

  15. Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst

    Science.gov (United States)

    Karunakaran, Chockalingam; Vinayagamoorthy, Pazhamalai

    2016-11-01

    Fe2O3-encased ZnO nanoframework was obtained by hydrothermal method and was doped with Ag through photoreduction process. Energy dispersive x-ray spectroscopy, transmission electron microscopy (TEM), high resolution TEM, selected area electron diffractometry, x-ray diffractometry and Raman spectroscopy were employed for the structural characterization of the synthesized material. While the charge transfer resistance of the prepared nanomaterial is larger than those of Fe2O3 and ZnO the coercivity of the nanocomposite is less than that of hydrothermally obtained Fe2O3 nanostructures. Although Fe2O3/Ag-ZnO exhibits weak visible light absorption its band gap energy does not differ from that of ZnO. The photoluminescence of the fabricated nanoframework is similar to that of ZnO. The radiative recombination of charge carriers is slightly slower in Fe2O3/Ag-ZnO than in ZnO. The synthesized Fe2O3-encased Ag-doped ZnO, under UV A light, exhibits sustainable photocatalytic activity to degrade dye and is magnetically recoverable. Also, the Fe2O3/Ag-ZnO nanocomposite disinfects bacteria effectively in absence of direct illumination.

  16. Native SrTiO3 (001) surface layer from resonant Ti L2,3 reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valvidares, Manuel; Huijben, Mark; Yu, Pu; Ramesh, Ramamoorthy; Kortright, Jeffrey

    2010-11-03

    We quantitatively model resonant Ti L2,3 reflectivity Rs,p(q, hn) from several SrTiO3 (001) single crystals having different initial surface preparations and stored in ambient conditions before and between measurements. All samples exhibit unexpected 300 K Rs(hn) - Rp(hn) anisotropy corresponding to weak linear dichroism and tetragonal distortion of the TiO6 octahedra indicating a surface layer with properties different from cubic SrTiO3. Oscillations in Rs(q) confirm a ubiquitous surface layer 2-3 nm thick that evolves over a range of time scales. Resonant optical constant spectra derived from Rs,p(hn) assuming a uniform sample are refined using a single surface layer to fit measured Rs(q). Differences in surface layer and bulk optical properties indicate that the surface is significantly depleted in Sr and enriched in Ti and O. While consistent with the tendency of SrTiO3 surfaces toward non-stoichiometry, this layer does not conform simply to existing models for the near surface region and apparently forms via room temperature surface reactions with the ambient. This new quantitative spectral modeling approach is generally applicable and has potential to study near-surface properties of a variety of systems with unique chemical and electronic sensitivities.

  17. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    Science.gov (United States)

    Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  18. YVO{sub 4}:Eu{sup 3+}, Dy{sup 3+}-Fe{sub 3}O{sub 4} co-doped nanocomposites: preparation, luminescent, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu Deming; Shi Jianhui; Tong Lizhu; Ren Xiaozhen; Li Quanhong; Yang Hua, E-mail: huayang86@sina.com [Jilin University, College of Chemistry (China)

    2012-11-15

    A series of different concentrations of Eu{sup 3+} and Dy{sup 3+} ions co-doping yttrium vanadate phosphors coated with Fe{sub 3}O{sub 4} (YVO{sub 4}:Eu{sup 3+}, Dy{sup 3+}-Fe{sub 3}O{sub 4}) was successful prepared by using two steps route including sol-gel method and hydrothermal method. The resulting phase formation, particle morphology, structure, luminescent, and magnetic properties were examined by X-ray diffraction, transmission electron microscopy, photoluminescence spectra, and vibrating sample magnetometer. The results indicate that the diameter of the YVO{sub 4}:Eu{sup 3+}, Dy{sup 3+}-Fe{sub 3}O{sub 4} nanocomposites is 100-300 nm. The special saturation magnetization Ms of the nanocomposites is 53 emu/g. Additionally, the emission intensities of YVO{sub 4}:Eu{sup 3+} or Dy{sup 3+} ions are regularly changed with the emission doping concentrations. After coating with Fe{sub 3}O{sub 4}, the variation of the luminescent intensity of YVO{sub 4}:Eu{sup 3+}, Dy{sup 3+}-Fe{sub 3}O{sub 4} magnetic phosphors is different.

  19. Sintering, microstructure and electrical conductivity of gadolinia-doped ceria with SrO, TiO2 and SrTiO3

    International Nuclear Information System (INIS)

    Dias, Maria Cely Freitas

    2013-01-01

    Ceria containing trivalent rare-earths is a solid electrolyte with higher ionic conductivity than the standard yttria fully-stabilized zirconia ionic conductor. This property turns these ceria-based ionic conductors promising materials for application in solid oxide fuel cells operating at intermediate temperatures (500-700 deg C). One of the most utilized approaches to optimize the electrical conductivity and other properties of these materials is the introduction of a second additive. In this work, ceria-20 mol% gadolinia with additions of 1, 2.5 and 5 mol% of SrO, TiO 2 and SrTiO 3 as co-additives were prepared by solid state reaction. The main purpose was to investigate the effects of the co-additives on densification, microstructure and electrical conductivity of the solid electrolyte. Sintered pellets were characterized by apparent density, X-ray diffraction, Raman spectroscopy, scanning electron microscopy and electrical conductivity by impedance spectroscopy. The additives were found to exert different influences in all studied properties. The way they influence the solid electrolyte properties depends on the type and content of the additive. SrO addition to doped ceria improves the intergranular conductivity, but decreases the apparent density of the pellets. Increase of densification was obtained with TiO 2 addition. This additive promotes increase of the blocking of charge carriers at the grain boundaries due to solute exsolution and formation of the pyrochlore Gd 2 Ti 2 O 7 phase at grain boundaries for contents in excess of the solubility limit. No influence on densification was found for SrTiO 3 additions. (author)

  20. Enhanced magnetic and ferroelectric properties in scandium doped nano Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Sudakar, C.; Mocherla, Pavana S.V.; Mandal, Balaji P.; Jayakumar, Onnatu D.; Tyagi, Avesh K.

    2012-01-01

    In this study we report the synthesis of undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles using sonochemical technique. X-ray diffraction reveals that all samples are single phase with no impurities detected. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . A magnetization of 0.144 μB/f.u. is obtained at 300 K, which is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1−x) Sc x O 9 (x = 0.1) nanoparticles. Thus it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials. -- Graphical abstract: Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical technique. The bi-functionalities of Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been demonstrated. The Bi 2 Fe 4(1−x) Sc x O 9 (x = 0.1) nanoparticles showed enhanced magnetic and ferroelectric properties with considerably less lossy characteristics compared to the bulk Bi 2 Fe 4 O 9 . Highlights: ► Phase pure Bi 2 Fe 4 O 9 nanostructures synthesized using a facile sonochemical technique. ► Nanoparticles show a weak ferromagnetic order at room temperature. ► Sc 3+ doping in Bi 2 Fe 4 O 9 nanoparticles alters their magnetic and ferroelectric properties. ► A

  1. Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals

    International Nuclear Information System (INIS)

    Xiong Zhengwei; Sun Weiguo; Wang Xuemin; Jiang Fan; Wu Weidong

    2012-01-01

    Highlights: ► The BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs were successfully fabricated by L-MBE. ► The influence with the various concentrations of Ni nanocrystals embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. ► The BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss compared with the pure BaTiO 3 /SrTiO 3 superlattices. ► The dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory. - Abstract: The self-organized Ni nanocrystals (NCs) were embedded in BaTiO 3 /SrTiO 3 superlattices using laser molecular beam epitaxy (L-MBE). The stress of the composite films was increased with the increasing concentration of embedded Ni NCs, as investigation in stress calculation. The influence with the various concentrations of Ni NCs embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. The internal stress of the films was too strong to epitaxial growth of BaTiO 3 /SrTiO 3 superlattices. Compared with the pure BaTiO 3 /SrTiO 3 superlattices, the BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss. Furthermore, the dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory.

  2. Variation in band gap of lanthanum chromate by transition metals doping LaCr{sub 0.9}A{sub 0.1}O{sub 3} (A:Fe/Co/Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Naseem, Swaleha, E-mail: wasiamu@gmail.com; Khan, Wasi, E-mail: wasiamu@gmail.com; Saad, A. A., E-mail: wasiamu@gmail.com; Shoeb, M., E-mail: wasiamu@gmail.com; Ahmed, Hilal, E-mail: wasiamu@gmail.com; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Technology, Aligarh Muslim University, Aligarh-202002 (India); Husain, Shahid [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2014-04-24

    Transition metal (Fe, Co, Ni) doped lanthanum chromate (LaCrO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 800°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible and photoluminescence techniques. The energy band gap was calculated and the variation was observed with the doping of transition metal ions. Photoluminescence spectra show the emission peak maxima for the pure LaCrO{sub 3} at about 315 nm. Influence of Fe, Co, Ni doping was studied and compared with pure lanthanum chromate nanoparticles.

  3. Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions

    Science.gov (United States)

    Qi, Yaping; Ni, Hao; Zheng, Ming; Zeng, Jiali; Jiang, Yucheng; Gao, Ju

    2018-05-01

    Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K). These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to "light OFF" and "light ON" states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons) could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.

  4. Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions

    Directory of Open Access Journals (Sweden)

    Yaping Qi

    2018-05-01

    Full Text Available Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K. These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to “light OFF” and “light ON” states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.

  5. Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites

    International Nuclear Information System (INIS)

    Padalia, Diwakar; Johri, U.C.; Zaidi, M.G.H.

    2012-01-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3 O 4 ) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3 O 4 ) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2 ) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T g ). The magnetic results suggest that coercivity (H C ) and squareness (M r /M s ) of the loop increases with increasing doping percent of cerium.

  6. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca; Ruediger, Andreas, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2 (Canada)

    2016-06-15

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.

  7. Spin-reorientation magnetic transitions in Mn-doped SmFeO3

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2017-09-01

    Full Text Available Spin reorientation is a magnetic phase transition in which rotation of the magnetization vector with respect to the crystallographic axes occurs upon a change in the temperature or magnetic field. For example, SmFeO3 shows a magnetization rotation from the c axis above 480 K to the a axis below 450 K, known as the Γ4 → Γ2 transition. This work reports the successful synthesis of the new single-crystal perovskite SmFe0.75Mn0.25O3 and finds interesting spin reorientations above and below room temperature. In addition to the spin reorientation of the Γ4 → Γ2 magnetic phase transition observed at around TSR2 = 382 K, a new spin reorientation, Γ2 → Γ1, was seen at around TSR1 = 212 K due to Mn doping, which could not be observed in the parent rare earth perovskite compound. This unexpected spin configuration has complete antiferromagnetic order without any canting-induced weak ferromagnetic moment, resulting in zero magnetization in the low-temperature regime. M–T and M–H measurements have been made to study the temperature and magnetic-field dependence of the observed spin reorientation transitions.

  8. Synthesis of Fe-Doped ZnO Nanorods by Rapid Mixing Hydrothermal Method and Its Application for High Performance UV Photodetector

    Directory of Open Access Journals (Sweden)

    Chan Oeurn Chey

    2014-01-01

    Full Text Available We have successfully synthesized Fe-doped ZnO nanorods by a new and simple method in which the adopted approach is by using ammonia as a continuous source of OH- for hydrolysis instead of hexamethylenetetramine (HMT. The energy dispersive X-ray (EDX spectra revealed that the Fe peaks were presented in the grown Fe-doped ZnO nanorods samples and the X-ray photoelectron spectroscopy (XPS results suggested that Fe3+ is incorporated into the ZnO lattice. Structural characterization indicated that the Fe-doped ZnO nanorods grow along the c-axis with a hexagonal wurtzite structure and have single crystalline nature without any secondary phases or clusters of FeO or Fe3O4 observed in the samples. The Fe-doped ZnO nanorods showed room temperature (300 K ferromagnetic magnetization versus field (M-H hysteresis and the magnetization increases from 2.5 μemu to 9.1 μemu for Zn0.99Fe0.01O and Zn0.95Fe0.05O, respectively. Moreover, the fabricated Au/Fe-doped ZnO Schottky diode based UV photodetector achieved 2.33 A/W of responsivity and 5 s of time response. Compared to other Au/ZnO nanorods Schottky devices, the presented responsivity is an improvement by a factor of 3.9.

  9. Room temperature ferromagnetism in Fe-doped CeO2 nanoparticles.

    Science.gov (United States)

    Maensiri, Santi; Phokha, Sumalin; Laokul, Paveena; Seraphin, Supapan

    2009-11-01

    RT ferromagnetism was observed in nanoparticles of Fe-doped CeO2 (i.e., Ce(0.97)Fe(0.03)O2) synthesized by a sol-gel method. The undoped and Fe-doped CeO2 were characterized by XRD, Raman spectroscopy, TEM, and VSM. The undoped samples and Ce(0.97)Fe(0.03)O2 precursor exhibit a diamagnetic behavior. The 673 K-calcined Ce(0.97)Fe(0.03)O2 sample is paramagnetic whereas 773 and 873 K-calcined Ce(0.97)Fe(0.03)O2 samples are ferromagnetism having the magnetizations of 4.65 x 10(-3) emu/g and 6.20 x 10(-3) emu/g at 10 kOe, respectively. Our results indicate that the ferromagnetic property is intrinsic to the Fe-doped CeO2 system and is not a result of any secondary magnetic phase or cluster formation.

  10. Al/Fe isomorphic substitution versus Fe{sub 2}O{sub 3} clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    Energy Technology Data Exchange (ETDEWEB)

    Shafia, Ehsan [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Esposito, Serena [Università degli Studi di Cassino e del Lazio Meridionale, Department of Civil and Mechanical Engineering (Italy); Manzoli, Maela; Chiesa, Mario [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Tiberto, Paola [Electromagnetism, I.N.Ri.M. (Italy); Barrera, Gabriele [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Menard, Gabriel [Harvard University, Department of Chemistry and Chemical Biology (United States); Allia, Paolo, E-mail: paolo.allia@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Freyria, Francesca S. [Massachusetts Institute of Technology, Department of Chemistry (United States); Garrone, Edoardo; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy)

    2015-08-15

    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH){sub 3}Al{sub 2−x}Fe{sub x}O{sub 3}SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N{sub 2} adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe{sup 3+}/Al{sup 3+} isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe{sup 3+} sites. Higher loadings give rise, besides IS, to the formation of Fe{sub 2}O{sub 3} clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al{sup 3+} ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

  11. High Ic, YBa2Cu3O7-x films grown at very high rates by liquid assisted growth incorporating lightly Au-doped SrTiO3 buffers

    International Nuclear Information System (INIS)

    Kursumovic, A; Durrell, J H; Harrington, S; Wimbush, S; MacManus-Driscoll, J L; Maiorov, B; Zhou, H; Stan, L; Holesinger, T G; Wang, H

    2009-01-01

    YBa 2 Cu 3 O 7-x (YBCO) thick films were grown by hybrid liquid phase epitaxy (HLPE) on (001) SrTiO 3 (STO) substrates. In the presence of a 100 nm thick, 5 mol% Au-doped STO buffer, self-field critical current densities, J c sf , at 77 K of ∼2.4 MA cm -2 and critical currents, I c sf , up to 700 A (cm-width) -1 were achieved. The J c value is virtually independent of thickness and the growth rates are very high (∼1 μm min -1 ). From transmission electron microscopy (TEM), Y 2 O 3 nanocloud extended defects (∼100 nm in size) were identified as the pinning defects in the films. Enhanced random pinning was induced by the presence of Au in the buffer.

  12. Ultrafast microwave hydrothermal synthesis and characterization of Bi1−xLaxFeO3 micronized particles

    International Nuclear Information System (INIS)

    Ponzoni, C.; Cannio, M.; Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K.; Leonelli, C.

    2015-01-01

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi 1−x La x FeO 3 where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi 1−x La x FeO 3 crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO 3 lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO 3 and Bi 0.85 La 0.15 FeO 3 . The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi 1−x La x FeO 3 , x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T c shift in La doped BiFeO 3 DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic

  13. The synergetic effect of V and Fe-co-doping in TiO{sub 2} studied from the DFT + U first-principle calculation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoshun, E-mail: liubaoshun@126.com; Zhao, Xiujian

    2017-03-31

    Highlights: • The effect of Fe and V doping on TiO{sub 2} structure was studied with DFT + U calculation. • V and Fe co-doping affects the formation energies and electronic structure. • V and Fe co-doping causes the synergetic effect on the optical properties. - Abstract: Based on the density functional theory (DFT + U), a detailed study on the energetic, electronic, and optical properties of Fe-, V-, and Fe & V-co-doping anatase and rutile TiO{sub 2} was performed The synergetic effect of Fe & V bimetal co-doping on the optical absorption was discussed on electronic level. Two kinds of co-dopants were considered, which included edge-shared and corner-shared co-doping. It was shown that Fe and V atoms prefer to replace Ti atom in the O-rich contions than in the Ti-rich conditions. Co-doping in anatase reduces the formation energies in both cases, while the formation energies for rutile cannot be decreased. The Bader charge analysis indicates the +3 of Fe atom and +4 of V atom, and the obvious electron exchange between Fe and V atom in co-doping cases can be identified, which indicates the presence of synergetic effect induced by co-doping. The cooperation of Fe & V co-dopants was also supported by the result of projected density of states and spin charge density differences, as the hybridization of Fe3d with V3d orbitals was seen within the TiO{sub 2} forbidden band. Different from single-dopant systems, the V3d-Fe3d co-interaction leads to the formation of some spin mid-gap states, which have an obvious effect on the optical absorptions.

  14. Magnetic and ferroelectric properties of Fe doped SrTiO{sub 3-{delta}} films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A Sendil; Suresh, P; Srinath, S [School of Physics, University of Hyderabad, Hyderabad, 500 046 (India); Kumar, M Mahesh; Post, M L [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, ON, K1A 0R6 (Canada); Srikanth, H [Materials Physics Laboratory, Department of Physics, University of South Florida, Tampa, Florida, 33620 (United States); Sahner, Kathy; Moos, Ralf, E-mail: sssp@uohyd.ernet.i [Functional Materials, University of Bayreuth, 95447, Bayreuth (Germany)

    2010-01-01

    Recent interest in SrTiO{sub 3} stems from its wide applicability in microwave devices based on the tunable characteristics of dielectric constant in the microwave frequency range. It is obvious that for any such application, SrTiO{sub 3} should have a ferroelectric Curie temperature (T{sub C}) close to room temperature or higher. By inducing strains by chemical substitutions, it was possible to obtain T{sub C} as high as 200{sup 0}C in SrTiO{sub 3} modified with Fe{sup 4+}. Hysteresis loops obtained confirms the presence of ferroelectric domains. Two apparent transitions, one at {approx}200 {sup 0}C and another {approx}300 {sup 0}C were seen in {epsilon}', which are replicated as sharp drops in resistivity curves. These temperatures far exceed the T{sub C}s reported in the literature till now and could open new avenues for innumerable other applications for SrTiO{sub 3}. The magnetic properties of Fe doped SrTiO{sub 3} are also investigated. Low doping of Fe exhibits simple antiferromagnetic behaviour.

  15. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of oxygen vacancy distribution on the thermoelectric properties of La-doped SrTiO3 epitaxial thin films

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300–1000 K) thermoelectricproperties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300–2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

  17. Effect of oxygen vacancy distribution on the thermoelectric properties of La-doped SrTiO3 epitaxial thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2012-12-03

    A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300–1000 K) thermoelectricproperties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300–2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

  18. Imaging and tuning polarity at SrTiO3 domain walls

    Science.gov (United States)

    Frenkel, Yiftach; Haham, Noam; Shperber, Yishai; Bell, Christopher; Xie, Yanwu; Chen, Zhuoyu; Hikita, Yasuyuki; Hwang, Harold Y.; Salje, Ekhard K. H.; Kalisky, Beena

    2017-12-01

    Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO3/SrTiO3 interface 2DEG at the nanoscale. In particular, SrTiO3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO3 twin boundary and detect a change in LaAlO3/SrTiO3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO3-based devices on the nanoscale.

  19. Magnetism mediated by a majority of [Fe³⁺ + VO²⁻] complexes in Fe-doped CeO₂ nanoparticles.

    Science.gov (United States)

    Paidi, V K; Ferreira, N S; Goltz, D; van Lierop, J

    2015-08-26

    We examine the role of Fe(3+) and vacancies (V(O)) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce(100-x)Fe(x)O2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce(4+) and Ce(3+) ions, and doping introduced Fe(3+) ions. The decrease in Ce(3+) and increase in Fe(3+) concentrations indicated the presence of more [Fe(3+) + V(O)(2-)] complexes with Fe loading in the particles. Charge neutralization, Fe(3+) + V(O)(2-) + 2Ce(4+) ↔ 2Ce(3+) + Fe(3+), identified the impact of V(O) on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe(3+) + V(O)(2-)]-Ce(3+) -[Fe(3+) + V(O)(2-)] complexes.

  20. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    Science.gov (United States)

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  1. Physical properties of Fe doped Mn3O4 thin films synthesized by SILAR method and their antibacterial performance against E. coli

    Directory of Open Access Journals (Sweden)

    M.R. Belkhedkar

    2016-09-01

    Full Text Available Nanocrystalline Fe doped Mn3O4 thin films were deposited by successive ionic layer adsorption and reaction method onto glass substrates. The X-ray diffraction study revealed that Fe doped Mn3O4 films are nanocrystalline in nature. The morphological investigations were carried out by using field emission scanning electron and atomic force microscopy studies. The optical absorption measurements showed that Mn3O4 films exhibit direct band gap energy of the order of 2.78 eV and it increased to 2.89 eV as the percentage of Fe doping in it increases from 0 to 8 wt.%. The room temperature electrical resistivity of Mn3O4 increases from 1.84 × 103 to 2.64 × 104 Ω cm as Fe doping increases from 0 to 8 wt.%. The SILAR grown Mn3O4 showed antibacterial performance against Escherichia coli bacteria which improved remarkably with doping.

  2. Towards understanding the electronic structure of Fe-doped CeO2 nanoparticles with X-ray spectroscopy.

    Science.gov (United States)

    Wang, Wei-Cheng; Chen, Shih-Yun; Glans, Per-Anders; Guo, Jinghua; Chen, Ren-Jie; Fong, Kang-Wei; Chen, Chi-Liang; Gloter, Alexandre; Chang, Ching-Lin; Chan, Ting-Shan; Chen, Jin-Ming; Lee, Jyh-Fu; Dong, Chung-Li

    2013-09-21

    This study reports on the electronic structure of Fe-doped CeO2 nanoparticles (NPs), determined by coupled X-ray absorption spectroscopy and X-ray emission spectroscopy. A comparison of the local electronic structure around the Ce site with that around the Fe site indicates that the Fe substitutes for the Ce. The oxygen K-edge spectra that originated from the hybridization between cerium 4f and oxygen 2p states are sensitive to the oxidation state and depend strongly on the concentration of Fe doping. The Ce M(4,5)-edges and the Fe L(2,3)-edges reveal the variations of the charge states of Ce and Fe upon doping, respectively. The band gap is further obtained from the combined absorption-emission spectrum and decreased upon Fe doping, implying Fe doping introduces vacancies. The oxygen vacancies are induced by Fe doping and the spectrum reveals the charge transfer between Fe and Ce. Fe(3+) doping has two major effects on the formation of ferromagnetism in CeO2 nanoparticles. The first, at an Fe content of below 5%, is that the formation of Fe(3+)-Vo-Ce(3+) introduces oxygen deficiencies favoring ferromagnetism. The other, at an Fe content of over 5%, is the formation of Fe(3+)-Vo-Fe(3+), which favors antiferromagnetism, reducing the Ms. The defect structures Fe(3+)-Vo-Ce(3+) and Fe(3+)-Vo-Fe(3+) are crucial to the magnetism in these NPs and the change in Ms can be described as the effect of competitive interactions of magnetic polarons and paired ions.

  3. Synthesis of pure and Sr-doped LaGaO{sub 3}, LaFeO{sub 3} and LaCoO{sub 3} and Sr,Mg-doped LaGaO{sub 3} for ITSOFC application using different wet chemical routes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [National Metallurgical Laboratory-Madras Center, CSIR Madras Complex, Chennai 600113 (India); Srikanth, S. [National Metallurgical Laboratory-Madras Center, CSIR Madras Complex, Chennai 600113 (India)], E-mail: s_srikanth_99@yahoo.com; Ravikumar, B.; Alex, T.C.; Das, S.K. [National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2009-02-15

    Pure and Sr-doped LaGaO{sub 3}, LaFeO{sub 3} and LaCoO{sub 3} and Sr,Mg-doped LaGaO{sub 3} were synthesized by various wet chemical routes, namely combustion, co-precipitation and citrate-gel methods. The effect of the various process parameters on the phase purity, particle size and surface area and morphology of the synthesized powders were determined by XRD, simultaneous TG-DTA, laser light scattering, BET and scanning electron microscopy. The stability of the synthesized pure phases in oxidizing and reducing atmosphere was also studied by thermogravimetry. It was observed that pure and Sr-doped single perovskite phases of lanthanum ferrite, cobaltite and gallate and Sr,Mg-doped lanthanum gallate could be synthesized by combustion and citrate-gel methods under suitable process conditions. Synthesis using the co-precipitation method yielded incomplete reaction irrespective of the calcination temperature adopted. The citrate-gel method yielded better powder properties in terms of particle size and morphology and surface area compared to combustion synthesis. It was found that pure and Sr-doped lanthanum ferrite, lanthanum cobaltite, lanthanum gallate and Sr,Mg-doped lanthanum gallate were stable in the oxidizing atmosphere. In the reducing atmosphere, pure and Sr-doped lanthanum ferrite and Sr,Mg-doped lanthanum gallate was found to be stable at least during the timeframe of the thermogravimetric experiment whereas pure and Sr-doped lanthanum cobaltite was partially reduced in hydrogen atmosphere.

  4. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  5. In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO{sub 3} film

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fuxue, E-mail: yanfuxue@126.com; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn; Song, Na; Zhao, Nana; Chen, Yuanqing

    2013-09-05

    Highlights: •La and Mn co-doped BiFeO{sub 3} film was prepared by a photosensitive sol–gel method. •XRD and Raman spectra confirmed single-phase rhombohedral structure with space group R3c. •Fine-patterned BLFMO film was obtained by a direct-patterning technique. •The saturation magnetization and Pr were enhanced in the fine-patterned BLFMO film. -- Abstract: La and Mn co-doped BiFeO{sub 3} (BLFMO) film was prepared by a photosensitive sol–gel method utilizing bismuth nitrate, lanthanum nitrate, manganese nitrate and ferric nitrate as starting materials. After a chelating reaction between benzoylacetone (BzAcH) and metallic ions, the precursor solution presented photosensitivity. Through a direct patterning process, a fine-patterned BLFMO film was obtained. The phase constituents, morphology, electric and magnetic properties of the as-prepared BLFMO film were characterized by X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), ferroelectric testing unit, LCR Meter and vibrating sample magnetometer (VSM). The Mn dopant enhanced the saturation magnetization and remnant polarization of the BLFMO film.

  6. Orthorhombic strontium titanate in BaTiO sub 3 -SrTiO sub 3 superlattices

    CERN Document Server

    Rios, S; Jiang, A Q; Scott, J F; Lü, H; Chen, Z

    2003-01-01

    It has been suggested by several authors that SrTiO sub 3 layers in SrTiO sub 3 -BaTiO sub 3 superlattices should be tetragonal and ferroelectric at ambient temperatures, like the BaTiO sub 3 layers, rather than cubic, as in bulk SrTiO sub 3 , and that free-energy minimization requires continuity of the polarization direction. A recent ab initio calculation constrained solutions to this structure. Surprisingly, our x-ray study shows that the SrTiO sub 3 layers are orthorhombic with 0.03% in-plane strain, with the BaTiO sub 3 c-axis matching the SrTiO sub 3 a- and b-axis better than the c-axis; strain energy overcomes the cost in electrostatic energy. (letter to the editor)

  7. Photoelectrochemical Characterization of Sprayed α-Fe2O3 Thin Films: Influence of Si Doping and SnO2 Interfacial Layer

    Directory of Open Access Journals (Sweden)

    Yongqi Liang

    2008-01-01

    Full Text Available α-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc3. The donor density in the Fe2O3 films could be tuned between 1017–1020 cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting substrates, both the reproducibility and the photocurrent can be enhanced. The effects of Si doping and the presence of the SnO2 interfacial layer were systematically studied. The highest photoresponse is obtained for Fe2O3 doped with 0.2% Si, resulting in a photocurrent of 0.37 mA/cm2 at 1.23 VRHE in a 1.0 M KOH solution under 80 mW/cm2 AM1.5 illumination.

  8. A Ti-doped γ-Fe2O3/SDS nano-photocatalyst as an efficient adsorbent for removal of methylene blue from aqueous solutions.

    Science.gov (United States)

    Mirbagheri, Naghmeh Sadat; Sabbaghi, Samad

    2018-05-01

    Synthetic dyes are among the most important environmental pollutants in wastewaters. Consequently, elimination of the synthetic dyes from wastewaters using non-toxic materials and eco-friendly technologies has been of considerable interests. In this study, magnetically separable Ti-doped γ-Fe 2 O 3 photocatalysts were synthesized for the removal of methylene blue (MB) from a dye-contaminated aqueous solution (as a model of dye-polluted wastewaters). Compared to the pristine γ-Fe 2 O 3 , the 1.78 v% Ti-doped γ-Fe 2 O 3 significantly increased the adsorption of MB by 57% in the dark condition as a result of the improved BET surface area in this photocatalyst. Moreover, the contact time required for the photocatalytic degradation of MB by the 1.78 v% Ti-doped γ-Fe 2 O 3 decreased due to the higher concentration of charge carriers in this photocatalyst than that of the pristine γ-Fe 2 O 3 . The effect of different experimental parameters on the adsorption property and photocatalytic activity of the 1.78 v% Ti-doped γ-Fe 2 O 3 photocatalyst showed that the solution pH had a remarkable influence on the removal performance of this photocatalyst. Surface treatment of the 1.78 v% Ti-doped γ-Fe 2 O 3 with sodium dodecyl sulfate (SDS) resulted in the formation of a negatively charged Ti-doped γ-Fe 2 O 3 /SDS photocatalyst, which showed a higher tendency for the adsorption and removal of MB than the untreated photocatalyst. Moreover, the MB removal efficiency of this photocatalyst was among the best performances that have been reported for the γ-Fe 2 O 3 -based photocatalysts. The synthesized photocatalysts were characterized by various techniques, and a plausible mechanism for the removal of MB from aqueous solutions by the Ti-doped γ-Fe 2 O 3 /SDS photocatalyst was purposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Novel three-dimensionally ordered macroporous Fe{sup 3+}-doped TiO{sub 2} photocatalysts for H{sub 2} production and degradation applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiaoqing; Xue, Chao; Yang, Bolun; Yang, Guidong, E-mail: guidongyang@xjtu.edu.cn

    2017-02-01

    Highlights: • 3DOM Fe{sup 3+}-doped TiO{sub 2} photocatalyst was prepared. • 3DOM structure showed high activity for decomposition of the RhB and the generation of H{sub 2}. • 3DOM structure provided interfacial reaction sites and optical absorption active sites. • The energy level from Fe{sup 3+} centers were existed in the band gap of TiO{sub 2}. • 3DOM structure promoted the separation of charge carriers. - Abstract: Novel three-dimensionally ordered macroporous (3DOM) Fe{sup 3+}-doped TiO{sub 2} photocatalysts were prepared using a colloidal crystal template method with low-cost raw material including ferric trichloride, isopropanol, tetrabutyl titanate and polymethyl methacrylate. The as-prepared 3DOM Fe{sup 3+}-doped TiO{sub 2} photocatalysts were characterized by various analytical techniques. TEM and SEM results showed that the obtained photocatalysts possess well-ordered macroporous structure in three dimensional orientations. As proved by XPS and EDX analysis that Fe{sup 3+} ions have been introduced TiO{sub 2} lattice and the doped Fe{sup 3+} ions can act as the electron acceptor/donor centers to significantly enhance the electron transfer from the bulk to surface of TiO{sub 2}, resulting in more electrons could take part in the oxygen reduction process thereby decreasing the recombination rate of photogenerated charges. Meanwhile, the 3DOM architecture with the feature of interfacial chemical reaction active sites and optical absorption active sites is remarkably favorable for the reactant transfer and light trapping in the photoreaction process. As a result, the 3DOM Fe{sup 3+}-doped TiO{sub 2} photocatalysts show the considerably higher photocatalytic activity for decomposition of the Rhodamine B (RhB) and the generation of hydrogen under visible light irradiation due to the synergistic effects of open, interconnected macroporous network and metal ion doping.

  10. Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e1 -xS ex films on SrTi O3

    Science.gov (United States)

    Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun

    2015-06-01

    Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.

  11. Structural, magnetic and electric properties of Nd and Ni co-doped BiFeO3 materials

    Directory of Open Access Journals (Sweden)

    Dao Viet Thang

    2017-09-01

    Full Text Available Multiferroic Bi1−xNdxFe0.975Ni0.025O3 (x = 0.00, 0.05, 0.10, 0.125, and 0.15 (BNFNO and BiFeO3 (BFO materials were synthesized by a sol-gel method. Crystal structure, ferromagnetic and ferroelectric properties of the as-synthesized materials were investigated. Results showed that Nd3+ and Ni2+ co-doping affected to the electrical leakage, enhanced ferroelectric polarization and magnetization of BiFeO3. Co-doped sample with 12.5 mol% of Nd3+ and 2.5 mol% of Ni2+ exhibited an enhancement in both ferromagnetism and ferroelectric properties up to MS ~ 0.528 emu/g and PS ~ 18.35 μC/cm2 with applied electric field at 5 kV/cm, respectively. The origins of ferromagnetism and ferroelectricity enhancement were discussed in the paper.

  12. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  13. Structural and magnetic studies of tin doped α-Fe{sub 2}O{sub 3} (α-Sn{sub x}Fe{sub 2-x}O{sub 3}) nanoparticles prepared by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bindu, K.; Nagaraja, H. S., E-mail: hosakoppa@gmail.com [Material Research Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore-575 025, Karnataka (India); Chowdhury, P. [Nanomaterials Research Laboratory, Surface Engineering Division, National Aerospace Laboratories, Council of Scientific and Industrial Research, Bangalore-560 017, Karnataka (India); Ajith, K. M. [Computational Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore-575 025, Karnataka (India)

    2016-05-06

    Hematite (α-Fe{sub 2}O{sub 3}) doped with tetravalent ions have potential applications in various fields such as gas sensors, memories, energy storage devices because of their electrical and magnetic properties. Microwave assisted synthesis was used to prepare Tin doped α-Fe{sub 2}O{sub 3} [α-Sn{sub x}Fe{sub 2-x}O{sub 3}]. The structural and morphological studies were investigated using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). XRD patterns revealed that α-Fe{sub 2}O{sub 3} and α-Sn{sub x}Fe{sub 2-x}O{sub 3} were having rhombohedral structure. The compositional study was done by Energy dispersive X-ray Spectroscopy (EDS). The magnetic properties were studied by Vibrating Sample Magnetometry (VSM). Results shows that the prepared samples were found to be antiferromagnetic in nature and the results are discussed in detail.

