WorldWideScience

Sample records for fe-cu composites predicted

  1. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    Science.gov (United States)

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  2. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  3. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  4. Facile preparation of magnetic mesoporous Fe_3O_4/C/Cu composites as high performance Fenton-like catalysts

    International Nuclear Information System (INIS)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-01-01

    Highlights: • Fe-Cu composites with different compositions were prepared by calcining tartrates. • Magnetic mesoporous Fe_3O_4/C/Cu was obtained by calcining tartrate under N_2. • Fe_3O_4/C/Cu exhibits excellent photo-Fenton catalytic activity and reusability. • The activity is due to the synergistic and photo-reduction effects of Fe and Cu. - Abstract: Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe_2O_3/CuO and α-Fe_2O_3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe_3O_4/C/Cu was obtained by calcining the tartrate precursor under N_2 atmosphere at 500 °C. The Fe_3O_4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m"2 g"−"1. The Fenton catalytic performance of Fe_3O_4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe"3"+ to Fe"2"+, which accelerated the Fe"3"+/Fe"2"+ cycles and favored H_2O_2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe"3"+ and Cu"2"+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe_3O_4/C/Cu-H_2O_2 system, and MB (100 mg L"−"1) was nearly removed within 60 min. The Fe_3O_4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic

  5. Experiment and simulation on the thermal instability of a heavily deformed Cu-Fe composite

    International Nuclear Information System (INIS)

    Qu Lei; Wang Engang; Zuo Xiaowei; Zhang Lin; He Jicheng

    2011-01-01

    Research highlights: → Fe fibers undergo thermal instability at temperature above 600 deg. C. → Longitudinal boundary splitting is the dominant instability process. → Instability of cylindrical fibers is controlled by breakup, growth and coarsening. → Breakup times can be predicted by Rayleigh perturbation model accurately. → The increase of fiber diameters is due to the coarsening and growth. - Abstract: The thermal instability of the Fe fibers in the heavily deformed Cu-12.8 wt.%Fe composites is investigated experimentally and numerically. The fiber evolution is characterized by a field emission scanning electron microscopy (FESEM). The results show that the dominant instability of the Fe fibers is the longitudinal boundary splitting which is determined by the greater cross sectional aspect ratio (width/thickness, w/t) and the larger ratio of boundary to interfacial energy (γ B /γ S ). The longitudinal boundary splitting makes the ribbon-like Fe fibers evolve into a series of cylindrical fibers. Then the cylindrical Fe fibers undergo the instability process in terms of the breakup, growth and coarsening concurrently. The breakup times are accurately predicted by the Rayleigh perturbation model. The growth process primarily contributes to the higher increasing rate of the fiber radius during isothermal annealing at 700 deg. C than that calculated by the coarsening theory developed for cylindrical fibers, since the Cu-matrix of composites is highly supersaturated after casting/cold-working process.

  6. Facile preparation of magnetic mesoporous Fe{sub 3}O{sub 4}/C/Cu composites as high performance Fenton-like catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Keyan; Zhao, Yongqin [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Fe-Cu composites with different compositions were prepared by calcining tartrates. • Magnetic mesoporous Fe{sub 3}O{sub 4}/C/Cu was obtained by calcining tartrate under N{sub 2}. • Fe{sub 3}O{sub 4}/C/Cu exhibits excellent photo-Fenton catalytic activity and reusability. • The activity is due to the synergistic and photo-reduction effects of Fe and Cu. - Abstract: Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe{sub 2}O{sub 3}/CuO and α-Fe{sub 2}O{sub 3}/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe{sub 3}O{sub 4}/C/Cu was obtained by calcining the tartrate precursor under N{sub 2} atmosphere at 500 °C. The Fe{sub 3}O{sub 4}/C/Cu composite possessed mesoporous structure and large surface area up to 133 m{sup 2} g{sup −1}. The Fenton catalytic performance of Fe{sub 3}O{sub 4}/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe{sup 3+} to Fe{sup 2+}, which accelerated the Fe{sup 3+}/Fe{sup 2+} cycles and favored H{sub 2}O{sub 2} decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe{sup 3+} and Cu{sup 2+}, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe{sub 3}O{sub 4}/C/Cu-H{sub 2}O{sub 2} system, and MB (100 mg L{sup −1}) was nearly removed within 60 min. The Fe{sub 3}O{sub 4}/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile

  7. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  8. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite

    International Nuclear Information System (INIS)

    Liu, K.M.; Lu, D.P.; Zhou, H.T.; Atrens, A.; Zou, J.; Yang, Y.L.; Zeng, S.M.

    2010-01-01

    This paper studied Ag micro-alloying in the deformation-processed Cu-14Fe in situ composite, by a comparison of Cu-14Fe and Cu-14Fe-0.06Ag. Each alloy was prepared by casting and processed into an in situ composite by hot and cold working. The microstructures were documented using light microscopy and scanning electron microscopy (SEM). The mechanical properties were measured with a tensile-testing machine. The electrical conductivity was measured with a micro-ohmmeter. For both alloys, the as-cast microstructure consisted of a Cu matrix and Fe dendrites; after hot and cold working the microstructure consisted of a Cu matrix containing Fe fibres elongated in the working direction. The as-cast Ag-containing alloy contained finer Fe dendrites. The Ag-containing in situ composite had thinner Fe fibres, higher tensile strength, higher ductility, and higher conductivity. The cold worked Cu-14Fe-0.06Ag in situ composite with cumulative cold deformation strain η = 7.8 (where η = ln(A 0 /A) and A 0 and A are the original and final cross-section areas, respectively), achieved a tensile strength of 930 MPa and a conductivity of 56%IACS (International Annealed Copper Standard; 17.241 nΩ m is defined as 100%IACS). The Ag micro-alloyed in situ composite had a combination of properties comparable to that of a much more expensive alloy containing much more Ag. After 1 h heat treatment at 300 deg. C, the tensile strength was increased to 950 MPa and the conductivity was increased to 56.4%IACS.

  9. Composition pathway in Fe-Cu-Ni alloy during coarsening

    Science.gov (United States)

    Mukherjee, Rajdip; Choudhury, Abhik; Nestler, Britta

    2013-10-01

    In this work the microstructure evolution for a two phase Fe-Cu-Ni ternary alloy is studied in order to understand the kinetic composition paths during coarsening of precipitates. We have employed a quantitative phase-field model utilizing the CALPHAD database to simulate the temporal evolution of a multi-particle system in a two-dimensional domain. The paths for the far-field matrix and for precipitate average compositions obtained from simulation are found to be rectilinear. The trends are compared with the corresponding sharp interface theory, in the context of an additional degree of freedom for determining the interface compositions due to the Gibbs-Thomson effect in a ternary alloy.

  10. Fe and Cu isotope mass balances in the human body

    Science.gov (United States)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  11. Novel La(Fe,Si){sub 13}/Cu composites for magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London, London, SW7 2AZ (United Kingdom)

    2012-11-15

    An approach to engineering magnetic refrigerant materials with defined thermal transport properties is demonstrated using the example of high magnetocaloric performance La-Fe-Si alloys. A tunability of up to 300% of the thermal conductivity can be achieved in composites consisting of a La(Fe,Si){sub 13} compound and Cu prepared by electroless copper plating without compromising the magnitude of the magnetocaloric effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Glass forming ability of the Fe-Zr-Cu system studied by thermodynamic calculation and ion beam mixing

    International Nuclear Information System (INIS)

    Wang, T.L.; Liu, B.X.

    2009-01-01

    The glass forming ability/range (GFA/GFR) of the Fe-Zr-Cu system was studied by thermodynamic calculation based on Miedema's model and Alonso's method. It is found that when the atomic concentration of Zr is between 34% and 56%, no matter what the atomic concentrations of Fe and Cu are, amorphous phase could be obtained, thus the atomic mismatch playing a dominating role in influencing the GFA. While the atomic concentration of Zr is out of the above range, the GFA is highly influenced by the immiscibility between Fe and Cu. Experimentally, ion beam mixing was carried out to synthesize amorphous alloys in the Fe-Zr-Cu system. It turned out that in the samples with overall compositions of Fe 26 Zr 36 Cu 38 , Fe 52 Zr 27 Cu 21 and Fe 21 Zr 60 Cu 19 , which are located in or at the edge of the calculated GFR, amorphous phases were indeed obtained, whereas no amorphous phase was obtained if the overall compositions were located outside of the predicted region favoring for amorphous alloy formation, showing a good agreement between the experimental results and the thermodynamic calculation.

  13. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    Science.gov (United States)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  14. Thermo-Exfoliated Graphite Containing CuO/Cu2(OH3NO3:(Co2+/Fe3+ Composites: Preparation, Characterization and Catalytic Performance in CO Conversion

    Directory of Open Access Journals (Sweden)

    Vladyslav V. Lisnyak

    2010-01-01

    Full Text Available Thermo-exfoliated graphite (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites were prepared using a wet impregnation method and subsequent thermal treatment. The physicochemical characterization of the composites was carried out by powder X-ray diffraction (PXRD, scanning electron microscopy (SEM and Ar temperature-desorption techniques. The catalytic efficiency toward CO conversion to CO2 was examined under atmospheric pressure. Characterization of species adsorbed over the composites taken after the activity tests were performed by means of temperature programmed desorption massspectrometry (TPD MS. (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites show superior performance results if lower temperatures and extra treatment with H2SO4 or HNO3 are used at the preparation stages. The catalytic properties enhancements can be related to the Cu2(OH3NO3 phase providing reaction centers for the CO conversion. It has been found that prevalence of low-temperature states of desorbed CO2 over high-temperature ones in the TPD MS spectra is characteristic of the most active composite catalysts.

  15. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.S.; Buznikov, N.A. E-mail: n_buznikov@mail.ru; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M

    2002-08-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors.

  16. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    International Nuclear Information System (INIS)

    Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M.

    2002-01-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors

  17. The growth of Fe clusters over graphene/Cu(111)

    International Nuclear Information System (INIS)

    Takahashi, Keisuke

    2015-01-01

    The growth of Fe clusters up to nine atoms over graphene/Cu(111) is investigated within the density functional theory. Graphene is weakly physisorbed on Cu(111) through van der Waals force. The structures of Fe clusters over graphene/Cu(111) grow differently compared to gas-phase Fe clusters where Fe clusters are predicted to form towards a pyramid-like structure on graphene/Cu(111). The graphene is negatively charged upon the adsorption of Fe clusters as a result of charge transfer from Fe to graphene. Despite the fact that the electronic structure of graphene is affected by Fe clusters, magnetic moment of Fe clusters over graphene/Cu(111) remains relatively high. This suggests that graphene can be a potential substrate for supporting Fe clusters towards applications in magnetism and catalysis. (paper)

  18. Magnetically separable CuFe{sub 2}O{sub 4}/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yalei; Lin, Cuiping; Bi, Huijie; Liu, Yonggang; Yan, Qishe, E-mail: Qisheyanzzu@163.com

    2017-01-15

    Highlights: • CuFe{sub 2}O{sub 4}/AgBr composites were prepared by a facile sol-gel and hydrothermal method. • Visible-light response and high photocatalytic performance. • Excellent magnetic properties. • Different reactive species had different effects on degradation different pollutants. - Abstract: The CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4}/AgBr composites with different CuFe{sub 2}O{sub 4} contents were prepared by a facile sol-gel and hydrothermal method, respectively. The as-synthesized photocatalysts were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectrum (UV–vis DRS). Their magnetic properties, photocatalytic degradation activities on methyl orange (MO) and tetracycline hydrochloride (TC) solution and photocatalytic mechanism were investigated in detail. The results revealed that the CuFe{sub 2}O{sub 4}/AgBr composites exhibited significantly higher photocatalytic activities than the pure CuFe{sub 2}O{sub 4}. The enhanced photocatalytic activity could be attributed to the matched band structure of two components and more effective charge transportation and separations. In addition, the quenching investigation of different scavengers demonstrated that h{sup +}, ·OH, ·O{sub 2}{sup −} reactive species played different roles in the decolorization of MO and degradation of TC.

  19. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  20. Radio-frequency (RF) studies of the magneto-dielectric composites: Cr{sub 0.75}Fe{sub 1.25}O{sub 3} (CRFO)-Fe{sub 0.5}Cu{sub 0.75}Ti{sub 0.75}O{sub 3} (FCTO)

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, H.H.B. [Departamento de Engenharia de Teleinformatica (DETI), Universidade Federal do Ceara, Caixa Postal 6007, CEP 60755-640, Fortaleza, CE (Brazil); Laboratorio de Telecomunicacoes e Ciencia e Engenharia dos Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, CE (Brazil); Freire, F.N.A. [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60455-760, Fortaleza, CE (Brazil); Santos, M.R.P.; Sasaki, J.M. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia dos Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, CE (Brazil); Cordaro, T. [Celestica do Brasil Ltda, Rod Sp 340 km 128.7-Cp 151, CEP 13820-000, Jaguariuna, SP (Brazil); Sombra, A.S.B. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia dos Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, CE (Brazil)], E-mail: sombra@fisica.ufc.br

    2008-08-01

    This paper concerns a study about the electrical properties of Cr{sub 0.75}Fe{sub 1.25}O{sub 3} (CRFO)/Fe{sub 0.5}Cu{sub 0.75}Ti{sub 0.75}O{sub 3} (FCTO) magneto-dielectric composites. These compounds were prepared by the conventional solid-state reaction synthesis. The samples synthesized, as well their two-phase composites [Cr{sub 0.75}Fe{sub 1.25}O{sub 3}]{sub Z}-[Fe{sub 0.5}Cu{sub 0.75}Ti{sub 0.75}O{sub 3}]{sub 100-Z} (Z=17, 34, 50, 66, 83), were characterized by X-ray powder diffraction technique (XRD). Rietveld's method was employed to verify the quantitative phase abundances in the composites' and their theoretical densities, which were compared with the experimental densities (pycnometer method). To predict the effect of the phases in the composites effective dielectric function ({kappa}), traditional dielectric mixing models such as parallel, series, and Lichtenecker's model were observed. An alternative approach, a sigmoidal fitting function based on the Boltzmann equation, was proposed to fit the experimental data.

  1. Analysis of the low-frequency magnetoelectric performance in three-phase laminate composites with Fe-based nanocrystalline ribbon

    International Nuclear Information System (INIS)

    Chen, Lei; Li, Ping; Wen, Yumei; Zhu, Yong

    2013-01-01

    The theoretical analysis of magnetoelectric (ME) performance in three-phase Terfenol-D/PZT/FeCuNbSiB (MPF) laminate composite is presented in this paper. The ME couplings at low frequency for ideal and less than ideal interface couplings are studied, respectively, and our analysis predicts that (i) the ME voltage coefficient for ideal interface coupling increases with the increasing layers (n) of Fe-based nanocrystalline ribbon FeCuNbSiB (Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 ) while the sizes of PZT (Pb(Zr 1−x Ti x )O 3 ) and Terfenol-D (Tb 1−x Dy x Fe 2−y ) are kept constant, and then it tends to be a constant when the layers of FeCuNbSiB are >100; (ii) by introducing the interface coupling factor k and considering the degradation of d 33m,f with n, the ME voltage coefficient for a less than ideal interface condition is predicted. As the FeCuNbSiB layer increases, it first increases and reaches to a maximum value, and then slowly decreases. Various MPF laminates are fabricated and tested. It is found that the theoretical predictions for the consideration of actual boundary conditions at the interface are in agreement with the experimental observations. This study plays a guiding role for the design of MPF composite in real applications. (paper)

  2. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    Science.gov (United States)

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  3. Mechanical properties of Fe-Mn-Cu-Al alloy systems and optimization of their composition

    International Nuclear Information System (INIS)

    Tkachenko, I.F.; Baranov, A.A.

    1981-01-01

    Studied is the separate and combined effect of Cu and Al on mechanical properties of the Fe-Mn-Al-Cu system alloys using a simplex- lattice method of experiment planning. Heat treated specimens in the form of plates have been subjected to mechanical tests. It is shown that mechanical properties of studied alloys change sufficiently in the result of tempering in heterogeneous (α+γ) region. Studied alloys have the most favourable conbination of characteristics of strength, plasticity and impact strength after tempering at 630 deg C during 2 hours. Diagrams are obtained which characterizes dependence of mechanical properties of alloys on their composition. They permit to select optimum compositions of alloys with the necessary combination of strength, plasticity and impact strength [ru

  4. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    Science.gov (United States)

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    Science.gov (United States)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  6. Magnetoimpedance effect of the Ni80Fe20/Cu composite wires: The influence of DC current imposed on the Cu base

    Directory of Open Access Journals (Sweden)

    Delu Chen

    2014-06-01

    Full Text Available In this paper, the copper composite wires of 75 μm in diameter with a sputtered layer of Ni80Fe20 permalloy were prepared, with a DC current applied to the basal Cu terminals during the fabrication process. The influence of the DC current on the magnetic configuration and Magneto-Impedance (MI effect was studied. The results indicate that both the current amplitude and actuation duration have significant effect on the magnetic properties of the Ni80Fe20 layer. With appropriate current applied, the induced magnetic field leads to a circumferential magnetic domain structure and reduces significantly the equivalent anisotropy field of Ni80Fe20 layer. Then, the GMI ratio of the composite wires was significantly increased. A maximum GMI of 194.8% can be reached when the current was fixed at 100 mA and the Ni80Fe20 thickness is 780 nm. If the Ni80Fe20 thickness is above 780 nm, the coercivity of the coating layer increases while the GMI ratio of the composite wire reduces, since the magnetic anisotropy of the Ni80Fe20 layer varies from circumferential to longitudinal. The results were explained combining the thermal and magnetic effects of current.

  7. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  8. Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.C., E-mail: jckimpml@ulsan.ac.k [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Ryu, H.J.; Kim, J.S. [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Kim, B.K.; Kim, Y.J. [Department of Powder Materials, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Kim, H.J. [Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-130 (Korea, Republic of)

    2009-08-26

    In this study, the Fe-based (Fe-C-Si-B-P-Cr-Mo-Al) BMG powders were produced by the high pressure gas atomization process, and they were combined with the ductile Cu powders produced by the electrical explosion of wire (EEW). The Fe-based amorphous powders and Cu added BMG composite powders were compacted by the spark plasma sintering (SPS) processes into cylindrical shape. In the SPS press, the as-prepared powders were sintered at 793 K and 843 K. The relative density increased to 98% when the pressure increased up to 500 MPa by optimum control of the SPS process parameters. The micro-Vickers hardness was over 1100 Hv.

  9. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  10. Enthalpy of mixing of liquid Cu-Fe-Hf alloys at 1873 K

    Energy Technology Data Exchange (ETDEWEB)

    Agraval, Pavel; Turchanin, Mikhail [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Dreval, Liya [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Materials Science International Services GmbH (MSI), Stuttgart (Germany)

    2016-12-15

    In the ternary Cu-Fe-Hf system, the mixing enthalpies of liquid alloys were investigated at 1873 K using a high-temperature isoperibolic calorimeter. The experiments were performed along the sections x{sub Cu}/x{sub Fe} = 3/1, 1/1 at x{sub Hf} = 0-0.47 and along the section x{sub Cu}/x{sub Fe} = 1/3 at x{sub Hf} = 0-0.13. The limiting partial enthalpies of mixing of undercooled liquid hafnium in liquid Cu-Fe alloys, Δ{sub mix} anti H{sub Hf}{sup ∞}, are (-122 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 3/1), (-106 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/1), and (-105 ± 2) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/3). In the investigated composition range, the integral mixing enthalpies are sign-changing. For the integral mixing enthalpy, an analytical expression was obtained by the least squares fit of the experimental results using the Redlich-Kister-Muggianu polynomial.

  11. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  12. Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C

    Science.gov (United States)

    Archana Barla, Nikki

    2018-03-01

    Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.

  13. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains. Copyright © 2012 Wiley Periodicals, Inc.

  14. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    Science.gov (United States)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  15. Comparison of Two Powder Processing Techniques on the Properties of Cu-NbC Composites

    Directory of Open Access Journals (Sweden)

    B. D. Long

    2014-01-01

    Full Text Available An in situ Cu-NbC composite was successfully synthesized from Cu, Nb, and C powders using ball milling and high pressure torsion (HPT techniques. The novelty of the new approach, HPT, is the combination of high compaction pressure and large shear strain to simultaneously refine, synthesize, and consolidate composite powders at room temperature. The HPTed Cu-NbC composite was formed within a short duration of 20 min without Fe contamination from the HPT’s die. High porosity of 3–9%, Fe and niobium oxidations, from grinding media and ethanol during ball milling led to low electrical conductivity of the milled Cu-NbC composite. The electrical conductivity of the HPTed Cu-NbC composite showed a value 50% higher than that of milled Cu-NbC composite of the same composition.

  16. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  17. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites.

    Science.gov (United States)

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Dolors Baró, Maria; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr 48 Cu 48 -  x Al 4 M x (M ≡ Fe or Co, x  = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr 48 Cu 48 Al 4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x  = 0.5 (5.5% in Zr 48 Cu 47.5 Al 4 Co 0.5 and 6.2% in Zr 48 Cu 47.5 Al 4 Fe 0.5 ) is considerably larger than for Zr 48 Cu 48 Al 4 or the alloys with x  = 1. Slight variations in the Young's modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  18. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    Science.gov (United States)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-04-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (H c > 10 kOe) can be achieved without any microstructural refinement.

  19. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    Science.gov (United States)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-06-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.

  20. Experimental study of the spin density of metastable fcc ferromagnetic Fe-Cu alloys

    International Nuclear Information System (INIS)

    Bove, L. E.; Petrillo, C.; Sacchetti, F.; Mazzone, G.

    2000-01-01

    Magnetization density measurements on metastable Fe x Cu 1-x alloys at four compositions (x=20, 40, 50, and 60 at. %) and at 5 K temperature were carried out by means of polarized neutron diffraction. The samples were produced by high-energy ball milling and characterized by x-ray diffraction and fluorescence measurements. Additional bulk magnetization measurements were carried out on the two samples at high Fe concentration. Over the present concentration region, the Fe-Cu system is ferromagnetic and the four samples were found to be in the fcc phase. Fe-Cu is therefore a very suitable system to investigate the magnetic state of Fe in an fcc environment. Other than confirming that the Fe-Cu system is not a simple dilution alloy, the present results were compatible with a two-state model for fcc Fe--that is, two different coexisting electronic states associated with different magnetic moments and form factors

  1. Preparation, characterization and catalytic behavior of hierachically porous CuO/α-Fe2O3/SiO2 composite material for CO and o-DCB oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Ma; Xi Feng; Xuan He; Hongwen Guo; Lu Lü

    2011-01-01

    Hierachically porous (HP) CuO/α-Fe2O3/SiO2 composite material was fabricated by sol-gel method and multi-hydrothermal processes using HP-SiO2 as support.The resulting material was characterized by N2 adsorption-desorption,X-ray diffraction and scanning electron microscopy.The as-prepared CuO/Fe2O3/HP-SiO2 sample,with α-Fe2O3 and CuO nanocrystals,possessed a co-continuous skeleton,through-macroporous and mesoporous structure.Its catalytic behavior for CO and o-DCB oxidation was investigated.The result showed that CuO/Fe2O3/HP-SiO2 catalyst exhibited high catalytic activity for both CO and o-DCB oxidation,indicating its potential application in combined abatement of CO and chlorinated volatile organic compounds.

  2. Exchange correlation length and magnetoresistance in Fe-Cu and Fe-Cu-Ni melt-spun ribbons

    International Nuclear Information System (INIS)

    El Ghannami, M.; Gomez-Polo, C.; Rivero, G.; Hernando, A.

    1994-01-01

    The magnetic properties of Fe 30 Cu 70 melt-spun ribbons are reported for the first time. In the as-cast state, the microstructure consists of b.c.c.-Fe grains immersed in a Cu-rich matrix. However, the addition of a small percentage of Ni gives rise to the appearance of new Cu-Fe-Ni phases. Under suitable thermal treatments, the microstructure of both alloys evolves towards a complete phase segregation in b.c.c-Fe and f.c.c.-Cu immiscibles phases. The temperature dependence of the magnetic properties is analysed and related to the microstructural changes produced during the thermal treatments. Remarkable magneto-resistance effects have been observed in both as-cast alloys, with maximum values of the order of 6% at low measuring temperatures. (orig.)

  3. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  4. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  5. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  6. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    International Nuclear Information System (INIS)

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime (∼500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs

  7. Investigation of the solubility and diffusion of Fe atoms in Cu at high temperature using molten salt electrochemistry

    International Nuclear Information System (INIS)

    Wenzl, H.; Sorajic, V.; Bischof, B.

    1977-01-01

    The electrochemical cell CuFesub(n)/KF, LiF, FeF 2 (molten solution)/Fe was used between 800 and 1,000 0 C to produce CuFesub(n) alloys of various copper rich compositions n by electrochemically controlled diffusion. From measurements of cell voltage and current we determined composition, bulk diffusion coefficient D, and atomic solubility limit x 0 of Fe in Cu. The numerical values at the temperature of 950 0 C are D = 0.9 x 10 -9 cm 2 /sec, x 0 = 1.2 at%. (orig.) [de

  8. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  9. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    Science.gov (United States)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  10. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  11. Superparamagnetism in CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grima-Gallardo, P.; Alvarado, F.; Munoz, M.; Duran, S.; Quintero, M.; Nieves, L.; Quintero, E.; Tovar, R.; Morocoima, M. [Centro de Estudios en Semiconductores (CES), Fac. Ciencias, Dpto. Fisica, Universidad de Los Andes, Merida (Venezuela); Ramos, M.A. [Laboratorio de Difraccion y Fluorescencia de Rayos-X, Instituto Zuliano de Investigaciones Tecnologicas (INZIT), La Canada de Urdaneta, Estado Zulia (Venezuela)

    2012-06-15

    The temperature dependencies of DC magnetic susceptibilities, {chi}(T), of CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys were measured in a SQUID apparatus using the protocol of field cooling (FC) and zero FC (ZFC). The FC curves of both samples reflect a weak ferromagnetic (or ferrimagnetic) behavior with a nearly constant value of {chi}(T) in the measured temperature range (2-300 K) indicating that the critical temperatures (T{sub c}) are >300 K. The ZFC curves diverges from FC, showing irreversibility temperatures (T{sub irr}) of {proportional_to}250 K for CuFeInTe{sub 3} and >300 K for CuFeGaTe{sub 3}, suggesting that we are dealing with cluster-glass systems in a superparamagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  13. Preparation And Characterization of Cu-Fe/ TiO2 Photocatalyst for Visible Light Deep Desulfurization

    International Nuclear Information System (INIS)

    Hayyiratul Fatimah Mohd Zaid; Kait, C.F.; Mohamed Ibrahim Abdul Mutalib

    2016-01-01

    A photooxidative system for deep desulfurization of model diesel fuel was explored. Nanoparticles of anatase titania (TiO 2 ) were synthesized via sol-gel hydrothermal method. The TiO 2 was further modified with bimetallic Cu-Fe using wet-impregnation method followed by calcination process in order to extend the activity region of the photocatalyst to visible-light. A series of bimetallic 2.2 wt % Cu-Fe/ TiO 2 photocatalysts with different Cu:Fe mass compositions were characterized for their physical, chemical and optical properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy (DR-UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmet-Teller (BET) surface area analysis. The performance of the photocatalysts was evaluated for photooxidation of dibenzothiophene (DBT) as the sulfur species from model oil in the presence of hydrogen peroxide, H 2 O 2 under 500 W visible light illumination. The highest sulfur conversion of 82.36 % was observed for photocatalyst with 10:1Cu:Fe mass composition. (author)

  14. Fabrication and electrochemical properties of activated CNF/Cu x Mn1- x Fe2O4 composite nanostructures

    Science.gov (United States)

    Nilmoung, Sukanya; Sonsupap, Somchai; Sawangphruk, Montree; Maensiri, Santi

    2018-06-01

    This work reports the fabrication and electrochemical properties of activated carbon nanofibers composited with copper manganese ferrite (ACNF/Cu x Mn1- x Fe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8) nanostructures. The obtained samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller analyzer, thermal gravimetric analysis, X-ray photoemission spectroscopy, and X-ray absorption spectroscopy. The supercapacitive behavior of the electrodes is tested using cyclic voltammetery, galvanostatic charge-discharge and electrochemical impedance spectroscopy. By varying ` x', the highest specific capacitance of 384 F/g at 2 mV/s using CV and 314 F/g at 2 A/g using GCD are obtained for the x = 0.2 electrode. The second one of 235 F/g at 2 mV/s using CV and 172 F/g at 2 A/g using GCD are observed for x = 0.8 electrode. The corresponding energy densities are 74 and 41 Wh/kg, respectively. It is observed that the cyclic stability of the prepared samples strongly depend on the amount of carbon, while the specific capacitance was enhanced by the sample with nearly proportional amount between carbon and CuMnFe2O4. Such results may arise from the synergetic effect between CuMnFe2O4 and ACNF.

  15. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  16. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  17. RbCuFe(PO42

    Directory of Open Access Journals (Sweden)

    Mongi Ben Amara

    2013-08-01

    Full Text Available A new iron phosphate, rubidium copper(II iron(III bis(phosphate, RbCuFe(PO42, has been synthesized as single crystals by the flux method. This compound is isostructural with KCuFe(PO42 [Badri et al. (2011, J. Solid State Chem. 184, 937–944]. Its structure is built up from Cu2O8 units of edge-sharing CuO5 polyhedra, interconnected by FeO6 octahedra through common corners to form undulating chains that extend infinitely along the [011] and [01-1] directions. The linkage of such chains is ensured by the PO4 tetraedra and the resulting three-dimensional framework forms quasi-elliptic tunnels parallel to the [101] direction in which the Rb+ cations are located.

  18. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Science.gov (United States)

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  19. DFT predictions, synthesis, stoichiometric structures and anti-diabetic activity of Cu (II) and Fe (III) complexes of quercetin, morin, and primuletin

    Science.gov (United States)

    Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Masood, Nosheen; Rizvi, Aysha Sarfraz; Murtaza, Gulam

    2017-12-01

    The current study is aimed at the synthesis of Cu (II) and Fe (III) complexes of three flavonoids {morin (mor), quercetin (quer) and primuletin (prim)} and characterization through UV-Vis spectroscopy, cyclic voltammetry, FTIR, and thermal analysis. Structure prediction through DFT calculation was supported by experimental data. Benesi-Hildebrand equation was modified to function for 1:2 Cu-flavonoid and 1:3 Fe-flavonoid complexes. DFT predictions revealed that out of poly chelation sites present in morin and quercetin, 3-OH site was utilized as preferable chelation site while primuletin chelated through 5-OH position. In-vivo trials revealed the complexes to have better anti-diabetic potential than respective flavonoid. Fls/M-Fls proved as antagonistic to Alloxan induced diabetes and also retained anti-diabetic activity even in the presence of (2-hydroxypropyl)-β-cyclodextrin (HPβCD).

  20. Interdiffusion coefficients and atomic mobilities in fcc Cu-Fe-Mn alloys

    Directory of Open Access Journals (Sweden)

    Li J.

    2014-01-01

    Full Text Available In the present work, the interdiffusion coefficients in fcc Cu-Fe-Mn alloys were experimentally determined via a combination of solid/solid diffusion couples, electron probe microanalysis (EPMA technique and Matano-Kirkaldy method. Based on the reliable thermodynamic description of fcc phase in the Cu-Fe-Mn system available in the literature as well as the ternary diffusion coefficients measured in the present work, the atomic mobilities in fcc Cu-Fe-Mn alloys were assessed by utilizing the DICTRA (Diffusion Controlled TRAnsformation software package. The calculated interdiffusion coefficients based on the assessed atomic mobilities agree well with most of the experimental data. The comprehensive comparison between various model-predicted diffusion properties and the measured data, including the concentration penetration profiles, interdiffusion flux profile, and diffusion paths, further verify the reliability of the presently obtained atomic mobilities.

  1. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys

    International Nuclear Information System (INIS)

    Djurabekova, F.G.; Domingos, R.; Cerchiara, G.; Castin, N.; Vincent, E.; Malerba, L.

    2007-01-01

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed

  2. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, F.G. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Domingos, R. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Cerchiara, G. [Department of Nuclear and Production Engineering, University of Pisa (Italy); Castin, N. [Catholic University of Louvain-la-Neuve (Belgium); Vincent, E. [LMPGM UMR-8517, University of Lille I, Villeneuve d' Ascq (France); Malerba, L. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)]. E-mail: lmalerba@sckcen.be

    2007-02-15

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed.

  3. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts

    Science.gov (United States)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan

    2015-02-01

    This study used improved capsule technique i.e., Pt95Cu05 or Au95Cu05 alloy capsules as Cu sources to determine Cu partitioning between mafic minerals, Fe-Ti oxides and intermediate to felsic melts at 0.5-2.5 GPa, 950-1100 °C and various oxygen fugacities (fO2). In combination with the data from the mafic composition systems, the results demonstrate that Cu is generally highly incompatible in mafic minerals and moderately incompatible to compatible in Fe-Ti oxides. The general order of mineral/melt Cu partition coefficients (DCu) is garnet (0.01-0.06) ⩽ olivine (0.04-0.20) ≈ opx (0.04-0.24) ≈ amphibole (0.04-0.20) ⩽ cpx (0.04-0.45) ⩽ magnetite, titanomagnetite and Cr-spinel (0.18-1.83). The variations in DCu depend mainly on temperature, fO2 or mineral composition. In general, DCu for olivine (and perhaps opx) increases with decreasing temperature and increasing fO2. DCu increases for cpx with Na+ (pfu) in cpx, for magnetite and Cr-spinel with Fe3+ (pfu) in these phases and for titanomagnetite with Ti4+ (pfu) in this phase. The large number of DCu data (99 pairs) serves as a foundation for quantitatively understanding the behavior of Cu during magmatic processes. The generation of intermediate to felsic magmas via fractional crystallization or partial melting of mafic rocks (magmas) at deep levels of crust involves removal of or leaving assemblages of mafic minerals + Fe-Ti oxides ± sulfides. With our DCu data on mafic minerals and Fe-Ti oxides, DCubulk values around 0.2 were obtained for the sulfide-free assemblages. Cu will thus be concentrated efficiently in the derived melts during these two processes if sulfides are absent or negligible, explaining that high fO2 and sulfide-destabilization are favorable to formation of the porphyry Cu system.

  4. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  5. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Hekmat-Ardakan, Alireza [École Polytechnique de Montréal, Dép. de Génie Chimique, P.O. Box 6079, Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  6. Study of the viability to obtain quasicrystal in the composition AlCuFe using high-energy milling, followed by pressing and sintering

    International Nuclear Information System (INIS)

    Coelho, Rodrigo Estevam; Cruz, Ramon Mateus Santos; Esteves, Paulo Jesus Costa; Viana, Silvana Garcia; Lima, Severino Jackson Guedes de

    2009-01-01

    This work was observed the phase formations of the mixture Al-Cu-Fe processed vial mechanical alloying, powders pressing at room temperature and subsequent heat treatment. The mixture of powders was made on the nominal composition Al 65 Cu 2 0Fe 15 . A mill of high energy of the horizontal atrittor type was used to process the powders mixtures, in fixed time of two hours of milling. After milling, the powders were pressing in a die closed, with a diameter of about 28mm. The samples were observed by optical microscopy and analyzed X-ray diffractometry. The results obtained in this study provide a basis for setting parameters may be used as a basis for future research and possible applications. (author)

  7. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    International Nuclear Information System (INIS)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; Washton, Nancy M.

    2017-01-01

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4 /Beta, and NH 4 /SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27 Al-nuclear magnetic resonance ( 27 Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further tested with standard NH 3 -SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3 -SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.

  8. Research progress in photolectric materials of CuFeS2

    Science.gov (United States)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  9. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  10. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    International Nuclear Information System (INIS)

    Demchishin, A.V.; Gnilitskyi, I.; Orazi, L.; Ascari, A.

    2015-01-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics

  11. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    Science.gov (United States)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  12. An assessment of the homogeneity of nano-crystalline Fe-Cu powders as studied by means of APT

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Catharina, E-mail: cwille@ump.gwdg.de [Georg-August-University Goettingen, Institute for Materials Physics, Goettingen 37077 (Germany); Al-Kassab, Talaat [Georg-August-University Goettingen, Institute for Materials Physics, Goettingen 37077 (Germany); Choi, Pyuck-Pa [Korea Institute of Science and Technology, Nano-Materials Research Center, Seoul (Korea, Republic of); Kwon, Young-Soon [Research Center for Machine Parts and Materials Processing, University of Ulsan, Ulsan (Korea, Republic of); Kirchheim, Reiner [Georg-August-University Goettingen, Institute for Materials Physics, Goettingen 37077 (Germany)

    2009-04-15

    In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements.

  13. An assessment of the homogeneity of nano-crystalline Fe-Cu powders as studied by means of APT

    International Nuclear Information System (INIS)

    Wille, Catharina; Al-Kassab, Talaat; Choi, Pyuck-Pa; Kwon, Young-Soon; Kirchheim, Reiner

    2009-01-01

    In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements.

  14. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  15. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  16. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  17. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  18. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D., E-mail: fanxd@seu.edu.cn; Shen, B.L., E-mail: blshen@seu.edu.cn

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe{sub 86}B{sub 7}C{sub 7} alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe{sub 3}C and α-Fe phase impedes the devitrification. • Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity.

  19. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  20. X-ray diffraction study of chalcopyrite CuFeS2, pentlandite (Fe,Ni)9S8 and Pyrrhotite Fe1-xS obtained from Cu-Ni orebodies

    International Nuclear Information System (INIS)

    Nkoma, J.S.; Ekosse, G.

    1998-05-01

    The X-ray Diffraction (XRD) technique is applied to study five samples of Cu-Ni orebodies, and it is shown that they contain chalcopyrite CuFeS 2 as the source of Cu, pentlandite (Fe,Ni) 9 S 8 as the source of Ni and pyrrhotite Fe 1-x S as a dominant compound. There are also other less dominant compounds such as bunsenite NiO, chalcocite Cu 2 S, penrosite (Ni, Cu)Se 2 and magnetite Fe 3 O 4 . Using the obtained XRD data, we obtain the lattice parameters for tetragonal chalcopyrite as a=b=5.3069A and c=10.3836A, cubic pentlandite as a=b=c=10.0487A, and hexagonal pyrrhotite as a=b=6.8820A and c=22.8037A. (author)

  1. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  2. A facile approach to fabricate of photothermal functional Fe{sub 3}O{sub 4}@CuS microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baolong; Shan, Yan, E-mail: shanyan@qust.edu.cn; Chen, Kezheng, E-mail: kchen@qust.edu.cn

    2017-06-01

    Photothermal functional Fe{sub 3}O{sub 4}@CuS microspheres have been prepared successfully by a simple chemical deposition method. The adsorption of cetyltrimethyl-ammonium bromide (CTAB) on the magnetic microspheres plays an important role in forming the structure of the composites. The present materials are characterized with XRD, TEM, SEM, FTIR, and UV-VIS-NIR spectrophotometer. The results show that Fe{sub 3}O{sub 4} microspheres are coated by CuS layer with thickness of 10 nm. The saturation magnetization value of Fe{sub 3}O{sub 4}@CuS core-shell microspheres is 27 emu/g at room temperature and the sample possesses excellent magnetic response in the presence of applied magnetic field. Moreover, these microspheres exhibit good dispersion, suitable size and significant photothermal conversion efficiency up to 20.7% at 808 nm laser irradiation. Fluctuation value of the highest temperature of Fe{sub 3}O{sub 4}@CuS dispersion over four times LASER ON/OFF indicates that photothermal stability of Fe{sub 3}O{sub 4}@CuS microspheres is good. - Highlights: • The Fe{sub 3}O{sub 4} microspheres have been coated with CuS and the thickness of CuS layer is about 10 nm. • The Fe{sub 3}O{sub 4}@CuS microspheres are ferromagnetism, and possess good photothermal conversion efficiency and photostability. • The materials have great potential application for photothermal therapy.

