WorldWideScience

Sample records for fe-c-x alloys dual-phase

  1. Formation of austenite in peritectic Fe-C-X alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinushkin, E.P.; Sitalo, J. [State Metall. Acad. of Ukraine, Dnepropetrovsk (Ukraine); Fras, E.; Kapturkiewicz, W.; Burbelko, A.A. [Akademia Gorniczo-Hutnicza, Cracow (Poland)

    2000-07-01

    The mechanism for the formation of peritectic austenite in ferrous alloys was examined. The basic role, played by the mechanisms, is well known in technical literature; like diffusion transport through the solid phase which forms an envelope of austenite (peritectic transformation) and a mechanism of transport through channels of liquid in the envelope of austenite (peritectic reaction). Our calculations show that the peritectic transformation prevails at the initial stage of the grain growth, but afterwards the leading role is taken over by the transport through the channels of liquid. Images of the microstructure support the calculations and transport mechanism. (orig.)

  2. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  3. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys

    Science.gov (United States)

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-10-01

    Dual-phase (Fe83Ga17)100-xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ɛ) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ɛ of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy.

  4. Properties of Mechanically Alloyed W-Ti Materials with Dual Phase Particle Dispersion

    Directory of Open Access Journals (Sweden)

    František Lukáč

    2016-12-01

    Full Text Available W alloys are currently widely studied materials for their potential application in future fusion reactors. In the presented study, we report on the preparation and properties of mechanically alloyed W-Ti powders compacted by pulsed electric current sintering. Four different powder compositions of W-(3%–7%Ti with Hf or HfC were prepared. The alloys’ structure contains only high-melting-point phases, namely the W-Ti matrix, complex carbide (Ti,W,HfC and HfO2 particle dispersion; Ti in the form of a separate phase is not present. The bending strength of the alloys depends on the amount of Ti added. The addition of 3 wt. % Ti led to an increase whereas 7 wt. % Ti led to a major decrease in strength when compared to unalloyed tungsten sintered at similar conditions. The addition of Ti significantly lowered the room-temperature thermal conductivity of all prepared materials. However, unlike pure tungsten, the conductivity of the prepared alloys increased with the temperature. Thus, the thermal conductivity of the alloys at 1300 °C approached the value of the unalloyed tungsten.

  5. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    Science.gov (United States)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  6. High-Temperature Deformation Behavior of a Ti-6Al-7Nb Alloy in Dual-Phase (α + β) and Single-Phase (β) Regions

    Science.gov (United States)

    Pilehva, F.; Zarei-Hanzaki, A.; Moemeni, S.; Khalesian, A. R.

    2016-01-01

    The present study aimed to characterizing the microstructure evolution of a Ti-6Al-7Nb biomedical type titanium alloy during hot working through hot compression tests. The hot deformation cycles were conducted under the strain rate of 0.0025, 0.025, and 0.25 s-1 in the temperature range of 850-1150 °C where both dual-phase (α + β) and single-phase (β) regions could be accessible. The flow stress behavior of the material for the entire deformation regime was interpreted via microstructural observations. The results indicated that in the single-phase β region (1050-1150 °C), the dynamically recrystallized (DRX) grains were formed at the deformed and elongated beta grain boundaries as a necklace-like structure. The variations in the dynamically recrystallized grain size were determined to follow the Zener-Hollomon relationship where DRX grain size was decreased by reducing the temperature and increasing the strain rate. The alloy deformation characteristics in α + β region were somewhat different. During deformation in the upper α + β temperature range (e.g., 1000 °C), the β phase would accommodate most of the deformation, while α regions remained undeformed. In the lower α + β temperature range (e.g., 850-950 °C), the kinking/bending of α lamellae as well as the subsequent globularization of α layers were postulated to be responsible for the observed flow softening behavior.

  7. Calculations of {alpha}/{gamma} phase boundaries in Fe-C-X{sub 1}-X{sub 2} systems from the central atoms model

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Aaronson, H.I. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Enomoto, M. [Ibaraki Univ. (Japan). Dept. of Materials Science

    1995-03-01

    The {alpha}/{gamma} phase boundaries in Fe-C-X{sub 1}-X{sub 2} quaternary alloys (where X{sub 1} = Mn and X{sub 2} = Si, Ni, and Co, successively) are calculated from the Central Atoms model, as generalized to multi-component systems by Foo and Lupis. The interaction parameters are evaluated from the Wagner interaction parameters in ternary iron alloys reported in the literature or estimated from the interaction parameters in binary alloys. Two equilibrium conditions, para- and ortho-equilibrium, are utilized. In the Fe-C-Mn-Si system, a mixed state of equilibrium, in which orthoequilibrium is achieved with respect to C and Si while the other two substitutional elements (Fe and Mn) are assumed to be immobile (paraequilibrium), is also considered. The calculated phase boundaries are employed to evaluate the free energy change for the nucleation and the growth kinetics of proeutectoid ferrite in these alloys in companion articles.

  8. Calculations of α/γ phase boundaries in Fe-C-X1X2 systems from the central atoms model

    Science.gov (United States)

    Tanaka, T.; Aaronson, H. I.; Enomoto, M.

    1995-03-01

    The α/γ phase boundaries in Fe-C-X1-X2 quaternary alloys (where X1 = Mn and X2 = Si, Ni, and Co, successively) are calculated from the Central Atoms model, as generalized to multi-component systems by Foo and Lupis. The interaction parameters are evaluated from the Wagner interaction parameters in ternary iron alloys reported in the literature or estimated from the interaction parameters in binary alloys. Two equilibrium conditions, para- and ortho-equilibrium, are utilized. In the Fe-C-Mn-Si system, a mixed state of equilibrium, in which orthoequilibrium is achieved with respect to C and Si while the other two substitutional elements (Fe and Mn) are assumed to be immobile (paraequilibrium), is also considered. The calculated phase boundaries are employed to evaluate the free energy change for the nucleation and the growth kinetics of proeutectoid ferrite in these alloys in companion articles.

  9. Dual phase evolution

    CERN Document Server

    Green, David G; Abbass, Hussein A

    2014-01-01

    This book explains how dual phase evolution operates in all these settings and provides a detailed treatment of the subject. The authors discuss the theoretical foundations for the theory, how it relates to other phase transition phenomena and its advantages in evolutionary computation and complex adaptive systems. The book provides methods and techniques to use this concept for problem solving. Dual phase evolution concerns systems that evolve via repeated phase shifts in the connectivity of their elements. It occurs in vast range of settings, including natural systems (species evolution, landscape ecology, geomorphology), socio-economic systems (social networks) and in artificial systems (annealing, evolutionary computing).

  10. Development of plastic elongation in nanocrystalline and amorphous Ni–W dual phase alloys by brushing technique

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S., E-mail: 00sm.uk0806@gmail.com; Adachi, H., E-mail: adachi@eng.u-hyogo.ac.jp; Yamasaki, T., E-mail: yamasaki@eng.u-hyogo.ac.jp

    2015-09-15

    Highlights: • A novel agitation technique called the brushing technique is proposed. • A homogeneous material can be obtained with the brushing technique. • The brushed material exhibits large plastic elongation with work hardening. - Abstract: A novel agitation technique, referred to as the “brushing technique” is proposed to treat the surface of a Ni–W alloy film during electrodeposition. This technique was developed to directly remove hydrogen bubbles on the film surface and to apply Ni ions to the interfacial layer with the substrate. The intrinsic mechanical properties of the Ni–W electrodeposits are then evaluated with respect to application. High resolution transmission electron microscopy observations revealed that both treated and untreated films have nanocrystallites of approximately 5 nm in diameter and an amorphous phase. There was a compositional difference of about. 1.4 at% W between the face side and the reverse side of the film that was not subjected to the brushing technique, whereas this difference was absent in the film subjected to the brushing technique. In addition, the brushing technique reduced the surface roughness of the film and decreased the number of defects. As a result, a large plastic strain of about. 2.9% was observed with work hardening under tensile testing.

  11. Theory for reaustenitization from ferrite/cementite mixture in Fe-C-X steels

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C.; Akbay, T. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Reed, R.C. [Dept. of Materials Science and Metallurgy, Cambridge (United Kingdom)

    1995-05-01

    Phase transformation theory for the formation of austenite from substitutionally alloyed ferrite/cementite mixtures is discussed. The local equilibrium assumption is adopted. Diffusion of carbon in ferrite and cementite is ignored, together with the ternary diffusion interactions. The ferrite and cementite phases are assumed to be semi-infinite in extent, so that soft impingement effects are not accounted for. Subject to these assumptions, exact solutions are presented for one-dimensional (planar) growth. The solution method involves the determination of the appropriate tie-lines at the cementite/austenite and austenite/ferrite interfaces. Potential numerical difficulties which arise in determining the solution are discussed. It is found that for reasonable values of the diffusion coefficients involved, the governing equations can be simplified. The results are presented in the form of reverse time-temperature-transformation diagrams, and comparisons with recent results for reaustenitization from binary Fe-C steels are made. The effects of silicon and manganese as ternary alloying additions are quantified.

  12. Dual phase steel for line pipe applications

    Energy Technology Data Exchange (ETDEWEB)

    Merwin, M.J. [United States Steel Corp., Research and Technology Centre, Monroeville, PA (United States)

    2005-07-01

    This paper presents the results of a laboratory study of 2 samples of commercially produced line pipe from the same melting grade. The chemistries of the steel samples were presented. The study was conducted in response to requests by the American Petroleum Institute (API) for line pipe steel with a yield-strength-to-tensile-strength ratio (Y/T) of 0.85 or less, for use in offshore installations. The United States Steel Corporation initiated this program to achieve lower Y/T for line pipe grades while maintaining robust processing capability and mechanical properties. Heat treated seamless tubular products are typically processed in a manner that can be readily modified to produce dual phase microstructures by applying intercritical soaking before quenching. The steel line pipe industry is interested in dual phase steel for use in reel barge pipe laying operations because the the yield strength of dual phase steel is lower than tensile strength. In this study, the compositions of commercially produced material already in use for the line pipe market were studied. The developed dual phase microstructures were found to be stable over a range of intercritical temperatures. Tempering temperature and small chemistry differences were found to have the greatest influence on properties. The toughness performance was found to be excellent in samples tempered at temperatures greater than 550 degrees C, a regime which produced materials with strength suitable for use in API X60 line pipe. An incomprehensible difference in tensile strength between steels of similar chemistry was also noted. Welding performance was examined through the simulation of 3 regions of the heat-affected zone. The heat-affected zone properties were not influenced by either intercritical or tempering temperature. The only significant factor was the peak temperature that was achieved in the thermal cycle. The hardness of the heat-affected zone increased continuously with increasing peak temperature

  13. Microstructure-mechanical property relationships of dual-phase steel wire

    Science.gov (United States)

    Nakagawa, A. H.; Thomas, G.

    1985-05-01

    The high strain hardening rate and formability of dual-phase steels makes them promising choices for drawing into high strength wire. As the fundamental part of an alloy design project, dual-phase steels with several different martensite volume fractions, particle shapes, particle sizes, compositions, and crystallographic relations with the ferrite matrix were studied. They were wire drawn with true strains of up to 6.1. The initial microstructure, void formation tendency, drawability, and mechanical properties of the various steels were compared and correlated. The Fe-2Si-0.1C alloy was found to be the most promising with a suggested reduction in the carbon level to 0.06 to 0.08 pct. The double heat treatment which consists of quenching from austenite to martensite followed by intercritical annealing and quenching produced the best microstructure for drawing into wire. The annealing temperature should be adjusted to yield 25 to 30 vol pct martensite in the final microstructure. Stress relief after drawing provided a substantial increase in ductility without significant loss in strength.

  14. Hyperplasticity effect under magnetic pulse straightening of dual phase steel

    Science.gov (United States)

    Falaleev, AP; Meshkov, VV; Shymchenko, A.

    2016-10-01

    An investigation of the behaviour of dual phase steel parts during straightening operations, by means of magnetic pulse treatment, is presented. The mechanical analysis of magnetic-pulse treatment for the straightening of thin-walled sheet metal parts produced from dual phase steel was performed, taking into account the effect of hyperplasticity under the influence of the magnetic field. Taking account of the causes of the hyperplasticity and thus the increase of material plasticity, it has been shown that the magnetic impulse gravity can be adjusted by controlling the operation modes. The dependence of the generated magnetic impulse gravity force on the electrical current strength inducted in this part was explored and used for analysis of the magnetic pulse straightening of dual phase steel part. Experimental results were obtained for thin-walled sheet metal part produced from dual phase steel DP 780. The results are used to demonstrate the material deformation under the influence of magnetic impulse gravity force considering the increase of material plasticity. The dependence of relative material deformation on the generated magnetic impulse gravity as well as on the current strength induced in this material was obtained and analyzed

  15. Assuring microstructural homegeniety in dual phase and trip steels

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Diaz-del-Castillo, P.E.J.; Zwaag, S. van der [Faculty of Aerospace Engineering, Delft Univ., Delft (Netherlands)

    2004-11-01

    The presence of ferrite/pearlite bands in dual phase and TRIP assisted steels is a consequence of microchemical segregation which causes mechanical properties anisotropy. Such inhomogeneous phase distribution produces a lowering of the mechanical properties such as fracture behaviour. This anisotropy is commonly not accounted in micromechanics computations which often assume a random distribution of phases in the solid. The present paper deals with an integral model for this undesirable band formation accounting for the solute segregation caused by solidification, microcomponent diffusion present in the austenitisation process, and the nucleation of the transformed phase in segregated regions. In the present work, the model was applied to two industrial grade dual phase steels and two TRIP assisted steels. The influence of such parameters on band formation is summarised in a number of ''band prevention plots'', which are aimed at providing the optimum processing conditions for ferrite/pearlite band prevention. (orig.)

  16. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    Science.gov (United States)

    Ozturk, Tugce; Rollett, Anthony D.

    2017-08-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  17. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  18. Fabrication and magnetic properties of Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanocomposite permanent magnetic material

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanometer magnetic material was fabricated through rapid solidification, crystallization and nitridation of Sm-Fe (Ti) alloy. The effect of combination of rapid solidification and Ti alloy addition on the phase for- mation and microstructure of the Sm-Fe alloy is investigated in this paper. The mi- crostructure of amorphous phase and dual-phase nano-grain crystals before and after crystallization annealing were observed using a high-resolution transmission electron microscope (HREM). The dual-phase nano-grains after annealing were compacted together with a clear interface with the direct exchange-coupling mechanism. Different annealing processes were used to examine the melt-spun alloy. Comparison of the images of SEM showed that annealing at 750 ℃ for 10 min was most suitable to get homogeneous and nano-grains. No obvious kink was de- tected in the second quadrant of the hysteresis loop like a single hard magnet, and strong exchange coupling was found between hard magnets and soft magnets.

  19. Fabrication and magnetic properties of Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanocomposite permanent magnetic material

    Institute of Scientific and Technical Information of China (English)

    CUI ChunXiang; ZHANG Ying; SUN JiBing; WANG Ru

    2007-01-01

    Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanometer magnetic material was fabricated through rapid solidification, crystallization and nitridation of Sm-Fe (Ti) alloy. The effect of combination of rapid solidification and Ti alloy addition on the phase formation and microstructure of the Sm-Fe alloy is investigated in this paper. The microstructure of amorphous phase and dual-phase nano-grain crystals before and after crystallization annealing were observed using a high-resolution transmission electron microscope (HREM). The dual-phase nano-grains after annealing were compacted together with a clear interface with the direct exchange-coupling mechanism. Different annealing processes were used to examine the melt-spun alloy. Comparison of the images of SEM showed that annealing at 750℃ for 10 min was most suitable to get homogeneous and nano-grains. No obvious kink was detected in the second quadrant of the hysteresis loop like a single hard magnet, and strong exchange coupling was found between hard magnets and soft magnets.

  20. Study of dynamic strain aging in dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, R.R.U. [Instituto Federal de Minas Gerais. Rua Pandia Calogeras, 898, Bauxita, Ouro Preto, MG (Brazil); Cunha, F.G.G. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG (Brazil); Gonzalez, B.M., E-mail: gonzalez@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG (Brazil)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer Characterization of the high temperature mechanical behavior of a dual phase steel. Black-Right-Pointing-Pointer Determination of the effect of dynamic strain aging on the strain hardening rate. Black-Right-Pointing-Pointer Identification of the mechanism associated with dynamic strain aging. Black-Right-Pointing-Pointer The value of the interaction energy carbon-dislocation in ferrite was confirmed. - Abstract: The susceptibility to dynamic strain aging of a dual phase steel was evaluated by the variation of mechanical properties in tension with the temperature and the strain rate. The tensile tests were performed at temperatures varying between 25 Degree-Sign C and 600 Degree-Sign C and at strain rates ranging from 10{sup -2} to 5 Multiplication-Sign 10{sup -4} s{sup -1}. The studied steel presented typical manifestations related to dynamic strain aging: serrated flow (the Portevin-Le Chatelier effect) for certain combinations of temperature and strain rates; the presence of a plateau in the variation of yield stress with temperature; a maximum in the curves of tensile strength, flow stress, and work hardening exponent as a function of temperature; and a minimum in the variation of total elongation with temperature. The determined apparent activation energy values, associated with the beginning of the Portevin-Le Chatelier effect and the maximum in the variation of flow stress with temperature, were 83 kJ/mol and 156 kJ/mol, respectively. These values suggest that the mechanism responsible for dynamic strain aging in the dual phase steel is the locking of dislocations by carbon atoms in ferrite and that the formation of clusters and/or transition carbides and carbide precipitation in martensite do not interfere with the dynamic strain aging process.

  1. Dual-phase cardiac diffusion tensor imaging with strain correction.

    Directory of Open Access Journals (Sweden)

    Christian T Stoeck

    Full Text Available In this work we present a dual-phase diffusion tensor imaging (DTI technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging.In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference.The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001 upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole. While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction.An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.

  2. Simulation of springback and microstructural analysis of dual phase steels

    Science.gov (United States)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  3. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  4. Yearly progress report on WA105/ProtoDUNE dual-phase (2017)

    CERN Document Server

    Aimard, B

    2017-01-01

    WA105/ProtoDUNE dual-phase aims at fully demonstrating the concept of a very large dual-phase LAr TPC and calibrating it with a charged particles test beam, in view of the application of this detector design for the construction of DUNE 10 kton far detector modules. In this document we report the general progress of the dual-phase experimental activities at CERN since the last SPSC yearly report.

  5. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  6. Numerical cooling strategy design for hot rolled dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Suwanpinij, Piyada; Prahl, Ulrich; Bleck, Wolfgang [RWTH Aachen (DE). Dept. of Ferrous Metallurgy (IEHK); Togobytska, Nataliya; Weiss, Wolf; Hoemberg, Dietmar [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2010-10-21

    In this article, the Mo-Mn dual phase steel and its process parameters in hot rolling are discussed. The process window was derived by combining the experimental work in a hot deformation dilatometer and numerical calculation of process parameters using rate law models for ferrite and martensite transformation. The ferrite formation model is based on the Leblond and Devaux approach while martensite formation is based on the Koistinen- Marburger (K-M) formula. The carbon enrichment during ferrite formation is taken into account for the following martensite formation. After the completion of the parameter identification for the rate law model, the evolution of phases in multiphase steel can be addressed. Particularly, the simulations allow for predicting the preferable degree of retained strain and holding temperature on the run out table (ROT) for the required ferrite fraction. (orig.)

  7. Position Reconstruction in a Dual Phase Xenon Scintillation Detector

    CERN Document Server

    Solovov, V N; Akimov, D Yu; Araújo, H M; Barnes, E J; Burenkov, A A; Chepel, V; Currie, A; DeViveiros, L; Edwards, B; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Lüscher, R; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reconstruction of the PMT light response functions from calibration data taken with an uncollimated gamma-ray source. Using the techniques described, the performance of the ZEPLIN-III dark matter detector was studied for 122 keV gamma-rays. For the inner part of the detector (R<100 mm), spatial resolutions of 13 mm and 1.6 mm FWHM were measured in the horizontal plane for primary and secondary scintillation, respectively. An energy resolution of 8.1% FWHM was achieved at that energy. The possibility of using this technique for improving performance and reducing cost of scintillation cameras for medical applications is currently under study.

  8. Strain partitioning in dual-phase steels containing tempered martensite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qihang, E-mail: hanqihang@baosteel.com [Research Institute, Baoshan Iron and Steel Co., Ltd., Shanghai 201900 (China); State Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel), Shanghai 201900 (China); Institute for Frontier Materials, Deakin University, Geelong, VIC. 3217 (Australia); Asgari, Alireza; Hodgson, Peter D.; Stanford, Nicole [State Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel), Shanghai 201900 (China)

    2014-08-12

    Tempering has been used as a method to develop a range of dual phase steels with the same martensite morphology and volume fraction, but containing phases with different relative strengths. These steels were used to examine the strain partitioning between the two constituent phases experimentally through mechanical testing and numerically through finite element modelling. It was found that increasing the differential in strength between the two phases not only produces regions of high strain, but also regions of low strain. On average, a larger difference in strength between the phases increased the strain carried by the softer phase. There was no discernible preferential strain localisation to the ferrite/martensite interface, with the regions of strain localisation being determined by the morphology of the microstructure. A direct correlation between the average strain in the ferrite, and the measured ductility has been found.

  9. Ultra-Fine Grained Dual-Phase Steels

    Directory of Open Access Journals (Sweden)

    Matthias Militzer

    2012-10-01

    Full Text Available This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and carbides as the initial microstructure for rapid intercritical annealing. The intercritical annealing step was performed with heating and cooling rates of at least 100 °C/s and a holding time of 30 s. The intercritical temperature was selected to result in 20- 35% martensite in the final microstructures for C-Mn steels with carbon contents of 0.06, 0.12 and 0.17 wt%, respectively. The proposed processing routes produced an ultra-fine grained ferrite-martensite structure withgrain sizes of approximately 1 ?m for all three steels. The tensile strength of these ultra-fine grained dualphase steels can be increased by up to 200 MPa as compared to coarse-grained dual-phase steels while maintaining uniform elongation values. The rather narrow processing window necessary to obtain these properties was evaluated by determining the effect of intercritical annealing conditions on microstructure evolution. Further, the experimental results were confirmed with phase field simulations of austenite formation indicating that rapid heat treatment cycles are essential to obtain fine grained intercritical austenite that leads to martensite islands with sizes of 1 ?m and below in the final microstructure.

  10. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D.C., E-mail: dcsaha@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Westerbaan, D.; Nayak, S.S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Biro, E. [ArcelorMittal Global Research, 1390 Burlington Street East, Hamilton, ON, Canada L8N 3J5 (Canada); Gerlich, A.P.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2014-06-01

    Similar and dissimilar welds of dual-phase (DP) and high strength low alloy (HSLA) steels were made by fiber laser welding (FLW). The welds were characterized with respect to microstructure, micro- and nano-hardness, and tensile properties. The fusion zone (FZ) in the DP welds consisted of fully martensitic structure; whereas HSLA and dissimilar weld FZ microstructure were mixture of martensite and bainite. Analytical transmission electron microscopy (TEM) confirmed bainite structures containing bainitic ferrite laths with intralath and interlath cementite. Precipitation of single variant carbides inside the bainitic ferrite laths were confirmed by measuring the interplanar spacing. The cooling rate in the FZ, estimated using Rosenthal equation, and continuous-cooling-transformation diagrams corroborated the microstructure formed. Nanoindentation was used to verify the hardness of these individual microconstituents, since a much lower nano-hardness for bainite (4.11 GPa) was observed compared to martensite (6.57 GPa) phase. Tensile failure occurred in the tempered area of the heat affected zone (HAZ) in the DP steel welded, which was confirmed by typical cup-like dimple fracture; likewise failure in the HSLA base metal, which occurred in dissimilar and HSLA welds, indicated distinctive dimple and shear dimple ductile morphology.

  11. Dual-phase CT findings of groove pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Zaheer, Atif, E-mail: azaheer1@jhmi.edu [The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Pancreatitis Center, Division of Gastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Haider, Maera, E-mail: mhaider3@jhmi.edu [The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Kawamoto, Satomi, E-mail: skawamo1@jhmi.edu [The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Hruban, Ralph H., E-mail: rhruban1@jhmi.edu [Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21231 (United States); Fishman, Elliot K., E-mail: efishma1@jhmi.edu [The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States)

    2014-08-15

    Purpose: Groove pancreatitis is a rare focal form of chronic pancreatitis that occurs in the pancreaticoduodenal groove between the major and minor papillae, duodenum and pancreatic head. Radiologic appearance and clinical presentation can result in suspicion of malignancy rendering pancreaticoduodenectomy inevitable. This study reports dual phase CT findings in a series of 12 patients with pathology proven groove pancreatitis. Materials and methods: Retrospective review of preoperative CT findings in 12 patients with histologically proven groove pancreatitis after pancreaticoduodenectomy. Size, location, attenuation, presence of mass or cystic components in the pancreas, groove and duodenum, calcifications, duodenal stenosis and ductal changes were recorded. Clinical data, laboratory values, endoscopic ultrasonographic and histopathological findings were collected. Results: Soft tissue thickening in the groove was seen in all patients. Pancreatic head, groove and duodenum were all involved in 75% patients. A discrete lesion in the pancreatic head was seen in half of the patients, most of which appeared hypodense on both arterial and venous phases. Cystic changes in pancreatic head were seen in 75% patients. Duodenal involvement was seen in 92% patients including wall thickening and cyst formation. The main pancreatic duct was dilated in 7 patients, with an abrupt cut off in 3 and a smooth tapering stricture in 4. Five patients had evidence of chronic pancreatitis with parenchymal calcifications. Conclusion: Presence of mass or soft tissue thickening in the groove with cystic duodenal thickening is highly suggestive of groove pancreatitis. Recognizing common radiological features may help in diagnosis and reduce suspicion of malignancy.

  12. The structural and magnetic properties of dual phase cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Jadhav, Santosh S; Jadhav, Vijaykumar V; Patange, S M; Naushad, Mu; Mane, Rajaram S; Kim, Kwang Ho

    2017-05-31

    The bismuth (Bi(3+))-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co(2+) by trivalent Bi(3+) cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi(3+) doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi(3+)-addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi(3+)-doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi(3+)-doping in enhancing the magnetic properties of cobalt ferrite.

  13. Development of an aluminized multi-phase steel with dual phase properties for high temperature corrosion resistance applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, J.; Cooman, B.C. de [Lab. for Iron and Steelmaking, Dept. of Metallurgy and Materials Science, Ghent Univ., Zwijnaarde (Belgium); Maki, J. [Yawata R and D Lab., Nippon Steel Corp. (Japan); Fiorucci, M. [Galvalange Sarl, Dudelange (Luxembourg); Claessens, S. [OCAS NV, Zelzate (Belgium)

    2003-04-01

    A high strength, high Mn, Cr-Mo containing multi-phase steel grade was aluminized with a 90 wt% Al-10 wt% Si alloy coating, using a laboratory hot-dip simulator. The adhesion of the coating to the steel strip was evaluated and the microstructure of the as deposited material was assessed. The coated sheet steel was tested at high temperatures by monitoring the weight gain of the samples and their mechanical properties as a function of time. It was found that the thermal properties of the aluminized sheet were excellent. The analysis of the coating/substrate interface revealed the dissolution of brittle intermetallic phases, explaining the excellent high temperature resistance performance of the Al-Si coating up to temperatures as high as 900 C. In addition, the use of a continuous annealing cycle common in current aluminizing lines, resulted in a dual phase microstructure. (orig.)

  14. An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation.

    Science.gov (United States)

    Dong, Xueliang; Ortiz Landeros, José; Lin, Y S

    2013-10-25

    For the first time, a tubular asymmetric ceramic-carbonate dual phase membrane was prepared by a centrifugal casting technique and used for high temperature CO2 separation. This membrane shows high CO2 permeation flux and permeance.

  15. Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.D., E-mail: 15901022010@139.com [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China); School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu, J. [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China); School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Cao, W.Q., E-mail: cwq005211@163.com [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China); Dong, H. [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2014-11-17

    A series of steels with the micro-laminated dual phase microstructure were produced by hot rolling and air cooling processes in this study. Different volume fractions and morphology of the ferrite and martensite phases were obtained by adding different carbon contents in the steels containing 3 wt% aluminum. The microstructure of the dual phase steels was examined by optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). It was shown that the microstructure was composed of large ferrite and martensite lamellae. Small martensite laths and a miniscule amount of residual austenite were also found in the martensite phase. The tensile, impact and hardness tests revealed that the dual phase steels had an excellent combination of mechanical properties. The mechanical properties had a great relationship with the martensite volume fraction and the micro-laminated microstructure. The fractography of impact specimens was examined to explore the toughening mechanism of the micro-laminated dual phase steels.

  16. Design of dual-phase Fe/Mn/C steel for low-temperature application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, N.J.

    1981-09-01

    An investigation has been made to improve the impact properties of a dual phase Fe/1.5Mn/.06C steel for potential low temperature application. The research involved establishing the microstructure-property relationships, especially with regard to the morphology of the constituents. Dual phase processing was done in two ways, viz., controlled rolling and intercritical annealing of the as-hot-rolled structure.

  17. An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design

    Science.gov (United States)

    Tasan, C. C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M.; Tsuzaki, K.; Raabe, D.

    2015-07-01

    Dual-phase (DP) steel is the flagship of advanced high-strength steels, which were the first among various candidate alloy systems to find application in weight-reduced automotive components. On the one hand, this is a metallurgical success story: Lean alloying and simple thermomechanical treatment enable use of less material to accomplish more performance while complying with demanding environmental and economic constraints. On the other hand, the enormous literature on DP steels demonstrates the immense complexity of microstructure physics in multiphase alloys: Roughly 50 years after the first reports on ferrite-martensite steels, there are still various open scientific questions. Fortunately, the last decades witnessed enormous advances in the development of enabling experimental and simulation techniques, significantly improving the understanding of DP steels. This review provides a detailed account of these improvements, focusing specifically on (a) microstructure evolution during processing, (b) experimental characterization of micromechanical behavior, and (c) the simulation of mechanical behavior, to highlight the critical unresolved issues and to guide future research efforts.

  18. Bauschinger effect and springback behavior of dual phase sheet steels

    Science.gov (United States)

    Ma, Hongwei

    2007-09-01

    With the increasing use of advanced high strength steels in the automotive industry, springback control has become a more critical issue. It is now realized that a more accurate simulation of springback has to take the Bauschinger effect into account, especially when sheet experiences complicated plastic deformation. In this study, the Bauschinger effect in dual-phase (DP) steels was investigated through tension-unloading-reloading tests. Fundamental mechanisms of the Bauschinger effect were examined via two special experiments: (i) TEM study of the dislocation distribution at the different plastic pre-strains in Bauschinger tests; and (ii) residual stress measurement after different tensile strains using in-situ neutron diffraction technology. To investigate the influence of the Bauschinger effect on springback, deep-draw bending tests were carried out with the different friction conditions. The experimental results of the tension-unloading-reloading tests show the Bauschinger effect in DP steel is much stronger than that in interfacial-free (IF) steel. TEM observation revealed very strong interactions between dislocations and martensite in DP steels. In-situ neutron diffraction tests show that the residual strains caused by inhomogeneous deformation of the two phases in DP steel after deformation are much higher than those in IF steels. The above results support the observation of a strong Bauschinger effect in DP steels. A composite model based on the analysis of internal stress shows further clearly that the residual stresses are the predominant mechanism of the Bauschinger effect in DP steels. A newly defined Bauschinger energy parameter (E beta) was found to be able to quantitatively describe this transient softening before reversed loading. The unloading responses showed the total recovery comes not only from elastic recovery but also from inelastic recovery. An effective unloading modulus was therefore introduced to reflect the inelastic recovery. Based on

  19. Commissioning and Charge Readout Calibration of a 5 Ton Dual Phase Liquid Argon TPC

    CERN Document Server

    AUTHOR|(CDS)2098555

    Dual phase time projection chambers with amplification of ionization electrons provide a novel technique for measuring and analyzing rare events with excellent spatial resolution and great calorimetric properties. This thesis describes the commissioning of the WA105 3 x 1 x 1 m3 dual phase liquid argon detector, built to demonstrate the performance of this kind of detector on large scales in order to determine the viability of giant dual phase time projection chambers in long baseline neutrino oscillation experiments. The properties of the insulation and the main tank vessel are described and analyzed, such as the pressure, temperature and argon purity requirements during operation in order to guarantee stable conditions and good event tracking. As signals are induced due to electrons from ionizing radiation, crosstalk is caused by capacitive couplings between strips of the charge readout plane and in the electronics of the data acquisition. These induced signals are studied and compared to capacitance and pu...

  20. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  1. Mod\\'elisation multidomaine du comportement magn\\'eto-m\\'ecanique des aciers dual-phases

    CERN Document Server

    Mballa, Frederick Mballa; Lazreg, Said; Meilland, Philip

    2011-01-01

    The microstructure and mechanical behavior of dual-phase steels are highly sensitive to the variation of the process (heat treatments). Online control by magnetic method is relevant. A measurement under applied stress must be considered. The dual-phase is a two-phase medium (ferrite / martensite). Each phase can be considered as a sphere embedded in a homogeneous equivalent medium. The model used for each phase is based on a magneto-mechanical coupled model. This is an explicit single crystalline model representative of the behavior of the corresponding phase. Localization rules allow the simulation of the two-phases medium. Experiments and modeling are compared.

  2. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  3. Micromechanical Analyses of Debonding and Matrix Cracking in Dual-Phase Materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Yang, Qingda

    2016-01-01

    Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg - 60 deg relative to the loading...

  4. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  5. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    NARCIS (Netherlands)

    Song, G. M.; Vystavel, T.; De Hosson, J. Th M.; Sloof, W. G.; van der Pers, N.M.

    The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar zeta-FeZn13 particles on top of a thin inhibition layer adjacent to the

  6. LOW ACTIVATION JOINING OF SIC/SIC COMPOSITES FOR FUSION APPLICATIONS: MODELING DUAL-PHASE MICROSTRUCTURES AND DISSIMILAR MATERIAL JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, M.; Katoh, Y.

    2016-03-31

    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  7. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    Science.gov (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  8. Effect of continuous annealing parameters on the mechanical properties and microstructures of a cold rolled dual phase steel

    Institute of Scientific and Technical Information of China (English)

    Shuang Kuang; Yong-lin Kang; Hao Yu; Ren-dong Liu

    2009-01-01

    A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Glee-ble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820 ℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300°C are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield slrength will increase. But if the volume frac-tion of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elonga-tion will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will be unsatisfied.

  9. Study on microstructures and work hardening behavior of ferrite-martensite dual-phase steels with high-content martensite

    Directory of Open Access Journals (Sweden)

    Xiurong Zuo

    2012-12-01

    Full Text Available A kind of medium-carbon low-alloy dual-phase steels with high-content martensite produced by intercritical annealing at 785-830 ºC for 10-50 minutes were studied in aspect of microstructures and work hardening behavior using SEM and tensile testing machine. The experimental results showed that the work hardening of the studied steels obeyed the two-stage work hardening mechanism, whose work hardening exponent of the first stage was higher than that of the second stage. The work hardening exponent increased with increasing the intercritical annealing temperature and time. For series A steel intercritically annealed at 785 ºC with starting microstructure of ferrite plus pearlite, austenite nucleated at the pearlite colonies, so the holding time of only 50 minutes can increase the work hardening exponent obviously. For series B steel with starting microstructure of martensite, austenite nucleated at lath interfaces, lath colony boundaries of primary martensite and carbides, accelerating the formation of austenite, so holding time for 30 minutes made the work hardening exponent increase obviously. High work hardening rate during initial plastic deformation (<0.5% strain was observed.

  10. Flow induced formation of dual-phase continuity in polymer blends and alloys

    DEFF Research Database (Denmark)

    Lyngaae-Jørgensen, Jørgen; Chtcherbakova, E.A.; Utracki, L.A.

    1997-01-01

    showed that an addition of block copolymer may narrow the volume fraction range where bi-continuous phase structures are formed. Both annealing in the molten stale and shearing history influence the measured phi(cr) for formation of bi-continuous phase structure in amorphous immiscible polymer blends....

  11. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    Science.gov (United States)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the

  12. High-Precision Half-Wave Rectifier Circuit In Dual Phase Output Mode

    Directory of Open Access Journals (Sweden)

    Theerayut Jamjaem

    2009-12-01

    Full Text Available This paper present high-precision half-wave rectifier circuit in dual phase output mode by 0.5 μm CMOS technology, +/- 1.5 V low voltage, it has received input signal and sent output current signal, respond in high frequency. The main structure compound with CMOS inverter circuit, common source circuit, and current mirror circuit. Simulation and confirmation quality of working by PSpice program, then it able to operating at maximum frequency about 100 MHz, maximum input current range about 400 μAp-p, high precision output signal, low power dissipation, and uses a little transistor.Keywords-component; half-wave; rectifier circuit; highprecession; dual phase;

  13. Stability and Thermodynamic Restrictions for a Dual-Phase-Lag Thermal Model

    Science.gov (United States)

    Fabrizio, Mauro; Lazzari, Barbara; Tibullo, Vincenzo

    2017-06-01

    In this paper, the seeming inconsistency highlighted by Fabrizio and Lazzari (Stability and second law of thermodynamics in dual-phase-lag heat conduction, Int. J. Heat Mass Transfer 74 (2014), 484-489) and Quintanilla and Racke (A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer 49 (2007), 1209-1213) for a thermoelastic material, between the thermodynamic restrictions and the stability conditions is studied. Actually, we show as these results are due to the use of different formulations of the thermodynamic principles, which are not always equivalent. So that, we prove by the model considered in the paper that these two formulations do not lead to the same restrictions on the constitutive equations. This analysis allowed us to restore the compatibility by an appropriate and wide representation of the Second Law.