  14. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    International Nuclear Information System (INIS)

    Kaur, Maninder; Qiang, You; Dai, Qilin; Tang, Jinke; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr ( 2 O 3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs

  15. In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk-shell nanocapsules

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Liu, Wenjie; Zhang, Xiue; Shen, Xiao; Li, Wenlong; Diao, Guowang; Chen, Ming

    2017-03-01

    In this paper nitrogen-doped carbon-encapsulation Fe3O4 yolk-shell magnetic nanocapsules (Fe3O4@C-N nanocapsules) have been successfully constructed though a facile hydrothermal method and subsequent annealing process. Fe3O4 nanoparticles are completely enclosed in nitrogen-doped carbon shells with void space between the nanoparticle and the shell. The yolk-shell structure allows Fe3O4 nanoparticles to expand freely without breaking the outer carbon shell during the lithiation/delithiation processes. The volume expansion of Fe3O4 results in the in-depth nanocrystallization. Fortunately, the new generated small nanoparticles can increase the capability with the cycle increase due to the unique confinement effect and excellent electronic conductivity of the nitrogen-doped carbon shells. Hence, after 150 cycles, the discharge capacity of Fe3O4@C-N-700 nanocapsules still remained 832 mA h g-1 at 500 mA g-1, which corresponds to 116.7% of the lowest capacity (713 mA h g-1) at the 16th cycle. We believe that the yolk-shell structure is conducive to enhance the capacity of easy pulverization metal oxidation during the charge/discharge processes.

  16. Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-01-01

    We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.

  17. 2. Home 3. Journals 4. Bulletin of Materials Science 5. Volume 28 6 ...

    Indian Academy of Sciences (India)

    483. Acceptor. Study on electrical properties of Ni-doped SrTiO3 ceramics .... Effect of Cr and Ni on diffusion bonding of Fe3Al with steel. 63. Creep ... Oriented growth of thin films of samarium oxide by MOCVD. 49 .... Grain boundary. Study on ...

  18. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    Science.gov (United States)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  19. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion

    Directory of Open Access Journals (Sweden)

    Santiago Iván Suárez-Vázquez

    2018-02-01

    Full Text Available Soot particles have been associated with respiratory diseases and cancer. To decrease these emissions, perovskite-mixed oxides have been proposed due to their thermal stability and redox surface properties. In this work, SrTiO3 doped with different amounts of Mn were synthesized by the hydrothermal method and tested for soot combustion. Results show that at low Mn content, structural distortion, and higher Oads/Olat ratio were observed which was attributed to the high content of Mn3+ in Ti sites. On the other hand, increasing the Mn content led to surface segregation of manganese oxide. All synthesized catalysts showed mesopores in the range of 32–47 nm. In the catalytic combustion of soot, the samples synthesized in this work lowered the combustion temperature by more than 100 °C compared with the uncatalyzed reaction. The sample doped with 1 wt % of Mn showed the best catalytic activity. The activation energy of these samples was also calculated, and the order of decreasing activation energy is as follows: uncatalyzed > Mn0 > Mn8 > Mn4 > Mn1. The best catalytic activity for Mn1 was attributed to its physicochemical properties and the mobility of the oxygen from the bulk to the surface at temperatures higher than 500 °C.

  20. Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route.

    Science.gov (United States)

    Sivakumar, S; Anusuya, D; Khatiwada, Chandra Prasad; Sivasubramanian, J; Venkatesan, A; Soundhirarajan, P

    2014-07-15

    In the present study, an attempt has been made for characterization and synthesis of pure and Ni-doped α-Fe2O3 (hematite) nanoparticles by chemical precipitation method. The synthesized products have been studied by X-ray diffraction (X-RD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM) techniques. The estimated average diameter of α-Fe2O3 nanoparticles were calculated by using the Debye-Scherrer equation and established as 31 nm. SEM micrographs showed the surface morphology as well as structures and particles distributions of synthesized samples. The UV-Vis DRS showed the indirect and direct band gap energies of pure and Ni-doped α-Fe2O3, these were reduced from 1.9847 to 1.52 eV and 2.0503 to 1.76 eV respectively. This result suggested the dopant enhanced the semiconducting behavior of iron oxide nanoparticles to an extent proportional to its nickel doped in the α-Fe2O3. Further, the magnetic properties of the pure and doped samples were investigated by vibrating sample magnetometer (VSM) and evaluated the information of pure and doped samples exhibited saturated hysteresis loop at room temperature, which is indicating that the weak ferromagnetism in nature of our synthesized samples. In addition, it has been found from the magnetization hysteresis curves of Ni-doping, resulting from increased the saturation of magnetization and reduced the coercivity of used samples. Therefore, the present study showed the reduction in band gap energies and coercive field for α-Fe2O3 nanoparticles due to nickel doped. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Co-precipitation synthesis and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities

    Science.gov (United States)

    Mansour, Houda; Bargougui, Radhouane; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2018-03-01

    In this study, Sn-doped hematite (α-Fe2O3) nanoparticles with various dopant concentrations ranging from 1 to 6 mol% were prepared successfully using a simple co-precipitation technique. The effects of Sn doping on the structural, morphological, optical, and magnetic properties were determined using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy, and a superconducting quantum interference device. XRD analysis showed that all of the samples had a typical hematite-type hexagonal structure of Fe2O3 without any additional peaks due to spurious phases. The cell parameters a and c decreased monotonically as the Sn content increased, thereby indicating that Sn ions were substituted into the α-Fe2O3 lattice. These results and the TEM analyses showed that the size of the nanoparticles decreased to 10 nm as the Sn doping concentration increased. UV-visible absorption measurements showed that the decrease in particle size was accompanied by a decrease in the band gap value from 2.07 eV for α-Fe2O3 to 1.87 eV with 6 mol% Sn doping. Furthermore, the magnetic properties demonstrated that all of the samples exhibited ferromagnetic behavior at room temperature. The photocatalytic activities of the samples were studied based on the degradation of methylene blue as a model compound, where the results showed that an appropriate amount of Sn dopant could greatly increase the amount of hydroxyl radicals generated by α-Fe2O3 nanoparticles, which were responsible for the obvious increase in the photocatalytic activity.

  2. Structural properties of Fe-doped lanthanum gallate

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Shibata, Koji; Iwase, Kenji; Harjo, Stefanus; Hoshikawa, Akinori; Itoh, Keiji; Kamiyama, Takashi; Ishigaki, Toru

    2004-01-01

    Structural characteristics of Fe-doped LaGaO 3-δ were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R3-bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga 3+ with Fe 3+ leads to an electronic configuration of t 2g 3 e g 2 (high-spin state, HS)

  3. Structural properties of Fe-doped lanthanum gallate

    Science.gov (United States)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Shibata, Koji; Iwase, Kenji; Harjo, Stefanus; Hoshikawa, Akinori; Itoh, Keiji; Kamiyama, Takashi; Ishigaki, Toru

    2004-10-01

    Structural characteristics of Fe-doped LaGaO3-δ were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R 3 bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga3+ with Fe3+ leads to an electronic configuration of t2g3eg2 (high-spin state, HS).

  4. Magnetic properties of Fe-doped organic-inorganic nanohybrids

    Science.gov (United States)

    Silva, N. J. O.; Amaral, V. S.; Carlos, L. D.; de Zea Bermudez, V.

    2003-05-01

    We present a magnetic study of Fe-doped diureasils (siloxane-based networks to which poly(ethylene oxide)-based chains are grafted by urea cross linkages doped with Fe(II) or Fe(III) ions. Structural studies show that the Fe(II) ions interact mainly with the organic chain, whereas the incorporation of Fe(III) leads to the formation of iron-based nanoclusters, with radius increasing from 20 to 40 Å. Fe(II)-doped samples behave as simple paramagnets, with μeff=5.32μB. Fe(III)-doped hybrids present antiferromagnetic interactions, with TN increasing with Fe(III) concentration up to 13.6 K for 6% doping. Thermal irreversibility was observed below ˜40 K and is stronger for higher concentrations. The coercive fields (HC) are of the order of 1000 Oe at 5 K. Hysteresis cycles are shifted to negative fields, revealing the presence of exchange anisotropy interactions with exchange fields (HE) of the order of 100 Oe. Both fields decrease rapidly with increasing temperature. We analyze this behavior in terms of the contribution of surface spin disorder to exchange anisotropy.

  5. Structural, magnetic and dielectric properties of Y doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Kumar, N. Pavan [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Department of Physics, National Institute of Technology, Warangal, 506002 (India); Sagar, E. [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Jian, Zhu; Yemin, Hu [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Reddy, P. Venugopal, E-mail: paduruvenugopalreddy@gmail.com [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Vidya Jyothi Institute of Technology, Aziz Nagar Gate, C.B. Post, Hyderabad, 500075 (India)

    2016-04-15

    With a view to understand the influence of doping Bismuth ferrite with Yttrium on structural, magnetic and dielectric behavior, a series of samples were prepared by the solid state reaction technique. After characterizing the samples with XRD and SEM studies, magnetic and dielectric measurements were carried out. The impurity phase of Bismuth ferrite is found to disappear with increasing Y doping concentration and finally the sample with x = 0.2 is found to be free from secondary phases. The dielectric constant is also found to exhibit two transitions and efforts were made to explain the observed behavior. - Highlights: • The doping of Y helped in reducing the impurity phase of BiFeO{sub 3}. • All the Y doped samples are found to exhibit peaks in magnetization. • Y doped BFO might be considered for future device applications.

  6. Hydrogenation Properties of TiFe Doped with Zirconium

    Directory of Open Access Journals (Sweden)

    Catherine Gosselin

    2015-11-01

    Full Text Available The goal of this study was to optimize the activation behaviour of hydrogen storage alloy TiFe. We found that the addition of a small amount of Zr in TiFe alloy greatly reduces the hydrogenation activation time. Two different procedural synthesis methods were applied: co-melt, where the TiFe was melted and afterward re-melted with the addition of Zr, and single-melt, where Ti, Fe and Zr were melted together in one single operation. The co-melted sample absorbed hydrogen at its maximum capacity in less than three hours without any pre-treatment. The single-melted alloy absorbed its maximum capacity in less than seven hours, also without pre-treatment. The reason for discrepancies between co-melt and single-melt alloys was found to be the different microstructure. The effect of air exposure was also investigated. We found that the air-exposed samples had the same maximum capacity as the argon protected samples but with a slightly longer incubation time, which is probably due to the presence of a dense surface oxide layer. Scanning electron microscopy revealed the presence of a rich Zr intergranular phase in the TiFe matrix, which is responsible for the enhanced hydrogenation properties of these Zr-doped TiFe alloys.

  7. Voltage-controlled ferromagnetism and magnetoresistance in LaCoO3/SrTiO3 heterostructures

    International Nuclear Information System (INIS)

    Hu, Chengqing; Park, Keun Woo; Yu, Edward T.; Posadas, Agham; Demkov, Alexander A.; Jordan-Sweet, Jean L.

    2013-01-01

    A LaCoO 3 /SrTiO 3 heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO 3 , leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO 3 layer on strain. Below the Curie temperature of the LaCoO 3 layer, this effect leads to modulation of resistance in LaCoO 3 as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO 3 . Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO 3 layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO 3 grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device

  8. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    Science.gov (United States)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  9. Synthesis and characterization of TiO2 photocatalyst doped by transition metal ions (Fe3+, Cr3+ and V5+)

    International Nuclear Information System (INIS)

    Tuan Vu, Anh; Linh Bui, Thi Hai; Cuong Tran, Manh; Phuong Dang, Tuyet; Hoa Tran, Thi Kim; Tuan Nguyen, Quoc

    2010-01-01

    Nano TiO 2 was synthesized by the hydrothermal method. The sample was doped with transition metal ions (V, Cr and Fe) and non-metal (N). Doped TiO 2 samples were characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and UV-Vis diffuse reflectance spectroscopy (UV-Vis). Photocatalytic activity in the mineralization of xylene (vapor phase), methylene blue and active dyer PR (liquid phase) was tested. In comparison with non-doped TiO 2 , V-, Cr-, Fe-doped TiO 2 and N-doped TiO 2 samples exhibited much higher photocatalytic activity using visible light instead of UV

  10. N/S/B-doped graphitized carbon encased Fe species as a highly active and durable catalyst towards oxygen reduction reaction.

    Science.gov (United States)

    Li, Guang-Lan; Cheng, Guang-Chun; Chen, Wen-Wen; Liu, Cai-Di; Yuan, Li-Fang; Yang, Bei-Bei; Hao, Ce

    2018-03-15

    Exploring cost-effective, high-performance and durable non-precious metal catalysts is of great significance for the acceleration of sluggish oxygen reduction reaction (ORR). Here, we report an intriguing heteroatom-doped graphitized carbon encased Fe species composite by introducing N, S and B sequentially. The experimental approach was designed ingeniously for that the FeCl 3 ·6H 2 O could catalyze thiourea to synthesize N, S co-doped carbon materials which would further react with H 3 BO 3 and NH 3 (emerged at the heat-treatment process) to prepare N, S and B co-doped carbon materials (Fe-N/S/B-C). The Fe-N/S/B-C exhibits an impressive ORR activity for its half-wave potential of -0.1 V, which is 36 mV or 19 mV higher than that of the corresponding single or dual doped counterparts (Fe-N-C or Fe-N/S-C) and 31 mV positive than that of Pt/C catalyst, respectively. Further chronoamperometric measurement and accelerated aging test confirm the excellent electrochemical durability of Fe-N/S/B-C with the stable core-shell structure. The remarkable ORR performance and facile preparation method enable Fe-N/S/B-C as a potential candidate in electrochemical energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  12. The role of Sr doping on structure and microstructural properties of LaFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Pranat, E-mail: pranatjain@gmail.com; Srivastava, Sanjay, E-mail: s.srivastava.msme@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal-4620003 (India); Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com [Department of App. Chemistry, Shri G.S. Institute of Technology and Science, 23 Park Road Indore 452003 (India)

    2016-05-06

    The doping of Strontium in LaFeO{sub 3} and its influence on the structural and microstructure properties were studied thoroughly. A few sets of Sr doping in La{sub (1-x)}Fe{sub x}O{sub 3}, where x=0.00, 0.02, and 0.06 were made through the solution combustion synthesis method using urea as fuel. X-ray diffraction was applied to get information about the structure and purity. The Rietveld refinement on X-ray diffraction peaks have been done, in order to calculate various structural parameters. The morphology of La{sub (1-x)}Sr{sub x}FeO{sub 3} nanoscale particles has been confirmed by field emission scanning electron microscopy (FESEM) technique. Differential scanning calorimetry (DSC) signals demonstrated the antiferromagnetic to paramagnetic transition (T{sub N}). The FTIR spectra was provided the information about various vibration modes in samples.

  13. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Dai, Qilin; Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Bowden, Mark; Engelhard, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, Idaho 83401 (United States)

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  14. Structural properties of Fe-doped lanthanum gallate

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuhiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)]. E-mail: kmori@rri.kyoto-u.ac.jp; Fukunaga, Toshiharu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Shibata, Koji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Iwase, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Harjo, Stefanus [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Hoshikawa, Akinori [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Itoh, Keiji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kamiyama, Takashi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Ishigaki, Toru [Department of Materials Science and Engineering, Muroran Institute for Technology, Muroran 050-8585 (Japan)

    2004-10-30

    Structural characteristics of Fe-doped LaGaO{sub 3-{delta}} were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R3-bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga{sup 3+} with Fe{sup 3+} leads to an electronic configuration of t{sub 2g}{sup 3}e{sub g}{sup 2} (high-spin state, HS)

  15. Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12

    International Nuclear Information System (INIS)

    Gharagozlou, Mehrnaz; Bayati, R.

    2015-01-01

    Highlights: • Anatase TiO 2 /B 12 hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B 12 -anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO 2 . XRD and Raman studies revealed formation of a single-phase anatase TiO 2 where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO 2 nanoparticles with vitamin B 12 . TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B 12 and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility

  16. Synthesis and characterization of Fe{sup 3+} doped TiO{sub 2} nanoparticles and films and their performance for photocurrent response under UV illumination

    Energy Technology Data Exchange (ETDEWEB)

    Elghniji, Kais [University of Sfax, Laboratoire Eau, Energie et Environnement (LR3E), Ecole Nationale d' Ingenieurs de Sfax, B.P. 1173, 3038 Sfax (Tunisia); Atyaoui, Atef [Centre de Recherches et des Technologies des Eaux, Technopole de Borj Cedria B.P. 273, 8020 Soliman (Tunisia); Livraghi, Stefano [Dipartimento di Chimica I.F.M and NIS, Universita degli Studi di Torino, Via P. Giuria, 7 10125 Torino (Italy); Bousselmi, Latifa [Centre de Recherches et des Technologies des Eaux, Technopole de Borj Cedria B.P. 273, 8020 Soliman (Tunisia); Giamello, Elio [Dipartimento di Chimica I.F.M and NIS, Universita degli Studi di Torino, Via P. Giuria, 7 10125 Torino (Italy); Ksibi, Mohamed, E-mail: Mohamed.Ksibi@tunet.tn [University of Sfax, Laboratoire Eau, Energie et Environnement (LR3E), Ecole Nationale d' Ingenieurs de Sfax, B.P. 1173, 3038 Sfax (Tunisia)

    2012-11-15

    Graphical abstract: Schematic diagram illustrating the charge transfer from excited TiO{sub 2} to the different states of Fe{sup 3+} ions; C{sub B} and V{sub B} refer to the energy levels of the conduction and valence bands of TiO{sub 2}, respectively. Highlights: Black-Right-Pointing-Pointer In this study we examine the Iron as catalyst precursor to synthesize the Fe{sup 3+} doped TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The Fe{sup 3+} doped TiO{sub 2} catalysts show the presence of a mixed phase of anatase. Black-Right-Pointing-Pointer The iron is completely absent in the XRD pattern of the doped iron TiO{sub 2} powder. Black-Right-Pointing-Pointer The analysis of EPR result further confirms that Fe{sup 3+} ion are successfully doped in the TiO{sub 2} lattice by substituting Ti{sup 4+}. Black-Right-Pointing-Pointer Fe{sup 3+} doping can efficiently separate the photo-generated electrons and holes. - Abstract: Undoped TiO{sub 2} and Fe{sup 3+} doped (0.1, 0.3, 0.6 and 1 wt.%) TiO{sub 2} nanoparticles have been synthesized by the acid-catalyzed sol-gel method. Iron cations are introduced in the initial solution, before gelification, what promotes their lattice localization. The Fe{sup 3+} doped TiO{sub 2} films have been fabricated using a dip-coating technique. The effect of iron content on the crystalline structure, phase transformation and grain growth were determined by X-ray diffraction (XRD), Raman spectroscopy, UV-visible diffused reflectance spectroscopy (DRS) and Electron paramagnetic resonance (EPR) spectroscopy. It has demonstrated that all catalysts are composed of mixed-phase crystals of anatase and brookite with anatase as dominant phase. The crystallinity of the brookite and anatase phases decreased with increasing the iron content. The analysis of EPR result further confirms that Fe{sup 3+} ion are successfully doped in the TiO{sub 2} lattice by substituting Ti{sup 4+}. It was demonstrated that Fe{sup 3+} ion in the TiO{sub 2} films

  17. Positron annihilation studies on the behaviour of vacancies in LaAlO3/SrTiO3 heterostructures

    Science.gov (United States)

    Yuan, Guoliang; Li, Chen; Yin, Jiang; Liu, Zhiguo; Wu, Di; Uedono, Akira

    2012-11-01

    The formation and diffusion of vacancies are studied in LaAlO3/SrTiO3 heterostructures. Oxygen vacancies (VOS) appear easily in the SrTiO3 substrate during LaAlO3 film growth at 700 °C and 10-4 Pa oxygen pressure rather than at 10-3-10-1 Pa, thus the latter two-dimensional electron gas should come from the polarity discontinuity at the (LaO)+/(TiO2)0 interface. For SrTiO3-δ/LaAlO3/SrTiO3, high-density VOS of the SrTiO3-δ film can pass through the LaAlO3 film and then diffuse to 1.7 µm depth in the SrTiO3 substrate, suggesting that LaAlO3 has VOS at its middle-deep energy levels within the band gap. Moreover, high-density VOS may combine with a strontium/titanium vacancy (VSr/Ti) to form VSr/Ti-O complexes in the SrTiO3 substrate at 700 °C.

  18. Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Gan, Yulin; Christensen, Dennis Valbjørn

    2017-01-01

    Modulation-doped oxide two-dimensional electron gas formed at the LaMnO3 (LMO) buffered disorderd-LaAlO3/SrTiO3 (d-LAO/LMO/STO) heterointerface provides new opportunities for electronics as well as quantum physics. Herein, we studied the dependence of Sr-doping of La1-xSrxMnO3 (LSMO, x = 0, 1/8, ...... of LSMO during the deposition of disordered LAO or that the energy levels of Mn 3d electrons at the interface of LSMO/STO are hardly varied even when changing the LSMO composition from LMO to SrMnO3....

  19. Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Wang, X.; Wang, S. Y.; Liu, W. F.; Xi, X. J.; Zhang, H.; Guo, F.; Xu, X. L.; Li, M.; Liu, L.; Zhang, C.; Li, X.; Yang, J. B.

    2015-01-01

    The charge defective structure in Bi 1−x Ca x FeO 3 (CBFO, x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanoparticles (NPs) ranging from 140 to 25 nm as well as their relations to band gap and leakage current behavior are investigated. It is demonstrated that Ca doping effectively narrows the band gap from ∼2.16 to ∼2.02 eV, due to the appearance and accumulation of oxygen vacancy. Subsequently, enhanced electrical conductivity was obtained in these CBFO NPs, which leads to the appearance of a distinct threshold switching behavior in Ca-doped BFO NPs with higher conductivity at room temperature. Possible mechanisms for Ca doping effects on the electric conduction were discussed upon the interplay of NPs’ size effect and mobile charged defects on the basis of reduced particle size and the increased density of oxygen vacancy analyzed through X-ray photoelectron spectrum

  20. Optical and Magnetic Properties of Fe Doped ZnO Nanoparticles Obtained by Hydrothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Xiaojuan Wu

    2014-01-01

    Full Text Available Diluted magnetic semiconductors Zn1-xFexO nanoparticles with different doping concentration (x=0, 0.01, 0.05, 0.10, and 0.20 were successfully synthesized by hydrothermal method. The crystal structure, morphology, and optical and magnetic properties of the samples were characterized by X-ray diffraction (XRD, energy dispersive spectrometer (EDS, high-resolution transmission electron microscopy (HRTEM, Raman scattering spectra (Raman, photoluminescence spectra (PL, and the vibrating sample magnetometer (VSM. The experiment results show that all samples synthesized by this method possess hexagonal wurtzite crystal structure with good crystallization, no other impurity phases are observed, and the morphology of the sample shows the presence of ellipsoidal nanoparticles. All the Fe3+ successfully substituted for the lattice site of Zn2+ and generates single-phase Zn1-xFexO. Raman spectra shows that the peak shifts to higher frequency. PL spectra exhibit a slight blue shift and the UV emission is annihilated with the increase of Fe3+ concentration. Magnetic measurements indicated that Fe-doped ZnO samples exhibit ferromagnetic behavior at room temperature and the saturation magnetization is enhanced with the increase of iron doping content.

  1. 3d-metal doping (Fe,Co,Ni,Zn) of the high T/sub c/ perovskite YBa/sub 2/Cu/sub 3/O/sub 7-y/

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Greene, L.H.; Hull, G.W.; Bagley, B.G.

    1988-01-01

    The structural, magnetic and superconducting properties of the mixed compounds YBa/sub 2/Cu/sub 3-x/M/sub x/O/sub 7-y/ (M = Ni, Zn, Fe and Co) are reported. Values of y, determined by titration, are found to be dependent on the nature and amount of the doping. The range of solubility is greater for the Fe and Co compounds (chi = 1) than for those with Ni or Zn (chi = 0.3). The undoped material is orthorhombic and remains orthorhombic after substitution for Cu by Ni or Zn, whereas a tetragonal phase is observed when Fe, Co are substituted for Cu. DC resistance and AC susceptibility measurements show that T/sub c/ is depressed from 90K (chi = 0) to 45K (chi = 0.2) for both the Ni and Zn doped compounds and T/sub c/ is destroyed in the Fe and Co doped compounds when chi reaches 0.4. The authors suggest that a valance of 2 be assigned to the Ni and Zn and 3 to the Fe and Co ions

  2. Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: Efficient charge transfer and enhanced photo-Fenton catalytic activity

    Science.gov (United States)

    Liu, Bing; Tian, Lihong; Wang, Ran; Yang, Jinfeng; Guan, Rong; Chen, Xiaobo

    2017-11-01

    Though α-Fe2O3 has attracted much attention in photocatalytic or Fenton-catalytic degradation of organic contaminants, its performance is still unsatisfactory due to fast recombination of electrons and holes in photocatalytic process and the difficult conversion of Fe(II) and Fe(III) in Fenton reaction. Herein, a pyrrolic N-doped graphene oxide/Fe2O3 mesocrystal (NG-Fe2O3) nanocomposite with good distribution is synthesized by a simple solvothermal method and adjusting the oxygen-containing groups on graphene oxide. The morphology of NG-Fe2O3 contributes to a relatively large BET surface area and an intimate contact between NG and Fe2O3. These two important factors along with the excellent electro-conductivity of pyrrolic-N doped GO result in the efficient separation of electron-hole pairs and fast conversion of Fe(II)and Fe(III) in photo-Fenton synergistic reaction. Thus, a remarkably improved photo-Fenton catalytic activity of NG-Fe2O3 is obtained. The degrading rate on methyl blue increases by 1.5 times and the conversion rate of glyphosate increases by 2.3 times under visible light irradiation, compared to pristine α-Fe2O3 mesocrystals.

  3. Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping

    International Nuclear Information System (INIS)

    Han, Yumin; Mao, Weiwei; Quan, Chuye; Wang, Xingfu; Yang, Jianping; Yang, Tao; Li, Xing’ao

    2014-01-01

    Highlights: • BiFeO 3 , Bi 0.8 Er 0.2 FeO 3 , Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 nanoparticles were prepared by sol–gel method. • The introduction of Er and Mn, Co into BiFeO 3 leads into a phase transition with reduced grain size. • The phase transformation combined with size reduction has significantly increased saturated polarization (Ps), remanent polarization (Pr) and saturated magnetization (Ms), remanent magnetization (Mr) behaviors of the doped samples with the same variation trend. • The formation of dipolar defect complexes (DDCs) in the doped samples may also contribute to the improved ferroelectric property. • Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 exhibits significantly improved ferroelectric and ferromagnetic properties. - Abstract: BiFeO 3 (BFO), Bi 0.8 Er 0.2 FeO 3 (BEFO), Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 (BEFMO) and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 (BEFCO) nanoparticles were prepared by sol–gel method having an average size of 200 nm for BFO, under100 nm for BEFO and under 60 nm for BEFMO and BEFCO. Phase transition from a rhombohedral symmetry (R3c) for BFO to an orthorhombic symmetry (Ibmm) for BEFO, BEFMO and BEFCO has been observed. The phase transformation combined with size reduction has significantly improved both ferroelectric and ferromagnetic behaviors of the doped samples in a similar way. The formation of dipolar defect complexes (DDCs) in the doped samples also contributes to the improved ferroelectric property with saturated polarization (Ps) of 0.375 μC/cm 2 and remanent polarization (Pr) of 0.244 μC/cm 2 for BEFMO. Size effect may also impact the simultaneously developed Pr for BEFMO and BEFCO. Owning to the interactions between the ferromagnetic and antiferromagnetic microdomains, improved saturated magnetization (Ms) and remanent magnetization (Mr) are also observed in BEFMO

  4. Study of cerium doped magnetite (Fe{sub 3}O{sub 4}:Ce)/PMMA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India)

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe{sub 3}O{sub 4}) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe{sub 3}O{sub 4}) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO{sub 2}) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T{sub g}). The magnetic results suggest that coercivity (H{sub C}) and squareness (M{sub r}/M{sub s}) of the loop increases with increasing doping percent of cerium.

  5. Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Liu Li; Wang Shouyu; Yin Zi; Zhang Chuang; Li Xiu; Yang Jiabin; Liu Weifang; Xu Xunling

    2016-01-01

    Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La 0.1 Bi 0.9−x Sr x FeO y (LBSF, x = 0, 0.2, 0.4) with dopant Sr 2+ ions were synthesized by the sol–gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ∼ 2.08 eV to ∼ 1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO 3 -based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO 3 . (paper)

  6. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    Science.gov (United States)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  7. Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Bhushan, B; Das, D; Basumallick, A; Bandopadhyay, S K; Vasanthacharya, N Y

    2009-01-01

    Substrate-free pure-phase BiFeO 3 (BFO) nanoparticles doped with alkaline earth metals (Ba, Sr and Ca) have been synthesized by a sol-gel route and their thermal, optical, dielectric and magnetic properties are discussed. The characteristic structural phase transitions of BFO nanoparticles are found to occur at much lower temperatures. A reduction of the Neel temperature has been observed in the doped samples in comparison with the pristine one, whereas the band gap shows a reverse trend. Iron was found to be only in the Fe 3+ valence state in all the doped samples. Magnetoelectric coupling is seen in our samples. Weak ferromagnetism is observed at room temperature in all of the doped and undoped BFO nanoparticles with the largest value of coercive field ∼1.78 kOe and saturation magnetization ∼2.38 emu g -1 for Ba and Ca doped BFO nanoparticles, respectively.

  8. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C. S. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Hung, C.-M.; Anthoninappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Ting, Y.; Peng, Y.-T. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2013-09-28

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.90}Ca{sub 0.10})FeO{sub 2.95} (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  9. Evolution of the structural and multiferroic properties of PbFe{sub 2/3}W{sub 1/3}O{sub 3} ceramics upon Mn-doping

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.A. [Center of Materials Science, Karpov' Institute of Physical Chemistry, Vorontsovo Pole 10, Moscow, 105064 (Russian Federation); Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Bush, A.A. [Moscow State University of Information Technologies, RadioEngineering and Electronics, pr.Vernadskogo 78, Moscow, 119454 (Russian Federation); Ritter, C. [Institute Laue-Langevin, BP 156, F-38042, Grenoble (France); Behtin, M.A. [Moscow State University of Information Technologies, RadioEngineering and Electronics, pr.Vernadskogo 78, Moscow, 119454 (Russian Federation); Cherepanov, V.M. [National Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 (Russian Federation); Autieri, C.; Kvashnin, Y.O.; Di Marco, I.; Sanyal, B.; Eriksson, O. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala (Sweden); Kumar, P. Anil; Nordblad, P. [Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Mathieu, R., E-mail: roland.mathieu@angstrom.uu.se [Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala (Sweden)

    2017-02-01

    The perovskite system Pb(Fe{sub 1-x}Mn{sub x}){sub 2/3}W{sub 1/3}O{sub 3} (0 ≤ x ≤ 1, PFMWO) has been prepared by conventional solid-state reaction under different sintering conditions. Structures and phase composition as well as thermal, magnetic and dielectric properties of the compounds have been systematically investigated experimentally and by first-principles density functional calculations. A clean perovskite phase is established at room temperature for compositions 0 ≤ x ≤ 0.4. Rietveld refinements of X-ray and neutron powder diffraction patterns demonstrate that the compounds crystallize in space group Pm-3m (0 ≤ x ≤ 0.4). The degree of ordering of the Fe and W/Mn cations was found to depend on the concentration of Mn. First-principles calculations suggest that the structural properties of PFMWO are strongly influenced by the Jahn-Teller effect. The PFMWO compounds behave as relaxor ferroelectrics at weak Mn-doping with a dielectric constant that rapidly decreases with increasing Mn content. A low temperature antiferromagnetic G-type order with propagation vector k = (1/2,1/2,1/2) is derived from neutron powder diffraction data for the samples with x ≤ 0.4. However with increasing doping concentration, the magnetic order is perturbed. First-principles calculations show that the dominant exchange coupling is antiferromagnetic and occurs between nearest neighbor Fe atoms. When the system is doped with Mn, a relatively weak ferromagnetic (FM) interaction between Fe and Mn atoms emerges. However, due to the presence of this FM interaction, the correlation length of the magnetic order is greatly shortened already at rather low doping levels. - Highlights: • The perovskite system Pb(Fe{sub 1−x}Mn{sub x}){sub 2/3}W{sub 1/3}O{sub 3} (0 ≤ x ≤ 1, PFMWO) has been synthesized. • The structural, magnetic, and dielectric properties of PFMWO have been investigated. • The degree of ordering of the Fe and W/Mn cations was found to depend on x.

  10. Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions.

    Science.gov (United States)

    Song, Chunsen; Wu, Shikui; Shen, Xiaoping; Miao, Xuli; Ji, Zhenyuan; Yuan, Aihua; Xu, Keqiang; Liu, Miaomiao; Xie, Xulan; Kong, Lirong; Zhu, Guoxing; Ali Shah, Sayyar

    2018-08-15

    The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe/Fe 3 C@N-doped-carbon porous hierarchical polyhedrons (Fe/Fe 3 C@N-C) by a simple metal-organic framework precursor route. The Fe/Fe 3 C@N-C polyhedrons consisting of Fe and Fe 3 C nanocrystals enveloped by N-doped carbon shells and accompanying with some carbon nanotubes on the surface were prepared by thermal annealing of Zn 3 [Fe(CN) 6 ] 2 ·xH 2 O polyhedral particles in nitrogen atmosphere. This material exhibits a large specific surface area of 182.5 m 2  g -1 and excellent ferromagnetic property. Electrochemical tests indicate that the Fe/Fe 3 C@N-C hybrid has apparent HER activity with a relatively low overpotential of 236 mV at the current density of 10 mA cm -2 and a small Tafel slope of 59.6 mV decade -1 . Meanwhile, this material exhibits excellent catalytic activity toward ORR with an onset potential (0.936 V vs. RHE) and half-wave potential (0.804 V vs. RHE) in 0.1 M KOH, which is comparable to commercial 20 wt% Pt/C (0.975 V and 0.820 V), and shows even better stability than the Pt/C. This work provides a new insight to developing multi-functional materials for renewable energy application. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. X-ray absorption and resonant photoelectron spectroscopy of epitaxial Fe-doped SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Annemarie; Lenser, Christian; Xu, Chencheng; Wicklein, Sebastian; Dittmann, Regina [Peter Gruenberg Institut 7, Forschungszentrum Juelich GmbH (Germany); Kajewski, Dariusz; Kubacki, Jurek; Szade, Jacek [A.Chelkowski Institute of Physics, University of Silesia, Katowic (Poland)

    2012-07-01

    In recent years resistive switching in transition metal oxides received a lot of research interest due to the proposed application as non-volatile data memory. SrTiO{sub 3} serves as a model system for the investigation of resistive switching due to the valency change mechanism. Frequently, slightly Fe doping is used, as it has shown to improve the switching properties. The focus of this study is the effect of Fe-doping of SrTiO{sub 3} in thin epitaxial films. Thin film samples with Fe concentration of 2 at.% and 5 at.% were prepared by pulsed laser deposition at varying substrate temperatures. The surface morphology of the films is studied with AFM. X-ray absorption spectroscopy is performed in total-electron and auger-electron yield offering different probing depths. Significant variations of the Fe-L edge between bulk and interface as well as after annealing are observed and discussed in terms of integration into the lattice and evolution of secondary phases. Resonant photoelectron spectroscopy at the absorption edge of Ti, O and Fe was used to determine the spectral contributions to the valence band. Most noteworthy we find significant spectral weight above the valence band, which can be attributed to Fe-states.