  3. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  4. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    International Nuclear Information System (INIS)

    Rajabi, S.K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-01-01

    Magnetic Fe 3 O 4 @CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe 3 O 4 @HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe 3 O 4 core and a CuO shell. The Fe 3 O 4 @CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe 3 O 4 -CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe 3 O 4 @CuO core-shell release of copper ions. These Cu 2+ ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe 3 O 4 @CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe 3 O 4 . • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  5. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  6. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanwei [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu, Zhiliang, E-mail: zzl@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Qiu, Yanling [Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized. Black-Right-Pointing-Pointer The average pore size of the materials with about 16 nm indicated that the mesoporous structures existed in the Cu/Mg/Fe/La-LDHs. Black-Right-Pointing-Pointer The adsorption capacity of As(V) increased with the increment of La{sup 3+} content in the LDH. Black-Right-Pointing-Pointer The maximum adsorption capacity of the synthesized Cu/Mg/Fe/La-LDH for arsenate was 43.5 mg/g. - Abstract: A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized and used for the removal of arsenate from aqueous solutions. The purpose of incorporation of La{sup 3+} into LDHs was tried to enhance the uptake efficiency of arsenate and broaden the application field of LDHs functional materials. Effects of various physico-chemical factors such as solution pH, adsorbent dosage, contact time and initial arsenate concentrations on the adsorption of arsenate onto Cu/Mg/Fe/La-LDH were investigated. Results showed that the removal efficiency of arsenate increased with the increment of the lanthanum content in Cu/Mg/Fe/La-LDH adsorbents, and the optimized lanthanum content was 20% of the total trivalent metals composition (Fe{sup 3+} and La{sup 3+}). The adsorption isotherms can be well described by Langmuir equation, and the adsorption kinetics of arsenate followed the pseudo-second-order kinetic model. Coexistent ions such as HPO{sub 4}{sup 2-}, CO{sub 3}{sup 2-}, SO{sub 4}{sup 2-}, Cl{sup -} and NO{sub 3}{sup -} exhibited obvious competition with arsenate for the adsorption on Cu/Mg/Fe/La-LDH. The solution pH significantly affected the removal efficiency, which was closely related to the change of arsenate species distribution under different pH conditions. The predominant adsorption mechanism can be mainly attributed to the processes including ion exchange and layer ligand exchange.

  7. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions

    International Nuclear Information System (INIS)

    Guo, Yanwei; Zhu, Zhiliang; Qiu, Yanling; Zhao, Jianfu

    2012-01-01

    Highlights: ► A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized. ► The average pore size of the materials with about 16 nm indicated that the mesoporous structures existed in the Cu/Mg/Fe/La-LDHs. ► The adsorption capacity of As(V) increased with the increment of La 3+ content in the LDH. ► The maximum adsorption capacity of the synthesized Cu/Mg/Fe/La-LDH for arsenate was 43.5 mg/g. - Abstract: A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized and used for the removal of arsenate from aqueous solutions. The purpose of incorporation of La 3+ into LDHs was tried to enhance the uptake efficiency of arsenate and broaden the application field of LDHs functional materials. Effects of various physico-chemical factors such as solution pH, adsorbent dosage, contact time and initial arsenate concentrations on the adsorption of arsenate onto Cu/Mg/Fe/La-LDH were investigated. Results showed that the removal efficiency of arsenate increased with the increment of the lanthanum content in Cu/Mg/Fe/La-LDH adsorbents, and the optimized lanthanum content was 20% of the total trivalent metals composition (Fe 3+ and La 3+ ). The adsorption isotherms can be well described by Langmuir equation, and the adsorption kinetics of arsenate followed the pseudo-second-order kinetic model. Coexistent ions such as HPO 4 2− , CO 3 2− , SO 4 2− , Cl − and NO 3 − exhibited obvious competition with arsenate for the adsorption on Cu/Mg/Fe/La-LDH. The solution pH significantly affected the removal efficiency, which was closely related to the change of arsenate species distribution under different pH conditions. The predominant adsorption mechanism can be mainly attributed to the processes including ion exchange and layer ligand exchange.

  8. Fe3O4@HKUST-1 and Pd/Fe3O4@ HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic

    OpenAIRE

    Toyao, Takashi; Styles, Mark J.; Yago, Tokuichiro; Sadiq, Muhammad M.; Ricco, Raffaele; Suzuki, Kiyonori; Horiuchi, Yu; Takahashi, Masahide; Matsuoka, Masaya; Falcaro, Paolo

    2017-01-01

    Nanocomposites obtained by integrating iron oxide magnetic nanoparticles (Fe3O4) into a metal-organic framework (HKUST-1 or Cu-3(BTC)(2), BTC = 1,3,5-benzenetricarboxylate) are synthesized through conversion from a composite of a Cu-based ceramic material and Fe3O4. In situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements reveal that the presence of Fe3O4 leads to the fast conversion and synthesis of HKUST-1 with small particle sizes. The prepared MOF co...

  9. The interaction between dietary Fe, Cu and stress in Cu-67 retention and serum ceruloplasmin (Cp) activity in rats

    International Nuclear Information System (INIS)

    Pellett, L.; Kattelmann, K.; Zinn, K.; Trokey, D.; Forrester, I.; Gordon, D.T.

    1991-01-01

    The objectives of the study were to determine the effects of dietary Fe and stress on Cu-67 retention and serum Cp activity in the rat. A 2 x 2 x 2 factorial arrangement of treatments was utilized. Male Sprague Dawley weanling rats were fed AIN-76 diets ad lib containing 0.8 ppm Cu (CuD) or 5.7 ppm Cu (CuA) with 22.5 ppm Fe (FeA) or 280 ppm Fe (FeE). After 19 days, one-half of the animals of each treatment were stressed by an intramuscular injection of 0.1 ml turpentine/100 gm body weight. Forty-eight hours later, animals were gavaged with Cu-67 and counted over a 7 day period in a whole body high resolution gamma counter. Cu-67 retention was 20% higher in CuD rats compared to CuA rats. There were no significant effects caused by Fe or stress or the interaction between these variables on Cu-67 retention. In rats fed FeE-CuA diets, serum Cp activity was significantly depressed compared to rats fed FeA-CuA diets. These reductions in the acute phase protein Cp, were 85% and 70% in nonstressed and stressed rats, respectively. The results of this study suggest that the negative interaction effects of excess Fe on Cu utilization does not occur at the site of Cu absorption, but within the body and specifically in the liver

  10. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    Science.gov (United States)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  11. Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Al-Busaidi, M.; Gismelseed, A.; Al-Rawas, A. [Physics Department, College of Science, Sultan Qabos University, P. O. Box 36, Postal Code 123, Al-Khodh, Muscat (Oman)

    2004-05-01

    Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers (MLs) have been investigated. Although multilayered structure has been successfully obtained, a substantial interfacial roughness ranging from 0.6 nm to 1.2 nm has been determined. All Fe/Cu MLs were polycrystalline with an average grain size of about 10 nm. Fe was bcc and textured (110) whereas Cu was fcc(111). Transmission electron microscopy analysis showed that the fcc Cu layer was rather textured (110) and (100) at least in the first stage of growth of the Fe/Cu MLs. Conversion electron Moessbauer (CEMS) measurements indicated the existence of three phases. Two of them were magnetic with a dominant bcc Fe phase, followed by fcc Fe phase. The third phase was superparamagnetic. The CEMS results were explained in terms of the partial diffusion of Fe into Cu with three different zones. The small magnetoresistance (MR<0.2%) was correlated to Fe clusters located at Fe-Cu interfaces. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Zhang, Sai; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile and efficient approach to synthesize Fe 3 O 4 @Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe 3 O 4 @Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe 3 O 4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe 3 O 4 @Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe 3 O 4 @Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe 3 O 4 @Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe 3 O 4 @Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe 3 O 4 @Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe 3 O 4 @Cu display high catalytic activity after 13 cycles

  13. Optical properties of reduced graphene oxide and CuFe2O4 composites in the IR region

    Science.gov (United States)

    Ma, De-yue; Li, Xiao-xia; Guo, Yu-xiang; Zeng, Yu-run

    2018-01-01

    The complex refractive index of reduced graphene oxide and CuFe2O4 composites prepared by hydrothermal method was calculated using infrared Micro-reflective spectra and K-K relation, and the calculation errors were analyzed according to its IR transmission and spectral reflectivity calculated by Fresnel formula. And then normal emissivity of the composite in IR atmospheric window was calculated by means of Fresnel formula and modified refraction angle formula. The calculation accuracy was verified by comparing measured normal total emissivity with the calculated one. The results show that complex refractive index and normal emissivity calculated by the formulas have a high accuracy. It has been found that the composite has a good absorption and radiation characteristics in IR atmospheric window and a strong scattering ability in middle IR region by analyzing its extinction, absorption and radiation properties in IR region. Therefore, it may be used as IR absorption, extinction and radiation materials in some special fields.

  14. A novel lithium copper iron phosphate with idealized formula Li5Cu22+Fe3+(PO44: crystal structure and distribution of defects

    Directory of Open Access Journals (Sweden)

    Shailesh Upreti

    2011-05-01

    Full Text Available Gray–green single crystals were obtained under high-pressure, high-temperature hydrothermal conditions. A refinement of atom occupancies gave the composition Li3.68Cu2+Fe3+(Cu0.55Li0.452Fe2+0.15(PO44. The structure is built from triplets of edge-sharing (Cu,LiO5–FeO6–(Cu,LiO5 polyhedra, CuO4 quadrilaterals and PO4 tetrahedra. In the (Cu,LiO5 polyhedra the Cu and Li positions are statistically occupied in a 0.551 (2:0.449 (2 ratio. Both FeO6 and CuO4 polyhedra exhibit overline1 symmetry. The positions of additional Li atoms with vacancy defects are in the interstices of the framework.

  15. Photoelectron diffraction of magnetic ultrathin films: Fe/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G. (Lawrence Livermore National Lab., CA (USA)); Wagner, M.K. (Wisconsin Univ., Madison, WI (USA). Dept. of Chemistry); Guo, X.Q.; Tong, S.Y. (Wisconsin Univ., Milwaukee, WI (USA). Dept. of Physics)

    1991-01-03

    The preliminary results of an ongoing investigation of Fe/Cu(001) are presented here. Energy dependent photoelectron diffraction, including the spin-dependent variant using the multiplet split Fe3s state, is being used to investigate the nanoscale structures formed by near-monolayer deposits of Fe onto Cu(001). Core-level photoemission from the Fe3p and Fe3s states has been generated using synchrotron radiation as the tunable excitation source. Tentatively, a comparison of the experimental Fe3p cross section measurements with multiple scattering calculations indicates that the Fe is in a fourfold hollow site with a spacing of 3.6{Angstrom} between it and the atom directly beneath it, in the third layer. This is consistent with an FCC structure. The possibility of utilizing spin-dependent photoelectron diffraction to investigate magnetic ultrathin films will be demonstrated, using our preliminary spectra of the multiplet-split Fe3s os near-monolayer Fe/Cu(001). 18 refs., 10 figs.

  16. Tribological studies of composite material based on CuZn38Al2Mn1Fe brass strengthened with δ-alumina fibres

    Directory of Open Access Journals (Sweden)

    J. W. Kaczmar

    2010-10-01

    Full Text Available The results of tribological studies (friction coefficient, wear resistance of the frictional couple of composite material based on CuZn38Al2Mn1Fe brass strengthened with δ-alumina fibres (Saffil and cast iron are shown in this paper. The wear investigations were conducted applying the tribological pin-on-disc tester and the friction forces between composite materials containing 10 and 20 vol. % of δ-alumina fibres (Saffil and cast iron were registered. Wear was determined on the base of the specimen mass loss after 1, 3,5 and 8.5 km of friction distance.

  17. Enhanced multiferroic properties in (1–y)BiFeO{sub 3}–yNi{sub 0.50}Cu{sub 0.05}Zn{sub 0.45}Fe{sub 2}O{sub 4} composites

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, S.C. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Department of Physics, Comilla University, Comilla (Bangladesh); Khan, M.N.I. [Materials Science Division, Atomic Energy Centre, Dhaka 1000 (Bangladesh); Islam, Md. Fakhrul [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Hossain, A.K.M. Akther, E-mail: akmhossain@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2015-09-15

    Multiferroic composites (1–y)BiFeO{sub 3}–yNi{sub 0.50}Cu{sub 0.05}Zn{sub 0.45}Fe{sub 2}O{sub 4} (y=0.0, 0.1, 0.2, 0.3 and 0.4) are synthesized by the standard solid state reaction method. The X-ray diffraction analysis affirms the formation of both the component phases and also reveals that there is no chemical reaction between them. From the energy-dispersive X-ray spectroscopy study it is observed that the percentage of the elements in the component phases is well consistent with the nominal composition of the composites. Field Emission Scanning Electron Microscopy analysis shows almost homogeneous mixture of the two phases. The real part of the initial permeability increases (up to 67%) and the loss decreases with the ferrite content in the composites which is important in application point of view. Dielectric constant (ε′), loss tangent and AC conductivity are measured as a function of frequency at room temperature. The highest ε′ is obtained for 0.6BiFeO{sub 3}–0.4Ni{sub 0.50}Cu{sub 0.05}Zn{sub 0.45}Fe{sub 2}O{sub 4} composite. The dielectric dispersion at lower frequency (<10{sup 5} Hz) is due to the interfacial polarization. The complex impedance spectroscopy is used to correlate between the electrical properties of the studied samples with their microstructures. Two semicircular arcs corresponding to both grain and grain boundary contribution to electrical properties have been observed in all the studied samples. The maximum magnetoelectric voltage coefficient is found to be ∼38 mV cm{sup −1} Oe{sup −1} for the composite with 80% ferroelectric+20% ferrite phases. The present composite might be a promising candidate as multiferroic materials showing effective electric and magnetic properties. - Highlights: • XRD shows coexistance of ferroelectric and ferrimagnetic phases and no third phase. • The multiferroic composites show enhanced initial permeability and low loss. • Dielectric constant exhibits excellent high frequency stability

  18. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.; Aftab, M.; Anjum, Dalaver H.; Cha, Dong Kyu; Poirier, Gerald; Ismat Shah, S.

    2015-01-01

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  19. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.

    2015-12-16

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  20. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  1. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  2. A Hybrid Mineral Battery: Energy Storage and Dissolution Behavior of CuFeS2 in a Fixed Bed Flow Cell.

    Science.gov (United States)

    Deen, Kashif Mairaj; Asselin, Edouard

    2018-05-09

    The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS 2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H 2 SO 4 ) and catholyte (0.5 m Fe 2+ in 0.2 m H 2 SO 4 with or without 0.1 m Cu 2+ ) were circulated in the cell. The electrochemical activity of the Fe 2+ /Fe 3+ redox couple over graphite felt significantly improved after the addition of Cu 2+ in the catholyte. Ultimately, in the CuFeS 2 ∥Fe 2+ /Cu 2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g -1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS 2 ∥Fe 2+ (CFe) system (13.9 mAh g -1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg -1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg -1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ESR, thermoelectrical and positron annihilation Doppler broadening studies of CuZnFe{sub 2}O{sub 4}-BaTiO{sub 3} composite

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mahmoud, K.R. [Physics Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh (Egypt); Sharshar, T. [Physics Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh (Egypt); Physics Department, Faculty of Science, Taif University, Al-Hawiah, Taif, P.O. Box 888 Zip Code 21974 (Saudi Arabia); Elsheshtawy, M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Hamad, Mahmoud A., E-mail: m_hamad76@yahoo.com [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); King Marriott Academy for Engineering & Technology, Alexandria (Egypt)

    2017-05-01

    Composite materials of Cu{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} (CZF) and barium titanate (BT) with different concentrations were prepared by high energy ball milling method. The composite samples of CZF and BT were studied using Infrared, ESR and positron annihilation Doppler broadening (PADB) spectroscopy techniques as well as thermo-electric power measurements. The results confirm formation of the composite, and presence of two ferrimagnetic and ferroelectric phases, simultaneously. In addition, Fe–O bond for both tetrahedral and octahedral sites, population and distribution of cations at A and B sites are varied with BT content. The values of resonance field, line width of ESR spectrum and charge carrier concentration increase by increasing BT content. The value of the g factor for our samples with low BT content is greater than g-factor value of the isolated free electron. On the contrary, the g-factor values for samples with high BT content are smaller than the free isolated electron. PADB line-shape S-parameter suggests that there are increases of the density of the delocalized electrons, defect size and concentration caused by highly adding BT phase. In addition, PADB results confirm the homogeneity of composite phases and same structure of defects in BT-CZF composite samples. - Highlights: • Composite materials of Cu{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} (CZF) and barium titanate (BT) were prepared. • The resonance field and charge carrier concentration increase by increasing BT. • there is increase of the density of delocalized electrons by highly adding BT. • In addition, PADB results confirm the homogeneity of composite phases.

  4. Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate

    International Nuclear Information System (INIS)

    Peng, B.; Zhang, W.L.; Liu, J.D.; Zhang, W.X.

    2011-01-01

    FeCoSiB/Cu/FeCoSiB sandwich layers were deposited on flexible substrate to develop flexible stress/strain sensors. The influence of stress on the impedance of the multilayers is reported. The results show that the variation of the impedance increases with the increase in deflection of the free end of the cantilever. A relative change in impedance of 6.4% is obtained in the FeCoSiB(1.5 μm)/Cu(0.25 μm)/FeCoSiB(1.5 μm) sandwich layers at 1 MHz with deflection of 2 mm. The stress impedance effects are sensitive to the frequency of the current and the thickness of both FeCoSiB and Cu layers. The stress impedance effect increases with the increase in the thickness of FeCoSiB or Cu layers. The stress impedance effect increases slightly with the increase in frequency and decreases with the further increase in frequency, which can be understood by the stress and frequency-dependent permeability of magnetic films. - Research highlights: → We deposited FeCoSiB/Cu/FeCoSiB multilayer on flexible substrate. → We studied the stress impedance effect of FeCoSiB/Cu/FeCoSiB multilayer. → Stress impedance effect increases with thickness of both FeCoSiB and Cu layer.→ Stress impedance effect is dependent on current frequency. → Results are understood using stress and frequency-dependent permeability.

  5. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  6. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  7. Measurement of thermoelectric power of Fe-Cu binary alloys

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2007-01-01

    In INSS, non-destructive evaluation (NDE) of irradiation embrittlement of low alloy steel using thermoelectric power (TEP) measurement has been considered, as well as NDE of thermal aging of cast duplex stainless steel which has been studied in recent years. Material degradation is evaluated based on a relation between progress of the degradation and change in TEP due to change in material structure caused by the degradation event. So it is necessary for NDE of irradiation embrittlement to measure the change in TEP due to precipitation of Cu contained as an impurity, which is known as one of the reasons for the embrittlement. In this study, TEP of Fe-Cu binary alloys with different Cu content was measured for investigation of the relationship between TEP of the alloys and Cu content. In addition, appropriateness of measuring TEP of Fe-Cu binary alloy in the same way to measure TEP of duplex stainless steel was examined. It was found that increment of Cu contained in the alloys changed TEP in a negative direction and the rate was evaluated as -6.6μV/K/wt%Cu. There were the cases that it took 20 minutes for measurement values to become stable in measurement of Fe-Cu binary alloys. It was much longer than the time taken in measurement of duplex stainless steel. So the measurement time per a point was extended to 60 minutes in case of Fe-Cu binary alloys. (author)

  8. Crystal and magnetic structures of CaCu3Fe4O12 and LaCu3Fe4O12: distinct charge transitions of unusual high valence Fe

    International Nuclear Information System (INIS)

    Shimakawa, Yuichi

    2015-01-01

    New 134-type perovskites, CaCu 3 Fe 4 O 12 (CCFO) and LaCu 3 Fe 4 O 12 (LCFO), were prepared by means of high-pressure synthesis. The compounds contain unusual high valence Fe 4+ in CCFO and Fe 3.75+ in LCFO at high temperatures. With decreasing temperature, the instabilities of the high valence states of Fe are relieved by distinct charge transitions, which are charge disproportionation (4Fe 4+   →  2Fe 3+   +  2Fe 5+ ) in CCFO and intermetallic charge transfer (3Cu 2+   +  4Fe 3.75+   →  3Cu 3+   +  4Fe 3+ ) in LCFO. Crystal structure analysis with synchrotron x-ray diffraction and magnetic structure analysis with neutron diffraction revealed the nature of the transitions. Although the two behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of low-lying Fe-d and oxygen p orbitals in the oxides. The ligand holes in the charge disproportionated CCFO are localized at the Fe–O sites alternately (4d 5 L  →  2d 5   +  2d 5 L 2 ) and the ligand holes in the charge transferred LCFO are localized at the Cu–O sites (3d 9   +  4d 5 L 0.75   →  3d 9 L  +  4d 5 ). (review)

  9. A route for recycling Nd from Nd-Fe-B magnets using Cu melts

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Martina; Gebert, Annett, E-mail: a.gebert@ifw-dresden.de; Stoica, Mihai; Uhlemann, Margitta; Löser, Wolfgang

    2015-10-25

    Phase evolutions in Nd-Fe-B magnet/Cu systems have been explored with regard to Nd recycling. It was demonstrated that large scale phase separation into a ferromagnetic Fe(B)-rich ingot core with α-Fe main phase and a non-magnetic (Cu,Nd)-rich ingot rim takes place upon arc melting with Cu fractions ≥ 21.5 wt.-%. The re-solidification of the Nd{sub 2}Fe{sub 14}B magnet main phase is suppressed. The rim consists of the Cu{sub 2}Nd main phase and CuNd/Cu{sub 4}Nd minority phases in which Al traces from the magnetic material are gathered. Induction melting of such Nd-Fe-B/Cu mixtures can support the separation of these phase regions with very sharp boundaries. Main features of liquid phase separation and microstructure evolution have been interpreted on the basis of Nd-Fe-Cu phase diagram data. The key advantage with respect to Nd recycling from Nd-Fe-B permanent magnet scrap is the substantial accumulation of Nd in the (Cu,Nd)-rich region of the phase separated solidified specimen, which can be easily detached from the Fe-rich part by mechanical-magnetic treatments. Such portions contained up to ∼44 wt.-% Nd (25 at.-%) in first lab-scale experiments. Nd recovery from the (Cu,Nd)-rich fractions is possible by exploiting the large chemical property differences between the reactive rare earths elements and Cu. - Highlights: • phase evolution analysis in Nd-Fe-B magnet/Cu systems with regard to Nd recycling. • Cu ≥ 21 wt.-%, large scale phase separation- Fe(B)-rich ingot core, (Cu,Nd)-rich rim. • high Nd content (∼44 wt.-%) of (Cu,Nd)-rich region, mechanical-magnetic treatments.

  10. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high...

  11. The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method

    International Nuclear Information System (INIS)

    Qiao Liang; You Lishun; Zheng Jingwu; Jiang Liqiang; Sheng Jiawei

    2007-01-01

    La-Cu substituted strontium hexaferrites with the chemical composition of Sr 1- x La x Fe 12- x Cu x O 19 were prepared by self-propagating high-temperature synthesis. The effects of La-Cu substitution on the microstructure and magnetic properties of Sr-ferrites were studied. The XRD results show that all the samples are single SrM-type phase for x 1- x La x Fe 12- x Cu x O 19 are remarkably improved for x 2+ by La 3+ in the Sr-layer makes the Cu 2+ preferably substitutes the Fe 3+ in 4f 2 sites is predicted to be associated with the improvement of the magnetic properties of La-Cu substituted samples

  12. Microstrucural characterization of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez, M.; Marin, P. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Madrid (Spain)

    2011-06-15

    Research highlights: > Two FeSi-base alloys as precursors for small dimension soft magnets. > Small particles rapidly solidified by gas atomisation. > Increase effective magnetic anisotropy constant by alloying segregation. > Magnetic hardenning due to volume decrease. - Abstract: Powder particles of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc {alpha}-Fe (Si) solid solution. The Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe{sub 97}Si{sub 3} alloy in the range of 50-100 {mu}m powder particle size. The coercive fields were quite higher in the Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} than in the Fe{sub 97}Si{sub 3} powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.

  13. Fabrication of Fe{sub 3}O{sub 4}@CuO core-shell from MOF based materials and its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, S.K. [Department of Chemistry, University of Guilan, University Campus 2, Rasht (Iran, Islamic Republic of); Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir [Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht (Iran, Islamic Republic of); Ghafourian, S. [Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam (Iran, Islamic Republic of)

    2016-12-15

    Magnetic Fe{sub 3}O{sub 4}@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe{sub 3}O{sub 4}@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe{sub 3}O{sub 4} core and a CuO shell. The Fe{sub 3}O{sub 4}@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe{sub 3}O{sub 4}-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe{sub 3}O{sub 4}@CuO core-shell release of copper ions. These Cu{sup 2+} ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe{sub 3}O{sub 4}@CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe{sub 3}O{sub 4}. • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  14. Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios.

    Science.gov (United States)

    Chidambarampadmavathy, Karthigeyan; Karthikeyan, Obulisamy Parthiba; Huerlimann, Roger; Maes, Gregory E; Heimann, Kirsten

    2017-07-15

    abundance was ∼2% in the LB- (compared to >50% in CB-CSTR), methane oxidation capacities were comparable in the two systems, suggesting that methane oxidation capacity was maintained by the dominant Azospirllum and Sphingopyxis in the LB-CSTR. Despite similar methanotroph inoculum community composition and controlled environmental variables, increasing Cu 2+ /Fe 2+ ratios resulted in significantly different microbial community structures in the LB- and CB-CSTR, indicative of complex microbial interactions. In summary, our results suggest that a detailed understanding of allelopathic interactions in mixed methanotrophic consortia is vital for constructing robust bio-filters for CH 4 emission abatement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Magnetic Excitations in Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.

    2005-01-01

    Magnetic excitations in the cooperative ordered state in a weakly coupled Fe chains and Cu dimers compound Cu 2 Fe 2 Ge 4 O 13 is studied by thermal neutron scattering technique. We show that the low energy excitations up to 10 meV in wide q range are well described by spin wave theory of weakly coupled Fe chains. In higher energy range a narrow band excitation that can be associated with Cu dimers is observed at ℎω-24 meV. Both types of excitations can be understood by treating the weak coupling between Fe chains and Cu dimers at the level of Mean Field/Random Phase Approximation.

  16. Fabrication of magnetically recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Zhang, Sai; Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China)

    2014-12-15

    A facile and efficient approach to synthesize Fe{sub 3}O{sub 4}@Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe{sub 3}O{sub 4}@Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe{sub 3}O{sub 4} contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe{sub 3}O{sub 4}@Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe{sub 3}O{sub 4}@Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe{sub 3}O{sub 4}@Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe{sub 3}O{sub 4}@Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe{sub 3}O{sub 4}@Cu display high catalytic activity after 13 cycles.

  17. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    Science.gov (United States)

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  18. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  19. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    OpenAIRE

    Pavel Novák; Alena Michalcová; Milena Voděrová; Ivo Marek; Dalibor Vojtěch

    2013-01-01

    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by...

  20. RF and microwave noise suppression in a transmission line using Fe-Si-Al/Ni-Zn magnetic composite films

    International Nuclear Information System (INIS)

    Lee, J. W.; Hong, Y. K.; Kim, K.; Joo, J.; Yoon, Y. W.; Kim, S. W.; Kim, Y. B.; Kim, K. Y.

    2006-01-01

    Radio-frequency (RF) and microwave noise suppression by using magnetic composite films on a microstrip line (MSL) was studied in the frequency range from 50 MHz to 13.5 GHz. The MSL was composed of a Cu transmission line, dielectric materials, and a Cu substrate. The Fe-Si-Al/Ni-Zn magnetic composite films were placed on the MSL, and the reflection and the transmission characteristics were investigated. We observed that RF and microwave noise suppression caused by the Fe-Si-Al/Ni-Zn magnetic composite films varied with the concentration ratio of the sendust (Fe-Si-Al) and the Ni-Zn ferrite. The frequency dependence of the power loss due to the composite films on the MSL was measured and the power loss increased at higher frequencies with increasing concentration of the sendust in the composites. The electromagnetic interference shielding efficiencies of the magnetic composite films in the far-field region are also discussed.

  1. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Donoso, E.

    2014-01-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi 3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi 3 phase. (Author)

  2. NMR and NQR study of the electronic and structural properties of Al-Cu-Fe and Al-Cu-Ru quasicrystals

    International Nuclear Information System (INIS)

    Shastri, A.; Borsa, F.; Torgeson, D.R.; Shield, J.E.; Goldman, A.I.

    1994-01-01

    27 Al and 63,65 Cu NMR is reported for powdered stable Al-Cu-Fe and Al-Cu-Ru icosahedral quasicrystals and crystalline approximants, and for an Al-Pd-Mn single-grain quasicrystal. 27 Al NQR spectra at 4.2 K were observed in Al-Cu-Fe and Al-Cu-Ru samples. From quadrupole-perturbed NMR spectra at different magnetic fields, and from zero-field NQR spectra, a wide distribution of local electric-field gradient (EFG) tensor components and principal-axis-system orientations was found at the Al site. A model EFG calculation based on a 1/1 Al-Cu-Fe approximant successfully explained the observed NQR spectra. The average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to EFG lattice contribution. Comparison of 63 Cu and 27 Al NMR shows the EFG distribution at the two sites is similar, but the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons. Overall spread of EFG values is well reproduced by calculation based on the approximant. However, the experimental spectra indicate a much larger number of nonequivalent sites when compared with the simulated NQR spectra based on the 1/1 approximant. The short-range, local chemical order is well represented by the approximant, but differences in coordination must be included at intermediate range in the quasicrystal. Measured 27 Al Knight shift, magnetic susceptibility, and nuclear spin-lattice relaxation time as a function of temperature indicate reduced density of states at the Fermi level by a factor of 7 or 8 from the value in Al metal, consistent with the notion of a pseudogap for these quasicrystals. No differences in measured parameters were detected as a function of composition of the quasicrystalline alloys

  3. Ground state magnetic properties of Fe nanoislands on Cu(111)

    International Nuclear Information System (INIS)

    Kishi, Tomoya; David, Melanie; Nakanishi, Hiroshi; Kasai, Hideaki; Dino, Wilson Agerico; Komori, Fumio

    2005-01-01

    We investigate magnetic properties of Fe nanoislands on Cu(111) in the relaxed structure within the density functional theory. We observe that the nanoislands exhibit the ferromagnetic properties with large magnetic moment. We find that the change in the magnetic moment of each Fe atom is induced by deposition on Cu(111) and structure relaxation of Fe nanoislands. Moreover, we examine the stability of ferromagnetic states of Fe nanoislands by performing the total energy calculations. (author)

  4. Synthesis of Ag-Cu and Ag-Cu{sub 2}O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Niknafs, Yasaman; Amirjani, Amirmostafa; Marashi, Pirooz, E-mail: pmarashi@aut.ac.ir; Fatmehsari, Davoud Haghshenas

    2017-03-01

    In this paper, Ag, Ag-Cu and Ag-Cu{sub 2}O nanoparticles were synthesized using a modified polyol method. Size, shape and composition of the obtained nanostructures were effectively controlled by adjusting the kinetic and thermodynamic conditions. Response surface methodology was employed to consider the interaction of parameters and to develop a polynomial equation for predicting the size of the silver nanoparticles. The precisely controlled silver nanoaprticles were used as the seeds for the formation of alloyed nanoparticles. By manipulating the involved parameters, both spherical and cubical Ag-Cu and Ag-Cu{sub 2}O nanostructures are obtainable in the size range of 90–100 nm. The morphological, optical and compositional characteristics of the obtained nanostructures were studied using SEM, FE-SEM, UV–Vis, EDS and XRD. - Highlights: • Synthesis of Ag, Ag-Cu and Ag-Cu{sub 2}O alloy nanostructures. • RSM was successfully employed for predicting the size of the AgNPs. • Size and composition tuning by adjusting the kinetic and thermodynamic conditions.

  5. The Magnetoelectric Effect of a Ni0.3Zn0.62Cu0.08Fe2O4 - PbFe0.5Nb0.5O3 Multilayer Composite

    Directory of Open Access Journals (Sweden)

    Guzdek P.

    2014-10-01

    Full Text Available The magnetoelectric effect in multiferroic materials has been widely studied for its fundamental interest and practical applications. The magnetoelectric effect observed for single phase materials like Cr2O3, BiFeO3, and Pb(Fe0.5Nb0.5O3 is usually small. A much larger effect can be obtained in composites consisting of magnetostrictive and piezoelectric phases. This paper investigates the magnetoelectric effect of a multilayer (laminated structure consisting of 6 nickel ferrite and 7 PFN relaxor layers. It describes the synthesis and tape casting process for Ni0.3Zn0.62Cu0.08Fe2O4 ferrite and relaxor PbFe0.5Nb0.5O3 (PFN. Magnetic hysteresis, ZFC - FC curves and dependencies of magnetization versus temperature for PFN relaxor and magnetoelectric composite were measured with a vibrating sample magnetometer (VSM in an applied magnetic field up to 85 kOe at a temperature range of 10 – 400 K. Magnetoelectric effect at room temperature was investigated as a function of a static magnetic field (0.3 - 6.5 kOe and the frequency of sinusoidal magnetic field (0.01 - 6.5 kHz. At lower magnetic field, the magnetoelectric coefficient increases slightly before reaching a maximum and then decreases. The magnetoelectric coefficient aME increases continuously as the frequency is raised, although this increase is less pronounced in the 1-6.5 kHz range. Maximum values of the magnetoelectric coefficient attained for the layered composites exceed about 50 mV/(Oe cm.

  6. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  7. Effect of MnCuFe{sub 2}O{sub 4} content on magnetic and dielectric properties of poly (O-Phenylenediamine)/MnCuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kannapiran, Nagarajan [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Muthusamy, Athianna, E-mail: muthusrkv@gmail.com [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Chitra, Palanisamy [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India)

    2016-03-01

    Poly o-phenylenediamine (PoPD)/MnCuFe{sub 2}O{sub 4} nanocomposites with three different ratios of MnCuFe{sub 2}O{sub 4} (10%, 20%, 30% w/w) were synthesized by in-situ oxidative chemical polymerization method ammonium persulphate used as oxidant, while MnCuFe{sub 2}O{sub 4} nanoparticles was prepared by auto-combustion method. The structure, morphology and magnetic properties of synthesized PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites were characterized by FT-IR, UV–visible absorption spectra, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Vibrating sample magnetometer (VSM). FTIR spectra and XRD were confirmed the formation of the PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites. The morphology of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites is visualized through SEM and TEM. The spherical morphology of the PoPD was confirmed using SEM analysis. Dielectric properties of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites at different temperatures have been performed in the frequency range of 50 Hz–5 MHz. The optical absorption experiments of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites reveal that the direct transition with an energy band gap is around 2 eV. - Highlights: • Green synthesis of PoPD (the polymerization carried out only in aqueous medium) by in-situ chemical polymerization method. • For the first time, PoPD incorporated with MnCuFe{sub 2}O{sub 4} with lesser particle size. • The auto combustion reaction, support to achieve less particle size. • Ferrite content affects the magnetic properties of the nanocomposites.

  8. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  9. CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

    Directory of Open Access Journals (Sweden)

    M. Ahmadzadeh

    2015-04-01

    Full Text Available CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled through the pulses numbers: 200, 260, 310,360 and 410 pulses were used to deposit the CoFe layers, while 300 pulse for the Cu layers. A certain increase in coercivity and squareness of CoFe/Cu multilayer nanowires observed with increasing the CoFe layer thickness and annealing improved the coercivity and decrease squareness of CoFe/Cu multilayer nanowires. First order reversal curves after annealed showed amount domains with soft magnetic phase, it also shows decreasing spreading of distribution function along the Hu axis after annealed

  10. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  11. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy modification

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Jin, Jiaying; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2014-04-15

    To improve coercivity without sacrificing other magnetic performance of NdFeB sintered magnets, a low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced as an intergranular additive. Magnetic properties and microstructure of the magnets with different Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} contents were studied. At the optimum addition of 3 wt%, coercivity H{sub cj} was enhanced from 12.7 to 15.2 kOe, the maximum magnetic energy product (BH){sub max} was simultaneously increased from 46.6 to 47.8 MG Oe, accompanied by a slight reduction in remanence B{sub r}. Further investigation on microstructure and grain boundary composition indicated that the enhanced H{sub cj} and (BH){sub max} could be attributed to the refined and uniform 2:14:1 phase grains, continuous grain boundaries and a (Nd,Dy){sub 2}Fe{sub 14}B hardening shell surrounding the 2:14:1 phase grains. - Highlights: • Low melting-point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced to NdFeB magnets. • The doped magnet exhibits enhanced coercivity and maximum energy product. • (Nd,Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • The continuous grain boundary layer formed between neighboring Nd{sub 2}Fe{sub 14}B grains.

  12. Sb interactions with TaC precipitates and Cu in ion-implanted α-Fe

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Myers, S.M.

    1980-01-01

    The interactions of Sb with the other species implanted into Fe to form Fe-Ta-C-Sb and Fe-Cu-Sb alloys have been examined with transmission electron microscopy and Rutherford backscattering following annealing at 873 0 K. Trapping of Sb at TaC precipitates is observed in the former alloy just as was previously observed in Fe-Ti-C-Sb. In Fe-Cu-Sb, Sb interactions are governed by the atomic ratio of Sb to Cu. For ratios between 0.2 to 0.4, the compound β-Cu 3 Sb was observed to form. For Sb to Cu ratios approx.< 0.1, fcc Cu precipitates were observed. In addition to the expected Sb dissolution in Cu, Sb trapping by Cu precipitates is also observed. The binding enthalpy of Sb at both TaC and Cu precipitates with respect to a solution site in the bcc Fe is the same as observed for TiC, approx. 0.4 eV. The constancy of the binding enthalpy at such chemically dissimilar precipitates supports the hypothesis that the trapping is due to the structural discontinuity of the precipitate-host interface. The observed Sb trapping at precipitates is of potential significance for the control of temper embrittlement in bcc steels

  13. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4

    International Nuclear Information System (INIS)

    Fontané, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V.O.; Valakh, M.Ya.; Pérez-Rodríguez, A.; Morante, J.R.

    2012-01-01

    Highlights: ► Analysis of main and weaker Raman peaks from Cu 2 FeZnS 4 and Cu 2 ZnSnS 4 compounds. ► Identification of a cation disorder induced Raman peak in Cu 2 ZnSnS 4 . ► Analysis of spectral features of main Raman peaks from Cu 2 (Fe,Zn)SnS 4 . - Abstract: This work reports the analysis of the vibrational properties of stannite–kesterite Cu 2 (Fe,Zn)SnS 4 compounds that has been performed by Raman scattering measurements. The detailed analysis of the experimental spectra has allowed determining the frequency and symmetry assignment of the main and weaker peaks from both stannite Cu 2 FeSnS 4 (CFTS) and kesterite Cu 2 ZnSnS 4 (CZTS) phases. The measurements performed in the kesterite CZTS samples have also revealed the presence of local inhomogeneities that are characterised by an additional peak in the spectra at about 331 cm −1 . This peak has been related to the presence in these local regions of a high degree of disorder in the cation sublattice, in agreement with previous neutron diffraction analysis in similar samples. Finally, the spectra from the solid solution alloys show a one-mode behaviour of the main A/A 1 peak with the chemical composition.

  14. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    Science.gov (United States)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  15. Formation of SmFe5(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    International Nuclear Information System (INIS)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmFe 5 (0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe 5 structure forming an alloy compound of Sm(Fe,Cu) 5 . The Sm(Fe,Cu) 5 film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  16. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  17. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  18. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  19. PREPARATION,COMPLEX MECHANISM AND STRUCTURE MODEL OF METALLOPHTHALOC- YANINE-Fe3O4 NANOPARTICLES COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of complex temperature. The interaction of MPc with Fe3O4 nanoparticles has been studied. There are M-O covalent bonding and ionic bonding between MPc and Fe3O4 nanoparticles. The intensities of M-O bonding and ionic bonding are in vestigated .The complex mechanism of MPc with Fe3O4 nanoparticles have been studied. First, there are complex between MPc and all Fe3O4 nanoparticles. Then, Fe3O4 nanoparticles accumulate together to form the accumulators, MPc have the function of cohering Fe3O4 nanoparticles. A considerable number of MPc combine with Fe3O4 nanoparticles on the surface of the accumulators to form MPc-Fe3O4 nanoparticles composite. All the above proesses take place spontaneously. The structure model of MPc-Fe3O4 nanoparticles composite has also been investigated. Inside the MPc-Fe3O4 nanoparticles composite, Fe3O4 nanoparticles accumulate together without order, on the surface of the composite, MPc form molecular dispersion layer. The threshold of molecular dispersion layer are also investigated.

  20. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    fabrication of CuFeO2/n-Si heterojunction by RF sputtering method. TAO ZHU1 ... Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by radio-frequency ... Delafossite oxides CuMO2 (M is trivalent cation, such as.

  1. Photocatalytic performances and activities of Ag-doped CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhengru, E-mail: zhengruzhu@gmail.com [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China); State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong; Zhao, Qidong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Yonghua; Sun, Caizhi; Cao, Yongqiang [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China)

    2013-08-01

    Graphical abstract: - Highlights: • CuFe{sub 2}O{sub 4} nanocrystals were synthesized by a co-precipitation method. • Ag/CuFe{sub 2}O{sub 4} catalyst was prepared by the wetness impregnation strategy. • The structural properties of Ag/CuFe{sub 2}O{sub 4} were investigated by XRD, TEM, DRS, and XPS techniques. • Ag/CuFe{sub 2}O{sub 4} has higher photocatalytic activity. - Abstract: In this work, CuFe{sub 2}O{sub 4} nanoparticles were synthesized by a chemical co-precipitation route. The Ag/CuFe{sub 2}O{sub 4} catalyst was prepared based on the CuFe{sub 2}O{sub 4} nanoparticles by the incipient wetness impregnation strategy, which showed excellent photoelectric property and catalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction (XRD), transmission electronic microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage (SPV) measurement. The photocatalytic degradation of 4-CP by the Ag/CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4} samples were comparatively studied under xenon lamp irradiation. The results indicate that the Ag/CuFe{sub 2}O{sub 4} sample exhibited the higher efficiency for the degradation of 4-CP.