  14. Strain Partitioning and Load Transfer in Constituent Phases in Dual-Phase Steels

    Science.gov (United States)

    Varshney, A.; Sangal, S.; Mondal, K.

    2016-09-01

    In this investigation, a new approach is proposed to calculate in situ true stress and strain in the constituent phases of dual-phase steel during deformation. The model incorporates modified law of mixture and constitutive equations. The model proposes that the deformation of martensite is pseudoelastic, and on little permanent deformation within the martensite allows the locked-in dislocation to release in the ferrite at the interface region of the ferrite and martensite. On application of the model to a set of dual-phase steels with varying microstructural parameters, it is established that the amount of strain partitioning is affected by the strength and amount of the hard phase, as well as grain size, work hardening ability, and yield strength of the softer phase. On the other hand, grain size, carbon content, and fraction and strength of martensite are the main factors controlling the load transfer among the phases.

  15. A dual phase lag model on photothermal interaction in an unbounded semiconductor medium with cylindrical cavity

    Science.gov (United States)

    Abbas, Ibrahim A.

    2016-09-01

    In the present paper, the theory of generalized photo-thermoelasticity under dual phase lag model has been applied to study the coupled thermal, plasma and elastic waves on unbounded semiconductor medium with cylindrical cavity. The bounding surface of the cavity is traction free and loaded thermally by exponentially decaying pulse boundary heat flux. By using Laplace transform and the eigenvalue approach methodology, the solutions of all variables have been obtained analytically. Numerical computations have been done for silicon-like semiconductor material, and the results are displayed graphically to show the difference between the dual phase lag (DPL) model, Lord and Shulman’s theory (LS) and the classical dynamical coupled theory (CT).

  16. Microstructure and properties of a C-Mn-Si-dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Klaar, H.J. (Technische Hochschule Aachen (Germany, F.R.). Gemeinschaftslaboratorium fuer Elektronenmikroskopie); El-Sesy, I.A.; Hussein, A.H.A. (Cairo Univ., Gizeh (Egypt). Dept. of Mining, Petroleum and Metallurgical Engineering)

    1990-01-01

    A study has been carried out on an Fe-0.11% C-1.58% Si-0.4% Mn-dual phase steel. The dual-phase microstructures and properties are significantly affected by both the intercritical temperature and cooling rate from ({alpha} + {gamma}) field. Upon rapid cooling (water or oil quench) from the temperature range 735-820deg C, the structure comprises ferrite + martensite. On the other hand, slow cooling (air cooling) from the temperature range 735-820deg C produces microstructures containing ferrite + martensite + pearlite/bainite and more favourable mechanical properties as: {sigma}{sub 0,2}=281-296 MPa, {sigma}{sub UTS}=632-690 MPa, TE=26-30% and continuous yielding behaviour. (orig.).

  17. A novel CO2- and SO2-tolerant dual phase composite membrane for oxygen separation

    DEFF Research Database (Denmark)

    Cheng, Shiyang; Søgaard, Martin; Han, Li;

    2015-01-01

    A novel dual phase composite oxygen membrane (Al0.02Ga0.02Zn0.96O1.02 – Gd0.1Ce0.9O1.95-δ) was successfully prepared and tested. The membrane shows chemical stability against CO2 and SO2, and a stable oxygen permeation over 300 hours in CO2 was demonstrated. ZnO is cheap and non...

  18. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Ga{sub 2}O{sub 3} and YF{sub 3} dual-phase embedded glass ceramics were fabricated. • RE{sup 3+} and Cr{sup 3+} dopants incorporated into YF{sub 3} and Ga{sub 2}O{sub 3} lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga{sub 2}O{sub 3} and β-YF{sub 3} nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu{sup 3+} or Tm{sup 3+}) and transition metal (Cr{sup 3+}) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu{sup 3+} (or Tm{sup 3+}) ions partitioned into the crystallized orthorhombic YF{sub 3} nanophases, while Cr{sup 3+} ones entered into the precipitated cubic Ga{sub 2}O{sub 3} nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm{sup 3+} blue and Cr{sup 3+} deep-red emissions are easily achieved in the Tm{sup 3+}/Cr{sup 3+} co-doped dual-phase glass ceramics.

  19. A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability.

    Science.gov (United States)

    Fang, Wei; Liang, Fangyi; Cao, Zhengwen; Steinbach, Frank; Feldhoff, Armin

    2015-04-13

    To combine good chemical stability and high oxygen permeability, a mixed ionic-electronic conducting (MIEC) 75 wt% Ce(0.85)Gd(0.1)Cu(0.05)O(2-δ)-25 wt% La(0.6)Ca(0.4)FeO(3-δ)(CGCO-LCF) dual-phase membrane based on a MIEC-MIEC composite has been developed. Copper doping into Ce(0.9)Gd(0.1)O(2-δ) (CGO) oxide enhances both ionic and electronic conductivity, which then leads to a change from ionic conduction to mixed conduction at elevated temperatures. For the first time we demonstrate that an intergranular film with 2-10 nm thickness containing Ce, Ca, Gd, La, and Fe has been formed between the CGCO grains in the CGCO-LCF one-pot dual-phase membrane. A high oxygen permeation flux of 0.70 mL min(-1) cm(-2) is obtained by the CGCO-LCF one-pot dual-phase membrane with 0.5 mm thickness at 950 °C using pure CO2 as the sweep gas, and the membrane shows excellent stability in the presence of CO2 even at lower temperatures (800 °C) during long-term operation.

  20. Effect of Intercritical Heat Treatment on the Abrasive Wear Behaviour of Plain Carbon Dual Phase Steel

    Science.gov (United States)

    Manoj, M. K.; Pancholi, V.; Nath, S. K.

    Dual phase (DP) steels have been prepared from low carbon steel (0.14% C) at intercritical temperature 740°C and time is varied from 1 minute to 30 minutes followed by water quenching. These steels have been characterized by optical microscopy, FE-SEM, hardness measurements, tensile properties and electron backscattered diffraction (EBSD) studies. Tensile properties of a typical dual phase steel are found to be 805 MPa ultimate tensile strength with 18% total elongation. Martensite volume fraction of D P steel (determined by EBSD technique) prepared at 740°C for 6 minutes is found to be 10.2% and the grain size of ferrite and martensite found to be 14.39 micron and 1.05 microns respectively. Abrasive wear resistance of dual phase steels has been determined by pin on drum wear testing machine. DP steels have been found to be 25% more wear resistant than that of normalized steel. Short intercritical heating time followed by water quenching gives higher wear resistance by virtue of smaller and well dispersed martensite island in the matrix of ferrite.

  1. Correlation of FEA Prediction And Experiments On Dual-Phase Steel Automotive Rails

    Science.gov (United States)

    Du, C.; Chen, X. M.; Lim, T.; Chang, T.; Xiao, P.; Liu, S.-D.

    2007-05-01

    The North American Auto/Steel Partnership (A/SP) High-Strength Steel Forming Project Team has been studying the impact of advanced high-strength steels on stamping of structural components. Tooling was built to evaluate the effect of different grades of dual-phase steels on rail type stampings. The formed panels were laser scanned and the amount of springback was measured against the design intention. FEA simulation of the forming process was carried out to validate the numerical modeling techniques in the large and complex dual-phase steel stampings. The materials used in the study were Dual-Phase (DP) Steels DP600, DP780 and DP980. The FEA solver used was LS-Dyna version 971. The simulation results were correlated with the measurement data under various forming conditions including forming methods, trimming, binder and pad pressures. Reasonably good correlations were obtained across different grades of steels in terms of flange opening angles, wall opening angles, twist angles and dimensional deviations.

  2. Small hepatocellular carcinoma with peripheral enhancement:pathological correlation with dual phase images by helical CT

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ke-guo; SHEN Jing-xian; WANG Gen-shu; XU Da-sheng

    2007-01-01

    Background The peripheral enhancement of small hepatocellular carcinoma (SHCC) is a rare appearance in dual phase images by helical computed tomography (CT). This study discusses this phenomenon and its correlative histopathology.Methods The helical CT dual phase appearance of peripheral enhancement in SHCC was analyzed in 21 cases (22 lesions). All lesions were confirmed as SHCC by histopathological examination.Results In these 22 lesions, enhanced peripheral ring in 20 lesions was incomplete, the thickness of enhanced peripheral ring varied and mural node could be found in hepatic arterial phase; only 2 lesions had complete peripheral ring enhancement and ring of uniform thickness in hepatic arterial phase. The enhancement of some peripheral rings and mural nodes dropped to very low density in portal venous phase. The tumour cells were grade Ⅰ in 3 lesions, Ⅱ in 16, Ⅲ in 2 and Ⅳ in 1. The vascular supply was more abundant at the border than in the centre of 15 lesions and the vascular supply was deficient in both centre and border of the remaining 7 lesions. In 3 lesions, the pseudocapsule showed in the border of the lesion. In 12 lesions, flecks of necrosis were found in the border and/or centre of the lesion.Conclusions The characteristic peripheral enhancement in helical CT dual phase images of small hepatocellular carcinoma correlates with different vascular supplies, fibrous capsule and necrosis of the lesion.

  3. Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivuni, Kishor Kumar, E-mail: kishor_kumars@yahoo.com [Centre for Advanced Materials, Qatar University, Doha (Qatar); Ponnamma, Deepalekshmi [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Kasak, Peter; Krupa, Igor; Ali S A Al-Maadeed, Mariam [Centre for Advanced Materials, Qatar University, Doha (Qatar)

    2014-10-15

    The demand for developing oil detectors is ever increasing since the cleanup and recovery from oil spill usually take long time. Here we propose oil sensors made of polyaniline (PANI) filled poly(styrene–isoprene–styrene) (SIS) block copolymer composite films with good uniformity and dispersion. The changes in resistivity of the samples in presence of both oil and water media reveal the good sensing ability of SIS–PANI films towards oil in water (dual phase). The morphology and chemical composition of the developed products are characterized by scanning electron microscopy and Fourier transformation infrared spectroscopy. Swelling studies are performed to correlate the sensing response to the structural variations and based on it a mechanism is derived for the dual phase sensing. Contact angle measurements confirm the behavior further. The thermal properties and crystallinity of the composites are also addressed by the thermogravimetric and differential scanning calorimetric studies. The developed oil sensor material is able to withstand extreme temperature condition as well. - Highlights: • We model a dual phase sensor capable of detecting oil in water. • A mechanism is proposed to correlate sensing with diffusion. • In situ polymerization helps in the uniform distribution of filler. • Polymer composite sensor could be used as stickers on oil pipelines.

  4. Evaluation with low-dose dual-phase helical computed tomography of patients with thyroid lesions

    Institute of Scientific and Technical Information of China (English)

    Li Lin; Wang Yong; Zhao Yanfeng; Zou Shuangmei; Lin Meng; Yu Xiaoduo; Tang Wei

    2014-01-01

    Background The incidence of thyroid cancer has been increasing.Our aim was to evaluate the efficacy of low-dose dualphase helical computed tomography (CT) in the characterization of thyroid lesions,and to discuss the relationship between image characteristics and their pathology.Methods One hundred and six patients with thyroid lesions underwent low-dose dual-phase helical CT after the injection of contrast material.CT scans were obtained at arterial and venous phase with delays of 25 and 65 seconds,and tube current of 60 and 120 mA,respectively.The attenuation change in the lesion between the arterial and venous phase was analyzed and categorized as "increased," "decreased," "mixed" or "no change." Results Histopathologic diagnosis was obtained by surgery in 106 patients (115 lesions).Of the 106 patients,45 had nodular goiter,5 thyroid adenoma,6 thyroiditis,and 50 papillary thyroid carcinoma (PTC) (59 lesions).The attenuation value showed a significant difference (P <0.05) between the arterial and venous phase for the high attenuation area.There was statistical significant difference in terms of attenuation value in high attenuation areas at both phases and in low attenuation areas on arterial phase between nodular goiter and PTC (P <0.05).However,there was no significant difference in attenuation value between adenoma and PTC.Twenty-nine cases (76.3%) of goiter manifested mixed type,3 cases (3/5) of adenoma showed decreased type,6 cases (6/6) of thyroiditis showed increased type,and 55 cases (93.2%) of PTC showed decreased type attenuation.The sensitivity,specificity for thyroid carcinoma by dual-phase CT were 94.9% and 80.4% respectively.The overall diagnostic accuracy for thyroid lesions by dual-phase CT was 87.8%.Conclusions The performance of dual-phase helical CT is related to the pathological structure of the lesions.The analysis of enhancement patterns by using dual-phase helical CT will be helpful in the differential diagnosis of thyroid

  5. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  6. The use of dual-phase {sup 18}F-FDG PET in characterizing thyroid incidentalomas

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.-C.; Wu, P.-S.; Chiu, N.-T.; Yao, W.-J. [Department of Nuclear Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan (China); Lee, B.-F., E-mail: bflee@mail.ncku.edu.tw [Department of Nuclear Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan (China); Peng, S.-L. [Department of Pathology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan (China)

    2011-12-15

    Aim: To examine the usefulness of dual-phase 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography (PET) for the evaluation of thyroid incidentalomas. Materials and methods: In this retrospective study, cases with focal thyroid lesions seen incidentally at FDG PET in which the histopathological diagnosis was available and in which dual-phase FDG PET imaging was performed at 1 and 2 h after FDG injection were reviewed. In the included cases, the 1 and 2 h maximal standard uptake value (1-hour maximal SUV and 2-hour maximal SUV, respectively) and retention index (RI) were calculated, and the differences between benign and malignant thyroid incidentalomas were analysed. Receiver operating characteristic (ROC) analysis was performed to evaluate the ability of 1-hour maximal SUV, 2-hour maximal SUV, and RI to discriminate benign from malignant lesions. Results: A total of 39 patients (25 females, 14 males) with 45 lesions (17 malignant, 28 benign) were included. In malignant thyroid incidentalomas, the average 1-hour maximal SUV, 2-hour maximal SUV, and RI were 5.20, 5.72, and 7.67%, respectively, and in benign thyroid incidentalomas the values were 4.67, 4.97, and 7.38%, respectively. There were no significant differences in 1-hour maximal SUV, 2-hour maximal SUV, and RI between benign and malignant lesions. The area under the ROC curve did not differ from 0.5. Conclusion: Dual-phase FDG PET is not useful for differentiating benign from malignant thyroid incidentalomas.

  7. Modification of Banding in Dual-Phase Steels via Thermal Processing

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Thomas, L. S.; Bos, C.

    2014-01-01

    The potential to utilize controlled thermal processing to minimize banding in a DP780 steel with 2 wt pct Mn was evaluated on samples processed on a Gleeble® 3500 thermomechanical processing simulator. All processing histories were selected to result in final dual-phase steel microstructures...... simulating microstructures achievable during annealing of initially cold rolled sheet. Strip samples were processed to evaluate the effects of heating rate, annealing time, annealing temperature, and cooling rate. The degree of banding in the final microstructures was evaluated with standard light optical...

  8. Finite element analysis of non-isothermal warm deep drawing of dual phase steel

    Directory of Open Access Journals (Sweden)

    Pepelnjak T.

    2016-01-01

    Full Text Available Improving the formability of the material is an important issue in the deep drawing process. Heating the material above its recrystallization temperature drastically increases formability but in the case of dual phase (DP steels it results in the loss of their mechanical properties. To improve the drawing ratio, only the heating of the flange region in the warm temperature range up to 300°C was studied on DP600 sheet steel by numerical simulation. Thermo-elastic-plastic FEM analysis of deep drawing at several drawing ratios was performed and compared with experimental results.

  9. Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.

    Science.gov (United States)

    Kang, Jun-Yun; Park, Seong-Jun; Moon, Man-Been

    2013-08-01

    A quantitative and automated phase analysis of dual-phase (DP) steel using electron backscatter diffraction (EBSD) was attempted. A ferrite-martensite DP microstructure was produced by intercritical annealing and quenching. An EBSD map of the microstructure was obtained and post-processed for phase discrimination. Band slope (BS), which was a measure of pattern quality, exhibited much stronger phase contrast than another conventional one, band contrast. Owing to high sensitivity to lattice defect and little orientation dependence, BS provided handiness in finding a threshold for phase discrimination. Its grain average gave a superior result on the discrimination and volume fraction measurement of the constituent phases in the DP steel.

  10. Mechanical properties of fine-grained dual phase low-carbon steels based on dynamic transformation

    Institute of Scientific and Technical Information of China (English)

    Haiwei Xu; Wangyue rang; Zuqing Sun

    2008-01-01

    The fine grained dual phase (FG-DP) steel with ferrite grains of 2-4.5 μm and martensite islands smaller than 3 μm was obtained through the mechanism of deformation-enhanced ferrite transformation (DEFT). Mechanical properties of the steel were tested at room temperature. The results indicated that with a similar volume fraction of martensite (about 20vol%), FG-DP steel ex-hibited a superior combination of higher strength and more rapid strain hardening at low strains compared with the coarse-grained dual phase (CG-DP) steel obtained by critical annealing. The combination of higher strength, large elongation, and more rapid strain hardening of FG-DP steel can be attributed to the fine ferrite grain and finely dispersed martensite islands. In addition, the uniformly distributed martensite islands in FG-DP steel have smaller interspaeing compared with that of CG-DP steel. So, at the initial plastic deformation stage, the plastic deformation of ferrite was restrained and more pronounced load was transferred from ferrite to marten-site. The plastic deformation of martensite in FG-DP steel started earlier.

  11. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Science.gov (United States)

    Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

    2011-12-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  12. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2011-01-01

    Full Text Available Abstract Herein we are the first to report that single-walled carbon nanotubes (SWCNTs exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  13. On Dual Phase-Space Relativity, the Machian Principle and Modified Newtonian Dynamics

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-04-01

    Full Text Available We investigate the consequences of the Mach’s principle of inertia within the context of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large numbers coincidences and may provide with a physical reason behind the observed anomalous Pioneer acceleration and a solution to the riddle of the cosmological constant problem. The cosmological implications of Non-Archimedean Geometry by assigning an upper impossible scale in Nature and the cosmological variations of the fundamental constants are also discussed. We study the corrections to Newtonian dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a test particle in a modified Schwarzschild geometry (due to the the effects of the maximal acceleration that leads in the weak-field approximation to essential modifications of the Newtonian dynamics and to violations of the equivalence principle. Finally we follow another avenue and find modified Newtonian dynamics induced by the Yang’s Noncommutative Spacetime algebra involving a lower and upper scale in Nature.

  14. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  15. Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kuang, Shuang [Technical Research Institute, Shougang Corporation, Ltd., Beijing 100043 (China)

    2014-08-26

    Fatigue crack growth behaviors of cold-rolled dual phase steels with different microstructures were investigated at room temperature. The ferrite–martensite dual-phase microstructure was obtained by intercritical annealing. Fatigue crack growth (FCG) behaviors were described by both the Paris model and a new exponential model; fatigue fractography and surface morphology near the fracture were arrested by scanning electron microscopy (SEM); the relationship between macroscopic and microcosmic FCG rate was analyzed quantificationally. The results showed that both the models can be used to describe the fatigue crack growth rate of the samples rather well; fatigue striations and secondary cracks were observed in the fracture surface at stable expanding region (II), while the fracture at rapid expanding region (III) combined dimple and quasi-cleavage morphology; the roughness of fracture surface and the degree of secondary cracking increased with an increase in martensite content, leading to a higher threshold value. Moreover, the changes of microcosmic FCG rate were smoother than that of the macroscopic FCG rate.

  16. Model Algorithm Research on Cooling Path Control of Hot-rolled Dual-phase Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing XU; Xiao-dong HAO; Shi-guang ZHOU; Chang-sheng LIU; Qi-fu ZHANG

    2016-01-01

    With the development of advanced high strength steel,especially for dual-phase steel,the model algorithm for cooling control after hot rolling has to achieve the targeted coiling temperature control at the location of downcoiler whilst maintaining the cooling path control based on strip microstructure along the whole cooling section.A cooling path control algorithm was proposed for the laminar cooling process as a solution to practical difficulties associated with the realization of the thermal cycle during cooling process.The heat conduction equation coupled with the carbon diffusion equation with moving boundary was employed in order to simulate temperature change and phase transfor-mation kinetics,making it possible to observe the temperature field and the phase fraction of the strip in real time. On this basis,an optimization method was utilized for valve settings to ensure the minimum deviations between the predicted and actual cooling path of the strip,taking into account the constraints of the cooling equipment′s specific capacity,cooling line length,etc.Results showed that the model algorithm was able to achieve the online cooling path control for dual-phase steel.

  17. ROLE OF 99Tcm-SESTAMIBI DUAL-PHASE PARATHYROID SCINTIGRAPHY IN PREOPERATIVE LOCALIZATION IN PATIENTS WITH PRIMARY HYPERPARATHYROIDISM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To evaluate the application of 99Tcm-sestamibi dual-phase parathyroid scintigraphy in the preoperative localization in patients with primary hyperparathyroidism and to compare the diagnostic efficacy of various imaging modalities. Methods Ninety-two consecutive patients, diagnosed as hyperparathyroidism and presented with hypercalcaemia as the predominant symptom, were included. All the patients underwent dual-phase parathyroid scintigraphy using 99Tcm-sestamibi and parathyroid ultrasound scan. Among them, 48 patients underwent parathyroid computed tomography (CT). All patients were referred for parathyroidectomy. Results 99Tcm-sestamibi dual-phase parathyroid scintigraphy revealed the diagnostic sensitivity of 76.5%, 80%, 75% and 33.3% for the subgroup of single adenomas, multiple adenomas, ectopic parathyroid and parathyroid hyperplasia respectively. The specificity was 100% for all leisons. 99Tcm-sestamibi dual-phase parathyroid scintigraphy was proved to be superior to the other imaging modalities (ultrasound and CT) in terms of the preoperative diagnostic accuracy. The lesion weight was found to be an underlying factor leading to the false negative result. Conclusion 99Tcm-sestamibi dual-phase parathyroid scintigraphy was found to have higher diagnostic accuracy in comparison with other imaging modalities and is recommended preoperatively in order to reduce the sugery time and unnecessary neck exploration.

  18. Soldadura de aceros dual phase en chapa fina: GMAW, PAW y RSW Welding of dual phase steel sheet: GMAW, PAW and RSW

    Directory of Open Access Journals (Sweden)

    Hernán Svoboda

    2011-06-01

    Full Text Available Los aceros Dual Phase (DP han encontrado recientemente una fuerte aplicación en elementos estructurales en la industria automotriz, debido a la necesidad de disminuir peso. La soldadura de estos materiales cobra particular importancia considerando su aplicación estructural y los procesos relacionados en su fabricación. En particular la soldadura de resistencia por punto (RSW y semiautomática con alambre macizo y protección gaseosa (GMAW son ampliamente utilizados en la industria automotriz. El proceso de soldadura por plasma (PAW se caracteriza, entre los procesos de soldadura por arco, por ser el de mayor densidad de energía, presentando particular interés en aplicaciones de la industria automotriz (tailor welded blanks. El objetivo del presente trabajo fue estudiar la evolución microestructural y las propiedades de aceros DP soldados mediante los procesos RSW, GMAW y PAW. A este fin, se soldaron cuatro grados de aceros DP con resistencias mecánicas de 550, 700 y 850 MPa en espesores de 1 y 1,3 mm mediante los mencionados procesos. Se caracterizaron las microestructuras y se determinaron las propiedades mecánicas de las uniones soldadas para cada caso. Para los tres procesos se obtuvieron uniones soldadas de calidad satisfactoria. Se observó para todas las soldaduras, que en la ZAC se produce una disminución de la dureza por debajo del valor del material base, relacionada a la descomposición de la fase martensítica. Las soladuras por arco fueron las más afectadas.Dual Phase steels (DP have been used recently as an interesting option for structural elements, specialy in automotive industry, due to weight reduce requirements. Welding of these materials becomes particularly important considering their application as structural elements and the related manufacturing methods. In particular resistance spot welding (RSW and gas metal arc welding (GMAW are widely used in the automotive manufacturing. The plasma arc welding (PAW has the

  19. Characterization of dual-phase steels obtained by hot-rolling; Caracterizacion de aceros dual-phase obtenidos por laminacion en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Monsalve, A.; Artigas, A.; Castro, F.; Colas, R.; Houbaert, Y.

    2011-07-01

    Samples were obtained from C-Mn-Si steel available in the market. Through a hot rolling and coiling process, it was possible to obtain Dual-Phase steel with microstructural and mechanical properties in the theoretical range typical of this material. The thermomechanical process consisted of a strong reduction by multiples pass of hot rolling at temperatures above Ar{sub 3}, controlled-cooling the sheets during 5 s (at a rate of 20 degree centigrade/s) in the equilibrium range {alpha}+{gamma} Temperature Ar{sub 3} measured by differential scanning calorimetry was 890 degree centigrade. Quenching was then carried out in the coiling temperatures range (500-675 degree centigrade), cooling the samples in accordance to an established curve that corresponds to the actual cooling curve of a coil. The microstructural characterization of the samples obtained was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, texture measurements were carried out by X-ray diffraction in order to study the resulting orientations due to the finishing rolling temperature and coiling temperature, determining the influence on these parameters of the different texture components. The microstructural results were complemented with the normal and planar anisotropy indexes measured in according to the ASTM E-517 standard. The intensities of the different texture components were correlated with the values of anisotropy indexes, finding that it is possible to obtain only a slightly enhancement in the normal anisotropy index through an appropriate combination of finish rolling and coiling temperatures. (Author) 16 refs.

  20. Effect of vanadium on structure-property relations of dual phase fe/mn/si/0.1c steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Alvin; Koo, J. Y.; Thomas, G.

    1981-11-01

    The role of vanadium on the structure-property relations of dual phase Fe/Mn/Si/0.1C steels has been investigated. After intercritical annealing at 800°C, the steels with and without V were either iced brine quenched or air cooled. The steels were also solution treated at 900°C and subsequently air cooled. Although V modified the resultant microstructure, especially the morphology of carbides, the corresponding mechanical properties are not significantly affected by the modified microstructures. It is concluded that V is not beneficial to such dual phase low carbon steels.

  1. Comparison of Multislice Spiral CT Dual Phase and Somatosatatin Receptor Scintigraphy in the Diagnosis of Pancreas Neuroendocrine Tumors.

    Science.gov (United States)

    2016-06-10

    Objective To compare the sensitivity of multislice spiral CT dual phase and somatosatatin receptor scintigraphy (SRS) in the diagnosis of pancreas nuroendocrine tumors (pNET). Methods Totally 28 patients with pathologically confirmed pNET recieved both CT dual phase contrast and SRS and the results were compared. Results Of these 28 pNET patients,26 (92.8%) were accurately diagnosed by CT dual-phase scan and 20 (71.4%) by SRS (P=0.031).In the functioning pNET cases,the diagnosis sensitivity of CT dual phase scan and SRS was 94.1% (16/17)and 58.8% (10/17)(P=0.218). In the non-functioning pNET cases,the sensitivity was 90.9% (10/11) and 90.9% (10/11) (P=0.740).Diagnostic sensitivity of CT dual phase scan and SRS for pNET without metastasis was 90.4% (19/21) and 57.1% (12/21) (P=0.125).The sensitivity for pNET with metastasis was 100%(7/7)and 100% (7/7). Corresponding to the pathological grading,the diagnostic sensitivity of CT dual phase scanning and SRS was 84.6% (11/13) and 53.8% (7/13) for G1,100% (12/12) and 83.3% (10/12) for G2,and 100% (3/3) and 100% (3/3) for G3. The diagnostic sensitivity of CT dual phase scan and SRS for pNET with diameter less than or equal to 2.0 cm was 94.7% (18/19) and 52.6% (10/19) (P=0.008). For pNET with diameter more than 2.0 cm,the sensitivity was 92.8% (13/14) and 100% (14/14). Conclusions Compared with SRS,dual phase CT scan is more sensitive in diagnosing pNET,especially for those in lower pathological stages. For lesions sized less than or equal to 2.0 cm,SRS should be combined with other imaging examinations to minimize false negative results.

  2. Microstructural Characterization and Mechanical Properties of Powder Metallurgy Dual Phase Steel Preforms

    Institute of Scientific and Technical Information of China (English)

    K. Mahesh; S. Sankaran; P. Venugopal

    2012-01-01

    In order to improve the mechanical properties of powder metallurgy (P/M) ferrite-pearlite steel, a dual phase (DP) ferrite-martensite steel was produced through intercritical annealing of sintered P/M preforms. Mi-crostructures of the sintered and DP steels were examined with optical, scanning and transmission electron microscopes. Mechanical properties were evaluated through hardness measurements and compression tests. Microstructural studies revealed that sintered steel contained polygonal ferrite-pearlite while the DP steel contained polygonal, lath and acicular ferrite along with lath-type martensite as microstructural constituents. In DP steels, with increasing mean preform density, the microstructure contained fine and continuous network of martensite colonies with minimum porosity. The work hardening rate vs plastic strain plots (Jaoul-Crussard analysis) of both the steels revealed typical three stage deformation behaviour for low and high mean preform densities. Compression tests revealed that, DP P/M steel displayed higher strength-plasticity combination than the sintered steel.

  3. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels;

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  4. Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, Yousef, E-mail: y.mazaheri@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Kermanpur, Ahmad; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2015-07-15

    Dual phase (DP) steels consisting different volume fractions of ferrite and martensite and different ferrite grain size were produced by a new route utilizing cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structure at 770 °C for different times. Scanning electron microscopy has been supplemented by nanoindentation and tensile test to follow microstructural changes and their correlations to the variation in phase's hardness and mechanical properties. The results showed that longer holding times resulted in coarser and softer ferrite grains in DP microstructures. Martensite nanohardness variation with holding time is related to change in its carbon content. Mechanical properties such as strength, elongation and toughness are well correlated with the martensite/ferrite hardness ratio.

  5. Formation of Austenite During Intercritical Annealing of Dual-Phase Steels

    Science.gov (United States)

    Speich, G. R.; Demarest, V. A.; Miller, R. L.

    1981-08-01

    The formation of austenite during intercritical annealing at temperatures between 740 and 900 °C was studied in a series of 1.5 pct manganese steels containing 0.06 to 0.20 pct carbon and with a ferrite-pearlite starting microstructure, typical of most dual-phase steels. Austenite formation was separated into three stages: (1) very rapid growth of austenite into pearlite until pearlite dissolution is complete; (2) slower growth of austenite into ferrite at a rate that is controlled by carbon diffusion in austenite at high temperatures (~85O °C), and by manganese diffusion in ferrite (or along grain boundaries) at low temperatures (~750 °C); and (3) very slow final equilibration of ferrite and austenite at a rate that is controlled by manganese diffusion in austenite. Diffusion models for the various steps were analyzed and compared with experimental results.

  6. Friction drilling of dual phase steels; Taladrado por friccion en aceros de doble fase

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, D.; Lopez de Lacalle, L. N.; Lamikiz, A.

    2012-11-01

    This work describes the experimental study of the friction drilling process in dual phase (DP) steels, with yield strengths from 600 to 800 Mpa. The optimal machining conditions with different thicknesses was assessed through controlled tests at different rotation speeds and feed rates. On one hand, the torque and the thrust force were computed and monitorized. On the other hand, the dimensional tolerances of the holes were evaluated. Another topic of interest inherent to this special technique is the temperature level reached during the friction process which is crucial when it comes to development of microstructural transformations. This thermal condition can transform the mechanical properties of material near the hole and the burr. (Author)

  7. Transient heterogeneous enhancement on dual-phase helical CT of liver

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Tadashi; Hama, Hikaru; Oikawa, Hideki; Yamada, Takayuki; Abe, Hiroyuki; Saitoh, Haruo; Sakamoto, Kiyohiko [Tohoku Univ., Sendai (Japan). School of Medicine; Satoh, Akihiro

    1996-08-01

    Transient heterogeneous enhancement was seen on the arterial phase of dual-phase helical CT of the liver. The shape of the enhancement was appeared wedged or patchy. These phenomena without liver tumor were observed in 23 (2.3%) of 1012 patients with suspected hepatobiliary disease. Plain CT showed no attenuation difference in the liver. Twenty-two of these 23 cases were diagnosed as scarred liver, A-P shunt caused by liver biopsy, acute cholecystitis, liver abscess, liver cirrhosis, or advanced pancreas head cancer. The diagnosis of one case was uncertain. These phenomena were thought to be caused by a regional direct increase in hepatic arterial flow due to arterial-portal (A-P) shunt, or hypervascular tumor; or a compensatory increase in hepatic arterial flow as a result of decreased portal venous flow caused by tumor invasion or severe liver cirrhosis. (author)

  8. A single channel input virtual dual-phase lock-in amplifier

    Science.gov (United States)

    Gao, Zhongjian; Zheng, Hua; Li, Lianhuang; Chen, Fang; Guo, Fuyuan

    2011-11-01

    In this article, it presents a suit of single channel input virtual Dual-Phase Lock-in Amplifier (DPLIA) that is constructed by a personal computer sound card and the LabVIEW software. The virtual DPLIA is low cost and convenient to implement. The implemented DPLIA could enhance the noise tolerance capability and lower the LOD of the optical signal detection system. A primary benefit of this instrument is it only needs one input channel; two internal reference signals of the digital PLL are generated in the LabVIEW software. It is easy to control and operate, the data processing results can be saved directly to disks. This instrument will be applied in other weak signal detection systems.

  9. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    Science.gov (United States)

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  10. Differential diagnosis of Parkinsonism using dual phase F 18 FP CIT PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Young; Oh, Min Young; Ok, Seung Jun; Oh, Jung Su; Lee, Sang Ju; Chung, Sun Ju; Lee, Chong Sik; Kim, Jae Seung [Univ. of Ulsan, Seoul (Korea, Republic of)

    2012-03-15

    Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson's disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual phase F 18 FP CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism. Ninety eight subjects [five normal, seven drug induced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy parkinson type (MSA-P), 13 multiple system atrophy cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies(DLB)] underwent F 18 FP CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F 18 FP CIT administration (185MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses. Striatal DAT binding was normal in normal, ET, DIP, and MSA C groups, but abnormal in PD, MSA P PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR<0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4% and 100%, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81% for MSA P, 77% for MSA C, 23% for PSP, and 54.5% for DLB. Dual phase F 18 FP CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD.

  11. The role of dual-phase helical CT in assessing resectability of carcinoma of the gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, Vinay; Pande, Girish Kumar; Sahni, Peush; Chattopadhyay, Tushar Kanti [Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029 (India); Gulati, Manpreet Singh; Paul, Shashi Bala [Department of Radiodiagnosis, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029 (India)

    2002-08-01

    Our objective was to assess the ability of dual-phase helical CT (DHCT) to predict resectability of carcinoma of gallbladder (CaGB). Thirty-two consecutive patients suspected of having CaGB on clinical examination and sonography presented to our centre over 10-month period. All these 32 patients underwent DHCT. Fifteen patients were considered inoperable and 2 had xanthogranulomatous cholecystitis. The remaining 15 patients (10 women, 5 men; age range 33-72 years) underwent surgery and had histopathological confirmation of CaGB and were included in the study based on the following criteria: presence of mass in gallbladder fossa on sonography and DHCT, and confirmation at surgery and histopathological examination. Axial reconstructions of 2 mm were obtained (collimation 3 mm, table speed 4.5 mm/s) for arterial (scan delay 20 s) and venous (scan delay 60 s) phases on a helical scanner. The criteria used for unresectability were: distant metastasis (liver, peritoneum, lymph nodes), extensive local contiguous organ spread, involvement of secondary biliary confluence of both lobes of liver, tumoral invasion of main portal vein, or proper hepatic artery or simultaneous invasion of one side hepatic artery and the other side portal vein. The CT findings related to unresectability were correlated with surgical findings. On the basis of CT findings, 10 patients were unresectable and 5 were resectable. Of the 10 patients considered unresectable, 9 had tumours that were unresectable at surgery (sensitivity 100%, positive predictive value 90%). Five patients had more than one reason and 4 had one reason alone for being unresectable (lymph nodes, n=2; hepatic metastasis, n=1; and vascular invasion, n=1). All 5 patients considered resectable based on CT findings had resectable tumours at surgery (negative predictive value 100%). The overall accuracy of CT was 93.3%. Dual-phase helical CT comprehensively evaluates CaGB and may be a useful tool in preoperative staging of this

  12. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    Science.gov (United States)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  13. Pancreatic adenocarcinoma: dual-phase helical CT with surgical and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun A; Yoon, Kwon Ha; Park, Seong Hoon; Yun, Ki Jung; Won, Jong Jin [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2003-03-01

    To determine the accuracy of dual-phase helical CT in assessing the resectability of pancreatic ductal adenocarcinoma, and to correlate the CT findings with the surgical and histopathologic findings. Thirty patients with pathologically proven cancer of the pancreas underwent arterial-and portal-phase helical CT scanning, and in the two of these, single-level dynamic CT was performed during celiac and superior mesenteric arteriography. In 17 patients who underwent surgery for potentially resectable cancer of the pancreatic head, tumor resectability was assessed. The CT findings were analyzed and correlated with these of surgery and histopathology. In 13 (76%) of the 17 patients who underwent surgery, tumors were resectable. Their average size was 2.76 cm (arterial phase), 2.30 cm (portal phase), and 2.48 cm (pathologically determined) and the overall accuracy of helical CT for assessing resectability was 87%. In all patients, the central portion of the tumors exhibited hypoattenuation at both phases; the peripheral portion showed hypoattenuation at the arterial phase and iso- (n=10) or hyperattenuation (n=3) at the portal phase. Single-level dynamic CT depicted a persistently hypoattenuating central portion and progressive and prolonged enhancement of the periphery. CT-histopathologic correlation showed that central hypoattenuation indicated the presence of tumor cells, necrosis (n=3) and mucin (n=4), while the peripheral iso- or hyperattenuated areas seen at the portal phase represented fibrosis and inflammatory infiltration. Histopathologic examination revealed tumoral infiltration of peripancreatic fat tissue (n=11) and microvascular invasion of major peripancreatic vessels (n=7). The dual-phase helical CT is useful in the determination of resectability in pancreas cancer and CT findings represent well the histopathologic features of pancreas cancer.