  12. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  13. Neutron diffraction studies on cobalt substituted BiFeO3

    Science.gov (United States)

    Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.

    2013-02-01

    A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.

  14. Doping effect on ferromagnetism, ferroelectricity and dielectric constant in sol-gel derived Bi1-xNdxFe1-yCoyO3 nanoceramics

    Science.gov (United States)

    Das, Sananda; Sahoo, R. C.; Bera, K. P.; Nath, T. K.

    2018-04-01

    Doping at the post-transition metal site by trivalent rare-earth ions and 3d transition metal site by transition metal ions in perovskite lattice has observed a variety of magnetic and electronic orders with spatially correlated charge, spin and orbital degrees of freedom. Here, we report large ferromagnetism and enhanced dielectric constant (at ∼100 Hz) in chemically synthesized single phase multiferroic Bi1-xNdxFe1-yCoyO3 (x = 0, 0.10; y = 0, 0.10) nanoparticles (average particles size ∼45 nm). We have also examined the ferroelectric nature of our chemically synthesized samples. The Rietveld refinement of the XRD data reveals the structural symmetry breaking from distorted rhombohedral R3c structure of BiFeO3 to the triclinic P1 structure in Bi0.9Nd0.1Fe0.9Co0.1O3 (BNFCO) without having any iron rich impurity phase. The magnetization in these nanoceramics most likely originates from the coexistence of mixed valence states of Fe ion (Fe2+ and Fe3+). A high room temperature dielectric constant (∼1050) has been observed at 100 Hz of BNFCO sample. The frequency dependent anomalies near Neel temperature of antiferromagnet in temperature variation of dielectric study have been observed for all the doped and co-doped samples exhibiting typical characteristic of relaxor ferroelectrics. A spectacular enhancement of remanent magnetization MR (∼7.2 emu/gm) and noticeably large coercivity HC (∼17.4 kOe) at 5 K have been observed in this BNFCO sample. Such emergence of ferromagnetic ordering indicates the canting of the surface spins at the surface boundaries because of the reduction of particle size in nanodimension. We have also observed P-E hysteresis loops with a remanent polarization of 26 μC/cm2 and coercive field of 5.6 kV/cm of this sample at room temperature. From impedance spectroscopy study the estimated activation energy of 0.41 eV suggests the semiconducting nature of our nanoceramic BNCFO sample.

  15. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  16. Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method

    Directory of Open Access Journals (Sweden)

    Yacine Cherif

    2016-09-01

    Full Text Available Fe-doped ZnO nanoparticles were synthesized by sol gel technique. Fine-scale and single phase hexagonal wurtzite structure in all samples were confirmed by SEM and XRD, respectively. The band gap energy depends on the amount of Fe and was found to be in the range of 3.11–2.53 eV. The electric and dielectric properties were investigated using complex impedance spectroscopy. AC conductivity data were correlated with the barrier hopping (CBH model to evaluate the binding energy (Wm, the minimum hopping distance (Rmin and the density of states at Fermi level, N(EF. Fe doping in ZnO also improved the photocatalytic activity. Thus, the sample Zn0.95Fe0.05O showed high degradation potential towards methylene blue (MB, i.e. it degrades 90% of BM in 90 min under UV light.

  17. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  18. Strain-mediated magnetic and transport properties of epitaxial LuxFe3-xO4 films

    Science.gov (United States)

    Wang, P.; Jin, C.; Zheng, D. X.; Bai, H. L.

    2015-10-01

    Strain mediated structure, magnetic, and transport properties of spinel ferrites were investigated by growing epitaxial LuxFe3-xO4 (LFO, 0 ≤ x ≤ 0.26 ) films on SrTiO3 and MgO substrates with in-plane compressive and tensile strains, respectively. The lattice parameter of LFO films decreases on SrTiO3 substrates, while increases on MgO substrates with the increasing Lu content. The LFO films on SrTiO3 substrates exhibit larger saturation magnetization and smaller exchange bias and coercive field. Phase shift of anisotropic magnetoresistance is also observed in the LFO films on SrTiO3 substrates. In addition, the nonmagnetic Lu3+ ions in spinel ferrites enhance the spin canting, which further increases the exchange bias and coercive field and strengthens the four-fold symmetry of anisotropic magnetoresistance and the two-fold symmetry of planar Hall effect.

  19. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  20. Ultrafast microwave hydrothermal synthesis and characterization of Bi{sub 1−x}La{sub x}FeO{sub 3} micronized particles

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, C. [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy); Cannio, M., E-mail: maria.cannio@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy); Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K. [Department of Energy Conversion and Storage, Technical University of Denmark Frederiksborgvej, 4000 Roskilde (Denmark); Leonelli, C. [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy)

    2015-07-15

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi{sub 1−x}La{sub x}FeO{sub 3} where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi{sub 1−x}La{sub x}FeO{sub 3} crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO{sub 3} lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO{sub 3} and Bi{sub 0.85}La{sub 0.15}FeO{sub 3}. The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi{sub 1−x}La{sub x}FeO{sub 3}, x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T{sub c} shift in La doped BiFeO{sub 3} DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic.

  1. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    Science.gov (United States)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  2. A close correlation between induced ferromagnetism and oxygen deficiency in Fe doped In2O3

    International Nuclear Information System (INIS)

    Singhal, R.K.; Samariya, A.; Kumar, Sudhish; Sharma, S.C.; Xing, Y.T.; Deshpande, U.P.; Shripathi, T.; Saitovitch, E.

    2010-01-01

    We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In 2 O 3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In 3+ ions. The magnetization measurements show that the host In 2 O 3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies (V o ). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.

  3. Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Yang, C.; Liu, C.Z.; Wang, C.M.; Zhang, W.G.; Jiang, J.S.

    2012-01-01

    Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles, Bi 0.8 Ca 0.2−x Ba x FeO 3 (x=0–0.20), were prepared by a sol–gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07–0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the T N of the nanoparticles was obviously increased. All the Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles presented the high ratio of M r /M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. - Highlights: ► Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles were prepared using a sol–gel method. ► The magnetic properties of the nanoparticles are greatly improved. ► The Neel temperature (T N ) of the nanoparticles is greatly increased. ► Doped ions and crystal structure affect the dielectric properties of the nanoparticles.

  4. Investigation on structural and electrical properties of Fe doped ZnO nanoparticles synthesized by solution combustion method

    International Nuclear Information System (INIS)

    Ram, Mast; Bala, Kanchan; Sharma, Hakikat; Kumar, Arun; Negi, N. S.

    2016-01-01

    In the present study, nanoparticles of Fe doped zinc oxide (ZnO) [Zn_1_-_xFe_xO where x=0.0, 0.01, 0.02, 0.03 and 0.05] were prepared by cost effective solution combustion method. The powder X-ray diffractometry confirms the formation of single phase wurtzite structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the micrsostructure of Fe-doped ZnO nanoparticles. The DC electrical conductivity was found to increase with temperature and measurement was carried out in the temperature range of 300-473K. DC electrical conductivity increases with temperature and decreases with Fe doping concentration.

  5. First principles study of magneto-optical properties of Fe-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Shaoqiang, Guo [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Qingyu, Hou, E-mail: by0501119@126.com [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Zhenchao, Xu [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Chunwang, Zhao [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306 (China)

    2016-12-15

    Studies on optical band gaps and absorption spectra of Fe-doped ZnO have conflicting conclusions, such as contradictory redshifted and blueshifted spectra. To solve this contradiction, we constructed models of un-doped and Fe-doped ZnO using first-principles theory and optimized the geometry of the three models. Electronic structures and absorption spectra were also calculated using the GGA+U method. Higher doping content of Fe resulted in larger volume of doped system, and higher total energy resulted in lower stability. Higher formation energy also led to more difficult doping. Meanwhile, the band gaps broadened and the absorption spectra exhibited an evident blue shift. The calculations were in good agreement with the experimental results. Given the unipolar structure of ZnO, four possible magnetic coupling configurations for Zn{sub 14}Fe{sub 2}O{sub 16} were calculated to investigate the magnetic properties. Results suggest that Fe doping can improve ferromagnetism in the ZnO system and that ferromagnetic stabilization was mediated by p–d exchange interaction between Fe-3d and O-2p orbitals. Therefore, the doped system is expected to obtain high stability and high Curie temperature of diluted magnetic semiconductor material, which are useful as theoretical bases for the design and preparation of the Fe-doped ZnO system’s magneto-optical properties. - Highlights: • A biomonitoring tool for the freshwater zone of template estuaries. • Water quality characterization related to nutrients and organic matter enrichment. • The percentage of a group of 24 tolerant species were capable of detecting the impairment of the water quality. • Characterization of morpho-functional traits of the selected tolerant species.

  6. Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films : Influence of Si Doping and SnO2 Interfacial Layer

    NARCIS (Netherlands)

    Liang, Y.; Enache, C.S.; Van De Krol, R.

    2008-01-01

    a-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc)3. The donor density in the Fe2O3 films could be tuned between 10171020cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting

  7. Mn doping effect on structure and magnetism of epitaxial (FePt)1-xMnx films

    International Nuclear Information System (INIS)

    Huang, J.C.A.; Chang, Y.C.; Yu, C.C.; Yao, Y.D.; Hu, Y.M.; Fu, C.M.

    2003-01-01

    We study the structure and perpendicular magnetism of molecular beam epitaxy grown (FePt) 1-x Mn x films with doping concentration x=0, 1%, 2%, 3%, 4%, and 5%. The (FePt) 1-x Mn x films were made by multilayers growth of [Fe/Pt/Mn]xN at 100 deg. C and annealed at 600 deg. C. X-ray diffraction scans indicate that relatively better L1 0 ordered structure for low Mn doping (x 3%. The perpendicular magnetic anisotropy effect of the (FePt) 1-x Mn x films tends to decrease with the increase of Mn doping for x>1%. However, the x=1% doped films possess slightly better perpendicular magnetic anisotropy effect than the zero doped film. The perpendicular magnetic anisotropy constant are of about 1.3x10 7 and 1.6x10 7 erg/cm 3 for x=0% and x=1%, respectively

  8. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  9. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3–LiF salt mixture

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2017-05-01

    Full Text Available Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3–LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6 and eutectic binary (DyF3–LiF salt (25 mol% DyF3 – 75 mol% LiF was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%, electrical resistivity of the die-upset magnet was enhanced to over 400 μΩ.cm compared to 190 μΩ.cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3–LiF salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3–LiF salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3–LiF salt mixture was as good as those of the DyF3-doped magnet.

  10. Effect of Si/Fe ratio on the boron and phosphorus doping efficiency of β-FeSi2 by magnetron sputtering

    International Nuclear Information System (INIS)

    Xu Jiaxiong; Yao Ruohe

    2011-01-01

    Boron-doped or phosphorus-doped β-FeSi 2 thin films have been prepared on silicon substrate by magnetron sputtering. Effects of Si/Fe ratio on the boron and phosphorus doping efficiencies have been studied from the resistivities of doped β-FeSi 2 thin films and current-voltage characteristics of doped β-FeSi 2 /Si heterojunctions. The experimental results reveal that the carrier concentration and doping efficiency of boron or phosphorus dopants at the Fe-rich side are higher than that at the Si-rich side. The effect of Si/Fe ratio can be deduced from the comparison of the formation energies under two extreme conditions. At the Fe-rich limit condition, the formation energy of boron or phosphorous doping is lower than that at the Si-rich condition. Therefore, the activation of impurities is more effective at the Fe-rich side. These results demonstrate that the boron-doped and phosphorous-doped β-FeSi 2 thin films should be kept at the Fe-rich side to avoid the unexpected doping sites and low doping efficiency.

  11. Characteristics and optical properties of iron ion (Fe{sup 3+})-doped titanium oxide thin films prepared by a sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Lin, H.J. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)], E-mail: hjlin@nuu.edu.tw; Yang, T.S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2009-04-03

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations have been prepared on a glass substrate by the sol-gel spin coating process. Characteristics and optical properties of TiO{sub 2} thin films doping of various Fe content were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis) and spectroscopic ellipsometry. The crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0 to 25.0 wt%. During the Fe{sup 3+} addition to 25.0 wt%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The absorption edge of TiO{sub 2} thin films shifted towards longer wavelengths (i.e. red shifted) from 355 to 415 nm when the Fe{sup 3+}-doped concentration increased from 0 to 25.0 wt%. The values of the refractive index (n), and extinction coefficient (k), decreased with an increasing Fe{sup 3+} content. Moreover, the band-gap energy of TiO{sub 2} thin films also decreased from 3.29 to 2.83 eV with an increase in the Fe{sup 3+} content from 0 to 25.0 wt%.

  12. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    Directory of Open Access Journals (Sweden)

    Shougui Ning

    2018-02-01

    Full Text Available A mid-infrared (mid-IR semiconductor saturable absorber mirror (SESAM based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  13. Novel electrical conductivity properties in Ca-doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Wang, S. Y., E-mail: shouyu.wang@yahoo.com [Tianjin Normal University, College of Physics and Materials Science (China); Liu, W. F., E-mail: wfliu@tju.edu.cn [Tianjin University, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science (China); Xi, X. J. [Tianjin Normal University, College of Physics and Materials Science (China); Zhang, H. [Tianjin University, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science (China); Guo, F. [Tianjin Normal University, College of Physics and Materials Science (China); Xu, X. L. [Tianjin University, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science (China); Li, M.; Liu, L.; Zhang, C.; Li, X.; Yang, J. B. [Tianjin Normal University, College of Physics and Materials Science (China)

    2015-05-15

    The charge defective structure in Bi{sub 1−x}Ca{sub x}FeO{sub 3} (CBFO, x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanoparticles (NPs) ranging from 140 to 25 nm as well as their relations to band gap and leakage current behavior are investigated. It is demonstrated that Ca doping effectively narrows the band gap from ∼2.16 to ∼2.02 eV, due to the appearance and accumulation of oxygen vacancy. Subsequently, enhanced electrical conductivity was obtained in these CBFO NPs, which leads to the appearance of a distinct threshold switching behavior in Ca-doped BFO NPs with higher conductivity at room temperature. Possible mechanisms for Ca doping effects on the electric conduction were discussed upon the interplay of NPs’ size effect and mobile charged defects on the basis of reduced particle size and the increased density of oxygen vacancy analyzed through X-ray photoelectron spectrum.

  14. Enhanced photovoltaic currents in strained Fe-doped LiNbO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ryotaro [Division of Physics, Institute of Liberal Education, School of Medicine, Nihon University, 31-10, Ooyaguchi-kamicho, Itabashi-ku, Tokyo 173-8601 (Japan); Takahashi, Shusuke; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru [Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2015-12-15

    We investigate the impact of strain on photovoltaic current (J{sub z}) characteristics for iron-doped LiNbO{sub 3} (Fe-LN) under visible light illumination by thin-film experiments. The J{sub z} values are demonstrated to be dramatically enhanced for the film with a tensile strain along the P{sub s} direction, which is over 500 times as large as that of the bulk (strain-free) Fe-LN crystals. Density functional theory (DFT) calculations show that the tensile strain increases an off-center displacement of Fe{sup 2+} that is opposite to the P{sub s} direction. Our experimental and DFT study demonstrates that the control of the lattice strain is effective in enhancing the photovoltaic effect in the Fe-LN system. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles

    Science.gov (United States)

    An, Ming; Weng, Yakui; Zhang, Huimin; Zhang, Jun-Jie; Zhang, Yang; Dong, Shuai

    2017-12-01

    The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultrathin LaMnO3 films on the most commonly used SrTiO3 substrate is a long-existing question under debate. Either strain effect or nonstoichiometry was argued to be responsible for the experimental ferromagnetism. In a recent experiment [X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015), 10.1126/science.aaa5198], one more mechanism, namely, the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultrathin LaMnO3 films as well as superlattices. Starting from the very precise descriptions of both LaMnO3 and SrTiO3, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO3 layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO3/SrTiO3 heterostructures. Our paper not only explains the long-term puzzle regarding the magnetism of ultrathin LaMnO3 films but also sheds light on how to overcome the notorious magnetic dead layer in ultrathin manganites.

  16. Solid phase epitaxial growth of high mobility La:BaSnO_3 thin films co-doped with interstitial hydrogen

    International Nuclear Information System (INIS)

    Niedermeier, Christian A.; Rhode, Sneha; Fearn, Sarah; Moram, Michelle A.; Ide, Keisuke; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    This work presents the solid phase epitaxial growth of high mobility La:BaSnO_3 thin films on SrTiO_3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO_3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm"2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO_3 thin films, and a 9%–16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO_3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO_3 thin films were increased to 3 × 10"1"9" cm"−"3 and in La:BaSnO_3 thin films from 6 × 10"1"9" cm"−"3 to 1.5 × 10"2"0" cm"−"3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO_3 electron effective mass of 0.27 ± 0.05 m_0 and an optical mobility of 26 ± 7 cm"2/Vs. As compared to La:BaSnO_3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO_3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.

  17. Enhanced superconductivity and anisotropy of FeTe0.6Se0.4 single crystals with Li -NH3 intercalation

    Science.gov (United States)

    Li, Chenghe; Sun, Shanshan; Wang, Shaohua; Lei, Hechang

    2017-10-01

    We report a systematic study of anisotropy resistivity, magnetoresistance, and Hall effect of Li0.32(NH3)yFe2Te1.2Se0.8 single crystals. When compared to the parent compound FeTe0.6Se0.4 , the Li-NH3 intercalation not only increases the superconducting transition temperature but also enhances the electronic anisotropy in both normal and superconducting states. Moreover, in contrast to the parent compound, the Hall coefficient RH becomes negative at low temperature, indicating electron-type carriers are dominant due to Li doping. On the other hand, the sign reverse of RH at high temperature and the failure of scaling behavior of magnetoresistance imply that hole pockets may be still crossing or just below the Fermi energy level, leading to the multiband behavior in Li0.32(NH3)yFe2Te1.2Se0.8 .

  18. Influence of film thickness and Fe doping on LPG sensing properties of Mn3O4 thin film grown by SILAR method

    Science.gov (United States)

    Belkhedkar, M. R.; Ubale, A. U.

    2018-05-01

    Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.

  19. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  20. Above room-temperature ferromagnetism in La1-xCaxMnO3 epitaxial thin films on SrTiO3(001) substrates

    Science.gov (United States)

    Kou, Yunfang; Wang, Hui; Miao, Tian; Wang, Yanmei; Xie, Lin; Wang, Shasha; Liu, Hao; Lin, Hanxuan; Zhu, Yinyan; Wang, Wenbin; Du, Haifeng; Pan, Xiaoqing; Wu, Ruqian; Yin, Lifeng; Shen, Jian

    The colossal magnetoresistive (CMR) manganites are popular materials for spintronics applications due to their high spin polarization. Only a couple of manganites like La1-xSrxMnO3 have a Curie temperature (Tc) that is higher than room temperature. Finding methods to raise the Tc of manganites over room temperature is useful but challenging. In this work, we use the most intensively studied La1-xCaxMnO3 (LCMO) as the prototype system to demonstrate that Tc can be greatly enhanced by carefully tuning the electronic structure using doping and strain. Specifically, we grow LCMO films on SrTiO3 (001) substrates using pulsed laser deposition. Magnetic and transport measurements indicate a great enhancement of Tc over room temperature at x =0.2 doping. Theoretical calculations indicate that the combined effects from doping and strain give rise to a new electronic structure favoring ferromagnetism in LCMO system. Furthermore, using the La0.8Ca0.2MnO3 as ferromagnetic electrodes, we achieve finite tunneling magnetoresistance (TMR) above room temperature.

  1. Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped BiFeO3 as a function of synthesis methodology

    International Nuclear Information System (INIS)

    Rojas-George, G.; Silva, J.; Castañeda, R.; Lardizábal, D.; Graeve, O.A.; Fuentes, L.; Reyes-Rojas, A.

    2014-01-01

    We present an analysis of crystallographic symmetry and the origin of the pseudo-cubic character of doped BiFeO 3 . Specifically, barium-doped bismuth ferrite, Bi 1−x Ba x FeO 3 (x = 0.05, 0.075, 0.1, 0.125), perovskite-type nanoparticles have been synthesized by implementing five modifications to the sol–gel technique (citric acid-assisted sol–gel method, ethylene glycol method, tartaric acid-assisted sol–gel method, polyvinyl alcohol–ethylene glycol method, and EDTA complexing sol–gel method) and their final pseudo-cubic character is discussed. The effect of the carboxylic groups and hydroxyl groups during synthesis is critical to obtain single phase BBFO. Fourier transform infrared spectroscopy and thermogravimetric analysis is used to study the decomposition and thermal behavior of the precursors and their relation to the final nanoparticle characteristics. X-ray diffraction analysis shows a single phase with symmetry changes for four of the five synthesis methodologies employed. Only the EDTA complexing sol–gel method, where EDTA is used as dissolver and chelating agent, is not satisfactory in all concentration ranges. Rietveld results suggest that the degree of distortion of the rhombohedral symmetry in the crystallized BiFeO 3 powders decreases 12% as a result of progressive substitution of Bi 3+ by Ba 2+ and that there is no shift from rhombohedral to tetragonal symmetry. Magnetization properties of samples with a low-distortion rhombohedral structure show higher magnetic saturation and remanent magnetization than samples with high-distortion rhombohedral structure. - Highlights: • Ba–BiFeO 3 : rhombohedral distortion degree is highly affected by the chemical method. • Rietveld results show no shift in BBFO from rhombohedral to tetragonal symmetry. • The low-distortion rhombohedral structure show higher magnetic saturation. • To stabilize a metal complex is necessary a balance between COOH − and OH − groups

  2. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  3. Synthesis, crystal structure and electrochemical properties of the manganese-doped LiNaFe[PO{sub 4}]F materials

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@aist.go.jp; Shikano, Masahiro, E-mail: shikano.masahiro@aist.go.jp; Sakaebe, Hikari; Kobayashi, Hironori

    2013-08-15

    The new compounds LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F (x ≤ 1/4) were synthesized by a solid state reaction route. The crystal structure of LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F was determined from single crystal X-ray diffraction data. LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F crystallizes with the Li{sub 2}Ni[PO{sub 4}]F-type structure, space group Pnma, a = 10.9719(13), b = 6.3528(7), c = 11.4532(13) Å, V = 798.31(16) Å{sup 3}, and Z = 8. The structure consists of edge-sharing (Fe{sub 3/4}Mn{sub 1/4})O{sub 4}F{sub 2} octahedra forming (Fe{sub 3/4}Mn{sub 1/4})FO{sub 3} chains running along the b-axis. These chains are interlinked by PO{sub 4} tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The manganese-doped phases show poor electrochemical behavior comparing to the iron pure phase LiNaFe[PO{sub 4}]F. - Highlights: • We investigated the synthesis of LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F by solid state reaction. • We demonstrated that a solid solution exist only for x ≤ 1/4. • We solved the crystal structure of LiNaFe{sub 3/4}Mn{sub 1/4}[PO{sub 4}]F using single crystal data. • We studied the electrochemical performances of LiNaFe{sub 1−x}Mn{sub x}[PO{sub 4}]F. • The Mn-doped phases have poor electrochemical performances comparing to LiNaFe[PO{sub 4}]F.

  4. Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Gueell, F.; Mateos, X.; Gavalda, Jna.; Sole, R.; Aguilo, M.; Diaz, F.; Massons, J.

    2004-01-01

    Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO 4 ) 2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO 4 ) 2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3 F 2 + 3 F 3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3 H 6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength

  5. Supervalent doping of LiFePO4 for enhanced electrochemical performance

    Directory of Open Access Journals (Sweden)

    N. V. Kosova

    2015-12-01

    Full Text Available The orthophosphates LiFe0.9M0.1PO4 with the structure of olivine doped with vanadium and titanium were obtained by mechanochemically stimulated solidphase synthesis using high-energy planetary mill AGO-2 and subsequent annealing at 750 °C. It is shown that V- and Ti- ions do not completely substitute for Fe2+ ions in the LiFePO4 structure. The remaining part of these ions involve in the formation of second phase with nashiko-like structure: monoclinic Li3V2(PO43 (space group P21/n and rhombohedral LiTi2(PO43 (space group R-3c. According to TEM, the average size of the particle of nanocomposites is about 100-300 nm. EMF of microanalysis showed that the small particles of secondary phases are segregated at the surface of larger particles of LiFePO4. On the charge-discharge curves of LiFe0.9M0.1PO4 there are plateau corresponding to LiFePO4 and the second phase. The doping with vanadium increases the resistance of the cycling of LiFePO4 and improves its cyclability at high speeds to a greater extent than in the case of doping with titanium.

  6. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir [Department of Nanomaterials and Nanotechnology, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Bayati, R. [Intel Corporation, IMO-SC, SC2, Santa Clara, CA 95054 (United States)

    2015-01-15

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Raman studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.

  7. Structural, magnetic and dielectric properties of Sr and V doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, Reetu; Agarwal, Ashish, E-mail: aagju@yahoo.com; Sanghi, Sujata; Hooda, Ashima; Godara, Priyanka

    2015-07-01

    Bi{sub 0.85}Sr{sub 0.15}FeO{sub 3} (BSFO), Bi{sub 0.85}Sr{sub 0.15}Fe{sub 0.97}V{sub 0.03}O{sub 3} (BSFVO1) and Bi{sub 0.85}Sr{sub 0.15}Fe{sub 0.95}V{sub 0.05}O{sub 3} (BSFVO2) ceramics were synthesized by solid state reaction method. X-ray diffraction studies and Rietveld refinement results indicate that all the samples crystallized in rhombohedrally distorted perovskite structure. The remnant magnetization and coercive field of BSFVO2 were greatly enhanced in comparison with BSFO. The enhancement of remnant magnetization was attributed to collapse of the spiral spin structure caused by change in bond length and bond angles of BSFO on V substitution. The enhanced value of coercive field might be attributed to decreased grain size with V substitution. BSFO sample shows dispersion in dielectric constant (έ) and dielectric loss (tan δ) values in lower frequency region. With V doping this dispersion is reduced resulting in frequency independent region. Dielectric anomaly peak due to charge defects in BSFO sample is also suppressed significantly on V substitution. BSFVO2 sample shows almost temperature stable behavior in έ and tan δ in the studied temperature range. Temperature dependence of index ‘s’ of power law suggests that overlapping large polaron tunneling model is applicable for describing the conduction mechanism in BSFO sample while small polaron tunneling model is appropriate for BSFVO1 and BSFVO2 samples in the studied temperature range. - Highlights: • Sr and V doped BiFeO{sub 3} multiferroics were synthesized by solid state reaction. • Ceramics crystallized in rhombohedrally distorted perovskite structure. • Remnant magnetization and coercive field were improved with V doping.

  8. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  9. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method

    International Nuclear Information System (INIS)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Sun, Rongjin; Shapter, Joseph G.; Yin, Ting; Cui, Daxiang

    2015-01-01

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe 3 O 4 , CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm. The GO sheets and CNTs are interlinked by ultrafine Fe 3 O 4 nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe 3 O 4 hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe 3 O 4 -Tm hybrid composites can recover to 1023.9 mAhg −1 , indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe 3 O 4 -Tm hybrid composites are superior to CNTs-GO-Fe 3 O 4 and CNTs-GO-Fe 3 O 4 -Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg −1 . • After 500 cycles, the hybrid structures still exhibited excellent cycling stability

  10. Ferromagnetic Behaviors in Fe-Doped NiO Nanofibers Synthesized by Electrospinning Method

    Directory of Open Access Journals (Sweden)

    Yi-Dong Luo

    2013-01-01

    Full Text Available Ni1−xFexO nanofibers with different Fe doping concentration have been synthesized by electrospinning method. An analysis of the phase composition and microstructure shows that Fe doping has no influence on the crystal structure and morphology of NiO nanofibers, which reveals that the doped Fe ions have been incorporated into the NiO host lattice. Pure NiO without Fe doping is antiferromagnetic, yet all the Fe-doped NiO nanofiber samples show obvious room-temperature ferromagnetic properties. The saturation magnetization of the nanofibers can be enhanced with increasing Fe doping concentration, which can be ascribed to the double exchange mechanism through the doped Fe ions and free charge carriers. In addition, it was found that the diameter of nanofibers has significant impact on the ferromagnetic properties, which was discussed in detail.

  11. Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3

    Science.gov (United States)

    Chen, Hungru; Umezawa, Naoto

    2014-07-01

    Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.

  12. Ion channeling study of lattice distortions in chromium-doped SrTiO3 crystals

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Trepakov, Vladimír; Jastrabík, Lubomír

    2013-01-01

    Roč. 55, č. 7 (2013), s. 1431-1437 ISSN 1063-7834 R&D Projects: GA ČR(CZ) GAP107/11/1856; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/1941 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion channeling * lattice distortions * SrTiO3 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 0.782, year: 2013 http://link.springer.com/article/10.1134%2FS1063783413070202

  13. Superconductivity and magnetism in Ir-doped GdFeAsO

    International Nuclear Information System (INIS)

    Cui, Y.J.; Chen, Y.L.; Cheng, C.H.; Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y.; Zhao, Y.

    2010-01-01

    The 5d-transition metal, Ir has successfully been doped at Fe site and induced superconductivity in GdFeAsO at T c = 18.9 K and ∼20 atom%. The Ir-doping shortened the c-axis length and stretched the a-axis one, which led to enhance the coupling between the FeAs- and SmO-layer, and to weaken the bonding between Fe and As atom. Paramagnetism was observed in all of the samples, which was resulted from the magnetic Gd ion as in the F-doped GdFeAsO. An upper critical field of GdFe 0.8 Ir 0.2 AsO was extrapolated to around 24 T, much smaller than that of F-doped GdFeAsO owing to a relatively low T c and small value of dH c2 /dT.

  14. Enhanced magnetic and ferroelectric properties in scandium doped nano Bi{sub 2}Fe{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudakar, C.; Mocherla, Pavana S.V. [Department of Physics, IIT Madras, Chennai 600 036 (India); Mandal, Balaji P.; Jayakumar, Onnatu D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Avesh K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-08-15

    In this study we report the synthesis of undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles using sonochemical technique. X-ray diffraction reveals that all samples are single phase with no impurities detected. EDS analysis was done to confirm the extent of Sc{sup 3+} doping in the samples. The size and morphology of the nanoparticles have been analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M-H relationship reported for bulk Bi{sub 2}Fe{sub 4}O{sub 9}. A magnetization of 0.144 {mu}B/f.u. is obtained at 300 K, which is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc{sup 3+} dopant in varying concentrations in these Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9} (x = 0.1) nanoparticles. Thus it can be inferred that Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles shows promise as good multiferroic materials. -- Graphical abstract: Undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been synthesized using sonochemical technique. The bi-functionalities of Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been demonstrated. The Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9} (x = 0.1) nanoparticles showed enhanced magnetic and ferroelectric properties with considerably less lossy characteristics compared to the bulk Bi{sub 2}Fe{sub 4}O{sub 9}. Highlights: Black-Right-Pointing-Pointer Phase pure Bi{sub 2}Fe{sub 4}O{sub 9} nanostructures synthesized using a facile

  15. Specific features of nonlinear optical properties of Eu{sup 3+} doped BiFeO{sub 3} nanopowders near antiferromagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    El Bahraoui, T.; Sekkati, M. [University of Mohammed V, Materials Physics Laboratory, P.B. 1014 Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIO, Ecole Normale Supérieure, Rabat (Morocco); Abd-Lefdil, M. [University of Mohammed V, Materials Physics Laboratory, P.B. 1014 Rabat (Morocco); El-Naggar, A.M. [Research chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Abassia, Cairo 11566 (Egypt); AlZayed, N.S. [Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabi (Saudi Arabia); Albassam, A.A. [Research chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia); Kityk, I.V., E-mail: iwank74@gmail.com [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland); Maciag, A. [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland)

    2016-01-15

    The monitoring of the Eu{sup 3+} doped BiFeO{sub 3} nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic–ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored. - Highlights: • The photoinduced optical second harmonic generation for the Eu{sup 3+} doped BiFeO{sub 3} nanopowders which use two bicolor coherent laser beams incident under different angles gives some enhancement of the SHG. • The photoinduced SHG may be used as sensitive tools for detection of multiferroelectricity. • The nonlinear optical scattering processes play here principal role.

  16. The influence of Fe doping on the surface topography of GaN epitaxial material

    International Nuclear Information System (INIS)

    Cui Lei; Yin Haibo; Jiang Lijuan; Wang Quan; Feng Chun; Xiao Hongling; Wang Cuimei; Wang Xiaoliang; Gong Jiamin; Zhang Bo; Li Baiquan; Wang Zhanguo

    2015-01-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 10 19 cm −3 . High resistivity GaN epitaxial material which is 1 × 10 9 Ω·cm is achieved. (paper)

  17. Enhanced multiferroic properties in scandium doped Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Tyagi, A. K.

    2013-01-01

    Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical method. The phase purity of the samples was checked using powder X-rau diffraction technique. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . This is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1-x) Sc x O 9 (x = 0.1) nanoparticles. Hence it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials.