  2. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    Science.gov (United States)

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Neutron diffraction study of Fe-substituted YBa2Cu3O7

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Mironova, G.M.; Pajaczkowska, A.; Piechota, J.; Shimchak, Kh.

    1989-01-01

    Neutron diffraction spectra of YBa 2 (Cu 1-x Fe x )O 7-δ (0 2 planes were determined. It is significant that the doped iron atoms occupy both of the copper site. The substitution of Fe for Cu in (2q) site is proportional to the concentration of iron in the sample. For small x there are a considerable amount of vacancies (10%) in the Cu1 site, which disappear quickly if x increases. Therefore, a joint effect of Cu substitution and the filling in vacancies by Fe occures for the Cu1 site. The amount of oxygen in samples increases with x up to 7.06 for x=0.12. Any visible effect of location of Fe at the Ba site is absent, but we can not exclude it completely. 20 refs.; 4 figs.; 1 tab

  4. Interphase and intergranular stress generation in composites exhibiting plasticity in both phases

    International Nuclear Information System (INIS)

    Daymond, Mark R; Hartig, Christian; Mecking, Heinrich

    2005-01-01

    The internal stress state of Fe-Cu composites has been measured by in situ deformation studies using neutron diffraction. A range of volume fractions from 17% Fe to 83% Fe (remainder Cu) have been investigated. Both phase specific and grain family specific elastic strains have been determined. The results are compared with predictions from a multiphase elasto-plastic self-consistent model, and are found to be in good agreement. The selection of parameters used in the model to improve agreement between experimental and predicted results is suggested to be due to changing geometrical constraint

  5. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  6. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    International Nuclear Information System (INIS)

    Parshin, P.P.; Zemlyanov, M.; Brand, R.A.; Dianoux, A.J.; Calvayrac, Y.

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al 62 Cu 25.5 Fe 12.5 . The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  7. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  8. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  9. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation.

    Science.gov (United States)

    Chen, Weirui; Li, Xukai; Tang, Yiming; Zhou, Jialu; Wu, Dan; Wu, Yin; Li, Laisheng

    2018-03-15

    A flexible catalyst, Fe-Cu-MCM-41, was employed to enhance diclofenac (DCF) mineralization and inhibit bromate formation in catalytic ozonation process. Greater TOC removal was achieved in Fe-Cu-MCM-41/O 3 process (78%) than those in Fe-MCM-41/O 3 (65%), Cu-MCM-41/O 3 (73%) and sole ozonation (42%). But it was interesting that both Cu-MCM-41/O 3 and Fe-MCM-41/O 3 achieved 93% bromate inhibition efficiency, only 71% inhibition efficiency was observed in Fe-Cu-MCM-41/O 3 . Influence of pH, TBA/NaHSO 3 and detection of by-products were conducted to explore the mechanism. By Pyridine adsorption-IR and XPS, a relationship was found among activity of catalysts, Lewis acid sites and electron transfer effect between Fe (II/III) and Cu (I/II). Fe-Cu-MCM-41 promoted ozone decomposition to generate OH, which accounted for enhanced DCF mineralization. The consumption of aqueous O 3 also suppressed the oxidative of Br - and HBrO/Br - . More HBrO/BrO - accumulated in catalytic ozonation process and less bromate generated. Bromate formation in Fe-Cu-MCM-41/O 3 process was sensitive with pH value, the acidic condition was not favor for bromate formation. Both DCF mineralization and bromate inhibition were influenced by surface reaction. Moreover, Fe-Cu-MCM-41 showed excellent catalytic performance in suppressing the accumulation of carboxylic acid, especially for oxalic acid. Nearly no oxalic acid was detected during Fe-Cu-MCM-41/O 3 process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO_2 mediated heterogeneous activation of peroxymonosulfate

    International Nuclear Information System (INIS)

    Ding, Yaobin; Tang, Hebin; Zhang, Shenghua; Wang, Songbo; Tang, Heqing

    2016-01-01

    Highlights: • CuFeO_2 microparticles were prepared by a microwave-assisted hydrothermal method. • CuFeO_2 microparticles efficiently catalyzed the activation of peroxymonosulfate. • Quenching experiments confirmed sulfate radicals as the major reactive radicals. • Carbamazepine was rapidly degraded by micro-CuFeO_2/peroxymonosulfate. • Feasibility of CuFeO_2/peroxymonosulfate was tested for treatment of actual water. - Abstract: Microscaled CuFeO_2 particles (micro-CuFeO_2) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO_2 was of pure phase and a rhombohedral structure with size in the range of 2.8 ± 0.6 μm. The micro-CuFeO_2 efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO_4·−), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO_2 was observed to be 6.9 and 25.3 times that of micro-Cu_2O and micro-Fe_2O_3, respectively. The enhanced activity of micro-CuFeO_2 for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO_2 can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu_2O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO_2 was effective in the studied actual aqueous environmental systems.

  11. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  12. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  13. Formation of SmFe{sub 5}(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: yabuhara@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    SmFe{sub 5}(0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe{sub 5} structure forming an alloy compound of Sm(Fe,Cu){sub 5}. The Sm(Fe,Cu){sub 5} film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  14. Microstructural and magnetic characterizations of CoFeCu electrodeposited in self-assembled mesoporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fortas, G., E-mail: g.fortas@gmail.com [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria); Université des Sciences et de la Technologie Houari Boumediene, Faculté des Physique, BP 32 El Alia 16111 Bab Ezzouar, Alger (Algeria); Haine, N. [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Physique, BP 32 El Alia 16111 Bab Ezzouar, Alger (Algeria); Sam, S.; Gabouze, N. [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria); Saifi, A. [Université Mouloud Mammeri, laboratoire de physique et de chimie quantique, BP No. 17 RP Hasnaoua Tizi-Ouzou 15000 (Algeria); Ouir, S. [Université Said SDB, Route De Soumaa BP 270, Blida (Algeria); Menari, H. [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria)

    2015-03-15

    Self-assembled mesoporous silicon with quasi-regular pore arrangements has been fabricated by the electrochemical anodization process in hydrofluoric acid solution. CoFeCu was electrodeposited in this structure from a bath containing sodium acetate as a complexing agent with a pH value of 5. The effect of current density on the morphology, the structure and the magnetic properties of CoFeCu deposit was studied by SEM, EDS, DRX and VSM. It has been shown that the morphology and structure of samples were strongly influenced by the current density and etching duration. The micrographs show the vertical and branched nanowires and also a discontinuous growth of wires. Further, the growth of a thick layer from the grain boundaries of released CoFeCu wires is produced. The magnetic hysteresis loops demonstrate that the CoFeCu nanowires exhibit easy magnetic axis perpendicular to the PS channels axis when the current density varied from 3 to 10 mA/cm{sup 2}. Nevertheless, they reveal a no magnetic anisotropy of CoFeCu nanostructures deposited only in the outside of porous silicon, probably due to the vanishing the shape anisotropy. - Highlights: • CoFeCu deposit has been electrodeposited on self assembled mesoporous silicon. • SEM observation shows that CoFeCu embedded in Porous silicon channels. • Magnetic measurements show the anisotropy magnetic behavior of CoFeCu nanostructures. • The growth rate of nanowires is enhanced with an increase of current density.

  15. Time evolution of morphology in mechanically alloyed Fe-Cu

    KAUST Repository

    Wille, Catharina Gabriele

    2011-05-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM).In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. © 2011 Elsevier B.V.

  16. The improvement of the superconducting Y-Ba-Cu-O magnet characteristics through shape recovery strain of Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Shimpo, Y.; Seki, H.; Wongsatanawarid, A.; Taniguchi, S.; Maruyama, T.; Kurita, T.; Murakami, M.

    2010-01-01

    Since bulk Y-Ba-Cu-O superconductors are brittle ceramics, reinforcement of mechanical properties is important for practical applications. It has been reported that bulk Y-Ba-Cu-O can be reinforced with Al or Fe based alloy ring, in that compression force acts on bulk Y-Ba-Cu-O due to a difference in thermal expansion coefficients. However, the shrinkage of the metal ring was not so large, and therefore careful adjustment of the circumference of the bulk and the metal rings was necessary. In this study, we employed Fe-Mn-Si shape memory alloy rings to reinforce bulk Y-Ba-Cu-O. The advantage of the shape memory alloy is that the shrinkage can take place on heating, and furthermore, the alloy shrinks and compresses the bulk body on cooling. Bulk Y-Ba-Cu-O superconductor 22.8 mm in diameter was inserted in a Fe-Mn-Si ring 23.0 mm in inner diameter at room temperature. Beforehand, the Fe-Mn-Si ring was expanded by 12% strain at room temperature. Then the composite was heated to 673 K. At room temperature, the Fe-Mn-Si ring firmly gripped the bulk superconductor. We then measured trapped fields before and after the ring reinforcement, and found that the trapped field was improved through the treatment.

  17. Atomic-partial vibrational density of states of i-AlCuFe quasicrystals

    CERN Document Server

    Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y

    2002-01-01

    We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)

  18. Sequestration of chelated copper by structural Fe(II): Reductive decomplexation and transformation of Cu{sup II}-EDTA

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongping [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Wu, Deli, E-mail: wudeli@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Zhao, Linghui [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Luo, Cong [School of Civil and Environmental Engineering, Georgia Institute of Technology, GA 30332 (United States); Dai, Chaomeng; Zhang, Yalei [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China)

    2016-05-15

    Highlights: • Structural Fe(II) was found to reveal high sequestration potential in various chelated copper. • Chelated copper was reduced to Cu(0) and Cu{sub 2}O by =Fe(II), whcih was oxidized to Fe{sub 2}O{sub 3}·H{sub 2}O. • Both electron transfer and surface =Fe(II) were found to be crucial during chelated copper reduction. • The indispensible role of reductive decomplexation was identified in chelated copper sequestration. - Abstract: Chelated coppers, such as Cu{sup II}-EDTA, are characteristically refractory and difficult to break down because of their high stability and solubility. Cu{sup II}–EDTA sequestration by structural Fe(II) (=Fe(II)) was investigated intensively in this study. Up to 101.21 mgCu(II)/gFe(II) was obtained by =Fe(II) in chelated copper sequestration under near neutral pH condition (pH 7.70). The mechanism of Cu{sup II}-EDTA sequestration by =Fe(II) was concluded as follows: 3Cu{sup II}–EDTA + 7=Fe(II) + 9H{sub 2}O → Cu(0) ↓ + Cu{sub 2}O ↓ (the major product) + 2Fe{sub 2}O{sub 3}·H{sub 2}O ↓ + 3Fe{sup II}–EDTA +14H{sup +} Novel results strongly indicate that Cu{sup II} reductive transformation induced by surface =Fe(II) was mainly responsible for chelated copper sequestration. Cu(0) generation was initially facilitated, and subsequent reduction of Cu(II) into Cu(I) was closely combined with the gradual increase of ORP (Oxidation-Reduction Potential). Cu-containing products were inherently stable, but Cu{sub 2}O would be reoxidized to Cu(II) with extra-aeration, resulting in the release of copper, which was beneficial to Cu reclamation. Concentration diminution of Cu{sup II}–EDTA within the electric double layer and competitive adsorption were responsible for the negative effects of Ca{sup 2+}, Mg{sup 2+}. By generating vivianite, PO{sub 4}{sup 3−} was found to decrease surface =Fe(II) content. This study is among the first ones to identify the indispensible role of reductive decomplexation in chelated copper

  19. Thermal stability of Al-Cu-Fe quasicrystals prepared by SHS method

    Directory of Open Access Journals (Sweden)

    Pavel Novak

    2013-02-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  20. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    Directory of Open Access Journals (Sweden)

    Pavel Novák

    2013-04-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  1. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  2. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  3. Effect of foliar applied (Zn, Fe, Cu and Mn) in citrus production

    International Nuclear Information System (INIS)

    Khurshid, F.; Sarwar, S.; Khattak, R.A.

    2008-01-01

    A study was conducted to evaluate the impact of micronutrients (Zn, Fe, Cu and Mn) on sweet orange (Citrus Sinensis L.), blood red var., on farmer's orchard at Khanpur, district Haripur, NWFP, during 2002-03. Micronutrients were applied in foliar sprays over the canopy of each tree. The main effects and interactions of Zinc sulphate (Zn), iron sulphate (Fe), Copper Sulphate (Cu) and Manganese Sulphate (Mn) were studied in factorial combinations. A basal dose of nitrogen, phosphorus and potassium was applied at the rate 1.5, 1 and 1 kg tree/sup -1/. Zn, Fe, Cu and Mn were applied alone and in various combinations at the rate 0.115, 0.057, 0.05 and 0.13 kg in 100 liters of water. Application of micronutrients significantly increased Zn, Fe, Cu and Mn concentrations in leaves, compared with control. Zn treatments significantly increased the yield, number of fruit and total sugar. Manganese treatments significantly increased the total soluble solids and reduced the acidity of fruit juice. Other quality parameters, including fruit size, percent peel, percent pulp, sugar as well as total soluble solids, were improved with the application of Zn, Fe, Cu and Mn. (author)

  4. Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite

    Science.gov (United States)

    Caneschi, A.; Cipriani, C.; di Benedetto, F.; Sessoli, R.

    2003-04-01

    Magnetisation measurements between 260 and 1.9K were performed on the synthetic analogue of stannite, Cu_2FeSnS_4, tetragonal Ioverline{4}2m. Fe(II) ions, in the high spin S=2 configuration for tetrahedral coordination, are responsible for the high temperature paramagnetism. In agreement with Bernardini et al. (2000), an antiferromagnetic transition was observed, lowering temperature below 8K. Refined measurements evidenced a T_N=6.1K for the Néel temperature. In spite of a small difference, observed in the behaviour between the zero-field cooled and the field cooled curves, which suggests the possible presence of a spin-glass phase, the AC measurements did not provide evidence of dependence of the magnetic susceptibility on frequency, as expected in spin-glass systems. On the basis of the experimental data, in agreement with the existent literature (Fries et al., 1997), a collinear antiferromagnetic structure should be preferred. The Fe ions, in fact, are distributed in two sublattices obtained by magnetic differentiation of the symmetry equivalent (0,0,0) and (frac{1}{2}frac{1}{2}frac{1}{2}) Fe positions (wyckoff: 2a). The low value for the Nèel temperature, as compared e.g. to the room-temperature antiferromagnet chalcopyrite (CuFeS_2), very close in composition and structure to stannite, is to be related to the increased distance between the Fe ions (˜6.6Å). This weak interaction is not detected in natural samples, where diamagnetic Zn(II) replace paramagnetic Fe(II), thus increasing the mean Fe-Fe distance. Fries, T., Shapira, Y., Palacio, F., Moròn, M.C., McIntyre, G.J., Kershaw, R., Wold, A. and McNiff, E.J. Jr. (1997): Mangetic ordering of the antiferromagnet Cu_2MnSnS_4 from magnetisation and neutron-scattering measurements. Phys. Rev. B, 6(9), 5424-5431 Bernardini, G.P., Borrini, D., Caneschi, A. Di Benedetto, F., Gatteschi, D., Ristori, S. and Romanelli, M. (2000): EPR and SQUID magnetometry study of Cu_2FeSnS_4 (stannite) and Cu_2ZnSnS_4 (kesterite

  5. Preparation and Mechanical Properties of TiC-Fe Cermets and TiC-Fe/Fe Bilayer Composites

    Science.gov (United States)

    Zheng, Yong; Zhou, Yang; Li, Runfeng; Wang, Jiaqi; Chen, Lulu; Li, Shibo

    2017-10-01

    TiC-Fe cermets and TiC-Fe/Fe bilayer composites consisting of a pure Fe layer and a TiC-Fe cermets layer were fabricated by hot-pressing sintering. The pure Fe layer contributes to the toughness of composites, and the TiC-Fe cermets layer endows the composites with an improved tensile strength and hardness. The effect of TiC contents (30-60 vol.%) on the mechanical properties of TiC-Fe cermets and TiC-Fe/Fe bilayer composites was investigated. Among the TiC-Fe cermets, the 40 vol.% TiC-Fe cermets possessed the highest tensile strength of 581 MPa and Vickers hardness of 5.1 GPa. The maximum fracture toughness of 17.0 MPa m1/2 was achieved for the TiC-Fe cermets with 30 vol.% TiC. For the TiC-Fe/Fe bilayer composites, the 40 vol.% TiC-Fe/Fe bilayer composite owns the maximum tensile strength of 588 MPa, which is higher than that of 40 vol.% TiC-Fe cermets. In addition, the 33.5% increment of tensile strength of 30 vol.% TiC-Fe/Fe bilayer composite comparing with the 30 vol.% TiC-Fe cermets, which is attributed to the 30 vol.% TiC-Fe/Fe bilayer composite exhibited the largest interlaminar shear strength of 335 MPa. The bilayer composites are expected to be used as wear resistance components in some heavy wear conditions.

  6. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

    International Nuclear Information System (INIS)

    Xiao-Mei, Zhang; Wei-Li, Wang; Ying, Ruan; Bing-Bo, Wei

    2010-01-01

    Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe 47.5 Cu 47.5 Sn 5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51–329 K (0.19T L ). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling. (condensed matter: structure, mechanical and thermal properties)

  7. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  8. Adsorption performance of CuFe2O4/rGO nanocomposites towards organic dye

    International Nuclear Information System (INIS)

    Tang, Mingyi; Li, Xichuan; Gao, Chunjuan; Li, Xianxian; Qiu, Haixia

    2017-01-01

    A facile and efficient approach was employed to synthesize CuFe 2 O 4 /rGO (reduced graphene oxide) nanocomposites. The morphology, crystal structure and properties of the prepared CuFe 2 O 4 /rGO nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction and thermo-gravimetric analysis. The CuFe 2 O 4 /rGO nanocomposites were applied as adsorbents to study their adsorption performance for Congo red. The adsorption capacity and recyclability, adsorption dynamics and adsorption models were investigated. The results show that the CuFe 2 O 4 /rGO nanocomposites are efficient and recyclable adsorbents. - Highlights: • CuFe 2 O 4 /rGO was synthesized by a facile hydrothermal route. • As an adsorbent it showed high adsorption capacity to CR. • It was magnetically removable and has high reusability.

  9. Influence of surface topography on RBS measurements: case studies of (Cu/Fe/Pd) multilayers and FePdCu alloys nanopatterned by self-assembly

    Science.gov (United States)

    Krupinski, M.; Perzanowski, M.; Zabila, Y.; Zarzycki, A.; Marszałek, M.

    2017-03-01

    In this paper the influence of surface topography on Rutherford backscattering spectrometry (RBS) is discussed. (Cu/Fe/Pd) multilayers with total thickness of about 10 nm were deposited by physical vapor deposition on self-organized array of SiO2 nanoparticles with the size of 50 nm and 100 nm. As a reference, the multilayered systems were also prepared on flat substrates under the same conditions. After the deposition, morphology of the systems was studied by scanning electron microscopy (SEM), while chemical analysis was performed using Rutherford backscattering spectrometry. It was found that the RBS spectra and determined compositions for flat and patterned multilayers differ. The difference is discussed by taking into account the effect of additional inelastic scattering and energy straggling occurring due to developed topography of patterned systems. Then, the multilayers were annealed in 600 °C in order to obtain FePdCu alloy. The phenomenon of solid-state dewetting resulted in the formation of isolated alloy islands on the top of SiO2 nanoparticles. The SEM and RBS analysis were repeated showing correlation between the size distribution of obtained alloy islands and broadening of peaks appearing in RBS spectra. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  10. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO{sub 2} mediated heterogeneous activation of peroxymonosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yaobin, E-mail: yaobinding@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China); Tang, Hebin [College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Zhang, Shenghua; Wang, Songbo [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China); Tang, Heqing, E-mail: tangheqing@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-11-05

    Highlights: • CuFeO{sub 2} microparticles were prepared by a microwave-assisted hydrothermal method. • CuFeO{sub 2} microparticles efficiently catalyzed the activation of peroxymonosulfate. • Quenching experiments confirmed sulfate radicals as the major reactive radicals. • Carbamazepine was rapidly degraded by micro-CuFeO{sub 2}/peroxymonosulfate. • Feasibility of CuFeO{sub 2}/peroxymonosulfate was tested for treatment of actual water. - Abstract: Microscaled CuFeO{sub 2} particles (micro-CuFeO{sub 2}) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO{sub 2} was of pure phase and a rhombohedral structure with size in the range of 2.8 ± 0.6 μm. The micro-CuFeO{sub 2} efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO{sub 4}·−), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO{sub 2} was observed to be 6.9 and 25.3 times that of micro-Cu{sub 2}O and micro-Fe{sub 2}O{sub 3}, respectively. The enhanced activity of micro-CuFeO{sub 2} for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO{sub 2} can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu{sub 2}O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO{sub 2} was effective in the studied actual aqueous environmental systems.

  11. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  12. Moessbauer studies of 57Fe substitution of Cu ions in superconducting oxides

    International Nuclear Information System (INIS)

    Saitovitch, E.B.

    1988-01-01

    Since the discovery of high-T c superconductivity in YBa 2 Cu 3 O 7 oxides several studies of metal ions substitutions were reported. The observed depression on T c without a systematic correlation with the charge and magnetic moment of Cu substituents claims for more detailed information about its local properties as can be revealed by 57 Fe Moessbauer spectroscopy. The results for different iron concentrations combined with modifications of the superconducting transition are discussed concerning the presence of magnetic moments on the Fe ions and the preferential occupation of Cu(1) sites, recently confirmed by neutron and electron diffraction experiments. The oxygen coordination for the different iron species are proposed on the basis of their dependence on Fe concentration, their behavior at high temperatures as well as the electron diffraction and electron microscopy measurements reported for Fe: YBa 2 Cu 3 O 7 samples. (author) [pt

  13. Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys

    International Nuclear Information System (INIS)

    Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2008-01-01

    A series of Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni 2 Mn 0.75 Cu 0.25 Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T M , and an increase of the ferromagnetic transition temperature, T C , resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga samples with x>0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition.

  14. Irradiation-induced patterning in dilute Cu–Fe alloys

    International Nuclear Information System (INIS)

    Stumphy, B.; Chee, S.W.; Vo, N.Q.; Averback, R.S.; Bellon, P.; Ghafari, M.

    2014-01-01

    Compositional patterning in dilute Cu 1−x Fe x (x ≈ 12%) induced by 1.8 MeV Kr + irradiation was studied as a function of temperature using atom probe tomography. Irradiation near room temperature led to homogenization of the sample, whereas irradiation at 300 °C and above led to precipitation and macroscopic coarsening. Between these two temperatures the irradiated alloys formed steady state patterns of composition where precipitates grew to a fixed size. The size in this regime increased somewhat with temperature. It was also observed that the steady state concentrations of Fe in Cu matrix and Cu in the Fe precipitates both greatly exceeded their equilibrium solubilities, with the degree of supersaturation in each phase decreasing with increasing temperature. In the macroscopic coarsening regime, the Fe-rich precipitates showed indications of a “cherry-pit” structure, with Cu precipitates forming within the Fe precipitates. In the patterning regime, interfaces between Fe-rich precipitates and the Cu-rich matrix were irregular and diffuse

  15. Synthesis and photocatalytic activity of carbon spheres loaded Cu2O/Cu composites

    International Nuclear Information System (INIS)

    Li, Yinhui; Zhao, Mengyao; Zhang, Na; Li, Ruijuan; Chen, Jianxin

    2015-01-01

    Highlights: • Carbon spheres loaded Cu 2 O/Cu composites are obtained by hydrothermal process. • Cu 2 O/Cu nanocrystals grow on the surface of carbon spheres. • The composites with core–shell structure show highly photo-catalytic activity. • The composites can degrade methyl orange under simulated solar light irradiation. • The composites can be used to treat dye wastewater or organic pollutants. - Abstract: In this work, using amylose as carbon source and cupric acetate as copper source, carbon spheres loaded Cu 2 O/Cu composites were obtained by hydrothermal synthesis. The effects of the molar ratios between glucose and Cu(II), and hydrothermal time on the morphology and sizes of the composites were investigated. The result of photocatalytic experiments demonstrated that the composites could degrade methyl orange in aqueous solution under simulated solar light irradiation. The highest degradation rate was achieved to 93.83% when the composites were prepared by hydrothermal synthesis at 180 °C for 16 h and the molar ratio between glucose and Cu(II) was 10/1. The composites, as new and promising materials, can be used to treat dye wastewater or other organic pollutants

  16. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  17. Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dou, Lintao; Liu, Haishun; Hou, Long; Xue, Lin; Yang, Weiming; Zhao, Yucheng; Chang, Chuntao

    2014-01-01

    The effects of Cu substitution for Fe on the glass-forming ability (GFA) and soft magnetic properties for Fe 72−x Cu x B 20 Si 4 Nb 4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) bulk metallic glasses (BMGs) are investigated. It is found that the investigated BMGs exhibit large GFA as well as excellent soft magnetic properties, and proper substitution of Fe by Cu improves the saturation magnetization, coercive force, and effective permeability without obvious deterioration of the GFA. - Highlights: • Fully glassy rods of Fe 72−x Cu x B 20 Si 4 Nb 4 BMGs were produced above 1 mm in diameter. • Investigated BMGs exhibit large glass-forming ability and excellent soft magnetic properties. • Proper Cu substitution improves magnetic properties without obvious deterioration of glass-forming ability

  18. Structural investigation of Fe(Cu)ZrB amorphous alloy

    International Nuclear Information System (INIS)

    Duhaj, P.; Janickovic, D.

    1996-01-01

    The crystallization process in Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 alloys. In both alloys the first crystallization begins with the formation of nanocrystalline α-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of α-Fe and dispersed Fe 23 Zr 6 phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  19. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  20. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Tekgül, Atakan, E-mail: atakantekgul@gmail.com [Akdeniz University, Physics Department, Science Faculty, TR-07058 Antalya (Turkey); Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Alper, Mürsel [Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Kockar, Hakan [Balikesir University, Physics Department, Science and Literature Faculty, TR-10145 Balikesir (Turkey)

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current–time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of −0.3 and −1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices. - Highlights: • The much thinner (0.5 nm) Cu layer was used to obtain the GMR effect on the electrodeposited CoFe/Cu multilayers. • All samples exhibited GMR and the maximum GMR value was 5.5%. • The M{sub s} and the H{sub c} changed with increasing magnetic layer thickness.

  1. The liquid metastable miscibility gap in Cu-based systems

    DEFF Research Database (Denmark)

    Curiotto, S.; Greco, R.; Pryds, Nini

    2007-01-01

    Some Cu-based alloys, like Cu–Co, Cu–Fe and Cu–Co–Fe, display a liquid metastable miscibility gap. When the melt is undercooled below a certain temperature depending on the alloy composition, they present a separation in two liquid phases, followed by coagulation before dendritic solidification....... In order to predict the phase equilibria and the mechanisms of microstructure formation, a determination of the metastable monotectics in the phase diagrams is essential. This paper focuses on the up-to-date findings on the Cu–Co, Cu–Fe and Cu–Co–Fe metastable miscibility gap in the liquid phase...

  2. Magnetic and catalytic properties of inverse spinel CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, S., E-mail: sanand@nitt.edu [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China); Selvamani, T.; Prasad, G. Guru [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Asiri, A.M. [The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21413 (Saudi Arabia); Wu, J.J., E-mail: jjwu@fcu.edu.tw [Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China)

    2017-06-15

    Highlights: • Copper ferrite (CuFe{sub 2}O{sub 4}) nanoparticles were synthesized via citrate-nitrate combustion method. • Spectroscopic information’s have found that CuFe{sub 2}O{sub 4} nanoparticles as an inverse spinel structure. • Magnetic study exhibits CuFe{sub 2}O{sub 4} nanoparticles have ferromagnetic behavior. • CuFe{sub 2}O{sub 4} nanoparticles employed for photocatalytic decolourisation of methylene blue under visible light irradiation. - Abstract: In this research, inverse spinel copper ferrite nanoparticles (CuFe{sub 2}O{sub 4} NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (M{sub s} = 20.62 emu g{sup −1}), remnant magnetization (M{sub r} = 11.66 emu g{sup −1}) and coercivity (H{sub c} = 63.1 mTesla) revealed that the synthesized CuFe{sub 2}O{sub 4} NPs have a typical ferromagnetic behaviour. Also tested CuFe{sub 2}O{sub 4} nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  3. A study of copper precipitation in the thermally aged FeCu alloy using SANS

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, J. H.; Kwon, S. C.; Kim, W. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, M. N.; Koo, Y. M. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2005-07-01

    The continued operation or lifetime extension of a number of nuclear power plant around the world requires an understanding of the damage imparted to the reactor pressure vessel (RPV) steel by radiation. Irradiation embrittlement of nuclear reactor pressure vessel steels results from a high number of nanometer sized Cu rich precipitates (CRPs) and sub-nanometer defect-solute clusters. The copper precipitation leads to a distortion of the crystal lattice surrounding the copper precipitates and yields an internal micro-stress. In order to study the effect of copper precipitation on the steel embrittlement under neutron irradiation, the characteristics of nano size defects were investigated using small angle neutron scattering (SANS) in the thermal aged FeCu model alloys. The results on the precipitation composition, number density, size distribution and matrix composition obtained using a high resolution TEM and SANS are compared and contrasted.

  4. Magnetic and structural properties of Cu0.85Fe0.15O system synthesized by co-precipitation

    International Nuclear Information System (INIS)

    Colorado, H. D.; Pérez Alcázar, G. A.

    2011-01-01

    Cu 0.94 Fe 0.06 O and Cu 0.85 Fe 0.15 O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO 3 ) 2 3H 2 O, iron nitrate, Fe (NO 3 ) 3 9H 2 O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu 0.94 Fe 0.06 O and five for Cu 0.85 Fe 0.15 O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu 0.94 Fe 0.06 O. The transmission Mössbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu 0.94 Fe 0.06 O and 40 nm for Cu 0.85 Fe 0.15 O.

  5. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu{sub 2}(Fe,Zn)SnS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Fontane, X.; Izquierdo-Roca, V.; Saucedo, E. [IREC: Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adria del Besos, Barcelona 08930 (Spain); Schorr, S. [Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Yukhymchuk, V.O.; Valakh, M.Ya. [V.E. Lahskaryov Institute of Semiconductor Physics, National Academy of Sciences, Prospekt Nauki 41, Kiev 03028 (Ukraine); Perez-Rodriguez, A., E-mail: aperezr@irec.cat [IREC: Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adria del Besos, Barcelona 08930 (Spain); IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Morante, J.R. [IREC: Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adria del Besos, Barcelona 08930 (Spain); IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Analysis of main and weaker Raman peaks from Cu{sub 2}FeZnS{sub 4} and Cu{sub 2}ZnSnS{sub 4} compounds. Black-Right-Pointing-Pointer Identification of a cation disorder induced Raman peak in Cu{sub 2}ZnSnS{sub 4}. Black-Right-Pointing-Pointer Analysis of spectral features of main Raman peaks from Cu{sub 2}(Fe,Zn)SnS{sub 4}. - Abstract: This work reports the analysis of the vibrational properties of stannite-kesterite Cu{sub 2}(Fe,Zn)SnS{sub 4} compounds that has been performed by Raman scattering measurements. The detailed analysis of the experimental spectra has allowed determining the frequency and symmetry assignment of the main and weaker peaks from both stannite Cu{sub 2}FeSnS{sub 4} (CFTS) and kesterite Cu{sub 2}ZnSnS{sub 4} (CZTS) phases. The measurements performed in the kesterite CZTS samples have also revealed the presence of local inhomogeneities that are characterised by an additional peak in the spectra at about 331 cm{sup -1}. This peak has been related to the presence in these local regions of a high degree of disorder in the cation sublattice, in agreement with previous neutron diffraction analysis in similar samples. Finally, the spectra from the solid solution alloys show a one-mode behaviour of the main A/A{sub 1} peak with the chemical composition.

  6. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co, and Fe)

    International Nuclear Information System (INIS)

    Altounian, Z.; Strom-Olsen, J.O.

    1983-01-01

    The superconducting transition temperature, upper critical field, and magnetic susceptibility have been measured in four binary metallic glass systems: Cu-Zr, Ni-Zr, Co-Zr, and Fe-Zr. For each alloy system, a full and continuous range of Zr-rich compositions accessible by melt spinning has been examined. For Cu-Zr, the range is 0.75>x>0.30; for Ni-Zr, 0.80>x>0.30; for Co-Zr, 0.80>x>0.48, and for Fe-Zr, 0.80>x>0.55 (x being the concentration of Zr in at. %). The results show clearly the influence of spin fluctuations in reducing the superconducting transition temperature. The data have been successfully analyzed using a modified form of the McMillan equation together with expressions for the Stoner enhanced magnetic susceptibility and the Ginsburg-Landau-Abrikosov-Gor'kov expression for the upper critical field

  7. Electrical characteristic of spin coated Fe-Porphyrin on Cu substrates

    Energy Technology Data Exchange (ETDEWEB)

    Utari, E-mail: utari@ugm.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Kusumandari,; Purnama, Budi, E-mail: bpurnama@mipa.uns.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Mudasir [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Abraha, Kamsul [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia)

    2016-06-17

    This paper describes the electrical-characteristics of Fe-Porphyrin thin films on Cu substrates. The thin layer samples used were deposited by spin coating methods on Cu-substrates at room temperature with and without induced magnetic field in the plane direction of the surface films. Fe-porphyrin was dissolved in chloroform and mixed with a magnetic stirrer for 60 min at a rotational speed of 200 rpm. The experimental results show that the mobility carrier charge of the Fe-Porphyrin layer with induced magnetic field during deposition has lower value than that without induced magnetic field case. The decrease of the mobility can be attribute to the change of the surface morphology in Fe-porphyrin films by means of increase in the nano-granular/nano-molecular size caused by the induce magnetic field.

  8. Effect of Soil Parameters on the Kinetics of the Displacement of Fe from FeEDDHA Chelates by Cu

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2012-01-01

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact

  9. Integrated photooxidative-extractive desulfurization system for fuel oil using Cu, Fe and Cu-Fe/TiO2 and eutectic based ionic liquids: Effect of calcination temperature and duration

    Science.gov (United States)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2014-10-01

    Photocatalyts TiO2 doped with Cu, Fe and Cu-Fe metal at different calcination temperature and duration were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) using the prepared photocatalyst was investigated. The photocatalyst calcined at 500°C and duration of 1 h showed the best performance.

  10. Infiltrated TiC/Cu composites

    International Nuclear Information System (INIS)

    Frage, N.; Froumin, N.; Rubinovich, L.; Dariel, M.P.

    2001-01-01

    One approach for the fabrication of ceramic-metal composites is based on the pressureless impregnation of a porous ceramic preform by a molten metal. Molten Cu does not react with TiC and the wetting angle is close to 90 o . Nonetheless, molten Cu readily impregnates partially sintered TiC preforms. A model that describes the dependence of the critical contact angle for spontaneous impregnation by molten metals in partially sintered preforms on the level of densification and on the morphology of the particles was developed. For high aspect ratios of the particles forming the preform, wetting angles close to 90 o still allow impregnation by the molten metal. The results of the model were confirmed by infiltration of partially sintered TiC preforms with molten Cu and by fabrication of the TiC/Cu composites with various ceramic-to metal ratios. Decreasing of the metal content in the composite from 50 vol.% to 10 vol.% leads to a hardness increase from 250 to 1800 HV, and to the decrease of the bending strength from 960 to 280 MPa. The resistivity of these TiC/Cu composites decreases from 142 ohm cm to 25 ohm cm. (author)

  11. Structural investigation of Fe(Cu)ZrB amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duhaj, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Matko, I. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Svec, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Sitek, J. [Department of Nuclear Physics and Technology, Slovak Technical University, 81219 Bratislava (Slovakia); Janickovic, D. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav

    1996-07-01

    The crystallization process in Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} alloys. In both alloys the first crystallization begins with the formation of nanocrystalline {alpha}-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of {alpha}-Fe and dispersed Fe{sub 23}Zr{sub 6} phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  12. Magnetic properties of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yao, Jinlei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2015-12-15

    Magnetic properties and magnetocaloric effect of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds have been investigated. Magnetic measurements of RNi{sub 3}TSi display the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’. In contrast to GdNi{sub 3}{Mn, Fe, Co}Si, TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi{sub 4}Si (~0.5 kOe) to TbNi{sub 3}CoSi (4 kOe), TbNi{sub 3}MnSi (13 kOe) and TbNi{sub 3}FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi{sub 3}CuSi exhibits a negligible coercive field. - Graphical abstract: Magnetic measurements of RNi{sub 3}TSi show the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of 'RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi'. In contrast to GdNi{sub 3}{Mn, Fe, Co}Si, TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi{sub 4}Si (~0.5 kOe) to TbNi{sub 3}CoSi (4 kOe), TbNi{sub 3}MnSi (13 kOe) and TbNi{sub 3}FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi{sub 3}CuSi exhibits a negligible coercive field. - Highlights: • CaCu{sub 5}-type RNi{sub 3}TSi show ferromagnetic ordering (R=Gd, Tb, T=Mn–Co, Cu). • Curie point increases in ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’ row. • MCE decreases in ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’ row. • TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. • The coercive field of TbNi{sub 3}MnSi and TbNi{sub 3}FeSi reach 13 kOe and 16 kOe at 5 K.

  13. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  14. Enhancement of giant magnetoimpedance in composite wire with insulator layer

    International Nuclear Information System (INIS)

    Wang, X.Z.; Yuan, W.Z.; Li, X.D.; Ruan, J.Z.; Zhao, Z.J.; Yang, J.X.; Yang, X.L.; Sun, Z.

    2007-01-01

    CuBe/NiFeB and CuBe/Insulator/NiFeB composite wires have been prepared by electroless-deposition. The giant magnetoimpedance (GMI) effect for NiFeB layer with thickness of 3 μm on CuBe core with diameter of 100 μm has been studied. After adding an insulator layer, the maximal GMI ratio of CuBe/Insulator/NiFeB composite wire is much higher than that of CuBe/NiFeB composite wire, and can reach to about 250% at the frequency range of 500 kHz-1 MHz. The results are explained in terms of difference of magnetic structure and different frequency dependence of resistance and reactance of the two kinds of composite wires

  15. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  16. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    Science.gov (United States)

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  17. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    Science.gov (United States)

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu + /Cu 2+ and Fe 2+ /Fe 3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  18. Crystal structure and magnetism of layered perovskites compound EuBaCuFeO5

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-04-01

    Layered perovskite compounds have interesting multiferroic properties.YBaCuFeO5 is one of the layered perovskite compounds which have magnetic and dielectric transition above 200 K. The multiferroic properties can be tuned with the replacement of Y with some other rare earth ions. In this manuscript, structural and magnetic properties of layered perovskite compound EuBaCuFeO5 have been investigated. This compound crystallizes in the tetragonal structure with P4mm space group and is iso-structural with YBaCuFeO5. The magnetic transition has been found to shift to 120 K as compared to YBaCuFeO5 which has the transition at 200 K. This shift in the magnetic transition has been ascribed to the decrease in the chemical pressure that relaxes the magnetic moments.

  19. Reduction of crystallization temperature of the Nd-Fe-B thin films by Cu addition

    International Nuclear Information System (INIS)

    Ma Yungui; Yang Zheng; Matsumoto, M.; Morisako, A.; Takei, S.