  14. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Thermomechanical Modeling of Dual-Phase Microstructures and Dissimilar Material Joints

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.; Ferraris, M.; Katoh, Yutai

    2016-09-30

    Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.

  15. Application of dual phase imaging of 11C-acetate positron emission tomography on differential diagnosis of small hepatic lesions.

    Directory of Open Access Journals (Sweden)

    Li Huo

    Full Text Available OBJECTIVE: Previously we observed that dual phase 11C-acetate positron emission tomography (AC-PET could be employed for differential diagnosis of liver malignancies. In this study, we prospectively evaluated the effect of dual phase AC-PET on differential diagnosis of primary hepatic lesions of 1-3 cm in size. METHODS: 33 patients having primary hepatic lesions with size of 1-3 cm in diameter undertook dual phase AC-PET scans. Procedure included an early upper-abdomen scan immediately after tracer injection and a conventional scan in 11-18 min. The standardized uptake value (SUV was calculated for tumor (SUVT and normal tissue (SUVB, from which 11C-acetate uptake ratio (as lesion against normal liver tissue, SUVT/SUVB in early imaging (R1, conventional imaging (R2, and variance between R2 and R1 (ΔR were derived. Diagnoses based on AC-PET data and histology were compared. Statistical analysis was performed with SPSS 19.0. RESULTS: 20 patients were found to have HCC and 13 patients had benign tumors. Using ΔR>0 as criterion for malignancy, the accuracy and specificity were significantly increased comparing with conventional method. The area under ROC curve (AUC for R1, R2, and ΔR were 0.417, 0.683 and 0.831 respectively. Differential diagnosis between well-differentiated HCCs and benign lesions of FNHs and hemangiomas achieved 100% correct. Strong positive correlation was also found between R1 and R2 in HCC (r2 = 0.55, P<0.001. CONCLUSIONS: Dual phase AC-PET scan is a useful procedure for differential diagnosis of well-differentiated hepatocellular carcinoma and benign lesions. The dynamic changes of 11C-acetate uptake in dual phase imaging provided key information for final diagnosis.

  16. Modelling the Process Chain of Cold Rolled Dual Phase Steel for Automotive Application

    Science.gov (United States)

    Ramazani, A.; Prahl, U.

    This project aims to develop a virtual process chain for the production of components out of cold-rolled dual-phase (DP) steel. The simulation chain starts with cold-rolled strip. During intercritical annealing process all relevant steps like recrystallization, austenite formation and grain growth, ferrite and martensite transformation including bainite fractions and quasi-tempering during hot dip coating and coiling are taken into account. Concerning the final mechanical properties transformation induced micro eigenstresses are described as well as strain partitioning on microscale during cold forming. This multi-scale and process-spanning approach enables the local properties in the part for varying composition and processing conditions. Thus, it can be used for the knowledge driven design and optimization of tailored material and process. To describe all the steps along the process chain, various simulation programs have been linked. By comparison of simulation and experimental results the predictability of this approach can be shown an in a later stage the integrative simulation approach will be further developed towards application for material and process design.

  17. A study on fatigue crack growth in dual phase martensitic steel in air environment

    Indian Academy of Sciences (India)

    K V Sudhakar; E S Dwarakadasa

    2000-06-01

    Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, respectively to evaluate the potential of DP steels. The crack growth rates (/) at different stress intensity ranges ( ) were determined to obtain the threshold value of stress intensity range ( th). Crack path morphology was studied to determine the influence of microstructure on crack growth characteristics. After the examination of crack tortuosity, the compact tension (CT) specimens were pulled in static mode to determine fracture toughness values. FCG rates decreased and threshold values increased with increase in vol.% martensite in the DP steel. This is attributed to the lower carbon content in the martensite formed at higher intercritical annealing (ICA) temperatures, causing retardation of crack growth rate by crack tip blunting and/or deflection. Roughness induced crack closure was also found to contribute to the improved crack growth resistance at higher levels of martensite content. Scanning electron fractography of DP steel in the near threshold region revealed transgranular cleavage fracture with secondary cracking. Results indicate the possibility that the DP steels may be treated to obtain an excellent combination of strength and fatigue properties.

  18. Austenite formation during intercritical annealing in C-Mn cold-rolled dual phase steel

    Institute of Scientific and Technical Information of China (English)

    李声慈; 康永林; 朱国明; 邝霜

    2015-01-01

    Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite. Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.

  19. Correlation between contrast enhancement of portal vein and spleen size in dual-phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seung Eon; Choi, Jong Cheol; Nam, Kyung Jin; Jung, Won Jung; Goo, Bong Sik; Park, Byung Ho; Lee, Young Ii; Chung, Duck Hwan [Donga Univ. College of Medicine, Pusan (Korea, Republic of)

    1996-10-01

    To evaluate using spiral CT the effect of spleen size on blood flow in the portal venous system and to know the usefulness of this evaluation. Fifty-one patients without evidence on spiral CT scan of abnormality thought to affect portal venous flow presented between December 1994 and June 1995. We measured spleen size and Hounsfield units of portal vein in dual-phase, and calculated the ratio of the unit in the portal phase to that in the arterial phase. Spleen size was measured, using the length of X-axis by that of Z-axis on spiral CT scan. We then measured the correlation between the two values. CT was performed with a Somatom Plus-S scanner(Siemens, Erlangen, Germany). A total dose of 120ml of non-ionic contrast material(Ultravist) was administered at a rate of 3 ml/sec. Arterial and portal phase were obtained after 30 seconds and 60 seconds from the begining of the contrast agent injection. The correlation between spleen size and contrast enhancement of the portal vein was relatively significant(Pearson's correlation coefficient(r)=0.41801). Spleen size significantly affects portal venous flow on spiral CT scan. The evaluation of spleen size and contrast enhancement of the portal vein could be useful in the differential diagnosis of diseases which affect portal venous flow.

  20. DETERMINATION OF FORMABILITY PARAMETERS OF ERDEMİR 6114 SHEETS TEMPERED AT DUAL PHASE REGIONS

    Directory of Open Access Journals (Sweden)

    N. Sinan KÖKSAL

    2001-03-01

    Full Text Available Formability versus hardening process of ERDEMİR 6114 (SAE 1005 sheet was examined for determining the convenient tempering temperature providing optimum formability. Here, the effects of factors on formability; anisotropy factor (R, deformation hardening exponent (n, stretchability (h, yield point (Re and tensile strength (Rm variation were examined considering drawing direction also. Homogenous structures of test specimens were obtained by normalization tempering such as keeping in furnace at 890 0 C for 30 minutes and cooling in air. Tempering process of the samples were done at dual phase regions at temperatures 740, 770, 800, 820 and 850 0 C for 30 minutes and quenching in water afterwards. After tensile test and Erichsen experiment at room temperature, differences in yield point (Re , tensile strength (Rm, R, n and h values were observed. As a conclusion, it has been seen that R and n values of the samples tempered at 740 and 770 0 C were increased and h value were higher than the others, so formability characteristics of these samples were better than the other samples.

  1. Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels

    Science.gov (United States)

    Huang, Sheng; He, ChunFeng; Zhao, YiXi

    2016-03-01

    Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.

  2. Noise Measurements Of Resistors With The Use Of Dual-Phase Virtual Lock-In Technique

    Directory of Open Access Journals (Sweden)

    Stadler Adam Witold

    2015-12-01

    Full Text Available Measurement of low-frequency noise properties of modern electronic components is a very demanding challenge due to the low magnitude of a noise signal and the limit of a dissipated power. In such a case, an ac technique with a lock-in amplifier or the use of a low-noise transformer as the first stage in the signal path are common approaches. A software dual-phase virtual lock-in (VLI technique has been developed and tested in low-frequency noise studies of electronic components. VLI means that phase-sensitive detection is processed by a software layer rather than by an expensive hardware lock-in amplifier. The VLI method has been tested in exploration of noise in polymer thick-film resistors. Analysis of the obtained noise spectra of voltage fluctuations confirmed that the 1/f noise caused by resistance fluctuations is the dominant one. The calculated value of the parameter describing the noise intensity of a resistive material, C = 1·10−21 m3, is consistent with that obtained with the use of a dc method. On the other hand, it has been observed that the spectra of (excitation independent resistance noise contain a 1/f component whose intensity depends on the excitation frequency. The phenomenon has been explained by means of noise suppression by impedances of the measurement circuit, giving an excellent agreement with the experimental data.

  3. Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements.

    Science.gov (United States)

    Pinard, Philippe T; Schwedt, Alexander; Ramazani, Ali; Prahl, Ulrich; Richter, Silvia

    2013-08-01

    Electron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) measurements are combined to characterize an industrial produced dual-phase steel containing some bainite fraction. High-resolution carbon mappings acquired on a field emission electron microprobe are utilized to validate and improve the identification of the constituents (ferrite, martensite, and bainite) performed by EBSD using the image quality and kernel average misorientation. The combination eliminates the ambiguity between the identification of bainite and transformation-induced dislocation zones, encountered if only the kernel average misorientation is considered. The detection of carbon in high misorientation regions confirms the presence of bainite. These results are corroborated by secondary electron images after nital etching. Limitations of this combined method due to differences between the spatial resolution of EBSD and EPMA are assessed. Moreover, a quantification procedure adapted to carbon analysis is presented and used to measure the carbon concentration in martensite and bainite on a submicrometer scale. From measurements on reference materials, this method gives an accuracy of 0.02 wt% C and a precision better than 0.05 wt% C despite unavoidable effects of hydrocarbon contamination.

  4. Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels

    Institute of Scientific and Technical Information of China (English)

    Le-yu Zhou; Dan Zhang; Ya-zheng Liu

    2014-01-01

    Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, me-chanical properties, and stretch-flangeability of conventional dual-phase steels. Compared to 0.03wt%silicon, the addition of 1.08wt%sili-con induced the formation of finer ferrite grains (6.8μm) and a higher carbon content of martensite (Cm≈0.32wt%). As the silicon level in-creased, the initial strain-hardening rate (n value) and the uniform elongation increased, whereas the yield strength, yield ratio, and stretch-flangeability decreased. The microstructures were observed after hole-expansion tests. The results showed that low carbon content martensite (Cm≈ 0.19wt%) can easily deform in coordination with ferrite. The relationship between the mechanical properties and stretch-flangeability indicated that the steel with large post-uniform elongation has good stretch-flangeability due to a closer plastic incom-patibility of the ferrite and martensite phases, which can effectively delay the production and decohesion of microvoids.

  5. Estimation of dual phase lag model parameters using the evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    B. Mochnacki

    2011-07-01

    Full Text Available Generalization of Fourier law, in particular the introduction of two ‘delay times’ (relaxation time q and thermalization time T leads to thenew form of energy equation called the dual-phase-lag model (DPLM. This equation should be applied in a case of microscale heat transfermodeling. In particular, DPLM constitutes a good approximation of thermal processes which are characterized by extremely short duration(e.g. ultrafast laser pulse, extreme temperature gradients and geometrical features of domain considered (e.g. thin metal film. The aim ofconsiderations presented in this paper is the identification of two above mentioned positive constants q, T. They correspond to the relaxationtime, which is the mean time for electrons to change their energy states and the thermalization time, which is the mean time required forc(TTl G(TT electrons and lattice to reach equilibrium. In this paper the DPlLMlequation ise appllied for analysis of thermal processes proceeding in a thint metal film subjected to a laser beam. At the stage of computations connected with the identification problem solution the evolutionaryalgorithms are used. To solve the problem the additional information concerning the transient temperature distribution on a metal film surface is assumed to be known.

  6. Corrosion behavior of tempered dual-phase steel embedded in concrete

    Institute of Scientific and Technical Information of China (English)

    O(g)uzhan Kelestemur; Mustafa Aksoy; Servet Yddtz

    2009-01-01

    Dual-phase (DP) steels with different martensite contents were obtained by appropriate heat treatment of an SAE1010 structural carbon steel,which was cheap and widely used in the construction industry.The corrosion behavior of DP steels in con-crete was investigated under various tempering conditions.Intercritical annealing heat treatment was applied to the reinforcing steel to obtain DP steels with different contents of martensite.These DP steels were tempered at 200,300,and 400℃ for 45 min and then cooled to room temperature.Corrosion experiments were conducted in two stages.In the first stage,the corrosion potential of DP steels embedded in concrete was measured every day for a period of 30 d based on the ASTM C 876 standard.In the second stage,the anodic and cathodic polarization values of these steels were obtained and subsequently the corrosion currents were determined with the aid of cathodic polarization curves.It was observed that the amount of second phase had a definite effect on the corrosion behavior of the DP steel embedded in concrete.As a result of this study,it is found that the corrosion rate of the DP steel increases with an increase in the amount ofmartensite.

  7. Optimization as a support for design of hot rolling technology of dual phase steel strips

    Science.gov (United States)

    Szeliga, Danuta; Sztangret, Łukasz; Kusiak, Jan; Pietrzyk, Maciej

    2013-05-01

    The objective of the paper was performing of the sensitivity analysis of the model used for design of manufacturing technology for auto body parts made of the Advanced High Strength Steels (AHSS). Dual phase steel was considered as an example. The sensitivity analysis was performed to evaluate the importance of all variables as far as their influence on the finishing rolling temperature and grain size. The phase composition after cooling was also considered. An arbitrary hot rolling process characterized only by a number of passes and cooling conditions between passes, as well as by laminar cooling parameters, was selected for the analysis. Metamodel of the rolling cycle was developed to decrease the computing costs for the optimization task. Modified Avrami equation was used for modelling phase transformations during cooling. Such process parameters as the initial temperature, interpass times, heat exchange coefficients and rolling velocities were selected as optimization variables for the rolling process. Parameters of the thermal cycles were selected as the optimization variables for the laminar cooling process. Achieving the required phase composition of product was the optimization objective function. Optimization was performed using various techniques, including methods inspired by nature optimization.

  8. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zuo-peng [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Qiao, Gui-ying [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Tang, Lei [Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Hong-wei; Liao, Bo [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-03-07

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10{sup 5} cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m{sup 1/2}. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  9. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    Science.gov (United States)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  10. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    Science.gov (United States)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  11. Technical Note: Simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2014-01-01

    Full Text Available Representation of gaseous diffusion in variably saturated near-surface soils is becoming more common in land biogeochemical models, yet the formulations and numerical solution algorithms applied vary widely. We present three different but equivalent formulations of the dual-phase (gaseous and aqueous tracer diffusion transport problem that is relevant to a wide class of volatile tracers in land biogeochemical models. Of these three formulations (i.e., the gas-primary, aqueous-primary, and bulk tracer based formulations, we contend the gas-primary formulation is the most convenient for modeling tracer dynamics in biogeochemical models. We then provide finite volume approximation to the gas-primary equation and evaluate its accuracy against three analytical models: one for steady-state soil CO2 dynamics, one for steady-state soil CO2 dynamics, and one for transient tracer diffusion from a constant point source into two different sequentially aligned medias. All evaluations demonstrated good accuracy of the numerical approximation. We expect our result will standardize an efficient mechanistic numerical method for solving relatively simple, multi-phase, one-dimensional diffusion problems in land models.

  12. Dual-Phase 99MTc-MIBI Parathyroid Imaging Reveals Synchronous Parathyroid Adenoma and Papillary Thyroid Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Ming-Che Chang

    2008-10-01

    Full Text Available The possibility of a coincidental appearance of hyperparathyroidism and thyroid cancer is not often considered because of its low incidence. Here, we present a case of a 49-year-old woman with a parathyroid adenoma coexisting with two sites of papillary thyroid carcinoma. Dual-phase 99mTc-methoxyisobutylisonitrile (MIBI parathyroid imaging before the operation correctly visualized the site of the parathyroid adenoma. In addition, two papillary thyroid carcinomas showed faint uptake of 99mTc-MIBI on delayed image. Total thyroidectomy and parathyroidectomy of a solitary parathyroid adenoma were performed. The patient subsequently underwent radioiodine-131 ablation and was treated with T4 suppression. This case illustrates the need for clinical awareness of concomitant hyperparathyroidism and thyroid cancer. Dual-phase 99mTc-MIBI parathyroid imaging may be useful for detecting indolent thyroid cancer before it becomes a distinct disease.

  13. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels

    Science.gov (United States)

    Bhattacharyya, A.; Sakaki, T.; Weng, G. J.

    1993-02-01

    A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.

  14. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications.

  15. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Yang, Yuling, E-mail: yulingyang@mail.neu.edu.cn [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Li, Jinfeng, E-mail: lijinfengboda@163.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Ma, Min, E-mail: sharon6789@163.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Jiang, Tao, E-mail: tao.jiang906@yahoo.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China)

    2014-01-31

    Dual phase (DP) steels have been widely used in the automotive industry to reduce vehicle weight and improve car safety. In such applications welding and joining have to be involved, which would lead to a localized change of the microstructure and property, and create potential safety and reliable issues under dynamic loading. The aim of the present study is to examine the rate-dependent mechanical properties, deformation and fracture behavior of DP600 steel and its welded joint (WJ) produced by Nd:YAG laser welding over a wide range of strain rates (0.001–1133 s{sup −1}). Laser welding results in not only significant microhardness increase in the fusion zone (FZ) and inner heat-affected zone (HAZ), but also the formation of a softened zone in the outer HAZ. The yield strength (YS) of the DP600 steel increases and the ultimate tensile strength (UTS) remains almost unchanged, but the ductility decreases after welding. The DP600 base metal (BM) and WJ are of positive strain rate sensitivity and show similar stress–strain response at all studied strain rates. The enhanced ductility at strain rates ranging from 1 to 100 s{sup −1} is attributed to the retardation of the propagation of plastic strain localization due to the positive strain rate sensitivity and the thermal softening caused by deformation induced adiabatic temperature rise during dynamic tensile deformation. The tensile failure occurs in the inner HAZ of the joint and the distance of failure location from the weld centerline decreases with increasing strain rate. The mechanism for the changing failure location can be related to the different strain rate dependence of the plastic deformation behavior of the microstructures in various regions across the joint. The DP600 WJ absorbs more energy over the whole measured strain rates than that of the BM due to the higher strength at the same strain when the deformation only up to 10% is considered.

  16. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    Science.gov (United States)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  17. WA105: A large demonstrator of a liquid argon dual phase TPC

    Science.gov (United States)

    Zambelli, L.; Murphy, S.; WA105 Collaboration

    2017-09-01

    The Liquid argon technology has been chosen for the DUNE underground experiment for the study of neutrino oscillations, neutrino astrophysics and proton decay. This detector has excellent tracking and calorimetric capabilities much superior to currently operating neutrino detectors. WA105 is a large demonstrator of the dual-phase liquid argon TPC based on the GLACIER design, with a 6×6×6 m3 (appr. 300t) active volume. Its construction and operation test scalable solutions for the crucial aspects of this detector: ultra-high argon purity in non-evacuable tanks, long drifts, very high drift voltages, large area MPGD, cold preamplifiers. The TPC will be built inside a tank based on industrial LNG technology. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multipliers (LEM’s) provides amplification before the charge collection onto an anode plane with strip readout. This highly cost effective solution provides excellent imaging capabilities with equal charge sharing on both views. PMTs located at the bottom of the tank containing the liquid argon provide the readout of the scintillation light. This demonstrator is an industrial prototype of the design proposed for a large underground detector. WA105 is under construction at CERN and will be exposed to a charged particle beam (0.5 - 20 GeV/c) in the North Area in 2018. The data will provide necessary calibration of the detector performances and benchmark sophisticated reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program DUNE.

  18. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    Science.gov (United States)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical

  19. One-pot solvothermal synthesis of dual-phase titanate/titania Nanoparticles and their adsorption and photocatalytic Performances

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu Hua; Gong, Dangguo; Tang, Yuxin; Ho, Jeffery Weng Chye; Tay, Yee Yan; Lau, Wei Siew; Wijaya, Olivia; Lim, Jiexiang; Chen, Zhong, E-mail: aszchen@ntu.edu.sg

    2014-06-01

    Dual phase titanate/titania nanoparticles undergo phase transformation gradually with the increase of solvothermal synthesis temperature from 100 °C to 200 °C, and eventually are fully transformed into anatase TiO{sub 2}. The crystal structure change results in the changes of optical absorption, sensitizer/dopant formation and surface area of the materials which finally affect the overall dye removal ability. Reactions under dark and light have been conducted to distinguish the contributions of surface adsorption from photocatalytic degradation. The sample synthesized at 160 °C (S160) shows the best performances for both adsorption under dark and photocatalytic degradation of methylene blue (MB) under visible light irradiation. The adsorption mechanism for S160 is determined as monolayer adsorption based on the adsorption isotherm test under dark condition, and an impressive adsorption capacity of 162.19 mg/g is achieved. For the photocatalytic application, this sample at 0.1 g/L loading is also able to degrade 20 ppm MB within 6 hours under the visible light (>420 nm) condition. - Graphical abstract: The effect of solvothermal synthesis temperature on the formation and dye removal performance of dual phase titanate/titania nanoparticles was unveiled and optimized. - Highlights: • Low temperature one-pot solvothermal synthesis of dual-phase photocatalysts. • Correlation of the synthesis temperature is made with the phase composition. • Adsorption isotherm, kinetics, photocatalytic degradation were studied. • Synthesis at 160 °C yields the best material for adsorption of MB in dark. • The same sample also shows the best visible light degradation of MB.

  20. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    Science.gov (United States)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  1. Dual phase vacuum extraction technology for the recovery of petroleum hydrocarbon contamination from the subsurface : a case study

    Energy Technology Data Exchange (ETDEWEB)

    Kallur, V.G.; Agar, J.G.; Wong, T.T.; Naus, J. [O' Connor Associates Environmental Inc., Calgary, AB (Canada); Michielsen, A.P. [Imperial Oil Ltd., Burnaby, BC (Canada)

    2003-07-01

    This paper presents a case history concerning the application of dual phase vacuum extraction (DPVE) technology for the remediation of subsurface petroleum hydrocarbon (PHC) contamination in silty soils at a service station site located in Vancouver, British Columbia. It also summarized the design and performance monitoring results for the site, in conjunction with the performance monitoring results from similar DPVE systems in operation at 7 other sites in western Canada. Each of these sites is underlain by both fine-grained and coarser grained sandy soils. The study offers useful design guidance and insight on the practical limitations of DPVE technology for PHC remediation. 2 refs., 6 tabs., 4 figs.

  2. A new method of time difference measurement: The time difference method by dual phase coincidence points detection

    Science.gov (United States)

    Zhou, Wei

    1993-01-01

    In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.

  3. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    Science.gov (United States)

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample.

  4. Prediction of response to neoadjuvant chemotherapy in osteosarcoma using dual-phase (18)F-FDG PET/CT.

    Science.gov (United States)

    Byun, Byung Hyun; Kim, Sung Hoon; Lim, Sang Moo; Lim, Ilhan; Kong, Chang-Bae; Song, Won Seok; Cho, Wan Hyeong; Jeon, Dae-Geun; Lee, Soo-Yong; Koh, Jae-Soo; Chung, Soo Kyo

    2015-07-01

    We evaluated the ability of dual-phase (18)F-FDG PET/CT to predict the histological response after neoadjuvant chemotherapy (NAC) in osteosarcoma. Thirty-one patients with osteosarcoma treated with NAC and surgery were prospectively enrolled. After injection of (18)F-FDG, both early (~60 min) and delayed (~150 min) PET were acquired before and after the completion of NAC. SUVmax, early/delayed SUVmax change (RImax), and early/delayed SUVmean change (RImean) of tumour were measured before (SUV1, RImax1, and RImean1) and after NAC (SUV2, RImax2, and RImean2). Then, we calculated the percentage changes between SUV1 and SUV2 (%SUV). Twelve patients (39%) exhibited good histological response after NAC. SUVmax, RImax, and RImean significantly decreased after NAC. Before NAC, only RImean1 predicted good histological response with the optimal criterion of osteosarcoma. The combined use of SUV and RI values may provide a better prediction. • Pretreatment dual-phase FDG-PET was useful to predict histological response in osteosarcoma. • A combination of early and delayed PET may increase the predictive value. • Early/delayed SUV change of tumours significantly decreased after neoadjuvant chemotherapy.

  5. The WA105-3x1x1 m3 dual phase LAr-TPC demonstrator

    CERN Document Server

    Murphy, Sebastien

    2016-11-15

    The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides excellent signal-to-noise ratio. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multiplier detectors provides amplification of the charges before its collection onto an anode with strip readout. The charge amplification enables constructing fully homoge- nous giant LAr-TPCs with tuneable gain, excellent charge imaging performance and increased sensitivity to low energy events. Following a staged approach the WA105 collaboration is con- structing a dual phase LAr-TPC with an active volume of 3x1x1m3 that will soon be tested with cosmic rays. Its construction and operation aims to test scalable solutions for the crucial aspects of this technology: ultra high argon purity in non-evacuable tank, la...

  6. Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Magdy A., E-mail: maezzat2000@yahoo.com [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia); El-Karamany, Ahmed S., E-mail: qaramani@gmail.com [Department of Mathematical and Physical Sciences, Nizwa University, P.O. Box 1357, Nizwa 611 (Oman); Ezzat, Shereen M. [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We model fractional order dual-phase-lag heat conduction law. Black-Right-Pointing-Pointer We applied the model on a perfect conducting half-space of elastic material. Black-Right-Pointing-Pointer Some theories of generalized thermoelasticity follow as limit cases. Black-Right-Pointing-Pointer State space approach is adopted for the solution of one-dimensional problems. Black-Right-Pointing-Pointer The model will improve the efficiency of thermoelectric material. - Abstract: A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order dual-phase-lag heat conduction law is considered. The state space approach developed in Ezzat (2008) is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material, which is thermally shocked in the presence of a transverse magnetic field. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some theories of generalized thermoelasticity follow as limit cases. Some comparisons have been shown in figures to estimate effects of temperature discrepancy and fractional order parameter on all the studied fields.

  7. Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z.P., E-mail: zuileniwota@126.com [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Kostryzhev, A.G. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Stanford, N.E. [Institute of Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Pereloma, E.V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Electron Microscopy Centre, University of Wollongong, Wollongong, NSW 2519 (Australia)

    2016-01-10

    The strip casting is a recently appeared technology with a potential to significantly reduce energy consumption in steel production, compared to hot rolling and cold rolling. However, the quantitative dependences of the steel microstructure and mechanical properties on strip casting parameters are unknown and require investigation. In the present work we studied the effects of strain and interrupted cooling temperature on microstructure and mechanical properties in conventional dual phase steel (0.08C–0.81Si–1.47Mn–0.03Al wt%). The strip casting process was simulated using a Gleeble 3500 thermo-mechanical simulator. The steel microstructures were studied using optical, scanning and transmission electron microscopy. Mechanical properties were measured using microhardness and tensile testing. Microstructures consisting of 40–80% polygonal ferrite with remaining martensite, bainite and very small amount of Widmanstätten ferrite were produced. Deformation to 0.17–0.46 strain at 1050 °C refined the prior austenite grain size via static recrystallisation, which led to the acceleration of ferrite formation and the ferrite grain refinement. The yield stress and ultimate tensile strength increased with a decrease in ferrite fraction, while the total elongation decreased. The improvement of mechanical properties via deformation was ascribed to dislocation strengthening and grain boundary strengthening. - Highlights: • A processing route of strip casting was developed to produce dual phase steel. • The mechanical properties were comparable to cold rolled and hot rolled DP steels.

  8. Clinical value of dual-phase 18F-FDG SPECT with serum procalcitonin for identification of etiology in tumor patients with fever of unknown origin.

    Science.gov (United States)

    Zhang, Qun; Shan, Chun; Wu, Pei; Huang, Xin-En

    2014-01-01

    The purpose of the study was to evaluate clinical value of dual-phase 18F-FDG SPECT with serum procalcitonin (PCT) in identifying cancers in patients with fever of unknown origin (FUO). PCT test and dual-phase 18F-FDG SPECT were sequentially performed on 50 consecutive patients with FUO. Two radiologists evaluated all 18F-FDG SPECT data independently. A consensus was reached if any difference of opinions existed. Final diagnosis was based on a comprehensive analysis of results for the PCT test, dual- phase 18F-FDG SPECT and bacterial cultivation, regarded as a gold standard. Among 50 patients, 34 demonstrated PCT ≥ 0.5 μg/L. Coincidence imaging showed in 37 patients with inflammatory lesions, and 13 with malignancy. Finally, 36 bacterial, 1 fungal and 1 viral infections, as well as 12 cancerous fevers were confirmed by dual-phase 18F-FDG SPECT with PCT, combined with bacterial cultivation and clinical follow-up. Our study demonstrated that dual-phase 18F-FDG SPECT in association with PCT could be a valuable tool for diagnosis in tumor patients with FUO.

  9. Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels%Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels

    Institute of Scientific and Technical Information of China (English)

    Fatih Hayat; Htiseyin Uzun

    2011-01-01

    Grade A (GA) and high strength steel DH36 ship steels possessing different chemical compositions were used, and strength properties of GA steel and DH36 steel were compared. Additionally, 4 types of dual phase (DP) steels with different martensite volume fractions (MVFs) were produced from GA steel by means of heat treatment and they were compared with other steels through conducting mierostructure, microhardness, tensile and impact tests. The fracture surfaces of specimens (DH36, GA and DP steels) exposed to tensile and Charpy impact tests were investigated by scanning electron microscope. Furthermore, it was found that the specimens quenched from 800 and 900℃ had better strength than DH36 steel. The tensile test results indicated that the tensile strength of DP steel water quenched from 900℃ was 3 times that of GA steel and twice that of DH36 steel.

  10. Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide.

    Science.gov (United States)

    Garcia-Fayos, Julio; Balaguer, María; Serra, José M

    2015-12-21

    Dual-phase membranes are appealing candidates for oxygen transport membranes owing to their unique combination of ambipolar electron-ion transport and endurance. However, O2 separation in industrial environments demands very high stability and effectiveness in the presence of CO2- and SO2-bearing process gases. Here, the composition of dual-phase membranes based on NiFe2O4-Ce(0.8) Tb(0.2)O(2-δ) (NFO-CTO) was optimized and the effective performance of catalytically-activated membranes was assessed in presence of CO2 and SO2. Further insight into the limiting mechanisms in the permeation was gained through electrical conductivity studies, permeation testing in several conditions and impedance spectroscopy analysis. The dual-phase membranes were prepared by one-pot sol-gel method and their permeability increases with increasing fluorite content. An O2 flux of 0.25 (ml min(-1)  cm(-2)) mm at 1000 °C was obtained for a thick self-standing membrane with 40:60 NFO/CTO composition. An in-depth study mimicking typical harsh conditions encountered in oxyfuel flue gases was performed on a 50:50 NFO/CTO membrane. CO2 content as well as SO2 presence in the sweep gas stream were evaluated in terms of O2 permeation. O2 fluxes of 0.13 and 0.09 mL min(-1)  cm(-2) at 850 °C were obtained for a 0.59 mm thick membrane under CO2 and 250 ppm SO2 in CO2 sweep conditions, respectively. Extended periods at work under CO2- and SO2-containing atmospheres revealed good permeation stability over time. Additionally, XRD, backscattered electrons detector (BSD)-SEM, and energy-dispersive X-ray spectroscopy (EDS) analysis of the spent membrane confirmed material stability upon prolonged exposure to SO2.

  11. Dual-phase CT for the assessment of acute vascular injuries in high-energy blunt trauma: the imaging findings and management implications.

    Science.gov (United States)

    Iacobellis, Francesca; Ierardi, Anna M; Mazzei, Maria A; Magenta Biasina, Alberto; Carrafiello, Gianpaolo; Nicola, Refky; Scaglione, Mariano

    2016-01-01

    Acute vascular injuries are the second most common cause of fatalities in patients with multiple traumatic injuries; thus, prompt identification and management is essential for patient survival. Over the past few years, multidetector CT (MDCT) using dual-phase scanning protocol has become the imaging modality of choice in high-energy deceleration traumas. The objective of this article was to review the role of dual-phase MDCT in the identification and management of acute vascular injuries, particularly in the chest and abdomen following multiple traumatic injuries. In addition, this article will provide examples of MDCT features of acute vascular injuries with correlative surgical and interventional findings.

  12. Diverse acidogenic effluents as feedstock for microalgae cultivation: Dual phase metabolic transition on biomass growth and lipid synthesis.

    Science.gov (United States)

    Chiranjeevi, P; Venkata Mohan, S

    2017-10-01

    In this study, a biorefinery process integrating dark fermentation with microalgae cultivation (dual phase metabolic transition) was demonstrated with real-field wastewater. Acid rich fermented effluents (distillery waste (FDW1); dairy waste (FDW2)) were used as feedstock for microalgae cultivation. Experiments were performed with FDW1 during growth phase (GP) in mixotrophic mode and FDW2 during stress phase (SP) in both mixotrophic and heterotrophic modes. Mixotrophic cultivation with FDW1 documented significantly higher biomass productivity (5.3g/l). Total lipid (TL) percentage was high in mixotrophic (34%) mode and neutral lipid (NL) was high in heterotrophic (13%) mode of cultivation during SP with FDW2. Overall, the microalgae growth is favoured with effluents containing high acetate, and low butyrate concentrations. Mixotrophic cultivation enhanced both biomass growth and lipid production along with simultaneous treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. In-Situ Observation of Growth Behavior of Niobium Carbide during Dual-Phase Rapid Solidification of SUS347H

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Hirata, Hiroyuki; Ogawa, Kazuhiro

    2008-01-01

    In order to improve solidification cracking susceptibility, the crystallization of a heterophase such as the niobium carbide in the brittle temperature range is one of the effective techniques. In such a system, not only the growth behavior of dendrites during the rapid cooling but also the crystallization behavior of heterophase is very important. Therefore, diffraction patterns of a dual-phase mode Nb-bearing stainless steel during rapid cooling were investigated by in-situ two-dimensional time-resolved X-ray diffraction for the first time in order to reveal the microstructure formation. We discuss the growth behavior of dendrites with crystallization of niobium carbides. Subsequently, the niobium carbide formed epitaxially to the dendrite of the preferred in-plane orientation, having a small distorted orientation. With undercooling of several degree Celsius, the coherent growth on the δ-ferrite was stable for niobium carbide.

  14. Three-dimensional simulations of microstructural evolution in polycrystalline dual-phase materials with constant volume fractions

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Voorhees, P.W.; Lauridsen, Erik Mejdal

    2013-01-01

    The microstructural evolution of a polycrystalline dual-phase material with a constant volume fraction of the phases was investigated using large-scale three-dimensional phase-field simulations. All materials parameters are taken to be isotropic, and microstructures with volume fractions of 50....../50 and 40/60 were examined. After an initial transient, the number of grains decrease from ∼2600 to ∼500. It was found that the mean grain size of grains of both phases obeyed a power law with an exponent of 3, and the microstructural evolution was found to be controlled by diffusion. Steady...... with the topology of single-phase grain structures as determined by experiment and simulation. The evolution of size and number of faces for the minority and majority phase grains in the 40/60 volume fraction simulation is presented and discussed. Non-constant curvature across some interphase boundaries...

  15. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    Science.gov (United States)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  16. Optimal scan time of dual-phase spiral CT in normal rabbit liver : effect of contrast injection rate

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Kook; Kim, Sang Ho; Liu, Wei Chiang [Sungae General Hospital, Seoul (Korea, Republic of)] (and others)

    1999-06-01

    To determine the effect of contrast injection rate on rabbit liver enhancement and the optimal temporal window for dual-phase spiral CT of rabbit liver at each injection rate Using spiral CT, seven New Zealand White rabbits underwent dynamic scanning at one level of liver. Three protocols of contrast injection rates were employed, namely 0.3ml/sec(group 1), 1 ml/sec(group 2) and 2 ml/sec(group 3). During 120 seconds of total scan time, the scan interval was 3 seconds. Densities of the aorta, liver and portal vein were averaged in equivalent time. The different injection rate protocols were compared for peak enhancement/time on a time density curve. Mean peak enhancement (HU) in equivalent time(secs) was 310/18(group 1), 383/9(group 2) and 357/6(group 3) in the aorta ; 34/36, 40/36 and 41/30 in the liver ; and 135/36, 153/24 and 170/21 in the portal vein. The temporal window during the arterial phase was 12-21 sec(group 1), 6-12 sec(group 2), and 6-12 sec(group 3). The temporal window during the portal phase was from 30 sec(0.3ml/sec), 21 sec(1ml/sec) and 21sec(2ml/sec). During dual-phase spiral CT, the temporal window for liver scanning should be determined according to each contrast injection rate. A slow contrast injection rate prolongs the temporal window during the arterial phase.