  18. Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    He, Jianxin; Zhao, Shuyuan; Lian, Yanping; Zhou, Mengjuan; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-01-01

    Highlights: • GN@C/Fe 3 O 4 are synthesized via in-situ electrospinning and thermal treatment. • GN@C/Fe 3 O 4 show unique dark/light banding with a hierarchical porous structure. • Doped graphene induces a uniform distribution of smaller size Fe 3 O 4 nanoparticles. • Doped graphene provides more active sites and accommodate the volume change. • GN@C/Fe 3 O 4 electrode displays a reversible capacity of 872 mAh/g after 100 cycles. - Abstract: Porous graphene-doped carbon/Fe 3 O 4 (GN@C/Fe 3 O 4 ) nanofibers are synthesized via in-situ electrospinning and subsequent thermal treatment for use as lithium-ion battery anode materials. A polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) solution containing ferric acetylacetone and graphene oxide nanosheets is used as the electrospinning precursor solution. The resulting porous GN@C/Fe 3 O 4 nanofibers show unique dark/light banding and a hierarchical porous structure. These nanofibers have a Brunauer–Emmett–Teller (BET) specific surface area of 323.0 m 2 /g with a total pore volume of 0.337 cm 3 /g, which is significantly greater than that of a sample without graphene and C/Fe 3 O 4 nanofibers. The GN@C/Fe 3 O 4 nanofiber electrode displays a reversible capacity of 872 mAh/g at a current density of 100 mA/g after 100 cycles, excellent cycling stability, and superior rate capability (455 mA/g at 5 A/g). The excellent performance of porous GN@C/Fe 3 O 4 is attributed to the material’s unique structure, including its striped topography, hierarchical porous structure, and inlaid flexible graphene, which not only provides more accessible active sites for lithium-ion insertion and high-efficiency transport pathways for ions and electrons, but also accommodates the volume change associated with lithium insertion/extraction. Moreover, the zero-valent iron and graphene in the porous nanofibers enhance the conductivity of the electrodes.

  19. The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27

    International Nuclear Information System (INIS)

    Wang Lixi; Song Jie; Zhang Qitu; Huang Xiaogu; Xu Naicen

    2009-01-01

    W-type barium hexaferrites doped with Sm 3+ , Ba 1-x Sm x Co 2 Fe 16 O 27 (x = 0.0, 0.05, 0.1, 0.15, 0.2) were prepared by the conventional solid-state reaction. The structure and electromagnetic properties of the calcined samples were studied using powder X-ray diffraction (XRD) and network analyzer (Agilent 8722ET). All the XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x ≤ 0.15. The microwave electromagnetic properties of the samples have been studied at the frequency range from 2 GHz to 18 GHz. It was shown that ε' and ε'' increased slightly, and the maximum of ε'' shifted to low frequency position with Sm 3+ ions doping. The μ'' and μ' values were improved significantly when x = 0.15, and the peak value of μ'' was about 1.6 at 7 GHz and 1.75 at 18 GHz position, respectively, exhibiting excellent microwave magnetic performance. Furthermore, the reasons have also been discussed using electromagnetic theory. Ba 0.85 Sm 0.15 Co 2 Fe 16 O 27 powders (85% by weight) were mixed with epoxy resin to form compound coating materials with different thicknesses, the reflection loss values of which were also measured. It is shown that the reflection loss value increases with the increase of the coating thickness under our experimental range. The maximum of reflection loss reached about -23 dB and it was below -10 dB at the frequency range from 8 GHz to 18 GHz, when the thickness was 1.8 mm.

  20. Surface chemical and photocatalytic consequences of Ca-doping of BiFeO{sub 3} as probed by XPS and H{sub 2}O{sub 2} decomposition studies

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt); Ramadan, Wegdan [Physics Department, Faculty of Science, Alexandria University, Alexandria 21511 (Egypt); Katrib, Ali [Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Rabee, Abdallah I.M. [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt)

    2014-10-30

    Graphical abstract: - Highlights: • BiFeO{sub 3} is a modest visible-light heterogeneous photocatalyst for H{sub 2}O{sub 2} decomposition. • The ferrite activity is promoted with Ca-doping up to 10 wt%-Ca. • Favourable consequences are enhanced surface metal redoxability and oxide basicity. • Furthering doping to >10 wt%-Ca retrogresses the ferrite photocatalytic activity. • A retrogressive doping consequence is bulk phase separation of α(γ)-Fe{sub 2}O{sub 3}. - Abstract: Pure and Ca-doped Bi{sub 1−x}Ca{sub x}FeO{sub 3} samples were prepared with x = 0.0–0.2, adopting a sol–gel method. Previously reported studies performed on similarly composed and prepared samples revealed that Ca-doping, above solubility limit (namely at ≥10%-Ca), results in phase separation and formation of BiFeO{sub 3}/α(γ)-Fe{sub 2}O{sub 3} nanocomposite particles. Hetero p/n nanojunctions thus established were considered to help separating photo-generated electron–hole pairs and, therefore, explain consequent promotion of photo-Fenton catalytic activity of BiFeO{sub 3} towards methylene blue degradation in presence of H{sub 2}O{sub 2} additive. However, the encompassed decomposition of H{sub 2}O{sub 2} was not addressed. To bridge this gap of knowledge, the present investigation was designed to assess Ca-doping-effected surface chemical modifications and gauge its impact on the heterogeneous photo-/thermo-catalytic activity of BiFeO{sub 3} towards H{sub 2}O{sub 2} decomposition, by means of X-ray photoelectron spectroscopy (XPS) and H{sub 2}O{sub 2} decomposition gravimetry. XPS results revealed generation of high binding energy Bi 4f and Fe 2p states, as well as enhancement of the surface basicity, upon doping to 10%-Ca. These surface chemical consequences are rendered hardly detectable upon further increase of the dopant magnitude to 20%-Ca. In parallel, the H{sub 2}O{sub 2} decomposition activity of the ferrite, under natural visible light, is enhanced to optimize

  1. Electronic excitation-induced structural, optical, and magnetic properties of Ni-doped HoFeO3 thin films

    International Nuclear Information System (INIS)

    Habib, Zubida; Ikram, Mohd; Mir, Sajad A.; Sultan, Khalid; Abida; Majid, Kowsar; Asokan, K.

    2017-01-01

    Present study investigates the electronic excitation-induced modifications in the structural, optical, and magnetic properties of Ni-doped HoFeO 3 thin films grown by pulsed laser deposition on LaAlO 3 substrates. Electronic excitations were induced by 200 MeV Ag 12+ ion beam. These thin films were then characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectroscopy, and magnetic measurements. X-ray diffraction analysis confirms that the crystallite growth occurs in the preferred (111) orientation with orthorhombic structure. The XRD results also show that the crystallite size decreases with ion irradiation. AFM results after irradiation show significant changes in the surface roughness and morphology of these films. The optical parameters measured from absorption measurements reveal reduction in the band gap with Ni doping and enhancement of band gap after irradiation. The magnetization vs field measurement at 75 K shows enhancement in saturation magnetization after irradiation for HoFe 1-x Ni x O 3 (x = 0.1 and 0.3) films compared to HoFeO 3 film. Present study shows electronic excitation induces significant changes in the physical properties of these films. (orig.)

  2. Superconductivity and magnetism in Ir-doped GdFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y.J.; Chen, Y.L. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia); Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2010-11-01

    The 5d-transition metal, Ir has successfully been doped at Fe site and induced superconductivity in GdFeAsO at T{sub c} = 18.9 K and {approx}20 atom%. The Ir-doping shortened the c-axis length and stretched the a-axis one, which led to enhance the coupling between the FeAs- and SmO-layer, and to weaken the bonding between Fe and As atom. Paramagnetism was observed in all of the samples, which was resulted from the magnetic Gd ion as in the F-doped GdFeAsO. An upper critical field of GdFe{sub 0.8}Ir{sub 0.2}AsO was extrapolated to around 24 T, much smaller than that of F-doped GdFeAsO owing to a relatively low T{sub c} and small value of dH{sub c2}/dT.

  3. Explanation for the temperature dependence of plasma frequencies in SrTiO3 using mixed-polaron theory

    International Nuclear Information System (INIS)

    Eagles, D.M.; Georgiev, M.; Petrova, P.C.

    1996-01-01

    A theory of mixed polarons is used to interpret the published experimental results of Gervais et al. on temperature-dependent plasma frequencies in Nb-doped SrTiO 3 . For given polaron masses before mixing, the appropriate average mixed-polaron mass at any temperature T depends on two quantities, δ and b, which are measures of the separation between the bottoms of large and nearly small polaron bands before mixing and of a mixing matrix element; δ and b are assumed to have arbitrary linear dependences on T, probably related to a T dependence of the bare mass, and a term quadratic in T is included in δ, determined from the T dependence of large-polaron binding energies. Including a constraint on the ratio δ/|b| at low T from known masses from specific-heat data, satisfactory agreement is obtained with masses determined from plasma frequencies. This gives further support for the theory of mixed polarons in SrTiO 3 in addition to that already published. copyright 1996 The American Physical Society

  4. Sorption of U(VI) in surfaces of SrTiO3

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M.

    2004-01-01

    In this work is presented the physico chemical characterization and evaluation of those surface properties and of sorption of U on the SrTiO 3 like possible candidate for contention barrier in the deep geological confinement. The made studies showed that the SrTiO 3 presents maximum levels of sorption of positive nature species (mainly UO 2 2+ and UO 2 NO 3 + ). (Author)

  5. C-axial oriented (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 thin film grown on Nb doped SrTiO3 substrate by pulsed laser deposition

    International Nuclear Information System (INIS)

    Cao, L Z; Fu, W Y; Wang, S F; Wang, Q; Sun, Z H; Yang, H; Cheng, B L; Wang, H; Zhou, Y L

    2007-01-01

    A c-axial oriented (Bi 1.5 Zn 0.5 )(Zn 0.5 Nb 1.5 )O 7 thin film has been grown on a (0 0 1) Nb doped SrTiO 3 substrate by pulsed laser deposition. The permittivity, dielectric loss and tunability of the c-axial oriented film are 187, 0.002 and 6% (at 750 kV cm -1 biasing), respectively, indicating a figure of merit of 30. Moreover, an asymmetry behaviour is observed in the dc electric field dependence of permittivity, which could be attributed to the asymmetry of top and bottom electrodes

  6. Resistance change effect in SrTiO3/Si (001) isotype heterojunction

    Science.gov (United States)

    Huang, Xiushi; Gao, Zhaomeng; Li, Pei; Wang, Longfei; Liu, Xiansheng; Zhang, Weifeng; Guo, Haizhong

    2018-02-01

    Resistance switching has been observed in double and multi-layer structures of ferroelectric films. The higher switching ratio opens up a vast path for emerging ferroelectric semiconductor devices. An n-n+ isotype heterojunction has been fabricated by depositing an oxide SrTiO3 layer on a conventional n-type Si (001) substrate (SrTiO3/Si) by pulsed laser disposition. Rectification and resistive switching behaviors in the n-n+ SrTiO3/Si heterojunction were observed by a conductive atomic force microscopy, and the n-n+ SrTiO3/Si heterojunction exhibits excellent endurance and retention characteristics. The possible mechanism was proposed based on the band structure of the n-n+ SrTiO3/Si heterojunction, and the observed electrical behaviors could be attributed to the modulation effect of the electric field reversal on the width of accumulation and the depletion region, as well as the height of potential of the n-n+ junction formed at the STO/Si interface. Moreover, oxygen vacancies are also indicated to play a crucial role in causing insulator to semiconductor transition. These results open the way to potential application in future microelectronic devices based on perovskite oxide layers on conventional semiconductors.

  7. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  8. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mehedi, E-mail: mhrizvi@gce.buet.ac.bd; Hakim, M. A.; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Basith, M. A., E-mail: mabasith@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Hossain, Md. Sarowar [S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata, West Bengal 700098 (India); Ahmmad, Bashir [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-03-15

    Improvement in magnetic and electrical properties of multiferroic BiFeO{sub 3} in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe{sup 2+} state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO{sub 3} nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO{sub 3}.

  9. Synthesis and microwave absorption enhancement of Fe-doped NiO@SiO2@graphene nanocomposites

    International Nuclear Information System (INIS)

    Wang, Lei; Huang, Ying; Ding, Xiao; Liu, Panbo; Zong, Meng; Wang, Yan

    2013-01-01

    Highlights: • Fe-doped NiO@SiO 2 @graphene composites have excellent microwave performance. • The reflection loss of Fe doped NiO@SiO 2 @graphene was below −10 dB in 7–11 GHz. • The maximum absorption of Fe-doped NiO@SiO 2 @graphene was −51.2 dB at 8.6 GHz. -- Abstract: Fe-doped NiO@SiO 2 @graphene nanocomposites have been successfully fabricated for the first time, in which Fe-doped NiO nanoparticles are about 3 nm in diameter. In order to measure their electromagnetic properties, Fe-doped NiO@SiO 2 @graphene (25 wt%) wax composites were then prepared. The experimental results show that Fe-doped NiO@SiO 2 @graphene nanocomposites exhibit significantly enhanced microwave absorption performance in terms of both the maximum reflection loss value and the absorption bandwidth in comparison with NiO@SiO 2 @graphene. The maximum reflection loss of Fe-doped NiO@SiO 2 @graphene nanocomposites can reach −51.2 dB at 8.6 GHz with a thickness of 4 mm, and the absorption bandwidth with the reflection loss below −10 dB is 4 GHz (from 7 to 11 GHz). Therefore, this kind of nanocomposites may have the potential as high-efficient absorbers for microwave absorption applications

  10. Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials

    Science.gov (United States)

    Singamaneni, S. R.; Martinez, L. M.; Swadipta, R.; Ramana, C. V.

    2018-05-01

    We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.

  11. Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials

    Directory of Open Access Journals (Sweden)

    S. R. Singamaneni

    2018-05-01

    Full Text Available We report the magnetic and electron spin resonance (ESR properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15% in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc (1300-2200 Oe and saturation magnetization MS (35-82 emu/g vary strongly as a function of W doping at all the temperatures (4-300 K measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC and field cooled (FC, 1000 Oe magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation. This observation is corroborated by ESR (9.398 GHz measurements collected as a function of temperature (10-150 K and W doping (0-15%. We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.

  12. Synergistic effects of F and Fe in co-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufei, E-mail: zhang.yu.fei@stu.xjtu.edu.cn; Shen, Huiyuan; Liu, Yanhua, E-mail: yhliu@mail.xjtu.edu.cn [Xi’an Jiaotong University, Department of Building Environment and Services Engineering, School of Human Settlements and Civil Engineering (China)

    2016-03-15

    TiO{sub 2} photocatalysts co-doped with F and Fe were synthesized by a sol–gel method. Synergistic effects of F and Fe in the co-doped TiO{sub 2} were verified by NH{sub 3} decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) absorption spectroscopy, and was analyzed by the simulation based on the density functional theory (DFT). The results from NH{sub 3} decomposition confirmed that the cooperation of F and Fe broadened the optical response of TiO{sub 2} to visible light region and also enhanced the photocatalytic activity of TiO{sub 2} under ultraviolet light. XRD patterns, SEM and HRTEM images showed that the co-doped samples were nanometric anatase with an average particle size of 25 nm. Co-doping with F and Fe inhibited the grain growth of TiO{sub 2} from anatase to rutile and resulted in a larger lattice defect. XPS analysis exhibited that the doped F and Fe atoms were into the TiO{sub 2} lattice. UV–Vis absorption spectra showed that its optical absorption edge was moved up to approximately 617 nm and its ultraviolet absorption was also enhanced. The DFT results indicated that the cooperation of Fe 3d and O 2p orbits narrowed the band gap of TiO{sub 2} and F 2p orbit widened the upper valence bands. The synergistic electron density around F and Fe in co-doped TiO{sub 2} was capable to enhance the photo-chemical stability of TiO{sub 2}.

  13. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    Science.gov (United States)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  14. Preparation and Study of NH3 Gas Sensing Behavior of Fe2O3 Doped ZnO Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. R. Patil

    2006-08-01

    Full Text Available The preparation, characterization and gas sensing properties of pure and Fe2O3-ZnO mixed oxide semiconductors have been investigated. The mixed oxides were obtained by mixing ZnO and Fe2O3 in the proportion 1:1, 1:0.5 and 0.5:1. Pure ZnO was observed to be insensitive to NH3 gas. However, mixed oxides (with ZnO: Fe2O3 =1:0.5 were observed to be highly sensitive to ammonia gas. Upon exposure to NH3 gas, the barrier height of Fe2O3-ZnO intergranular regions decreases markedly due to the chemical transformation of Fe2O3 into well conducting ferric ammonium hydroxide leading to a drastic decrease in resistance. The crucial gas response was found to NH3 gas at 3500C and no cross response was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of NH3 gas were studied and discussed.

  15. Influence of Fe-doping on the structural, optical and magnetic properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Liu Changzhen; Meng Dawei; Pang Haixia; Wu Xiuling; Xie Jing; Yu Xiaohong; Chen Long; Liu Xiaoyang

    2012-01-01

    Zn 1–x Fe x O (x=0–0.05) nanoparticles were synthesized without a catalyst by a two-step method. Fe was doped into ZnO by a source of metallic Fe sheets in a solid–liquid system at 80 °C, and the Zn 1−x Fe x O nanoparticles were obtained by annealing at 300 °C. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy were used to characterize the structural properties of the as-grown Zn 1−x Fe x O. The optical properties were determined by Infrared and Ultraviolet–visible spectroscopy. The results confirm that the crystallinity of the ZnO is deteriorated due to Fe-doping. XPS results show that there is a mixture of Fe 0+ and the Fe 3+ in the representative Zn 0.95 Fe 0.05 O sample. The optical band gap of Zn 1−x Fe x O is enhanced with increasing of Fe-doping. Room temperature ferromagnetism was observed in all the Fe-doped ZnO samples. - Highlights: ► Zn 1−x Fe x O nanoparticles were synthesized with a simple two-step method. ► The Zn 1−x Fe x O predecessors were synthesized at a low temperature. ► Fe element was readily doped from the source of metallic Fe sheet. ► All the Fe doping ZnO samples have room temperature ferromagnetism. ► The structural and properties of the Zn 1−x Fe x O are regular with different x.

  16. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.

    2013-12-12

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the "unconventional"bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.

  17. Epitaxial growth of SrTiO3 thin film on Si by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhou, X. Y.; Miao, J.; Dai, J. Y.; Chan, H. L. W.; Choy, C. L.; Wang, Y.; Li, Q.

    2007-01-01

    SrTiO 3 thin films have been deposited on Si (001) wafers by laser molecular beam epitaxy using an ultrathin Sr layer as the template. X-ray diffraction measurements indicated that SrTiO 3 was well crystallized and epitaxially aligned with Si. Cross-sectional observations in a transmission electron microscope revealed that the SrTiO 3 /Si interface was sharp, smooth, and fully crystallized. The thickness of the Sr template was found to be a critical factor that influenced the quality of SrTiO 3 and the interfacial structure. Electrical measurements revealed that the SrTiO 3 film was highly resistive

  18. Novel phenomenon of magnetism and superconductivity in Fe-doped superconductor Bi{sub 4-x}Fe{sub x}O{sub 4}S{sub 3} (0 ≤ x ≤ 0.1)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai University, Department of Physics, Shanghai (China); Shanghai University, Materials Genome Institute, Shanghai (China); Wang, Difei; Yu, Chuan; Yin, Xunqing; Kang, Jian; Cheng, Cheng; Deng, Dongmei; Jing, Chao [Shanghai University, Department of Physics, Shanghai (China); Feng, Zhenjie; Cao, Shixun; Zhang, Jincang [Shanghai University, Department of Physics, Shanghai (China); Shanghai University, Materials Genome Institute, Shanghai (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai (China); Chu, Hao [California Institute of Technology, Department of Applied Physics, Pasadena, CA (United States); Li, Xiaolong [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2017-06-15

    We report the effects of Fe doping on the BiS{sub 2}-based superconductor Bi{sub 4}O{sub 4}S{sub 3}. It has been found that the superconducting transition temperature (T{sub C}{sup onset}) is slightly enhanced by Fe doping. The magnetic susceptibility results reveal the coexistence of superconductivity and long-range ferrimagnetism in these samples. A new magnetic transition temperature T{sub V} (Verwey transition) from the M-T curves at ∝112 K is observed. The isothermal magnetization curves (M-H) indicate a weak ferrimagnetism, which is probably due to the antiparallel ordering of Fe{sup 2+} and Fe{sup 3+} magnetic moments. The coexistence of superconductivity and ferro/ferrimagnetism makes bismuth oxysulfide superconductor a platform for understanding superconductivity from a new perspective. (orig.)

  19. Spin injection and detection in lanthanum- and niobium-doped SrTiO3 using the Hanle technique

    KAUST Repository

    Han, Wei

    2013-07-08

    There has been much interest in the injection and detection of spin-polarized carriers in semiconductors for the purposes of developing novel spintronic devices. Here we report the electrical injection and detection of spin-polarized carriers into Nb-doped strontium titanate single crystals and La-doped strontium titanate epitaxial thin films using MgO tunnel barriers and the three-terminal Hanle technique. Spin lifetimes of up to ∼100 ps are measured at room temperature and vary little as the temperature is decreased to low temperatures. However, the mobility of the strontium titanate has a strong temperature dependence. This behaviour and the carrier doping dependence of the spin lifetime suggest that the spin lifetime is limited by spin-dependent scattering at the MgO/strontium titanate interfaces, perhaps related to the formation of doping induced Ti 3+. Our results reveal a severe limitation of the three-terminal Hanle technique for measuring spin lifetimes within the interior of the subject material. © 2013 Macmillan Publishers Limited. All rights reserved.

  20. Glassy behavior of the Nd sublattice induced by Fe doping in NdFexGa1-xO3

    International Nuclear Information System (INIS)

    Bartolome, F.; Parra-Borderias, M.; Blasco, J.; Bartolome, J.

    2007-01-01

    The evolution of the magnetic ordering of Nd with the Fe content in NdFe x Ga 1-x O 3 is studied by low-temperature specific-heat measurements for x= =0.2. Fe doping creates a distribution of internal fields on Nd, originating a Schottky contribution to the specific heat which is present for x>0. The power law followed by the low-temperature specific heat suggests a glassy behavior for x>=0.1

  1. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  2. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He; Zhang, Haitao; Fei, Linfeng; Ma, Hongbin; Zhao, Guoying; Mak, CheeLeung; Zhang, Xixiang; Zhang, Suojiang

    2017-01-01

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  3. CO2 adsorption on Fe-doped graphene nanoribbons: First principles electronic transport calculations

    Directory of Open Access Journals (Sweden)

    G. R. Berdiyorov

    2016-12-01

    Full Text Available Decoration of graphene with metals and metal-oxides is known to be one of the effective methods to enhance gas sensing and catalytic properties of graphene. We use density functional theory in combination with the nonequilibrium Green’s function formalism to study the conductance response of Fe-doped graphene nanoribbons to CO2 gas adsorption. A single Fe atom is either adsorbed on graphene’s surface (aFe-graphene or it substitutes the carbon atom (sFe-graphene. Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurities. The reduction in the transmission is more pronounced in the case of aFe-graphene. In addition, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. Pristine graphene is also found to be less sensitive to the molecular adsorption. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing graphene-based solid-state gas sensors.

  4. Structural and magnetic anisotropy in the epitaxial FeV2O4 (110) spinel thin films

    Science.gov (United States)

    Shi, Xiaolan; Wang, Yuhang; Zhao, Kehan; Liu, Na; Sun, Gaofeng; Zhang, Liuwan

    2015-11-01

    The epitaxial 200-nm-thick FeV2O4(110) films on (110)-oriented SrTiO3, LaAlO3 and MgAl2O4 substrates were fabricated for the first time by pulsed laser deposition, and the structural, magnetic, and magnetoresistance anisotropy were investigated systematically. All the films are monoclinic, whereas its bulk is cubic. Compared to FeV2O4 single crystals, films on SrTiO3 and MgAl2O4 are strongly compressively strained in [001] direction, while slightly tensily strained along normal [110] and in-plane [ 1 1 ¯ 0 ] directions. In contrast, films on LaAlO3 are only slightly distorted from cubic. The magnetic hard axis is in direction, while the easier axis is along normal [110] direction for films on SrTiO3 and MgAl2O4, and in-plane [ 1 1 ¯ 0 ] direction for films on LaAlO3. Magnetoresistance anisotropy follows the magnetization. The magnetic anisotropy is dominated by the magnetocrystalline energy, and tuned by the magneto-elastic coupling.

  5. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    Directory of Open Access Journals (Sweden)

    Aiman Zubair

    Full Text Available Europium (Eu doped spinel cobalt ferrites having composition CoEuxFe2−xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms of 65 emu/g and coercivity (Hc of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944–966 Oe and magnetization was decreased (65–46 emu/g with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions. Keywords: Europium doped cobalt ferrites, Co-precipitation, X-ray diffraction, Scanning electron microscopy, Magnetic properties

  6. Nd and Sc co-doped BiFeO{sub 3} nanopowders displaying enhanced ferromagnetism at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, N., E-mail: netzahualpille.hernandeznv@uanl.edu.mx [Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Km. 10 Nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, CP 66600 Apodaca, Nuevo León (Mexico); González-González, V.A. [Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Km. 10 Nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, CP 66600 Apodaca, Nuevo León (Mexico); Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Dzul-Bautista, I.B. [Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Km. 10 Nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, CP 66600 Apodaca, Nuevo León (Mexico); Gutiérrez, J.; Barandiarán, J.M. [Basque Center for Materials, Applications and Nanostructures (BCMaterials), Universidad del País Vasco (UPV/EHU), Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain); and others

    2015-07-25

    Highlights: • Will study the structure of materials obtained. • A well crystallized BiFeO{sub 3} doped material was obtained without further annealing. • The obtained nanoparticles have sizes less than 60 nm. • Enhanced ferromagnetic materials was obtained. - Abstract: We have developed a novel synthetic route for the preparation of single phase Nd{sub x}Bi{sub 1−x}Fe{sub 0.95}Sc{sub 0.05}O{sub 3} (NBFSO) nanopowder materials by a surfactant-assisted combustion-derived method. Rietveld fitting of the Powder X-ray diffraction data showed the nanopowder structure evolves from a distorted rhombohedral BiFeO{sub 3} crystalline structure (R3c, x = 0) to a orthorhombic structure (Pbnm, x = 0.10). Differential thermal analysis and thermogravimetric analysis (DTA/TGA) showed a crystallization temperature of 200 °C. Transmission electron microscopy (TEM) images revealed the presence of clusters formed by fine nanoparticles less than 60 nm in diameter. From Raman spectroscopy, the change from rhombohedral structure to cubic structure was observed by a drastic intensity reduction of the A{sub 1}{sup −2} and A{sub 1}{sup −3} Raman modes, with the A{sub 1}{sup −1} and A{sub 1}{sup −2} modes gradually merging together, indicating the merge of the orthorhombic phase. Despite the antiferromagnetic nature of bulk BiFeO{sub 3}, the NBFSO nanopowders obtained displayed a ferromagnetic hysteresis loop, with coercivities of 0.08 T and remanent magnetizations of 0.65–4.05 Am{sup 2}/kg when measured at room temperature. The increasing and uncompensated spins at the surface of nanoparticles and the canted internal spin by the tilt of FeO{sub 6} octahedral units and the structure transition appear to be the main reason for observed this ferromagnetic behavior.

  7. Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation

    International Nuclear Information System (INIS)

    Riahi, Mohammadreza; Alizadeh, Elaheh

    2012-01-01

    In this paper an active 3D mixer for lab-on-chip applications is presented. The micrometer size cone shape holes are ablated on a PMMA sheet utilizing a CO 2 laser. The holes are filled with Fe micro-particles and the whole structure is molded with PDMS which cause the Fe micro-particles to be trapped in a PDMS cone structure. These Fe-doped PDMS cones are placed in a PMMA micro-channel structure fabricated by CO 2 laser machining. By applying an external periodic magnetic field, the cones periodically bend in the micro-channel and stir the fluid. The fabrication method and the effect of the magnetic field on the bending of the cones with different aspect ratios is also discussed utilizing computer simulation. Doping the polymers with micro- and nano-metallic particles has been carried out by different research groups before, but according to our knowledge, application of such structures for the fabrication of a 3D active mixer has not been presented before. (paper)

  8. Flow boiling heat transfer enhancement on copper surface using Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)

    2015-04-15

    Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.

  9. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  10. Relaxor behaviour and dielectric properties of BiFeO3 doped Ba ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Ba1−Bi(Ti0.9Zr0.1)1−FeO3 ( = 0–0.075) ceramics are prepared using a conventional solid state reaction method. X-ray diffraction shows the presence of a single phase. Addition of Bi3+ and Fe3+ strongly influences the crystal structure and dielectric properties of the ceramics. The evolution from a ...

  11. A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Shuai Li; Bo Li; Liang Ma; Jia Yang; Hangxun Xu

    2017-01-01

    Facile synthetic approaches toward the development of efficient and durable nonprecious metal catalysts for the oxygen reduction reaction (ORR) are very important for commercializing advanced electrochemical devices such as fuel cells and metal-air batteries.Here we report a novel template approach to synthesize mesoporous Fe-N-doped carbon catalysts encapsulated with Fe3C nanoparticles.In this approach,the layer-structured FeOCl was first used as a template for the synthesis of a three-dimensional polypyrrole (PPy) structure.During the removal of the FeOCl template,the Fe3+ can be absorbed by PPy and then converted into Fe3C nanoparticles and Fe-N-C sites during the pyrolyzing process.As a result,the as-prepared catalysts could exhibit superior electrocatalytic ORR performance to the commercial Pt/C catalyst in alkaline solutions.Furthermore,the Zn-air battery assembled using the mesoporous carbon catalyst as the air electrode could surpass the commercial Pt/C catalyst in terms of the power density and energy density.

  12. Analysis of SrTiO sub 3 step-flow growth by using RHEED

    CERN Document Server

    Nakagawa, N; Kawasaki, M; Ohashi, S; Koinuma, H

    1999-01-01

    SrTiO sub 3 homoepitaxial films were deposited by pulsed-laser deposition in a chamber equipped with a reflection high-energy electron-diffraction (RHEED) specular spot-intensity monitoring system. Changes in the substrate temperature or the excimer laser pulse rate gave rise to different behaviors of the RHEED specular intensity. At low temperatures and high pulse rates, ordinary RHEED oscillations were observed, indicating layer-by-layer growth. At very high temperatures and low pulse rates, the RHEED specular intensity was modulated synchronously with the excimer laser pulses, indicating that film growth proceeded in the step-flow mode. No Nb diffusion from the substrates into the homoepitaxial films was observed, even at the highest deposition temperatures, when Nb-doped STO substrates were used.

  13. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    Science.gov (United States)

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2).

  14. Adsorption of CO2 on Fe-doped graphene nano-ribbons: Investigation of transport properties

    Science.gov (United States)

    Othman, W.; Fahed, M.; Hatim, S.; Sherazi, A.; Berdiyorov, G.; Tit, N.

    2017-07-01

    Density functional theory combined with the non-equilibrium Green’s function formalism is used to study the conductance response of Fe-doped graphene nano-ribbons (GNRs) to CO2 gas adsorption. A single Fe atom is either adsorbed on GNR’s surface (aFe-graphene) or it substitutes the carbon atom (sFe-graphene). Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurity site. Moreover, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. These behaviours are not only consolidated but rather confirmed by calculating the IV characteristics from which both surface resistance and its sensitivity to the gas are estimated. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing efficient graphene-based solid-state gas sensors.

  15. Competing exchange bias and field-induced ferromagnetism in La-doped BaFe O3

    Science.gov (United States)

    Fita, I.; Wisniewski, A.; Puzniak, R.; Iwanowski, P.; Markovich, V.; Kolesnik, S.; Dabrowski, B.

    2017-04-01

    An exchange bias (EB) effect was observed in mixed valent L axB a1 -xFe O3 (x =0.125 , 0.25, 0.33) perovskites exhibiting the antiferromagnetic (AFM) helical order among F e4 + ions coexisting with the ferromagnetic (FM) cluster phase in the ground state. The L a3 + ions for B a2 + site substitution, associated with increase in number of the AFM coupled F e3 + - F e4 + pairs as well as some F e3 + - F e3 + pairs, leads to strengthening of the AFM phase and consequently to the alteration of the EB characteristics, which depend on level of the La doping x . At low doping x ≤0.25 , an abnormal dependence of the EB field, HEB, on the cooling field, Hcool, was found. The HEB increases rapidly with increasing cooling field at low Hcool, but it falls suddenly at cooling fields higher than 20 kOe, reducing by an order of magnitude at 90 kOe. The suppression of EB is caused by the field-induced increased volume of the FM phase, due to the transformation of the AFM helical spin structure into the FM one. Thus, low-doped L axB a1 -xFe O3 demonstrates a competition of two alternate cooling-field-induced effects, one of which leads to the EB anisotropy and another one to the enhanced ferromagnetism. In contrast, the x =0.33 sample, having a strong AFM constituent, shows no field-induced FM and no drop in the EB field. Accordingly, the HEB vs Hcool dependence was found to be well explained in the framework of a model describing phase-separated AFM-FM systems, namely, the model assuming isolated FM clusters of size ˜4 nm embedded in the AFM matrix.

  16. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  17. Electric field effects in graphene/LaAlO3/SrTiO3 heterostructures and nanostructures

    Directory of Open Access Journals (Sweden)

    Mengchen Huang

    2015-06-01

    Full Text Available We report the development and characterization of graphene/LaAlO3/SrTiO3 heterostructures. Complex-oxide heterostructures are created by pulsed laser deposition and are integrated with graphene using both mechanical exfoliation and transfer from chemical-vapor deposition on ultraflat copper substrates. Nanoscale control of the metal-insulator transition at the LaAlO3/SrTiO3 interface, achieved using conductive atomic force microscope lithography, is demonstrated to be possible through the graphene layer. LaAlO3/SrTiO3-based electric field effects using a graphene top gate are also demonstrated. The ability to create functional field-effect devices provides the potential of graphene-complex-oxide heterostructures for scientific and technological advancement.

  18. Removal of H2S from Biogas by Iron (Fe3+ Doped MgO on Ceramic Honeycomb Catalyst using Double Packed Columns System

    Directory of Open Access Journals (Sweden)

    Juntima Chungsiriporn

    2010-03-01

    Full Text Available Hydrogen sulfide is a toxic and corrosive in nature, gas should be safely removed from the biogas streams before subjecting into the fuel cell. Fe3+ doped magnesium oxide was synthesized using sol-gel technique and dip coating process of Fe3+ doped MgO on foam ceramic honeycomb. XRD and SEM indicate that Fe3+ in Fe3+ doped MgO on foam ceramic honeycomb catalyst is finely dispersed in the MgO support. Performance of the synthesized Fe3+ doped magnesium oxide on the honeycomb catalyst was examined for hydrogen sulfide (H2S oxidation by double packed column scrubbers. The absorption column was used for H2S scrubbing from biogas by deionized water absorption and catalytic column was used as catalyst bed for degradation of absorbed H2S in scrubbing water. In the catalytic column, counter current flow of the scrubbing water and air through the catalyst pack was performed for H2S oxidation accompany with catalyst regeneration. System capacity for H2S removal from gas stream showed 98% constant along 3 hr testing time at room temperature.