    2004-01-01

    Nonmagnetic Cu element has been doped into the sputtered Nd-Fe-B thin films. It is found that the introduction of suitable amount of copper atoms could reduce the crystallization temperature of the 2:14:1 phase by near 100 deg. C, compared with that without Cu. For the 15 nm Nd 16 Fe 70.2 Cu 1.8 B 12 film deposited at 340 deg. C, perpendicular coercivity and remanent magnetization ratio of 350 kA/m and 0.96 have been successfully obtained. Cu addition would lead to the grain growth, but the average grain size in the films could be greatly decreased through lowering the deposition temperature. These results are compared with those found in the fabrication of FePtCu films

  20. Synthesis, characterization and degradation activity of Methyl orange Azo dye using synthesized CuO/α-Fe2O3 nanocomposite

    Directory of Open Access Journals (Sweden)

    Mohsen Mehdipour Ghazi

    2017-04-01

    Full Text Available This study investigated the photo-degradation of methyl orange (MO as a type of azo dye using a CuO/α-Fe2O3 nanocomposite. A CuO/α-Fe2O3 powder with a crystalline size in the range of 27-49 nm was successfully prepared using simple co-precipitation along with a sonication method. The characterization of the synthesized sample was done via XRD, FE-SEM, EDS, FTIR and DRS analyses. The Tauc equation revealed that the band gap of the nano composite in the direct mood was 2.05 ev, which is in the visible light range. The effect of operating factors containing dye concentration, photocatalyst dosage and pH on dye degradation efficiency was measured. Response Surface Method (RSM was employed to specify the parameter effects. The photocatalytic activity of the CuO/α-Fe2O3 nanocomposite was evaluated by degradation of MO under visible light irradiation. The results showed that the pH value played a very effective role in the dye degradation process efficiency. Also, the photocatalytic degradation of MO obtained was equal to 88.47% in the optimal values.

  1. Cu(2+) and Fe(2+) mediated photodegradation studies of soil-incorporated chlorpyrifos.

    Science.gov (United States)

    Rafique, Nazia; Tariq, Saadia R; Ahad, Karam; Taj, Touqeer

    2016-03-01

    The influences of Cu(2+) and Fe(2+) on the photodegradation of soil-incorporated chlorpyrifos were investigated in the present study. The soil samples spiked with chlorpyrifos and selected metal ions were irradiated with UV light for different intervals of time and analyzed by HPLC. The unsterile and sterile control soil samples amended with pesticides and selected metals were incubated in the dark at 25 °C for the same time intervals. The results of the study evidenced that photodegradation of chlorpyrifos followed the first-order kinetics. The dissipation t0.5 of chlorpyrifos was found to decrease from 41 to 20 days under UV irradiation. The rate of chlorpyrifos photodegradation was increased in the presence of both metals, i.e., Cu(2+) and Fe(2+). Thus, initially observed t0.5 of 19.8 days was decreased to 4.39 days in the case of Cu(+2) and 19.25 days for Fe(+2). Copper was found to increase the rate of photodegradation by 4.5 orders of magnitude while the microbial degradation of chlorpyrifos was increased only twofold. The microbial degradation of chlorpyrifos was only negligibly affected by Fe(2+) amendment. The studied trace metals also affected the abiotic degradation of the pesticide in the order Cu(2+) > Fe(2+).

  2. Determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Lorenzo, Magdalena; Reyes, Arlyn; Blanco, Idania; Vasallo, Maria C

    2010-01-01

    The determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry was carried out. For 20 μL injected sample, calibration within the 0,5-25,0 mg. L -1 Ca; 0,25-5,0 mg. L -1 Cu, Pb and Cu intervals were established using the ratios Cu, Ca, Fe and Pb absorbance versus analyte concentration, respectively. Typical linear correlations of r = 0,999 were obtained. The proposed method was applied for the direct determination of Ca, Cu, Fe and Pb in sugar cane spirits, and in samples. The results obtained were in accordance to those obtained at 95% confidence level

  3. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  4. Large magnetoresistance in intercalated Cu oxides

    OpenAIRE

    Grigoryan, L.; Furusawa, M.; Hori, H.; Tokumoto, M.

    1997-01-01

    Magnetism and electrical resistance as a function of magnetic field, temperature, and chemical composition are studied in Cu oxides intercalated with metal phthalocyanines MPc, where M is Fe or Ni, and Pc is C_H_N_. An unusually large positive magnetoresistance (MR) of ~ 1200% is observed in FePc-intercalated Bi_Sr_Ca_Cu_O_ samples with two Cu-O layers in the unit cell (n=2). The magnitude of the MR decreased to 40% and ~ 0% in the FePc-intercalated n=3 and n=4 samples, respectively, and to ~...

  5. Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

    Science.gov (United States)

    Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping

    2018-05-01

    A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

  6. Facile synthesis of Fe-incorporated CuO nanoarrays with enhanced electrochemical performance for lithium ion full batteries

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Bojun [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan, 430065 (China); Qing, Chen; Wang, Hai; Sun, Daming; Wang, Bixiao [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Tang, Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China)

    2015-11-15

    CuO nanoarrays (CNAs) and Fe-incorporated CuO nanoarrays (FCNAs) were fabricated by hydrothermal method. Addition of Fe salt to the reaction mixture allowed the introduction of iron oxide onto the CNAs surface, which was characterized by XPS and HRTEM. Introducing Fe ion into reaction precursor significantly affected not only the morphologies of as-prepared products but also their electrochemical performance as anode for lithium ion full battery. The FCNAs electrodes showed higher specific capacity and better capacity retention at different current densities than that of CNAs. - Highlights: • Fe-incorporated CuO nanoarrays were fabricated by hydrothermal method. • Fe salt in reaction mixture leads to iron oxides forming on the surface of CuO. • Fe-incorporating improves the lithium ion battery performance of CuO anodes.

  7. Activity of Aniline Methylation over Fe-Cu-Cr Ternary Spinel Systems

    Directory of Open Access Journals (Sweden)

    Reni George

    2014-03-01

    Full Text Available A series of spinels having thegeneral formula CuCr2-xFexO4 with x=0.25,0.75, 1.25, 1.75 were prepared by co-precipitation method. The catalysts werecharacterized by various physico-chemical methods like XRD, BET, UV-DRS, SEM,EDX, TPD etc. The reaction of aniline with methanol was studied in a fixed-bedreactor system as a potential source for the production of various methylanilines. It was observed that systems possessing low ‘x’ values are highlyselective and active for N-monoalkylation of aniline leading toN-methylaniline. Reaction parameters were properly varied to optimize thereaction conditions for obtaining N-methylaniline selectively and in betteryield. Among the systems CuCr1.75Fe0.25O4 isremarkable due to its very high activity and excellent stability. Under theoptimized conditions N-methylaniline selectivity exceeded 91%. CuCr1.25Fe0.75O4gives better conversion than CuCr1.75Fe0.25O4in CuCr2-xFexO4 series. The Lewis acid sitesof the catalysts are mainly responsible for the good catalytic performance. © 2014 BCREC UNDIP. All rights reservedSubmitted: 18th July 2013; Revised: 5th November 2013; Accepted: 1st December 2013[How to Cite: George, R., George, K., Sugunan, S. (2014. Activity of Aniline Methylation over Fe-Cu-Cr Ternary Spinel Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 39-44. (doi:10.9767/bcrec.9.1.5169.39-44][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5169.39-44] 

  8. Fe and Cu in Si: Lattice sites and trapping at implantation-related defects

    International Nuclear Information System (INIS)

    Wahl, U.; Correia, J.G.; Rita, E.; Araujo, J.P.; Soares, J.C.

    2006-01-01

    We have used the emission channeling technique in order to study the lattice sites of radioactive 59 Fe and 67 Cu following 60 keV ion implantation into Si single crystals at fluences around 10 12 -10 14 cm -2 . We find that in the room temperature as-implanted state in high-resistivity Si both Fe and Cu occupy mainly lattice sites displaced around 0.05 nm (0.5 A) from substitutional positions. Both are released from these positions during annealing at temperatures between 300 deg. C and 600 deg. C. Fe is then found mainly on near-tetrahedral interstitial sites and further annealing causes it to be increasingly incorporated on ideal substitutional sites, on which it is stable to around 800 deg. C. We have strong indications that during annealing around 600 deg. C, along with the dominance of interstitial Fe, a redistribution towards the surface takes place, suggesting that the subsequent formation of ideal substitutional Fe may be related to the trapping of Fe at R p /2, half of its implanted depth. Possible R p /2 trapping might also have taken place in our Cu experiments but appears to be less efficient since Cu tended to escape to the bulk of the samples

  9. LaCrO3/CuFe2O4 Composite-Coated Crofer 22 APU Stainless Steel Interconnect of Solid Oxide Fuel Cells

    Science.gov (United States)

    Hosseini, Seyedeh Narjes; Enayati, Mohammad Hossein; Karimzadeh, Fathallah; Dayaghi, Amir Masoud

    2017-07-01

    Rapidly rising contact resistance and cathode Cr poisoning are the major problems associated with unavoidable chromia scale growth on ferritic stainless steel (FSS) interconnects of solid oxide fuel cells. This work investigates the performance of the novel screen-printed composite coatings consisting of dispersed conductive LaCrO3 particles in a CuFe2O4 spinel matrix for Crofer 22 APU FSS, with emphasis on the oxidation behavior and electrical conductivity of these coatings. The results show that the presence of protective spinel coating, accompanied by the effective role of LaCrO3 particle incorporation, prevents the Cr2O3 subscale growth as well as chromium migration into the coating surface at the end of 400 hours of oxidation at 1073 K (800 °C) in air. In addition, the composite coatings decreased the area specific resistance (ASR) from 51.7 and 13.8 mΩ cm2 for uncoated and spinel-coated samples, respectively, to a maximum of 7.7 mΩ cm2 for composite-coated samples after 400 hours of oxidation.

  10. Transverse excitations in liquid Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Hosokawa, S; Inui, M; Kajihara, Y; Tsutsui, S; Baron, A Q R

    2015-01-01

    Transverse acoustic (TA) excitation modes were observed in inelastic x-ray scattering spectra of liquid Fe, Cu and Zn. From the analysis of current correlation functions, we concluded that TA excitation modes can experimentally be detected through the quasi-TA branches in the longitudinal current correlation spectra in these liquid metals. The microscopic elastic constants are estimated and a characteristic difference from macroscopic polycrystalline value was found in Poisson's ratio of liquid Fe, which shows an extremely softer value of ∼0.38 compared with the macroscopic value of ∼0.275. The lifetime of the TA modes were determined to be ∼0.45 ps for liquid Fe and Cu and ∼0.55 ps for liquid Zn, reflecting different interatomic correlations between liquid transition metals and non-transition metals. The propagation length of the TA modes are ∼0.85 nm in all of liquid metals, corresponding to the size of icosahedral or similar size of cages formed instantaneously in these liquid metals. (paper)

  11. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 ...

    Indian Academy of Sciences (India)

    The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation ...

  12. Nanostructured Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction photoelectrode for efficient hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dipika; Upadhyay, Sumant; Verma, Anuradha [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India); Satsangi, Vibha R. [Department of Physics Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 India (India); Shrivastav, Rohit [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India); Dass, Sahab, E-mail: drsahabdas@gmail.com [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India)

    2015-01-01

    Nanostructured thin films of pristine Fe{sub 2}O{sub 3}, Ti-doped Fe{sub 2}O{sub 3}, Cu{sub 2}O, and Fe{sub 2}O{sub 3}/Cu{sub 2}O, and Ti-doped Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction were deposited on tin-doped indium oxide (Sn:In{sub 2}O{sub 3}) glass substrate using spray pyrolysis method. Ti doping is done to improve photoelectric conversion efficiency and electrical conductivity of hematite thin films. Further enhanced photocurrent is achieved for Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction electrodes. All samples were characterized using X-ray diffractometry, scanning electron microscopy, atomic force microscopy, and UV-Vis spectrometry. Photoelectrochemical properties were also investigated in a three-electrode cell system. UV-Vis absorption spectrum for pristine Fe{sub 2}O{sub 3}, Ti-Fe{sub 2}O{sub 3}, Cu{sub 2}O, Fe{sub 2}O{sub 3}/Cu{sub 2}O, and Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction thin films exhibited absorption in visible region. Nanostructured thin films as prepared were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 2.60 mA/cm{sup 2} at 0.95 V/SCE was exhibited by 454 nm thick Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction photoelectrode. Increased photocurrent density and enhanced incident photon-to-electron conversion efficiency, offered by the heterojunction thin films may be attributed to improved conductivity and efficient separation of the photogenerated charge carriers at the Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O interface. - Highlights: • Heterojunction thin films were deposited using spray pyrolysis techniques. • Titanium doping in Fe{sub 2}O{sub 3} played a significant role in PEC response. • Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction shows the absorption in visible range. • Improved charge separation and enhanced PEC response were achieved in Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O.

  13. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  14. Investigation of the structure and properties of the titanium alloy of the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system

    International Nuclear Information System (INIS)

    Moiseev, V.N.; Dolzhanskij, Yu.M.; Zakharov, Yu.I.; Znamenskaya, E.V.

    1979-01-01

    The alloys of martensitic type in the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system after heat treatment are investigated. To determine the composition of the titanium alloy methods of mathematical planning of the experiment are applied. Results of mechanical tests of the alloys are presented, as well as coefficients of models for the properties, calculated according to these data. The investigation establishes the composition of a high-strength titanium alloy of a martensitic type, containing 4.5-60 % Al, 2.0-4.0 % Mo, 0.5-1.9 % V, 0.3-1.5 % Fe, 0.3-1.5 % Cu, 1.5-3.0 % Sn, 2.0-4.0 % Zr. The semiproducts, produced by deformation in β-field, after heat treatment have an ultimate strength >=120 kg/mm 2 , satisfactory ductility and reliability. The alloy possesses rather a high heat resistance and can be operated at 400-500 deg C

  15. The association of LUR modeled PM2.5 elemental composition with personal exposure

    International Nuclear Information System (INIS)

    Montagne, Denise; Hoek, Gerard; Nieuwenhuijsen, Mark; Lanki, Timo; Pennanen, Arto; Portella, Meritxell; Meliefste, Kees; Wang, Meng; Eeftens, Marloes; Yli-Tuomi, Tarja; Cirach, Marta; Brunekreef, Bert

    2014-01-01

    Background and aims: Land use regression (LUR) models predict spatial variation of ambient concentrations, but little is known about the validity in predicting personal exposures. In this study, the association of LUR modeled concentrations of PM 2.5 components with measured personal concentrations was determined. The elements of interest were copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V) and zinc (Zn). Methods: In Helsinki (Finland), Utrecht (the Netherlands) and Barcelona (Spain) five participants from urban background, five from suburban background and five from busy street sites were selected in each city (15 participants per city). Outdoor, indoor and personal 96-hour PM 2.5 samples were collected by the participants over periods of two weeks in three different seasons (winter, summer and spring/autumn) and the overall average was calculated. Elemental composition was measured by ED-XRF spectrometry. The LUR models for the average ambient concentrations of each element were developed by the ESCAPE project. Results: LUR models predicted the within-city variation of average outdoor Cu and Fe concentrations moderately well (range in R 2 27–67% for Cu and 24–54% for Fe). The outdoor concentrations of the other elements were not well predicted. The LUR modeled concentration only significantly correlated with measured personal Fe exposure in Utrecht and Ni and V in Helsinki. The LUR model predictions did not correlate with measured personal Cu exposure. After excluding observations with an indoor/outdoor ratio of > 1.5, modeled Cu outdoor concentrations correlated with indoor concentrations in Helsinki and Utrecht and personal concentrations in Utrecht. The LUR model predictions were associated with measured outdoor, indoor and personal concentrations for all elements when the data for the three cities was pooled. Conclusions: Within-city modeled variation of elemental composition of PM 2.5 did not predict measured

  16. Microwave-Assisted Synthesis of CuFe2O4 Nanoparticles and Starch-Based Magnetic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Gh. Nabiyouni

    2013-06-01

    Full Text Available Magnetic CuFe2O4 nanoparticles were synthesized by a facile microwave-assisted reaction between Cu(NO32 and Fe(NO33. The magnetic nanoparticles were added to starch to make magnetic polymeric nanocomposite. The nanoparticles and nanocomposites were characterized using X-ray diffraction and scanning electron microscopy. The magnetic properties of the samples were investigated using an alternating gradient force magnetometer (AGFM. The copper ferrite nanoparticles exhibited ferromagnetic behavior at room temperature, with a saturation magnetization of 29emu/g and a coercivity of 136 Oe. The distribution of the CuFe2O4 nanoparticles into the polymeric matrixes decreases the coercivity (136 Oe to 66 Oe. The maximum coercivity of 82 Oe was found for 15% of CuFe2O4 distributed to the starch matrix.

  17. Adsorption performance of CuFe{sub 2}O{sub 4}/rGO nanocomposites towards organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Xichuan [School of Science, Tianjin University, Tianjin 300072 (China); Gao, Chunjuan [State Ocean Adm, Inst Tianjin Seawater Desalinat & Multipurpose Ut, Tianjin 300192 (China); Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia, E-mail: haixiaqiuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2017-01-01

    A facile and efficient approach was employed to synthesize CuFe{sub 2}O{sub 4}/rGO (reduced graphene oxide) nanocomposites. The morphology, crystal structure and properties of the prepared CuFe{sub 2}O{sub 4}/rGO nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction and thermo-gravimetric analysis. The CuFe{sub 2}O{sub 4}/rGO nanocomposites were applied as adsorbents to study their adsorption performance for Congo red. The adsorption capacity and recyclability, adsorption dynamics and adsorption models were investigated. The results show that the CuFe{sub 2}O{sub 4}/rGO nanocomposites are efficient and recyclable adsorbents. - Highlights: • CuFe{sub 2}O{sub 4}/rGO was synthesized by a facile hydrothermal route. • As an adsorbent it showed high adsorption capacity to CR. • It was magnetically removable and has high reusability.

  18. Magnetic and structural properties of Cu{sub 0.85}Fe{sub 0.15}O system synthesized by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H. D., E-mail: herdacom@gmail.com; Perez Alcazar, G. A. [Universidad del Valle, Departamento de Fisica (Colombia)

    2011-11-15

    Cu{sub 0.94}Fe{sub 0.06}O and Cu{sub 0.85}Fe{sub 0.15}O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO{sub 3}){sub 2} 3H{sub 2}O, iron nitrate, Fe (NO{sub 3}){sub 3} 9H{sub 2}O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu{sub 0.94}Fe{sub 0.06}O and five for Cu{sub 0.85}Fe{sub 0.15}O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu{sub 0.94}Fe{sub 0.06}O. The transmission Moessbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu{sub 0.94}Fe{sub 0.06}O and 40 nm for Cu{sub 0.85}Fe{sub 0.15}O.

  19. Optical constants of Cu(In, Ga)Se{sub 2} for arbitrary Cu and Ga compositions

    Energy Technology Data Exchange (ETDEWEB)

    Minoura, Shota; Kodera, Keita; Nakane, Akihiro; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Center of Innovative Photovoltaic Systems (CIPS), Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Maekawa, Takuji [Research and Development Headquarters, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 (Japan); Niki, Shigeru [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology (AIST), Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-05-21

    The optical constants of Cu(In, Ga)Se{sub 2} (CIGS)-based polycrystalline layers with different Cu and Ga compositions are parameterized completely up to a photon energy of 6.5 eV assuming several Tauc-Lorentz transition peaks. Based on the modeled optical constants, we establish the calculation procedure for the CIGS optical constants in a two-dimensional compositional space of (Cu, Ga) by taking the composition-induced shift of the critical point energies into account. In particular, we find that the variation of the CIGS optical constants with the Cu composition can be modeled quite simply by a spectral-averaging method in which the dielectric function of the target Cu composition is estimated as a weighted average of the dielectric functions with higher and lower Cu compositions. To express the effect of the Ga composition, on the other hand, an energy shift model reported earlier is adopted. Our model is appropriate for a wide variety of CIGS-based materials having different Cu and Ga compositions, although the modeling error increases slightly at lower Cu compositions [Cu/(In + Ga) < 0.69]. From our model, the dielectric function, refractive index, extinction coefficient, and absorption coefficient for the arbitrary CIGS composition can readily be obtained. The optical database developed in this study is applied further for spectroscopic ellipsometry analyses of CIGS layers fabricated by single and multi-stage coevaporation processes. We demonstrate that the compositional and structural characterizations of the CIGS-based layers can be performed from established analysis methods.

  20. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure

    International Nuclear Information System (INIS)

    Zaitsev, A I; Zaitseva, N E; Shimko, R Yu; Arutyunyan, N A; Dunaev, S F; Kraposhin, V S; Lam, Ha Thanh

    2008-01-01

    Thermodynamic properties of molten Al-Mn, Al-Cu and Al-Fe-Cu alloys in a wide temperature range of 1123-1878 K and the whole range of concentrations have been studied using the integral effusion method and Knudsen mass spectrometry. Thermodynamic functions of melts were described by the associated solution model. The possibility of icosahedral quasicrystal (i-QC) precipitation from liquid Al-Mn and Al-Cu-Fe alloys was found to be a consequence of the existence in liquid associates (clusters). A geometric model is suggested for the structure of associates in liquid

  1. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  2. Synthesis and physical properties of the CuFe{sub 2−x}Mn{sub x}O{sub 4} (0 ≤ x ≤ 2) solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Helaïli, N. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, U.S.T.H.B., BP 32 El-Alia, 16111 Algiers (Algeria); Centre of Research in Physical and Chemical Analysis (CRAPC), BP 248, RP 16004 Algiers (Algeria); Bessekhouad, Y., E-mail: ybessekhouad@yahoo.fr [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, U.S.T.H.B., BP 32 El-Alia, 16111 Algiers (Algeria); National Veterinary High School, BP 161-El Harrach, Algiers (Algeria); Bachari, K. [Centre of Research in Physical and Chemical Analysis (CRAPC), BP 248, RP 16004 Algiers (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, U.S.T.H.B., BP 32 El-Alia, 16111 Algiers (Algeria)

    2014-12-15

    The CuFe{sub 2−x}Mn{sub x}O{sub 4} (0 ≤ x ≤ 2) solid solutions have been prepared by direct solid state reaction and the dependence of optical, electrical and electrochemical properties on the composition has been investigated. All samples exhibited the formation of a unique cubic phase irrespective of the composition with crystallite sizes on the order of 44 nm. Mn is localized in both octahedral and tetrahedral sites, and forms Mn{sup 3+}–O{sup 2−} complexes. The CuFe{sub 2−x}Mn{sub x}O{sub 4} system exhibits a p-type conductivity with indirect transition band gaps that decrease from 1.54 to 1.28 eV. Charge transport occurs either between Fe{sup 2+}/Fe{sup 3+} or Mn{sup 2+}/Mn{sup 3+} ions in B-sites according to the x value, and the conduction mechanism is controlled by small polaron hopping with a thermal activation of the mobility (μ), which is in the order of ∼10{sup −5} cm{sup 2} V{sup −1}s{sup −1} and does not depend on x. The conduction bands are particularly affected by the Mn introduction and the potentials can shift by as much as 0.5 eV. Finally, the CuFe{sub 2−x}Mn{sub x}O{sub 4} system was used as a bulk electrode in a photoelectrochemical cell and as a microphotoelectrode for H{sub 2}-production. CuFe{sub 1.6}Mn{sub 0.4}O{sub 4} demonstrates the best quantum conversion efficiency in terms of electricity (η = 0.21) and H{sub 2}-production (η{sup ∗} = 1.59). - Highlights: • The CuFe{sub 2−x}Mn{sub x}O{sub 4} (0 ≤ x ≤ 2) solid solutions have been prepared by solid state reaction. • CuFe{sub 2−x}Mn{sub x}O{sub 4} system exhibits p-type conductivity with indirect transition band gaps. • The charge transport occurs either between Fe{sup 2+}/Fe{sup 3+} or Mn{sup 2+}/Mn{sup 3+} ions in B-sites. • CuFe{sub 1.6}Mn{sub 0.4}O{sub 4} demonstrates the best quantum conversion efficiency {η"∗(H_2) = 1.59}.

  3. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    Science.gov (United States)

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  4. Changes of microstructure and magnetic properties of Nd-Fe-B sintered magnets by doping Al-Cu

    International Nuclear Information System (INIS)

    Ni Junjie; Ma Tianyu; Yan Mi

    2011-01-01

    The microstructural and magnetic properties of Al 100-x Cu x (15at%≤x≤45 at%) doped Nd-Fe-B magnets were studied. The distribution and alloying effects of Cu or Al on the intergranular microstructure were investigated by thermodynamic analysis, differential scanning calorimetery and microscopy techniques. It was observed that when the Cu content of Al 100x Cu x exceeds to 25 at%, the (Pr, Nd)Cu and CuAl 2 phases form in these magnets. The formation of (Pr, Nd)Cu phase depends on the negative formation enthalpy of (Pr, Nd)Cu and the exclusive distribution of Cu in the intergranular regions. The eutectic reaction between (Pr, Nd)Cu phase and (Pr, Nd) occurs at 480 deg. C, which forms the liquid phase that dissolves the (Pr, Nd) 2 Fe 14 B surface irregularities and thus increases the quantities of (Pr, Nd)-rich phase at the grain boundaries. These changes benefit the grain boundary microstructure, especially the distribution of (Pr, Nd)-rich phase, which effectively improves the intrinsic coercivity i H c due to the decreases of exchange coupling between the (Pr, Nd) 2 Fe 14 B grains. - Highlights: → Cu/Al effects on Nd-Fe-B structure depend on their distribution/alloying behaviors. → Cu exclusively distributes in grain boundaries different from Al and has negative mixing heat with Nd. → (Pr,Nd)Cu phase besides CuAl 2 forms in grain boundaries with Cu content increase. → (Pr,Nd)Cu phases optimize microstructure and increase magnetic properties.

  5. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  6. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  7. Direct synthesis of RGO/Cu{sub 2}O composite films on Cu foil for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangmao; Wang, Kun [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Qian, Xiuzhen [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Shi [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhen, E-mail: zhenl@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Liu, Huakun; Dou, Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia)

    2014-02-15

    Graphical abstract: RGO/Cu{sub 2}O/Cu composites were synthesized by simple hydrothermal treatment of copper foils with graphene oxide, in which the reduction of graphene oxide and the formation of Cu{sub 2}O nanoparticles simultaneously happened in one-pot reaction. These composites can be directly used as electrodes of supercapacitors with the highest specific capacitance of 98.5 F/g at 1 A g{sup −1}, which is much better than that of CuO or Cu{sub 2}O electrodes. -- Highlights: • The RGO/Cu{sub 2}O/Cu composites were obtained by a friendly method in one step. • Improved capacitance performance is realized by the hydrothermal treatment of graphene oxides with Cu foils. • RGO/Cu{sub 2}O/Cu-200 composites exhibit the largest specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1}. -- Abstract: Reduced graphene oxide/cuprous oxide (RGO/Cu{sub 2}O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu{sub 2}O and reduction of GO, in which Cu{sub 2}O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu{sub 2}O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. A specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1} was obtained, which is much higher than that of pure Cu{sub 2}O prepared under the same conditions, due to the presence of RGO.

  8. Determination of Fe, Cu and Zn in sugar-cane spirits commercialized in Southeastern Brazil by TXRF

    International Nuclear Information System (INIS)

    Cunha e Silva, R.M.; Almeida, E.; Valencia, E.P.E.; Nascimento Filho, V.F.

    2004-01-01

    Total reflection X-ray fluorescence (TXRF) was used to determine simultaneously the concentration of Cu, Fe and Zn in seven sugar-cane spirit samples ('aguardente'), a processed alcoholic beverage made from the fermentation and distillation of sugar-cane juice. The limits of detection ranged from 35 to 8 ng x ml -1 for V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and Se. Excluding Fe, Cu and Zn, the concentrations were below their limits. Two samples showed Cu concentrations higher than the value allowed by Brazilian legislation (5 μg x ml -1 ), and concerning Fe and Zn, no sample were above the limits permitted by WHO for drinking water (2 and 3 μg x ml -1 , respectively). (author)

  9. MAGNETIC AND HYPERFINE CHARACTERIZATION OF THE THERMAL TRANSFORMATION CuO - Fe2O3 TO Fe3O4

    Directory of Open Access Journals (Sweden)

    Juan D. Betancur

    2018-01-01

    Full Text Available A magnetic study about the thermal transformation of hematite doped with CuO (Fe2O3 + CuO is presented. The heat treatment was carried out at a temperature of 375 ± 1 ºC, in a controlled atmosphere composed by 20% hydrogen and 80% nitrogen. Samples were characterized by Mössbauer spectroscopy at room temperature, magnetization as a function of temperature and hysteresis loops at 10K. Our results suggest that both the hyperfine fields and linewidths of the A and B sites remain essentially constant with increasing the CuO concentration, while at the same time a paramagnetic component arises, which is indicative of the appearance of a precipitate or a new phase of Fe-Cu, i.e. there is not an effective incorporation of the copper into the structure of the magnetite. The saturation magnetization falls from approximately 87 emu/g to 78 emu/g, consistent with such a paramagnetic phase. Also, an increase in the coercivity from ~576 Oe up to ~621 Oe by increasing the percentage of CuO from 2% up to 20% is observed. Such increase is also attributed to the paramagnetic phase acting as pinning center for domain walls, besides also de pinning effect due to vacancies induced by the thermal treatment. Finally, an inversion of the magnetization in the Verwey temperature is observed. The data suggest that by means of the synthesis method employed, it is possible to obtain Fe3O4 magnetite particles coexisting with precipitates of Fe-Cu, giving rise to a modification in the magnetic properties and generatingan interesting effect in the magnetization at the Verwey temperature.

  10. Modulation of Jahn-Teller effect on magnetization and spontaneous electric polarization of CuFeO2

    Science.gov (United States)

    Xiao, Guiling; Xia, Zhengcai; Wei, Meng; Huang, Sha; Shi, Liran; Zhang, Xiaoxing; Wu, Huan; Yang, Feng; Song, Yujie; Ouyang, Zhongwen

    2018-03-01

    CuFe0.99Mn0.01O2 and CuFe0.99Co0.01O2 single crystal samples are grown by a floating zone technique and their magnetization and spontaneous electric polarization have been investigated. Similarly with pure CuFeO2, an obviously anisotropic magnetization and spontaneous electric polarization were observed in the both doped samples, and their phase transition critical fields and temperatures are directly doping ion dependent. Considering the different d-shell configuration and ionic size between Mn3+, Co3+ and Fe3+ ions, in which the Mn3+ ion with Jahn-Teller (J-T) effect has different distortion on the geometry frustration from both of Fe3+ and Co3+ ion. Since for Mn3+ ion, the orbital splitting results from the low-symmetry J-T distortion in a crystal-field environment leads to a distorted MnO6 octahedron, which different from undistorted FeO6 and CoO6 octahedrons. The strain between distorted and undistorted octahedrons produces different effects on the spin reorientation transition and spontaneous electric polarization. Although the pure CuFeO2 has a very strong and robust frustration, the presence of the strain due to the random distribution of distorted MnO6 octahedron and undistorted CoO6 (FeO6) octahedrons leads to its spin reorientation transitions and spontaneous electric polarization different from CuFeO2.

  11. Charge compensation and magnetic properties in Sr and Cu doped La-Fe perovskites

    Directory of Open Access Journals (Sweden)

    de Julián Fernández C.

    2013-01-01

    Full Text Available Orthorhombic lanthanum orthoferrites La0.8Sr0.2Fe1-yCuyO3-w (y = 0 and 0.10 have been studied using X-rays and neutron powder diffraction (XRPD and NPD, magnetization measurements and 57Fe Mössbauer spectroscopy. Rietveld refinements on XRPD and NPD data show that they adopt an orthorhombic ABO3 perovskite symmetry with La/Sr and Fe/Cu atoms randomly distributed on crystal A and B sites, respectively. The magnetic structure at room temperature is antiferromagnetic, with the Fe/Cu magnetic moments aligned along the a axis. Magnetization curves versus temperature show that the compounds exhibit an overall antiferromagnetic and a weak ferromagnetic behaviour in the range 5-298 K. 57Fe Mössbauer spectroscopy measurements indicate that Fe3+ and Fe5+ ions coexist in both compounds, and the relative percentage of Fe5+ is almost the same at 77 and 170 K, rejecting a charge disproportion mechanism.

  12. Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II)

    Science.gov (United States)

    Wang, Fan; Zhang, Lijuan; Wang, Yeying; Liu, Xijian; Rohani, Sohrab; Lu, Jie

    2017-10-01

    The graphene oxide (GO) functionalized by Fe3O4@SiO2@CS-TETA nanoparticles, Fe3O4@SiO2@CS-TETA-GO, was firstly fabricated in a mild way as a novel adsorbent for the removal of Cu(II) ions and methylene blue (MB) from aqueous solutions. The magnetic composites showed a good dispersity in water and can be conveniently collected for reuse through magnetic separation due to its excellent magnetism. When the Fe3O4@SiO2@CS- TETA-GO was used as an absorbent for the absorption of MB and Cu(II), the adsorption kinetics and isotherms data well fitted the pseudo-second-order model and the Langmuir model, respectively. Under the optimized pH and initial concentration, the maximum adsorption capacity was about 529.1 mg g-1 for MB in 20 min and 324.7 mg g-1 for Cu(II) in 16 min, respectively, exhibiting a better adsorption performance than other GO-based adsorbents reported recently. More importantly, the synthesized adsorbent could be effectively regenerated and repeatedly utilized without significant capacity loss after six times cycles. All the results demonstrated that Fe3O4@SiO2@CS-TETA-GO could be used as an excellent adsorbent for the adsorption of Cu(II) and MB in many fields.

  13. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  14. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  15. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  16. Temperature dependence of the Moessbauer spectra of amorphous and nanocrystallized Fe86Zr7Cu1B6

    International Nuclear Information System (INIS)

    Orue, I.; Gorria, P.; Plazaola, F.; Fernandez-Gubieda, M.L.; Barandiaran, J.M.

    1994-01-01

    Moessbauer measurements have been performed on amorphous and nanocrystalline alloy ribbons of nominal composition Fe 86 Zr 7 Cu 1 B 6 . The nanocrystalline samples were obtained by annealing the as-quenched alloy at different temperatures in the range between 650 and 870 K. Moessbauer spectra of the as-quenched amorphous sample have been recorded at 77 K, room temperature and above the Curie temperature (∼ 330 K) at 360 K. We have also performed Moessbauer measurements at room temperature in the nanocrystalline alloys to characterize the phases that appear after the annealing and their relative concentration. The as-quenched sample spectra reveal the existence of two inequivalent sites for Fe. Such a feature is also observed in the remaining amorphous phase of the annealed samples. In the first steps of crystallization, α-Fe precipitates and its concentration increases with the annealing temperature. The experimental results suggest that the composition of the whole amorphous phase does not suffer large changes during crystallization. (orig.)

  17. Nanocrystalline (Fe{sub 60}Al{sub 40}){sub 80}Cu{sub 20} alloy prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Krifa, M.; Mhadhbi, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia); Escoda, L.; Güell, J.M. [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Suñol, J.J., E-mail: joanjosep.sunyol@udg.edu [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Llorca-Isern, N.; Artieda-Guzmán, C. [Dept. CMEM, Universitat de Barcelona, Martí Franques 1, 08028 Barcelona (Spain); Khitouni, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia)

    2013-03-25

    Highlights: ► Nanocrystalline Fe(Al, Cu) powdered alloy (10 nm) has been synthesized by MA. ► Decreasing the crystallite size increases coercivity and squareness ratio. ► As low crystallites size stronger hard ferromagnetic material results. -- Abstract: A nanostructured disordered Fe(Al, Cu) solid solution was obtained from prealloyed FeAl and elemental Cu powders using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. The transformation of the phase depends upon the milling time. With the increase of milling time all Cu atoms became dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe(Al, Cu) solid solution with a mean crystallite size of 10 nm. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Magnetic properties were also investigated and were related to the microstructural changes. The system showed hard magnetic behavior.

  18. The geochemical profile of Mn, Co, Cu and Fe in Kerteh Mangrove Forest, Terengganu

    International Nuclear Information System (INIS)

    Kamaruzzaman, B.Y.; Antotina, A.; Airiza, Z.; Syalindran, S.; Ong, M.C.

    2007-01-01

    The geochemical profile of Kerteh mangrove sediments was analyzed for the vertical and horizontal distribution. The 100 cm core sediment sample and 15 surface sediments samples were taken from the field. The geochemical elements of Mn, Co, Cu and Fe of the sediments were analyzed. Geochemical proxy of Mn, Co, Cu and Fe were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The mean concentrations of Mn, Co, Cu and Fe for the vertical distribution were 210.18 μg/ g, 15.55 μg/ g, 43.65 μg/ g and 1.88 μg/ g respectively. on the other hand, the mean concentrations of the geochemical elements for horizontal distributions were 230.50 μg/ g for Mn, 17.57 μg/ g for Co, 43.381 μg/ g for Cu and 2.93 μg/ g for Fe. Enrichment factor and normalization was used to point out the level of pollution. The EF and the normalization indicated that all the geochemical elements were from the natural sources. (author)

  19. Structural, dielectric and ferroelectric studies of (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} magnetoelectric nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Khader, S. Abdul, E-mail: khadersku@gmail.com; Sankarappa, T., E-mail: sankarappa@rediffmail.com [Department of Physics, Gulbarga University, Gulbarga-585106, Karnataka (India); Muneeswaran, M.; Giridharan, N. V. [Department of Physics, National Institute of Technology, Tiruchirapalli-620015 (India)

    2016-05-06

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO{sub 3} (BT) and highly magneto-strictive magnetic component Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4}(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  20. Nucleation and growth of a BCC Fe phase deposited on a single crystal (001) Cu film

    International Nuclear Information System (INIS)

    Koike, J.

    1991-01-01

    As a thin film overlayer grows on a substrate with a different structure, the overlayer initially adopts the substrate structure and subsequently transforms to an equilibrium bulk structure. such a growth characteristic has been extensively studied in Fe/Cu bicrystals. An Fe overlayer grown on a Cu substrate is known to have the fcc structure up to a thickness of 2 nm, whereas a thicker Fe overlayer consists of submicrometer grains of the bcc-Cu has been reported in a relatively thick Fe film and was found to consist of the Nishiyama (N), Kurdjumov-Sacks (KS), or Pitsch (P), depending on the orientation of the substrate surface. However, previous studies have not explained how the bcc structure nucleates or how the observed submicrometer polycrystalline grains form. The paper provides an understanding of these two points. Transmission electron microscopy (TEM) was used to study Fe/Cu bicrystals as the Fe thickness was varied systematically. Analysis of moire fringes, which are caused by superposition of different structures, enabled us to determine the orientation relationship between the very thin Fe layer and the Cu substrate. We show that a single variant of the P orientation relationship, which accompanies atomic rearrangement parallel to the interface, predominates at the nucleation stage of the bcc structure. Nucleation of other variants of P, N, and KS occurs with increasing Fe thickness and causes the formation of the submicrometer bcc grains

  1. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    Science.gov (United States)

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  2. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  3. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  4. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  5. The dependence of critical current density of GdFeCo layer on composition of thermally assisted STT-RAM

    Science.gov (United States)

    Dai, B.; Zhu, J.; Liu, K.; Yang, L.; Han, J.

    2017-07-01

    Amorphous rare earth-transitional metal (RETM) GdFeCo memory layer with RE- and TM-rich compositions was fabricated in stacks of GdFeCo (10 nm)/Cu (3 nm)/[Co(0.2 nm)/Pd(0.4 nm)]6. Their magnetic properties and spin transfer torque (STT) switching of magnetization were investigated. The maximum magneto-resistance (MR) was around 0.24% for the TM-rich Gd21.4 (Fe90Co10)78.6 memory layer and was -0.03% for the RE-rich Gd29.0 (Fe90Co10)71.0 memory layer. The critical current densities Jc to switch the GdFeCo memory layers are in the range of 1.4 × 107 A/cm2-4.5 × 107 A/cm2. The dependence of critical current density Jc and effective anisotropy constant Keff on Gd composition were also investigated. Both Jc and Keff have maximum values in the Gd composition range from 21-29 at.%, suitable for thermally assisted STT-RAM for storage density exceeding Gb/inch2.

  6. Moessbauer study of (Fe1-x Cu x )4N (0.05≤x≤0.15) films

    International Nuclear Information System (INIS)

    El Khiraoui, S.; Sajieddine, M.; Vergnat, M.; Bauer, Ph.; Mabrouki, M.