  17. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Farabi, N. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-01-21

    Research highlights: > Laser welding results in a significant hardness rise in the fusion zone, but the formation of a soft zone in the heat-affected zone. > A characteristic unsymmetrical hardness profile is observed across the dissimilar joint. > Yield point phenomenon with only stage III strain hardening occurs after welding. > Fatigue life at higher stress amplitudes is equivalent to that of DP600 steel despite slightly lower fatigue limit. - Abstract: The use of dual phase (DP) steels in the automobile industry unavoidably involves welding and dynamic loading. The aim of this investigation was to evaluate the microstructural change and mechanical properties of laser welded dissimilar DP600/DP980 steel joints. The dissimilar joints showed a significant microstructural change from nearly full martensite in the fusion zone (FZ) to the unchanged ferrite-martensite dual-phase microstructure in the base metal. The welding resulted in a significant hardness increase in the FZ but the formation of a soft zone in the heat-affected zone (HAZ). The dissimilar welded joints were observed to exhibit a distinctive unsymmetrical hardness profile, yield-point-like phenomenon, and single-stage work hardening characteristic, with yield strength and work hardening rate lying in-between those of DP600 and DP980 base metals, and ultimate tensile strength equivalent to that of DP600 base metal. Although the welded joints showed a lower fatigue limit than the base metals, the fatigue life of the welded joints at higher stress amplitudes was almost the same as that of the DP600 base metal. The welded joints failed in the soft zone at the DP600 side under tensile loading and fatigue loading at the higher stress amplitudes. Fatigue crack initiation occurred from the specimen surface and crack propagation was characterized by typical fatigue striation together with secondary cracks.

  18. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    M. Oudkerk (Matthijs); C.G. Torres; B. Song; M. Konig; J. Grimm; J. Fernandez-Cuadrado; B. op de Beeck; M. Marquardt; P. van Dijk (Pieter); J.C. de Groot (Jan Cees)

    2002-01-01

    textabstractPURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)-enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were sus

  19. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging : Multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    Oudkerk, M; Torres, CG; Song, B; Konig, M; Fernandez-Cuadrado, J; de Beeck, BO; Marquardt, M; van Dijk, P.; de Groot, JC

    2002-01-01

    PURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)- enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were suspected of having focal liver

  20. Aerobic Heterotrophic Biodégradation in Polluted Drains and Sewers: The drain and sewer as dual-phase biological reactors

    NARCIS (Netherlands)

    Cao, Y.S.

    1994-01-01

    Wastewater collection systems such as sewers, sewage drains, and polluted shallow aquatic systems such as rivers, streams, and lagoons are characterized by the fact that both suspended and attached biomass exist and function. They are dual-phase systems. Contrary to biofilm dominated systems such as

  1. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    M. Oudkerk (Matthijs); C.G. Torres; B. Song; M. Konig; J. Grimm; J. Fernandez-Cuadrado; B. op de Beeck; M. Marquardt; P. van Dijk (Pieter); J.C. de Groot (Jan Cees)

    2002-01-01

    textabstractPURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)-enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were sus

  2. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging : Multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    Oudkerk, M; Torres, CG; Song, B; Konig, M; Fernandez-Cuadrado, J; de Beeck, BO; Marquardt, M; van Dijk, P.; de Groot, JC

    2002-01-01

    PURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)- enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were suspected of having focal liver

  3. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  4. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.

  5. Correlation of VEGF with contrast enhancement on dual-phase dynamic helical CT in liver tumors: preliminary study.

    Science.gov (United States)

    Kwak, B. K.; Shim, H. J.; Park, U. S.; Lee, T. J.; Paeng, S. S.; Lee, C. J.; Lim, H. K.; Park, C. K.

    2001-01-01

    The purpose of this preliminary study is to elucidate that vascular endothelial growth factor (VEGF) influences contrast enhancement of hepatic tumors on computed tomography (CT). Fourteen patients with hepatic tumors (11 hepatocellular carcinomas; 3 metastatic cancers) underwent a dual-phase dynamic helical CT or computed tomographic hepatic arteriography. The attenuation of each mass was determined as hyperattenuation, isoattenuation or hypoattenuation with respect to the adjacent nontumorous parenchyma. Gun-needle biopsy was done for each tumor, and paraffin sections were immunostained with anti- VEGF antibody by the avidin-biotin-peroxidase complex method. The pathologic grade was made by intensity (1 +, 2+, 3+) and area (+/-, 1 +, 2+). The tumor ranged 2.0-14.0 cm in size (mean, 5.8 cm). In arterial phase, the intensity was not correlated with the degree of enhancement (p=0.086). However, the correlation between the attenuation value of hepatic arterial phase and the area of positive tumor cells was statistically significant (p=0.002). VEGF may be the factor that enhances the hepatic mass with water-soluble iodinated contrast agent in CT. PMID:11289406

  6. Prediction of response to neoadjuvant chemotherapy in osteosarcoma using dual-phase {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun [The Catholic University of Korea, Division of Nuclear Medicine, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Korea Institute of Radiological and Medical Sciences (KIRAMS), Departments of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Sung Hoon; Chung, Soo Kyo [The Catholic University of Korea, Division of Nuclear Medicine, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Lim, Sang Moo; Lim, Ilhan [Korea Institute of Radiological and Medical Sciences (KIRAMS), Departments of Nuclear Medicine, Seoul (Korea, Republic of); Kong, Chang-Bae; Song, Won Seok; Cho, Wan Hyeong; Jeon, Dae-Geun; Lee, Soo-Yong [Korea Institute of Radiological and Medical Sciences (KIRAMS), Orthopedic Surgery, Seoul (Korea, Republic of); Koh, Jae-Soo [Korea Institute of Radiological and Medical Sciences (KIRAMS), Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2015-07-15

    We evaluated the ability of dual-phase {sup 18}F-FDG PET/CT to predict the histological response after neoadjuvant chemotherapy (NAC) in osteosarcoma. Thirty-one patients with osteosarcoma treated with NAC and surgery were prospectively enrolled. After injection of {sup 18}F-FDG, both early (∝60 min) and delayed (∝150 min) PET were acquired before and after the completion of NAC. SUVmax, early/delayed SUVmax change (RImax), and early/delayed SUVmean change (RImean) of tumour were measured before (SUV1, RImax1, and RImean1) and after NAC (SUV2, RImax2, and RImean2). Then, we calculated the percentage changes between SUV1 and SUV2 (%SUV). Twelve patients (39 %) exhibited good histological response after NAC. SUVmax, RImax, and RImean significantly decreased after NAC. Before NAC, only RImean1 predicted good histological response with the optimal criterion of < 10 %, sensitivity of 92 %, specificity of 57 %, and accuracy of 71 %. After NAC, %SUV, SUV2, and RImax2 predicted histological response. By using combined criterion of %SUV and RImax2 or SUV2 and RImean1 or SUV2 and RImax2, accuracies were 81 %, 77 %, and 77 %, respectively. The histological response after NAC could be predicted by using RImean1 before the initiation of NAC in osteosarcoma. The combined use of SUV and RI values may provide a better prediction. (orig.)

  7. Unraveling the Initial Microstructure Effects on Mechanical Properties and Work-Hardening Capacity of Dual-Phase Steel

    Science.gov (United States)

    Mirzadeh, Hamed; Alibeyki, Mohammad; Najafi, Mostafa

    2017-10-01

    Ferritic-martensitic, dual-phase (DP) microstructures with different size, morphology, and distribution of martensite were produced by altering the initial microstructures using heat treatment and thermomechanical processing routes. It was revealed that the strength, ductility, and work-hardening rate of DP steels strongly depend on the volume fraction and the morphology of the martensite phase. In this regard, the fine-grained DP microstructure showed a high work-hardening ability toward an excellent combination of strength and ductility. Such a microstructure can be readily obtained by intercritical annealing of an ultrafine grained (UFG) microstructure, where the latter can be produced by cold-rolling followed by tempering of a martensite starting microstructure. Conclusively, the enhancement of mechanical properties of DP steels through microstructural refinement was found to be more beneficial compared with increasing the volume fraction of martensite. Finally, it was also demonstrated that the work-hardening rate analysis based on the instantaneous (incremental) work-hardening exponents might be an advantageous approach for characterizing DP steels along with the conventional approaches.

  8. First results of a large-area cryogenic gaseous photomultiplier coupled to a dual-phase liquid xenon TPC

    CERN Document Server

    Arazi, L; Erdal, E; Israelashvili, I; Rappaport, M L; Shchemelinin, S; Vartsky, D; Santos, J M F dos; Breskin, A

    2015-01-01

    We discuss recent advances in the development of cryogenic gaseous photomultipliers (GPM), for possible use in dark matter and other rare-event searches using noble-liquid targets. We present results from a 10 cm diameter GPM coupled to a dual-phase liquid xenon (LXe) TPC, demonstrating - for the first time - the feasibility of recording both primary ("S1") and secondary ("S2") scintillation signals. The detector comprised a triple Thick Gas Electron Multiplier (THGEM) structure with cesium iodide photocathode on the first element; it was shown to operate stably at 180 K with gains above 10^5, providing high single-photon detection efficiency even in the presence of large alpha particle-induced S2 signals comprising thousands of photoelectrons. S1 scintillation signals were recorded with a time resolution of 1.2 ns (RMS). The energy resolution ({\\sigma}/E) for S2 electroluminescence of 5.5 MeV alpha particles was ~9%, which is comparable to that obtained in the XENON100 TPC with PMTs. The results are discusse...

  9. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  10. Constitutive Relations Analyses of Plastic Flow in Dual-Phase Steels to Elucidate Structure-Strength-Ductility Correlations

    Science.gov (United States)

    Saimoto, S.; Timokhina, I. B.; Pereloma, E. V.

    2017-07-01

    The structure-strength characterization is typically performed by correlating the structure with x-ray, electron, or atomic imaging devices to the bulk mechanical tensile parameters of yield stress and the plastic yielding response. The problem is that structure parameters embedded in the stress-strain data cannot be revealed without an analyzable constitutive relation. New functional slip-based constitutive formulation with precise digital fitting parameters can replicate the measured data with at least two loci. Thus, this study examines the possibility of identifying the mechanical response as a result of the various microstructure components. The key parameter, the mean slip distance, can be calibrated from the initial work-hardening slope at 0.2% strain from which all the fit parameters can be determined. In this process, a newly derived friction stress is defined to separate the yield phenomenon from the plastic strains beyond yield-point elongation. This methodology has been applied to dual-phase steel specimens that resulted in excellent predictive correlations with prior structure-strength characterization. Hence, the structure-strength-ductility changes resulting from processing conditions can be more precisely surmised from mechanical testing. Thus, a method to delineate the nanostructure evolution with deformation using mesoscopic mechanical parameters has been introduced.

  11. Effects of overaging temperature on the microstructure and properties of 600 MPa cold-rolled dual-phase steel

    Institute of Scientific and Technical Information of China (English)

    Chun-fu Kuang; Zhi-wang Zheng; Gong-ting Zhang; Jun Chang; Shen-gen Zhang; Bo Liu

    2016-01-01

    C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining (2%) and bak-ing treatments (170°C for 20 min) to measure their bake-hardening (BH2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH2 behavior of 600 MPa cold-rolled dual-phase (DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8%to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH2 value initially increases and then decreases. The maximum BH2 value of 83 MPa was observed for the specimen overaged at 350°C.

  12. Investigation of intercritical heat treatment temperature effect on microstructure and mechanical properties of dual phase (DP steel

    Directory of Open Access Journals (Sweden)

    Mohammad Davari

    2017-06-01

    Full Text Available In the present study, the effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferritic-martensitic dual-phase steel have been investigated utilizing tensile test, microhardness measurement and microscopic observation. Plain carbon steel sheet with a thickness of 2 mm was heat treated at 760, 780, 800, 820 and 840 °C intercritical temperatures. The results showed that martensite volume fraction (Vm increases from 32 to 81%with increasing temperature from 760 to 840 °C. The mechanical properties of samples were examined by tensile and microhardness tests. The results revealed that yield strength was increased linearly with the increase in Vm, but the ultimate strength was increased up to 55% Vm and then decreased afterward. Analyzing the work hardening behavior in term of Hollomon equation showed that in samples with less than 55% Vm, the work hardening took place in one stage and the work hardening exponent increased with increasing Vm. More than one stage was observed in the work hardening behavior when Vm was increased. The results of microhardness test showed that microhardness of the martensite is decreased by increase in heat treatment temperature while the ferrite microhardness is nearly constant for all heat-treated samples.

  13. Dual-Phase Transformation: Spontaneous Self-Template Surface-Patterning Strategy for Ultra-transparent VO2 Solar Modulating Coatings.

    Science.gov (United States)

    Liu, Minsu; Su, Bin; Kaneti, Yusuf V; Chen, Zhang; Tang, Yue; Yuan, Yuan; Gao, Yanfeng; Jiang, Lei; Jiang, Xuchuan; Yu, Aibing

    2017-01-24

    Dual-phase transformation has been developed as a template-free surface patterning technique in this study. Ordered VO2 honeycomb structures with a complex hierarchy have been fabricated via this method, and the microstructures of the obtained VO2(M) coatings are tunable by tailoring the pertinent variables. The VO2(M) honeycomb-structured coatings have excellent visible light transmittance at 700 nm (Tvis) up to 95.4% with decent solar modulating ability (ΔTsol) of 5.5%, creating the potential as ultratransparent smart solar modulating coatings. Its excellent performance has been confirmed by a proof-of-principle demonstration. The dual-phase transformation technique has dramatically simplified the conventional colloidal lithography technique as a scalable surface patterning technique for achieving high-performance metal oxide coatings with diverse applications, such as catalysis, sensing, optics, electronics, and superwettable materials.

  14. Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO2-B and Anatase Dual-Phase Nanowires.

    Science.gov (United States)

    Li, Kaikai; Li, Baohua; Wu, Junxiong; Kang, Feiyu; Kim, Jang-Kyo; Zhang, Tong-Yi

    2017-10-06

    Ideal lithium-ion batteries (LIBs) should possess a high power density, be charged extremely fast (e.g., 100C), and have a long service life. To achieve them all, all battery components, including anodes, cathodes, and electrolytes should have excellent structural and functional characteristics. The present work reports ultrafast-charging and long-life LIB anodes made from TiO2-B/anatase dual-phase nanowires. The dual-phase nanowires are fabricated with anatase TiO2 nanoparticles through a facile and cost-effective hydrothermal process, which can be easily scaled up for mass production. The anodes exhibit remarkable electrochemical performance with reversible capacities of ∼225, 172, and 140 mAh g(-1) at current rates of 1C, 10C, and 60C, respectively. They deliver exceptional capacity retention of not less than 126 and 93 mAh g(-1) after 1000 cycles at 60C and 100C, respectively, potentially worthwhile for high-power applications. These values are among the best when the high-rate capabilities are compared with the literature data for similar TiO2-based anodes. The Ragone plot confirms both the exceptionally high energy and power densities of the devices prepared using the dual-phase nanowires. The electrochemical tests and operando Raman spectra present fast electrochemical kinetics for both Li(+) and electron transports in the TiO2 dual-phase nanowires than in anatase nanoparticles due to the excellent Li(+) diffusion coefficient and electronic conductivity of nanowires.

  15. Detection of small hypervascular hepatocellular carcinomas in cirrhotic patients: comparison of superparamagnetic iron oxide-enhanced MR imaging with dual-phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min [Seoul National University Hospital, Seoul (Korea, Republic of); Kim, In Hwan; Kwak, Hyo Sung; Youk, Ji Hyun; Han, Young Min; Kim, Chong Soo [Chonbuk National University, Chounju (Korea, Republic of)

    2003-03-01

    To compare the performance of superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) imaging at 1.5T and dual-phase spiral computed tomography (CT) for the depiction of small hypervascular hepatocellular carcinomas (HCCs). Forty-three patients with 70 small nodular HCCs (5- 20 mm; mean, 13.7 mm) were examined. Diagnosis was based on the results of surgical biopsy in 22 patients and by the combined assessment of MR imaging, lipiodol CT, alpha feto-protein levels, and angiographic findings in 21. MR imaging consisted of respiratory-triggered turbo spin-echo T2-weighted imaging, T1- weighted fast low-angle shot, and T2* -weighted fast imaging with steady-state precession imaging before and after SPIO enhancement. CT imaging was performed with 5-mm collimation and 1:1.4 pitch, and began 30 and 65 secs after the injection of 150 mL of contrast medium at a rate of 3 mL/sec. Two blinded observers reviewed all images independently on a segment-by-segment basis. Diagnostic accuracy was evaluated using receiver operating characteristics (ROC) analysis. The mean areas (Az) under the ROC curves were 0.85 for SPIOenhanced MR imaging and 0.79 for dual-phase spiral CT (p < .05). The mean sensitivity of SPIO-enhanced MR imaging was significantly higher than that of CT (p < .05), i.e. 70.6% for MR imaging and 58.1% for CT. MR imaging had higher false-positive rates than dual-phase spiral CT, but the difference was not statistically significant (3.7% vs 3.3%) (p > .05). SPIO-enhanced MR imaging is more sensitive than dual-phase spiral CT for the depiction of small hypervascular hepatocellular carcinomas.

  16. Low-radiation-dose dual-phase MDCT protocol with split contrast media dose and time optimization: protocol design for renal donors evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bazeed, Mohamed Fayez (Dept. of Diagnostic Radiology, Faculty of Medicine, Mansoura Univ. (Egypt)), email: bazeed@mans.eun.eg; Fooshang, Fawzy F (National Inst. of Urology and Nephrology (Egypt)); Ahmed, Magdy Aly (Nephrology Dept., Armed Forces Hospitals Southern Region (Saudi Arabia))

    2011-10-15

    Background A routine, multiphase, computed tomography (CT) protocol is associated with high radiation exposure to potential kidney donors. To reduce radiation exposure, several authors have suggested a reduction in the number of phases. Purpose To evaluate a low-radiation-dose, dual-phase protocol (i.e. a protocol with an unenhanced phase and combined vascular and excretory phase) for the preoperative evaluation of potential renal donors. Material and Methods Sixty-five potential renal donors were divided into two groups. The first group was scanned with a routine quadric-phase protocol (non-contrast, arterial, venous, and delayed), and the second group was scanned with a triple-phase protocol (dual phase protocol + venous phase). In the second group, we replaced CT angiography with a routine abdominal CT technique. In addition to the evaluation of renal arteries, veins, and excretory systems, the radiation dose of the suggested protocol was compared to that of the routine quadric-phase protocol. Results The suggested protocol was efficient in the evaluation of renal arteries, veins, and excretory systems in all studied potential renal donors. Renal arteries were well visualized in the combined vascular excretory phase using the routine abdominal CT technique; no significant difference was noted when these results were compared to those obtained from the CT angiography used in the quadric-phase protocol. The mean effective radiation dose of our suggested dual-phase protocol was only 34% of the dose resulting from the routine quadric-phase protocol. Conclusion Use of a low-radiation, dual-phase, CT protocol, which relied on both an unenhanced phase and a combined vascular and excretory phase, significantly reduced radiation dose. Furthermore, the proposed protocol provides adequate visualization of renal arteries and veins, and affords sufficient opacification of the urinary tract using improved acquisition triggering

  17. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  18. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  19. Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response

    Energy Technology Data Exchange (ETDEWEB)

    Baxa, Jan; Vondrakova, Alena; Matouskova, Tana; Ferda, Jiri [Charles University Teaching Hospital Plzen, Department of Imaging Methods, Plzen (Czech Republic); Ruzickova, Olga [Charles University Teaching Hospital Plzen, Department of Pulmonary Diseases, Plzen (Czech Republic); Schmidt, Bernhard; Flohr, Thomas; Sedlmair, Martin [Siemens Healthcare, CT Physics and Applications Development, Forchheim (Germany)

    2014-08-15

    To investigate the potential contribution of iodine uptake calculation from dual-phase dual-energy CT (DE-CT) for lymph node staging and therapy response monitoring in lung cancer patients. Retrospective analysis of 27 patients with non-small cell lung carcinoma (NSCLC), who underwent dual-phase DE-CT before and after chemotherapy, was performed. Iodine uptake (mg/mL) and total iodine uptake (mg) were calculated using prototype software in the early (arterial) and late (venous) post-contrast circulatory phase in 110 mediastinal lymph nodes. The arterial enhancement fraction (AEF) was calculated and compared with lymph node size and response to chemotherapy. A significant difference of AEF was observed between enlarged (90.4 %; 32.3-238.5 %) and non-enlarged (72.7 %; -37.5-237.5 %) lymph nodes (p = 0.044) before treatment onset. A significantly different change of AEF in responding (decrease of 26.3 %; p = 0.022) and non-responding (increase of 43.0 %; p = 0.031) lymph nodes was demonstrated. A higher value of AEF before treatment was observed in lymph nodes with subsequent favourable response (88.6 % vs. 77.7 %; p = 0.122), but this difference did not reach statistical significance. The dual-phase DE-CT examination with quantification of ratio of early and late post-contrast iodine uptake is a feasible and promising method for the functional evaluation of mediastinal lymph nodes including therapy response assessment. (orig.)

  20. Dual Phase Cosmic Rays

    CERN Document Server

    Shurtleff, Richard

    2008-01-01

    A calculation based on flat spacetime symmetries shows how there can be two quantum phases. For one, extreme phase change determines a conventional classical trajectory and four-momentum, i.e. mass times four-velocity. The other phase occurs in an effective particle state, with the effective energy and momentum being the rate of change of the phase with respect to time and distance. A cosmic ray proton moves along a classical trajectory, but exists in an effective particle state with an effective energy that depends on the local gravitational potential. Assumptions are made so that a cosmic ray proton in an ultra-high energy state detected near the Earth was in a much less energetic state in interstellar space. A 300 EeV proton incident on the Earth was a 2 PeV proton in interstellar space. The model predicts such protons are in states with even more energy near the Sun than when near the Earth.

  1. Caracterización de aceros dual-phase obtenidos por laminación en caliente

    Directory of Open Access Journals (Sweden)

    Houbaert, Y.

    2011-02-01

    Full Text Available Samples were obtained from C-Mn-Si steel available in the market. Through a hot rolling and coiling process, it was possible to obtain Dual-Phase steel with microstructural and mechanical properties in the theoretical range typical of this material. The thermomechanical process consisted of a strong reduction by multiples pass of hot rolling at temperatures above Ar3, controlled-cooling the sheets during 5 s (at a rate of 20 °C/s in the equilibrium range α+γ. Temperature Ar3 measured by differential scanning calorimetry was 890 °C. Quenching was then carried out in the coiling temperatures range (500-675 °C, cooling the samples in accordance to an established curve that corresponds to the actual cooling curve of a coil. The microstructural characterization of the samples obtained was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, texture measurements were carried out by X-ray diffraction in order to study the resulting orientations due to the finishing rolling temperature and coiling temperature, determining the influence on these parameters of the different texture components. The microstructural results were complemented with the normal and planar anisotropy indexes measured in according to the ASTM E-517 standard. The intensities of the different texture components were correlated with the values of anisotropy indexes, finding that it is possible to obtain only a slightly enhancement in the normal anisotropy index through an appropriate combination of finish rolling and coiling temperatures.

    Se tomaron muestras de acero al C-Mn-Si disponible en el mercado y mediante un proceso de laminación en caliente y bobinado, se obtuvo acero Dual Phase con microestructura y propiedades mecánicas dentro del rango teórico esperado de este material. El proceso termomecánico consistió en producir una fuerte reducción a temperaturas mayores a Ar3

  2. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  3. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-02-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  4. A Prospective Comparative Study of Parathyroid Dual-Phase Scintigraphy, Dual-Isotope Subtraction Scintigraphy, 4D-CT, and Ultrasonography in Primary Hyperparathyroidism

    DEFF Research Database (Denmark)

    Krakauer, Martin; Wieslander, Bente; Myschetzky, Peter Sand

    2016-01-01

    PURPOSE: Preoperative localization of the diseased parathyroid gland(s) in primary hyperparathyroidism allows for minimally invasive surgery. This study was designed to establish the optimal first-line preoperative imaging modality. PATIENTS AND METHODS: Ninety-one patients were studied...... standard. RESULTS: Ninety-seven hyperfunctioning parathyroid glands (HPGs) were identified by the reference standard. Sensitivity and specificity for subtraction PS, dual-phase PS, 4D-CT, and US were 93%, 65%, 58%, and 57% as well as 99%, 99.6%, 86%, and 95%, respectively. Interrater agreement...

  5. Dual-phase contrast-enhancement multislice computed tomography imaging for the assessment of elderly patients with acute myocardial infarction after primary percutaneous coronary intervention

    Institute of Scientific and Technical Information of China (English)

    Shaofeng Guan; Weiyi Fang; Xinkai Qu; Jianding Ye; Yan Shen; Jing Jiao

    2009-01-01

    Background Evaluation of acute myocardial infarction after reperfusion by dual phase contrast-enhancement multislice computed tomography (MSCT) was implicated in porcine model. There have been few attempts to use this diagnostic modality for the early assessment of coronary reperfusion in patients with ST-elevation myocardial infarction (STEMI), especially after primary percutaneous coronary intervention (PCI). In elderly patients with STEMI, the safety issues remain unknown. Methods Dual phase contrast-enhancement MSCT examinations were performed in 11 elderly patients (≥60 years old) with STEMI within one week after primary PCI. The presence, location and enhancement pattern on MSCT were evaluated. MSCT findings were compared with the catheter angiographic results and area under the curve of creatine kinase (CK) release. Serum creatinine level was recorded before and after MSCT scan. Results MSCT scans were successfully performed in all the patients. Early myocardial perfusion defect (early defect, ED) was detected in all of the 11 patients (100%) in the early phase of the contrast bolus (subendocardial ED in 10 patients and transmural in 1 patient). Mean CT attenuation value of ED was significantly different from CT attenuation value of remote myocardium (46±17 HU vs 104 ± 17 HU; P < 0.01). Location of ED area correlated well with infarction related artery territory on catheter angiography in all of the 11 patients (100%). On delayed phase of MSCT scan, different enhancement patterns were observed: isolated subendocardial late enhancement (LE) in 6 patients, subendocardial residual perfusion defect (RD) and subepicardial LE in 1 patient, subendocardial RD in 4 patients. Infarct volume assessed by MSCT correlated well with area under the curve CK release (R=0.72, P < 0.01). Serum creatinine level after MSCT scan showed no difference with that before MSCT scan. Conclusion Dual phase MSCT could be safely implicated in elderly patients with STEMI. Variable

  6. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys

    Science.gov (United States)

    Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk

    2017-01-01

    High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase’s instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.

  7. Differential Findings of Tc 99m Sestamibi Dual Phase Parathyroid Scintigraphy Between Benign and Malignant Parathyroid Lesions in Patients with Primary Hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Miju; Choi, Joon Young; Chung, Jae Hoon; Lee, Ji Young; Cho, Sook Kyung; Yoo, Jang; Park, Soo Bin; Lee, Kyung Han; Kim, Byung Tae [Sungkyunkwan, Univ. School of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    This study aimed to investigate the differential findings in clinical and biochemical features, and Tc 99m sestamibi (MIBI) dual phase parathyroid lesions in patients with primary hyperparathyroidism. Subjects were 102 parathyroid lesions from 91 patients with primary hyperparathyroidism. Scintigraphic findings included radioactivity grade, uptake pattern, uptake contour lesion size on early and delayed images, and degree of washout. Clinical and biochemical features were also evaluated. Histopathology confirmed the final diagnosis for all the patients. Final diagnoses were 94 benign parathyroid lesions and 8 parathyroid carcinomas. The patients with parathyroid carcinoma were significantly older (p=0.002) and had significantly higher serum parathyroid hormone concentrations than those with benign parathyroid lesions (p<0.001). All malignant parathyroid lesions showed intense radioactivity similar to or greater than the submandibular gland activity on delayed images (p=0.007), and little radioactivity difference between early and delayed images (p=0.012). The cancer incidence for parathyroid lesions with both intense radioactivity and no washout was 17.0% (8/47). When parathyroid lesions with all of the above mentioned findings were regarded as malignant, the cancer incidence significantly increased from 17.0% to 33.3% (8/24, p<0.001). For Tc 99m MIBI dual phase parathyroid scintigraphy, uptake grade on delayed images and washout were significantly useful diagnostic criteria for differentiating benign from malignant parathyroid lesions, along with age and parathyroid hormone serum concentration.

  8. Laser assisted conical spin forming of dual phase automotive steel. Experimental demonstration of work hardening reduction and forming limit extension

    Science.gov (United States)

    Romero, P.; Otero, N.; Cabrera, J. M.; Masagué, D.

    Laser Assisted Spin Forming is investigated for improving the poor formability of Advanced High Strength Steel DP-800 and Aeronautic Grade Titanium alloy, with minor or no change in microstructure, final properties improvements and no damage to coating, thanks to controlled energy input and fast thermal cycles. IR imaging and force-torque monitoring are used to characterise the forming process. Residual stress measurement, microstructure, microhardness and EBSD are used to study the formed parts under the combined action of laser and mechanical force. A micromechanism of laser assisted spinning is proposed, as well as advantages and limitations of the technique.

  9. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    Science.gov (United States)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2016-12-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  10. Dynamic contrast-enhanced CT imaging of hepatocellular carcinoma in cirrhosis: feasibility of a prolonged dual-phase imaging protocol with tracer kinetics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Tong San; Hartono, Septian [Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore (Singapore); National Cancer Centre, Department of Oncologic Imaging, Singapore (Singapore); Thng, Choon Hua; Lee, Puor Sherng [National Cancer Centre, Department of Oncologic Imaging, Singapore (Singapore); Choo, Su Pin; Poon, Donald Y.H.; Toh, Han Chong [National Cancer Centre, Department of Medical Oncology, Singapore (Singapore); Bisdas, Sotirios [Eberhard Karls University, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany)

    2009-05-15

    Dynamic contrast-enhanced (DCE) CT imaging of four patients with hepatocellular carcinoma (HCC) was performed using a dual-phase imaging protocol designed with initial rapid dynamic imaging to capture the initial increase in contrast medium enhancement in order to assess perfusion, followed by a delayed imaging phase with progressively longer intervals to monitor subsequent tissue enhancement behaviour in order to assess tissue permeability. The DCE CT images were analysed using a dual-input two-compartment distributed parameter model to yield separate estimates for blood flow and permeability, as well as fractional intravascular and extravascular volumes. The HCCs and surrounding cirrhotic liver tissues were found to exhibit enhancement curves that can be appropriately described by two distinct compartments separated by a semipermeable barrier. Early contrast arrival was also found for HCC as compared with background liver. These findings are consistent with the current understanding of sinusoidal capillarization and hepatocarcinogenesis. (orig.)

  11. Magnetocaloric effect in a dual-phase coupled LaFe11Si2 crystal prepared by a modified high-pressure zone-melting technique

    Science.gov (United States)

    Feng, Shutong; Fang, Yue; Zhai, Qijie; Luo, Zhiping; Zheng, Hongxing

    2016-10-01

    A modified high-pressure optical zone-melting technique was adopted to grow a rare-earth-based LaFe11Si2 crystal in the present work. Dual-phase coupled microstructure was obtained where aligned α(Fe) phase distributed in the La(Fe,Si)13 matrix. Magnetic measurements showed that the produced crystal underwent a second-order magnetic transition in the vicinity of 250 K. Under a magnetic field change of 30 kOe, the refrigeration capacity (RC) of the produced crystal reached up to 162 J/kg. It was confirmed that zone-melting crystal growth technique is an effective approach to strikingly enhance the magnetocaloric effect of La-Fe-Si refrigeration materials.

  12. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  13. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    Science.gov (United States)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  14. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    CERN Document Server

    Verbus, J R; Malling, D C; Genecov, M; Ghosh, S; Moskowitz, A G; Chan, S; Chapman, J J; de Viveiros, L; Faham, C H; Fiorucci, S; Huang, D Q; Pangilinan, M; Taylor, W C; Gaitskell, R J

    2016-01-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $\\textit{in situ}$ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic 272 keV neutron source. We report results from a time-of-flight based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  15. Dual phase Li4Ti5O12-TiO2 hierarchical hollow microspheres as anode materials for high rate lithium-ion batteries

    Science.gov (United States)

    Zhu, Kunxu; Hu, Guoxin

    2017-01-01

    Dual phase Li4Ti5O12-TiO2 hierarchical hollow microspheres composed of nanosheets are successfully fabricated by the calcination of hydrothermal product obtained from lithium peroxotitanate complex solution. Low-cost industrial H2TiO3 particles are chosen as titanium sources, which is significant for the inexpensive and large-scale production of Li4Ti5O12-TiO2 composite material. The Li4Ti5O12-TiO2 electrode yields excellent rate capability (151, 139 and 134 mA h g-1 at 10, 20 and 25 C, respectively) and good cycling stability (96% capacity retention after 500 cycles at 10 C). The mesoporous hierarchical morphology and high grain boundary density are likely the contributing factors to the excellent electrochemical performance of Li4Ti5O12-TiO2 composite.

  16. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method

    Directory of Open Access Journals (Sweden)

    Hyoungwook Lee

    2015-12-01

    Full Text Available The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW dual-phase (DP steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ, but the presence of a soft zone in the heat-affected zone (HAZ was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM. The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  17. Modeling of the Recrystallization and Austenite Formation Overlapping in Cold-Rolled Dual-Phase Steels During Intercritical Treatments

    Science.gov (United States)

    Ollat, M.; Massardier, V.; Fabregue, D.; Buscarlet, E.; Keovilay, F.; Perez, M.

    2017-07-01

    Austenite formation kinetics of a DP1000 steel was investigated from a ferrite-pearlite microstructure (either fully recrystallized or cold-rolled) during typical industrial annealing cycles by means of dilatometry and optical microscopy after interrupted heat treatments. A marked acceleration of the kinetics was found when deformed ferrite grains were present in the microstructure just before austenite formation. After having described the austenite formation kinetics without recrystallization and the recrystallization kinetics of the steel without austenite formation by simple JMAK laws, a mixture law was used to analyze the kinetics of the cold-rolled steel for which austenite formation and recrystallization may occur simultaneously. In the case where the interaction between these two phenomena is strong, three main points were highlighted: (i) the heating rate greatly influences the austenite formation kinetics, as it affects the degree of recrystallization at the austenite start temperature; (ii) recrystallization inhibition above a critical austenite fraction accelerates the austenite formation kinetics; (iii) the austenite fractions obtained after a 1 hour holding deviate from the local equilibrium fractions given by Thermo-Calc, contrary to the case of the recrystallized steel. This latter result could be due to the fact that the dislocations of the deformed ferrite matrix could promote the diffusion of the alloying elements of the steel and accelerate austenite formation.

  18. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    Science.gov (United States)

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications.

  19. Effect of Carbon Distribution During the Microstructure Evolution of Dual-Phase Steels Studied Using Cellular Automata, Genetic Algorithms, and Experimental Strategies

    Science.gov (United States)

    Halder, Chandan; Karmakar, Anish; Hasan, Sk. Md.; Chakrabarti, Debalay; Pietrzyk, Maciej; Chakraborti, Nirupam

    2016-12-01

    The development of ferrite-martensite dual-phase microstructures by cold-rolling and intercritical annealing of 0.06 wt pct carbon steel was systematically studied using a dilatometer for two different heating rates (1 and 10 K/s). A step quenching treatment has been designed to develop dual-phase structures having a similar martensite fraction for two different heating rates. An increase in heating rate seemed to refine the ferrite grain size, but it increased the size and spacing of the martensitic regions. As a result, the strength of the steel increased with heating rate; however, the formability was affected. It has been concluded that the distribution of C during the annealing treatment of cold-rolled steel determines the size, distribution, and morphology of martensite, which ultimately influences the mechanical properties. Experimental detection of carbon distribution in austenite is difficult during annealing of the cold-rolled steel as the phase transformation occurs at a high temperature and C is an interstitial solute, which diffuses fast at that temperature. Therefore, a cellular automata (CA)-based phase transformation model is proposed in the present study for the prediction of C distribution in austenite during annealing of steel as the function of C content and heating rate. The CA model predicts that the carbon distribution in austenite becomes more inhomogeneous when the heating rate increases. In the CA model, the extent of carbon inhomogeneity is measured using a kernel averaging method for different orders of neighbors, which accounts for the different physical space during calculation. The obtained results reveal that the 10th order (covering 10- µm physical spaces around the cell of interest) is showing the maximum inhomogeneity of carbon and the same effect has been investigated and confirmed using auger electron spectroscopy (AES) for 0.06 wt pct carbon steel. Furthermore, the optimization of carbon homogeneity with respect to heating

  20. Pre-service elementary science teaching self-efficacy and teaching practices: A mixed-methods, dual-phase, embedded case study

    Science.gov (United States)

    Sangueza, Cheryl Ramirez

    This mixed-method, dual-phase, embedded-case study employed the Social Cognitive Theory and the construct of self-efficacy to examine the contributors to science teaching self-efficacy and science teaching practices across different levels of efficacy in six pre-service elementary teachers during their science methods course and student teaching experiences. Data sources included the Science Teaching Efficacy Belief Instrument (STEBI-B) for pre-service teachers, questionnaires, journals, reflections, student teaching lesson observations, and lesson debriefing notes. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. The ANOVA analysis of the STEBI-B revealed a statistically significant increase in level of efficacy during methods course, student teaching, and from the beginning of the study to the end. Of interest in this study was the examination of the participants' science teaching practices across different levels of efficacy. Results of this analysis revealed how the pre-service elementary teachers in this study contextualized their experiences in learning to teach science and its influences on their science teaching practices. Key implications involves the value in exploring how pre-service teachers interpret their learning to teach experiences and how their interpretations influence the development of their science teaching practices.