  19. Moessbauer effect in pure and impurity doped FeSi2

    International Nuclear Information System (INIS)

    Blaauw, C.; Hanson, H.; Woude, F. van der

    1975-01-01

    Numerical values of the calculated and experimentally determined Moessbauer parameters for pure β-FeSi 2 and α-FeSi 2 are given. Temperature dependence of isomer shift and quadrupole splitting for the two Fe positions in β-FeSi 2 is presented. For α-FeSi 2 only average values are given. Spectra of Co- and Al-doped FeSi 2 recorded at 80, 293, 557 and 788 K were analyzed in the same manner as those of undoped FeSi 2 . The average values of isomer shift and quadrupole splitting in Co- and Al-doped β-FeSi 2 (α-Fesi 2 ) were compared to those found in undoped β-FeSi 2 (α-FeSi 2 ). All data were based on the room temperature spectra. Changes in Moessbauer parameters of doped samples relative to undoped ones were generally small, being of the order of hundredths of mm/sec. (Z.S.)

  20. DFT investigation of NH_3, PH_3, and AsH_3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Buasaeng, Prayut; Rakrai, Wandee; Wanno, Banchob; Tabtimsai, Chanukorn

    2017-01-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH_3, PH_3 and AsH_3 molecules were investigated using a DFT method. • Adsorptions of NH_3, PH_3 and AsH_3 molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH_3), phosphine (PH_3), and arsine (AsH_3) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH_3, PH_3, and AsH_3 adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH_3 > PH_3 > AsH_3. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  1. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    Science.gov (United States)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  2. Stability and electronic structure studies of LaAlO3/SrTiO3 (110) heterostructures

    International Nuclear Information System (INIS)

    Du Yan-Ling; Wang Chun-Lei; Li Ji-Chao; Xu Pan-Pan; Zhang Xin-Hua; Liu Jian; Su Wen-Bin; Mei Liang-Mo

    2014-01-01

    The first-principles calculations are employed to investigate the stability, magnetic, and electrical properties of the oxide heterostructure of LaAlO 3 /SrTiO 3 (110). By comparing their interface energies, it is obtained that the buckled interface is more stable than the abrupt interface. This result is consistent with experimental observation. At the interface of LaAlO 3 /SrTiO 3 (110) heterostructure, the Ti—O octahedron distortions cause the Ti t 2g orbitals to split into the two-fold degenerate d xz /d yz and nondegenerate d xy orbitals. The former has higher energy than the latter. The partly filled two-fold degenerate t 2g orbitals are the origin of two-dimensional electron gas, which is confined at the interface. Lattice mismatch between LaAlO 3 and SrTiO 3 leads to ferroelectric-like lattice distortions at the interface, and this is the origin of spin-splitting of Ti 3d electrons. Hence the magnetism appears at the interface of LaAlO 3 /SrTiO 3 (110). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Conductivity and structure of sub-micrometric SrTiO3-YSZ composites

    DEFF Research Database (Denmark)

    Ruiz Trejo, Enrique; Thydén, Karl Tor Sune; Bonanos, Nikolaos

    2016-01-01

    Sub-micrometric composites of SrTiO3-YSZ (1:1 volume) and samples of SrTiO3 were prepared by high temperature consolidation of precursors obtained by precipitation with NaOH. The structure development and morphology of the precursors were studied by XRD and SEM. The perovskite and fluorite phases...... in the composites are clearly formed at 600°C with no signs of reaction up to 1100°C; the nominally pure SrTiO3 can be formed at temperatures as low as 400°C. Composites with sub-micrometric grain sizes can be prepared successfully without reaction between the components, although a change in the cell parameter...... of the SrTiO3 is attributed to the presence of Na. The consolidated composites were studied by impedance spectroscopy between 200 and 400°C and at a fixed temperature of 600°C with a scan in the partial pressure of oxygen. The composites did not exhibit high levels of ionic conductivity in the grain...

  4. Electronic excitation-induced structural, optical, and magnetic properties of Ni-doped HoFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Zubida [National Institute of Technology, Department of Chemistry, Srinagar (India); National Institute of Technology, Department of Physics, Srinagar (India); Ikram, Mohd; Mir, Sajad A. [National Institute of Technology, Department of Physics, Srinagar (India); Sultan, Khalid [Central University of Kashmir, Department of Physics, Srinagar (India); Abida [Govt Degree College for Women, Department of Physics, Anantnag, Kashmir (India); Majid, Kowsar [National Institute of Technology, Department of Chemistry, Srinagar (India); Asokan, K. [Inter University Accelerator Centre, New Delhi (India)

    2017-06-15

    Present study investigates the electronic excitation-induced modifications in the structural, optical, and magnetic properties of Ni-doped HoFeO{sub 3} thin films grown by pulsed laser deposition on LaAlO{sub 3} substrates. Electronic excitations were induced by 200 MeV Ag{sup 12+} ion beam. These thin films were then characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectroscopy, and magnetic measurements. X-ray diffraction analysis confirms that the crystallite growth occurs in the preferred (111) orientation with orthorhombic structure. The XRD results also show that the crystallite size decreases with ion irradiation. AFM results after irradiation show significant changes in the surface roughness and morphology of these films. The optical parameters measured from absorption measurements reveal reduction in the band gap with Ni doping and enhancement of band gap after irradiation. The magnetization vs field measurement at 75 K shows enhancement in saturation magnetization after irradiation for HoFe{sub 1-x}Ni{sub x}O{sub 3} (x = 0.1 and 0.3) films compared to HoFeO{sub 3} film. Present study shows electronic excitation induces significant changes in the physical properties of these films. (orig.)

  5. Physics of SrTiO3-based heterostructures and nanostructures: a review.

    Science.gov (United States)

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2018-02-09

    This review provides a summary of the rich physics expressed within SrTiO 3 -based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO 3 itself, we will then discuss the basics of SrTiO 3 -based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.

  6. Physics of SrTiO3-based heterostructures and nanostructures: a review

    Science.gov (United States)

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2018-03-01

    This review provides a summary of the rich physics expressed within SrTiO3-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO3 itself, we will then discuss the basics of SrTiO3-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.

  7. Study of structure and properties of oxide electrode materials (Fe3O4, AZO, SRO) and their device applications

    Science.gov (United States)

    Olga, Chichvarina

    Ferroelectric thin film capacitor heterostructures have attracted considerable attention in the last decade because of their potential applications in piezoelectric sensors, actuators, power generators and non-volatile memory devices. Strongly correlated all-perovskite oxide heterojunctions are of a particular interest, as their material properties (electronic, structural, magnetic and optical, etc.) can be tuned via doping, interface effect, applied electrical field, and formation of two-dimensional electron gas (2DEG), etc. The right selection of electrode material for this type of capacitor-like structures may modify and enhance the performance of a device, as the electrode/barrier layer interfaces can significantly influence its macroscopic properties. Although there is a number of reports on the effect of electrode interfaces on the properties of PZT capacitors deposited on SRO buffered STO substrate, very little is known about Fe3O4/PZT and AZO/PZT electrode interfaces. This thesis comprises two parts. In the first part we present a systematic study of the structural, transport, magnetic and optical properties of oxide thin films: AZO, Fe3O4 and SRO. These monolayers were fabricated via pulsed laser deposition technique on quartz, MgO and STO substrates respectively. The second part of this thesis elucidates the behaviour of these three oxides as electrode components in PZT/SRO/STO heteroepitaxial structures. The highlights of the work are summarized below: 1) Zinc-blende (ZB) phase of ZnO was predicted to possess higher values of conductivity and higher doping efficiency compared to its wurzite counterpart and thus has greater chances of facilitating the fabrication of ZnO-electrode-based devices. However, zinc-blende is a metastable phase, and it is challenging to obtain single-phase ZB. To tackle this challenge we tuned parameters such-as film thickness, substrate and annealing effect, and achieved a ZB phase of Ti-doped ZnO, ZB-(Zn1-xTix)O thin film. An

  8. Spontaneous and stimulated emission in Sm3+-doped YAl3(BO3)4 single crystal

    International Nuclear Information System (INIS)

    Ryba-Romanowski, Witold; Lisiecki, Radosław; Beregi, Elena; Martín, I.R.

    2015-01-01

    Single crystals of YAl 3 (BO 3 ) 4 doped with trivalent samarium were grown by the top-seeded high temperature solution method and their absorption and emission spectra were investigated. Optical pumping into prominent absorption band around 405 nm feeds the 4 G 5/2 metastable level giving rise to intense visible luminescence distributed in several spectral lines with the most intense line around 600 nm characterized by a branching ratio of 0.42 and peak emission cross section of 0.25×10 −20 cm 2 . Optical amplification at 600 nm with a gain coefficient of 2.9 cm −1 was achieved during a pump-and-probe experiment. - Highlights: • YAB:Sm crystal grown by the top-seeded high temperature solution method. • Spectroscopic qualities relevant for visible laser operation. • YAB:Sm single crystal used in a pump-and-probe experiment. • Optical amplification properties of samarium doped YAl 3 (BO 3 ) 4

  9. Dysprosium doping induced shape and magnetic anisotropy of Fe{sub 3−x}Dy{sub x}O{sub 4} (x=0.01–0.1) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Richa [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068 (India); Department of Physics, ARSD college, University of Delhi, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, Siri Fort Road, New Delhi 110049 (India); Gokhale, Shubha, E-mail: sgokhale@ignou.ac.in [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068 (India)

    2016-09-15

    The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe{sub 3−x}Dy{sub x}O{sub 4} (x=0.0–0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8–14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy{sup 3+} ions in the inverse spinel structure at the octahedral site in place of Fe{sup 3+} ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase. - Highlights: • Report on formation of nanorods in magnetite prompted by Dy doping. • Observation of anisotropic magnetic behaviour emanating from the shape anisotropy. • Evidence of Dy{sup 3+} ions occupying octahedral site in place of Fe{sup 3+} ions. • Nanorods envisaged to be useful as catalysts and in biomedical applications.

  10. Influence of cobalt doping on structural and magnetic properties of BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U. [Chinese Academy of Sciences, Institute of Physics (China); Adeela, N., E-mail: adeela16@gmail.com [Centre for High Energy Physics, University of the Punjab (Pakistan); Javed, K. [Chinese Academy of Sciences, Institute of Physics (China); Riaz, S. [Centre for Solid State Physics, University of the Punjab (Pakistan); Ali, H. [Chinese Academy of Sciences, Institute of Physics (China); Iqbal, M. [Centre for High Energy Physics, University of the Punjab (Pakistan); Han, X. F. [Chinese Academy of Sciences, Institute of Physics (China); Naseem, S., E-mail: shahzad-naseem@yahoo.com [Centre for Solid State Physics, University of the Punjab (Pakistan)

    2015-11-15

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe{sub 1−δ}Co{sub δ}O{sub 3} (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO{sub 3}. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller’s law, while modified Bloch’s model was employed for saturation magnetization in temperature range of 5–300 K.Graphical Abstract.

  11. Magnetic two-dimensional electron gas at the manganite-buffered LaAlO3/SrTiO3 interface

    DEFF Research Database (Denmark)

    R. Zhang, H.; Zhang, Y.; Zhang, H.

    2017-01-01

    Fabrication of highly mobile spin-polarized two-dimensional electron gas (2DEG) is crucially important for both fundamental and applied research. Usually, spin polarization appears below 10 K for the 2DEG of LaAlO3/SrTiO3 interface, stemming from the magnetic ordering of Ti3+ ions with the mediat......Fabrication of highly mobile spin-polarized two-dimensional electron gas (2DEG) is crucially important for both fundamental and applied research. Usually, spin polarization appears below 10 K for the 2DEG of LaAlO3/SrTiO3 interface, stemming from the magnetic ordering of Ti3+ ions...... with the mediation of itinerant electrons. Herein, we report a magnetic 2DEG at a La7/8Sr1/8MnO3-buffered LaAlO3/SrTiO3 interface, which simultaneously shows electrically tunable anomalous Hall effect and high conductivity. The spin-polarized temperature for the 2DEG is promoted to 30 K while the mobility remains...... high. The magnetism likely results from a gradient manganese interdiffusion into SrTiO3. The present work demonstrates the great potential of manganite-buffered LaAlO3/SrTiO3 interfaces for spintronic applications....

  12. Enhancment of ferromagnetism in Ba and Er co-doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Naeimi, A.S., E-mail: naeimi.a.s@gmail.com [Department of Physics, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul (Iran, Islamic Republic of); Dehghan, E.; Sanavi Khoshnoud, D. [Department of Physics, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Gholizadeh, A. [School of Physics, Damghan University (DU), Damghan (Iran, Islamic Republic of)

    2015-11-01

    Bi{sub 1−y−x}Ba{sub y}Er{sub x}FeO{sub 3} [BB{sub y}E{sub x}FO, (0.13≤y≤0.17, 0≤x≤0.2)] nanoparticles were successfully synthesized by a sol–gel method. The structural, microstructural and magnetic properties have been investigated, using X-ray diffraction, Raman scattering, field emission scanning electron microscopy (FE-SEM) and magnetometry measurements at room temperature. The refinement of X-ray diffraction pattern of BB{sub 0.15}E{sub 0}FO indicates a phase transition from rhombohedral (R3c) to tetragonal (P4mm) with increasing Ba content and a transition from the coexistence of rhombohedral–tetragonal phase to orthorhombic (Pbnm) in BB{sub 0.15}E{sub x}FO samples with increasing Er concentration. The Raman analysis confirms crystal phase transition in BB{sub 0.15}E{sub x}FO compounds. The FE-SEM and TEM analysis show that the average nanoparticle size is about 50–100 nm and it decreases with Er concentration. The remnant magnetisation of BB{sub 0.15}E{sub 0.1}FO sample (M{sub r}=0.98 emu/g) is approximately two times greater than compared to BB{sub 0.15}E{sub 0}FO (M{sub r}=0.51 emu/g) that may be attributed to the collapse of spin structure and modifying exchange interactions because of Er{sup +3} doping. This enhancement in magnetic properties at room temperature can play an important role for the practical applications. - Highlights: • Bi{sub 1−y−x}Ba{sub y}Er{sub x}FeO{sub 3} nanoparticles were successfully synthesized by a sol–gel route. • X-ray diffraction and Raman spectroscopy measurements confirmed a phase transition from rhombohedral–orthorhombic. • Considerable enhancement in magnetisation of BiFeO{sub 3} is obtained with Ba and Er co-doping.

  13. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  14. Nonvolatile Resistive Switching in Pt/LaAlO_{3}/SrTiO_{3} Heterostructures

    Directory of Open Access Journals (Sweden)

    Shuxiang Wu

    2013-12-01

    Full Text Available Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO_{3}/SrTiO_{3} heterostructures, where the conducting layer near the LaAlO_{3}/SrTiO_{3} interface serves as the “unconventional” bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO_{3}/SrTiO_{3} interface and the creation of defect-induced gap states within the ultrathin LaAlO_{3} layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.

  15. Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Kleibeuker, Josée E.

    2011-01-01

    AlO3, SrTiO3, and yttria-stabilized zirconia films. On the other hand, samples of amorphous La7/8Sr1/8MnO3 films on SrTiO3 substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface...

  16. Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts

    International Nuclear Information System (INIS)

    Li Lili; Chu Ying; Liu Yang; Wang Dan

    2009-01-01

    Single-crystalline Fe 3 O 4 nanobelt was first synthesized on a large scale by a facile and efficient hydrothermal process. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The SAED pattern obtained from a typical individual nanobelt has a highly symmetrical dotted lattice, which reveals the single-crystalline nature of belt-like Fe 3 O 4 . The saturation magnetization of the Fe 3 O 4 nanobelt is higher than the wire, hollow sphere and octahedral structure. Such methods are easy and mild, and could synthesize other metal oxide in such experiment situation

  17. Electric and magnetic properties of a CoFe2O4/PZT bilayer grown on (100)SrTiO3 by using PLD

    International Nuclear Information System (INIS)

    Zhang, X. D.; Dho, J. H.

    2010-01-01

    We have investigated the electric and the magnetic properties of a ferrimagnetic and ferroelectric bilayer CoFe 2 O 4 (CFO)/PbZr 0.2 Ti 0.8 O 3 (PZT) grown on a (100)SrTiO 3 (STO) substrate by using pulsed laser deposition. PZT (100 nm) and CFO (70 nm) layers were sequentially deposited on the (100)STO substrate with a bottom electrode LaNiO 3 (50 nm) layer at 600 - 650 .deg. C. X-ray diffraction for the PZT layer exhibited both (200) and (002) peaks, which are due to the c- and the a-domains, and a decrease of tetragonality after CFO deposition. The electric properties of the CFO/PZT bilayer were characterized by using P-V loop, C-f, and C-V measurements. The remnant polarization and coercivity were slightly decreased after the top-layer CFO deposition while fatigue behavior was distinctively improved. The M-H loop measurement confirmed that the CFO layer possessed a typical ferrimagnetic property at room temperature.

  18. Synthesis of Ag-loaded SrTiO_3/TiO_2 heterostructure nanotube arrays for enhanced photocatalytic performances

    International Nuclear Information System (INIS)

    Hu, Zijun; Chen, Da; Zhan, Xiaqiang; Wang, Fang; Qin, Laishun; Huang, Yuexiang

    2017-01-01

    In this work, the effect of loading Ag nanoparticles on the photocatalytic activity of SrTiO_3/TiO_2 nanotube arrays (TNTAs) was investigated. TNTAs were partially transformed to SrTiO_3 through a hydrothermal treatment, which could preserve the tubular structure of TNTAs, and then, Ag nanoparticles were well deposited on the surface of SrTiO_3/TNTAs heterostructure by a chemical reduction process. Compared to the TNTAs sample, the Ag-loaded SrTiO_3/TNTAs sample showed significantly enhanced photocatalytic activities for photodegradation of rhodamine B. The enhanced photocatalytic activity of Ag-loaded SrTiO_3/TNTAs could be attributed to the increased optical absorption as well as the efficient charge transfer and separation of photogenerated electron-hole pairs induced by the SrTiO_3/TNTAs heterojunction and the Schottky barrier between metallic Ag and SrTiO_3/TNTAs. On the basis of the trapping experiments, the possible photocatalytic mechanism was also discussed. (orig.)

  19. First principles prediction of the magnetic properties of Fe-X6 (X = S, C, N, O, F) doped monolayer MoS2

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlö gl, Udo; Bai, Haili

    2014-01-01

    Using first-principles calculations, we have investigated the electronic structure and magnetic properties of Fe-X 6 clusters (X = S, C, N, O, and F) incorporated in 4 4 monolayer MoS 2, where a Mo atom is substituted by Fe and its nearest S atoms are substituted by C, N, O, and F. Single Fe and Fe-F 6 substituions make the system display half-metallic properties, Fe-C 6 and Fe-N 6 substitutions lead to a spin gapless semiconducting behavior, and Fe-O 6 doped monolayer MoS 2 is semiconducting. Magnetic moments of 1.93, 1.45, 3.18, 2.08, and 2.21...? B are obtained for X = S, C, N, O, and F, respectively. The different electronic and magnetic characters originate from hybridization between the X and Fe/Mo atoms. Our results suggest that cluster doping can be an efficient strategy for exploring two-dimensional diluted magnetic semiconductors.

  20. First principles prediction of the magnetic properties of Fe-X6 (X = S, C, N, O, F) doped monolayer MoS2

    KAUST Repository

    Feng, Nan

    2014-02-05

    Using first-principles calculations, we have investigated the electronic structure and magnetic properties of Fe-X 6 clusters (X = S, C, N, O, and F) incorporated in 4 4 monolayer MoS 2, where a Mo atom is substituted by Fe and its nearest S atoms are substituted by C, N, O, and F. Single Fe and Fe-F 6 substituions make the system display half-metallic properties, Fe-C 6 and Fe-N 6 substitutions lead to a spin gapless semiconducting behavior, and Fe-O 6 doped monolayer MoS 2 is semiconducting. Magnetic moments of 1.93, 1.45, 3.18, 2.08, and 2.21...? B are obtained for X = S, C, N, O, and F, respectively. The different electronic and magnetic characters originate from hybridization between the X and Fe/Mo atoms. Our results suggest that cluster doping can be an efficient strategy for exploring two-dimensional diluted magnetic semiconductors.

  1. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  2. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  3. Critical current densities and vortex dynamics in FeTexSe1-x single crystals

    International Nuclear Information System (INIS)

    Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.

    2010-01-01

    The critical current density and the normalized relaxation rate are reported in FeTe 0.59 Se 0.41 single crystal. Critical current density is of order of 10 5 A/cm 2 , which is comparable to that in Co-doped BaFe 2 As 2 . In low temperature and low field region, the vortex dynamics of this system is well defined by the collective creep theory, which is quite similar to Co-doped BaFe 2 As 2 reported before. We also discuss the origin of the anomaly in the field dependence of the relaxation rate.

  4. Direct Observation of Room-Temperature Stable Magnetism in LaAlO3/SrTiO3 Heterostructures.

    Science.gov (United States)

    Yang, Ming; Ariando; Zhou, Jun; Asmara, Teguh Citra; Krüger, Peter; Yu, Xiao Jiang; Wang, Xiao; Sanchez-Hanke, Cecilia; Feng, Yuan Ping; Venkatesan, T; Rusydi, Andrivo

    2018-03-21

    Along with an unexpected conducting interface between nonmagnetic insulating perovskites LaAlO 3 and SrTiO 3 (LaAlO 3 /SrTiO 3 ), striking interfacial magnetisms have been observed in LaAlO 3 /SrTiO 3 heterostructures. Interestingly, the strength of the interfacial magnetic moment is found to be dependent on oxygen partial pressures during the growth process. This raises an important, fundamental question on the origin of these remarkable interfacial magnetic orderings. Here, we report a direct evidence of room-temperature stable magnetism in a LaAlO 3 /SrTiO 3 heterostructure prepared at high oxygen partial pressure by using element-specific soft X-ray magnetic circular dichroism at both Ti L 3,2 and O K edges. By combining X-ray absorption spectroscopy at both Ti L 3,2 and O K edges and first-principles calculations, we qualitatively ascribe that this strong magnetic ordering with dominant interfacial Ti 3+ character is due to the coexistence of LaAlO 3 surface oxygen vacancies and interfacial (Ti Al -Al Ti ) antisite defects. On the basis of this new understanding, we revisit the origin of the weak magnetism in LaAlO 3 /SrTiO 3 heterostructures prepared at low oxygen partial pressures. Our calculations show that LaAlO 3 surface oxygen vacancies are responsible for the weak magnetism at the interface. Our result provides direct evidence on the presence of room-temperature stable magnetism and a novel perspective to understand magnetic and electronic reconstructions at such strategic oxide interfaces.

  5. Absence of confinement in (SrTiO3)/( SrTi0.8Nb0.2O3 ) superlattices

    Science.gov (United States)

    Bouzerar, G.; Thébaud, S.; Bouzerar, R.; Pailhès, S.; Adessi, Ch.

    2018-03-01

    The reduction of dimensionality is considered an efficient pathway to boost the performances of thermoelectric materials. Quantum confinement of the carriers is expected to induce large Seebeck coefficients (S ) and it also suppresses the thermal conductivity by increasing the phonon scattering processes. However, quantum confinement in superlattices is not always easy to achieve and needs to be carefully validated. In the past decade, large values of S have been measured in (SrTiO3)/(SrTi0.8Nb0.2O3 ) superlattices [H. Ohta et al., Nat. Mater. 6, 129 (2007), 10.1038/nmat1821; Y. Mune et al., Appl. Phys. Lett. 91, 192105 (2007), 10.1063/1.2809364]. In the δ -doped compound, the reported S was almost six times larger than that of the bulk material. This huge increase has been attributed to the two-dimensional carrier confinement in the doped regions. Here, we demonstrate that the experimental data are well explained quantitatively assuming delocalized electrons in both in-plane and growth directions. Moreover, we rule out the confined electron hypothesis whose signature would be the suppression of the Seebeck coefficient. This strongly suggests that the presupposed confinement picture in these superlattices is unlikely.

  6. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    ... to their several spe- cial properties such as large thermal expansion coefficients, ... increase the conductivity of these glasses is to increase the modifier or dopant ... phosphate glasses were measured by the a.c. impedance spectroscopic .... and Fe2O3-doped Ag2O–P2O5 glasses were determined from. DSC curves and ...

  7. Vacancy induced metallicity at the CaHfO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar

    2011-03-31

    Density functional theory is used to study the electronic properties of the oxide heterointerfaceCaHfO3/SrTiO3. Structural relaxation is carried out with and without O vacancies. As compared to related interfaces, strongly reduced octahedral distortions are found. Stoichiometric interfaces between the wide band gap insulatorsCaHfO3 and SrTiO3 turn out to exhibit an insulating state. However, interface metallicity is introduced by O vacancies, in agreement with experiment. The reduced octahedral distortions and necessity of O deficiency indicate a less complicated mechanism for the creation of the interfacial electron gas.

  8. Vacancy induced metallicity at the CaHfO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar; Pulikkotil, J. J.; Schwingenschlö gl, Udo; Singh, Nirpendra

    2011-01-01

    Density functional theory is used to study the electronic properties of the oxide heterointerfaceCaHfO3/SrTiO3. Structural relaxation is carried out with and without O vacancies. As compared to related interfaces, strongly reduced octahedral distortions are found. Stoichiometric interfaces between the wide band gap insulatorsCaHfO3 and SrTiO3 turn out to exhibit an insulating state. However, interface metallicity is introduced by O vacancies, in agreement with experiment. The reduced octahedral distortions and necessity of O deficiency indicate a less complicated mechanism for the creation of the interfacial electron gas.

  9. Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped BiFeO{sub 3} as a function of synthesis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-George, G. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Silva, J. [Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450 Norte, Cd. Juárez, Chih. 32310 (Mexico); Castañeda, R.; Lardizábal, D. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Graeve, O.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr. – MC 0411, La Jolla, CA 92093-0411 (United States); Fuentes, L. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Reyes-Rojas, A., E-mail: armando.reyes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico)

    2014-07-01

    We present an analysis of crystallographic symmetry and the origin of the pseudo-cubic character of doped BiFeO{sub 3}. Specifically, barium-doped bismuth ferrite, Bi{sub 1−x}Ba{sub x}FeO{sub 3} (x = 0.05, 0.075, 0.1, 0.125), perovskite-type nanoparticles have been synthesized by implementing five modifications to the sol–gel technique (citric acid-assisted sol–gel method, ethylene glycol method, tartaric acid-assisted sol–gel method, polyvinyl alcohol–ethylene glycol method, and EDTA complexing sol–gel method) and their final pseudo-cubic character is discussed. The effect of the carboxylic groups and hydroxyl groups during synthesis is critical to obtain single phase BBFO. Fourier transform infrared spectroscopy and thermogravimetric analysis is used to study the decomposition and thermal behavior of the precursors and their relation to the final nanoparticle characteristics. X-ray diffraction analysis shows a single phase with symmetry changes for four of the five synthesis methodologies employed. Only the EDTA complexing sol–gel method, where EDTA is used as dissolver and chelating agent, is not satisfactory in all concentration ranges. Rietveld results suggest that the degree of distortion of the rhombohedral symmetry in the crystallized BiFeO{sub 3} powders decreases 12% as a result of progressive substitution of Bi{sup 3+} by Ba{sup 2+} and that there is no shift from rhombohedral to tetragonal symmetry. Magnetization properties of samples with a low-distortion rhombohedral structure show higher magnetic saturation and remanent magnetization than samples with high-distortion rhombohedral structure. - Highlights: • Ba–BiFeO{sub 3}: rhombohedral distortion degree is highly affected by the chemical method. • Rietveld results show no shift in BBFO from rhombohedral to tetragonal symmetry. • The low-distortion rhombohedral structure show higher magnetic saturation. • To stabilize a metal complex is necessary a balance between COOH{sup

  10. A versatile light-switchable nanorod memory: Wurtzite ZnO on perovskite SrTiO3

    KAUST Repository

    Kumar, Anup Bera

    2013-04-25

    Integrating materials with distinct lattice symmetries and dimensions is an effective design strategy toward realizing novel devices with unprecedented functionalities, but many challenges remain in synthesis and device design. Here, a heterojunction memory made of wurtzite ZnO nanorods grown on perovskite Nb-doped SrTiO3 (NSTO) is reported, the electronic properties of which can be drastically reconfigured by applying a voltage and light. Despite of the distinct lattice structures of ZnO and NSTO, a consistent nature of single crystallinity is achieved in the heterojunctions via the low-temperature solution-based hydrothermal growth. In addition to a high and persistent photoconductivity, the ZnO/NSTO heterojunction diode can be turned into a versatile light-switchable resistive switching memory with highly tunable ON and OFF states. The reversible modification of the effective interfacial energy barrier in the concurrent electronic and ionic processes most likely gives rise to the high susceptibility of the ZnO/NSTO heterojunction to external electric and optical stimuli. Furthermore, this facile synthesis route is promising to be generalized to other novel functional nanodevices integrating materials with diverse structures and properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Epitaxial growth of SrTiO3/YBa2Cu3O7 - x heterostructures by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.

    1994-06-01

    We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.

  12. Room temperature exchange bias in SmFeO_3 single crystal

    International Nuclear Information System (INIS)

    Wang, Xiaoxiong; Cheng, Xiangyi; Gao, Shang; Song, Junda; Ruan, Keqing; Li, Xiaoguang

    2016-01-01

    Exchange bias phenomenon is generally ascribed to the unidirectional magnetic shift along the field axes at interface of two magnetic materials. Room temperature exchange bias is found in SmFeO_3 single crystal. The behavior after different cooling procedure is regular, and the training behavior is attributed to the athermal training and its pinning origin is attributed to the antiferromagnetic clusters. Its being single phase and occurring at room temperature make it an appropriate candidate for application. - Graphical abstract: Room temperature exchange bias was found in oxide single crystal. Highlights: • Room temperature exchange bias has been discovered in single-crystalline SmFeO_3. • Its pinning origin is attributed to the antiferromagnetic clusters. • Its being single phase and occurring at room temperature make it an appropriate candidate for application.

  13. Magnetism and superconductivity in CeFe2-xTxAs2 (T = Co and Ni) single crystals

    International Nuclear Information System (INIS)

    Thamizhavel, A.

    2010-01-01

    Single crystals of pure and transition metal doped CaFe 2- x T x As 2 (T = Co and Ni) have been grown by flux method using molten Sn as solvent. The magnetic and superconducting properties of the grown crystals were studied by measuring the electrical resistivity, magnetic susceptibility and neutron diffraction measurements. A spin density wave (SDW)/structural transition is observed at 170 K for the pure CaFe 2 As 2 single crystal and it gets suppressed with T (Co and Ni) doping. For an optimum dopant concentration of x = 0.06, the sample becomes superconducting. From the detailed studies on CaFe 2- x Ni x As 2 single crystals we have constructed a magnetic phase diagram. (author)

  14. Site occupancy and magnetic study of Al3+ and Cr3+ co-substituted Y3Fe5O12

    International Nuclear Information System (INIS)

    Bouziane, K.; Yousif, A.; Widatallah, H.M.; Amighian, J.

    2008-01-01

    Single-phased polycrystalline Y 3 Fe 5-2x Al x Cr x O 12 garnet samples (x=0, 0.2, 0.4 and 0.6) have been prepared by the conventional ceramic technique. Rietveld refinement of X-ray diffraction patterns of the samples shows them to crystallize in the Ia3d space group and the corresponding lattice constant to decrease with increasing Al 3+ and Cr 3+ contents (x). Moessbauer results indicate that Cr 3+ substitutes for Fe 3+ at the octahedral sites whilst Al 3+ essentially replaces Fe 3+ at the tetrahedral sites. This result indicates that co-doping of Y 3 Fe 5 O 12 does not affect the preferential site occupancy for separate individual substitution of either Cr 3+ or Al 3+ . The magnetization measurements reveal that the Curie temperature (T c ) monotonically decreases with increasing x while the magnetic moment per unit formula decreases up to x=0.4 and then slightly increases for x=0.6. This reflects a progressive weakening of the ferrimagnetic exchange interaction between the Fe 3+ ions at octahedral and tetrahedral sites due to co-substitution. The magnetic moment was calculated using the cations distribution inferred from the Moessbauer data and the collinear ferrimagnetic model, and was found to agree reasonably with the experimentally measured value. The phenomenological amplitude crossover, characterized by the temperature T*, has also been observed in the doped YIG and briefly discussed

  15. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures using one-pot hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Guo, E-mail: guogao@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Qiang; Cheng, Xin-Bing [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Sun, Rongjin [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shapter, Joseph G., E-mail: joe.shapter@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide 5042 (Australia); Yin, Ting [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cui, Daxiang, E-mail: dxcui@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe{sub 3}O{sub 4}, CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm. The GO sheets and CNTs are interlinked by ultrafine Fe{sub 3}O{sub 4} nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe{sub 3}O{sub 4} hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites can recover to 1023.9 mAhg{sup −1}, indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites are superior to CNTs-GO-Fe{sub 3}O{sub 4} and CNTs-GO-Fe{sub 3}O{sub 4}-Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg{sup −1}. • After 500

  16. Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires

    Science.gov (United States)

    Li, X. Q.; Wei, J. Q.; Xu, J. C.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Hong, B.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, Xinqing

    2017-12-01

    In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.

  17. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    Science.gov (United States)

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  18. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    Science.gov (United States)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  19. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  1. Absence of traditional magnetoresistivity mechanisms in Sr2FeMoO6 thin films grown on SrTiO3, MgO and NdGaO3 substrates.

    Science.gov (United States)

    Saloaro, M; Majumdar, S; Huhtinen, H; Paturi, P

    2012-09-12

    Magnetoresistive double perovskite Sr(2)FeMoO(6) thin films were grown with two different deposition pressures on SrTiO(3), MgO and NdGaO(3) substrates by pulsed laser deposition and thorough structural, magnetic and magneto-transport characterization was made. According to x-ray diffraction, all the films were phase pure and fully textured. Indication of substrate dependent strain and low angle grain boundaries was found, especially in films on MgO. Both the deposition pressure and the choice of the substrate have a strong influence on the saturation magnetization, M(s), and Curie temperature, T(C). The structural and magnetic data indicate the presence of anti-site disorder (ASD) in the films. The temperature dependence of resistivity showed semiconductive behaviour at temperatures below 100 K and metallic behaviour at higher temperatures. The semiconductive behaviour was found to increase with increasing ASD. In good quality films, up to 12% negative magnetoresistance (MR) was observed and films grown on MgO and NGO substrates also showed low field MR. However, the most significant observation of this study was that the magnetoresistivity of these Sr(2)FeMoO(6) thin films could not be explained with any traditional MR mechanism, but carried the clear signature of superposition of different mechanisms, in particular low angle grain boundary tunnelling and suppression of antiferromagnetically ordered domains under a magnetic field.