    2007-01-01

    In this work, we have prepared nitrogenated Fe 1- x Cu x alloys by reactive evaporation under a flow of nitrogen ions. After annealing, X-ray diffraction shows that we have synthesized the γ'-(Fe 1- x Cu x ) 4 N (0.05≤x≤0.15) compounds. The films were investigated by Moessbauer spectroscopy. The crystallographic structure and the respective positions of the Fe and Cu atoms in the compounds have been determined

  7. Mecano-synthesis of the alloy 25%Fe-50%Cu-25%Nb; Mecano-sintese da liga 25%Fe-50%Cu-25%Nb

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Keytiane; Oliveira, Michel Picanco de; Guimaraes, Renan da Silva; Moreira Junior, Valdenir; Filgueira, Marcello, E-mail: marcello.filgueira@pq.cnpq.br [Universidade Estadual do Norte Fluminense (CCT/LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    In general, this study aims at the application of mechanical grinding to the system 25% Fe-50% Cu-25% Nb and studies the production process of these powders during milling. The evolution of the structure during the synthesis and the effect of variation of the grinding time were studied by diffraction of X-rays (XRD) and Scanning Electron Microscopy coupled EDS (SEM + EDS) in order to obtain the sizes of crystallites, the phase formation and its evolution with grinding time, and also the homogeneity of the mixture. The particle size distribution was analyzed by laser sedigraph technique. The powders synthesis were performed for milling time of 2.5, 5 and 10 hours. The mechanical grinding showed to be effective with the solid solution formation in the early grinding times. The XRD showed the solid solution formation with subsequent reduction and disappearance of Cu peaks. Through the technique of laser sedigraph it was observed the increase of the particle size followed by the its reduction in the milling time of 10h, a fact that characterizes the mechanical grinding process for ductile powder particles. Thus, the study demonstrated the effectiveness of the mechanical grinding to obtain powder of Fe-Cu-Nb and further processing and application of diamond cutting tools. (author)

  8. Structural and dynamical heterogeneity of undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yu; Wang, Li; Wang, Shenghai, E-mail: shenghaiw@163.com; Li, Xuelian; Cui, Wenchao

    2014-12-05

    Highlights: • We simulate the undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap at atomic level. • Fe{sub 75}Cu{sub 25} melts separate into Cu-rich and Fe-rich liquid upon relaxation. • The process is controlled by the nucleation and grows mechanism. • Both PPCFs and CN confirm that L–L phase separation is a successive process. - Abstract: Molecular dynamics simulation (MD) based upon the developed embedded atom method (EAM) has been performed to explore the structural and dynamical heterogeneity of Fe{sub 75}Cu{sub 25} melts. The results show that the melts separate into Cu-rich droplets surround by the Fe-rich matrix controlled by nucleation and growth mechanism. The larger undercoolings suggest the higher nucleation rate and growth rate of droplets. The growth of droplet is achieved by the aggregation and coagulation of neighbor droplet with the characteristics of collective movement for homogeneous atoms. A sharp increase of S{sub CC} (q = 0) is found at all simulated temperature, which means concentration fluctuation on large length scales are much pronounced. Both partial pair correlation functions (PPCFs) and coordination number (CN) confirm that liquid–liquid (L–L) phase separation is a successive process with a stronger interaction of homogeneous pairs than that of heterogeneous pairs in Fe{sub 75}Cu{sub 25} melts. The studies above characterize the phase separation of metal melts on the atomic scale.

  9. Lattice parameters values and phase diagram for the Cu{sub 2}Zn{sub 1-z}Fe{sub z}GeSe{sub 4} alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Caldera, D. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Quintero, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)], E-mail: mquinter@ula.ve; Morocoima, M.; Quintero, E.; Grima, P.; Marchan, N.; Moreno, E.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Mora, A.E.; Briceno, J.M.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructura de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela)

    2008-06-12

    X-ray powder diffraction and differential thermal analysis (DTA) measurements were made on polycrystalline samples of the Cu{sub 2}Zn{sub 1-z}Fe{sub z}GeSe{sub 4} alloy system. The diffraction patterns were used to show the equilibrium conditions and to estimate crystalline parameter values. It was found that, at room temperature, a single phase solid solution with the tetragonal stannite {alpha} structure (I4-bar2m) occurs across the whole composition range. The DTA thermograms were used to construct the phase diagram of the Cu{sub 2}Zn{sub 1-z}Fe{sub z}GeSe{sub 4} alloy system. It was confirmed that the Cu{sub 2}ZnGeSe{sub 4} compound melts incongruently. It was observed that undercooling effects occur for samples with z > 0.9.

  10. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    Science.gov (United States)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  11. Magnetically separable Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunhua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Cao, Qihua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2015-04-01

    Highlights: • A novel magnetically-separable Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} photocatalyst was in situ prepared. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs had rough and porous chitosan surface layer embedded with Fe{sub 3}O{sub 4} NPs. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed large surface areas and special dimodal pore structure. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed superparamagnetism and could be easily magnetic separated. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited good visible-light photocatalytic activity and stability. - Abstract: A novel magnetically-separable visible-light-induced photocatalyst, Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposite (Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NC), was prepared via a facile one-step precipitation–reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV–vis/DRS. The photocatalytic activity of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu{sub 2}O was wrapped in chitosan matrix embedded with Fe{sub 3}O{sub 4} nanoparticles. The tight combination of magnetic Fe{sub 3}O{sub 4} and semiconductor Cu{sub 2}O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B

  12. Influence of substrate rocks on Fe-Mn crust composition

    Science.gov (United States)

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  13. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some ...... 10^{8}$ and $1.3\\times 10^{8}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$ in pH 2.1 H2 SO4 and HClO4, respectively.......Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  14. Time evolution of morphology in mechanically alloyed Fe-Cu

    KAUST Repository

    Wille, Catharina Gabriele; Al-Kassab, Talaá t; Kirchheim, Reiner

    2011-01-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility

  15. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  16. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in ...

    Indian Academy of Sciences (India)

    of essential minerals (such as Fe, Zn etc), breeding mineral- efficient crops that produce .... and seven digenic interactions were identified for Cu, Ca,. Zn, Mn and Fe, .... Eva P. 1993 Cadmium, copper and lead in wild rice from central. Canada.

  17. Virtual thermal expansion coefficient of Cu precipitated in the Fe95Cu5 alloy

    International Nuclear Information System (INIS)

    Koeszegi, L.; Somogyvari, Z.

    1999-01-01

    Complete text of publication follows. Precipitations on grain boundaries play very important role in the formation of material's characteristics like embrittlement, durability etc. It was already shown [1] that Cu precipitations are under different stress conditions than the bulk material. The situation is more complicated in the case when a construction is exposed to temperature changes as well. In that case not only the residual stresses during the fabrication but the different thermal expansion coefficients can produce additional problems. This situation was modelled using Fe 95 Cu 5 alloy where Cu precipitates on the grain boundaries. The alloy was produced by high-frequency melting and an extra heat treatment was used to produce a quasi-equilibrium state. Pure Cu was also measured to compare the behaviours. Cu(111) Bragg peak was measured at different temperatures by high resolution neutron diffraction. The measurements were carried out on the G5-2 spectrometer at LLB in Saclay. Measurements show that not only residual stress can be recognised on the Cu precipitates but the thermal expansion coefficient of these precipitates definitly differ from the ones of pure Cu. (author)

  18. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    Science.gov (United States)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  19. Microwave catalytic NOx and SO{sub 2} removal using FeCu/zeolite as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Z.S. Wei; G.H. Zeng; Z.R. Xie; C.Y. Ma; X.H. Liu; J.L. Sun; L.H. Liu [Sun Yat-sen University, Guangzhou (China). School of Environmental Science and Engineering

    2011-04-15

    Non-thermal plasma technology is a promising process for flue gas treatment. Microwave catalytic NOx and SO{sub 2} removal simultaneously has been investigated using FeCu/zeolite as catalyst. The experimental results showed that a microwave reactor with FeCu/zeolite only could be used to microwave catalytic oxidative 91.7% NOx to nitrates and 79.6% SO{sub 2} to sulfate; the reaction efficiencies of microwave catalytic reduction of NOx and SO{sub 2} in a microwave reactor with FeCu/zeolite and ammonium bicarbonate (NH{sub 4}HCO{sub 3}) as a reducing agent could be up to 95.8% and 93.4% respectively. Microwave irradiation accentuates catalytic reduction of SO{sub 2} and NOx treatment, and microwave addition can increases SO{sub 2} removal efficiency from 14.5% to 18.7%, and NOx removal efficiency from 13.4% to 18.7%, separately. FeCu/zeolite catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectrum analysis (XPS), scanning electron microscopy (SEM) and the Brunauer Emmett Teller (BET) method. Microwave catalytic NOx and SO{sub 2} removal follows Langmuir-Hinshelwood (L-H) kinetics. 25 refs., 7 figs., 1 tab.

  20. Composite Magnetic Nanoparticles (CuFe₂O₄) as a New Microsorbent for Extraction of Rhodamine B from Water Samples.

    Science.gov (United States)

    Roostaie, Ali; Allahnoori, Farzad; Ehteshami, Shokooh

    2017-09-01

    In this work, novel composite magnetic nanoparticles (CuFe2O4) were synthesized based on sol-gel combustion in the laboratory. Next, a simple production method was optimized for the preparation of the copper nanoferrites (CuFe2O4), which are stable in water, magnetically active, and have a high specific area used as sorbent material for organic dye extraction in water solution. CuFe2O4 nanopowders were characterized by field-emission scanning electron microscopy (SEM), FTIR spectroscopy, and energy dispersive X-ray spectroscopy. The size range of the nanoparticles obtained in such conditions was estimated by SEM images to be 35-45 nm. The parameters influencing the extraction of CuFe2O4 nanoparticles, such as desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, and extraction time, were investigated and optimized. Under the optimum conditions, a linear calibration curve in the range of 0.75-5.00 μg/L with R2 = 0.9996 was obtained. The LOQ (10Sb) and LOD (3Sb) of the method were 0.75 and 0.25 μg/L (n = 3), respectively. The RSD for a water sample spiked with 1 μg/L rhodamine B was 3% (n = 5). The method was applied for the determination of rhodamine B in tap water, dishwashing foam, dishwashing liquid, and shampoo samples. The relative recovery percentages for these samples were in the range of 95-99%.

  1. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    Science.gov (United States)

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of copper content on microstructure development of AlSi9Cu3 alloy

    Directory of Open Access Journals (Sweden)

    Brodarac Zovko Z.

    2014-01-01

    Full Text Available Microstructure development and possible interaction of present elements have been determined in charge material of EN AlSi9Cu3 quality. Literature review enables prediction of solidification sequence. Modelling of equilibrium phase diagram for examined chemical composition has been performed, which enables determination of equilibrium solidification sequence. Microstructural investigation indicated distribution and morphology of particular phase. Metallographic analysis tools enable exact determination of microstructural constituents: matrix αAl, eutectic αAl+βSi, iron base intermetallic phase - Al5FeSi, Alx(Fe,MnyCuuSiw and/or Alx(Fe,MnyMgzCuuSiw and copper base phases in ternary eutectic morphology Al-Al2Cu-Si and in complex intermetallic ramified morphology Alx(Fe,MnyMgzSiuCuw. Microstructure development examination reveals potential differences due to copper content which is prerequisite for high values of final mechanical, physical and technological properties of cast products.

  3. Quasicrystalline phase formation in the mechanically alloyed Al{sub 70}Cu{sub 20}Fe{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, S. N. de, E-mail: snm@dfi.uem.br; Cadore, S.; Pereira, H. A.; Santos, I. A.; Colucci, C. C.; Paesano, A. [Universidade Estadual de Maringa, Departamento de Fisica (Brazil)

    2010-01-15

    In the present work, the formation of the Al{sub 70}Cu{sub 20}Fe{sub 10} icosahedral phase by mechanical alloying the elemental powders in a high-energy planetary mill was investigated by X-ray diffraction and Moessbauer spectroscopy. It was verified that the sample milled for 80 h produces an icosahedral phase besides Al(Cu, Fe) solid solution ({beta}-phase) and Al{sub 2}Cu intermetallic phase. The Moessbauer spectrum for this sample was fitted with a distribution of quadrupole splitting, a doublet and a sextet, revealing the presence of the icosahedral phase, {beta}-phase and {alpha}-Fe, respectively. This compound is not a good hydrogen storage. The results of the X-ray diffraction and Moessbauer spectroscopy of the sample milled for 40 h and annealed at 623 deg. C for 16 h shows essentially single i-phase and tetragonal Al{sub 7}Cu{sub 2} Fe phase.

  4. Leaching of rapidly quenched Al65Cu20Fe15 quasicrystalline ribbons

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... stood that Al–Cu–Fe QC also presents an FCI structure similar to that .... that the precipitation rate of Fe is lower than that of Cu. Figure 2a shows the .... Renewable Energy (MNRE), India, under Mission Mode. Hydrogen ...

  5. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  6. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  7. Scalable production of Cu@C composites for cross-coupling catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Lijuan [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Ming, Hai, E-mail: lunaticmh@163.com [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2015-10-15

    Highlights: • Cu@C core–shell composite was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose. • The carbon shell in Cu@C can be tuned to the different degree of carbonization. • The Cu@C composites were utilized to catalyze the C−N cross coupling reaction. • The catalytic ability of Cu@C depends on the degree of shell-carbonization. - Abstract: A novel Cu@C core–shell microstructure was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose using a mild hydrothermal process. The carbon shell of such Cu@C composite can be tuned to different carbonization degrees just through varying the calcination conditions. The structural properties of as-prepared Cu@C were investigated in detail by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron micrographs (TEM) and Raman spectra. In addition, these Cu@C composites were firstly used to catalyze the C−N cross coupling of amines with iodobenzene. Among them, the catalytic ability of Cu@C composites increased as their surface carbon’s carburization degree improved.

  8. Fe site occupancy and superconductivity in Y1-zCazBaz(Cu1-xFex)3O6+y

    International Nuclear Information System (INIS)

    Smith, M.G.; Taylor, R.D.; Oesterreicher, H.

    1990-01-01

    X-ray diffraction and 57 Fe Moessbauer spectroscopy studies show that partial substitution of Ca for Y in Y 1-z Ca z Ba 2 (Cu 1-x Fe x ) 3 O 6+y (0.05 ≤ z ≤ 0.15,0.003 ≤ x ≤ 0.20) result in increased Fe solubility and a larger percentage of Fe occupancy of the Cu(2) plane site (prepared conventionally). Materials with z > 0.00 have a slightly depressed superconducting transition onset temperature T c relative to the z = 0.00 compounds. It is also shown that Fe occupancy of the Cu(2) site in Y 1-z Ca z Ba 2 (Cu 1-x Fe x ) 3 O 6+y can be substantially increased when these materials are treated at high temperatures in inert atmospheres followed by oxygenation at low temperatures. T c decreases more rapidly in these latter materials compared to the conventionally prepared ones. Implications concerning ordered Fe cluster formation and superconducting pair breaking in the Cu(2) site are drawn. 7 refs., 4 tabs

  9. Quantum-well states and induced magnetism in Fe/CuN/Fe bcc (001) trilayers

    DEFF Research Database (Denmark)

    Niklasson, A.M.N.; Mirbt, S.; Skriver, Hans Lomholt

    1996-01-01

    profiles of two single Fe/Cu interfaces. The small deviations from this simple superposition are shown to be a consequence of quantum-well states confined within the paramagnetic spacer. This connection is confirmed by direct calculation of the state density. The results are of conceptual interest...

  10. Synthesis and characterization of magnetic Fe/CNTs composites with controllable Fe nanoparticle concentration

    International Nuclear Information System (INIS)

    Zhao Fan; Duan Hongyan; Wang Weigao; Wang Jun

    2012-01-01

    Fe/CNTs composites, with different concentrations of Fe nanoparticles (NPs) on carbon nanotube (CNT) surfaces, were successfully fabricated via a facile solvothermal method. The lengths of CNTs are up to 10 μm and the mean diameter of the Fe nanoparticles is about 25 nm. The structures, composition and magnetic properties of the Fe/CNTs were characterized by XRD, FTIR, FE-SEM, TEM and PPMS. We found that the concentrations of Fe nanoparticles depositing on the CNTs could be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe/CNTs composites display good ferromagnetic properties at room temperature, with a saturation magnetization of 125 emu/g-Fe and a coercivity of 276 Oe. The Curie temperature of the sample is about 1038 K, slightly lower than that (1043 K) of the bulk iron.

  11. Effects of processing parameters on the morphology, structure, and magnetic properties of Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles synthesized with chemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Ivantsov, R.D. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Zharkov, S.M.; Velikanov, D.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Petrov, D.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Ovchinnikov, S.G. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Lin, Chun-Rong [National Pingtung University, Pingtung City, Pingtung County, 90003, Taiwan (China); Li, Oksana [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); National Pingtung University, Pingtung City, Pingtung County, 90003, Taiwan (China); Tseng, Yaw-Teng [National Pingtung University, Pingtung City, Pingtung County, 90003, Taiwan (China)

    2015-11-25

    Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles with x = 0, 0.2, and 0.4 were synthesized via thermal decomposition of metal nitrate or chloride salts and selenium powder using different precursor compositions and processing details. Single crystalline nano-belts or nano-rods coexist in the synthesized powder samples with hexagon-shaped plates in dependence on the precursor composition. The belts gathered into conglomerates forming “hierarchical” particles. Visible magnetic circular dichroism (MCD) of Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles embedded into a transparent matrix was investigated for the first time. The similarity of the MCD spectra of all samples showed the similarity of the nanoparticles electronic structure independent of their morphology. Basing on the MCD spectral maxima characteristics, electron transitions from the ground to the excited states were identified with the help of the conventional band theory and the multi-electron approach. - Highlights: • Single crystalline Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles with x = 0, 0.2, 0.4 were synthesized. • Correlation between synthesis conditions and nanoparticles morphology were obtained. • The nanoparticles magnetization behavior was studied. • Visible MCD of the Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles were studied for the first time.

  12. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    OpenAIRE

    Travessa, Dilermando Nagle; Cardoso, Kátia Regina; Wolf, Witor; Jorge Junior, Alberto Moreira; Botta, Walter José

    2012-01-01

    In order to obtain quasicrystalline (QC) phase by mechanical alloying (MA) in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. %) were produced by high energy ball milling (HEBM). A very high energy type mill (spex) and short milling times (up to 5 hours) were employed. The resulting powders were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). QC phase was not directly formed ...

  13. A Question of Balance: Facing the challenges of Cu, Fe and Zn Homeostasis

    OpenAIRE

    Palmer, Christine; Guerinot, Mary Lou

    2009-01-01

    Plants have recently moved into the spotlight with the growing realization that the world needs solutions to energy and food production that are sustainable and environmentally sound. Iron (Fe), copper (Cu), and zinc (Zn) are essential for plant growth and development, yet the same properties that make these transition metals indispensable can also make them deadly in excess. Fe and Cu are most often utilized for their redox properties, while Zn is primarily utilized for is ability to act as ...

  14. Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites

    International Nuclear Information System (INIS)

    Park, Hyeon Jeong; Badakhsh, Arash; Im, Ik Tae; Kim, Min-Soo; Park, Chan Woo

    2016-01-01

    Highlights: • MWCNTs and Cu were ball milled with a variation of milling times. • Thermal conductivity and tensile strength of the PMCs were measured. • Cu reinforced HDPE showed thermal conductivity improvement ratios of up to 2.7. • MWCNT/HDPE showed higher thermal conductivity than MWCNT/PP. • MWCNT/HDPE was found to be mechanically stronger than Cu/HDPE. - Abstract: In this study, the influence of the different conditions of powder treatment on the thermal conductivity of nanocomposites was investigated. Carbon and metal-based polymer composite materials were produced and their thermal and mechanical characteristics were studied. For the fabrication of the composites, the study has explored and proposed the use of MWCNT and Cu as fillers in a polymer matrix. The polymer matrices were thermoplastic resins-polypropylene (PP) and high density polyethylene (HDPE). Ball milling was used as the mechanical method in order to enhance the dispersion of MWCNT and the transformation of the Cu particles. The ball milled MWCNT and Cu powder were examined by field emission scanning electron microscopy (FE-SEM). The thermal conductivity values of the resultant nanocomposites were determined by laser flash method (LFM), indicating the highest thermal conductivity is possessed by the polymer composite reinforced by the highest amount of 60 min-treated powder in every case studied. Comparing the obtained values for thermal conductivity with that of pure polymer the maximum improvements were found to be 105.1%, 79% and 271.5% for MWCNT/PP, MWCNT/HDPE and Cu/HDPE, respectively. Furthermore, experimental results were validated using the Agari-Uno and Nielsen-Lewis thermal conductivity models considering the shape of the filler. The results of deviation were found to be within the maximum 5% of the exact value implying a fine agreement between experimental and modeling data. Also, the tensile strength test was performed to evaluate the tensile strength of thermally

  15. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    Science.gov (United States)

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.; Makino, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B

  17. Distorted chain sites for Co- and Fe-substituted YBa2Cu3O/sub 7-δ/

    International Nuclear Information System (INIS)

    Bridges, F.; Boyce, J.B.; Claeson, T.; Geballe, T.H.; Tarascon, J.M.; Xerox Palo Alto Research Center, Palo Alto, California 94304; Physics Department, Chalmers University of Technology, S-41296 Gothenburg, Sweden; Department of Applied Physics, Stanford University, Stanford, California 94305; Bell Communications Research Laboratory, Red Bank, New Jersey 07701)

    1989-01-01

    We present x-ray-absorption fine-structure (XAFS) measurements for a series of Co- and Fe-substituted samples of YBa 2 Cu 3 O/sub 7-δ/(Y-Ba-Cu-O). Our analysis of the first- and second-neighbor environments indicates that the Co atoms primarily replace the Cu in the chain sites, the Cu(1) atoms, in Y-Ba-Cu-O, but many of these Co(1) sites and their neighboring oxygen sites are highly distorted. The first-neighbor Co-O peak consists of approximately 3.5 oxygen at 1.8 A and approximately 1.3 oxygen at 2.4 A, while the second-neighbor multipeak in the XAFS data is unexpectedly low in amplitude. Structure in this peak is inconsistent with a simple Gaussian broadening and indicates that several Co(1)-Ba distances exist. We propose an aggregation of the Co atoms into distorted, zigzag chains along the directions, with some of the Co displaced off center by approximately 0.4 A along a perpendicular direction. This model is consistent with the second-neighbor XAFS data, provides an explanation for the tetragonal structure via twinning on a microscopic scale, and accommodates excess oxygen within the Co chains. The Fe data suggest that similar chains also exist in the Fe-substituted samples. There are, however, some differences between the local environments of the Fe and Co. The primary difference is that a small but significant number of Fe atoms occupy the Cu(2) plane sites while no appreciable number of Co atoms are found on the Cu(2) sites in the more dilute samples. Finally, near-edge measurements on the Co and Fe K-absorption edges indicate that the valence is primarily +3, but a mixture of valences exists. For Co the edge position corresponds to a mixture of +2 and +3 valences, while Fe exists in a mixture of +2, +3, and +4 states

  18. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys

    International Nuclear Information System (INIS)

    Chemin, Aline; Marques, Denys; Bisanha, Leandro; Motheo, Artur de Jesus; Bose Filho, Waldek Wladimir; Ruchert, Cassius Olivio Figueiredo

    2014-01-01

    Highlights: • The corrosion on new aerospace aluminum alloy is studied. • Al 7 Cu 2 Fe precipitate was detected in the 7475-T7351 and 7081 T73511 alloy by scanning electron microscopy. • Al 7 Cu 2 Fe particles have different morphologies depending on the forming process. • Corrosion pitting occurs around Al 7 Cu 2 Fe precipitates in 7475-T7351 and 7081-T73511 alloys. - Abstract: The development of aluminum alloys of the Al–Zn–Mg–Cu system is the primary factor that enabled the evolution of aircraft. However, it has been shown that these alloys tend to undergo pitting corrosion due to the presence of elements such as iron, copper and silicon. Thus, the purpose of this study is to evaluate the behavior of the Al 7 Cu 2 Fe precipitate in 7475-T7351 and 7081-T73511 alloys based on microstructural characterization and polarization tests. The corrosion and pitting potentials were found to be very similar, and matrix dissolution occurred around the Al 7 Cu 2 Fe precipitate in both alloys, revealing the anodic behavior of the matrix

  19. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  20. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  1. Determination of Cu/Zn and Fe in human serum of patients with sickle cell anemia using radiation synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Canellas, C.G.L. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972 Rio de Janeiro (Brazil); Carvalho, S.M.F. [State Institute of Hematology Arthur de Siqueira Cavalcanti, 20.211-030 Rio de Janeiro (Brazil); Anjos, M.J. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972 Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro, 20.559-900 Rio de Janeiro (Brazil); Lopes, R.T., E-mail: ricardo@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972 Rio de Janeiro (Brazil)

    2012-07-15

    In this work we analyzed serum samples from patients with Sickle Cell Anemia (SCA) using Total Reflection X-Ray Fluorescence using Synchrotron Radiation (SRTXRF). The SRTXRF measurements were performed at the X-Ray Fluorescence Beamline at the Brazilian National Synchrotron Light Laboratory (LNLS). We studied forty-three patients aged 18-50 suffering from SCA and sixty healthy volunteers aged 18-60. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Moreover, there are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA pathogenesis process. The concentrations of Fe and Cu in the serum samples of patients with SCA were larger, 120% and 20%, respectively, when compared with the CG. The serum level Cu/Zn ratio was significantly higher (60%) in the serum samples from patients suffering from SCA than from the CG. Therefore, the Cu/Zn ratio can be used as an adjuvant index in enhancement for diagnosis of SCA. - Highlights: Black-Right-Pointing-Pointer Serum samples from patients with Sickle Cell Anemia (SCA) were analyzed by SRTXRF. Black-Right-Pointing-Pointer It was possible to determine the concentrations of the P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Black-Right-Pointing-Pointer There are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA process. Black-Right-Pointing-Pointer The results indicate that the Cu/Zn ratio can be used as an adjuvant index for diagnosis of SCA.

  2. Determination of Cu/Zn and Fe in human serum of patients with sickle cell anemia using radiation synchrotron

    International Nuclear Information System (INIS)

    Canellas, C.G.L.; Carvalho, S.M.F.; Anjos, M.J.; Lopes, R.T.

    2012-01-01

    In this work we analyzed serum samples from patients with Sickle Cell Anemia (SCA) using Total Reflection X-Ray Fluorescence using Synchrotron Radiation (SRTXRF). The SRTXRF measurements were performed at the X-Ray Fluorescence Beamline at the Brazilian National Synchrotron Light Laboratory (LNLS). We studied forty-three patients aged 18–50 suffering from SCA and sixty healthy volunteers aged 18–60. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Moreover, there are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA pathogenesis process. The concentrations of Fe and Cu in the serum samples of patients with SCA were larger, 120% and 20%, respectively, when compared with the CG. The serum level Cu/Zn ratio was significantly higher (60%) in the serum samples from patients suffering from SCA than from the CG. Therefore, the Cu/Zn ratio can be used as an adjuvant index in enhancement for diagnosis of SCA. - Highlights: ► Serum samples from patients with Sickle Cell Anemia (SCA) were analyzed by SRTXRF. ► It was possible to determine the concentrations of the P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. ► There are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA process. ► The results indicate that the Cu/Zn ratio can be used as an adjuvant index for diagnosis of SCA.

  3. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping

    2015-10-30

    In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  5. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  6. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Nagai, Yasuyoshi; Tang, Zheng; Yubuta, Kunio [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) in a Fe-Cu single crystal and was agreed well with that from a band structure calculation. Theoretical calculation of positron confinement in Fe-Cu model alloys showed that a positron quantum dot state induced by positron affinity is attained for the embedded precipitates larger than 1 nm. A new position sensitive detector with a function of one dimensional angular correlation of annihilation radiation (1D-ACAR) has been developed that enables high resolution experiments over wide ranges of momentum distribution. (author)

  7. Thermal analysis of compositionally modulated Fe/Y films

    International Nuclear Information System (INIS)

    Kajiura, M.; Morishita, T.; Togami, Y.; Tsushima, K.

    1987-01-01

    Structures of compositionally modulated Fe/Y films were studied by thermal analysis. The exothermic peak found in the DSC curve of (Fe 12 A/Y 12 A) most probably corresponds to crystallization of an amorphous material. SEM analysis suggested that the composition of crystallized (Fe 12 A/Y 12 A) was YFe2. It is concluded that a compositionally modulated (Fe 12 A/Y 12 A) is amorphous in structure as well as in magnetic properties

  8. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    Science.gov (United States)

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  9. Electrochemical performance of electroactive poly(amic acid)-Cu{sup 2+} composites

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ying [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Li, Fangfei [State Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Hanlon, Ashley M.; Berda, Erik B. [Department of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824 (United States); Liu, Xincai; Wang, Ce [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Chao, Danming, E-mail: chaodanming@jlu.edu.cn [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-01-15

    Graphical abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on the substrates have been prepared, whose electrochemical properties, including electroactivity, electrochromism and anticorrosion, reveal drastic enhancement after incorporation of Cu{sup 2+} ions. - Highlights: • The electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites were prepared. • A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was observed. • EPAA-Cu/ITO electrochromic electrodes reveals a shorter switching times. • Excellent corrosive protection for the CS was achieved by incorporating Cu{sup 2+} ions. - Abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on substrates were successfully prepared via nucleophilic polycondensation followed by the use of an immersing method. Analysis of the structure properties of EPAA-Cu composites was performed using scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS) and Fourier-transform infrared spectra (FTIR). A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was found as evident from cyclic voltammetry (CV) measurements. In addition, Cu{sup 2+} ions were incorporated into the composites and had a positive effect on their electrochromic behaviors decreasing their switching times. The anticorrosive performance of EPAA-Cu composites coatings on the carbon steel in 3.5 wt% NaCl solution were also investigated in detail using tafel plots analysis and electrochemical impedance spectroscopy. The anticorrosive ability of these coatings significantly enhanced through the incorporation of Cu{sup 2+} ions.

  10. Microstructure development of in situ porous TiO/Cu composites

    International Nuclear Information System (INIS)

    Qin, Q.D.; Huang, B.W.; Li, W.; Shao, F.

    2016-01-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti_2CO and Cu powder. Ti_2CO powder is produced by the carbothermic reduction of titanium dioxide (TiO_2) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  11. Reducing the ordering temperature of FePt nanoparticles by Cu additive and alternate reduction method

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-12-01

    Full Text Available (FePt85Cu15 nanoparticles were successfully prepared by alternate reduction of metal salts in aqueous medium. Detailed investigations on the correlation between the magnetic and structural properties of these nanoparticles are presented as a function of annealing temperature. Both the X-ray diffraction patterns and the magnetic hysteresis loop measurements show the existence of L10-FePt phase at a relative low annealing temperature. It is proved that the Cu additive and alternate reduction are very effective methods in reducing the ordering temperature of FePt nanoparticles.

  12. Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation

    Science.gov (United States)

    Ye, Peng; Wu, Deming; Wang, Manye; Wei, Yi; Xu, Aihua; Li, Xiaoxia

    2018-01-01

    A heterogeneous magnetic CuFe2O4@OMS-2 catalyst was fabricated through a facile solvent-free process using Mn(CH3COO)2 and KMnO4 in the presence of CuFe2O4. It was found that the BET surface area of OMS-2 as well as the ratio of low-valent manganese species significantly increased in the hybrid catalyst, due to interactions between CuFe2O4 and the precursor of amorphous manganese oxide. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the CuFe2O4@OMS-2 catalyst within 30 min in the presence of peroxymonosulfate (PMS), while CuFe2O4 and OMS-2 showed no significant activity for the reaction. The hybrid catalyst also exhibited excellent long-term stability and could be easily recovered with the assistance of an external magnetic field. A possible degradation mechanism for the synergistic effects of different valent metal species and reactive radicals was proposed, which involved the electron transfer from Mn(III) or Mn(II) species to PMS with the generation of sulfate and hydroxyl radicals, and from AO7 and Cu(I) in CuFe2O4 to Mn(IV) and Mn(III) to reduce these Mn species.

  13. Magnetostrictive properties of FeAl/polyester and FeAl/silicone composites

    Energy Technology Data Exchange (ETDEWEB)

    Riesgo, G. [Dpto. de Ciencias y Técnicas de la Navegación, Universidad de Oviedo, Campus universitario de Gijón, 33203 Gijón (Spain); Carrizo, J. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Crespo, R.D. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Sepúlveda, R. [Dpto. de Ingeniería Mecánica y de los Materiales, Universidad de Sevilla, Isla Cartuja, 41092 Sevilla (Spain); García, J.A. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2017-01-15

    Highlights: • Nanocrystalline powders of FeAl have been obtained from the Fe{sub 81}Al{sub 19} ribbon produced by melt spinning. • The method allows the obtainment of a FeAl solid solution from the starting process. • The microstructure and magnetic properties of the powders were investigated. • Composites with a magnetostriction of 45 ppm have been obtained. - Abstract: Ribbons of composition Fe{sub 81}Al{sub 19} obtained by the melt spinning method have been used to yield powder by mechanical milling. Using this method, a rapid nanocrystallization and a FeAl solid solution phase was obtained from the start of the process. The microstructural and magnetic properties as well as the XRD patterns of the powders were studied in function of the milling time. Grain refinement and an increase of the coercive field were the main transformations resulting from increasing the milling time. Two sets of magnetostrictive composites were produced from the 100 h-milled powder. In one of them polyester was used as matrix and in the other one silicone. In the case of the silicone composites cured in a magnetic field of 140 mT in the longitudinal direction a saturation magnetostriction as high as 45 ppm was obtained.

  14. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... be suitable for biomass fired power plant SCR applications....

  15. Microstructure development of in situ porous TiO/Cu composites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Q.D., E-mail: 58124812@qq.com [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Huang, B.W. [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Li, W. [Department of Materials Engineering, Zhengzhou Technology College, No. 81 Zhengshang Road, Zhengzhou, 450051 (China); Shao, F. [2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China)

    2016-07-05

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti{sub 2}CO and Cu powder. Ti{sub 2}CO powder is produced by the carbothermic reduction of titanium dioxide (TiO{sub 2}) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  16. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  17. Distribution of Ca, Fe, Cu and Zn in primary colorectal cancer and secondary colorectal liver metastases

    International Nuclear Information System (INIS)

    Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M.J.

    2010-01-01

    A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe (P=0.009) from independent T test.

  18. Structural, catalytic and magnetic properties of Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Del Castillo, Hector [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Bramer-Escamilla, Werner; Silva, Pedro [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} ferrite synthesized by sol-gel auto-combustion method. Black-Right-Pointing-Pointer Structural identification, magnetic and catalytic properties were investigated. Black-Right-Pointing-Pointer Characterization by TGA, DTA, XRD, SEM, TEM and VSM techniques. Black-Right-Pointing-Pointer Magnetic properties decrease with the increase of Cu{sup 2+} doping. Black-Right-Pointing-Pointer The selective conversion to N{sub 2} is higher for Cu-Co mixed ferrites. - Abstract: Copper substituted cobalt ferrite Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} (0 {<=}x {<=} 1) have been synthesized using sol-gel auto combustion method with citric acid as fuel. Structural identification, magnetic and catalytic properties were investigated using thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and their application in the selective catalytic reduction of NOx were studied. Analysis of structural properties reveals that all samples have cubic spinel structure. Room temperature magnetic hysteresis measurements as a function of magnetic field infer that the magnetic properties decrease with Cu{sup 2+} doping which may be due to the difference of the magnetic moment of Cu{sup 2+} and Co{sup 2+} ions. The higher activity of the samples in NO selective reduction to N{sub 2} occurs at 350 Degree-Sign C, reaching a maximum of 38% NO conversion and 95% of selective conversion to N{sub 2}. The compositions containing both Cu{sup 2+} and Co{sup 2+} ions are more active to the products selectivity to N{sub 2}, suggesting a synergistic effect on the active surface of ferrite and the effect of Co{sup 2+} is more pronounced than Cu{sup 2+} towards NO conversion.

  19. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    International Nuclear Information System (INIS)

    Wang Junsheng; Lee, Peter D.; Li Mei; Allison, John

    2010-01-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  20. Magnetic and structural characterizations on nanoparticles of FePt, FeRh and their composites

    International Nuclear Information System (INIS)

    Ko, Hnin Yu Yu; Suzuki, Takao; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Hirotsu, Yoshihiko

    2008-01-01

    The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3-5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L1 0 -phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process

  1. Formation dynamics of FeN thin films on Cu(100)

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2012-01-01

    To investigate the structural and magnetic properties of thin films of FeN we have performed ab initio molecular dynamics simulations of their formation on Cu(100) substrates. The iron nitride layers exhibit a p4gm(2 × 2) reconstruction and order

  2. Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites

    Directory of Open Access Journals (Sweden)

    TAO Jing-mei

    2017-04-01

    Full Text Available The critical issues of CNTs/Cu composites were reviewed. The preparation techniques of the composites were classified, and the research progress on powder metallurgic methods, electrochemical methods and other methods was summarized, with an emphasis on the relationship between preparation methods and properties. The interfacial characteristic of the CNTs/Cu composites was analyzed, and the research progress and existing problems of mechanical properties, electrical properties, thermal properties and wear and friction properties of the composites were also summarized. It was pointed out that the key to increase the comprehensive properties of the composites is to obtain the homogeneous distribution of CNTs and good interfacial bonding between CNTs and the Cu matrix by improving the preparation methods.

  3. DETERMINATION OF Cu, Fe, Mn, Zn AND FREE FATTY ACIDS IN PEQUI OIL

    Directory of Open Access Journals (Sweden)

    Aparecida M. S. Mimura

    2016-06-01

    Full Text Available Pequi (Caryocar brasiliense Camb., a typical fruit of the Brazilian Cerrado, is an important source of micronutrients and fatty acids. In this work, a new approach for the acid digestion (using H2SO4, HNO3 and H2O2 of pequi oil samples and the determination of Cu, Fe, Zn and Mn by flame atomic absorption spectrometry (F AAS was employed. Capillary zone electrophoresis (CZE was used for free fatty acid (FFA determination after simple and fast extraction with heated ethanol. Good results regarding precision (RSD < 10%, in most cases, sensitivity and adequate LOD and LOQ values were obtained. The accuracy was evaluated using spike tests and the recoveries were from 97 to 107%. The analytes were investigated in four different pequi oil samples. Fe was the trace element with the highest concentration (from 1.99 to 10.3 mg/100 g, followed by Zn, Mn and Cu (1.15 to 3.19, 0.42 to 0.91 and 0.31 to 0.56 mg/100 g, respectively. The main FFA found were oleic acid and palmitic acid (1.61 to 10.7 and 0.82 to 2.69 g/100 g, respectively, while linoleic acid (0.50 g/100 g was detected in only one sample. The pequi oil chemical composition showed good characteristics to be used as a food additive, in cosmetic formulations and for traditional medicine.

  4. Structural, dielectric and magnetic properties of SnO{sub 2}-CuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Department of Physics, International Islamic University, Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@qau.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, Qaid-i-Azam University, Islamabad (Pakistan); Jan, Tariq [Department of Physics, University of Lahore, Sargodha Campus, Sargodha (Pakistan); Wan, Dongyun [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ahmad, Naeem [Department of Physics, International Islamic University, Islamabad (Pakistan); Ahamd, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Ilyas, Syed Zafar [Department of Physics, Allama Iqbal Open University, Islamabad (Pakistan)

    2017-04-15

    The nanocomposites of (SnO{sub 2}){sub x}(CuFe{sub 2}O{sub 4}){sub (1−x)} (where x=0–100 wt%) have been successfully synthesized via two steps chemical method. XRD pattern has revealed the formation of inverse spinal phases with tetragonal crystal structure without any impurity phases for CuFe{sub 2}O{sub 4} sample. The thermodynamic solubility limit of SnO{sub 2} in CuFe{sub 2}O{sub 4} matrix has been found to be 30 wt% and above this percentage crystal phases related to SnO{sub 2} started to appear. The average particle size and shape of CuFe{sub 2}O{sub 4} nanoparticles have been strongly influenced by addition of SnO{sub 2} as depicted by TEM results. FTIR results have confirmed the existence of cation vibration bands at tetrahedral and octahedral sites along with Sn-O vibration band at higher concentrations, which also validates the formation of nanocomposites. Furthermore, the dielectric constant, tangent loss and conductivity of CuFe{sub 2}O{sub 4} nanoparticles have been found to increase up to 30 wt% addition of SnO{sub 2} and then decreases with further increase which is attributed to variations in resistivity and space charge carriers. Magnetic measurements have shown that saturation magnetization decreases from 35.68 emu/gm to 10.26 emu/gm with the addition of SnO{sub 2} content. - Highlights: • SnO{sub 2}-CuFe{sub 2}O{sub 4} nanocomposites with varying SnO{sub 2} concentrations were synthesized. • The thermodynamic solubility limit for SnO{sub 2} into CuFe{sub 2}O{sub 4} matrix by employing current method was found to be ≤30 wt%. • At higher concentrations, structural phases related to SnO{sub 2} started to appear. • FTIR results corroborated well with the XRD results. • It has been observed that the addition of SnO{sub 2} significantly influence the morphology, dielectric and magnetic properties of CuFe{sub 2}O{sub 4} nanoparticles.

  5. In situ observation of the formation of FeSe

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Wulff, Anders Christian; Yue, Zhao

    2011-01-01

    The formation of the FeSe compound from a mixture of Fe and Se powders encased in a composite Cu/Nb sheath was studied in situ by means of high-energy synchrotron x-ray diffraction. Tetragonal beta-FeSe does not seem to form directly from the starting elements. Instead, a sequence of FeSe2, Fe3Se...