  1. Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite-martensite dual-phase steel

    Institute of Scientific and Technical Information of China (English)

    Pei Li; Jun Li; Qing-ge Meng; Wen-bin Hu; Chun-fu Kuang

    2015-01-01

    Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vol%were produced by intercritical an-nealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP micro-structures using the differential Crussard–Jaoul technique demonstrate two stages of work hardening for all samples.

  2. Dual phases of respiration chain defect-augmented mROS-mediated mCa 2+ stress during oxidative insult in normal and ρ 0 RBA1 astrocytes.

    Science.gov (United States)

    Peng, Tsung-I; Lin, Muh-Shi; Jou, Mei-Jie

    2013-01-01

    Mitochondrial respiratory chain (RC) deficits, resulting in augmented mitochondrial ROS (mROS) generation, underlie pathogenesis of astrocytes. However, mtDNA-depleted cells (ρ (0)) lacking RC have been reported to be either sensitive or resistant to apoptosis. In this study, we sought to determine the effects of RC-enhanced mitochondrial stress following oxidative insult. Using noninvasive fluorescence probe-coupled laser scanning imaging microscopy, the ability to resist oxidative stress and levels of mROS formation and mitochondrial calcium (mCa(2+)) were compared between two different astrocyte cell lines, control and ρ (0) astrocytes, over time upon oxidative stress. Our results showed that the cytoplasmic membrane becomes permeated with YO-PRO-1 dye at 150 and 130 minutes in RBA-1 and ρ (0) astrocytes, respectively. In contrast to RBA-1, 30 minutes after 20 mM H2O2 exposure, ρ (0) astrocytes formed marked plasma membrane blebs, lost the ability to retain Mito-R, and showed condensation of nuclei. Importantly, H2O2-induced ROS and accompanied mCa(2+) elevation in control showed higher levels than ρ (0) at early time point but vice versa at late time point. Our findings underscore dual phase of RC-defective cells harboring less mitochondrial stress due to low RC activity during short-term oxidative stress but augmented mROS-mediated mCa(2+) stress during severe oxidative insult.

  3. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang; Huan, Yong; Cui, Lishan; Liu, Yinong; Yang, Hong; Ren, Yang

    2017-05-01

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrix and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.

  4. Dual Phases of Respiration Chain Defect-Augmented mROS-Mediated mCa2+ Stress during Oxidative Insult in Normal and ρ0 RBA1 Astrocytes

    Directory of Open Access Journals (Sweden)

    Tsung-I Peng

    2013-01-01

    Full Text Available Mitochondrial respiratory chain (RC deficits, resulting in augmented mitochondrial ROS (mROS generation, underlie pathogenesis of astrocytes. However, mtDNA-depleted cells (ρ0 lacking RC have been reported to be either sensitive or resistant to apoptosis. In this study, we sought to determine the effects of RC-enhanced mitochondrial stress following oxidative insult. Using noninvasive fluorescence probe-coupled laser scanning imaging microscopy, the ability to resist oxidative stress and levels of mROS formation and mitochondrial calcium (mCa2+ were compared between two different astrocyte cell lines, control and ρ0 astrocytes, over time upon oxidative stress. Our results showed that the cytoplasmic membrane becomes permeated with YO-PRO-1 dye at 150 and 130 minutes in RBA-1 and ρ0 astrocytes, respectively. In contrast to RBA-1, 30 minutes after 20 mM H2O2 exposure, ρ0 astrocytes formed marked plasma membrane blebs, lost the ability to retain Mito-R, and showed condensation of nuclei. Importantly, H2O2-induced ROS and accompanied mCa2+ elevation in control showed higher levels than ρ0 at early time point but vice versa at late time point. Our findings underscore dual phase of RC-defective cells harboring less mitochondrial stress due to low RC activity during short-term oxidative stress but augmented mROS-mediated mCa2+ stress during severe oxidative insult.

  5. Formation of CaO·TiO2-MgO·Al2O3 dual phase inclusion in Ti stabilized stainless steel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The formation of CaO.TiO2-MgO.Al2O3 dual phase inclusion in 321 stainless steel was investigated in the laboratory. The result indicated that the condition for the formation of CaO.TiO2-MgO.Al2O3 in 321 steel is [Ca]>0.001wt%, [Ti]>0.1wt%, and[Al]>0.01wt%. The mechanism is the following: Al2O3 inclusion turns into CaO-Al2O3 after Ca-Si wire is fed into the molten steel;[Mg] is then obtained by reducing MgO in slag or crucible wall by [Al] and [Ti]; finally CaO-Al2O3 inclusion is changed into CaO.TiO2-MgO-Al2O3 by the reaction with [Mg], [Ti], and [O] in the molten steel simultaneously.

  6. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    Science.gov (United States)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2017-03-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  7. Hepatic and vascular enhancement at dual-phase helical CT: comparison of Iobitridol 300 and Iohexol 300 in a prospective randomized study

    Energy Technology Data Exchange (ETDEWEB)

    Legmann, P.; Vignaux, O.; Bahurel, H.; Oudjit, A. [Dept. of Radiology, Universite Rene Descartes, Paris (France); Coste, J. [Dept. of Biostatistics and Epidemiology, Universite Rene Descartes, Paris (France)

    2001-11-01

    The purpose of this study was to determine hepatic and vascular enhancement, clinical tolerance, and iconographic quality of Iobitridol (300 mg/ml) at dual-phase helical CT and to compare it with Iohexol (300 mg/ml). One hundred forty-six patients were randomly divided into two groups. Each group received 120 ml of Iohexol (group A) or Iobitridol (group B). Mean enhancement of liver, aorta and portal vein was obtained at the arterial phase and at the portal-venous phase. Overall image quality was assessed by two independent blinded investigators. Adverse reactions were recorded. There were no significant differences in demographic characteristics and distribution of patient intrinsic parameters between the two groups, except for blood pressure but without statistical correlation between the difference in blood pressure and the impact on enhancement measurements. There was no significant difference in clinical tolerance and image quality. Mean liver as well as aortic and portal vein enhancement measurements did not show any significant difference. Iobitridol compares favorably with Iohexol. Both products have similar safety, tolerance, and efficacy. Both contrast media have equivalent blood pool concentration and interstitial compartment diffusion. (orig.)

  8. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution.

    Science.gov (United States)

    Ge, Xiaoming; Liu, Yayuan; Goh, F W Thomas; Hor, T S Andy; Zong, Yun; Xiao, Peng; Zhang, Zheng; Lim, Suo Hon; Li, Bing; Wang, Xin; Liu, Zhaolin

    2014-08-13

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential reactions for energy-storage and -conversion devices relying on oxygen electrochemistry. High-performance, nonprecious metal-based hybrid catalysts are developed from postsynthesis integration of dual-phase spinel MnCo2O4 (dp-MnCo2O4) nanocrystals with nanocarbon materials, e.g., carbon nanotube (CNT) and nitrogen-doped reduced graphene oxide (N-rGO). The synergic covalent coupling between dp-MnCo2O4 and nanocarbons effectively enhances both the bifunctional ORR and OER activities of the spinel/nanocarbon hybrid catalysts. The dp-MnCo2O4/N-rGO hybrid catalysts exhibited comparable ORR activity and superior OER activity compared to commercial 30 wt % platinum supported on carbon black (Pt/C). An electrically rechargeable zinc-air battery using dp-MnCo2O4/CNT hybrid catalysts on the cathode was successfully operated for 64 discharge-charge cycles (or 768 h equivalent), significantly outperforming the Pt/C counterpart, which could only survive up to 108 h under similar conditions.

  9. Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA.

    Science.gov (United States)

    Won, Jun Yeon; Kwon, Sun Il; Yoon, Hyun Suk; Ko, Guen Bae; Son, Jeong-Whan; Lee, Jae Sung

    2016-02-01

    This paper describes two novel time-to-digital converter (TDC) architectures. The first is a dual-phase tapped-delay-line (TDL) TDC architecture that allows us to minimize the clock skew problem that causes the highly nonlinear characteristics of the TDC. The second is a pipelined on-the-fly calibration architecture that continuously compensates the nonlinearity and calibrates the fine times using the most up-to-date bin widths without additional dead time. The two architectures were combined and implemented in a single Virtex-6 device (ML605, Xilinx) for time interval measurement. The standard uncertainty for the time intervals from 0 to 20 ns was less than 12.83 ps-RMS (root mean square). The resolution (i.e., the least significant bit, LSB) of the TDC was approximately 10 ps at room temperature. The differential nonlinearity (DNL) values were [-1.0, 1.91] and [-1.0, 1.88] LSB and the integral nonlinearity (INL) values were [-2.20, 2.60] and [-1.63, 3.93] LSB for the two different TDLs that constitute one TDC channel. During temperature drift from 10 to 50(°)C, the TDC with on-the-fly calibration maintained the standard uncertainty of 11.03 ps-RMS.

  10. Dual phase TiO(x)N(y)/TiN charge trapping layer for low-voltage and high-speed flash memory application.

    Science.gov (United States)

    Zhang, Gang; Yoo, Won Jong

    2009-12-01

    Flash memory using a dual phase TiO(x)N(y)/TiN charge trapping layer has been fabricated and its electrical properties were investigated. The TiO(x)N(y)/TiN layer was formed by partial oxidation of a pre-deposited TiN layer, and the formation of TiO(x)N(y)/SiO(x)N(y) was confirmed by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The enlarged conduction (deltaphi(c) = 3.6 eV) and valence (deltaphi(v) = 2.5 eV) band offsets of the TiO(x)N(y)/TiN to SiO2 enabled low-voltage (+/- 6 V) and fast programming/erasing (P: 2.7 x 10(4) V/s and E: -5.1 x 10(4) V/s) operations, while the transition layer suppressed the trapped charge leakage, giving rise to good 10-year data retention with less than 35% V(th) decay.

  11. Hydrophobic-hydrophilic monolithic dual-phase layer for two-dimensional thin-layer chromatography coupled with surface-enhanced Raman spectroscopy detection.

    Science.gov (United States)

    Zheng, Binxing; Liu, Yanhua; Li, Dan; Chai, Yifeng; Lu, Feng; Xu, Jiyang

    2015-08-01

    Hydrophobic-hydrophilic monolithic dual-phase plates have been prepared by a two-step polymerization method for two-dimensional thin-layer chromatography of low-molecular-weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV-initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate-co-ethylene dimethacrylate) area, these two-dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed-phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface-enhanced Raman spectroscopy.

  12. Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370 MPa Strength and 16 pct Uniform Elongation Through Warm Rolling and Intercritical Annealing

    Science.gov (United States)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2014-11-01

    Ultrafine-grained dual phase microalloyed V-Nb steel with ultimate tensile strength of 1371 MPa and uniform elongation of 16 pct characterized by bimodal ferrite grain structure was obtained through warm rolling and subsequent intercritical annealing. The bimodal ferrite grain structure with uniform dispersion of Nb/V carbides and strong γ-fiber texture promoted high strain hardening rate and high uniform elongation and high strength is attributed to ultrafine-grained ferrite and martensite.

  13. Evaluation of dual-phase enhancement helical CT in the diagnosis of hepatic lesions%螺旋CT双期增强扫描对肝脏占位性病变的诊断价值

    Institute of Scientific and Technical Information of China (English)

    阎文颖; 李大庆; 王贵浦; 姜慧杰; 刘昌红

    2001-01-01

    目的探讨螺旋CT双期扫描对肝脏占位性病变的诊断价值.方法对98例肝内占位性病变的病人进行螺旋CT双期增强扫描.结果 98例病人中肝癌48例,肝转移瘤19例,肝血管瘤31例.结论螺旋CT扫描速度快,在动脉期和门静脉期分别完成全肝扫描 ,弥补了一般动态扫描的缺点,对肝内病灶的检出和定性有重要价值.%Objective To evaluate dual-phase helical CT in the diagnosis of hepatic lesions.Methods Dual-phase scanning of the liver in 98 patients with lesio ns was carried out with a helical CT scanner.Results Significant difference was found in dual-phase helical CT about liver lesions.There were 48 hepatic tumor,19 metastases,31 hemangiomas in the remaining 98 patients.Conclusion Helical CT scanning is faster than enventional scanning. The arterial phase and portal venous are performed in all liver.Therefore,it is important to use helical CT detecting characterization of hepatic lesions.

  14. Dual-phase PET-CT to differentiate [18F]Fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer.

    Directory of Open Access Journals (Sweden)

    Daniela E Oprea-Lager

    Full Text Available PURPOSE: To investigate whether time-trends of enhanced [(18F]Fluoromethylcholine ([(18F]FCH in lymph nodes (LN of prostate cancer (PCa patients can help to discriminate reactive from malignant ones, and whether single time point standardized uptake value (SUV measurements also suffice. PROCEDURES: 25 PCa patients with inguinal (presumed benign and enlarged pelvic LN (presumed malignant showing enhanced [(18F]FCH uptake at dual-phase PET-CT were analyzed. Associations between LN status (benign versus malignant and SUV(max and SUV(meanA50, determined at 2 min (early and 30 min (late post injection, were assessed. We considered two time-trends of [(18F]FCH uptake: type A (SUV early > SUV late and type B (SUV late ≥ SUV early. Histopathology and/or follow-up were used to confirm the assumption that LN with type A pattern are benign, and LN with type B pattern malignant. RESULTS: Analysis of 54 nodes showed that LN status, time-trends, and 'late' (30 min p.i. SUV(max and SUV(meanA50 parameters were strongly associated (P<0.0001. SUV(max relative difference was the best LN status predictor. All but one inguinal LN showed a decreasing [(18F]FCH uptake over time (pattern A, while 95% of the pelvic nodes presented a stable or increasing uptake (pattern B type. CONCLUSIONS: Time-trends of enhanced [(18F]FCH uptake can help to characterize lymph nodes in prostate cancer patients. Single time-point SUV measurements, 30 min p.i., may be a reasonable alternative for predicting benign versus malignant status of lymph nodes, but this remains to be validated in non-enlarged pelvic lymph nodes.

  15. Dual-Phase Nozzle Flow.

    Science.gov (United States)

    1982-10-01

    ISO B HEATER 100- C ONDENSER 3 5 .L2...8217;: 15. J435 4 1100.C c 13333 .4 11.3 .2 1 43 421. a 144𔃺 J’~4 443 Jr).3’ I444a’u). 0 .02 I’l) 4ŕ). 1 .3) ) ) 171 4(60.0 02 Ns 1470.2 j J�I ~’I...34AI4VT1" 120 ENTER 709:X(4,I) 130 OUTPUT 709:"AISVT1" 140 ENTER 709:X(5,I) ISO OUTPUT 709;"AISVT1" 160 ENTER 709;X(6,I) 170 OUTPUT 709;*AI7VTI"

  16. Dual Phase Li4Ti5O12–TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g-1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12–TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12–TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g-1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  17. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  18. Determinação dos campos de soldabilidade para o aço Dual-Phase 600 em equipamentos de soldagem a ponto AC e MFDC Determination of weldability fields for Dual-Phase 600 steel in AC and MFDC RSW

    Directory of Open Access Journals (Sweden)

    Marco Antonio Wolff

    2010-09-01

    Full Text Available A soldagem utilizada na indústria automobilística encontra num momento de escolha entre dois tipos principais de equipamentos para a soldagem a ponto por resistência: fonte que usam ou corrente alternada (AC ou corrente contínua média-freqüência (MFDC. A primeira tecnologia (fontes AC é a mais tradicional e tem sido utilizada com sucesso na soldagem de chapas de aços de baixo-carbono, com relativo baixo custo. Por outro lado, a tecnologia mais recente (fonte MFDC tem sido descrita pelos seus fabricantes como uma evolução na soldagem a ponto por resistência ao se aumentar a produtividade, reduzir o consumo de energia elétrica, propiciar melhor controle dos parâmetros e menor estresse termo-mecânico. Além destas vantagens, observando-se o aspecto construtivo das fontes MFDC, estas demandam menores transformadores, uma vez que a eficiência de um transformador é proporcional à freqüência de entrada da rede elétrica, i.e., 60 Hz no caso do Brasil para as fontes AC, ao passo que esta freqüência chega a 1000 Hz no caso das fontes MFDC, reduzindo, assim, seu tamanho. Embora importantes, tais vantagens têm sido alardeadas sem a devida comprovação científica, em especial durante a aplicação dos aços de mais alta resistência. Dentre estes aços, os aços dual-phase têm iniciado sua expansão. Desta forma, este trabalho procurar comparar equipamentos AC e MFDC do ponto de vista de envelope operacional (campo de soldabilidade para a soldagem a ponto por resistência de aços dual-phase com limite de resistência de 600 MPa. Para tanto, a metodologia de comparação foi definida com base no tamanho equivalente do ponto de solda. Como resultado final, encontrou-se que para menores correntes, o campo de soldabilidade obtido com o equipamento MFDC foi maior, diminuindo à medida que se aumenta a corrente de soldagem.The automotive industry faces nowadays a challenge of choosing between two types of current for resistance spot

  19. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  20. Imaging characteristic of dual-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET for the concomitant detection of perfusion deficits and beta-amyloid deposition in Alzheimer's disease and mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Ju; Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Yen, Tzu-Chen [Linkou Chang Gung Memorial Hospital and University, Department of Nuclear Medicine and Molecular Imaging Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Taoyuan (China); Hsu, Jung-Lung [Linkou Chang Gung Memorial Hospital, Section of Dementia and Cognitive Impairment, Department of Neurology, Taoyuan (China); Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei (China); Huang, Chin-Chang; Huang, Kuo-Lun [Linkou Chang Gung Memorial Hospital and University, Department of Neurology, Taoyuan (China)

    2016-07-15

    We investigated dual-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET imaging for the concomitant detection of brain perfusion deficits and beta-amyloid deposition in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (MCI), and in cognitively healthy controls (HCs). A total of 82 subjects (24 AD patients, 44 MCI patients and 14 HCs) underwent both dual-phase {sup 18}F-AV-45 PET and MRI imaging. Dual-phase dynamic PET imaging consisted of (1) five 1-min scans obtained 1 - 6 min after tracer injection (perfusion {sup 18}F-AV-45 imaging, pAV-45), and (2) ten 1-min scans obtained 50 - 60 min after tracer injection (amyloid {sup 18}F-AV-45 imaging). Amyloid-negative MCI/AD patients were excluded. Volume of interest analysis and statistical parametric mapping of pAV-45 and {sup 18}F-AV-45 images were performed to investigate the perfusion deficits and the beta-amyloid burden in the three study groups. The associations between Mini-Mental State Examination (MMSE) scores and global perfusion deficits and amyloid deposition were investigated with linear and segmental linear correlation analyses. HCs generally had normal pAV-45 findings, whereas perfusion deficits were evident in the hippocampus, and temporal, parietal and middle frontal cortices in both MCI and AD patients. The motor-sensory cortex was relatively preserved. MMSE scores in the entire study cohort were significantly associated with the degree of perfusion impairment as assessed by pAV-45 imaging (r = 0.5156, P < 0.0001). {sup 18}F-AV-45 uptake was significantly higher in AD patients than in the two other study groups. However, the correlation between MMSE scores and {sup 18}F-AV-45 uptake in MCI patients was more of a binary phenomenon and began in MCI patients with MMSE score 23.14 when {sup 18}F-AV-45 uptake was higher and MMSE score lower than in patients with early MCI. Amyloid deposition started in the precuneus and the frontal and temporal regions in early MCI, ultimately

  1. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  2. Effect of Austempering on Mechanical Properties of Dual Phase ADI%等温淬火工艺对双相等温淬火球墨铸铁力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    姜利坤; 刘金海; 李国禄; 王磊; 田霄楠

    2009-01-01

    对双相ADI(双相等温淬火球墨铸铁Dual Phase Austempered Ductile Iron,简称Dual Phase ADI)在不同等温温度和不同等温时间下的力学性能进行了试验.结果表明:当等温温度在250~390℃时,随着等温淬火温度的升高,双相ADI的抗拉强度减小,伸长率逐渐增大,硬度先减小后增大,冲击韧性先增大后减小.当等温时间在30~120min时,随着等温淬火时间的延长,双相ADI的抗拉强度升高,超过90min后,抗拉强度略有降低;当等温淬火时间为60min时,冲击韧性达到最大值,超过60min后,冲击韧性逐渐减小;伸长率先增大后减小;硬度逐渐增大.

  3. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  4. Evaluation of Dual-phase Spiral CT in Diagnosis of Small Hepatic Cell Carcinoma%螺旋CT双期扫描对小肝癌的诊断价值

    Institute of Scientific and Technical Information of China (English)

    李玉梅; 罗祖炎; 吴颖; 卢建芳; 毕玉艳; 刘子江

    2001-01-01

    Objective To evaluate the diagnostic value of dual-phase spiralCT in diagnosis of small hepatic cell carcinoma(SHCC).Methods Dual-phase spiral CT was performed in 27 patients with SHCC(≤3 cm).The scans began at 25-30 s arterial phase and at 65~70 s in portal venous phase after intravascular atministration.The injection rate of contrast media was 2.5 ml/s with a total of 70~85 ml. Results 34 lesions were found in 27 patients.The detecting rate of lesions on non-contrast scanning,arterial phase,portal venous phase and dual phase were 70%,91%,79%,94% respectively.The sensitivity of arterial and dual phase were higher than that of non-contrast scanning(NC)and portal venous phase(Ρ<0.05).There was no significant difference found between NC and portal venous phase(Ρ>0.05),arterial phase and dual phase(Ρ>0.05) 65% of SHCC lesions showed homogeneous high attenuation with the enhancement of 25.9±14.4 HU compared with the liver tissue on the arterial phase,and 23% of SHCC showed unhomogeneous high attenuation,79% of lesions on portal venous phase showed lower density than that of liver tissue on the same phase with the decreasing of 18.7±8.9 HU,21% of lesions showed the same density.The accurate rate of diagnosis of dual-phase was 97%.Conclusion Dual-phase spiral CT of liver is of high sensitivity and specificity in diagnosis of SHCC.%目的评价螺旋CT扫描的动脉期、静脉期以及双期联合应用对小肝癌的诊断价值。方法对27例小肝癌行螺旋CT双期增强扫描,增强动脉期于造影剂注射后25~30s开始扫描,静脉期于65~70s开始扫描,造影剂注射速率为2.5~3.0ml/s,用量70~85ml。结果27例小肝癌共发现34个结节病灶。平扫、动脉期、静脉期、动静脉双期的检出率分别为70%、91%、79%、94%,经统计学分析,动脉期和动静脉双期的检出率较平扫和静脉期高(Ρ<0.05),动脉期和动静脉双期间、平扫和静脉期间比较

  5. The Value of Dual-phase 18 F-FDG PET/CT in Diagnosing Malignant Tumors%18 F-FDG PET/CT双时相显像在肿瘤诊断中的价值

    Institute of Scientific and Technical Information of China (English)

    谢红军; 宋文忠; 刘浩; 刘兆辉; 郑洪银

    2015-01-01

    Objective To investigate the diagnoses value of dual-phase 18 F-FDG PET/CT in malignant tumors. Methods 102 patients with malignant tumors and 29 patients with benign lesiongs underwent dual-phase 18 F-FDG PET/CT images. The final diagnoses of these patients were proved by histopathology or by follow-up. The imaging protocol included a whole body PET/CT at 40 minutes and a local PET/CT at 2 hours post-injection. The maximum standardized uptake value( SUVmax) was gotten at these both time points. The retention index(RI)was calculated. Results A cutoff of 20% change for SUVmax over time showed the good discriminative value. There were 55 RI exceeding 20% in 102 patients with malignant tumors and 7 exceeding 20% in 29 pa-tients with benign tumors. The tumor focuses were relatively motionless and the physiogenic uptake were disappeared in delayed im-age. Conclusion Dual-phase 18 F-FDG PET/CT improves accuracy in diagnosing malignant tumors and distinguishs between the focus and physiogenic uptake.%目的:探讨18 F-FDG PET/CT双时相显像在肿瘤诊断中的价值。方法102例恶性肿瘤患者及29例良性疾病患者全身PET/CT显像后2h后行局部延迟显像,得到病灶早期最大标准摄取值(SUVmax)和延迟SUVmax,计算滞留指数( RI)。结果恶性肿瘤中,55例RI≥20%,30例5%≤RI<20%,17例RI<5%。良性疾病有7例RI≥20%,7例5%≤RI<20%,15例RI<5%,两者差异有统计学意义( P<0.05)。延迟显像肿瘤病灶相对固定,生理性摄取灶消失;发现部分SUVmax <2的隐匿性病灶。结论双时相显像可以提高PET/CT对良恶性疾病鉴别的准确性,鉴别病灶与生理性摄取。

  6. Internal friction behaviors of Ni-Mn-In magnetic shape memory alloy with two-step structural transformation

    Directory of Open Access Journals (Sweden)

    Zhen-ni Zhou

    2017-06-01

    Full Text Available The internal friction (IF behaviors of dual-phase Ni52Mn32In16 alloy with two-step structural transformation were investigated by dynamic mechanical analyzer. The IF peak for the martensite transformation (MT is an asymmetric shoulder rather than those sharp peaks for other shape memory alloys. The intermartensitic transformation (IMT peak has the maximum IF value. As the heating rate increases, the height of the IMT peak increases and its position is shifted to higher temperatures. In comparison with the IMT peak, the MT peak is independent on the heating rate. The starting temperatures of the IMT peak are strongly dependent on frequency, while the MT peak is weakly dependent. Meanwhile, the heights of both the MT and IMT peak rapidly decrease with increasing the frequency. This work also throws new light on their structural transformation mechanisms.

  7. Microstructural characteristics and effects of TC4 titanium alloy processed by using friction stir welding

    Directory of Open Access Journals (Sweden)

    Bo LI

    2016-02-01

    Full Text Available Friction stir welding technique is used for the processing of TC4 titanium alloy under protective atmosphere, and it results with good formability. The research focues on the evolution mechanisms of α+β dual phase microstructure in stirred zone and the effects of processing parameters on structures hardness. The results show that with optimized technological parameters, stir zone structure experiences the α/β transformation, and finally changes to the α+β duplex structure which is based on the β phase. After mixing head leaves and the structure cools, the precipitated lamellar α phase is among and/or within-regions. Grain refining of α+β dual phase is obvious. The shortened α/β lamellar spacing distance may improve the strengthening effect of the α+β duplex phase and enhance the hardness of the stir zone. The increasing of the tool rotation speed could coarsen β-regions, while the increasing of the travel speed could help reduce the α phase ratio and generate needle-type Martensites.

  8. Criterion of gas and solid dual-phase flow atomization crash in molten metal%金属液流的气固两相流雾化破碎准则

    Institute of Scientific and Technical Information of China (English)

    陈刚; 杨现; 苏斌; 涂川俊

    2014-01-01

    介绍了一种自行发明的新的雾化方法。该方法是采用含有固体介质的高速气流即气固两相流对液体金属或合金进行雾化而制备粉末的一种方法,对比研究了同等条件下普通气体雾化与两相流雾化制备粉末的特征,研究了固体雾化过程中主要工艺参数对固体雾化粉末特征的影响规律。结果表明,两相流雾化制得粉末的平均粒度约为普通气体雾化所得粉末的二分之一,而且粒度分布更集中,粉末的冷却速度比普通气体雾化高一个数量级,粉末微观组织更细小;采用液体雾化破碎准则韦伯数以衡量雾化介质的破碎能力,得出两相流雾化介质的韦伯数为气体韦伯数和颗粒流韦伯数之和,建立了两相流雾化破碎的临界方程,并以此讨论了主要工艺规律。%A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed.

  9. Evaluation of essential work of fracture in a dual phase high strength steel sheet; Evaluacion del trabajo esencial de fractura en chapa de un acero de alta resistencia de fase dual

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-03-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  10. MICROSTRUCTURE AND PROPERTIES OF 600 MPa GRADE COLD ROLLED DUAL-PHASE STEEL%600MPa级含钒冷轧双相钢的组织性能研究

    Institute of Scientific and Technical Information of China (English)

    罗娟娟; 史文; 黄群飞; 李麟

    2011-01-01

    Cold rolled low carbon Si-Mn containing V dual phase steels of 600 Mpa grade were exploited in laboratory. The microstructure and property of tested steels after continuous annealing were measured. The results showed that the tested steels which had good mechanical properties could be obtained by annealing at 800 ℃, over-ageing at 300 ℃. After heat treatment, the yield strength was 358 Mpa, the tensile strength was 637 Mpa, the elongation and BH value reached 23.7% and 55 Mpa respectively. V element had two kinds of existent states, one was precipitate in ferrite, and another one was solute in ferrite, the main roles of vanadium in dual-phase steel was precipitation strength and refining grain size.%在实验室试制600 MPa级低碳Si-Mn含钒冷轧双相钢,研究了连续退火后试验钢的组织和力学性能.结果表明:经800℃保温,300℃过时效处理,可以获得综合力学性能优良的冷轧双相钢,其屈服强度为358 MPa,抗拉强度为637 MPa,伸长率达到了23.7%,BH值为55 MPa;钢中V主要以析出物和在铁素体中以固溶态两种状态存在,主要起到析出强化和细化晶粒的作用.

  11. The relationship between estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression of breast cancer and the retention index in dual phase {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Woo Chul; Kim, Hyun Ah; Kim, Eun Kyu [Dept.of Surgery, Korea Cancer Center HospitalKorea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of); and others

    2016-09-15

    This study investigates the correlation of retention index (RI) using the dual phase FDG PET/CT scan with the breast cancer biomarkers. A total of 55 patients with breast cancer underwent dual phase FDG PET/CT scans (60 and 120 min after FDG injection) before treatment. SUVmax and SUVmean of the primary breast tumors were measured, then the percent change of SUVmax and SUVmean between the two scans were calculated, and denoted as RImax and RImean, respectively. After the surgical resection of the breast tumor, the status of biomarkers (ER, PR, and HER-2) was evaluated in the postsurgical specimen. RImean was significantly higher in ER (−) (median, 16.2; IQR, 10.8–21.0) or HER-2 (+) (median, 16.1; IQR, 10.7–21.6) tumors than in ER (+) tumors (median, 9.9; IQR, 5.5–15.3) or HER-2 (−) tumors (median, 10.5; IQR, 5.5–16.1). However, there were no significant differences of SUVmax or RImax according to the ER or HER-2 status. There were no significant differences of any PET parameters between PR (+) and PR (−) tumors. Based off ROC curve analyses, RImean predicted the ER (+) tumors (AUC, 0.699; p = 0.006), and HER-2 (+) tumors (AUC, 0.674; p = 0.022), but not the PR (+) tumors. However, neither SUVmax nor RImax predicted ER (+), PR (+), or HER-2 (+) tumors. Retention index of SUVmean can reflect the ER and HER-2 status of breast cancers. Higher retention index of SUVmean might associate with lower ER expression and higher HER-2 expression.

  12. Effect of intercritical temperature and cold-deformation on the kinetics of austenite formation during the intercritical annealing of dual-phase steels

    Energy Technology Data Exchange (ETDEWEB)

    El-Sesy, I.A.; Hussein, A.H.A. (Cairo Univ., Gizeh (Egypt). Dept. of Mining, Petroleum and Metallurgical Engineering); Klaar, H.J. (Technische Hochschule Aachen (Germany, F.R.). Gemeinschaftslaboratorium fuer Elektronenmikroskopie)

    1990-01-01

    The objective of this investigation was to study the effect of the intercritical temperature and percentage of cold-deformation on the kinetics of austenite formation during the intercritical annealing in the alpha + gamma ({alpha} + {gamma}) phase field of the iron-carbon phase diagram. This investigation was carried out on an Fe-0.11 C-1.58 Mn-0.4 Si ferritic-pearlitic alloy with different structures of 0% (hot-rolled), 25% and 50% cold-deformation. The intercritical annealing temperatures were 735, 750deg C and the intercritical annealing time ranged from 15 to 1815 s. It has been observed that recrystallization of the deformed ferrite was completed before any austenite formation. Surprisingly, it was noted that the recrystallized ferrite grain size was independent of percentage cold-deformation. Furthermore, it was expected that cold-deformation accelerates the kinetics of austenite formation. Nevertheless, the amounts of austenite formed from pearlite dissolution were mostly equal, irrespective of the starting condition. As has been previously reported, increasing the intercritical annealing temperature was found to increase the amount of austenite. (orig.).

  13. Abridgment of nano and micro length scale mechanical properties of novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys using object oriented finite element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ankur [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826 (United States); Kumar, Vinod [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Nair, Jitin [Department of Materials and Metallurgical Engineering, National Institute of Foundry and Forge Technology, Ranchi 834003 (India); Bansal, Ankit [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Tata Steel Ltd., Jamshedpur, Jharkhand 831001 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2015-06-15

    Highlights: • Dual phase (α + β) Mg–9Li–7Al–1Sn (LAT971) and Mg–9Li–5Al–3Sn–1Zn (LATZ9531) alloys. • Effective elastic modulus estimated from finite element method (FEM). • Correlation of nanoscale mechanical data with microstress distribution. • Precipitates of Mg–Al–Li act as stress relaxer and Mg–Li–Sn as stress concentrator. • Higher local heterogeneous stress distribution (∼0.6–5.7 GPa) in LATZ9531 alloys. - Abstract: In the recent years, magnesium–lithium (Mg–Li) alloys have attracted considerable attention/interest due to their high strength-to-density ratio and damping characteristic; and have found potential use in structural and biomedical applications. Here the mechanical behavior of novel Mg–9 wt.% Li–7 wt.% Al–1 wt.% Sn (LAT971) and Mg–9 wt.% Li–5 wt.% Al–3 wt.% Sn–1 wt.% Zn (LATZ9531) alloys is reported. Both, as cast and thermomechanically processed alloys have been studied which possess dual phase microstructure. Nanoindentation data have been utilized to envisage the elastic modulus of alloy via various micromechanics models (such as rule of mixtures, Voigt–Reuss, Cox model, Halpin–Tsai and Guth model) in order to estimate the elastic modulus. Object oriented finite element modeling (FEM) has been performed to predict stress distribution under tensile and compressive strain state. Close match between Halpin–Tsai model and FEM results show the abridgment of nano length scale property to evolution of microscopic stress distribution in novel LAT971 and LATZ9531 Mg–Li–Al based alloys.

  14. Corrosion resistance of Ti-6Al-4V and ASTM F75 alloys processed by electron beam melting

    Directory of Open Access Journals (Sweden)

    E. Almanza

    2017-07-01

    Full Text Available The electron beam melting (EBM is a useful technique for fabricating alloys that are difficult to machine and require expensive tools as well as the presence of inert atmosphere for further treatments. Under vacuum, EBM provides a controlled environment, reducing the drawbacks of the alloys of their processing in a conventional manner and thereby improving their microstructure, which can enhance corrosion resistance. In the present work, the corrosion resistance of the Ti-6Al-4V and ASTM F75 alloys was evaluated by using the Tafel extrapolation technique with scan rates of 0.05, 0.1 and 0.166 mV/s. The corrosion specimens were submerged in a Hank solution to simulate the corporal fluid. The specimens were characterized before and after the corrosion tests by optical microscopy and scanning electron microscopy, as well as a chemical microanalysis by EDS. The microstructural characterization before the corrosion tests revealed a dual phase (α + β microstructure and α′ martensite in the Ti-6Al-4V alloy. For the ASTM F75 (Co-base alloy, carbides were observed on the grain boundaries. Corrosion resistance increased in the Ti-6Al-4V alloy, from 0.50 to 0.14 mpy, possibly due to the formation of a TiO2 passive layer. For the case of the ASTM F75 alloy, the corrosion rate decreased from 0.21 to 0.14 milli-inches/year (mpy due to the formation of Cr layer. The corrosion results were observed to be very similar for the EBM fabricated alloys in comparison with more commercially fabricated alloys.

  15. Microstructure and Shape Memory Behavior of Ti-Nb Shape Memory Alloy Thin Film

    Science.gov (United States)

    Meng, X. L.; Sun, B.; Sun, J. Y.; Gao, Z. Y.; Cai, W.; Zhao, L. C.

    2017-06-01

    Ti-Nb shape memory alloy (SMA) thin film is a promising candidate applied as microactuator in biomedical field. In this study, the microstructure and shape memory behavior of Ti-Nb SMA thin films in different heat treatment conditions have been investigated. Fine ω phases embedded in the β phase matrix suppress the martensitic transformation of the films. As a result, the as-deposited and most of the annealed films consist of the β and α″ dual phases. The annealed Ti-Nb thin film shows excellent superelasticity effect when deformed above the reverse martensitic transformation temperature, that is 3.5% total recovery strain can be obtained when 4% pre-strain is loaded.

  16. Structural and magnetic properties of Co{sub 2}Ti{sub 1−x}Fe{sub x}Al (0 ≤ x ≤ 0.5) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Lakhan, E-mail: lakhanbainsla@gmail.com; Gupta, Sachin, E-mail: lakhanbainsla@gmail.com; Suresh, K. G., E-mail: lakhanbainsla@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai-400076 (India)

    2014-04-24

    In this work we studied the effect of partial Fe substitution for Ti on the structural and magnetic properties of the Co{sub 2}TiAl. X-ray diffraction analysis indicates the presence of B2 type disorder for x > 0, (111) reflections are absent for x > 0 which is the characteristic of B2 type disorder. XRD analysis also shows presence of second phase. Magnetization measurements also confirm the presence of dual phase. Curie temperature of the alloys increases with increase in Fe concentration. Saturation magnetic moments agree very well with those calculated by Slater-Pauling rule.