  2. Mg shallow doping effects on the ac magnetic self-heating characteristics of γ-Fe2O3 superparamagnetic nanoparticles for highly efficient hyperthermia

    Science.gov (United States)

    Jang, Jung-tak; Bae, Seongtae

    2017-10-01

    The effects of Mg doping on the magnetic and AC self-heating temperature rising characteristics of γ-Fe2O3 superparamagnetic nanoparticles (SPNPs) were investigated for hyperthermia applications in biomedicine. The doping concentration of nonmagnetic Mg2+ cation was systematically controlled from 0 to 0.15 at. % in Mgx-γFe2O3 SPNPs during chemically and thermally modified one-pot thermal decomposition synthesis under bubbling O2/Ar gas mixture. It was empirically observed that the saturation magnetization (Ms) and the out-of-phase magnetic susceptibility ( χm″)of Mgx-γFe2O3 SPNPs were increased by increasing the Mg2+ cation doping concentration from 0.05 to 0.13 at. %. Correspondingly, the AC magnetically induced self-heating temperature (Tac,max) in solid state and the intrinsic loss power in water were increased up to 184 °C and 14.2 nH m2 kg-1 (Mgx-γFe2O3, x = 0.13), respectively, at the biologically and physiologically safe range of AC magnetic field (Happl × fappl = 1.2 × 109 A m-1 s-1). All the chemically and physically analyzed results confirmed that the dramatically improved AC magnetic induction heating characteristics and the magnetic properties of Mgx-γFe2O3 SPNPs (x = 0.13) are primarily due to the significantly enhanced magnetic susceptibility (particularly, χm″) and the improved AC/DC magnetic softness (lower AC/DC magnetic anisotropy) resulting from the systematically controlled nonmagnetic Mg2+ cation concentrations and distributions (occupation ratio) in the Fe vacancy sites of γ-Fe2O3 (approximately 12% vacancy), instead of typically well-known Fe3O4 (no vacancy) SPNPs. The cell viability and biocompatibility with U87 MG cell lines demonstrated that Mgx-γFe2O3 SPNPs (x = 0.13) has promising bio-feasibility for hyperthermia agent applications.

  3. Boundary structure modification and magnetic properties of Nd-Fe-B sintered magnets by co-doping with Dy{sub 2}O{sub 3}/S powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Leichen [School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907 (United States); Li, Ping [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Xuzhe [School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907 (United States); Sui, Yanli [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Zhimeng, E-mail: guozhimengustb@163.com [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Gao, Xuexu [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-01

    In this paper, the effect of Dy{sub 2}O{sub 3}/S co-doping on the magnetic properties and microstructure was studied in Nd-Fe-B sintered magnets. With S co-doping, the coercivity increased due to grain boundary modification and Dy selective introduction. Continuous grain boundary phases were formed in the co-doped magnets with smaller grain size. The average grain size after a doping of 0.2 wt% S is 7.25 µm, which is approximately 2.37 µm smaller than that of the S-free sintered magnets(9.62 µm). The coercivity of the Dy{sub 2}O{sub 3}/0.2 wt% S co-doped magnets could be increased from 20.9 to 22.8 kOe with changing the remanence and the maximum magnetic energy product slightly. S precipitates in the Nd-rich phases were hexagonal Nd{sub 2}O{sub 2}S phase. Dy avoided the Nd{sub 2}O{sub 2}S phase in the triple junction region, resulting in more available Dy atoms diffusing into the Nd{sub 2}Fe{sub 14}B phase grains to enhance the anisotropy field. Dy-saving was achieved by forming Nd{sub 2}O{sub 2}S phase in the Dy{sub 2}O{sub 3}/S co-doped magnets. - Highlights: • The average grain size of Dy{sub 2}O{sub 3}/S co-doped magnets is 2.37 μm smaller than that of Dy{sub 2}O{sub 3} doped magnets. • The Dy atoms avoid the Nd{sub 2}O{sub 2}S phases and more of them become available to diffuse into the Nd{sub 2}Fe{sub 14}B phases. • The coercivity reaches maximum when S content is 0.2 wt%, 9% higher than the 20.9 kOe coercivity of the S-free magnets.

  4. Molecular adsorption of hydrogen peroxide on N- and Fe-doped titania nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Afshan, E-mail: amohajeri@shirazu.ac.ir; Dashti, Nasimeh Lari

    2017-06-15

    Highlights: • The stability and electronic properties of N/Fe-doped (TiO{sub 2}){sub n} clusters with n = 5,6 were studied. • The adsorption H{sub 2}O{sub 2} on the surface of doped clusters has been investigated. • This is the first report of H{sub 2}O{sub 2} adsorption onto the (TiO{sub 2}){sub n} cluster in the presence of metal and non-metal dopants. • The effect of N and Fe dopants on interaction strength was studied. - Abstract: Titanium dioxide (titania) nanoparticles have been extensively investigated for photocatalytic applications such as the decomposition and adsorption of pollutant and undesirable compound in air and waste water. In this context, the present article reports the molecular adsorption of hydrogen peroxide on the surface of doped titania clusters. Density functional theory calculations were performed to investigate the structures and electronic properties of two nanoscale (TiO{sub 2}){sub n} clusters (n = 5,6) modified by nitrogen and iron dopants. The relative stability of all possible N-doped and Fe-doped isomers has been compared with each other and with the parent cluster. It was found that the Fe-doped clusters are in general more stable than the N-doped counterparts. Moreover, after N/Fe doping an enhanced in the magnetization of the clusters is observed. In the second part, we have investigated different modes of H{sub 2}O{sub 2} adsorption on the lowest-energy isomers of doped clusters. In almost all the cases, the adsorptions on the doped clusters are found to be less exothermic than on the corresponding undoped parent cluster. Our results highlight the essential role of charge transfer into the interaction between H{sub 2}O{sub 2} and doped (TiO{sub 2}){sub n} clusters, especially for Fe-doped clusters.

  5. Synthesis and characterization of multiferroic Sm-doped BiFeO{sub 3} nanopowders and their bulk dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Yotburut, Benjaporn [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thongbai, Prasit [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Yamwong, Teerapon [National Metals and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani 12120 (Thailand); Maensiri, Santi, E-mail: santimaensiri@g.sut.ac.th [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); SUT Center of Excellence on Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2017-09-01

    Highlights: • Bi{sub 1−x}Sm{sub x}FeO{sub 3} nanopowders were prepared by a simple co-precipitation method. • The prepared samples were well characterized by XRD, TEM, SEM, and XAS. • The XANES spectra identified the valence state of Fe ion in all nanopowders as 3+. • Increasing in applied dc bias voltage from 0 to 20 V causes a decrease in the dielectric constant. • The relaxation activation energy of a LFR is larger than that of a HFR. - Abstract: Multiferroic Bi{sub 1−x}Sm{sub x}FeO{sub 3} (x = 0, 0.05, 0.1, 0.2, and 0.3) nanopowders with particle sizes of 69–22.6 nm were prepared by a simple co-precipitation method. The structure and morphology of the samples were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns confirmed the phase transition from rhombohedral to orthorhombic phases. The results of X-ray absorption spectroscopy (XAS) data indicate that the oxidation state of Fe in the sample was Fe{sup 3+}. The results of magnetic properties revealed the enhancement of weak ferromagnetic property with increasing Sm doping in BFO nanopowders. SEM images revealed that the average grain size decreased with an increase in Sm concentration. Undoped BFO ceramics exhibited a high dielectric constant ε′ ∼1.1 × 10{sup 4} and a low loss tangent of tan δ ∼0.5 at room temperature for 1 kHz. The room temperature dielectric constant decreased with increasing concentration of Sm doping and the dielectric relaxation peaks were observed at x ≤ 0.1. The dielectric relaxation peaks which were observed at all frequency ranges were x ≤ 0.1 samples which were attributed to Maxwell-Wagner relaxation. As the temperature increased, great increases in dielectric permittivity were observed in all the Bi{sub 1−x}Sm{sub x}FeO{sub 3} samples. The effects of grain boundaries on the dielectric properties of Sm-doped BFO ceramics were investigated by measuring the dielectric responds in the frequencies of 100 Hz–1

  6. Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: Structure, electronic, optical and magnetic properties

    International Nuclear Information System (INIS)

    Gao, Ning; Quan, Chuye; Ma, Yuhui; Han, Yumin; Wu, Zhenli; Mao, Weiwei

    2016-01-01

    We propose first-principles methods to study the structure, electronic, optical and magnetic properties of BiFeO 3 (BFO) and Bi 0.9 Ca 0.1 FeO 3 (BCFO). The morphology, optical band gap as well as magnetic hysteresis also have been investigated using experimental methods. X-ray diffraction data shows that Bi-site doping with Ca could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). Changing of Fermi level and decreasing of band gap indicating that the Ca-doped BFO exhibit a typical half-metallic nature. The optical absorption properties are related to the electronic structure and play the key role in determining their band gaps, also we have analyzed the inter-band contribution to the theory of optical properties such as absorption spectra, dielectric constant, energy-loss spectrum, absorption coefficient, optical reflectivity, and refractive index of BCFO. Enhancement of magnetic properties after doping is proved by both experimental and calculated result, which can be explained by size effect and structural distortion.

  7. Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic

    Science.gov (United States)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.

    2018-02-01

    Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.

  8. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming

    2013-09-07

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  9. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming; Zhou, Wenke; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  10. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  11. Structural and functional properties of La1-xBaxMnO3 thin films on SrTiO3

    International Nuclear Information System (INIS)

    Belenchuk, A.; Kantser, V.; Shapoval, O.; Zasavitsky, E.; Moshnyaga, V.

    2011-01-01

    Full text: Colossal magneto resistive manganites such as La 1-x Ba x MnO3 (LBMO) show a reach diversity of a attractive physical properties and the epitaxy of manganites has figured conspicuously in the search for new generations of electronic materials for information processing, data storage, and sensing. All applications require manganite films with a smooth morphology and perfect functional properties such as a large magnetization and a small residual resistivity. We investigated the structural and functional properties of the epitaxial LBMO thin films grown on the near perfect matched SrTiO 3 substrates by metalorganic aerosol deposition technique. AFM surface analysis shows a very smooth films surface indicating the layer-by-layer growth mode. The occurrence of a distinct Laue thickness fringes in X-ray diffraction spectra indicates a high quality single-crystalline growth of an uniformly strained LBMO films. But the small-angle x-ray scattering reveals the presence of a few unit cells intermediate layer with a modified electronic density. Transport measurements determine a high metal-insulator transition temperature (T MI >340 K) confirming near optimal Ba doping of LBMO with the residual resistivity of 350 μΩcm at 50 K. According to the inductive coupled plasma emission spectroscopy analysis the LBMO has level of Ba doping x=0.32. However, SQUID magnetization measurements reveal the coexistence of a high Curie temperature (T C =335 K) and a low coercitive field (27-30 Oe) with a reduced saturation magnetization (∼3 μ B /Mn) and broadened para-ferromagnetic transition. The presence of magnetic phase inhomogeneity can be further revealed from the form of low-temperature magnetization loops. We discuss the results within the concept of a 'hidden' magnetic layer situated close to the film-substrate interface and the presence of magnetic phase separation phenomenon in the main part of the LBMO film. (authors)

  12. Synthesis and In Vitro Characterization of Fe3+-Doped Layered Double Hydroxide Nanorings as a Potential Imageable Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2017-09-01

    Full Text Available Highly dispersed Fe3+-doped layered double hydroxide (LDH-Fe nanorings were obtained by a simple coprecipitation-acid etching approach. The morphology, structure, magnetic resonance imaging (MRI performance in vitro, drug loading and releasing, Fe3+ leakage, and cytotoxicity of the as-prepared LDH-Fe nanorings were characterized. The LDH-Fe nanorings showed good water dispersity and a well-crystallized structure. The DLS average size of nanoparticles was measured to be 94.5 nm. Moreover, the MRI tests showed a favourable T1-weighted MRI performance of the LDH-Fe nanoring with r1 values of 0.54 and 1.68, and low r2/r1 ratios of 10.1 and 6.3, pre- and after calcination, respectively. The nanoparticles also showed high model drug (ibuprofen loading capacities, low Fe3+ leakage, and negligible cytotoxicity. All these results demonstrate the potential of LDH-Fe nanorings as an imageable drug delivery system.

  13. Comparative study of (N, Fe) doped TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larumbe, S., E-mail: silvia.larumbe@unavarra.es [Departamento Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Monge, M. [Departamento de Química, Universidad de la Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26006 Logroño (Spain); Gómez-Polo, C. [Departamento Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain)

    2015-02-01

    Highlights: • Fe, N doped TiO{sub 2} nanoparticles were synthesized by sol–gel. • The nitrogen content controlled the mean size of nanoparticles and afterwards the modification of cell parameters with respect the undoped sample. • Both doping elements induced the increase of the anatase-rutile transition temperature. • A red-shift is observed in the absorption spectra with the introduction of both elements. • An improvement of photocatalytic activity is observed with the introduction of nitrogen under UV and Visible light. However for higher concentrations a decrease in kinetic constants was observed as consequence of the oxygen vacancies acting as recombination centers. On the contrary, a deterioration of photocatalytic efficiency is found for the Fe doped samples. • A correlation between magnetic behavior and photocatalytic activity was found. - Abstract: The effect of N and Fe doping on the structural, optical, photocatalytic and magnetic properties of TiO{sub 2} nanoparticles is analyzed. Undoped, N and Fe doped TiO{sub 2} nanoparticles were synthesized by sol–gel method. Titanium tetraisopropoxide (TTIP) was used as the alkoxyde precursor and iron (III) nitrate and urea were the employed precursors to obtain Fe and N doped TiO{sub 2} nanoparticles, respectively. Differential Scanning Calorimetry (DSC) and Thermogravimetrical Analysis (TGA) enabled the analysis of the thermal decomposition process and the final calcination temperature. X-Ray Diffraction patterns of the calcined nanoparticles displayed a monophasic anatase structure in all the samples with mean crystallite diameter around 4–6 nm. The introduction of Fe or N induced a red-shift in the absorption spectra. Such a red-shift is characterized by a decrease in the band-gap energy and the occurrence of an absorption (Urbach) tail in the visible region. Finally, the photocatalytic efficiency was evaluated under UV and Visible light, obtaining an improvement of the kinetic constants in

  14. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  15. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    Science.gov (United States)

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  16. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    Science.gov (United States)

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  17. Effect of Li2O-doping of nanocrystalline CoO/Fe2O3 on isopropanol conversion

    International Nuclear Information System (INIS)

    El-Shobaky, Hala G.; Ali, Suzan A.H.; Hassan, Neven A.

    2007-01-01

    The catalytic conversion of isopropanol was carried out over pure and Li 2 O-doped (0.75-4.5 mol%) cobalt ferrite prepared by heating Fe/Co mixed hydroxides at 400 and 600 deg. C. The techniques employed were XRD, N 2 adsorption at -196 deg. C and conversion of isopropanol at 200-400 deg. C using a flow method. The results showed that Li 2 O-doping and increasing the heating temperature of the system investigated from 400 to 600 deg. C stimulated CoFe 2 O 4 formation also. Pure and variously doped solids were moderately crystallized CoFe 2 O 4 phase having a crystallite size varying between 5 and 15 nm. The S BET of various solids was found to decrease by increasing their calcination temperature and also by doping with 4.5 mol% Li 2 O. However, this treatment, resulted in a significant increase in their catalytic activities which much increased by doping. The presence of 1.5 mol% Li 2 O brought about an increase in the catalytic activity, measured at 300 deg. C, of 97% and 63% for the solids being calcined at 400 and 600 deg. C, respectively. All solids investigated behaved as dehydrogenation catalysts (having selectivities to acetone formation above 95%). The doping process did not alter the mechanism of dehydrogenation of isopropanol, but increased the concentration of active sites involved in the catalyzed reaction

  18. Strain control of Urbach energy in Cr-doped PrFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anil; Warshi, M.K.; Mishra, Vikash; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology Indore, Material Research Laboratory, Discipline of Physics and MEMS, Indore (India)

    2017-09-15

    Polycrystalline samples of PrFe{sub 1-x}Cr{sub x}O{sub 3} having average particle size of ∝90 nm have been prepared by wet chemical route. The structural phase purity of the prepared samples is confirmed by powder X-ray diffraction followed by Rietveld refinements. It is observed that with Cr doping, the Urbach energy (E{sub u}) increases. The E{sub u} is measure of the various disorders present in the sample, such as chemical and structural. To understand the contribution to the E{sub u} due to chemical and structural disorders, we have probed the chemical and structural disorders in the samples by elemental mappings and through X-ray diffraction experiments, respectively. Elemental mapping confirms chemical homogeneity of prepared samples. It is observed that with Cr doping the crystallographic strain increases and Urbach energy shows the similar scaling. (orig.)

  19. Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics

    Science.gov (United States)

    Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.

    2018-05-01

    In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies

  20. Carrier density independent scattering rate in SrTiO3-based electron liquids.

    Science.gov (United States)

    Mikheev, Evgeny; Raghavan, Santosh; Zhang, Jack Y; Marshall, Patrick B; Kajdos, Adam P; Balents, Leon; Stemmer, Susanne

    2016-02-10

    We examine the carrier density dependence of the scattering rate in two- and three-dimensional electron liquids in SrTiO3 in the regime where it scales with T(n) (T is the temperature and n ≤ 2) in the cases when it is varied by electrostatic control and chemical doping, respectively. It is shown that the scattering rate is independent of the carrier density. This is contrary to the expectations from Landau Fermi liquid theory, where the scattering rate scales inversely with the Fermi energy (EF). We discuss that the behavior is very similar to systems traditionally identified as non-Fermi liquids (n density-independent scattering rates have been observed. The results indicate that the applicability of Fermi liquid theory should be questioned for a much broader range of correlated materials and point to the need for a unified theory.

  1. Polar-antipolar transition and weak ferromagnetism in Mn-doped Bi0.86La0.14FeO3

    Science.gov (United States)

    Khomchenko, V. A.; Karpinsky, D. V.; Troyanchuk, I. O.; Sikolenko, V. V.; Többens, D. M.; Ivanov, M. S.; Silibin, M. V.; Rai, R.; Paixão, J. A.

    2018-04-01

    Having been considered as a prime example of a room-temperature magnetoelectric multiferroic, BiFeO3 continues to attract much interest. Since functional properties of this material can be effectively influenced by chemical, electrical, magnetic, mechanical and thermal stimuli, it can serve as a model for the investigation of cross-coupling phenomena in solids. Special attention is currently paid to the study of chemical pressure-driven magneto-structural transformations. In this paper, we report on the effect of the Mn doping on the crystal structure and magnetic behavior of the Bi1‑x La x FeO3 multiferroics near their polar-antipolar (antiferromagnetic-weak ferromagnetic) phase boundary. Synchrotron x-ray and neutron powder diffraction measurements of the Bi0.86La0.14Fe1‑x Mn x O3 (x  =  0.05, 0.1, 0.15) compounds have been performed. The diffraction data suggest that the Mn substitution results in the suppression of the ferroelectric polarization and gives rise to the appearance of the antiferroelectric (generally, PbZrO3-related) phase characteristic of the phase diagrams of the Bi1‑x RE x FeO3 (RE  =  rare-earth) systems. Depending on the Mn concentration (determining phase composition of the Bi0.86La0.14Fe1‑x Mn x O3 samples at room temperature), either complete or partial revival of the polar phase can be observed with increasing temperature. Magnetic measurements of the samples indicate that the Mn doping affects the stability of the cycloidal antiferromagnetic order specific to the polar phase, thus resulting in the formation of a ferroelectric and weak ferromagnetic state.

  2. Synthesis and characterization of Fe doped cadmium selenide thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in [Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya, Latur 413 512, Maharashtra (India)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer Simple and inexpensive method to dope trivalent Fe in CdSe thin films. Black-Right-Pointing-Pointer Fe doped CdSe thin films are highly photosensitive. Black-Right-Pointing-Pointer AFM analysis shows uniform deposition of film over the entire substrate surface. Black-Right-Pointing-Pointer The band gap energy decreases from 1.74 to 1.65 eV with Fe doping. Black-Right-Pointing-Pointer Film resistivity decreases to 6.76 Multiplication-Sign 10{sup 4} {Omega}-cm with Fe doping in CdSe thin films. - Abstract: Undoped and Fe doped CdSe thin films have been deposited onto the amorphous and fluorine doped tin oxide coated glass substrates by spray pyrolysis. The Fe doping concentration has been optimized by photoelectrochemical (PEC) characterization technique. The structural, surface morphological, compositional, optical and electrical properties of undoped and Fe doped CdSe thin films have been studied. X-ray diffraction study reveals that the as deposited CdSe films possess hexagonal crystal structure with preferential orientation along (1 0 0) plane. AFM analysis shows uniform deposition of the film over the entire substrate surface with minimum surface roughness of 7.90 nm. Direct allowed type of transition with band gap decreasing from 1.74 to 1.65 eV with Fe doping has been observed. The activation energy of the films has been found to be in the range of 0.14-0.19 eV at low temperature and 0.27-0.44 eV at high temperature. Semi-conducting behavior has been observed from resistivity measurements. The thermoelectric power measurements reveal that the films are of n type.

  3. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst

    International Nuclear Information System (INIS)

    Nguyen, Van Nghia; Nguyen, Ngoc Khoa Truong; Nguyen, Phi Hung

    2011-01-01

    Fe-doped TiO 2 catalyst was prepared by the hydrothermal method. The resulting nanopowders were characterized by x-ray diffraction, transmission electron microscopy and Raman and UV-visible spectroscopies. The photocatalytic activity of the Fe-doped TiO 2 was tested by decomposition of methylene orange with a concentration of 10 mg l −1 in aqueous solution. The obtained results showed that methylene orange was significantly degraded after irradiation for 90 min under a halogen lamp and sunlight. The doping effect on the photocatalytic activity of the iron-doped catalyst samples are discussed

  4. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Directory of Open Access Journals (Sweden)

    A. A. Baker

    2015-07-01

    Full Text Available We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, ml/ms. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  5. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom)

    2015-07-15

    We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, m{sub l}/m{sub s}. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  6. Scintillation and optical properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Masaki, E-mail: masaki.mori.mz4@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Nakauchi, Daisuke; Okada, Go [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Fujimoto, Yutaka [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Kawaguchi, Noriaki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Yanagida, Takayuki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan)

    2017-06-15

    The single crystals of 0, 0.6, 1, 1.6 and 2 mol% Ce doped CaGdAl{sub 3}O{sub 7} (Ce:CGAM) were grown by the Floating Zone method, and investigated on photoluminescence (PL) and scintillation properties. In the PL spectra, a broad emission appeared over 380–500 nm under 280 and 360 nm excitations with the quantum yield of 33.8–38.8%. Under a vacuum ultraviolet excitation (90 nm) using a synchrotron source, non-doped CGAM single crystal showed broad emissions over 250–650 nm. The PL decay time profiles followed a monotonic exponential decay with a decay time constant of around 33 ns. The scintillation spectra were similar to those of PL. All of the samples exhibited a clear photoabsorption peak and Compton edge in the pulse height spectra measured under {sup 137}Cs γ-ray irradiation, and the absolute scintillation light yield (LY) was highest for the 2% Ce-doped sample with the value of 3300±300 ph/MeV. The scintillation decay profiles were approximated by a third order exponential decay function, and the extracted decay time of Ce{sup 3+} emission component was around 36–44 ns. Among all the samples, 2%Ce:CGAM single crystal sample showed the best afterglow level as a scintillator under X-ray irradiation. - Highlights: •Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals were synthesized by the FZ method. •Optical and scintillation properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} were investigated. •Photoabsorption peak in a pulse height spectrum was clearly observed under γ-rays.

  7. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  8. Specific features of nonlinear optical properties of Eu3+ doped BiFeO3 nanopowders near antiferromagnetic transition

    Science.gov (United States)

    El Bahraoui, T.; Sekkati, M.; Taibi, M.; Abd-Lefdil, M.; El-Naggar, A. M.; AlZayed, N. S.; Albassam, A. A.; Kityk, I. V.; Maciag, A.

    2016-01-01

    The monitoring of the Eu3+ doped BiFeO3 nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic-ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored.

  9. Interface properties of SrTiO3-based heterostructures studied by spectroscopy and high-resolution microscopy

    International Nuclear Information System (INIS)

    Pfaff, Florian Georg

    2017-01-01

    Oxide heterostructures can exhibit a variety of unexpected electronic and magnetic phenomena at their interfaces. A prominent example is the interface in LaAlO 3 /SrTiO 3 heterostructures where a two-dimensional electron system (2DES) forms if the LaAlO 3 thickness equals or exceeds a critical thickness of four unit cells. Similar to LaAlO 3 /SrTiO 3 an interface 2DES above a critical overlayer thickness has been observed in γ-Al 2 O 3 /SrTiO 3 . However, the electron mobility as well as the sheet carrier density exceed those of LaAlO 3 /SrTiO 3 heterostructures by more than one order of magnitude. This thesis is concerned with the growth and the characterization of these two types of interface systems with the main focus on the analysis of the physical properties at the interface and the understanding of their leading mechanisms. In regard to the sample fabrication it is demonstrated in the present thesis that the hitherto established growth routine of LaAlO 3 /SrTiO 3 by pulsed laser deposition has to be altered and optimized for the growth of γ-Al 2 O 3 . It is shown that growth monitoring by analyzing reflection high energy electron diffraction (RHEED) intensity oscillations is hindered by the formation of surface wave resonances. In order to avoid this effect, a modified growth geometry has to be used whereby also in this heterostructure systems monitoring of the layer-by-layer growth of γ-Al 2 O 3 /SrTiO 3 heterostructures by electron diffraction can be achieved. A so-called electronic reconstruction is discussed as the possible driving mechanism for the 2DES formation in LaAlO 3 /SrTiO 3 . In this scenario, the built-up potential within the polar LaAlO 3 overlayer is compensated by a charge transfer from the sample surface to the top most layers of the non-polar SrTiO 3 substrate. Furthermore, the properties of these heterostructures strongly depend on the used growth conditions. In the present work, for instance, a significant increase in the charge

  10. Violet emission from Fe doped ZnO nanoparticles synthesized by precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, S., E-mail: skanchana09@gmail.com [PG & Research Department of Physics, Urumu Dhanalaksmi College, Tiruchirapalli 620019 (India); Chithra, M. Jay [Nanomaterials Research Laboratory, Department of Physics, Government Arts College, Karur 639005 (India); Ernest, Suhashini [PG & Research Department of Physics, Urumu Dhanalaksmi College, Tiruchirapalli 620019 (India); Pushpanathan, K. [Nanomaterials Research Laboratory, Department of Physics, Government Arts College, Karur 639005 (India)

    2016-08-15

    In this article we have reported the synthesis of Fe doped zinc oxide nanoparticles by the chemical precipitation method. The structural, compositional and optical properties have been examined by powder X-ray diffractometer, scanning electron microscope, transmission electron microscope, ultraviolet–visible and spectrophotometer. X-ray diffraction analysis confirmed the crystallites are in nanometer size and the sample contains polycrystals with hexagonal wurtzite structure. The average crystallite size has been found to increase from 25 nm to 36 nm with increase in Fe concentration. Scanning electron microscope result also confirmed the nanosize of the particles. Ultraviolet–visible spectrum of Fe doped zinc oxide shows a red shift with respect to undoped zinc oxide. The band gap of the samples was calculated from ultraviolet–visible spectrum and it is narrow from 3.30 eV to 3.23 eV with increasing Fe dopant upto 6%. The stretching bonds in Zn– Fe–O have been observed in FTIR spectra.

  11. Magnetic and Mössbauer studies of pure and Ti-doped YFeO _3 nanocrystalline particles prepared by mechanical milling and subsequent sintering

    International Nuclear Information System (INIS)

    Khalifa, N. O.; Widatallah, H. M.; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S.; Pekala, M.

    2016-01-01

    Single-phased nanocrystalline particles of pure and 10 % Ti "4"+-doped perovskite-related YFeO _3were prepared via mechanosynthesis at 450"∘C. This temperature is ∼150–350 "∘C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti "4"+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe "3"+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti "4"+ lowers the Néel temperature of the YFeO _3 nanoparticles from ∼ 586 K to ∼ 521 K. The Ti "4"+-doped YFeO _3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The "5"7Fe Mössbauer spectra show ∼ 15 % of the YFeO _3 nanoparticles and ∼22 of Ti "4"+-doped YFeO _3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the "5"7Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the "5"7Fe nuclear sites and were associated with collective magnetic excitations. The "5"7Fe Mössbauer spectra show the local environments of the Fe "3"+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti "4"+ ions relative to those in the larger magnetic nanoparticles.

  12. DFT investigation of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Buasaeng, Prayut; Rakrai, Wandee [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand); Wanno, Banchob [Center of Excellence for Innovation in Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 (Thailand); Tabtimsai, Chanukorn, E-mail: tabtimsai.c@gmail.com [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand)

    2017-04-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules were investigated using a DFT method. • Adsorptions of NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH{sub 3}), phosphine (PH{sub 3}), and arsine (AsH{sub 3}) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH{sub 3} > PH{sub 3} > AsH{sub 3}. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  13. Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals

    Science.gov (United States)

    Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.

  14. Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method

    International Nuclear Information System (INIS)

    Luu, Cam Loc; Ho, Si Thoang; Nguyen, Quoc Tuan

    2010-01-01

    Thin layers of pure TiO 2 and TiO 2 doped by different amounts of Fe 2 O 3 have been prepared by the sol–gel method with tetraisopropyl orthotitanate and Fe(NO 3 ) 3 . Physico-chemical properties of catalysts were characterized by BET Adsorption, x-ray Diffraction (XRD), FE-SEM, as well as Raman and UV-Vis spectroscopy. The photocatalytic activity of the obtained materials was investigated in the reaction of complete oxidation of p-xylene in gas phase under the radiation of UV (λ=365 nm) and LED (λ=470 nm) lamps. It has been found that the particle size of all samples was distributed in the range 20–30 nm. The content of the rutile phase in Fe-doped TiO 2 samples varied in the range 6.8 to 41.8% depending on the Fe content. Iron oxide doped into TiO 2 enables the photon absorbing zone of TiO 2 to extend from UV towards visible waves as well as to reduce its band gap energy from 3.2 to 2.67 eV. Photocatalytic activities of the TiO 2 samples modified by Fe 3+ have been found to be higher than those of pure TiO 2 by about 2.5 times

  15. An investigation on photoluminescence and energy transfer of Eu{sup 3+}/Sm{sup 3+} single-doped and co-doped Ca{sub 4}YO(BO{sub 3}){sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Grandhe, Bhaskar Kumar [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2013-07-15

    The present investigation aims to demonstrate the potentiality of Eu{sup 3+}/Sm{sup 3+} single-doped and co-doped Ca{sub 4}YO(BO{sub 3}){sub 3} phosphors, which were prepared by a sol–gel method. The X-ray diffraction (XRD) profiles showed that all the observed peaks could be attributed to the monoclinic phase of Ca{sub 4}YO(BO{sub 3}){sub 3}. From the measured emission profiles, we have noticed that both the single-doped Eu{sup 3+}/Sm{sup 3+} phosphors shows four emission transitions of {sup 5}D{sub 0} → {sup 7}F{sub 0,1,2,3} and {sup 4}G{sub 5/2} → {sup 6}H{sub 5/2,7/2,9/2,11/2} respectively. Among them, the {sup 5}D{sub 0} → {sup 7}F{sub 2} of Eu{sup 3+} and {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} of Sm{sup 3+} are intense emission transitions, leading to an intense red color emission from the prepared phosphors. The excitation spectra showed that Eu{sup 3+}/Sm{sup 3+} doped samples can be excited efficiently by 394 nm and 402 nm respectively, incidentally which matches well with the characteristic emission from UVLED. The co-doping of Sm{sup 3+} ions can broaden and strengthen the absorption of near UV region and to be efficient to sensitize the emission of the Ca{sub 4}YO(BO{sub 3}){sub 3}:Eu{sup 3+} phosphor. The mechanism involved in the energy transfer between Eu{sup 3+} and Sm{sup 3+} has been explained and elucidated by an energy level diagram. - Highlights: • Eu{sup 3+} or/and Sm{sup 3+}:Ca{sub 4}YO(BO{sub 3}){sub 3} phosphors were prepared by sol–gel method. • The co-doping of Sm{sup 3+} to Ca{sub 4}YO(BO{sub 3}){sub 3}:Eu{sup 3+} extends its absorption of NUV region. • It has intense absorption in NUV region, which is suitable for NUV LED. • The energy transfer process between Eu{sup 3+} and Sm{sup 3+} ions were discussed.

  16. Linear thermal expansion of SrTiO3

    International Nuclear Information System (INIS)

    Tsunekawa, S.; Watanabe, H.F.J.; Takei, H.

    1984-01-01

    The linear thermal expansion of SrTiO 3 in the temperature range 10 to 150 K is measured with a relative accuracy of 5 x 10 -7 by using a three-terminal capacitance dilatometer. The dilation ΔL/L of a single-domain crystal is converted to the ratio of the pseudo-cubic cell constants a(T)/a(T/sub a/) by the equation a(T)/a(T/sub a/) = [1 + (ΔL/L)/sub T/]/[1 + (ΔL/L)/sub T//sub a/], where L is the specimen length, T/sub a/ is the cubic-to-tetragonal transition temperature and T 6 octahedra around the [001] axis. The temperature at which the dilation shows a minimum, 37.5 K, is very close to the transition point T/sub c/ = (32 +- 5) K predicted by Cowley. (author)

  17. Effects of Sr2+ doping on the electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Amrita Singh

    2015-03-01

    Full Text Available The influence of SrTiO3 addition on the microstructure and various electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 (BNTBT6 ceramics, fabricated by a conventional high temperature solid state reaction, was investigated. Analysis of X-ray diffraction patterns revealed the formation of phase pure materials with tetragonal unit cell structure, tetragonality parameter c/a in the interval from 0.9940 to 1.0063 and crystallite sizes ranging from 33–76 nm for addition of 0.2 to 1 wt.% of SrTiO3. SEM studies indicated that Sr2+ doping led to decrease in grain size and non-homogeneity of grain distribution for higher SrTiO3 amount (>0.6 wt.%. Complex impedance, modulus, and conductivity studies indicated the presence of grains and grain boundary contribution, non-Debye type of relaxation and NTCR behaviour of the test ceramic samples. Temperature dependent real part of complex permittivity showed peaks at 475 °C and the dielectric loss tangent showed peaks corresponding to 125 °C and 475 °C for almost all compositions. AC activation energies, computed using Arrhenius relation in the temperature range of 325–500 °C for the BNTBT6 ceramic compositions having SrTiO3 concentration from 0.2 to 1.0 wt.%, were seen to have maximal values at the lowest measurement frequency. Amongst the different chosen doped BNTBT6 ceramic compositions, the composition having 0.6 wt.% of SrTiO3 showed the best ferroelectric and piezoelectric response with maximum value of Pr (8.24 µC/cm2, minimum value of Ec (5.73 kV/mm and maximum d33 value (∼46 pC/N.