  6. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  7. Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies

    Science.gov (United States)

    Kombaiah, K.; Vijaya, J. Judith; Kennedy, L. John; Bououdina, M.; Al-Najar, Basma

    2018-04-01

    Nanosized copper ferrite (CuFe2O4) nanoparticles have been prepared by conventional (CCM) and microwave (MCM) combustion methods using Hibiscus rosa sinensis plant extract as a fuel. XRD and rietveld analysis confirmed the formation of single cubic phase and with crystallite size varying from 25 to 62 nm owing to grain growth after calcination. FT-IR analysis confirms the modes of the cubic CuFe2O4 phase, due to the stretching and bending vibrations. Spherical shaped particles are observed by scanning electron microscopy and the average particle size is found to be in the range of 50-200 nm. The chemical composition is confirmed by energy dispersive X-ray analysis. The optical band gap energy estimated using Kubelka-Munk function with the help of UV-Visible diffused reflectance spectroscopy, is found to be 2.34 and 2.22 eV for CCM and MCM respectively. Photoluminescence analysis indicates that both samples absorb light in the UV-visible region and exhibit emissions at 360, 376, and 412 nm. Magnetic measurements indicate a ferromagnetic behavior, where both magnetic properties very much influenced by the preparation method and calcination temperature: both saturation magnetization and coercivity are found higher when using CCM and MCM; from 29.40 to 34.09 emu/g while almost double from 224.4 to 432.2 Oe. The observed changes in physical properties are mainly associated with crystallinity, particle size, better chemical homogeneity, and cations distribution among tetrahedral/octahedral sites. The maximum specific absorption rate obtained was 14.63 W/g, which can be considered suitable and favorable for magnetic hyperthermia. This study highlighted the benefits of green synthesis of CuFe2O4 nanoparticles providing better magnetic properties for the platform of hyperthermia application.

  8. Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Manasijevic, Dragan [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Mitovski, Aleksandra, E-mail: amitovski@tf.bor.ac.rs [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Minic, Dusko [University of Pristina, Faculty of Technical Sciences, 38220 Kosovska Mitrovica (Serbia); Zivkovic, Dragana; Marjanovic, Sasa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Todorovic, Radisa [Institute of Mining and Metallurgy, Zeleni Bulevar 35, 19210 Bor (Serbia); Balanovic, Ljubisa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia)

    2010-05-20

    The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.

  9. Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system

    International Nuclear Information System (INIS)

    Manasijevic, Dragan; Mitovski, Aleksandra; Minic, Dusko; Zivkovic, Dragana; Marjanovic, Sasa; Todorovic, Radisa; Balanovic, Ljubisa

    2010-01-01

    The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.

  10. Oxygen formation in gamma-ray irradiation of Fe2+ -Cu2+ solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Hart, E.J.

    1971-01-01

    value diminishes slightly and is displaced toward higher ${\\rm CuSO}_{4}/{\\rm FeSO}_{4}$ ratios with increasing acidity. The perchlorate system differs from the sulfate only at high ${\\rm Cu}({\\rm ClO}_{4})/{\\rm Fe}({\\rm ClO}_{4})_{2}$ ratios where $G({\\rm O}_{2})$ rises to 0.10. The O2 yield of 0.......02 is not derived from "spur" HO2, OH, H2 O2 or O2, although the increase in $G({\\rm O}_{2})$ above this level in the perchlorate system is attributed to H2 O2. "Spur" O atoms are postulated as the source of O2 with the yield, $G({\\rm O}_{2})$ = 0.02....

  11. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    Comparison of trace element contamination levels (Cu, Zn, Fe, Cd and Pb) in the soft tissues of the gastropods Tympanotonus fuscatus fuscatus and Tf radula collected in the Ebrié Lagoon (Côte d'Ivoire): Evidence of the risks linked to linked to lead and.

  12. Kinetic process of mechanical alloying in Fe50Cu50

    DEFF Research Database (Denmark)

    Huang, J.Y.; Jiang, Jianzhong; Yasuda, H.

    1998-01-01

    It is shown that mechanical alloying in the immiscible Fe-Cu system is governed by the atomic shear event and shear-induced diffusion process. We found that an alpha-to-gamma phase transformation, as evidenced by the Nishiyama-Wasserman orientation relationship, occurs by simultaneous shearing...

  13. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin; Zhang, Junwei; Zhang, Hong; Lan, Qianqian; Guan, Chaoshuai; Zhang, Qiang; Bai, Feiming; Peng, Yong; Zhang, Xixiang

    2016-01-01

    to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed

  14. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  15. Oxidation of Refractory Benzothiazoles with PMS/CuFe2O4: Kinetics and Transformation Intermediates

    KAUST Repository

    Zhang, Tao; Chen, Yin; Leiknes, TorOve

    2016-01-01

    Benzothiazole (BTH) and its derivatives, 2-(methylthio)bezothiazole (MTBT), 2-benzothiazolsulfonate (BTSA) and 2-hydroxybenzothiazole (OHBT), are refractory pollutants ubiquitously existing in urban runoff at relatively high concentrations. Here, we report their oxidation by CuFe2O4-activated peroxomonosulfate (PMS/CuFe2O4), focusing on kinetics and transformation intermediates. These benzothiazoles can be efficiently degraded by this oxidation process which is confirmed to generate mainly sulfate radicals (with negligible hydroxyl-radical formation) under slightly acidic to neutral pH conditions. The molar exposure ratio of sulfate radical to residual PMS (i.e. Rct) of this process is a constant which is related to reaction condition and can be easily determined. Reaction rate constants of these benzothiazoles towards sulfate radical are (3.3 ± 0.3) × 109, (1.4 ± 0.3) × 109, (1.5 ± 0.1) × 109 and (4.7 ± 0.5) × 109 M-1s-1, respectively (pH 7 and 20 oC). Based on Rct and these rate constants, their degradation in the presence of organic matter can be well predicted. A number of transformation products were detected and tentatively identified using triple-quadruple/linear ion trap MS/MS and high-resolution MS. It appears that sulfate radicals attack BTH, MTBT and BTSA on their benzo ring via electron transfer, generating multiple hydroxylated intermediates which are reactive towards common oxidants. For OHBT oxidation, it prefers to break down the thiazole ring. Due to competitions of the transformation intermediates, a minimum PMS/pollutant molar ratio of 10-20 is required for effective degradation. The flexible PMS/CuFe2O4 could be a useful process to remove the benzothiazoles from low DOC waters like urban runoff or polluted groundwater.

  16. Oxidation of Refractory Benzothiazoles with PMS/CuFe2O4: Kinetics and Transformation Intermediates

    KAUST Repository

    Zhang, Tao

    2016-05-04

    Benzothiazole (BTH) and its derivatives, 2-(methylthio)bezothiazole (MTBT), 2-benzothiazolsulfonate (BTSA) and 2-hydroxybenzothiazole (OHBT), are refractory pollutants ubiquitously existing in urban runoff at relatively high concentrations. Here, we report their oxidation by CuFe2O4-activated peroxomonosulfate (PMS/CuFe2O4), focusing on kinetics and transformation intermediates. These benzothiazoles can be efficiently degraded by this oxidation process which is confirmed to generate mainly sulfate radicals (with negligible hydroxyl-radical formation) under slightly acidic to neutral pH conditions. The molar exposure ratio of sulfate radical to residual PMS (i.e. Rct) of this process is a constant which is related to reaction condition and can be easily determined. Reaction rate constants of these benzothiazoles towards sulfate radical are (3.3 ± 0.3) × 109, (1.4 ± 0.3) × 109, (1.5 ± 0.1) × 109 and (4.7 ± 0.5) × 109 M-1s-1, respectively (pH 7 and 20 oC). Based on Rct and these rate constants, their degradation in the presence of organic matter can be well predicted. A number of transformation products were detected and tentatively identified using triple-quadruple/linear ion trap MS/MS and high-resolution MS. It appears that sulfate radicals attack BTH, MTBT and BTSA on their benzo ring via electron transfer, generating multiple hydroxylated intermediates which are reactive towards common oxidants. For OHBT oxidation, it prefers to break down the thiazole ring. Due to competitions of the transformation intermediates, a minimum PMS/pollutant molar ratio of 10-20 is required for effective degradation. The flexible PMS/CuFe2O4 could be a useful process to remove the benzothiazoles from low DOC waters like urban runoff or polluted groundwater.

  17. A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C

    Science.gov (United States)

    A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...

  18. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Eskin, D.G. [Netherlands Institute for Metals Research, Rotterdamseweg 137, 2628AL Delft (Netherlands)]. E-mail: deskin@nimr.nl; Avxentieva, N.N. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation)

    2005-10-15

    The evaluation of phase equilibria in quinary systems that constitute the commercially important Al-Cu-Fe-Mg-Ni-Si alloying system is performed in the compositional range of casting alloys by means of metallography, electron probe microanalysis, X-ray diffractometry, differential scanning calorimetry, and by the analysis of phase equilibria in the constituent systems of lesser dimensionality. Suggested phase equilibria are illustrated by bi-, mono- and invariant solidification reactions, polythermal diagrams of solidification, distributions of phase fields in the solid state, and isothermal and polythermal sections. Phase composition of as-cast alloys is analyzed in terms of non-equilibrium solidification. It is shown that the increase in copper concentration in piston Al-Si alloys results in the decrease in the equilibrium solidus from 540 to 505 deg C. Under non-equilibrium solidification conditions, piston alloys finish solidification at {approx}505 deg C. Iron is bound in the quaternary Al{sub 8}FeMg{sub 3}Si{sub 6} phase in low-iron alloys and in the ternary Al{sub 9}FeNi and Al{sub 5}FeSi phases in high-iron alloys.

  19. Properties of porous FeAlOy/FeAlx ceramic matrix composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 7. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder. V Usoltsev S Tikhov A Salanov V Sadykov G Golubkova O Lomovskii. Volume 36 Issue 7 December 2013 pp 1195-1200 ...

  20. Magnetic properties and EXAFS study of nanocrystalline Fe2Mn0.5Cu0.5Al synthesized using mechanical alloying technique

    International Nuclear Information System (INIS)

    Nanto, Dwi; Yang, Dong-Seok; Yu, Seong-Cho

    2014-01-01

    Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has been synthesized by the mechanical alloying technique and studied as a function of milling time. Alloy nature of Fe 2 Mn 0.5 Cu 0.5 Al was observed in a sample milled for 96 h. The magnetic saturation is 4.0 μ B /f.u., which coincidently follows Slater–Pauling rule at 5 K. Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has enhanced saturate magnetization compared to any other fabrication of Fe 2 MnAl reported. Cu element plays an important role in site competes with other elements and may result in the enhancement of saturate magnetization. In accordance to the magnetic results and EXAFS pattern, it was revealed that the dynamics of magnetic properties were confirmed as structural changes of nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al

  1. CNTs Modified and Enhanced Cu Matrix Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Wen-zhong

    2016-12-01

    Full Text Available The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.

  2. Frustrated magnetization in PrxLa1-xBaCuO5Fe

    International Nuclear Information System (INIS)

    Ortiz, W.A.; Araujo-Moreira, F.M.; Prassides, K.

    1999-01-01

    The crystal structure of the system Pr x La 1-x BaCuO 5 Fe has been recently reviewed. The magnetic structure of samples with x = 0 and x = 1 is mainly due to effective local moments of iron and copper. In Pr-rich samples, Fe ions occupy two non-equivalent positions, making it substantially plausible that two or more magnetic subsets might coexist in the system. This contribution presents magnetization studies on five samples of the Pr x La 1-x BaCuO 5 Fe system (x = 0.0, 0.2, 0.5, 0.7 and 1.0). All samples exhibit a strong irreversible behavior between zero-field-cooled and field-cooled procedures below a certain irreversibility temperature T i . Above T i , both branches are coincident and well described by a Curie-Weiss fitting. Decreasing the temperature below T i , the zero-field-cooled response increases less than the field-cooled curve, indicating some degree of frustrated antiferromagnetic couplings. (orig.)

  3. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination

    International Nuclear Information System (INIS)

    Pourreza, Nahid; Hoveizavi, Reza

    2005-01-01

    A simultaneous preconcentration method was developed for determination of trace amounts of Cu, Fe and Pb by atomic absorption spectrometry. The method is based on the retention of their methylthymol blue complexes by naphthalene methyltrioctyl ammonium chloride adsorbent in a column. The adsorbed metal complexes were eluted from the column with nitric acid and Cu, Fe and Pb were determined by flame atomic absorption spectrometry. Several parameters such as pH of the sample solution, ligand concentration, volume of the sample and the amount of methyltrioctyl ammonium chloride loaded on naphthalene were evaluated. The effect of diverse ions on the preconcentration was also investigated. A preconcentration factor of up to 100 or more can easily be achieved depending on the volume of the sample taken. The calibration graphs were obtained in the range of 5-40, 10-100 and 10-200 ng ml -1 for Cu, Fe and Pb in the initial solution, respectively, when using 500 ml of the solution. The detection limit based on three standard deviations of the blank was 0.54, 3.1, and 4.5 ng ml -1 for Cu, Fe and Pb, respectively. The relative standard deviations (R.S.D.) of 0.62-1.4% for Cu, 1.9-3.4% for Fe and 1.0-2.2% for Pb were obtained. The method was applied to the determination of Cu, Fe and Pb in river and wastewater samples

  4. Structural features in icosahedral Al63Cu25Fe12

    International Nuclear Information System (INIS)

    Howell, R.H.; Solal, F.; Turchi, P.E.A.; Berger, C.; Calvayrac, Y.

    1991-01-01

    Since the discovery of a quasicrystalline phase in Al-Mn alloys a substantial amount of work has been done to understand the structural and physical properties of this new class of materials. More recently the discovery of a thermodynamically stable icosahedral phase in AlCuFe presents the opportunity to study pure quasicrystalline phases of high structural quality by eliminating known defects, especially phason disorder by conventional heat treatment. In particular it was shown that annealing treatments of as quenched samples resulted in a dramatic reduction in the width of the diffraction peaks associated with the elimination of as quenched defects, present in other quasicrystals. Positron annihilation lifetime measurements have a high sensitivity to intrinsic defects and positron annihilation radiation angular correlation measurements are well suited to measurements of electronic structure in systems where the defect effects do not dominate. We have measured positron annihilation lifetime and angular correlations on quasicrystalline samples of Al 63 Cu 25 Fe 12 in the pure icosahedral phase

  5. Fe- and Cu-complex formation with artificial ligands investigated by ultra-high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS: Implications for natural metal-organic complex studies

    Directory of Open Access Journals (Sweden)

    Hannelore Waska

    2016-07-01

    Full Text Available In recent years, electrospray-ionization mass spectrometry (ESI-MS has been increasingly used to complement the bulk determination of metal-ligand equilibria, for example via competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV. However, ESI-MS speciation analyses may be impacted by instrumental artefacts such as reduction reactions, fragmentation, and adduct formation at the ESI source, changes in the ionization efficiencies of the detected species in relation to sample matrix, and peak overlaps in response to increasing sample complexity. In our study, equilibria of the known artificial ligands citrate, ethylenediaminetetraacetic acid (EDTA, 1-nitroso-2-naphthol (NN, and salicylaldoxime (SA with iron (Fe and copper (Cu were investigated by ultra-high resolution ESI-MS, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, under a variety of sample matrix and ionization settings. The acquired mass spectra were compared with metal-ligand equilibrium data from the literature as well as an adapted speciation model. Overall, the mass spectra produced representative species mentioned in previous reports and predicted by the speciation calculations, such as Fe(Cit, Cu(Cit2, Fe(EDTA, Cu(EDTA, Fe(NN3, and Cu(SA2. The analyses furthermore revealed new species which had been hypothesized but not measured directly using other methods, for example ternary complexes of citrate with Fe and Cu, Cu(SA monomers, and the dimer Fe(SA2. Finally, parallel measurements of a Cu+SA calibration series and a Cu+SA+EDTA competition series indicated that FT-ICR-MS can produce linear responses and low detection limits analogous to those of ACSV. We propose that ultra-high resolution FT-ICR-MS can be used as a representative tool to study interactions of trace metals with artificial as well as natural, unknown ligands at the molecular level.

  6. Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors

    Science.gov (United States)

    Brown, J. William; Ramesh, P. S.; Geetha, D.

    2018-02-01

    We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.

  7. Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at 1473 K (1200 °C) and P(SO2) = 0.25 atm

    Science.gov (United States)

    Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.

  8. A comprehensive study of magnetic exchanges in the layered oxychalcogenides Sr 3 Fe 2 O 5 Cu 2 Q 2 ( Q = S, Se)

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Minfeng; Mentré, Olivier; Gordon, Elijah E.; Whangbo, Myung-Hwan; Wattiaux, Alain; Duttine, Mathieu; Tiercelin, Nicolas; Kabbour, Houria

    2017-12-01

    The layered oxysulfide Sr3Fe2O5Cu2S2 was prepared, and its crystal structure and magnetic properties were characterized by synchrotron X-ray diffraction (XRD), powder neutron diffraction (PND), Mössbauer spectroscopy measurements and by density functional theory (DFT) calculations. In addition, the spin exchange interactions leading to the ordered magnetic structure of Sr3Fe2O5Cu2S2 were compared with those of its selenium analogue Sr3Fe2O5Cu2Se2. The oxysulfide Sr3Fe2O5Cu2S2 adopts a G-type antiferromagnetic (AFM) structure at a temperature in the range 485–512 K, which is comparable with the three-dimensional (3D) AFM ordering temperature, TN ≈ 490 K, found for Sr3Fe2O5Cu2Se2. Consistent with this observation, the spin exchange interactions of the magnetic (Sr3Fe2O5)2+ layers are slightly greater (but comparable) for oxysulfide than for the oxyselenide. Attempts to reduce or oxidize Sr3Fe2O5Cu2S2 using topochemical routes yield metallic Fe.

  9. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  10. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  11. Amorphous and nanocrystalline fraction calculus for the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Moya, J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina) and Carrera del Investigador, CONICET (Argentina)]. E-mail: vcremas@fi.uba.ar; Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina)

    2007-09-01

    We studied the relationship between the saturation magnetization (M {sub S}) of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy and its nanocrystalline structure. Amorphous ribbons obtained by the melt spinning technique were heat-treated for 1 h at different temperatures. The optimal treatment to obtain a homogeneous structure of Fe{sub 3}(Si,Ge) nanocrystals with a grain size of around 10 nm embedded in an amorphous matrix involved heating at 540 C for 1 h. We calculated the magnetic contribution of the nanocrystals to the heat treated alloy using a linear model and measured the M {sub S} of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} nanocrystalline and of an amorphous alloy of the same composition of the amorphous matrix: Fe{sub 58}Si{sub 0.5}Ge{sub 3.5}Cu{sub 3}Nb{sub 9}B{sub 26}. Using experimental data and theoretical calculations, we obtained the amorphous and crystalline fraction of the heat-treated ribbons.

  12. Determination of Ca, Fe, Cu and Zn content in hair by EDXRF method

    International Nuclear Information System (INIS)

    Yang Mingtai; Chen Jinhua; Qi Honglian; Gao Ge

    1994-01-01

    The authors introduce an analysing method that can determine simultaneously Ca, Fe, Cu and Zn in hair by using energy-dispersive X ray fluorescence analyzer of tube-excite type made in China. The added element Y is used as internal standard in hair sample. The hair is resolved by chemical reagent to make test sample, then the energy-dispersive X ray fluorescence analyzer is used to determine Ca, fe, Cu and Zn contents in hair sample. The lower limits of detection are 7 x 10 -6 , 1 x 10 -6 , 4 x 10 -6 , 3 x 10 -6 , respectively. Correlative coefficients of variations are 6%, 1%, 2%, 2%

  13. Temperature dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Petersen, Jan Raagaard

    1994-01-01

    Making use of the stress induced magnetic anisotropy in some iron-rich FeCuNbSiB nanocrystalline materials we studied the thermal dependence of their magnetostriction which becomes zero below the Curie temperature. The choice of a suitable composition and annealing temperature results in materials...... with zero magnetostriction at room temperature. Due to the low magnetostriction these materials have very promising fluxgate properties which were studied as well...

  14. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    Science.gov (United States)

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  15. Abrasive wear behaviour of Al-Cu-Mg/palm kernel shell ash particulate composite

    Directory of Open Access Journals (Sweden)

    Gambo Anthony VICTOR

    2017-12-01

    Full Text Available This paper presents a systematic approach to develop a wear model of Al-Cu-Mg/Palm kernel shell ash particulate composites (PKSAp produced by double stir-casting method. Four factors, five levels, central composite, rotatable design matrix was used to optimize the number of experiments. The factors considered were sliding velocity, sliding distance, normal load and mass fraction of PKSA reinforcement in the matrix. Response surface methodology (RSM was employed to develop the mathematical model. The developed regression model was validated by statistical software MINITAB and statistical tool such as analysis of variance (ANOVA. It was found that the developed regression model could be effectively used to predict the wear rate at 95% confidence level. The regression model indicated that the wear rate of cast Al-Cu-Mg/PKSAp composite decreased with an increase in the mass fraction of PKSA and increased with an increase of the sliding velocity, sliding distance and normal load acting on the composite specimen.

  16. High Performance of Manganese Porphyrin Sensitized p-Type CuFe2O4 Photocathode for Solar Water Splitting to Produce Hydrogen in a Tandem Photoelectrochemical Cell

    Directory of Open Access Journals (Sweden)

    Xia Li

    2018-03-01

    Full Text Available A novel composite composed of (5, 10, 15, 20-tetraphenyl porphinato manganese sensitized p-type CuFe2O4 was developed for constructing the photocathode of a tandem photoelectrochemical (PEC cell. The prepared material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS and UV-vis diffuse reflectance spectroscopy (DRS. Light-driven water splitting to produce hydrogen can be achieved through the PEC cell, and the results show that H2 and O2 can be collected separately at low applied bias. This work demonstrates that manganese porphyrin sensitized CuFe2O4 is an effective hybrid material for building the photocathode of a PEC cell for solar water splitting to produce H2.

  17. Kinetic modelling of bentonite - canister interaction. Implications for Cu, Fe and Pb corrosion in a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Wersin, P.; Bruno, J.; Spahiu, K.

    1993-06-01

    The chemical corrosion of three potential canister materials, Fe, Cu, and Pb is reviewed in terms of their thermodynamic and kinetic behavior in a repository. Thermodynamic predictions which are compatible with sedimentological observations indicate that for all three metals, chemical corrosion is expected at any time in a repository. From the kinetic information obtained by experimental and archeological data, long-term corrosion rates are assessed. In the case of Fe, the selected data allow extrapolation to repository conditions with a tolerable degree of uncertainty except for the possible effect of local corrosion in the initial oxic phase, For the other two metals, the scarcity of consistent experimental and archeological data limits the feasibility of this approach. In view of this shortcoming, a kinetic, single-box model, based on the STEADYQL code, is presented for quantitative prediction of long-term canister-bentonite interaction. The model is applied to the corrosion of Cu under anoxic conditions and upper and lower limits of corrosion rates are derived. The possibilities of extending this single-box model to a multi-box, diffusion-extended version are discussed. Finally, further potentials of STEADYQL for future applications of near field modelling are highlighted. 32 refs

  18. Synthesis of Cu{sub 2}O/graphene/rutile TiO{sub 2} nanorod ternary composites with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingxuan, E-mail: mingxuansun@sues.edu.cn; Fang, Yalin; Wang, Ying; Sun, Shanfu; He, Jia; Yan, Zhi

    2015-11-25

    A ternary composite of Cu{sub 2}O, graphene and rutile TiO{sub 2} nanorods was prepared using Cu(CH{sub 3}COO){sub 2}·H{sub 2}O, graphene oxide and TiCl{sub 4} as the starting materials and its enhanced photocatalytic performance was demonstrated. Graphene/TiO{sub 2} nanorod composites (GT) were obtained by a simple hydrothermal method and then, Cu{sub 2}O was coupled onto the surface of graphene/rutile TiO{sub 2} to form Cu{sub 2}O/graphene/rutile TiO{sub 2} nanorod (CGT) composites via a chemical bath deposition process. The as-prepared sample was characterized by X-ray diffraction (XRD), emission field scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), specific surface area analyzer (BET), Raman spectroscopy and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). It is found that the introduction of graphene and Cu{sub 2}O has little effect on the morphology of TiO{sub 2} nanorods with average dimensions of 140 nm (length) × 30 nm (diameter) (L/D ratio ≈5). A red shift of light absorption edge and more absorption in the visible light region were observed for the resulted ternary samples compared with TiO{sub 2} and graphene/TiO{sub 2} composites. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation, which showed 2.8 times corresponding enhancement of the degradation efficiency for the ternary composites compared with TiO{sub 2}. This work provides a new strategy to improve the visible light response of TiO{sub 2} and facilitate its application in environmental remediation. - Highlights: • A ternary composite of Cu{sub 2}O/graphene/rutile TiO{sub 2} nanorods were successfully fabricated. • Red shift and more absorption in the visible light region were observed for the ternary composites. • Improved photocatalytic degradation was detected with the introduction of Cu{sub 2}O and graphene. • Both Cu{sub 2}O and graphene played an important role

  19. Study of the C-14-contamination potential of C-impurities in CuO and Fe

    NARCIS (Netherlands)

    Vandeputte, K; Moens, L; Dams, R; van der Plicht, Johannes

    1998-01-01

    The carbon concentration in CuO and iron was determined by isolating C. The values were in agreement with results reported in other studies. Contaminating carbon from CuO and Fe was transformed to AMS targets and measured for C-14. C-traces in CuO were shown to be the major contribution to the C-14

  20. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  1. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    Science.gov (United States)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  2. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  3. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  4. Dechlorination of hexachlorobenzene using ultrafine Ca-Fe composite oxides

    International Nuclear Information System (INIS)

    Ma Xiaodong; Zheng Minghui; Liu Wenbin; Qian Yong; Zhang Bing; Liu Wenxia

    2005-01-01

    Ca-Fe composite oxides with different Ca/Fe atomic ratios were synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy with elemental X-ray analysis (SEM-EDX) and inductively coupled plasma optical emission spectrometer (ICP-OES). Their dechlorination activities were evaluated using hexachlorobenzene (HCB) as a model compound. The results indicate that the dechlorination activity is related to the composition of metal oxides. Different compositions lead to the formation of different phases of Ca-Fe composite oxides. When Ca/Fe atomic ratio was 3.4, the dechlorination activity reached 97%, which was the highest in the dechlorination of HCB at 300 deg. C for 0.5 h. This may be related to the formation of Ca 2 Fe 2 O 5 phase and small agglomerate size of oxide crystal of about 1 μm. The effect of reaction time on HCB dechlorination and the pathway of dechlorination were investigated using the Ca-Fe composite oxide with the highest activity. It was found that hydrodechlorination took place in the destruction of HCB, the dechlorination efficiency is almost 100% after 2 h reaction. After reaction, quantitative measurement of chloride ion and qualitative analysis of CaCO 3 indicate besides hydrodechlorination, other degradation routes may be present. The mechanism of synergic dechlorination using Ca-Fe composite oxides was discussed

  5. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, T.R.; Waddill, G.D. [Univ. of Missouri, Rolla, MO (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  6. Robust and Selective Switching of an FeIII Spin-Crossover Compound on Cu2N/Cu(100) with Memristance Behavior.

    Science.gov (United States)

    Jasper-Toennies, Torben; Gruber, Manuel; Karan, Sujoy; Jacob, Hanne; Tuczek, Felix; Berndt, Richard

    2017-11-08

    The switching between two spin states makes spin-crossover molecules on surfaces very attractive for potential applications in molecular spintronics. Using scanning tunneling microscopy, the successful deposition of [Fe(pap) 2 ] + (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato) molecules on Cu 2 N/Cu(100) surface is evidenced. The deposited Fe III spin-crossover compound is controllably switched between three different states, each of them exhibiting a characteristic tunneling conductance. The conductance is therefore employed to readily read the state of the molecules. A comparison of the experimental data with the results of density functional theory calculations reveals that all Fe(pap) 2 molecules are initially in their high-spin state. The two other states are compatible with the low-spin state of the molecule but differ with respect to their coupling to the substrate. As a proof of concept, the reversible and selective nature of the switching is used to build a two-molecule memory.

  7. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Chemical analysis of the trace elements in the soft tissues. The trace elements of interest (Cu, Zn, Fe, Pb, Cd) were then determined in the digested solutions, using Thermoelemental type. M6 brand of an atomic absorption Spectrometer equipped with a flame operated atomisation system and a deuterium ...

  8. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  9. Formation of the 1:2:3 structure in Y-Ba-Cu(Fe)-O system studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Valko, P.; Miglierini, M.; Sitek, J.; Hucl, M.; Gruskova, A.

    1990-01-01

    Annealing time and temperature dependence of Y, Ba, Cu, Fe nitrade mixture towards new phases creation was revealed by Moessbauer spectroscopy. The observed changes can be assigned to chemical decomposition of corresponding nitrades and creation of intermedial and final Y 1 Ba 2 (Cu 0.95 Fe 0.05 ) 3 O x phase. (orig.)

  10. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  11. The mechanism of degradation of bisphenol A using the magnetically separable CuFe_2O_4/peroxymonosulfate heterogeneous oxidation process

    International Nuclear Information System (INIS)

    Xu, Yin; Ai, Jia; Zhang, Hui

    2016-01-01

    Highlights: • Copper ferrite (CuFe_2O_4) was fabricated and utilized in heterogeneous PMS process. • The influence of reaction parameters for the mineralization of BPA were evaluated. • Possible reaction mechanism and the stability of CuFe_2O_4 were investigated. • Surface bound radicals (mainly ·OH) may be responsible for the BPA degradation. - Abstract: The removal of bisphenol A (BPA) in aqueous solution by an oxidation process involving peroxymonosulfate (PMS) activated by CuFe_2O_4 magnetic nanoparticles (MNPs) is reported herein. The effects of PMS concentration, CuFe_2O_4 dosage, initial pH, initial BPA concentration, catalyst addition mode, and anions (Cl"−, F"−, ClO_4"− and H_2PO_4"−) on BPA degradation were investigated. Results indicate that nearly complete removal of BPA (50 mg/L) within 60 min and 84.0% TOC removal in 120 min could be achieved at neutral pH by using 0.6 g/L CuFe_2O_4 MNPs and 0.3 g/L PMS. The generation of reactive radicals (mainly hydroxyl radicals) was confirmed using electron paramagnetic resonance (EPR). Possible mechanisms on the radical generation from CuFe_2O_4/PMS system are proposed based on the results of radical identification tests and XPS analysis. The lack of inhibition of the reaction by free radical scavengers such as methanol and tert-butyl alcohol suggests that these species may not be generated in the bulk solution, and methylene blue probe experiments confirm that this process does not involve free radical generation. Surface-bound, rather than free radicals generated by a surface catalyzed-redox cycle involving both Fe(III) and Cu(II), are postulated to be responsible for the mineralization of bisphenol A.

  12. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    Science.gov (United States)

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  13. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    Science.gov (United States)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  14. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Dilermando Nagle Travessa

    2012-10-01

    Full Text Available In order to obtain quasicrystalline (QC phase by mechanical alloying (MA in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. % were produced by high energy ball milling (HEBM. A very high energy type mill (spex and short milling times (up to 5 hours were employed. The resulting powders were characterized by X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopy (SEM. QC phase was not directly formed by milling under the conditions employed in this work. However, phase transformations identified by DSC analysis reveals that annealing after HEBM possibly results in the formation of the ψ QC phase.

  15. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  16. The evaluation of Young's modulus and residual stress of Cu films by NiFe/Cu bilayer film microbridge tests

    International Nuclear Information System (INIS)

    Zhou Zhimin; Zhou Yong; Cao Ying; Ding Wen; Mao Haiping

    2008-01-01

    This paper proposes a method to estimate the thickness limit for single-layer microbridge tests and also the thickness limit of one film on another film with known thickness for bilayer microbridge tests. To evaluate the mechanical properties of the Cu film, which could not be measured by single-layer microbridge tests, the NiFe single-layer film and NiFe/Cu bilayer film on silicon substrate are fabricated onto the microbridge by the MEMS technique. A load–deflection experiment is conducted upon the ceramic shaft adhered to the microbridge center by means of the XP nanoindenter system. From single-layer microbridge theory, Young's modulus and the residual stress of the NiFe film are deduced to be 192.74 ± 8.10 GPa and 287.75 ± 16.18 MPa, respectively. The data are introduced into bilayer microbridge theory and Young's modulus and the residual stress of the copper film are calculated to be 118.71 ± 6.54 GPa and 41.34 ± 4.42 MPa, respectively. The experimental results correspond well with those of nanoindentation

  17. Atomistic models of Cu diffusion in CuInSe2 under variations in composition

    Science.gov (United States)

    Sommer, David E.; Dunham, Scott T.

    2018-03-01

    We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.

  18. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  19. Orbital topology, interlayer spin coupling, and magnetic anisotropy of the CuFeO2 compound

    NARCIS (Netherlands)

    Malvestuto, M.; Bondino, F.; Magnano, E.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Parmigiani, F.

    2011-01-01

    X-ray absorption spectroscopy performed on a CuFeO2 single crystal reveals the pivotal role of the Cu ions in the discussion of the anisotropic properties of the compound. In particular, it is shown that there is a 3d hole density on the nominal 3d(10) Cu+ ions which may lie at the origin of the

  20. Separations on a cellulose exchanger with salicylic acid as functional group. [Fe/sup 3//sup+//Cu/sup 2//sup+/, Cu/sup 2//sup+//Ni/sup 2//sup+//, and Cu/sup 2//sup+//Cu complex separations

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P; Lieser, K H [Technische Hochschule Darmstadt (F.R. Germany). Fachbereich Anorganische Chemie und Kernchemie

    1976-07-01

    The use of a cellulose compound containing salicylic acid as functional group (capacity 0.6 mequ./g) for different problems is described. The seperations Fe/sup 3 +//Cu/sup 2 +/ and Cu/sup 2 +//Ni/sup 2 +/ in aqueous solutions are achieved smoothly at pH 2 and 2.5 resp. In organic solvents (pyridine) copper ions are separated from copper complexes as shown by the examples Cu/sup 2 +//(Cu(mnt)/sub 2/)/sup 2 -/ (mnt = maleonitril-1,2-dithiolate) and Cu/sup 2 +//dibenzo(b.i.)(5.9.14.18)tetraazacyclotetradecene-copper (Cu(chel)). The complex (Cu(mnt)/sub 2/)/sup 2 -/ can be labelled with Cu-64 on a separation column, whereas (Cu-(chel)) is substition inert.

  1. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  2. Mechanical and electromagnetic interference shielding Properties of poly(vinyl alcohol)/graphene and poly(vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating.

    Science.gov (United States)

    Fujimori, Kazushige; Gopiraman, Mayakrishnan; Kim, Han-Ki; Kim, Byoung-Suhk; Kim, Ick-Soo

    2013-03-01

    We report the mechanical property and electromagnetic interference shielding effectiveness (EMI SE) of poly(vinyl alcohol) (PVA)/graphene and PVA/multi-walled carbon nanotube (MWCNT) composite nanofibers prepared by electrospinning. The metal (Cu) was deposited on the resultant PVA composite nanofibers using metal deposition technique in order to improve the mechanical properties and EMI shielding properties. The resulting PVA composite nanofibers and Cu-deposited corresponding nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD). Tensile tests were performed on the PVA/graphene and PVA/MWCNT composite nanofibers. The tensile strength of the PVA/graphene and PVA/MWCNT composite nanofibers was found to be 19.2 +/- 0.3 MPa at graphene content - 6.0 wt% and 12.2 +/- 0.2 MPa at MWCNT content - 3.0 wt%, respectively. The EMI SE of the Cu-deposited PVA/graphene composite nanofibers was significantly improved compared to pure PVA/graphene composite nanofibers, and also depended on the thickness of Cu metal layer deposited on the PVA composite nanofibers.

  3. Coercive force changes in Sm(CoFeCuZr)z during step-like heat treatments

    International Nuclear Information System (INIS)

    Puzanova, T.Z.; Shchegoleva, N.N.; Sakhnova, L.V.; Majkov, V.G.; Shur, Ya.S.; Nikolaeva, N.V.

    1987-01-01

    Sm(Co 0.67 Fe 0.22 Cu 0.08 Zr 0.03 ) 8.35 alloy, contaning two homogeneous solid solutions SmM 6.85 and SmM 7.75 (M=Co, Fe, Cu, Zr) after high-temperature treatment, is investigated. It is shown, that after isothermal tempering at 800 deg C, SmM 6.85 and SmM 7.75 are close by microstructure and their coercive forces change in a different way during step-like cooling within 700-400 deg C interval. Possibility of producing material, single-phase in magnetic relation, is discussed

  4. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  5. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.

  6. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Science.gov (United States)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M. I.; Hou, M.

    2009-09-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  7. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M.I.; Hou, M.

    2009-01-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  8. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be; Bonny, G. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Laboratory of Theoretical Physics, Universiteit Gent, Proeftuinstraat 86, B-9000 Gent (Belgium); Pascuet, M.I. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); CAC-CNEA, Departamento de Materiales, Avda. Gral. Paz 1499, 1650 San Martin, Pcia. Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Hou, M. [Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium)

    2009-09-15

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  9. Structure and magnetism of ultrathin Co and Fe films epitaxially grown on Pd/Cu(0 0 1)

    International Nuclear Information System (INIS)

    Lu, Y.F.; Przybylski, M.; Yan, L.; Barthel, J.; Meyerheim, H.L.; Kirschner, J.

    2005-01-01

    A contribution originating from the Co/Pd and Fe/Pd interfaces to the magneto-optical Kerr effect (MOKE) rotation is analyzed for Co and/or Fe films grown on a Pd-buffer-monolayer on Cu(0 0 1). A clear increase of the MOKE signal in comparison to the Co(Fe) films grown directly on Cu(0 0 1) is detected. An interpretation is supported by similar observations for Co films grown on Pd(1 1 0) and Pd(0 0 1). In particular, the sign reversal of the Kerr loops with increasing thickness of the Co(Fe) films is discussed. Magneto-optical effects are separated from the real magnetization and its dependence on the film thickness

  10. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Rodríguez-González, B.; Bran, C.; Warnatz, T.; Vazquez, M.; Rivas, J.

    2014-01-01

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800 °C, although particular attention has been paid to annealing at 700 °C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40 nm and their Fe 0.28 Co 0.67 Cu 0.05 composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700 °C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined and crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (∼2.7 kOe) and normalized remanence (∼0.91 Ms) values are achieved after annealing at

  11. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  12. A comparative Moessbauer study of the Nd1+xBa2-x(Cu0.9757Fe0.03)3Oz solid solution: the role of low-temperature treatment

    International Nuclear Information System (INIS)

    Goodilin, E A; Peryshkov, D V; Presniakov, I A; Didenko, K V; Tretyakov, Yu D

    2004-01-01

    Local structure features of the Nd 1+x Ba 2-x (Cu 0.97 57 Fe 0.03 ) 3 O z solid solution with various oxygen contents and cation compositions were examined for the first time by Moessbauer spectroscopy to explore the effects of cation disorder in the cases of the anomalous pseudocubic x = 0 phase, the x = 0.6 tetragonal solid solution with Nd stochastically substituting Ba and also the x = 0.9 orthorhombic phase with superstructurally ordered Nd and Ba. A new spectral component characterized by an isomer shift δ = 0 mm s -1 and quadrupole splitting Δ = 0 mm s -1 was found for all the cases, evidencing the formation of associated defects such as 'Fe(IV) Cu1 O 6 -Nd Ba ' and confirming antistructural disordering of Nd 3+ and Ba 2+ in low-T c NdBa 2 Cu 3 O z samples

  13. A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion

    International Nuclear Information System (INIS)

    Hao Long; Zhang Sixun; Dong Junhua; Ke Wei

    2012-01-01

    Highlights: ► The rusting evolution of a Mo–Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated. ► The rusting evolution of the steel is related to the rust composition, structure, and electrochemical characteristics. ► Increased content of α-FeOOH and decreased γ-FeOOH and Fe 3 O 4 indicate the enhanced resistance of the rust. ► Mo and Cu are involved in the formation of molybdate and Cu(I)-bearing compounds in the rust. - Abstract: The corrosion evolution of a Mo–Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated by corrosion weight gain, XRD, EPMA, XPS, and polarization curves. The results indicate that the corrosion kinetics is closely related to the rust composition and electrochemical properties. As the corrosion proceeds, the relative content of γ-FeOOH and Fe 3 O 4 decreases and α-FeOOH increases, and the rust layer becomes compact and adherent to steel substrate. Molybdenum and copper enrich in the inner rust layer, especially at the bottom of the corrosion nest, forming non-soluble molybdate and Cu(I)-bearing compounds responsible for enhanced corrosion resistance of the rust layer.