  17. Dual-phase (99m)Tc-MIBI scintigraphy with delayed neck and thorax SPECT/CT and bone scintigraphy in patients with primary hyperparathyroidism: correlation with clinical or pathological variables.

    Science.gov (United States)

    Qiu, Zhong-Ling; Wu, Bo; Shen, Chen-Tian; Zhu, Rui-Sen; Luo, Quan-Yong

    2014-10-01

    The purpose of this study was to assess the relationship between (99m)Tc-MIBI and (99m)Tc-MDP bone scintigraphy and clinical or pathological variables, including preoperative serum PTH levels and tumor diameter, in patients with newly diagnosed PHPT. Dual-phase (99m)Tc-MIBI planar scintigraphy was performed in 244 patients with PHPT. Of these patients, 155 underwent (99m)Tc-MDP bone scintigraphy to detect bone changes before parathyroidectomy. Factors influencing (99m)Tc-MIBI scintigraphy and (99m)Tc-MDP bone scintigraphy detection rate were assessed using univariate and multivariate logistic regression analysis; optimal cutoff values for predicting positive (99m)Tc-MIBI and (99m)Tc-MDP bone scintigraphy were evaluated using ROC analysis. Among 244 patients, 174 (71.31 %) patients with 181 foci had a positive (99m)Tc-MIBI planar scintigraphy; delayed neck and thorax SPECT/CT could identify and locate the (99m)Tc-MIBI lesions but could not find more lesions than planar scintigraphy. 70 (28.69 %) patients had a negative (99m)Tc-MIBI planar scintigraphy. Tumor diameter, serum PTH level and symptoms were statistically significant predictive factors in predicting positive (9m)Tc-MIBI scintigraphy both univariate and multivariate logistic regression analyses. The optimal thresholds for tumor diameter and serum PTH by ROC analysis were 1.03 cm and 127.60 ng/L, respectively. Among 155 patients with bone scintigraphy, (99m)Tc-MDP bone scintigraphy showed positive finding in 80 (51.61 %) patients and negative finding in 75 patients. Univariate logistic regression analysis showed that patient age, sex, tumor diameter and PTH level (≥150 ng/L) were statistically significant in predicting positive (99m)Tc-MDP bone scintigraphy. Multivariate logistic regression analysis showed both tumor diameter and PTH ≥ 150 ng/L were statistically significant in predicting positive (99m)Tc-MDP bone scintigraphy. The optimal thresholds for tumor diameter and serum PTH by ROC analysis were

  18. CSP流程生产经济型热轧双相钢的工艺与组织性能%Technology and Microstructure-Mechanical Properties of Economical Hot Rolled Dual Phase Steel By CSP Process

    Institute of Scientific and Technical Information of China (English)

    韩斌; 谭文; 汪水泽; 张超; 蔡晓辉

    2011-01-01

    为了在CSP产线上开发新一代经济型热轧双相钢,并确定生产的最佳成分和工艺,介绍了在武钢CSP生产线进行580MPa级热轧双相钢的工业化生产试制情况。分别采用C-Mn-Si系和C-Mn-Si-Cr系钢为原料,通过控制轧制和基于超强冷却设备的控制冷却工艺,成功开发出抗拉强度580MPa级热轧双相钢。通过比较分析2种成分钢的力学性能和微观组织,结果表明:经济型的C-Mn-Si系钢相对于C-Mn-Si-Cr系钢具有屈服强度低、屈强比小、伸长率大的特点,虽然马氏体量相对较少,但具有马氏体呈岛状更加均匀分布在铁素体晶界上等典型双相钢的特征,同时提出了生产过程中控制铁素体析出量和促进马氏体形成的具体措施。%In order to develop new generation economical DP steel and obtain the optimum composition and processing parameters in CSP line,the pilot production of 580 MPa hot-rolled dual phase strip at WISCO CSP Plant was introduced.Two series of dual phase steel,such as plain C-Mn-Si and C-Mn-Si-Cr steel,were produced successfully by controlled rolling and controlled cooling with ultra fast cooling capacity.The tensile strength of both series of DP steel achieves 580 MPa.Comparison of mechanical properties and microstructure between two steels,the results show that the cost of C-Si-Mn steel is lower than C-Si-Mn-Cr steel,C-Si-Mn steel has lower yield stress,lower yield strength/tensile strength ratio and higher elongation.Although obtained martensite fraction in C-Si-Mn steel was lower,the island martensite distributed among the ferrite grain boundaries was more uniform.The specific measures of controlling ferrite formation and promoting martensite transformation were put forward.

  19. Electrochemical Codeposition of Al-Li-Mg Alloys at Solid Aluminum Electrode from LiCl-KCl-MgCl2 Molten Salt System

    Science.gov (United States)

    Ye, Ke; Zhang, Mi Lin; Chen, Ye; Han, Wei; de Yan, Yong; Cao, Peng

    2010-06-01

    The electrochemical codeposition of Mg and Li at an aluminium electrode in LiCl-KCl (50:50 wt pct) melts containing different concentrations of MgCl2 at 893 K (620 °C) to form Al-Li-Mg alloys was investigated. Cyclic voltammograms showed that the potential of Li metal deposition at an Al electrode, before the addition of MgCl2, is more positive than that of Li metal deposition at an Mo electrode, which indicated the formation of an Al-Li alloy. The underpotential deposition of magnesium at an aluminium electrode leads to the formation of Al-Mg alloys, and the succeeding underpotential deposition of lithium on predeposited Al-Mg alloys leads to the formation of Al-Li-Mg alloys. Chronopotentiometric measurements indicated that the codeposition of Mg and Li occurs at current densities lower than -0.668 A cm-2 in LiCl-KCl-MgCl2 (8 wt pct) melts at an aluminium electrode. The chronoamperometric studies indicated that the onset potential for the codeposition of Mg and Li is -2.000 V, and the codeposition of Mg and Li at an aluminium electrode is formed into Al-Li-Mg alloys when the applied potentials are more negative than -2.000 V. X-ray diffraction and inductively coupled plasma analysis indicated that Al-Li-Mg alloys with different lithium and magnesium contents were prepared via potentiostatic and galvanostatic electrolysis. The microstructure of typical dual phases of the Al-Li-Mg alloy was characterized by an optical microscope and by scanning electron microscopy. The analysis of energy dispersive spectrometry showed that the elements of Al and Mg distribute homogeneously in the Al-Li-Mg alloy. The lithium and magnesium contents of Al-Li-Mg alloys can be controlled by MgCl2 concentrations and by electrolytic parameters.

  20. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Janghsing Hsieh

    2016-11-01

    Full Text Available Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD, atomic force microscopy (AFM, FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag.

  1. 奥氏体化温度对双相ADI中残余奥氏体含量的影响%Effects of austempering on residual austenite content of dual phase ADI

    Institute of Scientific and Technical Information of China (English)

    姜利坤; 刘运腾; 田长文; 赵德刚; 李卫红; 周吉学; 詹成伟

    2012-01-01

    The residual austenite has significant influence on the mechanical properties of Dual Phase Austempered Ductile Iron (ADI). We address the effects of austenitizing temperature on the content of retained austenite in ADI with X-ray method to investigate the relationship between process, organization and performance. Results show that the content of retained austenite .qradually increases with the increase of austenitizinq temperature.%残余奥氏体对双相等温淬火球墨铸铁(ADI)的力学性能影响比较显著。为了进一步了解工艺-组织-性能的关系,利用X射线法研究了奥氏体化温度对双相ADI中残余奥氏体含量的影响。结果表明随着奥氏体化温度的升高,残余奥氏体的含量逐渐增大。

  2. Design of Dual-Phase Lock-In Amplifier Based on Virtual Instrument Technology%一种基于虚拟仪器技术的双锁相放大器的设计

    Institute of Scientific and Technical Information of China (English)

    孙秀桂; 张洪斌; 孙江波

    2011-01-01

    锁相放大器是微弱信号检测的最有效手段,针对现有模拟锁相放大器和数字锁相放大器存在的问题,利用虚拟仪器技术和锁相放大器的基本原理,基于NI公司的LabVIEW软件及DAQ板卡对数字锁相放大器进行设计.设计中采用双锁相技术,通过在紫外辐射测试中的测试结果表明此锁相放大器具有更好的性能,可以精确地提取被噪声湮没的信号,可获得较好的信噪比.%Lock-in amplifier( LIA) is the effective means for weak signal detection. For existing analog and dig ital LJA problems, the double lock-in amplifier is designed based on LabVIEW and DAQ as well as virtual in strument and principle of LJA. The dual-phase PLL is adopted in this design. It is proved through application in detect of ultraviolet radiation that this software LIA is better in performance than conventional LIA. It can get out the annihilation signal by the noise precisely and gain a better signal-to-noise ratio.

  3. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    . Traditionally, theorem provers are used to prove that specifications are correct but this process is highly dependent on expert users. Alternatively, model finding has proved to be useful for validation of specifications. The Alloy Analyzer is an automated model finder for checking and visualising Alloy...... specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  4. Effect of heat treatment parameters on the microstructure and microhardness of Ti-6Al-4V alloy

    Science.gov (United States)

    Abdalla, Ayad Omran; Amrin, Astuty; Muhammad, Sallehuddin; Hanim, M. A. Azmah

    2017-07-01

    Ti-6Al-4V is a dual-phase (α+β) Ti-alloy which possesses potential series and complex microstructures. The coexistence of β-phase alongside α-phase in Ti-6Al-4V alloy enhances the heat treatment process. Precise adjustments of heat treatment parameters can lead to diversity of microstructures that can be transformed from equiaxed to fully lamellar to bi-modal. These microstructures have a critical impact on the mechanical properties. This work investigates the effect of altering the heat treatment parameters on both the microstructure and microhardness of Ti-6Al-4V alloy to elucidate alloy's behaviour on the basis of microstructure - properties relations. Recrystallization annealing, solution treatment followed by aging, and β-annealing were performed on several samples to obtain various microstructures. The as-received sample exhibited fine equiaxed structure with a grain size of 1.78 µm. Recrystallization annealing of the fine equiaxed structure yielded considerable grain growth, resulting 7.29 µm larger globular grains. The bi-modal microstructure was obtained from the equiaxed structure through solution treatment followed by aging. The application of β-annealing treatment resulted in a lamellar microstructure. The microhardness readings were affected by variations in the heat treatment procedures. The highest and lowest hardness were 386.1Hv and 302.2 Hv for the lamellar and the equiaxed microstructures, respectively. The improvement in the microhardness was 27.8%. In comparison, the bi-modal microstructure demonstrated a balanced hardness.

  5. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  6. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  7. Stability and performance of robust dual-phase (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-Al0.02Zn0.98O1.01 oxygen transport membranes 

    DEFF Research Database (Denmark)

    Pirou, Stéven; Bermudez, Jose M.; Hendriksen, Peter Vang

    2017-01-01

    Dual-phase composite oxygen transport membranes consisting of 50 vol% Al0.02Zn0.98O1.01 and 50 vol% (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10 were successfully developed and tested. The applicability of the membrane in oxy-fuel power plants schemes involving direct exposure to flue gas was evaluated...... (ATR-FTIR), and Raman spectroscopy revealed excellent stability. Additionally, an electrical conductivity measurement over 900 h confirmed that the composite is stable under prolonged exposure to CO2. However, an instability of the dual-phase membrane under oxygen partial pressures below ~10−4 atm....... was found. Oxygen permeation tests on a 1 mm thick self-standing membrane resulted in an oxygen flux of 0.33 mLN min−1 cm−2 at 925 °C in air/N2. Stability tests in CO2 with 3 vol% O2 demonstrated the potential for the use of 10Sc1YSZ-AZO dual-phase membranes in oxy-combustion processes involving direct...

  8. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  9. Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures

    Science.gov (United States)

    Ivanova, Mariya E.; Escolástico, Sonia; Balaguer, Maria; Palisaitis, Justinas; Sohn, Yoo Jung; Meulenberg, Wilhelm A.; Guillon, Olivier; Mayer, Joachim; Serra, Jose M.

    2016-11-01

    Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 μm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.

  10. Multilayer Spiral CT Dual Phase Scanning Diagnosis and Differential Diagnosis Value of Kidney Cancer%多层螺旋CT双期扫描对肾癌的诊断及鉴别诊断价值

    Institute of Scientific and Technical Information of China (English)

    董立平

    2013-01-01

    目的:探讨多层螺旋CT双期扫描诊断和鉴别肾癌与肾血管平滑肌脂肪瘤的特点与应用价值。方法经病理证实确诊病例78例分组,肾癌52例列入研究组,微脂肪成分肾血管平滑肌脂肪瘤26例列入对照组。所有患者均采用多层螺旋CT双期扫描进行诊断鉴别,行平扫和皮髓期、实质期双期增强扫描,比较两组肿瘤低密度率、皮髓期及实质期CT值、不均质强化率。结果研究组肿瘤低密度率极明显高于对照组,高密度率极明显低于对照组(P0.05);研究组不均质强化率明显高于对照组(P0.05);Team heterogeneity reinforcement ratio is signiifcantly higher than control group (P<0.01). Conclusion Multilayer spiral CT dual phase scanning for effective diagnosis and differential of kidney cancer has important value, compared with micro fat ingredient angiomyolipomas, kidney main show is lfat sweep is low density, high peel pulp phase CT value and heterogeneous enhanced features.

  11. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  12. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  13. 评估MSCT双期增强扫描对中下段胆管癌诊断的价值%The Evaluation of the Dual-phase Contrast enhanced MSCT Scan in the Diagnosis of the Distal and Middle Cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    任军; 殷信道; 张卫东

    2012-01-01

    目的 评估MSCT双期增强扫描对中下段胆管癌诊断的价值.方法 回顾性分析15例经手术病理证实的胆管中下段癌的CT增强表现.多层CT采用薄层双期(动脉和门脉)增强扫描,双期扫描均采用层厚和间隔均为3-5mm的薄层采集,10例行多平面重建观察.结果 动脉和门脉期增强扫描,13例显示胆管管壁增厚,2例显示胆管腔内结节影,动脉期轻中度强化,门脉期中度以上强化.所有病例均可见梗阻段以上胆管扩张、肝内胆管扩张,胆囊增大.MPR图像有助于显示病灶全貌.结论 MSCT双期增强扫描及MPR图像对中下段胆管癌定性诊断具有很高价值.%Objective To evaluate the value of the dual-phase contrast-enhanced MSCT scan in diagnosing the distal and middle cholangiocarcinoma. Methods A retrospective MSCT enhancement findings was analyzed in 15 cases of the distal and middle cholangiocarcinoma which were proved of pathological examination after operations. MSCT by the thin-slice dual-phase (arterial and portal phase) contrast -enhanced technology was used in all cases. For the dual-phase contrast-enhanced scan, the thin-slice requisition with 3-5mm thickness and interval was used, multiplanar reconstruction (MPR) was performed in 10 cases for the further observation. Results For the thin-slice dual-phase MSCT scan, the wall thickening and intra-luminal nodule of involved bile ducts were respectively shown in 13 and 2 cases, which showed mild to moderate enhancement in the arterial phase and moderate or more enhancement in the portal phase. The enlarged gallbladder and the severely dilated intrahepatic ducts and common bile ducts proximal to the tumor were seen in all cases. MPR images in 10 cases showed the total aspects of the cholangiocarcinoma. Conclusion On MSCT thin-slice dual-phase enhancement scan and MPR images, the diagnosis of the distal and middle cholangiocarcinoma can be made definitely.

  14. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  15. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  16. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  17. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  18. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  19. 控冷工艺对热轧双相钢盘条组织和性能的影响%Effect of Controlling Cooling Process on Microstructure and Properties of Dual Phase Steel Wire Rods

    Institute of Scientific and Technical Information of China (English)

    徐向俊; 孔俊其

    2012-01-01

    通过840℃精轧后空冷到760℃然后淬水(工艺1)和850℃精轧后在保温罩中缓冷到760℃然后风冷(工艺2)两种工艺轧制ER70s-6钢盘条,并分析了其盘条的组织和性能.结果表明,工艺1生产的盘条横截面表层和内部组织不均匀,内部含20.7%成条带状分布的马氏体,其抗拉强度、屈服强度和伸长率分别为725、382 MPa和16.5%:工艺2生产的盘条组织较均匀,含11.5%马氏体,其抗拉强度、屈服强度和伸长率分别为608、338 MPa和31.3%.双相钢中马氏体含量高对强度有利,但其成条带状分布对塑性不利.%ER70s-6 steel wire rods rolled at finishing rolling temperature of 840 ℃ and cooled to 760℃ in air then quenched in water (process 1) and rolled at finishing rolling temperature of 850 ℃, cooled to 760 ℃ in heat insulation mantle and then cooled in flow air (process 2) were produced, and their microstructures and the mechanical properties were analyzed. The results show that the wire rod produced in process 1 has different microstructures between internal and external parts of the rod cross section. In internal part the martensite distributed in banded form is 20.7% in volume fraction. The wire rod produced in process 2 has uniform microstructure with 11.5% martensite in volume fraction. The wire rod produced in process 1 has yield strength level of 382MPa, ultimate tensile strength level of 725 MPa and plastic elongation of 16.5 %, respectively. The wire rod produced in process 2 has yield strength level of 338MPa, ultimate tensile strength level of 608 MPa and plastic elongation of 31.3%, respectively. For dual phase steel high content of martensite is beneficial for strength, but the bended distribution of martensite is bad for the ductility.

  20. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  1. Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys

    Science.gov (United States)

    King, D. M.; Middleburgh, S. C.; Edwards, L.; Lumpkin, G. R.; Cortie, M.

    2015-06-01

    High-entropy alloys (HEAs) have advantageous properties compared with other systems as a result of their chemistry and crystal structure. The transition between a face-centered cubic (FCC) and body-centered cubic (BCC) structure in the Al x CoCrFeNi high-entropy alloy system has been investigated on the atomic scale in this work. The Al x CoCrFeNi system, as well as being a useful system itself, can also be considered a model HEA material. Ordering in the FCC structure was investigated, and an order-disorder transition was predicted at ~600 K. It was found that, at low temperatures, an ordered lattice is favored over a truly random lattice. The fully disordered BCC structure was found to be unstable. When partial ordering was imposed (lowering the symmetry), with Al and Ni limited specific sites of the BCC system, the BCC packing was stabilized. Decomposition of the ordered BCC single phase into a dual phase (Al-Ni rich and Fe-Cr rich) is also considered.

  2. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  3. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  4. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  5. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy

    Science.gov (United States)

    Ju, Jia; Lou, Shuting; Yan, Chen; Yang, Liu; Li, Tao; Hao, Shuai; Wang, Xingyi; Liu, Huan

    2017-04-01

    A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0-1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio ( R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

  6. Enhancing the Oxygen Permeation Rate of Zr0.84Y0.16O1.92 - La0.8Sr0.2Cr0.5Fe0.5O3-δ Dual-Phase Hollow Fiber Membrane by Coating with Ce0.8Sm0.2O1.9 Nanoparticles

    NARCIS (Netherlands)

    Liu, Tong; Wang, Yao; Yuan, Ronghua; Gao, Jianfeng; Chen, Chusheng; Bouwmeester, H.J.M.

    2013-01-01

    Zr0.84Y0.16O1.92−La0.8Sr0.2Cr0.5Fe0.5O3−δ (YSZ-LSCrF) dual-phase composite hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The shell surface of the hollow fiber membrane was modified with Ce0.8Sm0.2O1.9 (SDC) via a drop−coating method. As the rate of oxygen p

  7. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  8. 螺旋CT双期增强薄层扫描对小胰腺癌的诊断价值%To study the early diagnosis of small pancreatic cancer by dual-phase contrast enhanced spireal CT

    Institute of Scientific and Technical Information of China (English)

    吕建通; 李瑞峰; 宋文棉; 焦建民

    2011-01-01

    目的:研究螺旋CT胰腺期、肝脏期双期增强薄层扫描在小胰腺癌早期诊断中的作用.方法:对25例小胰腺癌患者行螺旋CT双期增强扫描,扫描延迟时间分别为38s和70s,胰腺期行2mm层厚,螺距1.0扫描,并对胰腺期扫描分别以2mm间隔及5mm层厚和5mm间隔重建.对1cm<病灶<2cm和病灶<1cm在2mm层厚图象与5mm层厚重建图像上显示情况进行对比观察研究,并对术前预测和术后进行对比.结果:两组观察结果经统计学处理检出率有显著性差异:对1cm<病灶<2cm检出率p<0.01,对病灶<1cm检出率p<0.025;术前预测可切除性和不能切除和术后进行对比没有明显差异P>0.1.结论:螺旋CT动态增强薄层扫描可明显提高小胰腺癌和微胰腺癌的检出率,对小胰腺癌的早期诊断有重要的临床价值.肝脏期扫描为临床确定肿瘤是否能够手术切除提供科学依据.%Objective: to evaluate the carly detection of Dual-phase helical CT in small pancreatic cancer. Methods:25 patients with small pancreatic cancer under go pancreatic and hepatic phase began at 38s ,70s after injection. The pancreatic period goes the 2 mm slice thick, pitch 1.0 scan,then 2mm intervals ,5mm slice thick and 5mm interval rebulided in pancreatic phase. And study to the 1 cm < focus <2 cms and the focus < 1 cm manifestation in two group images, the assessment of tumor respect ability based on CT findings was compared with surgical and histopathologic.Results: To 1cm <focus<2cm There is a significant difference (P<0.01 ) . To focus>1cm. There is a significant difference (P<0. 025), there is no significant difference in prediction of operation. Conclusion, There are more diagnostic accuracy in small and micro pancreatic adcnocacinoma with 2mm scaning than 5mm scanig. Hepatic phase scaning is an excellent predictical methods in deciding wheather operat or not.

  9. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  10. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  11. Enhancing the oxygen permeation rate of Zr(0.84)Y(0.16)O(1.92)-La(0.8)Sr(0.2)Cr(0.5)Fe(0.5)O(3-δ) dual-phase hollow fiber membrane by coating with Ce(0.8)Sm(0.2)O(1.9) nanoparticles.

    Science.gov (United States)

    Liu, Tong; Wang, Yao; Yuan, Ronghua; Gao, Jianfeng; Chen, Chusheng; Bouwmeester, Henny J M

    2013-10-09

    Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ (YSZ-LSCrF) dual-phase composite hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The shell surface of the hollow fiber membrane was modified with Ce0.8Sm0.2O1.9 (SDC) via a drop-coating method. As the rate of oxygen permeation of the unmodified membrane is partly controlled by the surface exchange kinetics, coating of a porous layer of SDC on the shell side (oxygen reduction side) of the hollow fiber membrane was found to improve its oxygen permeability. Rate enhancements up to 113 and 48% were observed, yielding a maximum oxygen flux of 0.32 and 4.53 mL min(-1) cm(-2) under air/helium and air/CO gradients at 950 °C, respectively. Excess coating of SDC was found to induce significant gas phase transport limitations and hence lower the rate of oxygen permeation. A model was proposed to calculate the length of triple phase boundaries (TPBs) for the coated dual-phase composite membrane and to explain the effect of coating on the oxygen permeability.

  12. SURFACE MELTING OF ALUMINIUM ALLOYS

    OpenAIRE

    Veit, S.; Albert, D; Mergen, R.

    1987-01-01

    The wear properties of aluminium base alloys are relatively poor. Laser surface melting and alloying has proved successful in many alloy systems as a means of significantly improving the surface properties. The present work describes experiments designed to establish the scope of laser treatment of aluminium alloys. Aluminium does not absorb CO2 laser light as well as other metals which necessitated first a general study of absorption caotings. Aluminium alloys offer fewer opportunities than ...

  13. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation

    Science.gov (United States)

    Yu, Hongbing; Zhang, Ken; Yao, Zhongwen; Kirk, Mark A.; Long, Fei; Daymond, Mark R.

    2016-02-01

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr2+) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  14. Evaluation of diagnosis value by capsule endoscopy and dual phase enhanced CT of small intestine and ;colon for obscure gastrointestinal bleeding%CE与小肠结肠双期增强CT对不明原因消化道出血诊断价值的评价

    Institute of Scientific and Technical Information of China (English)

    许菲; 刘曌宇; 廖光全; 胡继芬; 吴小力

    2015-01-01

    Objective To analyze pathogenesis of obscure gastrointestinal bleeding (OGIB), and to compare diagnosis value and advantages of capsule endoscopy (CE) and dual phase enhanced CT of small intestine and colon for OGIB. Methods A total of 101 clinically diagnosed OGIB patients received CE and dual phase enhanced CT of small intestine and colon respectively. Detection rates for different lesions by CE and dual phase enhanced CT of small intestine and colon were calculated for comparison. Results Among 101 patients receiving CE, there were 77 cases with lesions. There were 69 cases with small intestine lesion and 8 cases with lesion outside small intestine. Dual phase enhanced CT of small intestine and colon showed 25 lesion cases. There were 15 cases with small intestine lesion and 10 cases with lesion outside small intestine. The difference of detection rate of hemorrhage-related small intestine lesion between the two methods had statistical significance(P<0.05). Conclusion CE is an effective diagnosis method for OGIB, and it provides much higher detection rate than dual phase enhanced CT of small intestine and colon. Implement of CT combined with CE for OGIB patients can improve detection rate and provide guidance for surgical treatment.%目的:分析不明原因消化道出血(OGIB)的病因,比较CE(CE)与小肠结肠双期增强CT对OGIB的诊断价值及优势。方法临床诊断考虑为OGIB的患者101例,分别行CE及小肠结肠双期增强CT检查,计算CE及小肠结肠双期增强CT对不同病变的检出率,比较其差异。结果101例行CE检查患者共发现病变77例,其中小肠病变69例,小肠外病变8例。小肠结肠双期增强CT发现病变25例,其中小肠病变15例,小肠外病变10例。两种方法的出血相关小肠病变检出率比较,差异有统计学意义(P<0.05)。结论 CE是对OGIB的有效检查方法,其病变检出率明显高于小肠结肠双期增强CT,临床上对于OGIB患者采用CT联合CE的检查方法

  15. Analysis of niobium alloys.

    Science.gov (United States)

    Ferraro, T A

    1968-09-01

    An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.

  16. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  17. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  18. Alloy Selection System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  19. Strength of Hard Alloys,

    Science.gov (United States)

    Partial replacement of titanium carbide by tantalum carbide in three-phase WC-TiC-Co alloys tends to have a favorable effect on mechanical properties such as fatigue strength under bending and impact durability.

  20. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2015-03-01

    Full Text Available The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Ti–6Al–4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Ti–6Al–4V and SS304L into which pure oxygen free copper (OFC was introduced as interlayer were investigated. Box–Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Ti–6Al–4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  1. Experimental investigation of Tie6Ale4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Institute of Scientific and Technical Information of China (English)

    R. KUMAR; M. BALASUBRAMANIAN

    2015-01-01

    The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4V and SS304L into which pure oxygen free copper (OFC) was introduced as interlayer were investigated. BoxeBehnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  2. First Everlasting Alloy

    Institute of Scientific and Technical Information of China (English)

    杨仲言

    1994-01-01

    There′s new alloy that apparently just won′t give up. When a pin was scraped along it the equivalent of one million times, the alloy-made of zirconium, palladium, and ruthenium—displayed no net loss of surface material. When astonished researchers at the National Institute of Standards and Technology(NIST) persevered with a five-million-cycle wear test, they got the same result.

  3. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  4. Study of residual stresses in welded joints of dual phase HSLA steel used in automotive industry; Estudo das tensoes residuais em juntas soldadas de aco ARBL bifasico usado na industria automobilistica

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, D.S.; Fonseca, M.P. Cindra; Marques Junior, A.S.; Chuvas, T.C.; Pardal, J.M., E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Berretta, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    One way of weight reduction in automotive vehicles is through the use of high strength and low alloy (HSLA) steels, which enables the use of small thickness plates. Whereas the appearance of residual stresses is intrinsic to the welding process, this study evaluates the residual stresses generated in welded joints obtained by TIG and LASER welding processes and comparing them. Residual stresses were measured by X-rays diffraction technique, using a portable device with Cr{kappa}{alpha} radiation applying the double exposure method. It also evaluates the influence of shot peening treatment applied after welding, in the bend tests conducted for both welding conditions and TIG welded joints showed higher stability of compressive stresses after welding. The metallographic analysis by optical microscopy complemented the welded joints characterization. (author)

  5. The stability of thermodynamically metastable phases in a Zr-Sn-Nb-Mo alloy: Effects of alloying elements, morphology and applied stress/strain

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Daymond, Mark R.

    2017-09-01

    In this paper, a dual phase Zr-Sn-Nb-Mb alloy was studied with TEM after thermal treatment and high-temperature tensile deformation. Plate and pressure tube material, manufactured through different processing routes, were used in this study. The overall average concentrations of Mo and Nb in the β phase are higher in the pressure tube than in the plate. It was revealed that these concentrations have significant effects on the subsequent stability of the β and ω phases as well as on the precipitation behavior of the α phase from the β phase. That is, the higher the concentrations, the more stable the β and ω phases are, and hence there is a reduced tendency for precipitation of α phase. Aging treatments cause the transformation of athermal ω to isothermal ω, as expected. The most striking finding is the product of the decomposition of the isothermal ω particles during aging treatment is determined as not being α phase, even though the structure of it is, as-yet, not fully determined. The non-uniform morphology of the β grains in the plate material provides us a unique opportunity to investigate the effects of morphology on the aging response of the β phase. It was found that thin β filaments suppress the precipitation of isothermal ω particles but enhance the precipitation of α phase at α/β interfaces. The effect of the Burgers orientation relationship between α and β grains on the precipitation of the α phase at the α/β interface is discussed. Applied high-temperature stress/strain has been found to enhance the decomposition of isothermal ω phase but suppress α precipitation inside the β grains. The suppression of α precipitation by applied stress/strain is discussed in terms of the ω assisted α precipitation. Implications of these findings for the in-service application of the alloy are discussed.

  6. PET/CT双时相显像对孤立性肺结节良恶性鉴别价值%THE VALUE OF DUAL-PHASE 18F-FDG PET/CT IN THE DIFFERENTIAL DIAGNOSIS OF SOLITARY PULMONARY NODULE

    Institute of Scientific and Technical Information of China (English)

    王艳丽; 崔新建; 房娜; 曾磊; 马丽莉; 赵伟

    2011-01-01

    目的 探讨F-FDG PET/CT双时相显像鉴别孤立性肺结节(SPN)良恶性的价值.方法 对65例SPN病人分别在注药后1 h和2~3 h进行PET/CT双时相显像;对SPN的早期显像标准摄取值(SUV)、延迟显像SUV、滞留指数进行分析.结果 经病理证实恶性36例、良性29例,其中良性结节包括炎性假瘤13例.结核球12例,硬化性血管瘤2例,肺腺瘤1例,隐球菌感染1例;恶性结节中包括10例磨玻璃结节.良性组、恶性组的早期显像SUV、延迟显像SUV、滞留指数差异均无统计学意义.结论 F-FDG PET/CT双时相显像对SPN良恶性的鉴别诊断价值有限,尚需进一步研究.%Objective To assess the value of dual-phase 18F-FDG PET/CT in the differential diagnosis of a solitary pulmonary nodule.Methods Dual-phase 18F-FDG PET/CT study was conducted in 65 patients with imaging 1 and 2-3 hours after drug injection.The standard uptake value (SUV), delay imaging SUV, and retention index were analyzed.Results Of 65 nodules, 36 were malignant, and 29 benign.Of the benign nodules, there were nflammatory pseudotumor (13 nodules), tuberculoma (12), sclerosing hemangioma (2), pulmonary adenoma (1), and infection of cryptococcus (1).Of malignant nodules, which included 10 ground-glass nodules.The differences of SUV, delay SUV and retention index were not statistically significant between benign group and malignant group.Conclusion The present study indicates the value of dual-phase 18F-FDG PET/CT is limited in differentiating malignant from benign solitary pulmonary modules.A further study of this topic is needed.

  7. Analysis on Diagnosis Results of Cerebral Arteriovenous Malformation by dual Phase Cerebrovascular Imaging Interventional Treatment%16层螺旋CT双期脑血管成像诊断脑动静脉畸形介入治疗结果分析

    Institute of Scientific and Technical Information of China (English)

    郝绪滨

    2014-01-01

    Objective To study the application value of 16 layer spiral CT dual phase cerebrovascular imaging interventional treatment application value in diagnosis of cerebral arteriovenous malformations,analysis the cerebral imaging results of interventional therapy and scanning characteristics.Methods Selecting 29 cases diagno-sised as cerebral arteriovenous malformation by DSA in our hospital neurosurgery,they were given 16 layer spiral CT dual phase cerebrovascular intervention treatment, analysis the imaging results.Results 16 layer spiral CT scan results suggest that cerebral arteries venous malformations are 28 cases,1 case was missed diagnosis.Conclu-sion 16 layer spiral CT dual phase cerebrovascular imaging interventional treatment has the advantages of noninvasive ,convenient operation,short time consuming,low cost,high resolution,good 3-d imaging effect and so on,which has high diagnosis rate in patients with cerebral arteriovenous malformation ,so it is worthy of populariza-tion and application.%目的:探讨研究16层螺旋CT双期脑血管成像在诊断脑动静脉畸形中的应用价值,分析脑血管成像介入治疗的结果及扫描特征。方法选取我院神经外科经DSA明确诊断为脑动静脉畸形的患者29例,给予16层螺旋CT双期脑血管成像介入治疗,分析所得图像结果。结果16层螺旋CT扫描结果提示,脑动脉静脉畸形者28例,有1例漏诊。结论16层螺旋CT双期脑血管成像介入治疗具有无创、操作简便、耗时短、费用低、分辨率高、三维成像效果好等优点,对脑动静脉畸形患者确诊率高,值得推广应用。

  8. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan;

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  9. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  10. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  11. Selective dissolution in binary alloys

    Science.gov (United States)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  12. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  13. Phase-inversion tape-casting preparation and significant performance enhancement of Ce0.9Gd0.1O1.95- La0.6Sr0.4Co0.2Fe0.8O3-δ dual-phase asymmetric membrane for oxygen separation

    DEFF Research Database (Denmark)

    Huang, Hua; Cheng, Shiyang; Gao, Jianfeng;

    2014-01-01

    The dual-phase Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3−δ asymmetric membrane was prepared via a phase-inversion tape-casting method. The membrane consisted of a thicker porous support layer and a thinner dense layer. When the dense side of the membrane was coated with a La0.6Sr0.4CoO3−δ catalytic...... activation layer, the oxygen permeation flux was markedly increased by a factor of 4.1–5.6, reaching 0.45 mL cm−2 min−1 at 900 °C. The flux increase can be attributed to enhanced surface oxygen exhange kinetics....

  14. 99Tcm-甲氧基异丁基异腈双时相显像诊断甲状旁腺功能亢进症的临床价值%Clinical value of dual-phase 99Tcm-MIBI imaging in diagnosing hyperparathyroidism

    Institute of Scientific and Technical Information of China (English)

    李家志

    2011-01-01

    目的 分析99Tcm-甲氧基异丁基异腈(MIBI)双时相显像在甲状旁腺功能亢进症(HPT)诊断中的临床价值.方法 29例临床诊断或高度怀疑HPT患者于颈部及上胸部行99Tcm-MIBI显像,采用双时相法并加做99Tcm-MIBI全身显像,阳性指标为延迟图像上出现异常增高的放射性聚集,显像资料均参照临床最终诊断结果进行评价,并与同期B超(29例)和CT检查(16例)结果进行对比.结果 29例患者中,25例确诊为HPT,其中甲状旁腺腺瘤23例,甲状旁腺增生1例,甲状旁腺癌1例.99Tcm-MIBI诊断灵敏度为84%,特异度为100%,准确度为86.21%,同期B超诊断灵敏度和准确度分别为72%和75.86%.CT检查的灵敏度为41.67%.99Tcm-MIBI双时相显像在腺瘤诊断方面较B超和CT具有更高的诊断效能(P<0.05).结论 99Tcm-MIBI双时相显像在定位诊断HPT疾患中具有较高的临床价值,可作为HPT术前定位诊断的主要手段.%Objective To evaluate the clinical value of dual-phase 99 Tcm-MIBI imaging in diagnosing hyperparathyroidism( HPT ).Methods Dual-phase 99Tcm-MIBI imaging was performed on 29 patients with HPT or highly suspectable HPT at neck and chest, abnormal increase radioactive accumulation in delay imaging stood for positive index.Imaging data were evaluated according to final clinical results ,followed by whole body imaging, and compared with contemporaneous ultrasound ( 29 cases ) and CT ( 16 cases ) results.Results In 29 patients,25 cases diagnosed as HPT,including 23 adenomas, 1 parathyroid hyperplasia and 1 parathyroid carcinoma.The sensitivity and specificity of 99Tcm-MIBI diagnosis were 84% and 100 % , respectively.The accuracy was 86.21%.The sensitivity and specificity of ultrasound were 72% and 75.86% , respectively.The sensitivity of CT was 41.67%.Compared with B-ultrasound and CT, dual-phase 99Tcm-MIBI imaging has a higher diagnostic performance in the diagnosis of adenoma ( P < 0.05 ).Conclusion Dual-phase 99Tcm

  15. Value of MSCT Dual-phase Enhanced Scan in the Diagnosis of Breast Cancer and Early Lymph Node Metastasis%MSCT 双期增强扫描对乳腺癌及早期淋巴结转移的诊断价值

    Institute of Scientific and Technical Information of China (English)

    高兴锋

    2015-01-01

    Objective To investigate the diagnostic value of MSCT dual-phase enhanced scan in breast cancer and early lymph node metastasis .Methods A retrospective analysis of clinical data of 90 cases of breast cancer patients without breast symptoms or signs who intended to receive surgical treatment were conducted .Patients received conventional horizontal position scanning chest MSCT dual-phase enhanced scan ,plain chest MSCT dual-phase enhanced scan .With axillary lymph node dissec-tion surgery and postoperative pathological diagnosis as the gold standard ,breast cancer axillary lymph nest CT findings were re-corded.Results 90 cases of patients,45 cases had abnormal scan results .26 cases were primary breast cancer ,10 cases were metastatic breast cancer ,9 cases were benign tumors .Detection rate of primary breast cancer by spiral CT was 28.98%.45 cases were breast cancer had 80 axillary lymph nodes ,wherein 36 were metastatic lymph nodes ,44 were non-metastatic lymph nodes .All breast cancer patients aged 50 years and above .CT scan of the tumor margin characteristics was consistent with the breast X-rays and ultrasound results .Conclusion MSCT dual-phase enhanced scan can detect asymptomatic breast cancer ,and it has signifi-cant value in evaluation of breast cancer patients with axillary lymph node metastasis .%目的:探讨MSCT双期增强扫描对乳腺癌及早期淋巴结转移的诊断价值。方法回顾性分析90例无乳腺症状或体征,并拟手术治疗的乳腺癌患者的临床资料。患者均行常规横轴位胸部MSCT双期增强扫描。术中腋窝淋巴结清扫及术后病理诊断结果作为金标准,记录乳腺癌腋窝淋巴结的CT表现。结果90例中45例患者乳腺扫描结果异常:26例为原发性乳腺癌,10例为转移性乳腺癌,9例为粘液腺癌。原发性乳腺癌的螺旋CT检出率为28.98%。45例乳腺癌患者共观察腋窝淋巴结80枚,其中转移性淋巴结36枚,非转移性淋巴结44

  16. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malatya (Turkey). Dept. of Machine and Metal Technologies

    2016-11-01

    The study examines the changes of the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4 V as a result of heat treatment using wire electrical discharge machining, and their effect on machinability. By means of optical microscopy and scanning electron microscopy (SEM), analyses have been performed to determine various characteristics and additionally, microhardness and conductivity measurements have been conducted. Material removal rate (MRR) and wire wear ratio (WWR) values have been determined by using L18 Taguchi test design. The microstructures of the samples have been changed by thermal procedures. Results have been obtained by using the Grey relational analysis (GRA) optimization technique to solve the maximum MRR and minimum WWR values. The best (highest) MRR value is obtained from sample E which was water quenched in dual phase processing. The microstructure of this sample is composed of primary α and α' phases. The best (lowest) WWR value is obtained from sample A.

  17. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  18. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  19. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  20. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  1. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  2. Pemilihan Bahan Alloy Untuk Konstruksi Gigitiruan

    OpenAIRE

    Medila Dahlan

    2008-01-01

    Pada kedokteran gigi bahan alloy sangat banyak digunakan dalam segala bidang. Dalam pembuatan konstruksi gigitiman biasanya digunakan alloy emas, alloy kobalt kromium, alloy nikei kromium dan alloy stainless steel sebagai komponen gigitiman kerangka logam serta pembuatan mahkota dan jembatan. Pemilihan bahan alloy dapat dilakukan berdasarkan sifat yang dimiiiki oleh masing-masing bahan alloy sehingga akan didapat hasil konstmksi gigitiruan yang memuaskan. Pada pemakaiannya didaiam mulut...

  3. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  4. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  5. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei;

    2003-01-01

    and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory...

  6. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  7. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  8. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  9. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Directory of Open Access Journals (Sweden)

    Zongxia LIU

    2005-05-01

    Full Text Available This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties. The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fineequiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing is superior to that of the later (tradition, leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  10. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  11. 18F-FDGPET/CT双时相显像鉴别诊断肺良恶性病变的临床研究%Clinical Study of Dual Phase 18F-FDG PET/CT Imaging in Differential Diagnosis for Benign and Malignant Lesion of Lung

    Institute of Scientific and Technical Information of China (English)

    赵秀娟; 赵新明; 王建方; 张敬勉; 张召奇; 王颖晨

    2011-01-01

    [Purpose] To investigate the clinical value of dual phase 18F-FDG PET/CT imaging in differential diagnosis for benign and malignant lesion of lung. [ Methods ] Sixty-five cases with lung lesion (80 pulmonary nodules) underwent dual phase 18F-FDG PET/CT imaging. The maximum standardized uptake value (SUVmax) of early and delay phase were calculated respectively, and the change in SUVmax (dual phase △SUVmax was defined as the ratio of the increase in SUVmax between early and delay scans to the early SUVmax. The final diagnosis were confirmed by pathological or clinical follow-up results. The diagnostic threshold of SUVmax, △SUVmax for lung lesion was evaluated by ROC curve. The diagnostic value between PET/CT and PET or CT was compared. [Results] (1)80 pulmonary nodules include 38 benign nodules and 42 malignant nodules. The early SUVmax of malignant nodule group was 5.35 (4.6), higher than the that of benign group 1.75 (2.0) (Z=-4.846, P=0.0001). The dual phase △SUVmax of malignant nodule group was 30.54 (2.0), which was higher than that of the benign group 16.84(2.0) (Z=-2.861 , P= 0.0042). (2) ROC analysis showed that the best cutoff value of early SUVmax and dual phase SUVmax in diagnosing pulmonary nodules was>2.45 and >24.66% respectively. When early SUVmax>2.45, the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in differential diagnosis for lung lesion was 88.10%, 63.16%, 76.25%, 72.55% and 82.76%, and when △SUVmax> 24.66%, the value was 64.29%, 71.05%, 67.50%, 71.05% and 64.29% respectively. (3) The accuracy of PET/CT diagnosed lung lesion was higher than that of PET and CT (P 2.45 and >24.66% respectively in 18F-FDG PET/CT diagnosis of lung lesion; and these combined with CT imaging be much better.%[目的]探讨18F-FDG PET/CT双时相显像鉴别诊断肺良恶性病变的临床价值.[方法]65例肺病变患者(80个病灶)行18F-FDG PET/CT双时相显像,计算最大标准化摄取值SUV,max及早

  12. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    Science.gov (United States)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  13. Tungsten carbide laser alloying of a low alloyed steel

    Science.gov (United States)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  14. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  15. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  16. Materials data handbook, Inconel alloy 718

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  17. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  18. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  19. Effects of Ferrite Grain Size on Dynamic Deformation Behavior of Ferrite-martensite Dual Phase Steel DP980%铁素体晶粒尺寸对铁素体——马氏体双相钢DP980动态变形行为影响

    Institute of Scientific and Technical Information of China (English)

    代启锋; 宋仁伯; 关小霞; 郭志飞

    2012-01-01

    为了研究铁素体晶粒尺寸对铁素体一马氏体冷轧双相钢DP980动态变形行为的影响,通过连续退火试验,得到两组马氏体体积分数相同、而铁素体晶粒尺寸不同的试样.选取应变速度为1×10-4 s-1和1×10-2s-1进行准静态拉伸试验:选取应变速度为500 s-1、1 000s-1和1 750 s-1在分离式霍普金森拉杆(Split Hopkinson tensile bar,SHTB)上进行动态拉伸试验.使用不考虑晶粒尺寸影响的Johnson-Cook(J-C)率相关模型和考虑晶粒尺寸影响的修正的Khan-Huang-Liang(KHL)率相关模型分析双相钢的动态变形行为,并引入可决系数R2来判定试验结果与模型的吻合关系.分析结果得出修正的KHL模型与试验结果吻合较好,其可决系数R2达到了0.998 7,表明修正的KHL模型可以很好地描述DP980材料在低应变速度和高应变速度下的变形行为,能够反映铁素体晶粒尺寸对DP980动态变形行为的影响.%Effects of ferrite grain size on quasi-static and dynamic deformation behavior of ferrite-martensite dual phase steel (DP980) are investigated. Two groups of experimental dual phase DP steels with the same martensite volume fraction and different ferrite grain size are obtained through performing the experiment with different austenitizing temperature. The quasi-static tensile experiment and the dynamic tensile experiment for the two groups of DP steels are carried out at strain rates ranging from 10~4 to 1 750 s~' at room temperature using universal testing machine CMT4105 and split Hopkinson tensile bar (SHTB), respectively. Then the true stress-effective plastic strain curves of DP980 steel for five strain rates have been obtained through the data processing. Johnson-Cook (J-C) model, which is not concerned with effects of grain size, and modified Khan, Huang and Liang (KHL) model, which is concerned with effects of grain size, are used to research dynamic deformation behavior of dual phase steel. And coefficient of

  20. Porosity of porous Al alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  1. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  2. Duct and cladding alloy

    Science.gov (United States)

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  3. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  4. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  5. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  6. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. ALLOY DESIGN AND PROPERTY EVALUATION OF TI ALLOY ...

    African Journals Online (AJOL)

    eobe

    The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. ... composites and ceramics, are being explored for use as biomaterials ... ALLOY OF TI-MO-NB-SN ALLOY FOR BIOMEDICAL APPLICATIONS ..... Almeida, C. A. “Least Square Unit Cell Refinement”. Program ...

  8. Influence of tempered microstructures on the transformation behaviour of cold deformed and intercritically annealed medium carbon low alloy steel

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2010-06-01

    Full Text Available This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 °C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 °C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected α → γ transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 °C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.

  9. Radiation Effects in Refractory Alloys

    Science.gov (United States)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  10. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  11. Shape memory alloy thaw sensors

    Science.gov (United States)

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  12. Electron Theory in Alloy Design

    CERN Document Server

    Pettifor, DG

    1992-01-01

    Presents recent developments in electron theory which have impacted upon the search for novel alloys with improved mechanical or magnetic properties. The ten chapters outline the ability of electron theory to make quantitative predictions (such as heats of formation, planar fault energies, shear moduli and magnetic anisotropy), and to provide simplifying concepts for understanding trends in alloy behaviour.

  13. 多层螺旋CT双期增强扫描对肝微小细胞癌的诊断价值%Study on the application of the multislice spiral CT screening on small hepatocellular carcinoma in dual-phase enhanced scanning

    Institute of Scientific and Technical Information of China (English)

    王建锋

    2016-01-01

    Objective To explore the application of the multislice spiral CT screening on small hepatocellular carcinoma in dual-phase enhanced scanning .Methods 36 patients with small hepatocellular carcinoma were collected from our department , every patient was examined using Plain and dual phase enhanced CT scan , all patients were confirmed by histopathology .We ana-lyzed the density and edge features of plain and dual phase enhanced CT scan , compared the detection rate of small hepatocellular carcinoma and the changes of different scanning phase of tumor and the liver density difference .Results The range of small hep-atocellular carcinoma was 2.0~1.3 cm, the lesion which showed circular low density in plain CT was 83.3%, equidensite was 16.7%, uniform density in enhanced CT scan accounted for 58.3%, tumor uneven density was 41.7%, boundary clearly in en-hanced CT scan accounted for 66.7%, fuzzy boundaries accounted for 33.3%;the detection rate of arterial phase was 91.7%, detection rate of portal venous phase was 80.6%, and detection rate of CT scan was 63.9%, the difference was statistically sig-nificant ( P <0.05);The difference between tumor and hepatic portal phase density was the biggest , the difference bewtween the scan period of tumor and the liver density was the minimum , the difference of the portal venous phase and arterial phase scan and was significant ( P <0.05).Conclusion Spiral CT of dual phase scan had high detection rate on small hepatocellular carcino-ma, which had accurate and reliable value .%目的:探讨多层螺旋CT双期增强扫描对原发性肝微小细胞癌的诊断价值。方法对36例肝微小细胞癌的患者,分别采用CT平扫及双期增强扫描对患者进行检查,所有患者均经病理组织证实;分析平扫和增强扫描病灶的密度和边缘表现,并对小肝癌检出率及不同扫描时相肿瘤与肝脏密度差值的变化情况进行比较。结果肝微小细胞癌的病灶范围在1.3~2.0cm

  14. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  15. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  16. Wedlable nickel aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  17. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  18. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  19. About Alloying of Aluminum Alloys with Transition Metals

    Science.gov (United States)

    Zakharov, V. V.

    2017-05-01

    An attempt is made to advance Elagin's principles of alloying of aluminum alloys with transition metals (TM) such as Mn, Cr, Zr, Ti, V with allowance for the ternary equilibrium and metastable Al - TM - TM phase diagrams. The key moments in the analysis of the phase diagrams are the curves (surfaces) of joint solubility of TM in aluminum, which bound the range of the aluminum solid solution. It is recommended to use combinations of such TM (two and more), the introduction of which into aluminum alloys widens the phase range of the aluminum solid solution.

  20. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  1. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  2. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  3. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  4. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidiifed slurry

    Institute of Scientific and Technical Information of China (English)

    Yoshiki Tsunekawa; Shinpei Suetsugu; Masahiro Okumiya; Naoki Nishikawa; Yoshikazu Genma

    2014-01-01

    For the wider applications, it is necessary to improve the ductility as wel as the strength and wear-resistance of hypereutectic Al-Si-Cu aloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modiifed wear-resistance of hypereutectic Al-Si-Cu aloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidiifcation, which is caled sono-solidiifcation, was carried out from its molten state to just above the eutectic temperature. The sono-solidiifed Al-17Si-4Cu aloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibriuma-Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidiifed slurry to shape a disk specimen. After the rheo-casting with modiifed sono-solidiifed slurry held for 45 s at 570 ºC, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of softa-Al phase. In contrast, there exist only 5 area% of primary silicon particles and noa-Al phase in rheo-cast specimen with normaly solidiifed slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normaly solidiifed slurry.

  5. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  6. Rapidly solidified aluminum alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.S.; Chun, B.S.; Won, C.W.; Lee, B.S.; Kim, H.K.; Ryu, M. [Chungnam National Univ., Taejon (Korea, Republic of); Antolovich, S.D. [Washington State Univ., Pullman, WA (United States)

    1997-01-01

    Miniaturization and weight reduction are becoming increasingly important in the fabrication of vehicles. In particular, aluminum-silicon alloys are the logical choice for automotive parts such as pistons and cylinders liners because of their excellent wear resistance and low coefficient of thermal expansion. However, it is difficult to produce aluminum-silicon alloys with silicon contents greater than 20 wt% via ingot metallurgy, because strength is drastically reduced by the coarsening of primary silicon particles. This article describes an investigation of rapid solidification powder metallurgy techniques developed in an effort to prevent coarsening of the primary silicon particles in aluminum-silicon alloys.

  7. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  8. Alloy design for intrinsically ductile refractory high-entropy alloys

    Science.gov (United States)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  9. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  10. Effect of soaking temperature on microstructure and properties of 590 MPa grade hot-dip galvanized dual phase steel%均热温度对590 MPa级热镀锌双相钢组织与性能的影响

    Institute of Scientific and Technical Information of China (English)

    邝春福; 郑之旺; 王礞

    2016-01-01

    C-Mn steel were respectively soaked at 760 ℃, 800 ℃ and 850 ℃ for 120 s, and then rapidly cooled to 460 ℃ to simulate the hot-dip galvanizing. The pre-straining (2%) and baking treatment (170 ℃ for 20 min) were carried out to measure the BH values after annealing cycle. The influences of the soaking temperature on microstructure, mechanical properties and bake-hardening behavior of the 590 MPa grade hot-dip galvanized dual phase steel were investigated by means of microscope, SEM, tensile test machine and so on. The results show that the microstructure is composed of ferrite and martensite when annealed at 760-850 ℃, and no bainite is observed. Therefore, the tensile strength of the hot-dip galvanized dual phase steel reaches more than 590 MPa. The steel with excellent comprehensive properties (Rp0.2 =295 MPa, Rm =606 MPa, A=32. 1%, Rm × A=19 450 MPa·%) are obtained by annealing at 800 ℃. The BH value increases first and then decreases with increasing the soaking temperature from 760 ℃ to 850 ℃. And the BH value reaches maximum value (81 MPa) at the soaking temperature of 800 ℃.%将C-Mn钢分别加热至760、800和850℃均热120 s后,快速冷却至460℃以模拟热镀锌工艺。退火后对试验钢进行预应变(2%)和烘烤处理(170℃×20 min)以测量其烘烤硬化( BH)值。通过金相显微镜、扫描电镜、拉伸等技术,研究了均热温度对590 MPa级热镀锌双相钢微观组织、力学性能和烘烤硬化性能的影响。结果表明,在760~850℃范围内退火时,试验钢中未观察到贝氏体组织,微观组织由铁素体和马氏体组成,抗拉强度均达到590 MPa以上。热镀锌双相钢在800℃退火时,具有优良的综合力学性能,其屈服强度为295 MPa,抗拉强度为606 MPa,伸长率为32.1%,强塑积为19450 MPa·%。随着均热温度提高,BH值呈先增加后降低趋势;均热温度为800℃时,BH达最大值81 MPa。

  11. Clinical value of the quantitative measurement with dual phase MSCT scans in the diagnosis of chronic obstructive pulmonary disease%双相MSCT定量测量在慢性阻塞性肺疾病诊断中的临床价值

    Institute of Scientific and Technical Information of China (English)

    黄祥辉; 潘广利; 陈雄钊; 张远鸿; 吕剑宁; 陆丽燕

    2015-01-01

    Objective:To discuss the value of the quantitative measurement with dual phase multi-slice spiral CT (MSCT) scans in the diagnosis of chronic obstructive pulmonary disease (COPD). Methods: Eighty cases of patients with COPD and 35 cases of healthy volunteers were selected as a case group and a control group and underwent dual phase MSCT scans at full inspiration and full expiration, and pulmonary function test(PFT)examination within two days. The volume indexes of inspiratory and expiratory MSCT between the two groups were compared, and the correlation between the MSCT volume index and PFT index were analyzed. Results:The Vin、Vex、EVvin、EVvex、EIvin、EIvex were signiifcantly lower in the case group than in the control group. The analysis of Pearson correlation showed that there was a negative correlation between the volume indexes of inspiratory and expiratory MSCT and the severity of COPD and there was also a correlation between the volume indexes of inspiratory and expiratory MSCT and PFT indexes. Conclusion:The volume indexes of inspiratory and expiratory MSCT can be used to assess pulmonary function and to quantitatively diagnose early COPD so as to guide the clinical treatment and respiratory function intervention and delay the progress of disease.%目的:探讨双相多排螺旋CT(MSCT)定量测量在慢性阻塞性肺疾病(COPD)诊断中的临床价值。方法:对80例COPD患者(病例组)和35例健康志愿者(对照组)分别于深吸气末和深呼气末行MSCT检查,并于2d内行临床肺功能检查(PFT),比较两组吸气相与呼气相MSCT各项容积指标的差异,分析MSCT各项容积指标与PFT指标的相关性。结果:病例组MSCT扫描Vin、Vex、EVvin、EVvex、EIvin、EIvex均明显低于对照组(P<0.05);Pearson相关性分析显示,呼、吸两相MSCT各项容积指标与COPD严重程度呈明显负相关(P<0.05);呼、吸两相MSCT各项容积指标与PFT各指标均具有

  12. Metallic alloy stability studies

    Science.gov (United States)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  13. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  14. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  15. Ni{sub 3}Al aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  16. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    measurements, tensile tests and hole-expansion tests. The initial microstructure and the deformed microstructure were characterized by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In situ tensile tests in a SEM were applied for direct observation of the void formation...

  17. Quantitative determination of anti-structured defects applied to alloys of a wide chemical range

    Science.gov (United States)

    Zhang, Jing; Chen, Zheng; Wang, Yongxin; Lu, Yanli

    2016-11-01

    Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure. Component distribution Ni75Al x V25-x alloys are investigated using a microscopic phase field model to illuminate relations between anti-structured defects and composition, precipitate order, precipitate type, and phase stability. The Ni75Al x V25-x alloys undergo single Ni3V (stage I), dual Ni3Al and Ni3V (stage II with Ni3V prior; and stage III with Ni3Al prior), and single Ni3Al (stage IV) with enhanced aluminum level. For Ni3V phase, anti-structured defects (VNi1, NiV, except VNi2) and substitution defects (AlNi1, AlNi2, AlV) exhibit a positive correlation to aluminum in stage I, the positive trend becomes to negative correlation or smooth during stage II. For Ni3Al phase, anti-structured defects (AlNi, NiAl) and substitution defects (VNi, VAl) have a positive correlation to aluminum in stage II, but NiAl goes down since stage III and lasts to stage IV. VNi and VAl fluctuate when Ni3Al precipitates prior, but go down drastically in stage IV. Precipitate type conversion of single Ni3V/dual (Ni3V+Ni3Al) affects Ni3V defects, while dual (Ni3V+Ni3Al)/single Ni3Al has little effect on Ni3Al defects. Precipitate order swap occurred in the dual phase region affects on Ni3Al defects but not on Ni3V. Project supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5014), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102014JCQ01024), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 114-QP-2014), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136102120021), and the National Natural Science Foundation of China (Grant Nos. 51474716 and 51475378).

  18. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements.

    Science.gov (United States)

    Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii

    2017-03-01

    In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response.

  19. Kinetics of aluminum lithium alloys

    Science.gov (United States)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  20. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  1. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  2. Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys

    Institute of Scientific and Technical Information of China (English)

    Yongbo XU; Yilong BAI; M.A.Meyers

    2006-01-01

    α-titanium and its alloys with a dual-phase structure (α+β) were deformed dynamically under strain rate of about 104 s-1. The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9×105 s-1) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations inthe bands can be constricted and developed into cell structures; the phase transformation from α to α2 within the bands was observed, and the transformation products (α2) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10μm in diameter observed within the bands are proposed to be the results of recrystallization.

  3. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations.

    Science.gov (United States)

    Jörg, Tanja; Music, Denis; Hauser, Filipe; Cordill, Megan J; Franz, Robert; Köstenbauer, Harald; Winkler, Jörg; Schneider, Jochen M; Mitterer, Christian

    2017-08-07

    A major obstacle in the utilization of Mo thin films in flexible electronics is their brittle fracture behavior. Within this study, alloying with Re is explored as a potential strategy to improve the resistance to fracture. The sputter-deposited Mo1-xRex films (with 0 ≤ x ≤ 0.31) were characterized in terms of structural and mechanical properties, residual stresses as well as electrical resistivity. Their deformation behavior was assessed by straining 50 nm thin films on polyimide substrates in uniaxial tension, while monitoring crack initiation and propagation in situ by optical microscopy and electrical resistance measurements. A significant toughness enhancement occurs with increasing Re content for all body-centered cubic solid solution films (x ≤ 0.23). However, at higher Re concentrations (x > 0.23) the positive effect of Re is inhibited due to the formation of dual-phase films with the additional close packed A15 Mo3Re phase. The mechanisms responsible for the observed toughness behavior are discussed based on experimental observations and electronic structure calculations. Re gives rise to both increased plasticity and bond strengthening in these Mo-Re solid solutions.

  4. Effects of various Mg-Sr master alloys on microstructural refinement of ZK60 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of various Mg-Sr master alloys (conventional as-cast, rapidly-solidified, rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated. The results indicate that the refinement efficiency of various Mg-Sr master alloys in ZK60 alloy is different. The rolled Mg-Sr master alloy is found to have relatively higher refinement efficiency than the conventional as-cast, solutionized and rapidly-solidified Mg-Sr master alloys. After being treated with the rolled Mg-Sr master alloy, the ZK60 alloy obtains the minimum average grain size of 33 μm. The difference of various Mg-Sr master alloys in refinement efficiency might be related to the initial microstructure change of various Mg-Sr master alloys.

  5. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  6. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle. Copyright © 2015, American Association for the Advancement of Science.

  7. Shape memory alloy flexures

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Yves; Clavel, Reymond

    2003-07-25

    Flexures are used in precision engineering where highly accurate, wear-free, smooth and repeatable motion is desired. Flexures are based on deformation of material to achieve a motion between elastically joined parts. They are used in a variety of precision mechanisms such as high-resolution balances or high accuracy optical positioning stages. Shape memory alloys (SMA) are an attractive option in designing flexures. Superelastic flexures can withstand larger deformations for the same weight as a conventional flexure. In addition, the damping properties of SMA, controllable through the phase transformation, offer new design opportunities for adaptive compliant mechanisms. The martensitic phase transformation can also be used to shift the natural frequency of flexures adding useful functionalities such as vibration rejection. This paper presents design principles of SMA flexures based on non-linear beam theory. Results show a good agreement between measured and predicted data. In addition, experimental results on phase transformation effects on damping behavior are also presented. Both, natural-frequency shift and increased damping were observed in bulk-micro machined flexures using the R-phase transformation. These results demonstrate the feasibility of natural-frequency-tunable flexures.

  8. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  9. Thermomechanical behavior of comercial yellow gold alloy

    Directory of Open Access Journals (Sweden)

    Miloš G. Djordjević

    2016-03-01

    Full Text Available With the development of science and technology, in the late 19th century, began the research and application of new alloys for making jewelry. By adding different amounts of Cu and Ag alloy of Au, as well as adding some new elements (Zn, alloys were obtained with different color spectrum (from red to yellow and different technological and metallurgical characteristics. This paper aims to show thermomechanical behavior of commercial yellow Au alloys for making jewelry.

  10. Oxidation of low cobalt alloys

    Science.gov (United States)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  11. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  12. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  13. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  14. 冲压、回弹及应变速率对双相钢成形件碰撞性能影响的模拟%Simulation about the Influence of Stamping, Springback and Strain Rate on Collision Performance of Dual-Phase Steel Parts

    Institute of Scientific and Technical Information of China (English)

    朱国明; 康永林; 吕超

    2011-01-01

    Based on cold rolled galvanized dual-phase steel sheet, collision analysis model of closed hat section beam was established on the basis of simulation analysis of U-beam stamping and springback. Mapping was used to transfer results of thickness, stress and strain of U-beam to impact structural component. Collision processes of closed hat section were analyzed by considering the influence of stamping, springback, strain rate and so on. The results show that the strain rate was higher in the process of collision and its influence was most apparent and should be specially considered in the definition of model. Due to the work hardening and thickness reduction in metal deformation, the stamping results affected simulative results of the collision process directly. Residual stress was weaker due to the stress released from the inside of the component after stamping. Therefore, greater external force was needed to produce the same degree of collision, and rigid wall reaction force considered springbaek was higher than that no considering.%针对冷轧镀锌双相钢板,在完成U型梁冲压成形及回弹模拟分析的基础上,建立了闭口帽型梁的碰撞分析模型;采用映射的方法完成了U型梁的厚度、应力、应变向碰撞结构件的结果传递;在考虑冲压成形、回弹及应变速率等的情况下,对帽型梁的碰撞过程进行了模拟分析。结果表明:在碰撞过程中,由于应变速率较高,它的影响最为明显,在模型的定义过程中需要着重考虑;因为金属变形过程的加工硬化和厚度减薄等因素的影响,冲压结果直接影响碰撞过程的模拟结果;冲压后因回弹使零件内部的应力得到释放,残余应力减小,因此导致碰撞过程中产生相同的变形需要更

  15. Tensile Mechanical Behaviour of Ultra-High Strength Cold Rolled Dual Phase Steel DP1000 at High Strain Rates%超高强冷轧双相钢DP1000高应变速率下的拉伸性能

    Institute of Scientific and Technical Information of China (English)

    代启锋; 宋仁伯; 蔡恒君; 于三川; 高喆

    2013-01-01

    使用CMT4105型电子万能试验机和霍普金森拉杆(SHTB)装置研究了超高强冷轧双相钢DP1000在室温下的准静态和动态拉伸力学性能.结果表明:应变速率范围在0.0001-2250 s-1,DP1000双相钢具有明显的应变速率敏感性,表现出较强的应变速率增强效应,强度随着应变速率的增加而增加;Johnson-Cook模型能够在一定程度上描述DP1000双相钢在高应变速率下变形行为,但由于应变速率敏感性在高应变速率下吻合程度较差;对Johnson-Cook模型的应变速率效应多项式进行二次化修正后,模型能很好地描述DP1000双相钢在高应变速率下的变形行为,平均可决系数从0.9434提高到0.9850.%Quasi-static and dynamic tensile mechanical behaviour of ultra-high strength cold rolled dual phase steel DP1000 at room temperature and wide strain rates (0.0001-2250 s1) with electronic universal testing machine CMT4105 and split Hopkinson tensile bar (SHTB) apparatus were investigated. The results show that DP1000 steel is a sensitive material to strain rate, and the strength increases with the increase of strain rate; Johnson-Cook model can represent, to some extent, deformational behaviour for DP1000 steel at high strain rates, but owing to strain rate sensitivity, the goodness of fit is poor at high strain rate. The polynomial of strain rate effect was modified based on Johnson-Cook model, and the modified dynamic constitutive model can make a satisfied prediction to the plastic flow stress of DP1000 steel at high strain rates, and the average coefficient of determination can be improved from 0.9434 to 0.9850.

  16. Current research situation of titanium alloys in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Titanium and its alloys possess excellent comprehensive properties, and they are widely used in many fields. China pays great attentions to the research on new titanium alloys. This paper mainly reviews the research on new Ti alloys in China, for example, high strength and high toughness Ti alloys, burn resistant Tialloys, high temperature Ti alloys, low cost Ti alloys and so on.New basic theories on Ti alloys developed in China in recent years are also reviewed.

  17. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  18. High strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  19. Alloy 718 for Oilfield Applications

    Science.gov (United States)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  20. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  1. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  2. Alloy softening in binary iron solid solutions

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  3. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  4. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  5. Microstructure and property characterization of a modified zinc-base alloy and comparison with bearing alloys

    Science.gov (United States)

    Prasad, B. K.; Patwardhan, A. K.; Yegneswaran, A. H.

    1998-02-01

    The microstructure and physical, mechanical, and tribological properties of a modified zinc-base alloy have been characterized. In order to assess its utility as a bearing alloy, its properties have also been compared with those of a similarly processed conventional zinc-base alloy and a leaded-tin bronze (conforming to ZA27 and SAE 660 specifications, respectively) used for bearing applications. The modified zinc-base alloy shows promise in terms of better elevated-temperature strength and wear response at higher sliding speeds relative to the conventional zinc-base alloy. Interestingly, the wear behavior (especially the seizure pressure) of the modified alloy was also comparable to that of the bronze specimens at the maximum sliding speed, and was superior at the minimum sliding speed. The modified alloy also attained lower density and better hardness. Alloy behavior has been linked to the nature and type of the alloy microconstituents.

  6. Applications of shape memory alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asai, M.; Suzuki, Y. [Furukawa Electric Co., Ltd., Yokohama, Kanagawa (Japan). R and D Labs.

    2000-07-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and otherfield today. (orig.)

  7. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  8. Passive Corrosion Behavior of Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  9. Paracrystalline property of high-entropy alloys

    Directory of Open Access Journals (Sweden)

    Shaoqing Wang

    2013-10-01

    Full Text Available Atomic structure models of six-component high-entropy alloys with body-centered cubic structure are successfully built according to the principle of maximum entropy for the first time. The lattice distortion parameters g of seven typical high-entropy alloys are calculated. From the optimized lattice configuration of high-entropy alloys, we show that these alloys are ideal three-dimensional paracrystals. The formation mechanism, structural feature, mechanical property, and application prospect of high-entropy alloys are discussed in comparison with the traditional alloys. The novel properties of body-centered cubic high-entropy alloys are attributed to the failure of dislocation deformation mechanism and the difficulty of directed particle diffusion.

  10. Passive Corrosion Behavior of Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  11. 99Tcm-MIBI双时相显像对继发性甲状旁腺功能亢进症定位诊断的价值%Value of dual-phase 99Tcm-MIBI scintigraphy and SPECT/CT in the localization diagnosis of secondary hyperparathyroidism

    Institute of Scientific and Technical Information of China (English)

    甄力莳; 刘晓健; 张凌; 李红磊; 姚力; 颜珏

    2011-01-01

    Objective To discuss the clinical value of dual-phase 99Tcm-sestamibi (99Tcm-MIBI) scintigraphy and SPECT/CT in secondary hyperparathyroidism, and to investigate the possibility of SPECT/CT for the accurate localization diagnosis of secondary hyperparathyroidism preoperatively.Methods Thirty-one patients underwent parathyroid imaging with double-phase 99Tcm-MIBI before surgery for hyperparathyroidism.Planar imaging was conducted in 22 patients, and planar and SPECT/CT imaging in 9 patients.The diagnosis of hyperparathyroidism was confirmed by surgical and pathological findings.Target/non-target (T/NT) ratio in delay image was compared with the volume of excised parathyroid, the intact parathyroid hormone (iPTH), and the pathology of the surgical sample.Results T/NT ratio was correlated with serum iPTH (r=0.426, P<0.05) and parathyroid volume (r=0.352, P<0.01).Hyperplasia of parathyroid gland was found in all excised samples.Planar images showed hyperparathyroidism in 73 of the 106 excised parathyroid glands, and the accuracy rate is 68.9%.In the 30 excised parathyroid glands, SPECT/CT images detected 23 hyperparathyroidism (accuracy rate 76.7%), and planar imaging found 19 hyperparathyroidism (accuracy rate 63.3%).Conclusions Dual-phase 99Tcm-MIBI scintigraphy can be used to assess function and hyperplasia of parathyroid, being the most effective method for localization diagnosis of secondary hyperparathyroidism.SPECT/CT imaging is more efficient than planar imaging for the detection of parathyroid glands with hyperparathyroidism.SPECT/CT parathyroid imaging combined with CT scan will provide more information about localization of the lesions, especially for those with persistent or recurrent hyperthyroidism after parathyroidectomy.%目的 探讨‰99m锝-甲氧基异丁基异腈(99Tcm-sestamibi,99Tcm-MIBI)双时相法平面显像及SPECT/CT断层显像对继发性甲状旁腺功能亢进症(secondary hyperparathyroidism,SHPT甲旁亢)临床应用价值,

  12. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  13. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  14. Gold color in dental alloys.

    Science.gov (United States)

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  15. Ultrasonic processing of aluminum alloys

    NARCIS (Netherlands)

    Zhang, L.

    2013-01-01

    The research in ultrasonic processing for metallurgical application shows a promising influence on improving casting properties of aluminium alloys. The principle of ultrasonic processing is introduction of acoustic waves with a frequency higher than 17 kHz into liquid metal. Several promising

  16. Superb nanocrystalline alloys for plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With high rigidity and antiwear performance,nanocrystalline metals and their alloys can find wide applications in surface protection.However, the existence of grain boundaries often leads to erosive micro-batteries which accelerate the process of corrosion.Therefore, it has already become a key issue for surface engineering researchers to find nano materials with higher lubricating, anticorrosion and antiwear capacities.

  17. Microstructure and thermal stability of mechanically alloyed Al3Ti/Al alloy

    Institute of Scientific and Technical Information of China (English)

    林建国; 魏浩岩; 黄正

    2001-01-01

    The microstructure stability of Al3Ti/Al alloy prepared by mechanical alloying (MA) was investigated in the simulating environment in which they may be used. The results show that the MA alloy possesses fine microstructure (the grain size is about 0.5  μm). After cycling loaded followed by heat exposure at 350  ℃ for 24  h, no microstructure coarsening of the alloy occurred, which means that the Al3Ti/Al alloy behaves good microstructure stability at high temperature. The compression yield strength of the alloy reaches up to 247  MPa at 350  ℃.

  18. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  19. PERSPECTIVES OF MOLIBDENUM CONTAINING MATERIALS APPLICATION FOR ALLOYING OF IRONCARBON ALLOYS DURING MANUFACTURING OF CRITICAL CASTINGS

    Directory of Open Access Journals (Sweden)

    A. G. Slutsky

    2015-01-01

    Full Text Available Motor is one of most important part of automobile determine its economical effectiveness of usage. On the other hand, sleeves, pistons and rings are crucible parts as they determine the service life of a motor. These parts are producing in big scale – dozens of millions pieces. Increase of cylinder sleeves physical-mechanical properties results in prolongation of motor service life and improvement of motor’s characteristics. Nowadays low alloyed cast irons with perlite structure are used to manufacture motor’s sleeves. For alloying purposes such traditional elements as Cr, Ni, Cu, and V are applied. But it is interesting to use molybdenum for cast iron alloying. It is known that alloying of alloys allows considerable increasing of consumption properties of castings. But in spite of advantages of alloys alloying the increase of molybdenum containing iron-carbon alloys production is restricted by economical reasons – high cost of alloying additions. Expenditures on alloying additions can be reduced by the application cheap secondary alloys in the charge. So, the present paper is devoted to investigation of alloying peculiarities during the treatment of ferrous alloys with molybdenum applying different initial materials.

  20. Hydrogen ingress into copper-nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.G. (SRI International, Menlo Park, CA (United States). Materials Research Center)

    1994-04-01

    Hydrogen (H) ingress into two copper (Cu)-nickel (Ni) alloys -- a commercial 77% Cu-15% Ni alloy (aged) and alloy K-500 (UNS N05500, aged and unaged) --- was studied using a technique referred to as hydrogen ingress analysis by potentiostatic pulsing (HIAPP). Anodic current transients obtained for these alloys in an acetate buffer (1 mol/L acetic acid + 1 mol/L sodium acetate [NaAc]) were analyzed using a diffusion-trapping model to determine trapping constants and H entry fluxes. A small increase was observed in the irreversible trapping constant for alloy K-500 with aging. Trapping constants of the aged alloys were similar within the limits of uncertainty, but H entry flux for the 77% Cu alloy was lower than that for aged or unaged alloy K-500. The lower flux may have accounted at least partly, for the Cu alloy's higher resistance to H embrittlement. Trap densities were consistent qualitatively with levels of sulfur (S) and phosphorus (P) in the two alloys. This finding supported an assumption that S and P provided the primary irreversible traps.

  1. Alloy substantially free of dendrites and method of forming the same

    Science.gov (United States)

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  2. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys

    Science.gov (United States)

    Jiang, Jian-Jun; Gasik, Michael

    The electrochemical properties of amorphous MgNi-based hydrogen storage alloys synthesized by mechanical alloying (MA) were evaluated. The results show that these amorphous Mg 50Ni 50 alloys exhibit a higher discharge capacity and relatively good rate capacity at a suitable grinding time while their cycle life is very poor. In order to improve the cycle life, the surface of the amorphous Mg 50Ni 50 alloy was coated with Ti, Al and Zr in Spex 8000 mill/mixer and the coating effects were further investigated. Based on experimental results, two kinds of MgNi-based amorphous alloys are designed by substituting part of Mg in MgNi-based alloys by suitable elements. These alloys are then composed of four components. Thus, the cycle life of electrodes consisting of these quaternary amorphous alloys is greatly improved.

  3. Grain refinement of AZ31 magnesium alloy by Al-Ti-C-Y master alloy

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiang; LU Binfeng; L(U) Zhengling; LIANG Wei

    2008-01-01

    Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to fine equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.

  4. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    Science.gov (United States)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-01-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  5. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Santella, Michael L [ORNL; Battiste, Rick [ORNL; Terry, Totemeier [Idaho National Laboratory (INL); Denis, Clark [Idaho National Laboratory (INL)

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  6. New Dental Alloys with Special Consumer Properties

    Institute of Scientific and Technical Information of China (English)

    TYKOCHINSKIY D. S.; VASEKIN V. V.

    2012-01-01

    The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal-ceramic dentures.The yellow color corresponds to the consumer and aesthetic needs of some patients,because it is a sign of the metal,which is noble and innocuous.The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium,which increase the strength characteristics.Copper,tin,and other precious metals and base metals are also introduced in these alloys.At the same time,it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame.For this purpose,the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 × 10-6 K-1 when heated from 20 to 600 ℃.The two-component alloys,alloying of gold with platinum and palladium results in a decrease in the TEC,and the introduction of copper,silver,and tin,increases it.Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy.In multicomponent systems,however,the mutual influence of individual components on the properties of the alloy is unpredictable.This also applies to the color characteristics of the alloys,which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium,while other elements may have the opposite effect on the results.Yellowness index (YI),calculated according to the results of spectrophotometric studies,has been chosen as an objective indicator of color.In this study,the requirement for YI was given not less than 25; the color of such alloys can be called light yellow.All the alloys investigated contained 85% (by weight)of gold.Therefore,higher corrosion resistance and biological inertness of a finished dental products were ensured.Among the alloys that met the yellowness/TEC requirements,two alloys have been selected that were "most yellow

  7. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制%BEHAVIOUR AND MECHANISM OF STRAIN HARDENING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    代启锋; 宋仁伯; 范午言; 郭志飞; 关小霞

    2012-01-01

    Strain hardening behaviour and mechanism of a cold-rolled dual phase steel DP1180 under quasi-static tensile condition at a strain rate of 0.001 s-1 by electronic universal testing machine, and dynamic tensile condition at strain rates of 500 and 1750 s-1 by split Hopkinson tensile bar (SHTB) apparatus were systematically studied. According to the modified Swift true strain-stress model, the experimental data was regressed by using nonlinear fitting method, and strain hardening exponent in the modified Swift model was calculated by a modified Crussard-Jaoul method. The results revealed that there are two stage strain hardening characteristics of DP 1180 steel at the strain rate range of 0.001-1750 s-1, the strain hardening ability of the stage Ⅰ was enhanced with increase of strain rate, while the strain hardening ability of the stage Ⅱ was weakened, and the transition strain was decreased. The ferrite near the martensite regions formed cell blocks with dislocation structures, with a size of 90 nm, due to the limit of deformation compatibility, and the existence of geometrically necessary boundary (GNB) made DP1180 steel not instantly damaged under deformation at high strain rates. In addition, the adiabatic temperature rise of △T= 103 ℃ made martensite easy to have plastic deformation at a strain rate of 1750 s-1.%利用电子万能试验机和分离式Hopkinson拉杆装置对DP1180冷轧双相钢分别进行应变速率为0.001 s-1和500,1750 s-1的准静态和动态拉伸实验,根据修正的Swift真应力 应变模型对实验数据进行了非线性拟合,并用修正的Crussard-Jaoul分析法计算出修正的Swift模型的应变硬化指数.结果表明:在准静态和动态拉伸下,都存在两阶段应变硬化特性,第一阶段随应变速率的增加应变硬化能力增强;第二阶段随应变速率的增加应变硬化能力减弱;转折应变随应变速率的增加从3.12%减小到1.28%.在高应变速率下,马氏体附近的铁

  8. First principles theory of disordered alloys and alloy phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A. [and others

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  9. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  10. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    Science.gov (United States)

    2013-11-01

    alloys are based on a rather small group of alloying elements, there are often limited differences between them in properties (strength, corrosion ...Research Laboratory (ARL). Initially, the discussions focused on ways to improve the corrosion resistance of magnesium ( Mg ) alloys to increase the...elements display little tendency to alter precipitates or otherwise adversely influence the corrosion performance of the base alloy . Based on these

  11. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  12. Magnetic Characteristics of Two Metglas Alloys

    Science.gov (United States)

    Blatnik, Marie; SNS nEDM Collaboration

    2016-09-01

    Magnetic shielding is gaining greater significance as precision experiments become more sensitive, such as for the Spallation Neutron Source nEDM [neutron electric dipole moment] measurement. Targeting a sensitivity of 10-28 e-cm, the SNS nEDM collaboration minimizes magnetic shield gradients and magnetic noise with a superconducting lead shield and several shield layers that include using a Metglas layer as a primary component. Metglas is a thin ribbon of proprietary engineered alloy that comes in many varieties. One alloy with high (as cast) permeability is Metglas alloy 2705M, which is primarily composed of Cobalt. However, this alloy will activate under neutron radiation and is therefore unsuitable. However, another high-performance Metglas alloy, 2826 MB, contains only trace amounts of Cobalt. A study of the shielding characteristics of the two alloys was performed, paying close attention to field oscillation frequency and magnitude.

  13. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  14. Bonding theory for metals and alloys

    CERN Document Server

    Wang, Frederick E

    2005-01-01

    Bonding Theory for Metals and Alloys exhorts the potential existence of covalent bonding in metals and alloys. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. The physical phenomena of metals and alloys covered in this book are: Miscibility Gap between two liquid metals; Phase Equilibrium Diagrams; Phenomenon of Melting. Superconductivity; Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid Metal Embrittlement; Superplasticity; Corrosion; The author introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. This new approach not only explains the many observations made on the phenomenon of superconductivity but also makes predictions that ha...

  15. A lightweight shape-memory magnesium alloy.

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  16. Wetting behavior of alternative solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  17. Recrystallization of Al-Sc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drits, M.E.; Toropova, L.S.; Bykov, Yu.G.; Ber, L.B.

    Scandium effect on the temperature range of aluminium recrystallization was investigated. Al-Sc alloys were studied under cold rolled and hot pressed conditions. It is found that the temperature range of Al-Sc alloy recrystallization depends on ScAl/sub 3/ particle dispersion during recrystallization heats. During heating in quenched alloys at 200-300 deg C decomposition occurs which prevents recrystallization, In the alloys with scandium contents less 0.2% decomposition and recrystallization processes pass simultaneously. In quenched alloys with scandium contents over 0.2% and in aged alloys the initiation and subsequent development of recrystallization are determined by the processes of coalescence and solution of ScAl/sub 3/ phase particles.

  18. Biocorrosion study of titanium-nickel alloys.

    Science.gov (United States)

    Chern Lin, J H; Lo, S J; Ju, C P

    1996-02-01

    The present study provides results of the corrosion behaviour in Hank's physiological solution and some other properties of three Ti-Ni alloys with 18, 25 and 28.4 wt% Ni, respectively. Results indicate that alpha-titanium and Ti2Ni were the two major phases in all three Ti-Ni alloys. The relative amount of the Ti2Ni phase increased with additional Ni content. Hardness of the Ti-Ni alloys also increased with added nickel content, ranging from 310 to 390 VHN, similar to the hardness of enamel. Melting temperatures of the Ti-Ni alloys were all lower than that of pure titanium by least 600 degrees C. The three Ti-Ni alloys behaved almost identically when potentiodynamically polarized in Hank's solution at 37 degrees C. The critical anodic current densities of the alloys were nearly 30 microA/cm2 and the breakdown potentials were all above 1100 mV (SCE).

  19. Kinetics and Structure of Refractory Compounds and AlloysObtained by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Refractory compounds are material with interesting properties for structural applications. However, the processing of such material is a great challenge because of their high melting temperature and limited ductility. Mechanical alloying is a novel technique of producing refractory compounds with specific properties. Kinetical and structural peculiarities of refractory compounds and alloys obtained by mechanical alloying are discussed.

  20. Spark alloying of VK8 and T15K6 hard alloys

    Science.gov (United States)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  1. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    Science.gov (United States)

    2006-01-01

    effect from alloying additions of Nb, Mo, V, Cr and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the...that transition metal Nb achieves the best strengthening effect in Fe-Ga alloys. The solid solution strengthening follows a trend from larger to

  2. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  3. The Fatigue of Powder Metallurgy Alloys.

    Science.gov (United States)

    2014-09-26

    v1o -2- MATERIALS AND TESTS Table 1 provides a complete listing of the alloys studied in this program together with their chemical compositions ...use can minimize material waste and minimize machining costs. In addition there is the potential for the development of more fine-grained and...out under fully reversed loading conditions in the high cycle range with smooth specimens. X7090 and X7091 are P/M alloys, 7075 is an ingot alloy

  4. Aspects of precipitation in alloy Inconel 718

    OpenAIRE

    Azadian, Saied

    2004-01-01

    A study was made of the microstructure of the Ni-base alloy Inconel 718 with emphasis on the precipitation and stability of intermetallic phases as affected by heat treatments. In addition the effect of the precipitation on selected mechanical properties namely hardness, creep notch sensitivity and hot ductlity were investigated. The materials studied were a spray-formed version and three wrought versions of the alloy. The spray-formed version of the alloy was of interest since it exhibited a...

  5. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  6. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  7. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  8. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  9. Cobalt-Base Alloy Gun Barrel Study

    Science.gov (United States)

    2014-07-01

    are presented in Section 5. 2. Materials and methods The composition of the cobalt -base alloy (CBA) is presented in Table 1. The production of this... Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials

  10. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    Rolling, Acta Materiala (08 2014) Zhe Wang , John H Perepezko, David Larson, David Reinhard. Mixing Behaviors in Cu/Ni and Ni/V Multilayers Induced...by Cold Rolling, Journal of Alloys and Compounds (07 2014) Zhe Wang , John H. Perepezko. Deformation-Induced Nanoscale Mixing Reactions in Cu/Ni...FTE Equivalent: Total Number: Discipline Zhe Wang 0.50 0.50 1 Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students

  11. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  12. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  13. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  14. Ultralow-fatigue shape memory alloy films

    National Research Council Canada - National Science Library

    Chluba, C; Ge, W; Lima de Miranda, R; Strobel, J; Kienle, L; Quandt, E; Wuttig, M

    2015-01-01

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning...

  15. Design, Selection and Application of High Efficient Complex Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are di scussed. The designed complex alloys containing calcium, barium, magne sium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. Th e application principles of alloys are as follows: using Si-Mn or Si-M n-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for fi nal deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.

  16. Nanodispersed boriding of titanium alloy

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-12-01

    Full Text Available The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm and transition zone (30...190 µm. Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

  17. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  18. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  19. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    Directory of Open Access Journals (Sweden)

    Bi-Cheng Zhou

    2015-12-01

    Full Text Available Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp Mg calculated from first-principles calculations based on density functional theory (DFT by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1].

  20. The Properties of 7xxx Series Alloys Formed by Alloying Additions

    Directory of Open Access Journals (Sweden)

    Kwak Z.

    2015-06-01

    Full Text Available Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

  1. Influence of alloy ingredients on mechanical properties of ternary boride hard alloy clad materials

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-tian; SONG Shi-xue; YANG Jun-ru; HUANG Wei-ling; HUANG Chuan-zhen; CHENG Xin; LI Zhao-qian

    2004-01-01

    Using Mo, B-Fe alloy and Fe powders as raw materials, and adding C, Cr and Ni ingredients, respectively, or C, Cr and Ni mixed powders, ternary boride hard alloy clad materials was prepared on Q235 steel substrate by means of in-situ reaction and vacuum liquid phase sintering technology. The influence of alloy ingredients on the mechanical properties of ternary boride hard alloy clad materials was investigated. The results indicate that a mixture of 0.8% C, 5% Cr and 2% Ni ingredients gives a ternary boride hard alloy clad material with optimal mechanical properties, such as high transverse rupture strength, high hardness and good wear resistance.

  2. Identification for the optimal working parameters of Ti-6Al-4V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMM

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yu-feng; Long, Shuai; Zhou, Yu-ting; Zhao, Jia; Wang, Tian-yu; Zhou, Jie, E-mail: kkyttyls@vip.qq.com [School of Material Science and Engineering, Chongqing University (China)

    2016-11-15

    The hot deformation behaviours of Ti-6Al-4V-0.1Ru alloy were investigated by isothermal hot compression tests in the temperature range of 1023-1423 K and strain rate range of 0.01-10 s{sup -1}. The β transus was determined to be 1198 K by continuous heating method. The values of deformation activation energy Q at the strain of 0.3 were calculated to be 630.01 kJ/mol in dual-phase field and 331.75 kJ/mol in β-phase field. Moreover, the processing maps at the strain of 0.2, 0.4, 0.6 and 0.8 were developed based on dynamic materials model (DMM). To deeply understand the microstructure evolution mechanism during hot deformation processes and to verify the processing maps, the microstructures at different deformation conditions were observed. The stable microstructures (i.e. globularization, dynamic recovery (DRV) and β dynamic recrystallization (β-DRX)) and instable microstructures (i.e. lamellae kinking and flow localization) were obtained. To make it useful in the design of industrial hot working schedules for this material, a microstructural mechanism map was constructed on the basis of processing maps and microstructure observation. Deformation conditions in the vicinity of 1150 K & 0.01 s{sup -1} where globularization occurs and in the vicinity of 1323 K & 0.01 s{sup -1} where β-DRX occurs are recommended. (author)

  3. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  4. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  5. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    Science.gov (United States)

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  6. Zirconium alloys produced by recycling zircaloy tunings

    Energy Technology Data Exchange (ETDEWEB)

    Gamba, N.S. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Carbajal-Ramos, I.A. [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina); Ulla, M.A.; Pierini, B.T. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Gennari, F.C., E-mail: gennari@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2013-11-25

    Highlights: •Zr–Ti alloys were successfully produced by two-step procedure. •Zircaloy tunings were used as a valuable source of Zr. •Zircaloy tunings and Ti powders was milled under hydrogen to produce hydride powders. •Hydride powders were decomposed by heating at 900 °C to synthesize the Zr-based alloy. •The procedure could be extended to the production of other Zr-based alloys. -- Abstract: Zircaloy chips were recycled to successfully produce Zr–Ti alloys with bcc structure and different compositions. The procedure developed involves two steps. First, the reactive mechanical alloying (RMA) of the zircaloy tunings and Ti powders was performed to produce metal hydride powders, with a high refinement of the microstructure and a Zr–Ti homogeneous composition. Second, the metal hydride powders were thermally decomposed by heating up to 900 °C to synthesize the Zr-based alloy with a selected composition. The change in the nature of the powders from ductile to brittle during milling avoids both cold working phenomena between the metals and the use of a control agent. A minimum milling time is necessary to produce the solid solution with the selected composition. The microstructure and structure of the final alloys obtained was studied. The present procedure could be extended to the production of Zr-based alloys with the addition of other metals different from Ti.

  7. Measurement of oxide adherence to PFM alloys.

    Science.gov (United States)

    Mackert, J R; Parry, E E; Hashinger, D T; Fairhurst, C W

    1984-11-01

    A method has been reported for evaluating adherence of an oxide to its substrate metal to a maximum value of about 40 MPa. Oxidized alloy plates were cemented between two aluminum cylinders with a high-strength cyanoacrylate cement and loaded in tension until failure occurred either at the oxide/metal interface, within the oxide layer, or in the cement itself. Significant differences were found among the oxide adherence values obtained from different PFM alloys. The oxides formed on five of the alloys exhibited adherence strengths in excess of the published value for cohesive strength of dental opaque porcelain, indicating that they possess sufficient adherence to act as the transition zone between the porcelain and the alloy. In addition, a correspondence was found between the quality of porcelain bond for a given alloy and its oxide adherence strength. These results remove the principal objection to the oxide-layer theory of porcelain bonding in dental alloy systems and emphasize the importance of oxide adherence in the establishment of a bond. It is therefore suggested that future work devoted to porcelain-metal bonding should seek to elucidate the mechanism of oxide adherence to PFM alloys and explore the development of new alloys which form adherent oxides.

  8. Progress in High-Entropy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  9. STRUCTURE OF LIQUID CESIUM LEAD ALLOYS

    NARCIS (Netherlands)

    PRICE, DL; SABOUNGI, ML; DEWIJS, GA; VANDERLUGT, W

    1993-01-01

    Neutron diffraction measurements have been made on liquid Cs-Pb alloys at the Intense Pulsed Neutron Source. Equiatomic CsPb has been shown in previous work to be a Zintl alloy with well-defined Cs4Pb4 structural units, explaining the anomalously high electrical resistivity and specific heat observe

  10. Castable nickel aluminide alloys for structural applications

    Science.gov (United States)

    Liu, Chain T.

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  11. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  12. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  13. Ti-Pt Alloys form mechanical milling

    CSIR Research Space (South Africa)

    Nxumalo, S

    2009-12-01

    Full Text Available orthorhombic structure at a temperature of approximately 1000oC. The martensite phase results in shape memory effect being observed in this alloy at this temperature. Other alloys such as TiNi and TiPd have also been investigated for the martensitic...

  14. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  15. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available analysed by menas of X-ray diffraction (XRD), optical and scanning electron microscopy (SEM). It was found that when alloying with Fe-rich mixtures, the thin surface layers contained a number of cracks in the heat affected zones (HAZ). Alloying with Ni...

  16. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  17. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  18. Electroplating Zn-Al Alloy Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of controlling separating anode and separating power source was used to perform orthogonal optimization for the parameters in electroplating Zn-Al alloy.The electroplating Zn-Al alloy technology was decided, in which the content of Al is about 12%-15%.

  19. Thermally activated martensite formation in ferrous alloys

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    Magnetometry was applied to investigate the formation of α/α´martensite in 13ferrous alloys during immersion in boiling nitrogen and during re-heating to room temperature at controlled heating rates in the range 0.0083-0.83 K s-1. Data showsthat in 3 of the alloys, those that form {5 5 7}γ...

  20. Synthesis of Al-doped Mg{sub 2}Si{sub 1−x}Sn{sub x} compound using magnesium alloy for thermoelectric application

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaokai, E-mail: xiaokai.hu@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Barnett, Matthew R. [Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Yamamoto, Atsushi [Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-11-15

    Mg{sub 2}Si{sub 1−x}Sn{sub x} thermoelectric compounds were synthesized through a solid-state reaction at 700 °C between chips of Mg{sub 2}Sn–Mg eutectic alloy and silicon fine powders. The Al dopants were introduced by employing AZ31 magnesium alloy that contains aluminum. The as-synthesized Mg{sub 2}Si{sub 1−x}Sn{sub x} powders were consolidated by spark plasma sintering at 650–700 °C. X-ray diffraction and scanning electron microscopy revealed that the Mg{sub 2}Si{sub 1−x}Sn{sub x} bulk materials were comprised of Si-rich and Sn-rich phases. Due to the complex microstructures, the electrical conductivities of Mg{sub 2}Si{sub 1−x}Sn{sub x} are lower than Mg{sub 2}Si. As a result, the average power factor of Al{sub 0.05}Mg{sub 2}Si{sub 0.73}Sn{sub 0.27} is about 1.5 × 10{sup −3} W/mK{sup 2} from room temperature to 850 K, being less than 2.5 × 10{sup −3} W/mK{sup 2} for Al{sub 0.05}Mg{sub 2}Si. However, the thermal conductivity of Mg{sub 2}Si{sub 1−x}Sn{sub x} was reduced significantly as compared to Al{sub 0.05}Mg{sub 2}Si, which enabled the ZT of Al{sub 0.05}Mg{sub 2}Si{sub 0.73}Sn{sub 0.27} to be superior to Al{sub 0.05}Mg{sub 2}Si. Lastly, the electric power generation from one leg of Al{sub 0.05}Mg{sub 2}Si and Al{sub 0.05}Mg{sub 2}Si{sub 0.73}Sn{sub 0.27} were evaluated on a newly developed instrument, with the peak output power of 15–20 mW at 300 °C hot-side temperature. - Highlights: • Aluminium is used as dopant in n-type Mg{sub 2}(Si,Sn) thermoelectric compounds. • Scrap magnesium alloy is used instead of pure raw material, and ball milling is avoided. • Dual phases of solid solution lower thermal conductivity. • Thermoelectric conversion of one-leg material is demonstrated.

  1. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  2. [Use of titanium alloys for medical instruments].

    Science.gov (United States)

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  3. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  4. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    N Eswara Prasad; A A Gokhale; P Rama Rao

    2003-02-01

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

  5. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  6. Rapidly solidified ferromagnetic shape memory alloys

    Science.gov (United States)

    Craciunescu, C. M.; Ercuta, A.; Mitelea, I.; Valeanu, M.; Teodorescu, V. S.; Lupu, N.; Chiriac, H.

    2008-05-01

    Ferromagnetic shape memory alloys have been manufactured by various techniques involving rapid solidification. Bulk alloys have been obtained by extracting the melted alloy in especially designed copper molds; glass coated wires have been obtained by drawing the melt from glass recipients followed by water cooling and ribbons have been fabricated by melt-spinning. Microstructural observations show particular solidification aspects of fractured areas, while ferromagnetic behavior has been detected in glass coated wires obtained by rapid solidification. The martensitic microstructure was observed on Co-Ni-Ga rapid solidified bulk alloys and Fe-Pd ribbons. The memory effect was detected using a Vibran system that allows the detection of the phase transition for the ribbons and by visual observation for other specimens. The conclusions of the observations are related to the comparison between the ferromagnetic behaviors of shape memory alloys solidified using different techniques.

  7. Long - range foundry Al composite alloys

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale.

  8. Concepts in surface alloying of metals

    Directory of Open Access Journals (Sweden)

    Santosh S. Hosmani

    2013-03-01

    Full Text Available Surface alloying is widely used method in industries to improve the surface properties of metals/alloys. Significance of the various surface engineering techniques to improve the properties of engineering components in various applications, for example, automobile industries, has grown substantially over the many years. The current paper is focused on the fundamental scientific aspects of the surface alloying of metals. Widely used surface alloying elements involved are interstitial elements such as nitrogen, carbon, and substitutional element, chromium. This topic is interdisciplinary in nature and various science and engineering streams can work together for the further development in this topic. This paper has attempted to cover the essential concepts of surface alloying along with some of the interesting results in this research area.

  9. Superior hydrogen storage in high entropy alloys

    Science.gov (United States)

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-01

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  10. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  11. REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.Yaug; J.P.Li; J.X.Zhang; G.W.Lorimer; J.Robson

    2008-01-01

    The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study arc listed in the final section.

  12. Phase transformations during sintering of mechanically alloyed TiPt

    CSIR Research Space (South Africa)

    Nxumalo, S

    2010-10-01

    Full Text Available A TiPt alloy was produced by mechanically alloying the desired quantities of titanium and platinum. The resultant TiPt alloy powder was cold pressed to produce green bodies. Several sintering conditions were used to sinter this alloy...

  13. Process Simulation and Modeling for Advanced Intermetallic Alloys.

    Science.gov (United States)

    1994-06-01

    34Microstructure-Property Correlation in TiAl-Base Alloys", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and...Gamma Titanium Aluminide Alloy", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and R.R. Boyer, The

  14. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  15. Nucleation promotion of Sn-Ag-Cu lead-free solder alloys via micro alloying

    Science.gov (United States)

    Mao, Jie

    Sn-Ag-Cu (SAC) alloy system is widely accepted as a viable Pb-free alternative to Sn-Pb alloys for microelectronics packaging applications. Compared with its Pb-containing predecessor SAC alloys tend to have coarse grain structure, which is believed to be caused by high undercooling prior to nucleation. This work explores the possibility of modifying the nucleation process and reducing the undercooling of SAC alloys via introducing minor alloying elements. The mechanisms through which effective alloying elements influenced the nucleation process of SAC alloys are investigated with microstructural and chemical analyses. Minor alloying elements (Mn and Zn) are found promoting beta-Sn nucleation and reducing the undercooling of SAC. Manganese promotes beta-Sn primary phase nucleation through the formation of MnSn2 intermetallic compound. Experimental results in this work support the claim by previous researchers that zinc promotes beta-Sn primary phase nucleation through the formation of zinc oxide. In addition to nucleation, this work also assesses the microstructural impact of minor elements on Sn-Ag-Cu based alloys. Methods have been developed to quantify and compare microstructural impacts of minor elements and efficiently study their partitioning behaviors. LA-ICPMS was introduced to SAC alloy application to efficiently study partitioning behaviors of minor elements.

  16. NiAl alloys for structural uses

    Science.gov (United States)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  17. Phase transition and magnetocaloric effect of Ni{sub 50}Mn{sub 29}Ga{sub 21−x}Tb{sub x} (0 ⩽ x ⩽ 1) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuye; Wang, Jingmin, E-mail: jingmin@buaa.edu.cn; Hua, Hui; Jiang, Chengbao; Xu, Huibin

    2015-05-25

    Highlights: • Effect of Tb addition on phase transition temperatures of Ni{sub 50}Mn{sub 29}Ga{sub 21} were clarified. • Coupled magneto-structural transition were observed in Ni{sub 50}Mn{sub 29}Ga{sub 21}Tb{sub 0.2} alloy. • Large magnetocaloric effect was monitored from the magneto-structural transition. - Abstract: Ni{sub 50}Mn{sub 29}Ga{sub 21−x}Tb{sub x} (0 ⩽ x ⩽ 1) alloys were studied with the microstructure, phase transition, and magnetocaloric effect. Dual-phase microstructure containing the martensite matrix and Tb-rich precipitations were formed. The martensitic transformation was observed over the whole composition range, with the transformation temperature T{sub M} significantly increased by the addition of terbium. The magnetic transition temperatures of the austenite and martensite, i.e. T{sub C}{sup A} and T{sub C}{sup M}, were monitored for 0 ⩽ x ⩽ 0.16 and 0.27 ⩽ x ⩽ 1, respectively. Both T{sub C}{sup A} and T{sub C}{sup M} were slightly decreased by the addition of terbium. For 0.16 ⩽ x ⩽ 0.27 the martensitic transformation was coincided with the magnetic transition in case of T{sub M} = T{sub C}, giving rise to the coupled magneto-structural transition from ferromagnetic martensite to paramagnetic austenite. Sizable magnetic entropy change was induced by magnetic field in the vicinity of the coupled magneto-structural transition.

  18. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  19. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  20. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  1. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  2. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  3. Thermal aging effects in refractory metal alloys

    Science.gov (United States)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  4. Aeronautical requirements for Inconel 718 alloy

    Science.gov (United States)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  5. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatiana, E-mail: kobzarevatanya@mail.ru; Budovskikh, Evgeniy, E-mail: budovskih-ea@physics.sibsiu.ru; Baschenko, Lyudmila, E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, 42, Kirov Str., Novokuznetsk, 654007 (Russian Federation); Ivanov, Yuryi, E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, 4, Akademicheskii Av. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 30, Lenina Av. Tomsk, 634034 (Russian Federation)

    2016-01-15

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  6. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Science.gov (United States)

    Gromov, Victor; Kobzareva, Tatiana; Ivanov, Yuryi; Budovskikh, Evgeniy; Baschenko, Lyudmila

    2016-01-01

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  7. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  8. Fabrication of high strength conductivity submicroncrystalline Cu-5 % Cr alloy by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cu-5%Cr alloy bulk material with submicron grains were fabricated by mechanical alloying and subsequanthot hydrostatic extruaion. The micrestructure, mechanical properties and electrical conductivity of the alloy were experimentally investigated, and the influence of the extrusion temperature on its microstructure and properties was made clear.Also, the strengthening mechanism of the alloy was diacussed. It was revealed that the microstructure of the alloy is veryfine, with an average grain size being about 100 ~ 120nm, and thus possesses significant fine-grain strengthening effect,leading to very high mechanical strength of 800 ~ 1 000 MPa. Meanwhile, the alloy also possesses quite good electricalconductivity and moderate tensile elongation, with the former in the range of 55% ~ 70%(IACS) and the latter about5 % respectively.

  9. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  10. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Science.gov (United States)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  11. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  12. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  13. Electroplated solder alloys for flip chip interconnections

    Science.gov (United States)

    Annala, P.; Kaitila, J.; Salonen, J.

    1997-01-01

    Flip chip mounting of bare dice is gaining widespread use in microelectronics packaging. The main drivers for this technology are high packaging density, improved performance at high frequency, low parasitic effects and potentially high reliability and low cost. Many companies have made significant efforts to develop a technology for bump processing, bare die testing and underfill encapsulation to gain the benefit of all potential advantages. We have focussed on low cost bumping of fully processed silicon wafers to develop a flexible scheme for various reflow requirements. The bumping process is based on galvanic plating from an alloy solution or, alternatively, from several elemental plating baths. Sputtered Mo/Cu or Cr/Cu is used as a wettable base for electroplating. Excess base metal is removed by using the bumps as an etching mask. Variation of the alloy composition or the layer structure, allows the adjustment of the bump reflow temperature for the specific requirements of the assembly. Using binary tin-lead and ternary tin-lead-bismuth alloys, reflow temperatures from 100 °C (bismuth rich alloys) to above 300 °C (lead rich alloys) can be covered. The influence of the plating current density on the final alloy composition has been established by ion beam analysis of the plated layers and a series of reflow experiments. To control the plating uniformity and the alloy composition, a new cup plating system has been built with a random flow pattern and continuous adjustment of the current density. A well-controlled reflow of the bumps has been achieved in hot glycerol up to the eutectic point of tin-lead alloys. For high temperature alloys, high molecular weight organic liquids have been used. A tensile pull strength of 20 g per bump and resistance of 5 mΩ per bump have been measured for typical eutectic tin-lead bumps of 100 μm in diameter.

  14. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  15. Comparison of Lost Foam Casting of AM60B Alloy and A356 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval; Nedkova, Teodora [Kaiser Aluminum

    2007-01-01

    The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings in order to compare the difference in castability between magnesium alloys and aluminum alloy using the lost foam casting process. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  16. Combustion synthesis of bulk nanocrystalline iron alloys

    OpenAIRE

    Licai Fu; Jun Yang; Weimin Liu

    2016-01-01

    The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on...

  17. Graded coatings for metallic implant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  18. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  19. Thermodynamics and Structure of Plutonium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  20. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  1. Electrochemical behaviour of passive zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patrito, E.M.; Torresi, R.M.; Leiva, E.P.M.; Macagno, V.A. (Universidad Nacional de Cordoba (Argentina). Inst. de Investigaciones en Fisicoquimica de Cordoba)

    1991-02-01

    The potentiodynamic oxidation of zirconium, zircaloy-2 (Zry-2) and zircaloy-4 (Zry-4) was studied in the O V{<=}V{<=}8 V potential range. Side reactions take place during the oxidation of Zry-2 and Zry-4 in phosphate electrolytes. With Zry-2, oxygen evolution occurs at high anodic potentials. The oxidation of the alloys in nitric acid shows dissolution of their minor alloying elements but no oxygen evolution at high potentials. The role played by the alloying elements in connection with the appearance of side reactions is discussed. The oxide film were characterized by impedance measurements, X-ray photoelectron spectroscopy and Auger spectroscopy. (author).

  2. Corrosion behavior of magnesium and magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    I.M.Baghni; WU Yin-shun(吴荫顺); LI Jiu-qing(李久青); ZHANG Wei(张巍)

    2004-01-01

    The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels. The expanding territory of magnesium leads to new challenges: mainly environmental degradation of the alloys used and how they can be protected. The present critical review is aimed at understanding the corrosion behavior of magnesium and magnesium alloys in industrial and marine environments, and the effect of microstructure, additive elements and inhibitors on the corrosion mechanism.

  3. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  4. New alloys to conserve critical elements

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  5. Medical applications of shape memory alloys

    Directory of Open Access Journals (Sweden)

    Machado L.G.

    2003-01-01

    Full Text Available Shape memory alloys (SMA are materials that have the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. Pseudoelastic and shape memory effects are some of the behaviors presented by these alloys. The unique properties concerning these alloys have encouraged many investigators to look for applications of SMA in different fields of human knowledge. The purpose of this review article is to present a brief discussion of the thermomechanical behavior of SMA and to describe their most promising applications in the biomedical area. These include cardiovascular and orthopedic uses, and surgical instruments.

  6. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  7. Superelastic effect in polycrystalline ferrous alloys.

    Science.gov (United States)

    Omori, T; Ando, K; Okano, M; Xu, X; Tanaka, Y; Ohnuma, I; Kainuma, R; Ishida, K

    2011-07-01

    In superelastic alloys, large deformation can revert to a memorized shape after removing the stress. However, the stress increases with increasing temperature, which limits the practical use over a wide temperature range. Polycrystalline Fe-Mn-Al-Ni shape memory alloys show a small temperature dependence of the superelastic stress because of a small transformation entropy change brought about by a magnetic contribution to the Gibbs energies. For one alloy composition, the superelastic stress varies by 0.53 megapascal/°C over a temperature range from -196 to 240°C.

  8. Wear resistance of alloy вт-22 with non-ferrous alloys at reverse

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2010-01-01

    Full Text Available  The article presents the results of tests of non hardened titanium alloy ВТ-22 with aviation non-ferrous alloys in reverse sliding friction. The main objective of the work is the selection of the optimum combination of materials depending on changes in loading conditions. Study of alloy ВТ-22 wear resistance was carried out in pairs with БрОФ-10-1, БрБ2, БрАЖ-9-4, ВТ-22, МЛ5, Д16Т, 7Х21ГАН5Ш and 95Х18Ш. The dependencies of the materials wear at pressures 10, 20 and 30 Mpa we determined. The linear nature of titanium alloy wear curves indicates that the change in the wear mechanism occurs gradually. The histograms of non-ferrous materials wear and the total wear of the friction pair are presented. It is established that the bronze БрАЖ-9-4 is the most preferable material for contact with non hardened titanium alloy ВТ-22, the least wear among the tested materials. The established coefficients of the titanium alloy ВТ-22 friction in pair with aviation structural non-ferrous alloys are presented. The results of research will be relevant for the engineering industry, where non hardened titanium alloy ВТ-22 in pair with non-ferrous alloys is applied.

  9. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  10. Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

  11. Silver-hafnium braze alloy

    Science.gov (United States)

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  12. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  13. Rapid solidification of immiscible alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Enrica; Rizzi, Paola; Baricco, Marcello E-mail: marcello.baricco@unito.it

    2003-05-01

    Immiscible alloys have been rapidly solidified for the preparation of granular materials with giant magnetoresistance properties. Au-based (Au-Co and Au-Fe) and Cu-based (Cu-Co and Cu-Fe) systems have been investigated. Single supersaturated solid solution has been obtained for Au-Fe, whereas three FCC solid solutions with different Co content have been found for Au-Co. For Cu-Co and Cu-Fe a limit of solubility in Cu has been observed. Ni additions to Cu-Fe strongly enhance solid solubility. A thermodynamic analysis has been used to describe the competition between partition-less solidification and phase separation in undercooled liquid.

  14. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  15. Combustion synthesis of bulk nanocrystalline iron alloys

    Directory of Open Access Journals (Sweden)

    Licai Fu

    2016-02-01

    Full Text Available The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.

  16. Solidification of Al alloys under electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    崔建忠

    2003-01-01

    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  17. Theory of Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A mean-field random alloy theory combined with a simple calculation of the exchange interaction J(c,Q) is shown to quantitatively account for the phase diagrams for alloys of rare-earth metals with Y, Lu, Sc, and other rare-earth metals. A concentration-dependent J(c,Q) explains the empirical 2...... to account for all alloys except the Sc based. The exceptional behavior of the Sc alloys is due to a low density of states for Sc. A brief discussion is given of the effect on the mean-field results of changes in volume or c/a ratio and of critical fluctuations. Since the physical mechanisms of these ideal...

  18. Stress-corrosion cracking of titanium alloys.

    Science.gov (United States)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  19. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  20. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.