  18. Photocatalytic and microwave absorbing properties of polypyrrole/Fe-doped TiO2 composite by in situ polymerization method

    International Nuclear Information System (INIS)

    Li Qiaoling; Zhang Cunrui; Li Jianqiang

    2011-01-01

    Research highlights: → Polypyrrole/Fe-doped TiO 2 composite is prepared by in situ polymerization of pyrrole on the Fe-doped TiO 2 template. → The Fe-doped TiO 2 microbelts are prepared by sol-gel method using the absorbent cotton template for the first time. → Then the Fe-doped TiO 2 microbelts are used as template for the preparation of polypyrrole/Fe-doped TiO 2 composites. → The structure, morphology and properties of the composites are characterized with scanning electron microscope (SEM), IR, Net-work Analyzer. → A possible formation mechanism of Fe-doped TiO 2 microbelts and polypyrrole/Fe-doped TiO 2 composites has been proposed. → The effect of the mol ratio of pyrrole/Fe-doped TiO 2 on the photocatalysis properties and microwave loss properties of the composites is investigated. - Abstract: The Fe-doped TiO 2 microbelts were prepared by sol-gel method using the absorbent cotton template for the first time. Then the Fe-doped TiO 2 microbelts were used as templates for the preparation of polypyrrole/Fe-doped TiO 2 composites. Polypyrrole/Fe-doped TiO 2 composites were prepared by in situ polymerization of pyrrole on the Fe-doped TiO 2 template. The structure, morphology and properties of the composites were characterized with scanning electron microscope (SEM), FTIR, Net-work Analyzer. The possible formation mechanisms of Fe-doped TiO 2 microbelts and polypyrrole/Fe-doped TiO 2 composites have been proposed. The effect of the molar ratio of pyrrole/Fe-doped TiO 2 on the photocatalytic properties and microwave loss properties of the composites was investigated.

  19. The effect of Ni and Fe doping on Hall anomaly in vortex state of doped YBCO samples

    Directory of Open Access Journals (Sweden)

    M Nazarzadeh

    2010-09-01

    Full Text Available We have investigated hall effect on YBa2Cu3-xMxO7-δ (M=Ni, Fe bulk samples, with dopant amount 0 ≤ x ≤ 0.045 for Ni and 0 ≤ x ≤ 0.03 for Fe, with magnetic field (H=2.52, 4.61, 6.27 kOe perpendicular to sample’s surface with constant current 100 mA. Our study shows that as both dopants increases, TC decreases and it decreases faster by Ni . In these ranges of dopant and magnetic field the Hall sign reversal has been observed in all samples once and also ∆max has occurred in lower temperatures, its magnitude increases by Ni, and in Fe doped samples except in sample with dopant amount x=0.03, which almost decreases, that it can show effect of magnetic doping on hall effect.

  20. Effect of Fe and C doping on the thermal release of helium from aluminum

    International Nuclear Information System (INIS)

    Xiang, X.; Chen, C.A.; Liu, K.Z.; Peng, L.X.; Rao, Y.C.

    2010-01-01

    The effect of Fe and C doping on the thermal release of helium from Al implanted with 10 keV, 4.0 x 10 21 ion/m 2 He at room temperature (RT) has been investigated by thermal helium desorption spectrometry (THDS) and transmission electron microscope (TEM). The results show that Fe and C doping have significant impact on the release of helium from Al and the extent depends on the doping fluence. Proper fluence of Fe and C doping would lead to the retardation of the release of helium from Al, while excessive fluence of Fe and C doping would result in more desorption peaks and the release of helium in lower temperature ranges. Fe and C doping have different influence on the release of helium from Al, and the difference is related with the secondary phases forming in the samples.

  1. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    Science.gov (United States)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

  2. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van, Tendeloo, G.; Wang, J.; Wu, Tao

    2013-01-01

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures

  3. Dependences on RE of superconducting properties of transition metal co-doped (Ca, RE)FeAs_2 with RE = La–Gd

    International Nuclear Information System (INIS)

    Yakita, H.; Ogino, H.; Sala, A.; Okada, T.; Yamamoto, A.; Kishio, K.; Iyo, A.; Eisaki, H.; Shimoyama, J.

    2015-01-01

    Highlights: • We synthesized Co or Ni co-doped (Ca, RE)FeAs_2 with RE = La–Gd. • Co or Ni co-doping improved superconducting properties of all (Ca, RE)FeAs_2 samples. • T_c of (Ca, RE)FeAs_2 decreased with decreasing ionic radii of RE"3"+. • Eu doped samples showed exceptionally low T_c and long interlayer distance. • Long interlayer distance of Eu doped samples suggested co-existence of Eu"2"+ and Eu"3"+. - Abstract: Dependence of superconducting properties of (Ca, RE)(Fe, TM)As_2 [(Ca, RE)112, TM: Co, Ni)] on RE elements (RE = La–Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca, RE)112, which is similar to Co-co-doped (Ca, La)112 or (Ca, Pr)112. T_c of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE"3"+. However, Co-co-doped (Ca, Eu)112 showed exceptionally low T_c = 21 K probably due to the co-existence of Eu"3"+ and Eu"2"+ suggested by longer interlayer distance d_F_e_–_F_e of (Ca, Eu)112 than other (Ca, RE)112.

  4. Bottom-up synthesis of up-converting submicron-sized Er3+-doped LiNbO3 particles

    International Nuclear Information System (INIS)

    Jardiel, T.; Caballero, A.C.; Marín-Dobrincic, M.; Cantelar, E.; Cussó, F.

    2012-01-01

    A new and simple wet chemical synthesis method is proposed to prepare submicron-sized Erbium-doped LiNbO 3 powders. The synthesis procedure comprises the co-precipitation of lithium and erbium ions from common precursors and their subsequent reaction with niobium ethoxide. A systematic characterization by means of X-Ray Diffraction (XRD), X-ray Fluorescence (XRF), Inductively Coupled Plasma (ICP-OES), Atomic Absorption (AAS), Field Emission Scanning Electron Microscopy (FE-SEM), as well as by the examination of the luminescence properties, evidence that with this method a congruent Er 3+ -doped LiNbO 3 single phase material can be obtained without using complex and time-consuming processing steps. The synthesized powders exhibit efficient IR to VIS up-conversion emissions under 974 nm pumping. -- Highlights: ► A novel chemical route to the preparation of LiNbO 3 powders has been developed. ► This process avoids complex and time-consuming processing steps. ► A congruent Er 3+ -doped LiNbO 3 single phase material can be obtained by this way. ► The luminescence properties are the expected for this composition.

  5. Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    GolafroozShahri, S.; Roknabadi, M.R., E-mail: roknabad@um.ac.ir; Shahtahmasebi, N.; Behdani, M.

    2016-12-15

    An ab-initio study on the spin-polarized transport properties of H-passivated Fe-doped graphyne nanoribbons is presented. All the calculations were based on density functional theory (DFT). Doping single magnetic atom on graphyne nanoribbons leads to metallicity which can significantly improve the conductivity. The currents are not degenerate for both up and down spin electrons and they are considerably spin-polarized. Therefore a relatively good spin-filtering can be expected. For configurations with geometric symmetry spin-rectifying is also observed. Therefore they can be applied as a dual spin-filter or a dual spin-diode in spintronic equipment. - Highlights: • The existence of Fe additional electrons lead to metallicity. • Doping magnetic atom on studied n-AGyNRs, has improved the conductance of nanoribbons. • The current for both spin electrons is considerably spin-polarized. • Threshold voltage decreased by increasing the width of ribbon. • For configurations with geometric symmetry spin-rectifying effect was also observed.

  6. Influence of Co doping on structural, optical and magnetic properties of BiFeO3 films deposited on quartz substrates by sol-gel method

    Science.gov (United States)

    Peng, Lin; Deng, Hongmei; Tian, Jianjun; Ren, Qing; Peng, Cheng; Huang, Zhipeng; Yang, Pingxiong; Chu, Junhao

    2013-03-01

    Multiferroic BiFe1-xCoxO3 (x = 0, 0.03, 0.05, 0.1) thin films have been prepared on quartz substrates using a sol-gel technique. X-ray diffraction data confirms that Co atoms have been successfully incorporated into the host lattice. The scanning electron microscopy (SEM) exhibits that the surface morphologies of BiFe0.97Co0.03O3 and BiFe0.95Co0.05O3 thin films become more compact and uniform. With increasing Co dopant, the position of A1-1 and E-4 modes shift towards the lower wavenumber indicates that Co doping induces structural distortion of BiFeO3. With increasing Co composition, the fundamental absorption edges of BiFe1-xCoxO3 films show red shift. Furthermore, transmittance spectra demonstrates that the optical band gap of BiFe1-xCoxO3 films decreases from 2.66 eV to 2.53 eV with the increase of Co from x = 0 to 0.1. At the wavelength of 720 nm, the refractive index decreases and the extinction coefficient increases with increasing the amount of Co. Optical properties reveal that Co doping in BiFeO3 provides preliminary research for optoelectronic devices and infrared detectors. Compared with BiFeO3 prepared under similar conditions, the remanent magnetization Mr of BiFe1-xCoxO3 (x = 0.03, 0.05, 0.1) thin films significantly enhanced, which provides potential applications in information storage.

  7. Synthesis and Electrochemical Properties of Fe-doped V6O13 as Cathode Material for Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    YUAN Qi

    2018-01-01

    Full Text Available Fe-doped V6O13 was synthesized via a facile hydrothermal method after preparing precursor in order to improve the discharge capacity and cycle performance of V6O13 cathode material at high-lithium state. XRD, SEM and XPS were employed to characterize the phase, morphology and valence of the Fe-doped V6O13. Meanwhile, the electrochemical performance was analyzed and researched. Different morphologies and electrochemical performances of Fe-doped V6O13 were obtained via doping different contents of Fe3+ ion. The sample 0.02 presented the largest thickness of nanosheets (the thickness of 600-900nm and clearance between layers. The Fe-doped V6O13 has a better electrochemical performance than that of pure V6O13. The sample 0.02 exhibits the best electrochemical performance, the initial discharge specific capacity is 433mAh·g-1 and the capacity retention is 47.1% after 100 cycles.

  8. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide

    International Nuclear Information System (INIS)

    Wang Shiliang; He Yuehui; Zou Jou; Wang Yong; Huang Han

    2009-01-01

    Numbers of W whiskers were obtained by reducing Ni, Ni-Fe, and Ni-Co doped tungsten oxide in a mixed atmosphere of humid H 2 and N 2 . The phases and morphologies of the reduction products were characterized by XRD and SEM. Intensive TEM and EDS analyses showed that the obtained whiskers were W single crystals which typical have alloyed particles (Ni-W, Fe-Ni, or Co-Ni-W) at the growth tips. The formed W whiskers were presumed to be induced by the alloyed particles. Our experimental results revealed that, during the reduction process of tungsten oxide, the pre-reduced Ni, Fe-Ni, or Co-Ni particles not only served as nucleation aids for the initial growth of W phase from W oxide but also played the roles of catalysts during the reductive decomposition of gaseous WO 2 (OH) 2 .

  9. Effect of Nd substitution for Ca on crystal structure, optical and magnetic properties of multiferroic Bi0.9Ca0.1FeO3

    International Nuclear Information System (INIS)

    Quan, Chuye; Ma, Yuhui; Han, Yumin; Tang, Xingxing; Lu, Mengjia; Mao, Weiwei; Zhang, Jian; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Highlights: • Crystal structure of doped samples transform to two phase coexistence. • The crystal size decreased to ∼50 nm after doping. • Ultraviolet absorption peak demonstrates apparent blue shift for doped sample. • The ratio of Fe 2+ increased by merging Nd. • Ca, Nd co-doped can promote the ferromagnetism obviously. - Abstract: Pure and co-doped BiFeO 3 (Ca, Nd) nanoparticles with diameter in the range of 50–250 nm were synthesized through a sol–gel method. X-ray diffraction (XRD) and Raman results show that Bi-site co-doped with Ca, Nd could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). An apparent blue shift can be observed in the co-doped samples along with a decrease of the direct optical band gap. Moreover, the leakage current was decreased due to the introduction of nonvolatile Ca and Nd at Bi 3+ site. Analysis of MPMS-VSM magnetic hysteresis data reveals a further enhancement in magnetism in the Nd doped Bi 0.9 Ca 0.1 FeO 3, which is further explained by XPS characterization

  10. Unique reactivity of Fe nanoparticles-defective graphene composites toward NH x (x = 0, 1, 2, 3) adsorption: A first-principles study

    KAUST Repository

    Liu, Xin

    2012-01-01

    We investigated the electronic structure of Fe nanoparticle-graphene composites and the impact of the interfacial interaction on NH x (x = 0, 1, 2, 3) adsorption by first-principles based calculations. We found that Fe 13 nanoparticles can be stabilized by the sp 2 dangling bonds on single vacancy graphene substrate with a binding energy up to -7.07 eV. This interaction not only deformed the carbon atoms around the defect and gave rise to the stability of the Fe nanoparticle against sintering, but also had significant impact on the adsorption of NH x that is related to the catalytic performance of these composites in NH 3 decomposition. Doping of the single vacancy graphene with N or B can finely tune the adsorption of NH x. Further analysis revealed that the calculated adsorption energies of NH x on these composites correlated well with the shift of the average d-band center of the Fe nanoparticles and they were around the peak of the activity-adsorption energy curve for NH 3 decomposition catalysts, especially when doped with B. The optimal adsorption of NH x on Fe nanoparticles deposited on boron-doped defective graphene suggests the possible high stability and superior catalytic performance of these composites in the low-temperature catalytic decomposition of NH 3. This journal is © 2012 the Owner Societies.

  11. Single-crystal SrTiO3 fiber grown by laser heated pedestal growth method: influence of ceramic feed rod preparation in fiber quality

    Directory of Open Access Journals (Sweden)

    D. Reyes Ardila

    1998-10-01

    Full Text Available The rapidly spreading use of optical fiber as a transmission medium has created an interest in fiber-compatible optical devices and methods for growing them, such as the Laser Heated Pedestal Growth (LHPG. This paper reports on the influence of the ceramic feed rod treatment on fiber quality and optimization of ceramic pedestal processing that allows improvements to be made on the final quality in a simple manner. Using the LHPG technique, transparent crack-free colorless single crystal fibers of SrTiO3 (0.50 mm in diameter and 30-40 mm in length were grown directly from green-body feed rods, without using external oxygen atmosphere.

  12. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

    2013-01-01

    As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

  13. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  14. Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity.

    Science.gov (United States)

    Asmara, T C; Annadi, A; Santoso, I; Gogoi, P K; Kotlov, A; Omer, H M; Motapothula, M; Breese, M B H; Rübhausen, M; Venkatesan, T; Ariando; Rusydi, A

    2014-04-14

    In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e(-) from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥ 4 unit cells of LaAlO3) there is indeed a ~0.5e(-) transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤ 3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e(-) is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.

  15. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    Directory of Open Access Journals (Sweden)

    N. Srisittipokakun

    Full Text Available In this research, glass productions from rice husk ash (RHA and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm and Fe2+ (1050 nm ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction. Keywords: Rice husk ash, Glass, Optical, Physical

  16. Orthorhombic polar Nd-doped BiFeO3 thin film on MgO substrate

    International Nuclear Information System (INIS)

    Leontyev, I N; Janolin, P-E; Dkhil, B; Yuzyuk, Yu I; El-Marssi, M; Chernyshov, D; Dmitriev, V; Golovko, Yu I; Mukhortov, V M

    2011-01-01

    A Nd-doped BiFeO 3 thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45 0 with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  17. Structural and electrochemical properties of Cl-doped LiFePO{sub 4}/C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.S.; Zhang, Y.; Zhang, X.J.; Zhou, Z. [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2010-06-01

    Cl-doped LiFePO{sub 4}/C cathode materials were synthesized through a carbothermal reduction route, and the microstructure and electrochemical performances were systematically studied. Cl-doped LiFePO{sub 4}/C cathode materials presented a high discharge capacity of {proportional_to}90 mAh g{sup -1} at the rate of 20 C (3400 mA g{sup -1}) at room temperature. Electrochemical impedance spectroscopy and cyclic voltamperometry indicated the optimized electrochemical reaction and Li{sup +} diffusion in the bulk of LiFePO{sub 4} due to Cl-doping. The improved Li{sup +} diffusion capability is attributed to the microstructure modification of LiFePO{sub 4} via Cl-doping. (author)

  18. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction

    Science.gov (United States)

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-01

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe3+-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ~10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR.In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe3+-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ~10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O

  19. Two-dimensional thermoelectric Seebeck coefficient of SrTiO3-based superlattices

    International Nuclear Information System (INIS)

    Ohta, Hiromichi

    2008-01-01

    This review provides the origin of the unusually large thermoelectric Seebeck coefficient vertical stroke S vertical stroke of a two-dimensional electron gas confined within a unit cell layer thickness (∝0.4 nm) of a SrTi 0.8 Nb 0.2 O 3 layer of artificial superlattices of SrTiO 3 /SrTi 0.8 Nb 0.2 O 3 [H. Ohta et al., Nature Mater. 6, 129 (2007)]. The vertical stroke S vertical stroke 2D values of the[(SrTiO 3 ) 17 /(SrTi 0.8 Nb 0.2 O 3 ) y ] 20 superlattice increase proportional to y -0.5 , and reach 290 μV K -1 (y=1) at room temperature, which is ∝5 times larger than that of the SrTi 0.8 Nb 0.2 O 3 bulk (vertical stroke S vertical stroke 3D =61 μVK -1 ), proving that the density of states in the ground state for SrTiO 3 increases in inverse proportion to y. The critical barrier thickness for quantum electron confinement is also clarified to be 6.25 nm (16 unit cells of SrTiO 3 ). Significant structural changes are not observed in the superlattice after annealing at 900 K in a vacuum. The value of vertical stroke S vertical stroke 2D of the superlattice gradually increases with temperature and reaches 450 μVK -1 at 900 K, which is ∝3 times larger than that of bulk SrTi 0.8 Nb 0.2 O 3 . These observations provide clear evidence that the [(SrTiO 3 ) 17 /(SrTi 0.8 Nb 0.2 O 3 ) 1 ] 20 superlattice is stable and exhibits a giant vertical stroke S vertical stroke even at high temperature. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar

    2011-03-29

    The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.

  1. Promoting Photocatalytic Overall Water Splitting by Controlled Magnesium Incorporation in SrTiO3 Photocatalysts

    NARCIS (Netherlands)

    Han, Kai; Lin, Yen Chun; Yang, Chia Min; Jong, Ronald; Mul, Guido; Mei, Bastian

    2017-01-01

    SrTiO3 is a well-known photocatalyst inducing overall water splitting when exposed to UV irradiation of wavelengths <370 nm. However, the apparent quantum efficiency of SrTiO3 is typically low, even when functionalized with nanoparticles of Pt or Ni@NiO. Here, we introduce a simple solid-state

  2. Approach to Exchange Bias Effect in La2/3Ca1/3MnO3/BiFeO3 and BiFeO3/ La2/3Ca1/3MnO3 Bilayers

    Science.gov (United States)

    Dominguez, Claribel; Ordonez, John; Diez, Sandra; Gomez, Maria; Guénon, Stefan; Schuller, Ivan

    2013-03-01

    We have grown bilayers of ferromagnetic La2/3Ca1/3MnO3 (LCMO) and multiferroic BiFeO3 (BFO) on (100) SrTiO3 (STO) substrates, by DC- and magnetron RF -sputtering technique, respectively, at high-oxygen pressures. We maintain constant the thickness of the layers (tBFO=72nm; tLCMO=80nm). Temperature dependence of the resistivity indicates that the MI-transition temperature of the manganite in the BFO/LCMO/STO is affected by the presence of the BFO layer in comparison with TMI for the single LCMO layer. Furthermore, temperature dependence of magnetization shows that the BFO/LCMO/STO bilayer has higher Curie temperature than that for LCMO/BFO/STO, indicating a strong structural dependence of the LCMO layer with magnetic response. The dependence of the magnetic moment with magnetic field after field cooling gives indication of the existence of Exchange Bias effect in the LCMO/BFO/STO bilayer. Isothermal loops also display dependence of the Exchange Bias magnitude with field cooling. This work has been supported by UNIVALLE Research Project CI 7864, and ``El Patrimonio Autónomo Fondo Nacional de Financiamiento para CT&I FJC,'' Contract RC - No. 275-2011, COLCIENCIAS-CENM, Colombia

  3. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Song, Hong-tao; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2014-01-01

    Highlights: • Fe-doped and Pt-doped graphene can significantly improve the interactions between H 2 S and graphene. • The location of S had an important role in the interactions between H 2 S and Fe-doped graphene. • The influence of Fe-S distance can be very weak in a certain range and H 2 S can be dissociated into S and H 2 . - Abstracts: Understanding the interaction mechanisms of hydrogen sulfide (H 2 S) with graphene is important in developing graphene-based sensors for gas detection and removal. In this study, the effects of doped Fe atom on interaction of H 2 S with graphene were investigated by density functional theory calculations. Analyses of adsorption energy, electron density difference, and density of states indicated that the doped Fe atom can significantly improve the interaction of H 2 S gas molecules with graphene, as well as Pt-doped graphene. The location of the sulfur atom is important in the interactions between H 2 S and Fe-doped graphene. The influence of the Fe-S distance can be very weak within a certain distance, as simulated in this study

  4. Dielectric and magnetic properties of Ba-, La- and Pb-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Radheshyam Rai

    2014-04-01

    Full Text Available The multiferroic Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3, (where M = Ba (DB, La (DL and Pb (DP has been synthesized by using solid-state reaction technique. Effects of Ba, La and Pb substitution on the structure, electrical and ferroelectric properties of Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 samples have been studied by performing X-ray diffraction, dielectric and magnetic measurements. The crystal structures of the ceramic samples have a tetragonal phase. The vibrating sample magnetometer (VSM measurement shows a significant change in the magnetic properties of Ba-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 as compared to La- and Pb-doped ceramics. It is seen that coercive field (HC and remanent magnetization (MR increases with Ba-doped ceramics but decreases for La- and Pb-doped ceramics.

  5. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  6. Experimental and first principles investigation of the multiferroics BiFeO{sub 3} and Bi{sub 0.9}Ca{sub 0.1}FeO{sub 3}: Structure, electronic, optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Quan, Chuye [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Ma, Yuhui [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - Nanjing Tech, 30 South Puzhu Road, Nanjing 211816 (China); Han, Yumin; Wu, Zhenli [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Mao, Weiwei [Key Laboratory for Organic Electronics & Information Displays - KLOEID, Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); and others

    2016-01-15

    We propose first-principles methods to study the structure, electronic, optical and magnetic properties of BiFeO{sub 3} (BFO) and Bi{sub 0.9}Ca{sub 0.1}FeO{sub 3} (BCFO). The morphology, optical band gap as well as magnetic hysteresis also have been investigated using experimental methods. X-ray diffraction data shows that Bi-site doping with Ca could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). Changing of Fermi level and decreasing of band gap indicating that the Ca-doped BFO exhibit a typical half-metallic nature. The optical absorption properties are related to the electronic structure and play the key role in determining their band gaps, also we have analyzed the inter-band contribution to the theory of optical properties such as absorption spectra, dielectric constant, energy-loss spectrum, absorption coefficient, optical reflectivity, and refractive index of BCFO. Enhancement of magnetic properties after doping is proved by both experimental and calculated result, which can be explained by size effect and structural distortion.

  7. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    Science.gov (United States)

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evolution of Spin fluctuations in CaFe2As2 with Co-doping.

    Science.gov (United States)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.

  9. Growth and Structural, Magnetic, and Magnetooptical Properties of ZnO Films Doped with a Fe57 3 d Impurity

    Science.gov (United States)

    Mezdrogina, M. M.; Aglikov, A. S.; Semenov, V. G.; Kozhanova, Yu. V.; Nefedov, S. G.; Shelukhin, L. A.; Pavlov, V. V.

    2018-03-01

    ZnO films obtained by high-frequency magnetron sputtering and doped with a Fe57 metallic 3 d impurity by the diffusion method are studied. The type of local environment of Fe57 impurity atoms on varying the deposition parameters of ZnO films is determined by Mössbauer spectroscopy. It is established that the ground state of Fe57 impurity atoms corresponds to metallic iron in the magnetically ordered state and there is a small fraction of Fe57 atoms with a local environment corresponding to the complex oxide Fe3O4, having the magnetically ordered state; there is also a fraction of iron atoms in the paramagnetic state. The magnetic and magnetooptical parameters of the films were measured using magnetooptic Kerr effect. The spectral dependences of the polar magnetooptic Kerr effect in ZnO(Fe57) films are measured in a photon energy range of 1.5-4.5 eV and simulated by the effective-medium method. It is established that ZnO(Fe57) possess an easy-plane magnetic anisotropy with a magnetization lying in the film plane.

  10. Study on superstructure in ion co-doped BiFeO3 by using transmission electron microscopy

    Science.gov (United States)

    Pu, Shi-Zhou; Guo, Chao; Li, Mei-Ya; Chen, Zhen-Lian; Zou, Hua-Min

    2015-04-01

    La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two kinds of superstructures are observed in the samples. One is the component modulated superstructure and twin-domain, which is generated by La3+ ordered substitution for Bi3+ and frequently appears. The chemical composition of the superstructure is explored by x-ray energy dispersive spectroscopy (EDS). The model of the ordered structure is proposed. Simulation based on the model is conducted. The second is the fluorite-type δ-Bi2O3 related superstructure. The relation between the ferroelectric property and the microstructure of the sample is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372174, 11074193, and 51132001) and the Fundamental Research Funds for the Central Universities.

  11. Monte Carlo simulations of magnetic order in Fe-doped manganites

    International Nuclear Information System (INIS)

    Alonso, J.; Gutierrez, J.; Barandiaran, J.M.; Bermejo, F.J.; Brey, L.

    2008-01-01

    The effect of Fe doping on the magnetic properties of La 0.7 Pb 0.3 Mn 1-x Fe x O 3 (x=0, 0.05, 0.1, 0.15 and 0.2) manganites is studied by the Monte Carlo simulation technique. As a first approximation, by means of a simple Heisenberg Hamiltonian, experimental normalized magnetizations at low temperatures have been reproduced for concentrations of Fe (x<0.2), but the calculated order temperatures show a large deviation from the measured ones. This shortcoming can be corrected by using a one electron effective hopping semi-classical Hamiltonian, with a simplified expression for the kinetic energy of the free electrons, which also avoids time-consuming diagonalizations

  12. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  13. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang, E-mail: polymerzf@swun.cn; Luo, Jianbin; Liu, Dong

    2016-08-15

    Graphical abstract: An efficient hydrothermal method was used to fabricate the superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2(*)+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures through a seed-growth procedure. Then using PEG phosphate ligand to displace oleate from the as-synthesized NPs, hydrophilic Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs with good water solubility are obtained. - Highlights: • Homogeneous size distribution of magnetic-upconversion core@shell structured nanoparticles (NPs) were synthesized. • The core@shell nanostructures were obtained by seed-growth method. • The oleic acid coated Fe{sub 3}O{sub 4} NPs were used as seeds and cores. • The magnetic-upconversion NPs emitted red luminescence under a 980 nm laser. • Synthesized magnetic-upconversion NPs were phase transferred using ligand exchange process. - Abstract: We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe{sub 3}O{sub 4} (OA-Fe{sub 3}O{sub 4}) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe{sub 3}O{sub 4} NPs were then used as seeds, on which the red upconversion luminescent shell (Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe{sub 3}O{sub 4} cores were uniformly coated with a Mn{sup 2+}-doped NaYF{sub 4}:Yb

  14. Investigation of crystal structure, dielectric and magnetic properties in La and Nd co-doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ompal [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Agarwal, Ashish, E-mail: aagju@yahoo.com [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Sanghi, Sujata [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Das, Amitabh [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Anju [Department of Physics, Chaudhary Devi Lal University, Sirsa 125025, Haryana (India)

    2017-03-15

    For the investigation of the crystal structure, dielectric properties and magnetic properties of La and Nd co-doped BiFeO{sub 3} multiferroics; Bi{sub 0.8}La{sub 0.2−x}Nd{sub x}FeO{sub 3} (x=0.075, 0.1, 0.125) samples were prepared through solid state reaction method. Rietveld refinement of the obtained XRD patterns shows that there is change in crystal structure in these samples. At higher concentration of La (at x=0.075), the crystal structure was found to have mixed symmetry with rhombohedral and triclinic phases, while with equal concentration of both the dopants (at x=0.1), the structure changes to mixed symmetry having rhombohedral and orthorhombic phases. At higher concentration of Nd (at x=0.125), again mixed symmetry was established having both phases of the previous composition but approximately in reverse fraction. In dielectric analysis, x=0.1 sample showed the highest values of dielectric constant (ε′) and dielectric loss (tan δ). For x=0.125 sample, it was observed that the dielectric constant and dielectric loss response are improved. The magnetic characterization (M–H loops) indicates the significant enhancement in magnetisation with increasing concentration of Nd. Nd doping leads to the destruction of spiral modulation, forming the antiferromagnets, and visualisation of improved magnetisation via canting of spins. - Highlights: • La and Nd co-doped BiFeO{sub 3} were synthesized. • Change in crystal structure is observed. • Significant enhancement in magnetisation is observed.

  15. Incipient 2D Mott insulators in extreme high electron density, ultra-thin GdTiO3/SrTiO3/GdTiO3 quantum wells

    Science.gov (United States)

    Allen, S. James; Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler; Chen, Ru; Balents, Leon; Stemmer, Susanne

    2013-03-01

    By reducing the number of SrO planes in a GdTiO3 /SrTiO3/ GdTiO3 quantum well heterostructure, an electron gas with ~ fixed 2D electron density can be driven close to the Mott metal insulator transition - a quantum critical point at ~1 electron per unit cell. A single interface between the Mott insulator GdTiO3 and band insulator SrTiO3 has been shown to introduce ~ 1/2 electron per interface unit cell. Two interfaces produce a quantum well with ~ 7 1014 cm-2 electrons: at the limit of a single SrO layer it may produce a 2D magnetic Mott insulator. We use temperature and frequency dependent (DC - 3eV) conductivity and temperature dependent magneto-transport to understand the relative importance of electron-electron interactions, electron-phonon interactions, and surface roughness scattering as the electron gas is compressed toward the quantum critical point. Terahertz time-domain and FTIR spectroscopies, measure the frequency dependent carrier mass and scattering rate, and the mid-IR polaron absorption as a function of quantum well thickness. At the extreme limit of a single SrO plane, we observe insulating behavior with an optical gap substantially less than that of the surrounding GdTiO3, suggesting a novel 2D Mott insulator. MURI program of the Army Research Office - Grant No. W911-NF-09-1-0398

  16. Magnetic and Mössbauer studies of pure and Ti-doped YFeO {sub 3} nanocrystalline particles prepared by mechanical milling and subsequent sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Widatallah, H. M., E-mail: hishammw@squ.edu.om; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Pekala, M. [University of Warsaw, Chemistry Department (Poland)

    2016-12-15

    Single-phased nanocrystalline particles of pure and 10 % Ti {sup 4+}-doped perovskite-related YFeO {sub 3}were prepared via mechanosynthesis at 450{sup ∘}C. This temperature is ∼150–350 {sup ∘}C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti {sup 4+} ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe {sup 3+} ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti {sup 4+} lowers the Néel temperature of the YFeO {sub 3} nanoparticles from ∼ 586 K to ∼ 521 K. The Ti {sup 4+}-doped YFeO {sub 3} nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The {sup 57}Fe Mössbauer spectra show ∼ 15 % of the YFeO {sub 3} nanoparticles and ∼22 of Ti {sup 4+}-doped YFeO {sub 3} ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the {sup 57}Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the {sup 57}Fe nuclear sites and were associated with collective magnetic excitations. The {sup 57}Fe Mössbauer spectra show the local environments of the Fe {sup 3+} ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti {sup 4+} ions relative to those in the larger magnetic nanoparticles.

  17. Magnetic properties of pure and Fe doped HoCrO{sub 3} thin films fabricated via a solution route

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shiqi; Sauyet, Theodore [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Guild, Curt [Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Suib, S.L. [Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Jain, Menka, E-mail: menka.jain@uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2017-04-15

    Multiferroic properties of orthorhombically distorted perovskite rare-earth chromites, such as HoCrO{sub 3}, are being investigated extensively in recent years. In the present work, we report on the effect of Fe substitution on the magnetic properties of HoCrO{sub 3} thin films. Thin films of HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} were fabricated via a solution route on platinized silicon substrates. Structural properties of the films were evaluated by X-ray diffraction and Raman spectroscopy techniques. The surface morphology and cross-sections of the films were examined using scanning electron microscopy. Optical band gaps of pure and Fe doped HoCrO{sub 3} films are found to be 3.45 eV and 3.39 eV, respectively. The magnetization measurements show that the Néel temperatures (where Cr{sup 3+} orders) for the HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} films are 134 and 148 K, respectively. In a magnetic field of 2 T, the maximum entropy change and relative cooling power, two parameters to evaluate the magnetocaloric properties of a material, were 0.813 J/kg K at 11 K and 21.1 J/kg for HoCrO{sub 3} film, in comparison with 0.748 J/kg K at 15 K and 26.8 J/kg for HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} film. To our knowledge, this is the first work exploring the band gap and magnetocaloric properties of rare-earth chromite thin films. These findings should inspire the development of rare-earth chromite thin films for temperature control of nanoscale electronic devices and sensors in the low temperature region (< 30 K). - Highlights: • Phase-pure HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3}films were fabricated on platinized Sivia a solution route. • This is the first work on the exploration of band gap and magnetocaloric properties of rare-earth chromitefilms. • From 0-2 T, maximum entropy change for the HoCrO{sub 3} film was 0.813 J/kg K at 11 K.From 0-2 T, maximum entropy change for HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} film was 0.748 J/kg K at 15

  18. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  19. Photoluminescence characteristics of reddish-orange Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jun Ho; Bandi, Vengala Rao; Grandhe, Bhaskar Kumar; Jang, Ki Wan; Lee, Ho Sueb [Changwon National University, Changwon (Korea, Republic of); Yi, Soung Soo [Silla University, Busan (Korea, Republic of); Jeong, Jung Hyun [Pukyong National University, Busan (Korea, Republic of)

    2011-02-15

    Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors were synthesized by using a conventional solid state reaction method at 750 .deg. C. The emission spectra of KZnGd{sub 1-x}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} with {lambda}{sub ex} = 395 nm and KZnGd{sub 1-y}(PO{sub 4}){sub 2}:Sm{sup 3+}{sub y} with {lambda}{sub ex} = 403 nm phosphors showed intense {sup 5}D{sub 0} {yields} {sup 7}F{sub 1}, {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} emission transitions at 595 nm and 599 nm, respectively. The optimum relative intensity of the KZnGd{sub 1-x-y}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} , Sm{sup 3+}{sub y} phosphor was obtained for the doping concentrations of (x = 0.09, y = 0.01). In addition, the temperature dependent luminescence intensity of the synthesized phosphors was investigated and the thermal stability of the KZnGd(PO{sub 4}){sub 2}:Eu{sup 3+} phosphor was found to be higher than that of standard YAG:Ce{sup 3+} and KZnGd{sub 1-x-y}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} Sm{sup 3+}{sub y} under near ultra-violet (NUV) light emitting diode excitation (LED). Therefore, we suggest that Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors should be efficient for different red-color-emitting display device applications and NUV-LED-based white-light-emitting diodes.