  14. Pyridoxal derived chemosensor for chromogenic sensing of Cu2+ and fluorogenic sensing of Fe3+ in semi-aqueous medium

    International Nuclear Information System (INIS)

    Sahoo, Suban K.; Sharma, Darshna; Moirangthem, Anuradha; Kuba, Aman; Thomas, Rini; Kumar, Rajender; Kuwar, Anil; Choi, Heung-Jin; Basu, Anupam

    2016-01-01

    An easy-to-prepare chemosensor L was developed by condensation of pyridoxal with 1,8-diaminonaphthalene. In DMSO:H 2 O (1:1, v/v), sensor L displayed a highly selective and sensitive response towards Cu 2+ via perceptible color and UV–vis absorbance changes among the other tested metal ions. However, the fluorescence of L is selectively quenched in the presence of both Fe 3+ and Cu 2+ . With a micromolar detection limit and non-interference from other co-existing metal ions, this sensor can be applied over a wide pH range for the detection of Fe 3+ and Cu 2+ . In addition, the cytotoxicity and fluorescence changes of L within live HeLa cells were examined in the absence and presence of Cu 2+ . - Highlights: • A new noncytotoxic chemosensor derived from vitamin B 6 cofactor was introduced. • Sensor showed colorimetric sensing ability towards Cu 2+ . • Sensor showed fluorescent turn-off sensing ability towards Fe 3+ and Cu 2+ . • Detection limit was better than the prescribed permissible limit.

  15. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2016-05-01

    Full Text Available The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe, Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe, Al Si9Cu3(Fe(Zn and Al Si9 has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe(Zn, with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  16. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    Science.gov (United States)

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  17. Chemical synthesis of Fe/Fe{sub 3}O{sub 4} core-shell composites with enhanced soft magnetic performances

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bai, E-mail: byang@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Xiaopan [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yang, Xueying [Hi-tech Industry Standardization Institute, Hubei Standardization and Quality Institution, Wuhan 430061 (China); Yu, Ronghai [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-04-15

    The large-grain Fe/Fe{sub 3}O{sub 4} composite particles with average size of about 1.2 µm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe{sub 3}O{sub 4} as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe{sub 3}O{sub 4} composites leads to their high saturation magnetization of 119.6 A m{sup 2} Kg{sup -1}. Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe{sub 3}O{sub 4} composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm{sup -3}. The fully compacted sample shows good soft magnetic properties including high magnetic induction B{sub 1.2k} {sub (H=1200} {sub A/m)} of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices. - Highlights: • Micron-sized Fe/Fe{sub 3}O{sub 4} composites are prepared by a one-step solvothermal method. • High saturation magnetization and low coercivity are obtained in the composites. • Good air stability and high bulk density occurs in the composites. • High magnetic induction and good frequency-dependent properties are achieved.

  18. Mecano-synthesis of the alloy 25%Fe-50%Cu-25%Nb

    International Nuclear Information System (INIS)

    Sousa, Keytiane; Oliveira, Michel Picanco de; Guimaraes, Renan da Silva; Moreira Junior, Valdenir; Filgueira, Marcello

    2016-01-01

    In general, this study aims at the application of mechanical grinding to the system 25% Fe-50% Cu-25% Nb and studies the production process of these powders during milling. The evolution of the structure during the synthesis and the effect of variation of the grinding time were studied by diffraction of X-rays (XRD) and Scanning Electron Microscopy coupled EDS (SEM + EDS) in order to obtain the sizes of crystallites, the phase formation and its evolution with grinding time, and also the homogeneity of the mixture. The particle size distribution was analyzed by laser sedigraph technique. The powders synthesis were performed for milling time of 2.5, 5 and 10 hours. The mechanical grinding showed to be effective with the solid solution formation in the early grinding times. The XRD showed the solid solution formation with subsequent reduction and disappearance of Cu peaks. Through the technique of laser sedigraph it was observed the increase of the particle size followed by the its reduction in the milling time of 10h, a fact that characterizes the mechanical grinding process for ductile powder particles. Thus, the study demonstrated the effectiveness of the mechanical grinding to obtain powder of Fe-Cu-Nb and further processing and application of diamond cutting tools. (author)

  19. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    Science.gov (United States)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  20. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  1. Local Seebeck coefficient near the boundary in touching Cu/Bi-Te/Cu composites

    International Nuclear Information System (INIS)

    Yamashita, O.; Odahara, H.

    2007-01-01

    The thermo-emf ΔV and temperature difference ΔT across the boundary were measured as a function of r for the touching p- and n-type Cu/Bi-Te/Cu composites composed of a combination of t Bi-Te =2.0 mm and t Cu =0.3 mm, where ΔT is produced by imposing a constant voltage of 1.7 V on two Peltier modules connected in series and r is the distance from the boundary that corresponds to the interval s between two thermocouples. The resultant Seebeck coefficient α across the boundary was obtained from the relation α=ΔV/ΔT. As a result, the resultant α of the touching p- and n-type composites have surprisingly great local maximum values of 1330 and -1140 μV/K at r∼0.03 mm, respectively, and decreased rapidly with an increase of r to approach the Seebeck coefficients of the intrinsic Bi-Te compounds. The resultant maximum α of the touching p- and n-type Cu/Bi-Te/Cu composites are approximately 5.4 and 5.5 times higher in absolute value than those of the intrinsic Bi-Te compounds, respectively. It was thus clarified for the first time that the local Seebeck coefficient is enhanced most strongly in the Bi-Te region where there is an approximately 30-μm distance from the boundary, not at the boundary between Bi-Te compounds and copper. (orig.)

  2. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    KAUST Repository

    Turias, Francesc; Solà , Miquel; Falivene, Laura; Cavallo, Luigi; Poater, Albert

    2015-01-01

    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  3. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    KAUST Repository

    Turias, Francesc

    2015-09-09

    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  4. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  5. Determination of Mn, Fe, and Cu in chemically-treated wood pulps by the XRF addition method

    Energy Technology Data Exchange (ETDEWEB)

    Raemoe, J.; Klasila, T.; Piepponen, S. [VTT Chemical Technology (Finland); Sillanpaeae, M. [Oulu Univ. (Finland)

    2001-08-01

    A rapid X-ray fluorescence addition method has been developed for quantification of the technically most important metals in wood pulp matrix (Mn, Fe, and Cu). Pretreatment consisted of just two steps: first, acid was added to the sample to achieve homogeneous distribution of the metals; the pulp was then pressed lightly on to Mylar film. Total analysis time was less than 10 min. The concentration range investigated was up to 15 mg kg{sup -1} for Mn and up to 5 mg kg{sup -1} for Fe and Cu. Metal concentrations in Scandinavian pulps are not expected to exceed these amounts. The quantification limit was 2 mg kg{sup -1} for all three metals. The reproducibilities and repeatabilities were concentration-dependent and varied between 3 and 19% and between 1 and 17%, respectively. The squares of the linear correlation coefficients between measured intensity and added metal concentration were 0.994, 0.950, and 0.932 for Mn, Fe, and Cu, respectively. (orig.)

  6. Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide.

    Science.gov (United States)

    Benvidi, Ali; Nafar, Mohammad Taghi; Jahanbani, Shahriar; Tezerjani, Marzieh Dehghan; Rezaeinasab, Masoud; Dalirnasab, Sudabeh

    2017-06-01

    In this paper, a highly sensitive voltammetric sensor based on a carbon paste electrode with CuFe 2 O 4 nanoparticle (RGO/CuFe 2 O 4 /CPE) was designed for determination of hydrogen peroxide (H 2 O 2 ). The electrocatalytic reduction of H 2 O 2 was examined using various techniques such as cyclic voltammetry (CV), chronoamperometry, amperometry and differential pulse voltammetry (DPV). CuFe 2 O 4 nanoparticles were synthesized by co-precipitation method and characterized with scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques. Then, a high conductive platform based on a carbon paste electrode modified with RGO and CuFe 2 O 4 nanoparticles was prepared as a suitable platform for determination of hydrogen peroxide. Under the optimum conditions (pH5), the modified electrode indicated a fast amperometric response of determination of hydrogen peroxide. Also, the peak current of differential pulse voltammetry (DPV) of hydrogen peroxide is increased linearly with its concentration in the ranges of 2 to 10μM and 10 to 1000μM. The obtained detection limit for hydrogen peroxide was evaluated to be 0.064μM by DPV. The designed sensor was successfully applied for the assay of hydrogen peroxide in biological and pharmaceutical samples such as milk, green tea, and hair dye cream and mouthwash solution. Copyright © 2017. Published by Elsevier B.V.

  7. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  8. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

    Science.gov (United States)

    Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei

    2016-10-01

    In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

  9. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  10. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism

    KAUST Repository

    Zhang, Tao

    2013-03-19

    A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe2O4 spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe2O4 showed higher activity and 30 times lower Cu2+ leaching (1.5 μg L-1 per 100 mg L-1) than a well-crystallized CuO at the same dosage. CuFe 2O4 maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe2O4 was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe 2O4, the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide\\'s surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS. © 2013 American Chemical Society.

  11. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    Science.gov (United States)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  12. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, S. V., E-mail: kolesnikov@physics.msu.ru; Klavsyuk, A. L.; Saletsky, A. M. [Moscow State University, Faculty of Physics (Russian Federation)

    2015-10-15

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  13. Influence of alloying element of corrosion of Zr-Nb-Sn-Fe-Cu alloy and impedance characteristics of its oxide layer

    International Nuclear Information System (INIS)

    Park, S. Y.; Lee, M. H.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2000-01-01

    As a part of the advanced Zr fuel cladding development program, the autoclave corrosion test was performed on the series of Zr-0.2Nb-1.1Sn-Fe-Cu and Zr-0.4Nb-0.8Sn-Fe-Cu alloys in 70 ppm LiOH solution at 360 .deg. C. The oxide characteristics were investigated by using the Electrochemical Impedance Spectroscope(EIS) method. The corrosion resistance of the alloys was evaluated from the corrosion rate determined as a function of the concentration of main alloying elements such as Nb, Sn, Fe and Cu. The equivalent circuit was composed as a result of the spectrum from EIS measurements on the oxide layer that formed at pro- and post-transition regions. By using the capacitance characteristics of equivalent circuit, the thickness of impervious layer, it's electrical resistance and characteristics of space charge layer were evaluated. The corrosion characteristics of the Zr-Nb-Sn-Fe-Cu alloys were successfully explained by applying the EIS test results

  14. Equilibrium Sorption studies of Fe, Cu and Co ions in aqueous ...

    African Journals Online (AJOL)

    Recinius Communis Linn a commonly found herbal plant was used to prepare activated carbon by physicochemical activation method. The sorption capacity of this bio-resource material to remove Fe(III), Cu(II) and Co(II) from aqueous solutions was determined by batch tests. The influences of important parameters such as ...

  15. Magnetic Excitations in Weakly Coupled Spin Dimers and Chains Material Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.; Park, S.

    2005-01-01

    Magnetic excitations in a weakly coupled spin dimers and chains compound Cu 2 Fe 2 Ge 4 O 13 are measured by inelastic neutron scattering. Both structure factors and dipsersion of low-energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe 3+ (S=5/2) chains. Additional dispersionsless excitations are observed at higher energies, at ℎω=24 meV, and associated with singlet-triplet transitions within Cu 2+ dimers. Both types of excitations can be understood by treating weak interactions between the Cu 2+ and Fe 3+ subsystems at the level of the mean-field random phase approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.

  16. Dielectric properties of (CuO,CaO2, and BaO)y/CuTl-1223 composites

    International Nuclear Information System (INIS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Hussain, S.Tajammul; Kamran, M.

    2013-01-01

    We synthesized (CuO, CaO 2 , and BaO) y /Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imaginary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microscopy images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconducting volume fraction is also increased. The dielectric properties of these composites strongly depend upon the frequency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor matrix.

  17. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    Science.gov (United States)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  18. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    International Nuclear Information System (INIS)

    Sun, Ting; Wu, Xiaozhi; Wang, Rui; Li, Weiguo

    2015-01-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the 〈110〉 direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces. (paper)

  19. Effect of Cu addition on coercivity and interfacial state of Nd-Fe-B/Nd-rich thin films

    International Nuclear Information System (INIS)

    Matsuura, M; Sugimoto, S; Fukada, T; Tezuka, N; Goto, R

    2010-01-01

    This study provides the effect of Cu addition on coercivity (H cJ ) and interfacial microstructure in Nd-Fe-B/Nd-rich thin films. All films were deposited by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under several atmospheres with different oxygen content. Then, the films were annealed at 250-550 0 C under UHV. The films oxidized in low vacuum (10 -2 -10 -5 Pa) (under low oxygen state) exhibited the recovery of H cJ by the annealing at 450 0 C. On the contrary, the H cJ of the films oxidized in Ar (under high oxygen state) decreased with increasing annealing temperature. However, the H cJ increased drastically at the temperatures above 550 0 C. In addition, the Cu added films, which were annealed at temperatures above 350 0 C, showed higher coercivities than the films without Cu addition. The XRD analysis suggested the existence of C-Nd 2 O 3 phase in the Cu added films annealed at 550 0 C. It can be considered that the Cu addition decreases the eutectic temperature of Nd-rich phase and influences the interfacial state between Nd 2 Fe 14 B and Nd-rich phase.

  20. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  1. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  2. Formation of modified TbCu{sub 7} and Th{sub 2}Zn{sub 17} type structures during annealing of mechanical-alloyed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H. [Inst. fuer Festkoerper- und Werkstofforschung, Dresden (Germany)

    1998-06-26

    Compounds with the nominal composition near Sm{sub 2}Fe{sub 17} were prepared by mechanical alloying starting from the elemental powders and subsequent annealing at temperatures, T{sub A}, between 600 C and 900 C. For crystal structure investigations of the non-equilibrium phases formed at various temperatures, XRD methods with following Rietveld analysis were applied. For T{sub A} between 600 C and 750 C a modified TbCu{sub 7}-type structure of space group P6/mmm was found, in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(6l) site. Its approximate composition is SmFe{sub 8.8-9.0}. For T{sub A} between 800 C to 900 C a disordered modified Th{sub 2}Zn{sub 17} structure (space group R anti 3m) was found that is formed by introducing additional randomly occupied Fe (6c) and Sm(3a) positions, respectively. The degree of order of Sm atoms and Fe-dumbbells along the c-direction increases with increasing T{sub A}. A decrease in the Fe concentration in the cell is observed for increasing T{sub A}. The completely ordered stoichiometric Th{sub 2}Zn{sub 17}-type structure could not be reached by annealing samples prepared from the ball-milled elemental powders. (orig.) 20 refs.

  3. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Toth, I. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1993-11-01

    Amorphous ribbons of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 [mu]m and 27 [mu]m were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO[sub 3]-structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO[sub 3]-structure FeSi alloy, paramagnetic FeNbB and presumably Fe[sub 23]B[sub 6] and Fe[sub 3]SiB[sub 2]. (orig.)

  4. Friction and wear properties of Cu and Fe-based P/M bearing materials

    International Nuclear Information System (INIS)

    Tufekci, Kenan; Kurbanoglu, Cahit; Durak, Ertugrul; Tunay, R. Fatih

    2006-01-01

    The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient - temperature for both constant load, and constant sliding speed, friction coefficient - average bearing pressure, PV - wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings

  5. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    Directory of Open Access Journals (Sweden)

    M.H. Makled

    2013-11-01

    Full Text Available PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54–1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33–0.87 eV. A significant value of hopping distance in the range 3.4–1.2 nm is estimated in agreement with the value of Bohr radius of the exciton.

  6. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    Science.gov (United States)

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  7. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam

    Science.gov (United States)

    Li, Xiao-Chun; Zhou, Mei-Fu; Chen, Wei Terry; Zhao, Xin-Fu; Tran, MyDung

    2018-03-01

    The Sin Quyen deposit in northwestern Vietnam contains economic concentrations of Cu, Au and LREE, and sub-economic concentration of U. In this deposit, massive and banded replacement ores are hosted in Neoproterozoic metapelite. The paragenetic sequence includes sodic alteration (stage I), calcic-potassic alteration and associated Fe-REE-(U) mineralization (stage II), Cu-Au mineralization (stage III), and sulfide-(quartz-carbonate) veins (stage IV). The Sin Quyen deposit experienced an extensive post-ore metamorphic overprint, which makes it difficult to precisely determine the mineralization age. In this study, zircon and monazite U-Pb geochronometers and the Rb-Sr isochron method are used to constrain the timing of mineralization. Zircon grains in the ore are closely intergrown or texturally associated with hydrothermal minerals of stage II (e.g., garnet, allanite, and hedenbergite). They may contain primary fluid inclusions and display irregular zoning in cathodoluminescence (CL) images. Zircon grains are rich in U (688 to 2902 ppm) and poor in Th (0.2 to 2.9 ppm). Their δ18OV-SMOW values range from 11.9 to 14.0‰, higher than those of typical magmatic zircon. These textural and compositional features imply that zircon precipitated from 18O- and U-rich hydrothermal fluids, coeval with the minerals of stage II. Monazite occurs in close association with stage II magnetite and allanite and has low contents of Th (<2700 ppm), indicative of a hydrothermal origin. Hydrothermal zircon and monazite have indistinguishable U-Pb ages of 841 ± 12 and 836 ± 18 Ma, respectively, representing the timing of Fe-REE mineralization. There is no direct isotopic constraint on the timing of the Cu-Au mineralization, but geological observations suggest that the Cu-Au and Fe-REE ores most likely formed within a single evolved hydrothermal process. In the plot of 87Rb/86Sr vs. 87Sr/86Sr, the composition of bulk-ore and biotite separates from ore lie along a reference line for 30 Ma

  8. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, 57Fe Moessbauer spectroscopy and thermal studies

    International Nuclear Information System (INIS)

    Travnicek, Zdenek; Herchel, Radovan; Mikulik, Jiri; Zboril, Radek

    2010-01-01

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN) 5 NO].H 2 O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN) 5 NO].2H 2 O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9 ]octadecane and [Cu(nme) 2 Fe(CN) 5 NO].H 2 O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, 57 Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, 57 Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe 2 O 4 and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN) 5 NO].xH 2 O, where L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9 ]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and 57 Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.

  9. Electrical conductivity in AlN-CuO composites

    International Nuclear Information System (INIS)

    Azad, A.M.; Cheng, H.S.

    1999-01-01

    Water vapor is an important constituent of any gas and in many applications is regarded as a contaminant that needs to be monitored and controlled. It is also immense importance in the pyrohydrolytic reaction of new exotic non-oxide engineering ceramics such as silicon carbide and silicon nitride. Together with CO/sub 2/, water vapor is the largest contributor to the 'greenhouse' effect. Thus there is a need for greater attention to humidity sensor selection for a given application. AlN-CuO composites (2% is equal or < CuO is equal or < 50% by weight) have been studied to exploit them as novel humidity sensors over wide ranges of moisture levels and temperature. Development of benign microstructure with open porosity has been attempted by varying the composition and firing conditions. The impedance data acquired on the composites over the frequency range 5 Hz to 13 MHz, revealed a bulk response in the form of a single semicircular relaxation in the complex Z/sup */-plane. A systematic variation of electrical conductivity with CuO content in the composites has been explained in the light of percolation theory. (author)

  10. Effect of Transition Metal Substitution on the Structure and Properties of a Clathrate-Like Compound Eu7Cu44As23

    Directory of Open Access Journals (Sweden)

    Igor V. Plokhikh

    2016-07-01

    Full Text Available A series of substitutional solid solutions—Eu7Cu44−xTxAs23 (T = Fe, Co, Ni—based on a recently discovered clathrate-like compound (Eu7Cu44As23 were synthesized from the elements at 800 °C. Almost up to 50% of Cu can be substituted by Ni, resulting in a linear decrease of the cubic unit cell parameter from a = 16.6707(1 Å for the ternary compound to a = 16.3719(1 Å for the sample with the nominal composition Eu7Cu24Ni20As23. In contrast, Co and Fe can only substitute less than 20% of Cu. Crystal structures of six samples of different composition were refined from powder diffraction data. Despite very small differences in scattering powers of Cu, Ni, Co, and Fe, we were able to propose a reasonable model of dopant distribution over copper sites based on the trends in interatomic distances as well as on Mössbauer spectra for the iron-substituted compound Eu7Cu36Fe8As23. Ni doping increases the Curie temperature to 25 K with respect to the parent compound, which is ferromagnetically ordered below 17.5 K, whereas Fe doping suppresses the ferromagnetic ordering in the Eu sublattice.

  11. Photocatalytic Performance of a Novel MOF/BiFeO3 Composite

    Directory of Open Access Journals (Sweden)

    Yunhui Si

    2017-10-01

    Full Text Available In this study, MOF/BiFeO3 composite (MOF, metal-organic framework has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO3 composite samples, pure MOF samples and BiFeO3 samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and by UV–vis spectrophotometry. The results and analysis reveal that MOF/BiFeO3 composite has better photocatalytic behavior for methylene blue (MB compared to pure MOF and pure BiFeO3. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO3 composite may bring new insight into the designing of highly efficient photocatalysts.

  12. Efficiency of Chitosan for the Removal of Pb (II, Fe (II and Cu (II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2014-09-01

    Full Text Available Background: Heavy metals have been recognized as harmful environmental pollutant known to produce highly toxic effects on different organs and systems of both humans and animals. The aim of this paper is to evaluate the adsorption potential of chitosan for the removal of Pb(II, Fe(II and Cu(II ions from aqueous solutions. Methods: This study was conducted in laboratory scale. In this paper chitosan has been used as an adsorbent for the removal of Pb(II, Fe(II and Cu(II from aqueous solution. In batch tests, the effects of parameters like pH solution (1.0-8.0, initial metal concentrations (100-1000 mgL-1, contact time (5.0-150 min and adsorbent dose (1.0-7.0 g on the adsorption process were studied. Results: The results showed that the adsorption of Pb(II, Fe(II and Cu(II ions on chitosan strongly depends on pH. The experimental isothermal data were analyzed using the Langmuir and Freundlich equations and it was found that the removal process followed the Langmuir isotherm and maximum adsorption capacity for the adsorption of Pb(II, Fe(II and Cu(II ions by the chitosan were 55.5mg g−1, 71.4 mg g−1 and 59 mg g−1, respectively, under equilibrium conditions at 25±1 ºC. The adsorption process was found to be well described by the pseudo-second-order rate model. Conclusion: The obtained results showed that chitosan is a readily, available, economic adsorbent and was found suitable for removing Pb(II, Fe(II and Cu(II ions from aqueous solution.

  13. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kotaro, E-mail: kotaro.saito@kek.jp; Ono, Kanta [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, 305-0803 Tsukuba (Japan); Ueno, Tetsuro [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, 1-2-1 Sengen, 305-0047 Tsukuba (Japan); Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira [Toyota Motor Corporation, Toyota, Aichi 471-8571 (Japan); Harada, Masashi [Toyota Central R and D Labs, Inc., Aichi 480-1192 (Japan); Keiderling, Uwe [Helmholtz-Zentrum Berlin für Materialien and Energie, 14109 Berlin (Germany)

    2015-05-07

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd{sub 2}Fe{sub 14}B grains.

  14. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    International Nuclear Information System (INIS)

    Saito, Kotaro; Ono, Kanta; Ueno, Tetsuro; Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira; Harada, Masashi; Keiderling, Uwe

    2015-01-01

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd 2 Fe 14 B grains

  15. Spectrophotometric analysis of vitamin E using Cu(I)-Bathocuproine or/and Fe(II)-2,4,6-tris-(2'-pyridyl)-s-triazine complexes

    International Nuclear Information System (INIS)

    Devi, I.; Memon, S. A.; Khuhawar, M.Y.

    2004-01-01

    Vitamin E (tocopherols and tocotrienols) antioxidants are determined by reducing Cu(II) to Cu(I) or Fe(III) to Fe(II) in presence of vitamin E and subsequent complexation of Cu(I) with bathocuproine and/or Fe(II) with 2,4,6-tris-(2'-pyridyl)-s-triazine (TPTZ). Both the reactions are monitored separately, Cu(I)-bathocuproine at 479 nm where as, Fe(II)-(TPTZ) at 595 nm spectrophotometrically. Linear calibration curves are achieved for both complexes between I to 5mu g ml-1 for vitamin E. The methods were applied for the determination of vitamin E in pharmaceutical preparations and edible oils. Vitamin E, from edible oils, was solvent extracted into n-hexane prior to saponification. Furthermore, a single lined flow was also examined. A larger excess of Cu(II) or Fe =(II) with different concentrations of vitamin E in buffer pH 4 was run on the line and constant amounts of reagent bathocuproine or TPTZ in each case was injected through the injector. The peak height shows a linear relationship for vitamin E between 0.5 to 2.5 mu g ml-1 for both complexes. (author)

  16. Effect of Fe{sub 2}O{sub 3} in Fe{sub 2}O{sub 3}/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhenye [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China); Nanjing University of Technology, Nanjing (China); Li, Fengsheng; Bai, Huaping [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-12-15

    A technique of composite processing of Fe{sub 2}O{sub 3} and ammonium perchlorate (AP) was employed in making the propellant. The effects of composite processing of Fe{sub 2}O{sub 3} on catalytic activity, on the thermal decomposition of AP, and on the burning rate of the composite propellant were investigated in this paper. Fe{sub 2}O{sub 3}/AP composite particles were prepared by a novel solvent-nonsolvent method. The results show that AP is successfully coated on the surface of Fe{sub 2}O{sub 3}. Composite processing of Fe{sub 2}O{sub 3} and AP can improve the catalytic activity of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3} exhibits better catalytic effect with increasing Fe{sub 2}O{sub 3} content. The larger interface between Fe{sub 2}O{sub 3} and AP and lower density of composite propellant (with the added Fe{sub 2}O{sub 3}/AP composite particles) are responsible for the enhancement of the catalytic activity of Fe{sub 2}O{sub 3}. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content

    Science.gov (United States)

    Tejado, E.; Müller, A. v.; You, J.-H.; Pastor, J. Y.

    2018-01-01

    Copper and its alloys are used as heat sink materials for next generation fusion devices and will be joined to tungsten as an armour material. However, the joint of W and Cu experiences high thermal stresses when exposed to high heat loads so an interlayer material could effectively ensure the lifetime of the component by reducing the thermal mismatch. Many researchers have published results on the production of W-Cu composites aiming attention at its thermal conductivity; nevertheless, the mechanical performance of these composites remains poor. This paper reports the characterization of the thermo-mechanical behaviour of W-Cu composites produced via a liquid Cu melt infiltration of porous W preform. This technique was applied to produce composites with 15, 30 and 40 wt% Cu. The microstructure, thermal properties, and mechanical performance were investigated and measured from RT to 800 °C. The results demonstrated that high densification and superior mechanical properties can indeed be achieved via this manufacturing route. The mechanical properties (elastic modulus, fracture toughness, and strength) of the composites show a certain dependency on the Cu content; fracture mode shifts from the dominantly brittle fracture of W particles with constrained deformation of the Cu phase at low Cu content to the predominance of the ductile fracture of Cu when its ratio is higher. Though strong degradation is observed at 800 °C, the mechanical properties at operational temperatures, i.e. below 350 °C, remain rather high-even better than W/Cu materials reported previously. In addition, we demonstrated that the elastic modulus, and therefore the coefficient of thermal expansion, can be tailored via control of the W skeleton's porosity. As a result, the W-Cu composites presented here would successfully drive away heat produced in the fusion chamber avoiding the mismatch between materials while contributing to the structural support of the system.

  18. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  19. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  20. Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway

    International Nuclear Information System (INIS)

    Ren Zhongyou; Wang Jiasu; Wang Suyu; Jiang He; Zhu Min; Wang Xiaorong; Song Honghai

    2003-01-01

    Levitation forces of YBaCuO bulk high temperature superconductors (HTS) with different shape and size over a NdFeB guideway were studied. Here, the concentrating magnetic field of the NdFeB guideway was 1.2 T, and the YBaCuO bulk HTSs include three cylindrical samples with different diameter and thickness and one hexagonal sample. The maximum levitation force is as high as 85.3 N at a gap of 5 mm between the bottom surface of YBaCuO bulk HTS and the top surface of the NdFeB guideway, where the applied magnetic field is about 0.8 T. The results show that the shape and the size have large influences on the levitation force of YBaCuO bulk HTSs

  1. Morphological and humidity sensing characteristics of SnO 2 –CuO ...

    Indian Academy of Sciences (India)

    This paper reports the synthesis of SnO2–CuO, SnO2–Fe2O3 and SnO2–SbO2 composites of nano oxides and comparative study of humidity sensing on their electrical resistances. CuO, Fe2O3 and SbO2 were added within base material SnO2 in the ratio 1 : 0.25, 1 : 0.50 and 1 : 1. Characterizations of materials were done ...

  2. Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

    Directory of Open Access Journals (Sweden)

    Degang Zhao

    2017-02-01

    Full Text Available Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 μm. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.

  3. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  4. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  5. Influence of applied load on wear behavior of C/C-Cu composites under electric current

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2017-04-01

    Full Text Available Using carbon fiber needled fabrics with Cu-mesh and graphite powder as the preform, Cu mesh modified carbon/carbon(C/C-Cu composites were prepared by chemical vapor deposition (CVD with C3H6 and impregnation-carbonization (I/C with furan resin. C/C composites, as a comparison, were also prepared. Their microstructures and wear morphologies were observed by optical microscopy (OM and scanning electron microscope (SEM, respectively. Wear behavior of C/C and C/C-Cu composites under different applied loads were investigated on a pin-on-disc wear tester. The results show that Cu meshes are well dispersed and pyrolytic carbon is in rough laminar structure. Both C/C and C/C-Cu composites had good wear properties. The current-carrying capacity of C/C-Cu composites increases and the arc discharge is hindered as the applied load increases from 40 N to 80 N. Both C/C and C/C-Cu composites had good wear properties. The mass wear rate of C/C-Cu composites under 80 N was only 4.2% of that under 60 N. In addition, C/C-Cu composites represent different wear behaviors because wear mechanisms of arc erosion, abrasive wear, adhesive wear, and oxidative wear are changing under different applied loads.

  6. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-González, B., E-mail: jbenito@uvigo.es [CACTI, University of Vigo, E-36310 Vigo (Spain); International Iberian Nanotechnology Laboratory, INL. Av. Mestre J. Veiga, 4715-330 Braga (Portugal); Bran, C.; Warnatz, T.; Vazquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Rivas, J. [International Iberian Nanotechnology Laboratory, INL. Av. Mestre J. Veiga, 4715-330 Braga (Portugal)

    2014-04-07

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800 °C, although particular attention has been paid to annealing at 700 °C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40 nm and their Fe{sub 0.28}Co{sub 0.67}Cu{sub 0.05} composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700 °C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined <111> and <112> crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (∼2.7 kOe) and normalized remanence (∼0.91 Ms) values are

  7. An assessment of the homogeneity of nano-crystalline Fe–Cu powders as studied by means of APT

    KAUST Repository

    Wille, Catharina

    2009-04-01

    In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements. (C) 2008 Elsevier B.V. All rights reserved.

  8. CoFeRh alloys

    International Nuclear Information System (INIS)

    Tabakovic, Ibro; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas'ko, Vlad; Kief, Mark

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl 3 , NH 4 Cl, H 3 BO 3 , CoSO 4 , FeSO 4 , saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H 3 BO 3 to the RhCl 3 -NH 4 Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH 4 Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru∼Cu. The electrodeposited Rh films obtained from NH 4 Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed

  9. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2016-07-01

    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  10. Investigations of CuFeS{sub 2} semiconductor mineral from ocean rift hydrothermal vent fields by Cu NMR in a local field

    Energy Technology Data Exchange (ETDEWEB)

    Matukhin, V. L.; Pogoreltsev, A. I.; Gavrilenko, A. N., E-mail: ang-2000@mail.ru; Garkavyi, S. O.; Shmidt, E. V. [Kazan State Power University (Russian Federation); Babaeva, S. F. [All-Russia Research Institute of Geology and Mineral Resources of the World Ocean “VNIIOkeangeologiya” (Russian Federation); Sukhanova, A. A. [Saint-Petersburg Mining University (Russian Federation); Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2017-01-15

    The results of investigating natural samples of chalcopyrite mineral CuFeS{sub 2} from massive oceanic sulfide ores of the Mid-Atlantic ridge by the {sup 63}Cu nuclear magnetic resonance (NMR {sup 63}Cu) in a local field at room temperature are presented. The significant width of the resonance lines found in the {sup 63}Cu NMR spectrum directly testifies to a wide distribution of local magnetic and electric fields in the investigated chalcopyrite samples. This distribution can be the consequence of an appreciable deviation of the structure of the investigated chalcopyrite samples from the stoichiometric one. The obtained results show that the pulsed {sup 63}Cu NMR can be an efficient method for studying the physical properties of deep-water polymetallic sulfides of the World Ocean.

  11. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    Science.gov (United States)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  12. Dilute Magnetic Semiconductor Cu2FeSnS4 Nanocrystals with a Novel Zincblende Structure

    Directory of Open Access Journals (Sweden)

    Xiaolu Liang

    2012-01-01

    Full Text Available Diluted magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+ ions occupy the same position in the zincblende unit cell, and their occupancy possibilities are 1/2, 1/4, and 1/4, respectively. The nanocrystals were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, selected area electron diffraction (SAED, energy-dispersive spectroscopy (EDS, and UV-vis-NIR absorption spectroscopy. The nanocrystals have an average size of 7.5 nm and a band gap of 1.1 eV and show a weak ferromagnetic behavior at low temperature.

  13. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  14. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  15. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  16. Formation dynamics of FeN thin films on Cu(100)

    KAUST Repository

    Heryadi, Dodi

    2012-01-01

    To investigate the structural and magnetic properties of thin films of FeN we have performed ab initio molecular dynamics simulations of their formation on Cu(100) substrates. The iron nitride layers exhibit a p4gm(2 × 2) reconstruction and order ferromagnetically in agreement with experiment. We establish the dynamics and time scale of the film formation as a function of the film thickness. The process is split in two phases: formation of almost flat FeN layers and optimization of the distance to the substrate. Our calculated magnetic moments are 1.67 μ B, 2.14 μ B, and 2.21 μ B for one, two, and three monolayers of iron nitride. © 2011 Elsevier B.V. All rights reserved.

  17. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  18. Sequestration of radionuclides and heavy metals by hydroxyapatite doped with Fe, Cu and Sn

    International Nuclear Information System (INIS)

    Neidel, Linnah L.; Moore, Robert Charles; Salas, Fred; Grouios, Fotini; Holt, Kathleen Caroline; Helean, Katheryn B.

    2005-01-01

    Apatite, Ca 5 (PO 4 ) 3 (F,OH,Cl)(P6 3 /m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca 5 (PO 4 ) 3 OH(P2 1 /b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO 4 3- , SO 4 2- , CO 3 2- , SiO 4 4- , CrO 4 2- ) replace PO 4 3- through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate 'impurities'(including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO 4 - ) by SnCl 2 (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities.

  19. Sequestration of Radionuclides and Heavy Metals by Hydroxyapatite Doped with Fe, Cu and Sn

    International Nuclear Information System (INIS)

    K.B. Helean; R.C. Moore

    2005-01-01

    Apatite, Ca 5 (PO 4 ) 3 (F,OH,Cl) (P6 3 /m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca 5 (PO 4 ) 3 OH (P2 1 /b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO 4 3- , SO 4 2- , CO 3 2- , SiO 4 4- , CrO 4 2- ) replace PO 4 3- through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate ''impurities'' (including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO 4 - ) by SnCl 2 (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities

  20. One-step synthesis and microstructure of CuO-SDC composites

    Energy Technology Data Exchange (ETDEWEB)

    Firmino, H.C.T.; Araujo, A.J.M.; Dutra, R.P.S.; Macedo, D.A., E-mail: hellentorrano@hotmail.com, E-mail: allanjp1993@hotmail.com, E-mail: ricardopsd@gmail.com, E-mail: damaced@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nascimento, R.M., E-mail: rmaribondo@ufrnet.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Rajesh, S., E-mail: rajeshayr@gmail.com [University of Aveiro (Portugal)

    2017-01-15

    An in situ one step synthesis route based on the polymeric precursor method was used to produce dual phase CuO-samaria doped ceria (SDC) nanocomposite powders. This chemical route allowed to obtain composite powders with reduced particle size and uniform distribution of Cu, Ce and Sm elements. The particulate material was characterized by powder X-ray diffraction (XRD) combined with Rietveld refinement. CuO-SDC sintered in air between 950 to 1050 °C and subsequently reduced to Cu-SDC cermets were further characterized by XRD and scanning electron microscopy. The open porosity was measured using the Archimedes' principle. Suitable microstructures for both charge transfer and mass transport processes (30 to 45% porosity) were attained in Cu-SDC cermets previously fired at 1000 to 1050 °C. Overall results indicated that CuO-SDC composites and Cu-SDC cermets with potential application as anodes for solid oxide fuel cells (SOFCs) can be obtained by microstructural design. An anode supported half-cell was prepared by co-pressing and co-firing gadolinia doped ceria (CGO) and the herein synthesized CuO-SDC nanocomposite powder. (author)

  1. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  2. 3d-metal doping (Fe,Co,Ni,Zn) of the high Tc perovskite YBa2Cu3O(7-y)

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Greene, L.H.; Hull, G.W.; Bagley, B.G.

    1988-01-01

    The structural, magnetic and superconducting properties of the mixed compounds YBa 2 Cu(3-x)M(x)O(7-y) (M = Ni,Zn,Fe, and Co) are reported. Values of y, determined by titration, are found to be dependent on the nature and amount of the doping. The range of solubility is greater for the Fe and Co compounds (x = 1) than for those with Ni or Zn (x = 0.3). The undoped material is orthorhombic and remains orthorhombic after substitution for Cu by Ni or Zn, whereas a tetragonal phase is observed when Fe, Co are substituted for Cu. DC resistance and AC susceptibility measurements show that Tc is depressed from 90K (x = 0) to 45K (x = 0.2) for both the Ni- and Zn-doped compounds, and Tc is destroyed in the Fe- and Co-doped compounds when x reaches 0.4. It is suggested that a valence of two be assigned to the Ni and Zn and three to the Fe and Co ions. 8 references

  3. Structural and dielectric properties of Zr and Cu co-substituted Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jalaiah, K., E-mail: kjalu4u@gmail.com [Department of Physics, Andhra University, Visakhapatnam 530 003 (India); Chandra mouli, K. [Department of Engineering Physics, Andhra University, Visakhapatnam 530 003 (India); Subba Rao, P.S.V. [Department of Physics, Andhra University, Visakhapatnam 530 003 (India); Sreedhar, B. [IICT, Hyderabad (India)

    2017-06-15

    Highlights: • The porosity was increased with increasing dopant concentration of Zr and Cu from the 10.57% to 20.11%. • The force constant and wave numbers in octahedral and tetrahedral site is increased with increasing the dopant concentration of Zr and Cu. • The compositional dielectric constant at 100 kHz is increased from the 9.85 to 86.53, with increasing dopant concentration of Zr and Cu. - Abstract: Zr and Cu Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrites have been prepared by the sol-gel auto combustion method using the nitrates. The ethylene glycol and citric acid were mixed as the combustion agents. The synthesized powders were calcinate at 800 °C for 3 h and they are pressed in desired shaped and sintered at 1200 °C for 2 h in air atmosphere. The X-ray diffraction analysis confirms the single phase cubic spinel structure. The SEM pictures revels that the substitution of higher valence ions results fine grained intragranular pore free microstructure. The dielectric properties of substituted ferrites exhibits decreasing trend at lower frequencies up to 1000 Hz beyond which it should in stable response. All the results are explained in terms of compositional and frequency variation.

  4. Microstructure and Magnetic Properties of NdFeB Sintered Magnets Diffusion-Treated with Cu/Al Mixed Dyco Alloy-Powder

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2017-06-01

    Full Text Available We investigated the microstructural and magnetic property changes of DyCo, Cu + DyCo, and Al + DyCo diffusion-treated NdFeB sintered magnets. The coercivity of all diffusion treated magnet was increased at 880ºC of 1st post annealing(PA, by 6.1 kOe in Cu and 7.0 kOe in Al mixed DyCo coated magnets, whereas this increment was found to be relatively low (3.9 kOe in the magnet coated with DyCo only. The diffusivity and diffusion depth of Dy were increased in those magnets which were treated with Cu or Al mixed DyCo, mainly due to comparatively easy diffusion path provided by Cu and Al because of their solubility with Ndrich grain boundary phase. The formation of Cu/Al-rich grain boundary phase might have enhanced the diffusivity of Dy-atoms. Moreover, relatively a large number of Dy atoms reached into the magnet and mostly segregated at the interface of Nd2Fe14B and grain boundary phases covering Nd2Fe14B grains so that the core-shell type structures were developed. The formation of highly anisotropic (Nd, Dy2Fe14B phase layer, which acted as the shell in the core-shell type structure so as to prevent the reverse domain movement, was the cause of enhancing the coercivity of diffusion treated NdFeB magnets. Segregation of cobalt in Nd-rich TJP followed by the formation of Co-rich phase was beneficial for the coercivity enhancement, resulting in the stabilization of the metastable c-Nd2O3 phase.

  5. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    International Nuclear Information System (INIS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-01-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe 2 O 4 (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe 2 O 4 . • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  6. Synthesis of Fe nanoparticles-graphene composites for environmental applications

    International Nuclear Information System (INIS)

    Guo, Juan; Wang, Ruiyu; Tjiu, Weng Weei; Pan, Jisheng; Liu, Tianxi

    2012-01-01

    Graphical abstract: Fe nanoparticles-graphene composites (FGC) are successfully synthesized by forming a complex Fe 3+ -GO and further reducing it with NaBH4 as one step at ambient condition. The morphology and structure studies of FGC indicate that Fe nanoparticles with size of about 5 nm are finely dispersed on graphene sheets. Decolorization experiments show that the FGC hybrids display better removal capacities to decolorize methyl blue (MB), a model dye in the dyeing and printing industry, compared with bare Fe particles. On the other hand, FGC hybrids exhibit superparamagnetic properties and can be separated from MB solution leaving a colorless solution by using a magnet. All of these suggest FGC an excellent candidate for dye removal. Highlights: ► Graphene oxide (GO) and Fe 3+ are used as precursors. ► By adding NaBH 4 , Fe 3+ and GO are in situ reduced to Fe and graphene, respectively, thus forming FGC hybrids. ► Fe nanoparticles with size of about 5 nm are finely dispersed on graphene sheets. ► FGC hybrids have better decolorization capacities than bare Fe nanoparticles. - Abstract: Fe nanoparticles-graphene composites (FGC) are successfully synthesized by using graphene oxide (GO) as a supporting matrix. GO is first treated with Fe 3+ to form Fe 3+ -GO complexes. Then, by adding NaBH 4 solution, Fe 3+ and GO are simultaneously reduced in situ to Fe and graphene respectively, forming FGC hybrid composites. The structures, properties and applications of the hybrids thus obtained are investigated by X-ray diffraction, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis and magnetization measurements. The hybrids are also evaluated for decolorization of methyl blue solution, a model dye in wastewater of dyeing industry. Compared with bare Fe particles, the high removal capacities of FGC are due to the

  7. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Hussain, Shabeeb; Tavakoli, Mohammad Mahdi; Waleed, Aashir; Virk, Umar Siddique; Yang, Shihe; Waseem, Amir; Fan, Zhiyong; Nadeem, Muhammad Arif

    2018-03-27

    We demonstrate for the first time the application of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe 2 O 4 and Fe 2 O 3 ) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe 2 O 4 /n-Fe 2 O 3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured p-NiFe 2 O 4 /n-Fe 2 O 3 device with equal molar 1:1 ratio of NiFe 2 O 4 and Fe 2 O 3 was found to be highly efficient for PEC water oxidation as compared with pure hematite, 1:2 and 1:3 molar ratios of composite. The photocurrent density of 1:1 composite thin film on planar substrate was equal to 1.07 mA/cm 2 at 1.23 V RHE , which was 1.7 times higher current density as compared with pure hematite device (0.63 mA/cm 2 at 1.23 V RHE ). The performance of p-NiFe 2 O 4 /n-Fe 2 O 3 composites in PEC water oxidation was further enhanced by their deposition over 3D-NSP substrate. The highest photocurrent density of 2.1 mA/cm 2 at 1.23 V RHE was obtained for the 1:1 molar ratio p-NiFe 2 O 4 /n-Fe 2 O 3 composite on NSP (NF1-NSP), which was 3.3 times more photocurrent density than pure hematite. The measured applied bias photon-to-current efficiency (ABPE) value of NF1-NSP (0.206%) was found to be 1.87 times higher than that of NF1-P (0.11%) and 4.7 times higher than that of pure hematite deposited on FTO-coated glass (0.044%). The higher PEC water oxidation activity of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin film as compared with pure hematite is attributed to the Z-path scheme and better separation of electrons and holes. The increased surface area and greater light

  8. Structural relaxation and embrittlement of Cu/sub 59/Zr/sub 41/ and Fe/sub 80/B/sub 20/ glasses

    International Nuclear Information System (INIS)

    Deng, D.; Argon, A.S.

    1986-01-01

    The effect of physical aging at 0.92 T/sub c/, on phase separation, crystallization, distributed shear relaxations, hardness, and strain to fracture was investigated in Cu/sub 59/Zr/sub 41/ and Fe/sub 80/B/sub 20/ glasses. In Cu/sub 59/Zr/sub 41/ glass, aging resulted in phase separation prior to crystallization, rather than the expected polymorphous crystallization. In Fe/sub 80/B/sub 20/ in the as-quenched alloys a prominent second-order Curie transition was found at 613K, which was recovered by aging. Apart from a nearly four-fold acceleration of the aging process in Fe/sub 80/B/sub 20/ over the Cu/sub 59/Zr/sub 41/ alloy, their mechanical responses to the aging were very similar in alterations of the internal friction spectrum, evolution of hardness, and strain to fracture

  9. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  10. The mechanism of degradation of bisphenol A using the magnetically separable CuFe{sub 2}O{sub 4}/peroxymonosulfate heterogeneous oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yin; Ai, Jia [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen 518057 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen 518057 (China)

    2016-05-15

    Highlights: • Copper ferrite (CuFe{sub 2}O{sub 4}) was fabricated and utilized in heterogeneous PMS process. • The influence of reaction parameters for the mineralization of BPA were evaluated. • Possible reaction mechanism and the stability of CuFe{sub 2}O{sub 4} were investigated. • Surface bound radicals (mainly ·OH) may be responsible for the BPA degradation. - Abstract: The removal of bisphenol A (BPA) in aqueous solution by an oxidation process involving peroxymonosulfate (PMS) activated by CuFe{sub 2}O{sub 4} magnetic nanoparticles (MNPs) is reported herein. The effects of PMS concentration, CuFe{sub 2}O{sub 4} dosage, initial pH, initial BPA concentration, catalyst addition mode, and anions (Cl{sup −}, F{sup −}, ClO{sub 4}{sup −} and H{sub 2}PO{sub 4}{sup −}) on BPA degradation were investigated. Results indicate that nearly complete removal of BPA (50 mg/L) within 60 min and 84.0% TOC removal in 120 min could be achieved at neutral pH by using 0.6 g/L CuFe{sub 2}O{sub 4} MNPs and 0.3 g/L PMS. The generation of reactive radicals (mainly hydroxyl radicals) was confirmed using electron paramagnetic resonance (EPR). Possible mechanisms on the radical generation from CuFe{sub 2}O{sub 4}/PMS system are proposed based on the results of radical identification tests and XPS analysis. The lack of inhibition of the reaction by free radical scavengers such as methanol and tert-butyl alcohol suggests that these species may not be generated in the bulk solution, and methylene blue probe experiments confirm that this process does not involve free radical generation. Surface-bound, rather than free radicals generated by a surface catalyzed-redox cycle involving both Fe(III) and Cu(II), are postulated to be responsible for the mineralization of bisphenol A.

  11. Determination of Cu, Fe, Zn Elements in Soil, Root Tea Plants, Tea Leaves, and Tea Beverage

    International Nuclear Information System (INIS)

    Supriyanto; Zainul-Kamal

    2006-01-01

    One of the causes of land quality damage was due to the pollution of Cu, Fe, and Zn so that it could directly and also indirectly cause the occurrence of pollution of plants which is growing on it for example tea plant that has been used by society for making of tea beverage. The sampling of soil, root tea plants, tea leaves and tea beverage samples were done in June, 2005 at sub district of Keparakan, Temanggung, Central Java. The purpose of research was to determine the content of Cu, Fe and Zn in soil, root tea plants, tea leaves and tea beverage. The research was done by digesting the sample with nitric acid until the clear solution was obtained, then it was added by aquabidest until 10.0 ml. Determination of Cu, Fe and Zn content used AAS instrument. The average concentration of Cu Fe and Zn obtained in deep soil samples area 0.155 ± 0.005 ppm, 127.16 ± 2.65 ppm, and 0.68 ± 0.02 ppm respectively, in surface soil samples are 0.355 ± 0.025 ppm, 360.59 ± 13.17 ppm and 0.78 ± 0.01 ppm respectively, in root of tea plants samples area 0.241 ± 0.098 ppm, 13.16 ± 1.34 ppm and 2.64 ± 0.06 ppm respectively, in tea leaves are 0.211 ± 0.013 ppm, 3.35 ± 0.886 ppm, and 0.795 ± 0.016 ppm respectively and in tea beverage 0.142 ± 0.086 ppm, 6.11 ± 0.35 ppm and 0.66 ± 0.02 ppm respectively. (author)

  12. Study on the covalence of Cu and chemical bonding in an inorganic fullerene-like molecule, [CuCl]20[Cp*FeP5]12[Cu-(CH3CN)2+Cl-]5, by a density functional approach

    Institute of Scientific and Technical Information of China (English)

    WANG; Bingwu; XU; Guangxian; CHEN; Zhida

    2004-01-01

    The electronic structure and chemical bonding in a recently synthesized inorganic fullerene-like molecule, {[CuCl]20[Cp*FeP5]12 [Cu(CH3CN)+2Cl-]5}, has been studied by a density functional approach. Geometrical optimization of the three basic structural units of the molecule is performed with Amsterdam Density Functional Program. The results are in agreement with the experiment. Localized MO's obtained by Boys-Foster method give a clear picture of the chemical bonding in this molecule. The reason why CuCl can react with Cp*FeP5 in solvent CH3CN to form the fullerene-like molecule is explained in terms of the soft-hard Lewis acid base theory and a new concept of covalence.

  13. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    2Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, China. 3University of Science and Technology of China, Hefei 230026, China. MS received 14 October 2015; accepted 28 December 2015. Abstract. Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by ...

  14. Anisotropy migration of self-point defects in dislocation stress fields in BCC Fe and FCC Cu

    International Nuclear Information System (INIS)

    Sivak, A.B.; Chernov, V.M.; Dubasova, N.A.; Romanov, V.A.

    2007-01-01

    Spatial dependence of the interaction energies of self-point defects (vacancies and self interstitial atoms in stable, metastable and saddle point configurations) with edge dislocations in slip systems {1 1 0} and {1 0 0} in BCC Fe and {1 1 1} in FCC Cu was calculated using the anisotropic theory of elasticity and molecular statics (hybrid method). The migration pathways of vacancies and SIA ( dumbbell in Fe and dumbbell in Cu) along which the migration of the defects with the lowest energy barriers were defined in the presence of the dislocation stress fields. These pathways are significantly different in the stress fields of dislocations

  15. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  16. Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect

    Directory of Open Access Journals (Sweden)

    M. Merikhi

    2015-10-01

    Full Text Available In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared in the same deposition conditions, one in the presence and the other in absence of magnetic field and the products were compared. The results indicate that applying the magnetic field has a significant effect on the growth process, i.e. morphology, crystal structure and magnetic properties of the films. The morphology and structure of the FeCu/Cu Nano layers were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM. The weight percentages of the elements in the deposited multilayers were determined by energy dispersive X-ray spectroscopy (EDS. Magnetic properties of thin films were studied using the vibrating sample magnetometer (VSM.

  17. Composition controlled preparation of Cu–Zn–Sn precursor films for Cu{sub 2}ZnSnS{sub 4} solar cells using pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Wenping; Ren, Xiaodong; Zi, Wei; Jia, Lujian [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023 (China)

    2015-11-25

    A pulsed electrodeposition technique is developed to prepare Cu–Zn–Sn (CZT) precursor films for the Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells. The CZT precursor films are co-deposited on Mo-coated substrate using a cyanide-free electrolyte containing Zn (II) and Sn (II) salts. During the deposition, CuSO{sub 4} solution is supplied at controlled rate using a peristaltic pump to effectively regulate Cu{sup 2+} concentration. In addition, C{sub 6}H{sub 5}Na{sub 3}O{sub 7} is used as a coordination ligand to further balance activities of the Cu{sup 2+}, Sn{sup 2+} and Zn{sup 2+}. The CZTS films are then prepared using a sulfurization process to convert the electrodeposited CZT precursors at 580 °C in a sulphur atmosphere. The annealed thin films are characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), EDAX and X-ray photoelectron spectroscopy (XPS) techniques for their structural, morphological, compositional and chemical properties. It is found that the addition rate of Cu (II) has significant effects on the properties of the CZTS thin films. The CZTS film prepared using the optimized copper addition rate (0.15 ml/min) shows pure kesterite phase, Cu-poor and Zn-rich composition, compact morphology and good band gap ∼1.45 eV. Solar cells using the structure glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al achieves a respectable external quantum efficiency and solar cell efficiency. - Highlights: • Developed a composition controlled pulsed electrodeposition for CZTS solar cells. • Electrochemistry and CZT composition regulated by measured Cu supply rate. • Complex chemistry used to regulate ion activities and electrodeposition. • Achieved a respectable CZTS solar cell quantum efficiency.

  18. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  19. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites

    International Nuclear Information System (INIS)

    Wu, Jianhua; Zhang, Hailong; Zhang, Yang; Li, Jianwei; Wang, Xitao

    2012-01-01

    Highlights: ► Al–Cu/diamond composites have been produced by a squeeze casting method. ► Cu alloying is an effective approach to promoting interface bonding between metal matrix and diamond. ► Alloying Cu to Al matrix improves thermal conductivity and reduces coefficient of thermal expansion of the composites. -- Abstract: Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10 −6 to 6 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al 2 Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.

  20. Adsorption of pentane isomers on metal-organic frameworks Cu-BTC and Fe-BTC

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Opanasenko, Maksym; Rubeš, M.; Nachtigall, P.; Jagiello, J.

    2015-01-01

    Roč. 243, APR 2014 (2015), s. 69-75 ISSN 0920-5861 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : Cu-BTC * Fe-BTC * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.312, year: 2015

  1. Table-like magnetocaloric effect of Fe88−xNdxCr8B4 composite materials

    International Nuclear Information System (INIS)

    Lai, J.W.; Zheng, Z.G.; Zhong, X.C.; Franco, V.; Montemayor, R.; Liu, Z.W.; Zeng, D.C.

    2015-01-01

    The narrow working temperature range due to the sharp magnetic entropy change |ΔS M | peak and large thermal or magnetic hysteresis restricts the practical application of magnetocaloric materials. In this work, the table-like magnetocaloric effect (MCE) was obtained in the multilayer composite of Fe 88−x Nd x Cr 8 B 4 alloys with various Nd substitutions for Fe (x=5, 8, 10, 12, and 15), which were prepared by arc-melting followed by melt-spinning. The substation of Nd was found to enhance the glass-forming ability. For the alloys with Nd substitution from 5 at% to 15 at%, the Curie temperature (T C ) ranged from 322 K to 350 K and the peak value of |ΔS M | remained almost constant, 3.4–3.5 J/(kg K) under an applied field of 0–5 T. The composite with various Nd contents was prepared by stocking the ribbons layer by layer. The |ΔS M | of the composite approached a nearly constant value of ∼3.2 J/(kg K) in a field change of 0–5 T in a wide temperature span over 40 K, resulting in large refrigerant capacity value of >408 J/kg. This |ΔS M | value was much larger than the previous reported Fe-based amorphous composite Fe 78−x Ce x Si 4 Nb 5 B 12 Cu 1 . This composite can be used as the working material in the Ericsson-cycle magnetic regenerative refrigerator around room temperature. - Highlights: • The T C ranges from 322 K to 350 K when increasing Nd substitution from 5 to 15 at%. • |ΔS M | remains relatively constant, about 3.4–3.5 J/(kg K) under H=0–5 T. • RC decreases from 93 to 78 J/kg in a field change of 1.5 T when Nd increasing. • Table-like MCE ,|ΔS M | ~3.2J/kg K under 0–5 T, appeared in the composite. • A wide working temperature range (40 K) and enhanced RC (>408J/kg) were obtained in the composite

  2. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    Science.gov (United States)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  3. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  4. Pyridoxal derived chemosensor for chromogenic sensing of Cu{sup 2+} and fluorogenic sensing of Fe{sup 3+} in semi-aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Suban K., E-mail: suban_sahoo@rediffmail.com [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Department of Applied Chemistry, Kyungpook National University, Daegu 701702 (Korea, Republic of); Sharma, Darshna [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Moirangthem, Anuradha [Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal (India); Kuba, Aman; Thomas, Rini; Kumar, Rajender [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Kuwar, Anil [School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra 425001 (India); Choi, Heung-Jin [Department of Applied Chemistry, Kyungpook National University, Daegu 701702 (Korea, Republic of); Basu, Anupam, E-mail: abasu@zoo.buruniv.ac.in [Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal (India)

    2016-04-15

    An easy-to-prepare chemosensor L was developed by condensation of pyridoxal with 1,8-diaminonaphthalene. In DMSO:H{sub 2}O (1:1, v/v), sensor L displayed a highly selective and sensitive response towards Cu{sup 2+}via perceptible color and UV–vis absorbance changes among the other tested metal ions. However, the fluorescence of L is selectively quenched in the presence of both Fe{sup 3+} and Cu{sup 2+}. With a micromolar detection limit and non-interference from other co-existing metal ions, this sensor can be applied over a wide pH range for the detection of Fe{sup 3+} and Cu{sup 2+}. In addition, the cytotoxicity and fluorescence changes of L within live HeLa cells were examined in the absence and presence of Cu{sup 2+}. - Highlights: • A new noncytotoxic chemosensor derived from vitamin B{sub 6} cofactor was introduced. • Sensor showed colorimetric sensing ability towards Cu{sup 2+}. • Sensor showed fluorescent turn-off sensing ability towards Fe{sup 3+} and Cu{sup 2+}. • Detection limit was better than the prescribed permissible limit.

  5. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from ...

    African Journals Online (AJOL)

    cinthia

    This study was carried out to evaluate the efficiency of metals (Cu, Fe, Pb, Cr and Cd) removal from mixed metal ions solution using coconut husk as adsorbent. The effects of varying contact time, initial metal ion concentration, adsorbent dose and pH on adsorption process of these metals were studied using synthetically ...

  6. Influence of NiO concentration on structural, dielectric and magnetic properties of core/shell CuFe{sub 2}O{sub 4}/NiO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Department of Physics, International Islamic University, Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@qau.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Jan, Tariq [Department of Physics, University of Lahore, Sargodha Campus, Sargodha (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Wan, Dongyun [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ahmad, Ijaz [Department of Chemistry, Allama Iqbal Open University, Islamabad (Pakistan)

    2017-07-01

    Nanocomposites of (1-x)CuFe{sub 2}O{sub 4}/xNiO (x = 10% to 50 wt %) have been synthesized utilizing a chemical co-precipitation method. In order to obtain the required phase, the samples have been annealed at 600 °C for 6 h. The x-ray Diffraction (XRD) technique has been used for the crystallographic structure analysis which not only confirms the coexistent of both copper ferrite (CuFe{sub 2}O{sub 4}) and nickel oxide (NiO) phases in all samples but also verifies the absence of any impurity phases. The average crystallite size as estimated via XRD patterns show that the average size lies in the range of 22–36 nm which has also been confirmed by TEM. The FTIR absorbance spectra also show the characteristic vibration modes of cation at tetrahedral and octahedral sites. The electrical properties like A.C. conductivity, impedance, Dielectric constant, and Tangent loss has been measured by LCR meter. The results show that with the increase in NiO concentration, electrical conductivity increases for all concentration while dielectric constant decreases up to 30% NiO wt% and increases with further addition of NiO. The real and imaginary parts of impedance depict same dispersion i.e the impedance decreases at higher frequency due to increase in conductivity. Moreover the magnetic characterizations performed by VSM, reveal that the hysteresis loops exhibit normal behavior of ferromagnetic/ferrimagnetic materials for all compositions but the coercivity (H{sub c}), and saturation magnetization (M{sub s}) decreases with the increase in NiO contents that transform the material in to soft magnetic. - Highlights: • This novel core/shell nanocomposite synthesized by a facile wet chemical route. • The decrease in coercivity with NiO contents is due to pinning of moments at surface. • Increase in NiO contents makes CuFe{sub 2}O{sub 4} a high dielectric loss material. • The antiferromagnetic nature of NiO shift CuFe{sub 2}O{sub 4} toward a soft magnetic material.

  7. Atomic structure of Fe thin-films on Cu(0 0 1) studied with stereoscopic photography

    International Nuclear Information System (INIS)

    Hattori, Azusa N.; Fujikado, M.; Uchida, T.; Okamoto, S.; Fukumoto, K.; Guo, F.Z.; Matsui, F.; Nakatani, K.; Matsushita, T.; Hattori, K.; Daimon, H.

    2004-01-01

    The complex magnetic properties of Fe films epitaxially grown on Cu(0 0 1) have been discussed in relation to their atomic structure. We have studied the Fe films on Cu(0 0 1) by a new direct method for three-dimensional (3D) atomic structure analysis, so-called 'stereoscopic photography'. The forward-focusing peaks in the photoelectron angular distribution pattern excited by the circularly polarized light rotate around the light axis in either clockwise or counterclockwise direction depending on the light helicity. By using a display-type spherical mirror analyzer for this phenomenon, we can obtain stereoscopic photographs of atomic structure. The photographs revealed that the iron structure changes from bcc to fcc and almost bcc structure with increasing iron film thickness

  8. Possibilities of Fe-RICH phases elimination with using heat treatment in secondary Al-Si-Cu cast alloy

    Directory of Open Access Journals (Sweden)

    L. Hurtalová

    2015-01-01

    Full Text Available The mechanical properties of Al-Si-Cu cast alloy are strongly dependent upon the morphologies, type and distribution of the second phases. The skeleton like – Al15(FeMn 3Si2 and needles - Al5FeSi phases were observed in experimental material AlSi9Cu3. The Fe-rich phases morphology was affected with applying two types of heat treatment, T4 and T6, which caused positive changes of mechanical properties especially ultimate tensile strength, gives that for as cast state was Rm = 211 MPa, than at optimum T4 (515 °C/ 4 hours was Rm = 273 MPa and at optimum T6 (515 °C/ 4 hours with artificial aging 170 °C/ 16 hours was Rm = 311 MPa.

  9. The combination of activated natural zeolite-bentonite to reduce Fe and Cu in refined bleached palm oil (RBPO) by using atomic absorption spectrophotometer method

    Science.gov (United States)

    Zakwan; Raja, PM; Giyanto

    2018-02-01

    Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.

  10. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  11. Microwave-assisted Synthesis of CuS/Graphene Composite for Enhanced Lithium Storage Properties

    International Nuclear Information System (INIS)

    Li, He; Wang, Yunhui; Huang, Jingxin; Zhang, Yiyong; Zhao, Jinbao

    2017-01-01

    Highlights: • CuS/graphene composite is synthesized via one-pot microwave-assisted method. • CuS/graphene composite shows enhanced cycle stability and rate performance. • The incorporation of graphene plays a vital role in the electrode. • The kinetic mechanisms are investigated by EIS, CV and GITT methods. - Abstract: In this work, CuS/graphene (CuS-G) composite is synthesized via one-pot microwave irradiation method under ambient conditions. As anode material for lithium ion batteries, the CuS-G composite delivers a significantly enhanced reversible capacity and charge/discharge cycle stability compared with pristine CuS. A capacity of 348 mAh g −1 can be maintained after 1000 cycles at the current density of 2.0 A g −1 . Electrochemical impedance spectroscopy (EIS) along with cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT) measurements indicate that the incorporation of graphene sheets reduces the contact resistance and enhances lithium ion transfer rate during the electrochemical lithium insertion/extraction remarkably. Thus, as-prepared CuS spheres can be a promising anode material for high performance lithium ion batteries.

  12. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Lee, D.H.; Johnson, B.M.; Jones, K.W.; Guardala, N.A.; Price, J.L.; Stumborg, M.F.; Glass, G.A.

    1992-01-01

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of ∼ 3 %. The electrons were detected at both 90 degree and 0 degree with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs

  13. Composition changes in sputter deposition of Y-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Hoshi, Y.; Naoe, M.

    1989-01-01

    The authors discuss the mechanism of the composition change in sputter deposition of Y-BA-Cu-O film from YBa 2 Cu 3 O 7-chi target investigated by means of a rf planar magnetron sputtering apparatus. Film composition changes significantly with not only substrate temperature Ts and sputtering gas pressure, but also substrate position. Lack of Cu and Ba content is significant in the film deposited at the substrate position just above the erosion area of the sputtering target. Suppression of bombardment of the substrate surface by negative ions emitted from the target and substrate is effective in increasing Cu and Ba content in the film. These results indicate not only that the sticking probability of the sputtered particles changes with Ts and incident particle energy, but also that high energy particle bombardment of the substrate surface plays an important role in the change of the film composition

  14. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    International Nuclear Information System (INIS)

    Czeppe, T.; Sypien, A.; Ochin, P.; Anastassova, S.

    2007-01-01

    Alloys of composition (Ni 1-x Cu x ) 60 Zr 18 Ti 13 A1 5 Si 4 were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. 3dσ vacancy production and sharing in the Fe, Co, Ni, and Cu + Bi collisions

    International Nuclear Information System (INIS)

    Ciortea, C.; Dumitriu, D.; Enulescu, A.; Fluerasu, D.; Piticu, I.; Szilagyi, S.Z.; Bucur, B.I.; Zoran, V.; McDaniel, F.D.; Marble, D.K.; Sun, Y.

    1994-01-01

    Available as short communication only. The collision systems Fe, Co, Ni, and Cu + Bi in the energy range 0.1-1.75 MeV/u have been studied by measuring X-ray spectra. Vacancy production cross sections for the K-shell of the projectile and L3-subshell of the target are reported. In the frame of Fano and Lichten model, data for the 3dσ vacancy production and sharing have been obtained. Semiclassical approximation calculations in the united atom version compare favorably with the vacancy production data if the electron binding energy is properly taken into account. The experimental probabilities for vacancy sharing are compared with the predictions of the two-state exponential model of Nikitin. (Author)

  16. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  17. Magnetic nanowires (Fe, Fe-Co, Fe-Ni – magnetic moment reorientation in respect of wires composition

    Directory of Open Access Journals (Sweden)

    Kalska-Szostko Beata

    2015-03-01

    Full Text Available Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered or chemical composition (Co or Ni. The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS.

  18. Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.

    Science.gov (United States)

    Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail

    2018-01-30

    In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.

  19. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    Science.gov (United States)

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  20. SIMULATION OF ION-BEAM CHANNELING IN ICOSAHEDRAL AL63CU25FE12

    NARCIS (Netherlands)

    VANVOORTHUYSEN, EHD; SMULDERS, PJM; VANSMAALEN, S

    1993-01-01

    Monte Carlo simulations of channeling on the icosahedral quasicrystal Al63Cu25Fe12 were made, using an experimentally determined structure model for this phase. The channeling effect was found to be nearly as good as for a normal, periodic crystal. Dip widths are in agreement with experimental

  1. CoFeRh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tabakovic, Ibro [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)], E-mail: ibro.m.tabakovic@seagate.com; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas' ko, Vlad; Kief, Mark [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl{sub 3}, NH{sub 4}Cl, H{sub 3}BO{sub 3}, CoSO{sub 4}, FeSO{sub 4}, saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H{sub 3}BO{sub 3} to the RhCl{sub 3}-NH{sub 4}Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH{sub 4}Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru{approx}Cu. The electrodeposited Rh films obtained from NH{sub 4}Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed.

  2. APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Blavette, D.

    1996-01-01

    Pressure vessel steels used in PWRs are known to be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are commonly supposed to result from the formation of point defects, dislocation loops, voids and copper-rich precipitates. However, the real nature of the irradiation induced damage, in these particularly low copper steels (>0,1 wt%), has not been clearly identify yet. A new experimental work has been carried out thanks to atom probe and field ion microscopy (APFIM) facilities and, more particularly with a new generation of atom probe recently developed, namely the tomographic atom probe (TAP), in order to improve: the understanding of the complex behavior of copper precipitation which occurs when low-alloyed Fe-Cu model alloys are irradiated with neutrons; the microstructural characterization of the pressure vessel steel of the CHOOZ A reactor under various fluences (French Surveillance Programme). The investigations clearly reveal the precipitation of copper-rich clusters in irradiated Fe-Cu alloys while more complicated Si, Ni, Mn and Cu-solute 'clouds' were observed to develop in the low-copper ferritic solid solution of the pressure vessel steel. (authors)

  3. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  4. Processing and characterization of composite CuO/CuO/Cu-CGO obtained by a chemical synthesis route in one step

    International Nuclear Information System (INIS)

    Sousa, A.R.O. de; Menezes, A.J.; Souza, G.S.; Lima, C.G.M. de; Souza, G.S.; Dutra, R.P.S.; Macedo, D.A.

    2016-01-01

    This paper deals with the processing and characterization of composite CuO / ceria doped with 10 mol% gadolinia (CuO-Ce0,9Gd0,1O1,95) obtained by a chemical synthesis route in one step. It was varied CuO content at 40, 50 and 60% by weight, resulting in resin precursor, which was mixed with the CGO and then heat treated at 350 ° C and subsequently calcined at 1050 deg C. The particulate materials were characterized by X-ray diffractometry using powders, it was possible to synthesize and deposit, by serigraphy, films of the anodes of the three compositions CGO electrolyte. The technique of impedance spectroscopy allowed the analysis of the electrical properties of the material, as well as the understanding of their behavior when subjected to different atmospheres of hydrogen and methane. (author)

  5. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.

    Science.gov (United States)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23 × 10 -6 K -1 (192-305 K) and -1167.09 × 10 -6 K -1 (246-305 K) have been obtained in Mn 0.90 Fe 0.10 NiGe and MnNi 0.90 Fe 0.10 Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn 0.92 Fe 0.08 NiGe/ x %Cu, the CTE gradually changes from -64.92 × 10 -6 K -1 (125-274 K) to -4.73 × 10 -6 K -1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  6. Estimated daily intake of Fe, Cu, Ca and Zn through common cereals in Tehran, Iran.

    Science.gov (United States)

    Kashian, S; Fathivand, A A

    2015-06-01

    This paper presents the findings of study undertaken to estimate the dietary intake of iron (Fe), copper (Cu), calcium (Ca) and zinc (Zn) through common cereals in Tehran, Iran. 100 samples of rice, wheat and barley were collected from various brands between August and October 2013. The samples were analyzed performing instrumental neutron activation analysis (INAA). The dietary intake for adults was estimated by a total cereal study. Calculations were carried out on the basis of the reported adults' average food consumption rate data. The total daily intake estimated in mgd(-1) for Tehran population were 3.6 (Fe), 10.2 (Zn), 0.3 (Cu) and 234.5 (Ca). Wheat showed the highest contribution to Zn, Cu and Ca intakes. Furthermore, intakes were compared with recommended dietary allowance (RDA). Zn total intake (10.2mgd(-1)) was comparable with RDA values for males (11mgd(-1)) and was higher than recommended value for females (8mgd(-1)). The intakes of other studied elements were below the respective RDAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Quintero, M., E-mail: mquinter@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E.; Contreras, J.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A. [Grupo de Investigacion en Quimica Estructural (GIQUE), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia)

    2009-11-03

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu{sub 2}Cd{sub 0.8}Fe{sub 0.2}SnSe{sub 4} as well as for Cu{sub 2}Cd{sub 0.2}Fe{sub 0.8}SnSe{sub 4} the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter sigma decreases as Cd is replaced by either Mn and/or Fe. For the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems, only two single solid phase fields, the tetragonal stannite alpha(I4-bar2m) and the wurtz-stannite delta (Pmn2{sub 1}) structures were found to occur in the diagram. In addition to the tetragonal stannite alpha phase extra X-ray diffraction lines due to MnSe and/or FeSe{sub 2} were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  8. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Walther, Till; Hesse, Dietrich; Ebbinghaus, Stefan G.

    2014-01-01

    The synthesis of nano-crystalline CuFe 2 O 4 powders by a combustion-like process is described herein. Phase formation and evolution of the crystallite size during the decomposition process of a (CuFe 2 )—precursor gel were monitored up to 1000 °C. Phase-pure nano-sized CuFe 2 O 4 powders were obtained after reaction at 750 °C for 2 h resulting in a crystallite size of 36 nm, which increases to 96 nm after calcining at 1000 °C. The activation energy of the crystallite growth process was calculated as 389 kJ mol −1 . The tetragonal⇄cubic phase transition occurs between 402 and 419 °C and the enthalpy change (ΔH) was found to range between 1020 and 1229 J mol −1 depending on the calcination temperature. The optical band gap depends on the calcination temperature and was found between 2.03 and 1.89 eV. The shrinkage and sintering behaviour of compacted powders were examined. Dense ceramic bodies can be obtained either after conventional sintering at 950 °C or after a two-step sintering process at 800 °C. Magnetic measurements of both powders and corresponding ceramic bodies show that the saturation magnetization rises with increasing calcination-/sintering temperature up to 49.1 emu g −1 (2.1 µ B fu −1 ), whereas the coercivity and remanence values decrease. - Graphical abstract: A cheap one-pot synthesis was developed to obtain CuFe 2 O 4 nano-powders with different crystallite sizes (36–96 nm). The optical band gaps, phase transition temperatures and enthalpies were determined depending on the particle size. The sintering behaviour of nano CuFe 2 O 4 was studied in different sintering procedures. The magnetic behaviour of the nano-powders as well as the corresponding ceramic bodies were investigated. - Highlights: • Eco-friendly and simple synthesis for nano CuFe 2 O 4 powder using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the synthesis. • Determination of the optical band gap

  9. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    Science.gov (United States)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  10. Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection.

    Science.gov (United States)

    Mao, Song; Zhang, Aihua; Huang, Songming

    2014-10-01

    Trace elements play an important role in maintaining the normal metabolic and immune function. The onset of recurrent respiratory tract infection (RRI) is associated with the immune function, genetic factors and nutritional status. However, the association between the levels of trace elements and RRI remains inconclusive. We aimed to investigate the alterations of hair levels of zinc (Zn), copper (Cu) and iron (Fe) in Chinese children with RRI by performing a meta-analysis. A predefined electronic databases search was performed to identify eligible studies for the analysis of hair Zn, Cu or Fe levels in Chinese children with RRI. Thirteen studies were included. RRI patients displayed significantly lower levels of hair Zn (13 studies, random effects SMD: - 1.215, 95% CI: - 1.704 to - 0.725, p SMD: - 0.384, 95% CI: - 0.717 to - 0.052, p = 0.023) and Fe (12 studies, random effects SMD: - 0.569, 95% CI: - 0.827 to - 0.312, p < 0.0001) compared with controls. No evidence of publication bias was observed. Sensitivity analysis did not change the results significantly. In conclusion, the deficiency of Zn, Cu and Fe may be contributing factors for the susceptibility of RRI in Chinese children. However, more studies in different ethnicities should be performed in the future.

  11. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism

    KAUST Repository

    Zhang, Tao; Zhu, Haibo; Croue, Jean-Philippe

    2013-01-01

    of the PMS/CuFe2O4 was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe 2O4

  12. Sorption of Pb(II and Cu(II by low-cost magnetic eggshells-Fe3O4 powder

    Directory of Open Access Journals (Sweden)

    Ren Jianwei

    2012-01-01

    Full Text Available This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II and Cu(II ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II and 250.0 for Cu(II. The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II and Cu(II adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.

  13. Heavy metal (Cu, Cr, Zn, and Fe) concentration on coralreef in panjang island coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Ali Arman L; Yulizon Menri

    2008-01-01

    Observation on the accumulation of Cu, Cr, Zn, and Fe heavy metals in coral tissue were carried out in Panjang island, Jepara by NAA method. The purpose of this research is to determine the concentration of heavy metals on coral reef tissue in order to update environmental data to support site licensing and Environmental Impact Assessment (EIA) of Nuclear Power Plants (NPP). The result indicated that the concentration of Zn is 1,78 - 42,34 ppm, Cu is undetected - 0,41 ppm, Cr is 0,03 - 0,35 ppm and Fe is 5,25 - 30,56 ppm. The data shows that the accumulation of heavy metals in the coral reef tissue is higher than environmental threshold value, especially for marine biota life referring to the Environmental Ministry Decree Number 51 year 2004. (author)

  14. Structural-Phase States of Fe-Cu and Fe-Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    Science.gov (United States)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  15. Analysis of isomer shift and quadrupole splitting in moessbauer effect for (La1-xSrx)2Cu0.99Fe0.01O4

    International Nuclear Information System (INIS)

    Arai, Juichiro; Nitta, Takehiko

    1997-01-01

    Moessbauer effect is measured for the high-T c superconductors (La 1-x Sr x ) 2 Cu 0.99 Fe 0.01 O 4 (x = 0-0.17) at room temperature. Both the values of quadrupole splitting (E q ) and isomer shift (I.S.) decrease with increasing x. In order to interpret the large E q value in the sample of x 0, the presence of Fe-4p electrons must be taken into account and the analysis of E q decrease for x = 0 to 0.17 gives the increase of Fe-3d holes, Δn 3d = 0.09. The decrease of I.S. can be analyzed by shield effect due to the increase of Fe-3d holes, which gives the same Δn 3d value. The agreement of both the values indicates that hole increase in Fe-3d orbital is responsible for the decrease of both E q and I.S., and Fe-4p and 4s electrons, even if exist, hardly change with Sr concentration. Furthermore, the valence state of Fe ions in the undoped sample of x = 0 is estimated; Fe3d 4.8 4p 0.18 . This is compared with the reported Cu valence state obtained from NQR and their difference is discussed on the basis of energy level difference of 3d orbital in Fe and Cu ions in CuO 2 plane. (author)

  16. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Butvinová, B., E-mail: beata.butvinova@savba.sk [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Butvin, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Brzózka, K. [Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom (Poland); Kuzminski, M. [Institute of Physics PAS, Al. Lotnikow 36/42, 02-668 Warsaw (Poland); Maťko, I.; Švec Sr, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Chromčíková, M. [Institute of Inorg. Chem. SAS, Centrum VILA, Študentská 2, 911 50 Trenčín (Slovakia)

    2017-02-15

    Si-poor Fe{sub 74}Nb{sub 3}Cu{sub 1}Si{sub 8}B{sub 14−x}P{sub x}, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties. - Highlights: • Ar anneal of low-Si FeNbCuBSi ribbons produce surfaces that stress ribbon interior. • The stress comes mainly from preferred crystallization of surfaces. • Partial substitution of B by P changes annealing evolution of surface properties. • Without P, more crystalline surfaces significantly reduce ribbon's elasticity. • P suppresses surface crystallinity, promotes oxides and reduces mutual stress.

  17. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Gonzalo M.A., E-mail: gbermudez@com.uncor.edu [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina); Jasan, Raquel; Pla, Rita [Tecnicas Analiticas Nucleares, Comision Nacional de Energia Atomica (CAE), Presbitero Gonzalez y Aragon N Degree-Sign 15 (B1802AYA), Ezeiza (Argentina); Pignata, Maria L. [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Metal and trace element deposition rates and concentrations in bulk samples. Black-Right-Pointing-Pointer Anthropogenic vs. natural sources were identified using enrichment factors and PCA. Black-Right-Pointing-Pointer Anthropogenic sources for Ca, Cd, Cu, Fe, Mn, Ni, Pb, Sb, U, Zn and lanthanides. Black-Right-Pointing-Pointer Main sources were a cement plant, chemical-mechanical industries, cities and mining. Black-Right-Pointing-Pointer Metals in wheat grain were predicted by soil and bulk deposition composition. - Abstract: The objectives of this study were to determine the average concentrations and deposition rates of 28 elements in atmospheric bulk deposition and to elucidate associations among topsoil, bulk deposition and wheat element composition. The fluxes of arsenic (As), copper (Cu), lead (Pb) and zinc (Zn) deposition in Cordoba were higher than in other agro-ecosystems, which reflects both natural (geochemistry and topsoil removal) and anthropogenic sources. High lanthanide, uranium (U) and thorium (Th) concentrations revealed the impact of an open cast uranium mine. The highest enrichment factors (EF) were those of Cu, Pb, Zn and nickel (Ni), with calcium (Ca) being the most prominent in the surroundings of a cement plant. Industries and the transport of airborne urban pollutants were the main anthropogenic sources for Ca, Cu, Ni, Pb, Zn, cadmium (Cd), iron (Fe), manganese (Mn) and antimony (Sb). The concentrations of metals in wheat grain were predicted using the topsoil and atmospheric fall-out composition with R{sup 2} = 0.90, with the latter being the best explanatory variable. The present study highlights the potential health hazards of wheat consumption (Environmental Protection Agency) by the assessment of heavy metals in bulk atmospheric deposition.

  18. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    Science.gov (United States)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  19. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  20. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.