  20. Porous Carbon Spheres Doped with Fe_3C as an Anode for High-Rate Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Wu, Jiafeng; Zhou, Rihui; Zuo, Li; Li, Ping; Song, Yonghai; Wang, Li

    2015-01-01

    Highlights: • Novel porous carbon spheres doped with Fe_3C was prepared via hydrothermal reaction. • The resulted material was fabricated as an anode for high-rate lithium-ion batteries. • A stepwise increase profile was shown in the discharge/charge process. • Pseudocapacity was one of the properties owned by the as-prepared anode. - Abstract: The search of advanced anodes has been an important way to satisfy the ever-growing demands on high rate performance lithium-ion batteries (LIBs). It was observed that the capacity of Fe_3C as an anode is larger than its theoretical one, which might be attributed to the pseudocapacity on the interface between the carbide and electrolyte. In this work, a novel carbon sphere doped with Fe_3C nanoparticles was fabricated and tested as the anode in LIBs. In the first place, iron precursors were embedded in the cross-link polymer resorcinol-formaldehyde (RF) spheres via a facile hydrothermal reaction, in which RF served as the carbon source and ethanol as a dispersant agent. Consequently, the hydrothermal products were carbonized successively at 700 °C under inert atmosphere to obtain porous carbon spheres doped with Fe_3C. When the composite severed as an anode in LIBs, its discharge capacity increased to the largest during the first 250-400 cycles, then dropped down to a similar level of that after 1000 cycles at different current rates. The discharge capacity of the composite increased from ∼300 mAh g"−"1 to ∼540 mAh g"−"1 at the current of 100 mA g"−"1 during the initial hundreds cycles, and even a discharge capacity of ∼230 mAh g"−"1 at the current of 2000 mA g"−"1. Moreover, it was observed that a discharge plateau gradually appeared between 0.7∼1.1 V during the first hundreds of cycles. The electrochemical behaviors of the anode before 1000 discharge/charge cycles were compared with that after 1000 discharge/charge cycles by cyclic voltammetry and electrochemical impedance spectroscopy to find

  1. Magnetic anomalies in Fe-doped NiO nanoparticle

    Science.gov (United States)

    Pradeep, R.; Gandhi, A. C.; Tejabhiram, Y.; Mathar Sahib, I. K. Md; Shimura, Y.; Karmakar, L.; Das, D.; Wu, Sheng Yun; Hayakawa, Y.

    2017-09-01

    Undoped and iron-doped NiO nanoparticle were synthesized by standard hydrothermal method. A detailed study is carried out on the effect of dopant concentration on morphology, structural, resonance and magnetic properties of NiO nanoparticle by varying the Fe concentration from 0.01 to 0.10 M. The synchrotron-x-ray diffraction confirmed that no secondary phase was observed other than NiO. The x-ray photoelectron spectroscopy studies revealed that, Fe was primarily in the trivalent state, replacing the Ni2+ ion inside the octahedral crystal site of NiO. The Electron paramagnetic studies revealed the ferromagnetic cluster formation at high doping concentration (5 and 10%). The ZFC-FC curves displayed an average blocking temperature around 180 K due to particle size distribution. The anomalous behaviour of spontaneous exchange bias (H SEB) and magnetic remanence (M r) for all Fe-doped samples observed at 5 K showed an increase (0.1316-0.1384 emu g-1) in the moment of frozen spin (M p) as the dopant concentration increased. The role of frozen spin moment in spontaneous exchange bias behaviour was discussed.

  2. Scintillation and optical properties of Sn-doped Ga2O3 single crystals

    Science.gov (United States)

    Usui, Yuki; Nakauchi, Daisuke; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-06-01

    Sn-doped Ga2O3 single crystals were synthesized by the Floating Zone (FZ) method. In photoluminescence (PL) under the excitation wavelength of 280 nm, we observed two types of luminescence: (1) defect luminescence due to recombination of the donor/acceptor pairs which appears at 430 nm and (2) the nsnp-ns2 transitions of Sn2+ which appear at 530 nm. The PL and scintillation decay time curves of the Sn-doped samples were approximated by a sum of exponential decay functions. The faster two components were ascribed to the defect luminescence, and the slowest component was owing to the nsnp-ns2 transitions. In the pulse height spectrum measurements under 241Am α-rays irradiation, all the Sn-doped Ga2O3 samples were confirmed to show a full energy absorption peak but the undoped one. Among the present samples, the 1% Sn-doped sample exhibited the highest scintillation light yield (1,500 ± 150 ph/5.5 MeV-α).

  3. Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ying; Liu, Tao; Wang, Ning; Luo, Qiang; Lin, Hong; Li, Jianbao; Jiang, Qinglong; Wu, Lili; Guo, Zhanhu

    2017-08-01

    We report on high-efficiency planar heterojunction perovskite solar cells (PSCs) employing Ni-doped alpha-Fe2O3 as electron-transporting layer (ETL). The suitable addition of nickel (Ni) dopant could enhance the electron conductivity as well as induce downward shift of the conduction band minimum for alpha-Fe2O3, which facilitate electrons injection and transfer from the conduction band of the perovskite. As a consequence, a substantial reduction in the charge accumulation at the perovskite/ETL interface makes the device much less sensitive to scanning rate and direction, i.e., lower hysteresis. With a reverse scan for the optimized PSC under standard AM-1.5 sunlight illumination, it generates a competitive power conversion efficiency (PCE) of 14.2% with a large short circuit current (J(sc)) of 22.35 mA/cm(2), an open circuit photovoltage (V-oc) of 0.92 V and a fill factor (FF) of 69.1%. Due to the small J-V hysteresis behavior, a higher stabilized PCE up to 11.6% near the maximum power point can be reached for the device fabricated with 4 mol% Ni-doped alpha-Fe2O3 ETL compared with the undoped alpha-Fe2O3 based cell (9.2%). Furthermore, a good stability of devices with exposure to ambient air and high levels of ultraviolet (UV)-light can be achieved. Overall, our results demonstrate that the simple solution-processed Ni-doped alpha-Fe2O3 can be a good candidate of the n-type collection layer for commercialization of PSCs.

  4. Magnetic and dielectric study of Fe-doped CdSe nanoparticles

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad

    2018-01-01

    Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.

  5. Upper critical field and superconducting anisotropy of BaFe2-xRuxAs2 (x=0.48 and 0.75) single crystals

    International Nuclear Information System (INIS)

    Jo, Youn Jung; Eom, Man Jin; Kim, Jun Sung; Kang, W.

    2014-01-01

    The upper critical field (H c 2 ) was determined by applying a magnetic field along the ab plane and c axis for two single crystals of BaFe 2-x Ru x As 2 (x=0.48 and 0.75). The anisotropy of the H c 2 (0), γ(0)=H c 2 ab (0)/H c 2 c (0), was ∼1.6 for x=0.48 and ∼2.3 for x=0.75. The angle-dependent resistance measured below T c allowed perfect scaling features based on anisotropic Ginzburg-Landau theory, leading to consistent anisotropy values. Because only one fitting parameter γ is used in the scaling for each temperature, the validity of the γ value was compared with that determined from γ=H c 2 ab /H c 2 c . The γ obtained at a temperature close to Tc was 3.0 and decreased to 2.0 at low temperatures. Comparing to the anisotropy determined for electron- or hole-doped BaFe 2 As 2 using the same method, the present results point to consistent anisotropy in Ru-doped BaFe 2 As 2 with other electron- or hole-doped BaFe 2 As 2 .

  6. Site-specific doping, tunable dielectric properties and intrinsic ...

    Indian Academy of Sciences (India)

    Mn doping in SrTiO3 leads to the emergence of qualitatively distinct and novel physi- cal properties. We show that .... Mn K-edge XANES spectra of TiMn and SrMn, along with few reference compounds: SrMnO3 [20] ..... Mn3O4 nanoparticles,.

  7. Low temperature preparation and superconductivity of F-doped SmFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Cui, Y.J. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Yang, Y.; Wang, L.; Li, Y.C.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2010-11-01

    A low temperature (1100 deg. C) process of preparing F-doped SmFeAsO samples has been developed using SmF{sub 3} with nanometer scale as the source of fluorine. A series of the SmFeAsO{sub 1-x}F{sub x} (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples have been prepared using the present method. Compared with previous reports, the present SmF{sub 3} is more effective to introduce F into SmFeAsO system in which a transition temperature of 39 K can be observed when x = 0.05. The superconductivity is definitely enhanced with the increasing F-doping level. All the samples presented to be layered structure and the crystal particle size is about three times larger with sintering time increasing from 36 h to 48 h. Except for the nanometer scale of SmF{sub 3}, the flux effect of SmF{sub 3} is recognized to be another reason for the decrease of the sintering temperature. Further more, a relatively large amount of SmF{sub 3} was also employed in the raw materials to introduce excessive F and this has induced higher T{sub c} (55 K) in SmFeAsO{sub 0.8}F{sub 0.2+{delta}}system.

  8. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    NARCIS (Netherlands)

    Farokhipoor, S.; Noheda, Beatriz

    2012-01-01

    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71 degrees domain walls. A smaller amount of 109 degrees domain walls are also present at the boundaries between two adjacent

  9. Effect of (Nd, Ni) co-doped on the multiferroic and photocatalytic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Vanga, Pradeep Reddy [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirapalli 620 015 (India); Mangalaraja, R.V. [Department of Materials Engineering, University of Concepcion, Concepcion (Chile); Ashok, M., E-mail: ashokm@nitt.edu [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirapalli 620 015 (India)

    2015-12-15

    Highlights: • Sol–gel synthesis. • Saturation magnetization and ferroelectricity increases in Ni co-doped samples. • Conduction mechanism is different in Nd doped and (Nd, Ni) co-doped samples. • Samples show good photocatalytic activity in the presence of H{sub 2}O{sub 2}. - Abstract: Bi{sub 0.95}Nd{sub 0.05}Fe{sub 1−x}Ni{sub x}O{sub 3} (x = 0, 0.01, 0.03 and 0.05) samples are synthesized by solgel method. The phase and crystal structure of the samples are confirmed by X-ray diffraction studies, Rietveld refinement is performed to calculate the structural parameters. The reflectance spectra show bands in UV and visible region and the optical band gap is calculated using Kulbeka–Munk function. The magnetization and leakage current density are strongly influenced by doping. Different conduction mechanisms are observed in Nd doped and Ni co-doped samples. All the samples exhibit ferroelectric nature at various frequencies. Photocatalytic activities of the samples are determined by the degradation of methylene blue dye in the presence of visible light and H{sub 2}O{sub 2} which shows samples are good photo-Fenton like catalyst.

  10. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    Science.gov (United States)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.

  11. Temperature effect on the retention of U(VI) by SrTiO3

    International Nuclear Information System (INIS)

    Garcia Rosales, G.

    2007-11-01

    The purpose of this research was the study of the interaction mechanisms between U(VI) ions and SrTiO 3 surfaces versus pH and temperature: 25, 50, 75 and 90 C. Firstly, a physicochemical characterization was realized (DRX, MEB, FTIR) and the surface site density was determined. The potentiometric titration data were simulated, for each temperature, using the constant capacitance model and taking into account bath protonation of the ≡Sr-OH surface sites and deprotonation of the ≡Ti-OH ones (one pK a model). Both enthalpy and entropy changes, corresponding to the surface acid-base reactions, were evaluated using the van't Hoff relation. U(VI) was sorbed onto SrTiO 3 powder in the pH range 0.5-5.0 with an U(VI) initial concentration 1.10 -4 M. By TRLIFS two U(VI) complexes were detected associated with two lifetime values (60 ± 5 and 12 ± 2 μs at 25 C). The sorption edges were simulated using FITEQL 4.0 software. The surface complexation constants of the system SrTiO 3 /U(VI) between 25 and 90 C temperature range were thus obtained with the constant capacitance model considering two reactive surface sites. It reveals that two types of surface complex, namely [(≡SrOH)(≡TiOH)UO 2 ] 2+ and [(≡TiOH)(≡TiO)UO 2+ ] 2+ , are needed to properly describe the experimental observations. By application of the van't Hoff equation, Delta R S 0 and Delta R H 0 were obtained, which indicated an endothermic sorption process. Finally, an energy transfer study was realised by TRLIFS. The energy transfer between Tb 3+ and Eu 3+ ions sorbed onto SrTiO 3 powders were investigated. The results showed that the energy transfer between Tb 3+ and Eu 3+ is a non-radiative process and follows a dipole-dipole type interaction. A formalism based on the Dexter and the Inokuti-Hirayama theories was used to calculate the distances (2,7-3,4 Angstroms between Tb 3+ and Eu 3+ onto SrTiO 3 surface. (author)

  12. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  13. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  14. Efficient charge carriers induced by extra outer-shell electrons in iron-pnictides: a comparison between Ni- and Co-doped CaFeAsF

    International Nuclear Information System (INIS)

    Zhang Min; Yu Yi; Tan Shun; Zhang Yuheng; Zhang Changjin; Zhang Lei; Qu Zhe; Ling Langsheng; Xi, Chuanying

    2010-01-01

    A comprehensive study of the difference between CaFe 1-x Ni x AsF and CaFe 1-x Co x AsF systems has been carried out by measuring the efficient charge carrier concentration, the valence states and the superconducting phase diagram. It is found that at the same doping level, Ni doping introduces nearly twice the number of charge carriers as Co doping. However, x-ray absorption near-edge spectroscopy measurements reveal that the valence state of Fe in both systems is close to 2, indicating that there is no valence mismatch. We suggest that the charge carriers in CaFe 1-x M x AsF (M=transition metal elements) are not induced by valence mismatch but come from the difference in the number of outer-shell electrons. We also suggest that with Ni and Co doping, the systems change from a multi-band material in the underdoped regions to a single-band state in the overdoped regions.

  15. Effect of Nd substitution for Ca on crystal structure, optical and magnetic properties of multiferroic Bi{sub 0.9}Ca{sub 0.1}FeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Chuye; Ma, Yuhui; Han, Yumin; Tang, Xingxing; Lu, Mengjia [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Mao, Weiwei [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Zhang, Jian [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Yang, Jianping [School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Li, Xing’ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); and others

    2015-06-25

    Highlights: • Crystal structure of doped samples transform to two phase coexistence. • The crystal size decreased to ∼50 nm after doping. • Ultraviolet absorption peak demonstrates apparent blue shift for doped sample. • The ratio of Fe{sup 2+} increased by merging Nd. • Ca, Nd co-doped can promote the ferromagnetism obviously. - Abstract: Pure and co-doped BiFeO{sub 3} (Ca, Nd) nanoparticles with diameter in the range of 50–250 nm were synthesized through a sol–gel method. X-ray diffraction (XRD) and Raman results show that Bi-site co-doped with Ca, Nd could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). An apparent blue shift can be observed in the co-doped samples along with a decrease of the direct optical band gap. Moreover, the leakage current was decreased due to the introduction of nonvolatile Ca and Nd at Bi{sup 3+} site. Analysis of MPMS-VSM magnetic hysteresis data reveals a further enhancement in magnetism in the Nd doped Bi{sub 0.9}Ca{sub 0.1}FeO{sub 3,} which is further explained by XPS characterization.

  16. Plasma plume effects on the conductivity of amorphous-LaAlO3/SrTiO3 interfaces grown by pulsed laser deposition in O2 and Ar

    DEFF Research Database (Denmark)

    Sambri, A.; Christensen, Dennis; Trier, Felix

    2012-01-01

    Amorphous-LaAlO3/SrTiO3 interfaces exhibit metallic conductivity similar to those found for the extensively studied crystalline-LaAlO3/SrTiO3 interfaces. Here, we investigate the conductivity of the amorphous-LaAlO3/SrTiO3 interfaces grown in different pressures of O2 and Ar background gases...

  17. Orthorhombic polar Nd-doped BiFeO{sub 3} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, I N; Janolin, P-E; Dkhil, B [Laboratoire Structures, Proprietes et Modelisation des Solides, UMR CNRS-Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex (France); Yuzyuk, Yu I [Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090 (Russian Federation); El-Marssi, M [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Chernyshov, D; Dmitriev, V [Swiss-Norwegian Beam Lines at ESRF, Boite Postale 220, F-38043 Grenoble (France); Golovko, Yu I; Mukhortov, V M, E-mail: i.leontiev@rambler.ru [Southern Scientific Center RAS, Rostov-on-Don, 344006 (Russian Federation)

    2011-08-24

    A Nd-doped BiFeO{sub 3} thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45{sup 0} with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  18. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage

    Science.gov (United States)

    Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui

    2018-04-01

    We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.

  19. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  20. Comparing the Electrochemical Performance of LiFePO4/C Modified by Mg Doping and MgO Coating

    Directory of Open Access Journals (Sweden)

    Jianjun Song

    2013-01-01

    Full Text Available Supervalent cation doping and metal oxide coating are the most efficacious and popular methods to optimize the property of LiFePO4 lithium battery material. Mg-doped and MgO-coated LiFePO4/C were synthesized to analyze their individual influence on the electrochemical performance of active material. The specific capacity and rate capability of LiFePO4/C are improved by both MgO coating and Mg doping, especially the Mg-doped sample—Li0.985Mg0.015FePO4/C, whose discharge capacity is up to 163 mAh g−1, 145.5 mAh g−1, 128.3 mAh g−1, and 103.7 mAh g−1 at 1 C, 2 C, 5 C, and 10 C, respectively. The cyclic life of electrode is obviously increased by MgO surface modification, and the discharge capacity retention rate of sample LiFePO4/C-MgO2.5 is up to 104.2% after 100 cycles. Comparing samples modified by these two methods, Mg doping is more prominent on prompting the capacity and rate capability of LiFePO4, while MgO coating is superior in terms of improving cyclic performance.

  1. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    Science.gov (United States)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  2. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating

    International Nuclear Information System (INIS)

    Ben Naceur, J.; Mechiakh, R.; Bousbih, F.; Chtourou, R.

    2011-01-01

    Titanium dioxide (TiO 2 ) thin films doping of various iron ion (Fe 3+ ) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO 2 thin films comprised only the anatase TiO 2 , but the crystallinity decreased when the Fe 3+ content increased from 0% to 20%. During the Fe 3+ addition to 20%, the phase of TiO 2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E g ) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe 3+ content.

  3. Molecular [(Fe3)–(Fe3)] and [(Fe4)–(Fe4)] coordination cluster pairs as single or composite arrays.

    Science.gov (United States)

    Sañudo, E Carolina; Uber, Jorge Salinas; Pons Balagué, Alba; Roubeau, Olivier; Aromí, Guillem

    2012-08-06

    The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates.

  4. Second order magnetic phase transition and scaling analysis in iron doped manganite La{sub 0.7}Ca{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ginting, Dianta [Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yong-in 446-701 (Korea, Republic of); Nanto, Dwi [Physics Education, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Denny, Yus Rama [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Tarigan, Kontan [Department of Mechanical Engineering, Mercu Buana University, Jakarta-Barat, Jakarta 11650 (Indonesia); Hadi, Syamsul [Department of Mechanical Engineering, State Polytechnic of Malang, East Java 65100 (Indonesia); Ihsan, Mohammad [PSTBM-BATAN, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314 (Indonesia); Institute of Electronic Materials, University of Wollongong, Wollongong NSW 2522 (Australia); Rhyee, Jong-Soo, E-mail: jsrhyee@khu.ac.kr [Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yong-in 446-701 (Korea, Republic of)

    2015-12-01

    We investigated magnetic properties of La{sub 0.7}Ca{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0.09 and 0.11) compounds in terms of isothermal magnetization analysis and scaling behavior with various critical exponents. From the Landau theory of magnetic phase transition, we found that the paramagnetic to ferromagnetic phase transition in La{sub 0.7}Ca{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0.09 and 0.11) compounds is the type of second order magnetic transition (SOMT), which contrary to the first order magnetic transition (FOMT) for low Fe-doped compounds (x<0.09) in previous reports. When we investigate the critical behavior of the compounds near T=T{sub c} by the modified Arrott plot, Kouvel–Fisher plots, and critical isothermal analysis, the estimated critical exponents β, γ, and δ are in between the theoretically predicted values for three-dimensional Heisenberg and mean-field interaction models. It is noteworthy that the scaling relations are obeyed in terms of renormalization magnetization m=ε{sup −β}M(H,ε) and renormalized field h=|ε|{sup β+γ}H. Temperature-dependent effective exponents β{sub eff} and γ{sub eff} correspond to the ones of disordered ferromagnets. It is shown that the magnetic state of the compounds is not fully described by the conventional localized-spin interaction model because the ferromagnetic interaction has itinerant character by increasing Fe-doping concentration. - Highlights: • The ferromagnetic phase transition is of second order in La{sub 0.7}Ca{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3}. • The critical exponents are in between the 3D Heisenberg and mean-field models. • The ferromagnetic interaction becomes more itinerant by Fe-doping.

  5. The role of disorder in Fe-doped CMR manganites as explored by μSR spectroscopy

    International Nuclear Information System (INIS)

    Gutierrez, J.; Bermejo, F.J.; Barandiaran, J.M.; Cottrell, S.P.; Romano, P.; Mondelli, C.; Fernandez Barquin, L.; Pena, A.

    2006-01-01

    A study on the effect of Fe doping on the magnetic properties of La 0.7 Pb 0.3 Mn 1-x Fe x O x , x=0 and x=0.2 perovskites is conducted using muon spectroscopy and macroscopic static magnetization measurements. For x=0, magnetization curves show a clear ferromagnetic component while a 20% Fe doping leads to the appearance of a kink in zero-field curves at low temperatures, attributed to progressive spin freezing together with a reduction of the ferromagnetic component. On dynamic grounds, we show that this effect translates into the appearance of non-exponential relaxation as T c is crossed from above. d from above

  6. Superconductivity induced by doping Rh in CaFe2-xRhxAs2

    International Nuclear Information System (INIS)

    Qi Yanpeng; Wang Lei; Gao Zhaoshun; Wang Dongliang; Zhang Xianping; Wang Chunlei; Yao Chao; Ma Yanwei

    2011-01-01

    In this paper, we report the synthesis of iron-based superconductors CaFe 2-x Rh x As 2 using a one-step solid state reaction method that crystallizes in the ThCr 2 Si 2 -type structure with a space group I4/mmm. The systematic evolution of the lattice constants demonstrates that the Fe ions are successfully replaced by the Rh. By increasing the doping content of Rh, the spin-density-wave (SDW) transition in the parent compound is suppressed and superconductivity emerges. The maximum superconducting transition temperature is found at 18.5 K with a doping level of x=0.15. The temperature dependence of dc magnetization confirms superconducting transitions at around 15 K. The general phase diagram was obtained and found to be similar to the case of the Rh-doping Sr122 system. Our results explicitly demonstrate the feasibility of inducing superconductivity in Ca122 compounds by higher d-orbital electron doping; however, different Rh-doping effects between FeAs122 compounds and FeAs1111 systems still remains an open question.

  7. Preparation of raspberry-like γ-Fe2O3/crackled nitrogen-doped carbon capsules and their application as supports to improve catalytic activity.

    Science.gov (United States)

    Zhang, Junshuai; Yao, Tongjie; Zhang, Hui; Zhang, Xiao; Wu, Jie

    2016-11-10

    In this manuscript, we have introduced a novel method to improve the catalytic activity of metal nanoparticles via optimizing the support structure. To this end, raspberry-like γ-Fe 2 O 3 /crackled nitrogen-doped carbon (CNC) capsules were prepared by a two-step method. Compared with traditional magnetic capsules, in γ-Fe 2 O 3 /CNC capsules, the γ-Fe 2 O 3 nanoparticles were embedded in a CNC shell; therefore, they neither occupied the anchoring sites for metal nanoparticles nor came into contact with them, which was beneficial for increasing the metal nanoparticle loading. Numerous tiny cracks appeared on the porous CNC shell, which effectively improved the mass diffusion and transport in catalytic reactions. Additionally, the coordination interaction could be generated between the precursor metal ions and doped-nitrogen atoms in the capsule shell. With the help of these structural merits, γ-Fe 2 O 3 /CNC capsules were ideal supports for Pd nanoparticles, because they were beneficial for improving the Pd loading, reducing the nanoparticle size, increasing their dispersity and maximizing the catalytic performance of Pd nanoparticles anchored on the inner shell surface. As expected, γ-Fe 2 O 3 /CNC@Pd catalysts exhibited a dramatically enhanced catalytic activity towards hydrophilic 4-nitrophenol and hydrophobic nitrobenzene. The reaction rate constant k was compared with recent work and the corresponding reference samples. Moreover, they could be easily recycled by using a magnet and reused without an obvious loss of catalytic activity.

  8. Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals

    International Nuclear Information System (INIS)

    Yang, Yunping; Nee, Ingo; Buse, Karsten; Psaltis, Demetri

    2001-01-01

    The lifetimes of nonfixed holograms in LiNbO 3 :Fe crystals with doping levels of 0.05, 0.138, and 0.25 wt% Fe 2 O 3 have been measured in the temperature range from 30 to 180 degree C. The time constants of the dark decay of holograms stored in crystals with doping levels of 0.05 and 0.25 wt% Fe 2 O 3 obey an Arrhenius-type dependence on absolute temperature T, but yield two activation energies: 1.0 and 0.28 eV, respectively. For these crystals, two different dark decay mechanisms are prevailing, one of which is identified as proton compensation and the other is due to electron tunneling between sites of Fe 2+ and Fe 3+ . The dark decay of holograms stored in crystals with the doping level of 0.138 wt% Fe 2 O 3 is the result of a combination of both effects. [copyright] 2001 American Institute of Physics

  9. An epitaxial transparent conducting perovskite oxide: double-doped SrTiO3

    NARCIS (Netherlands)

    Ravichandran, Jayakanth; Siemons, W.; Heijmerikx, Herman; Huijben, Mark; Majumdar, Arun; Ramesh, Ramamoorthy

    2010-01-01

    Epitaxial thin films of strontium titanate doped with different concentrations of lanthanum and oxygen vacancies were grown on LSAT substrates by pulsed laser deposition technique. Films grown with 5−15% La doping and a critical growth pressure of 1−10 mTorr showed high transparency (>70−95%) in the

  10. Role of Fe doping on structural and vibrational properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R.; Karthikeyan, B. [National Institute of Technology, Department of Physics, Tiruchirappalli (India)

    2012-05-15

    In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol-gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both E{sub 2}{sup low} and E{sub 2}{sup High} optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm{sup -1} which is specific to E{sub 1} (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures. (orig.)

  11. A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

    International Nuclear Information System (INIS)

    Choi, S. M.; Shin, G. M.; Joo, Y.S.; Yoo, S. I.

    2013-01-01

    We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped YBa 2 Cu 3 O 7-δ (YBCO) films with the same thickness of ∽350 nm for a comparative purpose. The films were prepared on the SrTiO 3 (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density (J c ) and pinning force density (F p ). The anisotropic J c ,min/J c ,max ratio in the field-angle dependence of J c at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic J c values of 9.0 and 2.9 MA/cm 2 with the maximum F p (F p ,max) values of 19 and 5 GN/m 3 at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller BaZrO-3 (BZO) nanoparticles (the average size ≈ 28.4 nm) than YBa 2 SnO 5. 5 (YBSO) nanoparticles (the average size ≈ 45.0 nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

  12. Luminescence properties of Tm3+ ions single-doped YF3 materials in an unconventional excitation region.

    Science.gov (United States)

    Chen, Yuan; Liu, Qing; Lin, Han; Yan, Xiaohong

    2018-05-01

    According to the spectral distribution of solar radiation at the earth's surface, under the excitation region of 1150 to 1350 nm, the up-conversion luminescence of Tm 3+ ions was investigated. The emission bands were matched well with the spectral response region of silicon solar cells, achieved by Tm 3+ ions single-doped yttrium fluoride (YF 3 ) phosphor, which was different from the conventional Tm 3+ /Yb 3+ ion couple co-doped materials. Additionally, the similar emission bands of Tm 3+ ions were achieved under excitation in the ultraviolet region. It is expected that via up-conversion and down-conversion routes, Tm 3+ -sensitized materials could convert photons to the desired wavelengths in order to reduce the energy loss of silicon solar cells, thereby enhancing the photovoltaic efficiency. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Resistance switching at the interface of LaAlO3/SrTiO3

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Zhao, J.L.; Sun, J.R.

    2010-01-01

    At the interface of LaAlO3/SrTiO3 with film thickness of 3 unit cells or greater, a reproducible electric-field-induced bipolar resistance switching of the interfacial conduction is observed on nanometer scale by a biased conducting atomic force microscopy under vacuum environment. The switching ...

  14. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    Science.gov (United States)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  15. Growth and electrical properties of (Mn,F) co-doped 0.92Pb(Zn 1/3Nb 2/3)O 3-0.08PbTiO 3 single crystal

    Science.gov (United States)

    Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R.

    2004-06-01

    The growth and characterization of (Mn,F) doped Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZNT) single crystals are reported in this paper. The typical single crystal obtained is up to 30 mm size with dark brown color. The crystal lattice parameters of doped PZNT crystal are slightly decreased compared to the pure one. The room temperature dielectric permittivity along direction is about 6000, which is lower than that of the pure PZNT8 because of the dopants. The Curie temperature of the doped crystal is about 180°C while the ferroelectric phase transition temperature is around 100°C, which are higher than those of the pure PZNT8 single crystal. The remnant polarization and coercive field of oriented doped crystal measured at 1 Hz and 10 kV/cm field are about 27 μC/cm 2 and 4.2 kV/cm, respectively. The room temperature mechanical quality factor is ˜300. Piezoelectric coefficient of oriented doped crystal is higher than 3500 pC/N and the longitudinal electromechanical coupling factor is larger than 93%. The piezoelectric properties of doped PZNT single crystal with temperature and orientations are also reported in this paper. The valence state of the manganese dopant was determined by electron spin resonance, indicating no Mn 4+ in the crystals, suggesting the valence of manganese ions in PZNT crystals may be 2+, which acts as a hardener, stabilizes the domain wall and pins the domain wall motion, on the other hand, the dopant will enter Ti 4+ position, shifting the crystal composition to higher PT content.

  16. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material

    International Nuclear Information System (INIS)

    Zhang, Jiajia; He, Haiyan; Pan, Bicai

    2015-01-01

    An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe 2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe 2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe 2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe 2 is a promising two-dimensional photovoltaic material. (paper)

  17. Effect of Sr/Ti Ratio on the Photocatalytic Properties of SrTiO3

    International Nuclear Information System (INIS)

    Sulaeman, U; Yin, S; Sato, T

    2011-01-01

    Since strontium titanate is a wide gap semiconductor, it requires UV light to generate the photocatalytic activities. Modification of strontium titanate to show photocatalytic activity under visible light irradiation is the essential work to efficiently utilize the sun light energy for environmental application. It is expected that the synthesis of SrTiO 3 with variation of Sr/Ti atomic ratio could induce the defect crystals having unique photocatalytic properties. The SrTiO 3 with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reaction of SrCl 2 .6H 2 O and Ti(OC 3 H 7 ) 4 in KOH aqueous solutions with different atomic ratios of Sr/Ti. The products were characterized by TG-DTA, XRD and DRS. The photocatalytic activity was determined by DeNO x ability using LED lamps with the wavelengths of 627 nm (red), 530 nm (green), 445 nm (blue) and 390 nm (UV). The nanoparticles of perovskite type SrTiO 3 with the particle size of 30-40 nm were successfully synthesized. The visible light responsive photocatalytic activity was generated by adding excess amount of Sr. The photocatalytic activity in visible light could be enhanced by an increase in the Sr/Ti atomic ratio up to 1.25, indicating that the visible light responsive photocatalytic activity is due to the generation of new band gap between the conduction band and valence band of SrTiO 3 by the formation of oxygen vacancy.

  18. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Wei, Lan-ying; Lian, Chao; Meng, Sheng

    2017-05-01

    First-principles calculations predict the emergence of magnetoelectric coupling mediated by two-dimensional electron gas (2DEG) at the ferroelectric PbTiO3/SrTiO3 heterostructure. Free electrons endowed by naturally existing oxygen vacancies in SrTiO3 are driven to the heterostructure interface under the polarizing field of ferroelectric PbTiO3 to form a 2DEG. The electrons are captured by interfacial Ti atoms, which surprisingly exhibits ferromagnetism even at room temperature with a small critical density of ˜15.5 μ C /cm2 . The ferroelectricity-controlled ferromagnetism mediated by interfacial 2DEG shows strong magnetoelectric coupling strength, enabling convenient control of magnetism by electric field and vice versa. The PbTiO3/SrTiO3 heterostructure is cheap, easily grown, and controllable, promising future applications in low-cost spintronics and information storage at ambient condition.

  19. Temperature induced Spin Switching in SmFeO3 Single Crystal

    Science.gov (United States)

    Cao, Shixun; Zhao, Huazhi; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2014-08-01

    The prospect of controlling the magnetization (M) of a material is of great importance from the viewpoints of fundamental physics and future applications of emerging spintronics. A class of rare-earth orthoferrites RFeO3 (R is rare-earth element) materials exhibit striking physical properties of spin switching and magnetization reversal induced by temperature and/or applied magnetic field. Furthermore, due to the novel magnetic, magneto-optic and multiferroic properties etc., RFeO3 materials are attracting more and more interests in recent years. We have prepared and investigated a prototype of RFeO3 materials, namely SmFeO3 single-crystal. And we report magnetic measurements upon both field cooling (FC) and zero-field cooling (ZFC) of the sample, as a function of temperature and applied magnetic field. The central findings of this study include that the magnetization of single-crystal SmFeO3 can be switched by temperature, and tuning the magnitude of applied magnetic field allows us to realize such spin switching even at room temperature.

  20. The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi0.9Nd0.15FeO3

    Directory of Open Access Journals (Sweden)

    Ian MacLaren

    2014-06-01

    Full Text Available Stepped antiphase boundaries are frequently observed in Ti-doped Bi0.85Nd0.15FeO3, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO6 octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix.