WorldWideScience

Sample records for fe-b-si-nb alloy powder

  1. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  2. Microstrucural characterization of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez, M.; Marin, P. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Madrid (Spain)

    2011-06-15

    Research highlights: > Two FeSi-base alloys as precursors for small dimension soft magnets. > Small particles rapidly solidified by gas atomisation. > Increase effective magnetic anisotropy constant by alloying segregation. > Magnetic hardenning due to volume decrease. - Abstract: Powder particles of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc {alpha}-Fe (Si) solid solution. The Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe{sub 97}Si{sub 3} alloy in the range of 50-100 {mu}m powder particle size. The coercive fields were quite higher in the Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} than in the Fe{sub 97}Si{sub 3} powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.

  3. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  4. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  5. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Toth, I. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1993-11-01

    Amorphous ribbons of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 [mu]m and 27 [mu]m were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO[sub 3]-structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO[sub 3]-structure FeSi alloy, paramagnetic FeNbB and presumably Fe[sub 23]B[sub 6] and Fe[sub 3]SiB[sub 2]. (orig.)

  6. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  7. Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties

    Science.gov (United States)

    Zhang, Zongyang; Liu, Xiansong; Feng, Shuangjiu; Rehman, Khalid Mehmood Ur

    2018-03-01

    In this study, the melt spinning method was used to develop Fe80.5Si7.5B6Nb5Cu amorphous ribbons in the first step. Then, the Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline core with a compact microstructure was obtained by multiple processes. The main properties of the magnetic powder core, such as micromorphology, thermal behavior, permeability, power loss and quality factor, have been analyzed. The obtained results show that an Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline duplex core has high permeability (54.8-57), is relatively stable at different frequencies and magnetic fields, and the maximum power loss is only 313 W/kg; furthermore, it has a good quality factor.

  8. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  9. Crystallisation kinetics of amorphous Fe72.5-xCu1Nb4.5Si10+x+yB12-y alloy

    International Nuclear Information System (INIS)

    Miglierini, M.; Lipka, J.; Sitek, J.

    1994-01-01

    Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 and Fe 72.5-x Cu 1 Nb 4.5 Si 10+x+y B 12-y alloys are compared from the point of view of crystallisation behaviour and changes in the short-range order in the amorphous reminder. The increase in Nb to 4.5 at.% in the latter system slows down the formation of nanocrystals to approximately 40% even after 16 hours of anneal at 550 C for x = 0.5, y = 3. Segregation-induced changes in the short-range order are manifested via hyperfine field distributions corresponding to the amorphous reminder. (orig.)

  10. Effect of Nb and Cr incorporation on the structural and magnetic properties of rapidly quenched FeCoSiB microwires

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Partha; Roy, R.K.; Mitra, A. [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Panda, A.K., E-mail: akpanda@nmlindia.org [NDE and Magnetic Materials Group, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Churyukanova, Margarita; Kaloshkin, Sergey [National University of Science and Technology, MISIS, Leninsky Prospect, 4, Moscow 119049 (Russian Federation)

    2012-08-15

    Rapidly quenched microwires with a nominal composition of Fe{sub 39}Co{sub 39}Si{sub 8}B{sub 14} (A{sub O}), Fe{sub 37}Co{sub 37}Nb{sub 4}Si{sub 8}B{sub 14} (A{sub N}) and Fe{sub 36}Co{sub 36}Nb{sub 4}Cr{sub 2}Si{sub 8}B{sub 14} (A{sub NC}) have been investigated. Devitrification of as-quenched microwires showed that crystallization temperatures increased with simultaneous incorporation of Nb and Cr as in A{sub NC} alloy. Addition of these elements also contributed to an increase in activation energy in A{sub N} and A{sub NC} alloys. Nb addition reduced the particle size, which became much finer in the case of the Cr-containing alloy. Although Nb addition did not have much effect on lowering the Curie temperature T{sub C} of the amorphous phase, Cr substitution lowered T{sub C} to 698 K from high values of 785 K and 787 K observed in the no. A{sub O} and A{sub NC} alloys, respectively. However, the Cr addition revealed a better Giant magneto-impedance (GMI) response compared to the other alloys. Such improved GMI properties in the Cr-containing alloy are attributed to lower values of the coercivity and magnetostriction in the alloy containing both Nb and Cr. - Highlights: Black-Right-Pointing-Pointer FeCoSiB based rapidly quenched microwires prepared by in-rotating-water quenching system. Black-Right-Pointing-Pointer Effect of Nb and Cr on the thermal and GMI behavior of FeCoSiB microwires has been investigated. Black-Right-Pointing-Pointer Effect of Nb and Cr on magnetic properties has also been investigated.

  11. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  12. Amorphization of Fe-Nb by mechanical alloying

    International Nuclear Information System (INIS)

    Yang, J.Y.; Zhang, T.J.; Cui, K.; Li, X.G.; Zhang, J.

    1996-01-01

    Elemental powder mixtures of Fe x Nb 1-x were mechanically alloyed in a planetary ball mill. Powders milled for different times were characterized by X-ray diffraction, transmission and scanning electron microscopy, differential thermal analysis and microhardness measurement. The results show that powders with 0.30≤x≤0.70 could be amorphized after 30 h milling; the maximum hardness (Hv) of milled Fe 50 Nb 50 powders attained was 1490. Based on a thermodynamical analysis, the glass forming range of the Fe-Nb system was calculated, and found to agree with the experimental result very well. (orig.)

  13. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  14. Amorphous and nanocrystalline fraction calculus for the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Moya, J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina) and Carrera del Investigador, CONICET (Argentina)]. E-mail: vcremas@fi.uba.ar; Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina)

    2007-09-01

    We studied the relationship between the saturation magnetization (M {sub S}) of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy and its nanocrystalline structure. Amorphous ribbons obtained by the melt spinning technique were heat-treated for 1 h at different temperatures. The optimal treatment to obtain a homogeneous structure of Fe{sub 3}(Si,Ge) nanocrystals with a grain size of around 10 nm embedded in an amorphous matrix involved heating at 540 C for 1 h. We calculated the magnetic contribution of the nanocrystals to the heat treated alloy using a linear model and measured the M {sub S} of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} nanocrystalline and of an amorphous alloy of the same composition of the amorphous matrix: Fe{sub 58}Si{sub 0.5}Ge{sub 3.5}Cu{sub 3}Nb{sub 9}B{sub 26}. Using experimental data and theoretical calculations, we obtained the amorphous and crystalline fraction of the heat-treated ribbons.

  15. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders

    Directory of Open Access Journals (Sweden)

    Manja Krüger

    2016-10-01

    Full Text Available V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of the planetary ball mill and the type of grinding materials is therefore investigated. These modifications result in different impact energies during ball-powder-wall collisions, which are quantitatively described in this comparative study. Processing with tungsten carbide vials and balls provides slightly improved impact energies compared to vials and balls made of steel. However, contamination of the mechanically alloyed powders with flaked particles of tungsten carbide is unavoidable. In the case of using steel grinding materials, Fe contaminations are also detectable, which are solved in the V and Mo solid solution phases, respectively. Typical mechanisms that occur during the MA process such as fracturing and comminution are analyzed using the comminution rate KP. In both alloys, the welding processes are more pronounced compared to the fracturing processes.

  16. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface

    Directory of Open Access Journals (Sweden)

    PANG Jie

    2018-02-01

    Full Text Available Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3 on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.

  17. Nuclear Magnetic Resonance (NMR) study of the nanocrystalline alloy Fe73.5 Cu1 Nb3 Si13.5 B9

    International Nuclear Information System (INIS)

    Aliaga-Guerra, D.; Iannarella, L.; Fontes, M.B.; Guimaraes, A.P.; Skorvanek, I.

    1994-05-01

    Nanocrystalline Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloys were studied with spin echo NMR at 4.2 K, from 15 to 100 MHz. Several lines are observed, with signals from domains and domain walls. Signals at 50-90 MHz appear to arise from 93 Nb nuclei in the amorphous matrix and in the interface of the crystallites. (author). 5 refs, 3 figs

  18. Magneto-Impedance behavior of Co-Fe-Nb-Si-B-based ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Partha; Mohanta, O.; Pal, S.K.; Panda, A.K. [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India); Mitra, A., E-mail: amitra@nmlindia.or [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India)

    2010-04-15

    The giant magneto-impedance of melt spun Co{sub x}Fe{sub 72-x}Nb{sub 4}Si{sub 4}B{sub 20}(x=10, 20, 36, 50) amorphous and nanostructured ribbons have been investigated. Alloys have been optimized at the driving current amplitude, frequency and found that amorphous ribbon of nominal composition of Co{sub 36}Fe{sub 36}Nb{sub 4}Si{sub 4}B{sub 20} shown maximum GMI ratio of 13%. The behaviour of the driving current amplitude on the GMI behaviour was studied and the sample was optimized for driving current amplitude, I{sub ac}=10 mA. The frequency dependence of the GMI behaviour was studied for the ribbon sample Co{sub 36}Fe{sub 36}Nb{sub 4}Si{sub 4}B{sub 20} at frequency in the range of 100 kHz-1.2 MHz of the optimized driving current amplitude and it was found that the sample showed the maximum GMI behaviour at f=700 kHz. The optimized samples were Joule heated at the current density J=0-35 A/m{sup 2} for a period of 1 min. The GMI ratio initially increased then progressively deteriorated with J, but after a certain range it shows up to 16% of improvement in the magneto-impedance value due the increase of nanocrystalline volume fraction. The asymmetry in the GMI profile was observed for the sample Joule heated at J=1-5 A/m{sup 2} for 1 min.

  19. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  20. Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe-based powders

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.; Roth, S.

    2007-01-01

    Ball milling of CoFeZrB ribbons and subsequent compaction of the resulting powders were used to prepare bulk amorphous samples. Further, two sets of powder samples were prepared by cryomilling of FeCuNbMoSiB alloy in amorphous and nanocrystalline state. Amorphous and nanocrystalline FeCuNbMoSiB powders were blended with CoFeZrB powder at different concentrations. Such powder mixtures were consolidated and several bulk nanocomposites have been synthesized. An addition of nanocrystalline or amorphous FeCuNbMoSiB powder to amorphous CoFeZrB powder caused a decrease of the magnetostriction of the resultant bulk samples, while the coercivity shows an opposite behavior. Our results show that the powder consolidation by hot pressing is an alternative method for the preparation of bulk metallic glasses, which are difficult to prepare by casting methods

  1. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  2. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  3. Crystallisation kinetics of amorphous Fe{sub 72.5-x}Cu{sub 1}Nb{sub 4.5}Si{sub 10+x+y}B{sub 12-y} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, M. [Komenskeho Univ., Bratislava (Czechoslovakia). Dept. of Nuclear Physics and Technics; Lipka, J. [Komenskeho Univ., Bratislava (Czechoslovakia). Dept. of Nuclear Physics and Technics; Sitek, J. [Komenskeho Univ., Bratislava (Czechoslovakia). Dept. of Nuclear Physics and Technics

    1994-11-01

    Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} and Fe{sub 72.5-x}Cu{sub 1}Nb{sub 4.5}Si{sub 10+x+y}B{sub 12-y} alloys are compared from the point of view of crystallisation behaviour and changes in the short-range order in the amorphous reminder. The increase in Nb to 4.5 at.% in the latter system slows down the formation of nanocrystals to approximately 40% even after 16 hours of anneal at 550 C for x = 0.5, y = 3. Segregation-induced changes in the short-range order are manifested via hyperfine field distributions corresponding to the amorphous reminder. (orig.)

  4. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  5. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  6. New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process

    Science.gov (United States)

    Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo

    2013-03-01

    This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.

  7. Phase stability in the Nb-rich region of the Nb-B-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, C.A.; Coelho, G.C.; Pinto, D.M. Jr.; Camargo Gandolpho, K.C. de; Borges, L.A. Jr.; Rodrigues, G. [Polo Urbo-Ind., Gleba, Lorena (Brazil). Dept. de Engenharia de Materiais

    2000-07-01

    Alloys of the Me-B-Si systems (Me-refractory metal) have been evaluated due to their potential for use as high temperature structural materials (T>1400 C). In the present study, the phase stability in the Nb-rich region of the Nb-B-Si system has been evaluated in terms of the current information associated to the Nb-Si, Nb-B and Nb-B-Si systems as well as our own data. For the experiments several as-cast and heat-treated alloys of the Nb-B and Nb-B-Si systems were investigated by X-ray diffraction and scanning electron microscopy. Concerning the Nb-B system the results indicated the existence of the eutectic reaction L ({proportional_to} 16 at%B) <=> Nb{sub ss}+NbB. The Nb{sub 3}B{sub 2} phase was not observed in the microstructure of as-cast alloys with composition in the range of 0 to 50 at%B. The analysis of heat-treated ternary alloys at 1600 C and 1750 C confirmed the existence of the Nb{sub ss}+T{sub 2} two-phase field at those temperatures. This T{sub 2}-phase is isomorphous of the {alpha}Nb{sub 5}Si{sub 3} and is formed through the partial substitution of Si atomos for B atoms in the lattice of the {alpha}Nb{sub 5}Si{sub 3}-phase. All ternary alloys prepared in the present study presented either Nb{sub ss} or T{sub 2} primary phases in the as-cast microstructures. In addition, those alloys presented an eutectic-like microstructure formed by the Nb{sub ss} and T{sub 2} phases in the interdendritic region. (orig.)

  8. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Butvinová, B., E-mail: beata.butvinova@savba.sk [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Butvin, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Brzózka, K. [Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom (Poland); Kuzminski, M. [Institute of Physics PAS, Al. Lotnikow 36/42, 02-668 Warsaw (Poland); Maťko, I.; Švec Sr, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Chromčíková, M. [Institute of Inorg. Chem. SAS, Centrum VILA, Študentská 2, 911 50 Trenčín (Slovakia)

    2017-02-15

    Si-poor Fe{sub 74}Nb{sub 3}Cu{sub 1}Si{sub 8}B{sub 14−x}P{sub x}, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties. - Highlights: • Ar anneal of low-Si FeNbCuBSi ribbons produce surfaces that stress ribbon interior. • The stress comes mainly from preferred crystallization of surfaces. • Partial substitution of B by P changes annealing evolution of surface properties. • Without P, more crystalline surfaces significantly reduce ribbon's elasticity. • P suppresses surface crystallinity, promotes oxides and reduces mutual stress.

  9. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  10. Evolution of Fe environments in mechanically alloyed Fe–Nb–(B) compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blázquez, J.S., E-mail: jsebas@us.es; Ipus, J.J.; Conde, C.F.; Conde, A.

    2014-12-05

    Highlights: • Nb is rapidly incorporated to the nanocrystalline FeNb(B) matrix. • B inclusions remains even after long milling times. • B is helpful to enhance the comminuting of crystallites. - Abstract: Nanocrystalline alloys of nominal composition Fe{sub 85}Nb{sub 5}B{sub 10} were produced by mechanical alloying from a mixture of elemental powders. Two commercial boron structures were used: amorphous and crystalline. In addition, a third composition Fe{sub 94.4}Nb{sub 5.6} was prepared for comparison. X-ray diffraction and Mössbauer spectroscopy were used to describe the evolution of the microstructure and Fe environments as a function of the milling time. Whereas Nb is rapidly incorporated into the nanocrystalline matrix, boron inclusions remain even after long milling times. The presence of boron is found to enhance the comminuting of crystallites.

  11. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  12. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    Science.gov (United States)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  13. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  14. Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys

    International Nuclear Information System (INIS)

    Tiberto, P.; Basso, V.; Beatrice, C.; Bertotti, G.

    1996-01-01

    The dependence of magnetic properties on the thermal treatment used to induce the amorphous-to-nanocrystalline transformation in Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy has been studied. Quasi-static hysteresis loops and initial permeability measurements were performed on nanocrystalline samples obtained by conventional annealing and Joule heating. A comparison between the magnetic properties of nanocrystalline samples obtained by the two heating procedures is presented. (orig.)

  15. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  16. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  17. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  18. Structural Transformation in Fe73.5Nb3Cu1Si15.5B7 Amorphous Alloy Induced by Laser Heating

    Science.gov (United States)

    Nykyruy, Yu. S.; Mudry, S. I.; Kulyk, Yu. O.; Zhovneruk, S. V.

    2018-03-01

    The effect of continuous laser irradiation (λ = 1.06 μm) with laser power of 45 W on the structure of Fe73.5Nb3Cu1Si15.5B7 amorphous alloy has been studied using X-ray diffraction and SEM methods. The sample of the ribbon has been placed at a distance from the focal plane of the lens, so a laser beam has been defocused and the diameter of laser spot on the ribbon surface has been about 10 mm. An exposure time τ varied within interval 0.25-0.70 s. Under such conditions structural transformation processes, which depend on the exposure time, have occurred in an irradiated zone. Crystallization process has started at τ = 0.35 s with the formation of α-Fe(Si) nanocrystalline phase, while complete crystallization has occurred at τ = 0.55 s with formation of two nanocrystalline phases: α-Fe(Si) and a hexagonal H-phase.

  19. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 743...... to 823 K for one hour was observed, i.e. the grain size of the FeSi phase slightly decreases when the annealing temperature increases from 743 K ot 823 K. The mechanism of the anomalous grain growth may be due to the different nucleation and volume diffusion rates in the samples anneales at low and high...

  20. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  1. Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe50Ni30Si10B10 and Fe32Ni36Ta7Si8B17 powders

    International Nuclear Information System (INIS)

    Zambon, A.

    2004-01-01

    Gas atomization can produce, besides a possible significant degree of undercooling, high cooling rates, whose extent depends on the size of the droplets, on their velocity with respect to the surrounding medium, on the thermo-physical properties of both the alloy and the gas, and of course on the operating conditions such as melt overheating and gas-to-metal flow ratio. In this respect it is well-known that the atomizing gas can play a significant role in determining both the powder size distribution and the kind and mix of phases which result from the solidification and cooling processes. The microstructures and solidification morphologies of powders obtained from nitrogen and helium sonic gas atomization of two iron-nickel base glass forming alloys, Fe 50 Ni 30 Si 10 B 10 and Fe 32 Ni 36 Ta 7 Si 8 B 17 , were investigated by means of light microscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA). The Fe 32 Ni 36 Ta 7 Si 8 B 17 alloy exhibits a higher proneness to the development of amorphous phase than the Fe 50 Ni 30 Si 10 B 10 alloy, while the effect of the higher speed attainable by the stream of helium with respect to that of nitrogen, affords not only to obtain a larger amount of particles in the finer size ranges, but also to affect the relative amounts of phases within the different size fractions

  2. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  3. Effects of Nb and Si on densities of valence electrons in bulk and defects of Fe3Al alloys

    Institute of Scientific and Technical Information of China (English)

    邓文; 钟夏平; 黄宇阳; 熊良钺; 王淑荷; 郭建亭; 龙期威

    1999-01-01

    Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and th

  4. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  5. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  6. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Kalita, M.P.C.; Perumal, A.; Srinivasan, A.

    2008-01-01

    Nanocrystalline Fe 75 Si 25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 10 17 m -2 . During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time

  7. Magnetic susceptibility of CoFeBSiNb alloys in liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V., E-mail: vesidor@mail.ru [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Hosko, J. [Institute of Physics SAS, Bratislava (Slovakia); Mikhailov, V.; Rozkov, I.; Uporova, N. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Svec, P.; Janickovic, D.; Matko, I.; Svec Sr, P. [Institute of Physics SAS, Bratislava (Slovakia); Malyshev, L. [Ural Federal University, Ekaterinburg (Russian Federation)

    2014-03-15

    The influence of small additions of gallium and antimony on magnetic susceptibility of the bulk glass forming Co{sub 47}Fe{sub 20.9}B{sub 21.2}Si{sub 4.6}Nb{sub 6.3} alloy was studied in a wide temperature range up to 1830 K by the Faraday’s method. The undercooling for all the samples was measured experimentally. Both Ga and Sb additions were found to increase liquidus and solidification temperatures. However, gallium atoms strengthen interatomic interaction in the melts, whereas antimony atoms reduce it. - Highlights: • Bulk metallic glasses from CoFeBSiNb-based alloys were produced as in situ composites. • Magnetic susceptibility of these alloys was measured in a wide temperature range including liquid state. • Undercooling of these melts was measured experimentally. • Ga additions strengthen interatomic interaction in BMG melts, whereas Sb atoms reduce it.

  8. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  9. Ultra-soft magnetic Co-Fe-B-Si-Nb amorphous alloys for high frequency power applications

    Science.gov (United States)

    Ackland, Karl; Masood, Ansar; Kulkarni, Santosh; Stamenov, Plamen

    2018-05-01

    With the continuous shrinkage of the footprint of inductors and transformers in modern power supplies, higher flux, while still low-loss metallic replacements of traditional ferrite materials are becoming an intriguing alternative. One candidate replacement strategy is based on amorphous CoFeBSi soft-magnetic alloys, in their metallic glass form. Here the structural and magnetic properties of two different families of CoFeBSi-based soft magnetic alloys, prepared by arc-melting and subsequent melt spinning (rapid quenching) are presented, targeting potential applications at effective frequencies of 100 kHz and beyond. The nominal alloy compositions are Co67Fe4B11Si16Mo2 representing commercial Vitrovac and Co72-xFexB28-y (where B includes non-magnetic elements such as Boron, Silicon etc. x varies between 4 and 5 % and y is varied from 0 to 2 %) denoted Alloy #1 and prepared as a possible higher performance alternative, i.e. lower power loss and lower coercivity, to commercial Vitrovac. Room temperature magnetization measurements of the arc-melted alloys reveal that compared to Vitrovac, Alloy #1 already presents a ten-fold decrease in coercivity, with Hc ˜ 1.4 Am-1 and highest figure of merit of (Ms/Hc > 96). Upon melt-spinning the alloys into thin (< 30 μm) ribbons, the alloys are essentially amorphous when analyzed by XRD. Magnetization measurements of the melt-spun ribbons demonstrate that Alloy #1 possesses a coercivity of just 2 Am-1, which represents a significant improvement compared to melt-spun ribbons of Vitrovac (17 Am-1). A set of prototype transformers of approximately 10 turns of Alloy #1 ribbon exhibits systematically Hc < 10 Am-1 at 100 kHz, without a noticeable decrease in coupled flux and saturation.

  10. The influence of the long time milling on the structure and magnetic properties of the Fe-Cu-Nb-Si-B powder

    International Nuclear Information System (INIS)

    Fechova, E.; Kollar, P.; Fuezer, J.; Kovac, J.; Petrovic, P.; Kavecansky, V.

    2004-01-01

    We have studied the influence of milling on the structure and magnetic properties of Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 powder prepared in a vibratory micro-mill as a function of long milling time. Three powder samples have been prepared and investigated (the first one was prepared by the milling of amorphous ribbon, the second one by milling of the same ribbon in a partially nanocrystallized state and the third one by milling of pure elements). Structural analysis shows the decrease of the grain size with the increasing time of milling. The coercivity of the samples prepared from pure elements increases almost linearly up to 1700 h of milling while further milling leads to the saturation at 25 kA/m (at the milling time of 3500 h). The coercivity of the samples milled from ribbons increases to its maximum of 8 kA/m for the milling time of 800 h and then decreases

  11. The corrosion behaviour and structure of amorphous and thermally treated Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Raicheff, R.; Zaprianova, V.; Petrova, E.

    2003-01-01

    The corrosion behaviour of magnetic amorphous alloys Fe 78 B 13 Si 9 , Fe 81 B 13 Si 4 C 2 and Fe 67 Co 18 Bi 4 S 1 obtained by rapid quenching from the melts are investigated in a model corrosive environment of 1N H 2 SO 4 . The structure of the alloys, is, characterized by DTA, SEM, TEM, X-ray and electron diffraction techniques. The dissolution kinetics of the,alloys is studied using gravimetric and electrochemical polarization measurements. It is established that the corrosion rate of the amorphous Fe 67 Co 18 Bt 4 S 1 alloy is up to 50 times lower than that of Fe 78 Bi 3 Si 9 alloy and the addition of cobalt leads to a considerable reduction of the rates of both partial corrosion reactions, while the addition of carbon results only in a moderate decrease (2-3 times) of the corrosion rate. It is also shown that the crystallization of the amorphous Fe 78 B 13 Si 9 alloy (at 700 o C for 3 h) leads to formation of multiphase structure consisting of crystalline phases α-Fe and Fe 3 (B,Si). After crystallization an increase of the rate of both hydrogen evolution and anodic dissolution reactions is observed which results in a considerable (an order of magnitude) increase of the corrosion rate of the alloy. (Original)

  12. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Diffusion of Nb in Fe and in some Fe alloys

    International Nuclear Information System (INIS)

    Kurokawa, S.; Ruzzante, J.E.; Hey, A.M.; Dyment, F.

    1981-01-01

    Diffusion data of microalloying elements such as Nb, V, Ti, are required when analysing the transformation and recrystallization behaviour of HSLA steels in order to optimize grain refinement and precipitation hardening. The diffusion behaviour of Nb in pure Fe, Fe 1.5 Mn, Fe 0.6 Si and Fe 1.5 Mn 0.6 Si has been measured between 1080 and 1200 0 C. Results indicate that Si increases Nb diffusivity while Mn decreases it. The sequence of diffusion coeficients values is: D sup(Nb) sub(Fe 1.5 Mn) [pt

  14. Magnetic and surface properties of Fe-Nb (Mo, V)-Cu-B-Si ribbons

    International Nuclear Information System (INIS)

    Butvinova, B.; Butvin, P.; Svec, P. Sr.; Matko, I.; Svec, P.; Janickovic, D.; Kadlecikova, M.

    2014-01-01

    The rapidly quenched Finemet (FeNbCuBSi) ribbons prepared by planar flow casting of the melt are very variable to obtain very good soft-magnetic properties. An appropriate thermal treatment leading to ultra-fine grain structure enables to attain such properties as desired for practical use. Increasing Fe percentage to the detriment of non-magnetic components lifts saturation induction above 1.3 T, preserves low coercivity and makes the alloy even cheaper to suit its mass production for use in power electronics. Apart from the plenty of benefits the ribbons show some risks. One of them is macroscopic heterogeneity, which often manifests via differences between surfaces and interior of a ribbon [3]. The surfaces squeeze (by in-plane force) the interior of many such ribbons and if engaged in magnetoelastic interaction, the force affects the resulting magnetic anisotropy [4]. Current research shows that changes of hysteresis loop shape come rather from surface crystallization and not from oxides namely in positively magnetostrictive alloys FeNbCuBSi known as low- Si Finemets. The object of this work is to verify whether the substitution of another element instead of Nb (usually incorporated as the grain-growth blocker) can change surface properties and affects the resulting magnetic properties. We chose V and Mo instead of Nb. Oxides, oxyhydroxides and a possible squeezing layer was looked for after higher temperature annealing which ensures partially nanocrystalline structure. (authors)

  15. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  16. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  17. High sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures with FeCuNbSiB nanocrystalline soft magnetic alloy

    Science.gov (United States)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia

    2016-05-01

    In this paper, a high sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures consisting of FeCuNbSiB/Terfenol-D (Tb1-xDyxFe2)/PZT (Pb(Zr1-x,Tix)O3)/Terfenol-D/PZT/Ternol-D/FeCuNbSiB (FMPMPMF) is presented, whose ME coupling characteristics and sensing performances have been investigated. Compared to traditional Terfenol-D/PZT/Terfenol-D (MPM) and Terfenol-D/PZT/Terfenol-D/PZT/Terfenol-D (MPMPM) sensors, the zero-biased ME coupling characteristics of FMPMPMF sensor were significantly improved, owing to a build-in magnetic field in FeCuNbSiB/Terfenol-D layers. The optimum zero-biased resonant ME voltage coefficient of 3.02 V/Oe is achieved, which is 1.65 times as great as that of MPMPM and 2.51 times of MPM sensors. The mean value of low-frequency ME field coefficient of FMPMPMF reaches 122.53 mV/cm Oe, which is 2.39 times as great as that of MPMPM and 1.79 times of MPM sensors. Meanwhile, the induced zero-biased ME voltage of FMPMPMF sensor shows an excellent linear relationship to ac magnetic field both at the low frequency (1 kHz) and the resonant frequency (106.6 kHz). Remarkably, it indicates that the proposed zero-biased magnetic field sensor give the prospect of being able to applied to the field of highly sensitive ac magnetic field sensing.

  18. 57Fe Moessbauer study of amorphous and nanocrystalline Fe73.5Nb3Cu1Si13.5B9 after neutron irradiation

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Szasz, Z.; Vitazek, K.

    1994-01-01

    57 Fe Moessbauer spectroscopy is used to study neutron irradiation induced changes in the short-range order of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 alloy. The samples are investigated in both amorphous and nanocrystalline states. Neutron irradiation leads to an increase of the standard deviation of a hyperfine field distribution (HFD), implying rearrangement of the atoms towards disordering. Simultaneously, changes in the average value of the hyperfine field and a net magnetic moment position occur as a consequence of a spin reorientation, atom mixing and microscopic stress centres which are introduced by neutron irradiation. (orig.)

  19. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  20. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau

  1. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  2. Surface properties of a nanocrystalline Fe-Ni-Nb-B alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Pavuk, M.; Sitek, J.; Sedlackova, K.

    2014-01-01

    In this work, we studied the impact of a neutron radiation on the surface properties of the nanocrystalline (Fe_0_._2_5Ni_0_._7_5)_8_1Nb_7B_1_2 alloy. Changes in topography and domain structure were observed by means of magnetic force microscopy (MFM). (authors)

  3. Study of the influence of the temperature in the magnetic properties and in microstructure in the permanent magnets Pr-Fe-B-Nb-Co based obtained by hydrogen; Estudo da influencia da temperatura nas propriedades magneticas e na microestrutura nos imas permanentes a base de Pr-Fe-B-Nb-Co obtidos com hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Suelanny Carvalho da

    2007-07-01

    Fine magnetic powders were produced using the hydrogenation disproportionation desorption and recombination (HDDR) process. The first stage in this work involved an investigation of the effect of the Co content and range of desorption/ recombination temperatures between 800 and 900 deg C with the purpose of optimizing the HDDR treatment for Pr{sub 14}Fe{sub 80}B{sub 6} and Pr{sub 14}Fe{sub bal}Co{sub x}B{sub 6}Nb{sub 0,1} (x= 0, 4, 8, 10, 12, 16) alloys. The cast alloys were annealed at 1100 deg C for 20 hours for homogenization. The processing temperature (desorption/ recombination) affected the microstructure and magnetic properties of the bonded magnets. The alloy with low cobalt content (4 at.%) required the highest reaction temperature (880 deg C) to yield anisotropic bonded magnets. The optimum temperature for alloys with 8 at.% Co and 10 at.% Co were 840 deg C and 820 deg C, respectively. Alloys with high cobalt content (12 at.% and 16 at.%) were processed at 840 deg C. The optimum desorption temperature for achieving high anisotropy for Pr{sub 14}Fe{sub 80}B{sub 6} and Pr{sub 14}Fe{sub 79,9}B{sub 6}Nb{sub 0,1} was 820 deg C. The best remanence (862 mT) was achieved with the Pr{sub 14}Fe{sub 67,9}B{sub 6}Co{sub 12}Nb{sub 0,1} magnet, processed at 840 deg C. Each alloy required an optimum reaction temperature and exhibited a particular microstructure according to the composition. The second stage of the work involved the characterization, for each temperature, of the Pr{sub 14}Fe{sub 80}B{sub 6} HDDR powder processed using X-ray diffraction analysis. The samples of the HDDR material were studied by synchrotron radiation powder diffraction using the Rietveld method for cell refinement, phase quantification and crystallite sizes determination. Scanning electron microscopy has also been employed to reveal the morphology of the HDDR powder. (author)

  4. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  5. Study of the influence of the temperature in the magnetic properties and in microstructure in the permanent magnets Pr-Fe-B-Nb-Co based obtained by hydrogen

    International Nuclear Information System (INIS)

    Silva, Suelanny Carvalho da

    2007-01-01

    Fine magnetic powders were produced using the hydrogenation disproportionation desorption and recombination (HDDR) process. The first stage in this work involved an investigation of the effect of the Co content and range of desorption/ recombination temperatures between 800 and 900 deg C with the purpose of optimizing the HDDR treatment for Pr 14 Fe 80 B 6 and Pr 14 Fe bal Co x B 6 Nb 0,1 (x= 0, 4, 8, 10, 12, 16) alloys. The cast alloys were annealed at 1100 deg C for 20 hours for homogenization. The processing temperature (desorption/ recombination) affected the microstructure and magnetic properties of the bonded magnets. The alloy with low cobalt content (4 at.%) required the highest reaction temperature (880 deg C) to yield anisotropic bonded magnets. The optimum temperature for alloys with 8 at.% Co and 10 at.% Co were 840 deg C and 820 deg C, respectively. Alloys with high cobalt content (12 at.% and 16 at.%) were processed at 840 deg C. The optimum desorption temperature for achieving high anisotropy for Pr 14 Fe 80 B 6 and Pr 14 Fe 79,9 B 6 Nb 0,1 was 820 deg C. The best remanence (862 mT) was achieved with the Pr 14 Fe 67,9 B 6 Co 12 Nb 0,1 magnet, processed at 840 deg C. Each alloy required an optimum reaction temperature and exhibited a particular microstructure according to the composition. The second stage of the work involved the characterization, for each temperature, of the Pr 14 Fe 80 B 6 HDDR powder processed using X-ray diffraction analysis. The samples of the HDDR material were studied by synchrotron radiation powder diffraction using the Rietveld method for cell refinement, phase quantification and crystallite sizes determination. Scanning electron microscopy has also been employed to reveal the morphology of the HDDR powder. (author)

  6. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  7. Temperature dependence of the coercive field of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda, Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda, Gregorio del Amo, 8, 28040 Madrid (Spain); Hernando, A.; Aragon, A.; Marin, P. [Instituto de Magnetismo Aplicado, IMA, P.O. Box 155, 28230 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer An anomalous thermal dependence of the coercive field of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles under 25 {mu}m powder particle, increasing Hc as temperature increases. Black-Right-Pointing-Pointer It is proposed that Cu rich regions at inter-grain boundaries could act as exchange decoupling regions contributing to the thermal increase of coercivity. Black-Right-Pointing-Pointer This anomalous thermal dependence points out that tailoring microstructure and size, by controlling the cooling rate of more adequate multiphase systems, could be a promising procedure to develop soft or hard magnets, avoiding Rare Earths metals that is nowadays an important target for the engineering of magnetic materials. - Abstract: In this work, the dependence of the coercive field of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} gas atomized powder with the temperature for different particle sizes has been studied, observing an anomalous behavior in the under 25 powder particle size fraction. This unusual behavior is related with the microstructure of the powder, and is attributed to the presence of a multiphase magnetic system, with non-magnetic regions decoupling the ferromagnetic domains.

  8. Effect of heat treatment on the microstructure change and mechanical properties for the Ni-19Si-3Nb-0.15B intermetallic alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.

    2003-01-01

    The microstructural change of the Ni-19Si-3Nb-0.15B alloys after different heat treatment was examined by scanning electron microscopy with energy dispersive spectrum. In addition, Vickers's hardness test was used to measure the variation of mechanical properties for each heat-treated alloy. The results reveal that the typical dendritic microstructure of the heat-treated alloys (comprised of dendritic β-phase, α-β eutectic, and the Nb-rich precipitates) remained almost the same microstructure as the as-cast alloy. However, the morphology of the sharp-edged Nb-rich precipitate (identified to be the cubic Nb 3 Ni 2 Si by electron diffraction of TEM) would be blunted by homogenization. In addition, the size of precipitates seemed to grow with increased aging temperature and aging time. Correlating the result of microhardness measurement with the microstructure observation, an aging temperature of 700 deg. C and an aging time of 10 h is found to be the optimum treating condition for the Ni-19Si-3Nb-0.15B alloy. In addition, the precipitate growth is revealed dominating by an interfacial-controlled kinetics with a thermal activation process of Arrhenius type. The strengthening effect of the heat treatment is not obvious from the hardness test. However, the effect of heat treatment exhibited significant improvement on the ductility of the Ni-19Si-3Nb-0.15B alloy (ε ∼3% for as-cast alloy and 12% for heat-treated alloy)

  9. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  10. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  11. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.; Makino, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B

  12. Magnetic properties of centrifugally prepared melt-spun Nd-Fe-B alloys and their powders

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Kozlov, A.I.; Markin, P.E.; Pushkarskiy, V.I.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching on to the internal surface of an iron spinning wheel at the tangential speeds in the range 5-20 m/sec are reported. The alloy composition was Nd-36% wt. B-1.2% wt. and Fe-reminder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in the applied range (1430 kA/m at 5 m/sec and 1750 kA/m at 20 m/sec), whereas the grain size of the basic phase (2-14-1) steadily decreases when the speed rises, starting from 2-3 μm for 5 m sec alloy down to the 200-300 nm for 20 m/sec alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for traditionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbons subjected to hydrogen and annealing treatments causes the coercivity drop. However, this operations increase the powder alignment ability and, as a result, the energy product for fully dense magnet from such powder rises to 160-180 kJ/m 3 . (orig.)

  13. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  14. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  15. Microstructural characterization of spray formed Fe-based amorfizable alloy; Caracterizacao microestrutural de ligas ferrosas amorfizaveis processadas por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, A.H.G.; Ananias, M.Jr. da S.; Lucena, F.A.; Santos, L.S. dos; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.; Afonso, C.R.M., E-mail: guimaraes.andreh@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil)

    2014-07-01

    Iron-based amorphous alloys show outstanding characteristics such as high hardness and wear resistance, with microstructure partially amorphous, making them favorable to spray forming process (SF), which has cooling rates between 10{sup 3}-10{sup 5} K/s. Thus, this work aims to use the SF in one of the alloy cast iron present in this project, being chosen the alloy with a better set of results, through the performed characterizations. The alloys studied in this project were: (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 100-x}B{sub x} (x = 5, 8 and 12% at) and (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 88}Nb{sub 4}B{sub 8} (at.%), being all processed through Discovery® Plasma and 'melt- spinning' and characterized using: TEM, SEM, DSC, XRD and microhardness test. The cast iron alloy selected were (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 88}Nb{sub 4}B+8, getting by the spray forming process, deposit and overspray powder. With them, were realized almost the same characterizations, except for the TEM. The results showed 1044±102 (HV1) in Vickers microhardness and nanocrystalline overspray powder from 20-45 μm to > 180 μm. (author)

  16. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Lin [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Yang, Weiming [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Men, He [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Chang, Chuntao [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Shen, Baolong, E-mail: blshen@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-12-01

    Through gradient substitution of Co for Fe, the magnetic properties and microstructures of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} (x=0.1, 0.2, 0.3, 0.4, 0.5) nanocrystalline alloys were investigated. Because of the strong ferromagnetic exchange coupling between Co and Fe, substantial improvement in saturation magnetization was achieved with proper levels of Co addition. Meanwhile, the Curie temperature increased noticeably with increasing Co addition. After heat treatment, the (Fe{sub 0.9}Co{sub 0.1}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloy showed a refined microstructure with an average grain size of 10–20 nm, exhibiting a comparatively high saturation magnetization of 1.82 T and a lower coercivity of 12 A/m compared to other Hitperm-type alloys with higher Co contents. Additionally, the Curie temperature reached 1150 K upon introduction of Co. As the soft magnetic properties are strengthened by adding a small amount of Co, the combination of fine, soft magnetic properties and low cost make this nanocrystalline alloy a potential magnetic material. - Highlights: • New (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys are successfully synthesized. • Minor Co addition improves the Curie temperature of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} alloy system. • (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys exhibit high saturation magnetization above 1.82 T.

  17. Effect of Nb on magnetic and mechanical properties of TbDyFe alloys

    Science.gov (United States)

    Wang, Naijuan; Liu, Yuan; Zhang, Huawei; Chen, Xiang; Li, Yanxiang

    2018-03-01

    The intrinsic brittleness in giant magnetostrictive material TbDyFe alloy has devastating influence on the machinability and properties of the alloy, thus affecting its applications. The purpose of this paper is to study the mechanical properties of the TbDyFe alloy by alloying with Nb element. The samples (Tb0.3Dy0.7)xFe2xNby (y = 0, 0.01, 0.04, 0.07, 0.1; 3x + y = 1) were melted in an arc melting furnace under high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance of the alloys were studied systematically. The results showed that NbFe2 phases were observed in the alloys with the addition of Nb. Moreover, both the NbFe2 phases and rare earth (RE)-rich phases were increased with the increasing of Nb element. The mechanical properties results revealed that the fracture toughness of the alloy with the addition of Nb enhanced 1.5-5 times of the Nb-free alloy. Both the NbFe2 phase and the RE-rich phase had the ability to prevent crack propagation, so that they can strengthen the REFe2 body. However, NbFe2 phase is a paramagnetic phase, which can reduce the magnetostrictive properties of the alloy by excessive precipitation.

  18. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  19. On the effect of Nb-based compounds on the microstructure of Al–12Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: leandro.bolzoni@brunel.ac.uk; Nowak, M.; Hari Babu, N.

    2015-07-15

    Cast Al alloys are important structural materials for the lightweighting of cars and, consequently, reduction of greenhouse gases emission and pollution. The microstructure and properties of cast Al alloys could be further improved by means of grain refinement, practise which cannot efficiently be performed with common Al–Ti–B grain refiners used for wrought Al alloys. In this work we proposed the employment of Nb+B inoculation as an alternative for the refinement of the primary α-Al dendrites of cast Al–Si alloy by studying the grain refinement induced by the Nb+B inoculants as a function of key aspects such as cooling rate, fading behaviour and simulated recyclability tests. It is found that the grain size of the Nb+B inoculated material is noticeably less sensitive to the cooling rate. Nb+B inoculants are still present and promote the refinement of the Al–12Si alloy even after few hours of contact time, although some fading is detected. Furthermore, Nb+B inoculants are also still effective for enhancing heterogeneous nucleation after three remelting of the inoculated alloy. The fading behaviour and ability to retain grain refining potency after remelting are highly relevant to industrial scale applications. - Highlights: • The influence of Nb+B inoculation on Al–12SSi is assessed. • The grain size decreases along with the amount of Nb+B compounds. • Nb+B inoculation makes the grain size less sensitive from the cooling rate. • Grain refinement is obtained via heterogeneous nucleation.

  20. On the effect of Nb-based compounds on the microstructure of Al–12Si alloy

    International Nuclear Information System (INIS)

    Bolzoni, L.; Nowak, M.; Hari Babu, N.

    2015-01-01

    Cast Al alloys are important structural materials for the lightweighting of cars and, consequently, reduction of greenhouse gases emission and pollution. The microstructure and properties of cast Al alloys could be further improved by means of grain refinement, practise which cannot efficiently be performed with common Al–Ti–B grain refiners used for wrought Al alloys. In this work we proposed the employment of Nb+B inoculation as an alternative for the refinement of the primary α-Al dendrites of cast Al–Si alloy by studying the grain refinement induced by the Nb+B inoculants as a function of key aspects such as cooling rate, fading behaviour and simulated recyclability tests. It is found that the grain size of the Nb+B inoculated material is noticeably less sensitive to the cooling rate. Nb+B inoculants are still present and promote the refinement of the Al–12Si alloy even after few hours of contact time, although some fading is detected. Furthermore, Nb+B inoculants are also still effective for enhancing heterogeneous nucleation after three remelting of the inoculated alloy. The fading behaviour and ability to retain grain refining potency after remelting are highly relevant to industrial scale applications. - Highlights: • The influence of Nb+B inoculation on Al–12SSi is assessed. • The grain size decreases along with the amount of Nb+B compounds. • Nb+B inoculation makes the grain size less sensitive from the cooling rate. • Grain refinement is obtained via heterogeneous nucleation

  1. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching; Lee, Chih-Jhan; Ho, Wen-Fu

    2010-01-01

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable β phase began. However, when 4 mass% Fe or greater was added, the β phase was entirely retained with a bcc crystal structure. Moreover, the ω phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of ω phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9 o ) and Ti-5Nb-5Fe (29.5 o ) alloys were greater than that of c.p. Ti (2.7 o ) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  2. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Changhua 51591, Taiwan (China); Lee, Chih-Jhan [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Ho, Wen-Fu, E-mail: fujii@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China)

    2010-09-15

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable {beta} phase began. However, when 4 mass% Fe or greater was added, the {beta} phase was entirely retained with a bcc crystal structure. Moreover, the {omega} phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of {omega} phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9{sup o}) and Ti-5Nb-5Fe (29.5{sup o}) alloys were greater than that of c.p. Ti (2.7{sup o}) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  3. Thermodynamic analysis and evaluation of the nitrogen solubility in liquid Nb and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Qiu Caian

    1994-01-01

    Experimental information on the nitrogen solubility in liquid Nb and Fe-Nb alloys has been critically analysed and then utilized to evaluate the thermodynamic properties of the Nb-N and Fe-Nb-N liquid phases on the basis of thermodynamic models of Gibbs energy. A thermodynamic description of the Fe-Nb-N liquid phase was obtained, which has been used to calculate the N solubility in comparison with experimental results. The effect of an addition of Nb on the temperature dependence of the N solubility in liquid Fe has been examined by comparing with the effect of the Cr and V additions. It has been shown that the N solubility in liquid Nb and Fe-Nb alloys under various conditions is well described by the present calculation. (orig.)

  4. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  5. Solid solubility in 1:13 phase of doping element for La(Fe,Si13 alloys

    Directory of Open Access Journals (Sweden)

    S. T. Zong

    2016-05-01

    Full Text Available The influences of Ni, Cr and Nb as substitution elements for Fe were investigated. The change in microstructure and the magnetic properties have been discussed in detail. Substitution elements Ni, Cr and Nb not only have limited solubility in NaZn13-type (1:13 phase, but also hinder the peritectoid reaction. Ni element mainly enters into La-rich phase while Cr element mainly concentrates in α-Fe phase, which both have detriment effect on the peritectoid reaction, leading to a large residual of impurity phases after annealing and a decrease of magnetic entropy change. Besides, Ni and Cr participated in peritectoid reaction by entering parent phases but slightly entering 1:13 phase, which would cause the disappearance of first order magnetic phase transition. A new phase (Fe,Si2Nb was found when Nb element substitutes Fe in La(Fe,Si13, suggesting that Nb does not participate in peritectoid reaction and only exists in (Fe,Si2Nb phase after annealing. The alloy with Nb substitution maintains the first order magnetic phase transition character.

  6. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  7. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  8. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Science.gov (United States)

    Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek

    2018-05-01

    DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  9. A novel Fe–Cr–Nb matrix composite containing the TiB_2 neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    International Nuclear Information System (INIS)

    Litwa, Przemysław; Perkowski, Krzysztof; Zasada, Dariusz; Kobus, Izabela; Konopka, Gustaw; Czujko, Tomasz; Varin, Robert A.

    2016-01-01

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB_2 and a small quantity of Y_2O_3 ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB_2 particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB_2 particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB_2 neutron absorbing ceramic was mechanically

  10. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance.

    Science.gov (United States)

    Tian, Lihui; Fu, Ming; Xiong, Wei

    2018-02-23

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10 -4 mm³·N -1 ·m -1 , which makes it a promising coating for use in abrasive environments.

  11. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Directory of Open Access Journals (Sweden)

    Mariusz Hasiak

    2018-05-01

    Full Text Available DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  12. Temperature dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Petersen, Jan Raagaard

    1994-01-01

    Making use of the stress induced magnetic anisotropy in some iron-rich FeCuNbSiB nanocrystalline materials we studied the thermal dependence of their magnetostriction which becomes zero below the Curie temperature. The choice of a suitable composition and annealing temperature results in materials...... with zero magnetostriction at room temperature. Due to the low magnetostriction these materials have very promising fluxgate properties which were studied as well...

  13. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos. Rodovia Washington Luiz, km 235, 13.565-905, PO Box 676, São Carlos, SP (Brazil)

    2013-11-15

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  14. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Audebert, F.; Galano, M.; Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C.

    2013-01-01

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  15. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  16. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  17. Magnetic and structural properties of the Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B system prepared by arc melting

    Energy Technology Data Exchange (ETDEWEB)

    Oyola Lozano, D., E-mail: doyola@ut.edu.co [University of Tolima, Department of Physics (Colombia); Zamora, L. E.; Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Rojas, Y. A.; Bustos, H. [University of Tolima, Department of Physics (Colombia); Greneche, J. M. [Universite du Maine, Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087 (France)

    2006-04-15

    In this work the magnetic and structural properties are investigated by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction of Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B powdered alloys with x = 0, 2 and 4 prepared by arc melting. The Moessbauer spectra of the samples were fitted with several contributions from: Nd{sub 2}Fe{sub 14}B, {alpha}-Fe and a paramagnetic phase associated with Nd{sub 1.1}Fe{sub 4}B{sub 4} for x = 0 and additionally from NbFeB and Nd{sub 2}Fe{sub 17} for x = 2 and x = 4. The relative fractions of {alpha}-Fe and Nd{sub 2}Fe{sub 14}B are smaller for x = 4 than for x = 0, indicating that the amount of these two phases is reduced with increasing Nb content, while the relative fraction of Nd{sub 2}Fe{sub 17} increases. The {alpha}-Fe grain size slightly decreases while that of the Nd{sub 2}Fe{sub 14}B phase is increasing, when the Nb content increases. The hysteresis loops indicate that these samples behave as hard ferromagnets, with a coercive field which decreases when the Nb content increases, but with rather low remanent magnetization.

  18. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  19. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    Science.gov (United States)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  20. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  1. [sup 57]Fe Moessbauer study of amorphous and nanocrystalline Fe[sub 73. 5]Nb[sub 3]Cu[sub 1]Si[sub 13. 5]B[sub 9] after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Szasz, Z. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Vitazek, K. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1994-05-01

    [sup 57]Fe Moessbauer spectroscopy is used to study neutron irradiation induced changes in the short-range order of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] alloy. The samples are investigated in both amorphous and nanocrystalline states. Neutron irradiation leads to an increase of the standard deviation of a hyperfine field distribution (HFD), implying rearrangement of the atoms towards disordering. Simultaneously, changes in the average value of the hyperfine field and a net magnetic moment position occur as a consequence of a spin reorientation, atom mixing and microscopic stress centres which are introduced by neutron irradiation. (orig.)

  2. A novel Fe–Cr–Nb matrix composite containing the TiB{sub 2} neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    Energy Technology Data Exchange (ETDEWEB)

    Litwa, Przemysław [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Zasada, Dariusz [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Kobus, Izabela; Konopka, Gustaw [Department of Nanotechnology, Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Czujko, Tomasz [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Varin, Robert A., E-mail: robert.varin@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., Waterloo, ON N2L 3G1 (Canada)

    2016-07-25

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB{sub 2} and a small quantity of Y{sub 2}O{sub 3} ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB{sub 2} particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB{sub 2} particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB{sub 2} neutron

  3. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  4. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  5. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  6. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    Science.gov (United States)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  7. On the effects of partial substitution of Co for Fe in FINEMET and Nb-containing HITPERM alloys

    CERN Document Server

    Blazquez, J S; Conde, C F; Conde, A; Greneche, J M

    2003-01-01

    A comparative study of the effects of partial substitution of Co for Fe on thermal stability, crystallization and magnetic properties of Co-containing FINEMET and HITPERM alloys series is presented. The difference in metalloid and Nb content between the two alloy series and the presence of Si in the nanocrystals in the case of FINEMET alloys appear as key parameters. A recrystallization process involving the alpha-Fe type phase in nanocrystalline alloys of both series is evident from thermomagnetic results as a significant decrease in magnetization at the second crystallization stage.

  8. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  9. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-04-15

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The magnetic ageing of the nanocrystalline materials is related to their annealing. • The degradations with ageing are not related to a change of the grain size diameter. • The amount of anisotropies introduced with ageing depends just on ageing conditions.

  10. Diffusion in ordered Fe-Si alloys

    International Nuclear Information System (INIS)

    Sepiol, B.; Vogl, G.

    1995-01-01

    The measurement of the diffusional Moessbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D0 3 structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe 3 Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe 3 Si to the iron-rich side is discussed. (orig.)

  11. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  12. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  13. Coercivity and induced magnetic anisotropy by stress and/or field annealing in Fe- and Co- based (Finemet-type) amorphous alloys

    International Nuclear Information System (INIS)

    Miguel, C.; Zhukov, A.; Val, J.J. del; Gonzalez, J.

    2005-01-01

    Uniaxial magnetic anisotropy has been induced in amorphous Fe 73.5 Cu 1 Nb 3 Si 15.5 B 7 (Fe-rich) and (Co 77 Si 13.5 B 9.5 ) 90 Fe 7 Nb 3 (Co-rich) ferromagnetic alloys by annealing under stress and/or magnetic field. Such anisotropy plays a crucial role on the magnetization process and, consequently, determine the future applications of these materials. The mechanisms involved on the origin of such induced magnetic anisotropy showed significant differences between Fe-rich and Co-rich amorphous alloys. This work provides a comparative study of the coercive field and induced magnetic anisotropy in Fe-rich and Co-rich (Finemet) amorphous alloys treated by stress and/or field

  14. Structural Relaxation in Fe78Nb2B20 Amorphous Alloy Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Hanc, A.; Rasek, J.; Haneczok, G.; Pajak, L.; Stoklosa, Z.; Kwapulinski, P.

    2011-01-01

    It was shown that soft magnetic properties of Fe 78 Nb 2 B 20 amorphous alloy can be significantly improved by applying 1-h annealing at temperature 623 K (permeability increases even about 8 times). The Moessbauer Spectroscopy technique indicated that the optimized microstructure (corresponding to the maximum magnetic permeability) is free of iron nanograins and should be attributed to annealing out of free volume and a reduction of internal stresses i.e. to the relaxed amorphous phase. (authors)

  15. Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Xiong, Bowen; Cai, Changchun; Wang, Zhenjun

    2014-01-01

    Highlights: • Microstructure of Nb/Nb 5 Si 3 composite alloyed with W and Mo is change obviously. • W and Mo elements can solid solution in Nb and Nb 5 Si 3 phase respectively. • Alloyed with W and Mo together, the solid solubility of Nb 5 Si 3 phases is undetected. • The Nb/Nb 5 Si 3 composite alloyed with W and Mo together has high fracture toughness. - Abstract: Microstructures and room temperature fracture toughness of Nb/Nb 5 Si 3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering were investigated. The microstructures were examined using scanning electron microscope (SEM). X-ray diffraction (XRD) was performed on the bulk specimens for identification of phases. The chemical species were analyzed using electron-probe micro-analysis (EPMA). Results indicated that the microstructures of Nb/Nb 5 Si 3 composites alloyed with W or Mo is unaltered, including primary Nb and eutectic mixtures of Nb and Nb 5 Si 3 , and the coarse and fine eutectic mixtures. The W and Mo elements solid solution in Nb and Nb 5 Si 3 phase are detected. But that alloyed with W and Mo together, The microstructures are change obviously, including Nb phase, the solid solubility phases of W and Mo atoms in Nb, and the solid solubility phases of Nb atoms in W are also found, but the solid solubility phenomenon of Nb 5 Si 3 phases is not detected. The microhardness of Nb and Nb 5 Si 3 phases increases obviously because of solid solution strengthening. The Nb/Nb 5 Si 3 composite alloyed with W and Mo together hashing high fracture toughness is attributable to the big eutectic Nb and interface of eutectic phases, which can bear large deformation to absorb the crack energy and form the decohesion between eutectic phases

  16. Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr

    International Nuclear Information System (INIS)

    Marty, M.; Delaunay, C.; Walder, A.

    1989-01-01

    The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)

  17. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment

    International Nuclear Information System (INIS)

    Abbasi, A.R.; Shamanian, M.

    2011-01-01

    Research highlights: → α-Mo-Mo 5 SiB 2 nanocomposite was produced after 20 h milling of Mo-Si-B powders. → Heat treatment of 5 h MAed powders led to the formation of boride phases. → Heat treatment of 10 h MAed powders led to the formation of Mo 5 SiB 2 phase. → By increasing heat treatment time, quantity of Mo 5 SiB 2 phase increased. → 5 h heat treatment of 20 h MAed powders led to the formation of Mo 5 SiB 2 -based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo 5 SiB 2 -based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an α-Mo-Mo 5 SiB 2 nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo 2 B were detected and α-Mo-MoB-Mo 2 B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an α-Mo-Mo 5 SiB 2 -MoSi 2 -Mo 3 Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo 5 SiB 2 phase after heat treatment wherein below that time, boride phase and after that time, Mo 5 SiB 2 phase are formed. In the case of 20 h mechanically alloyed powders, by increasing heat treatment time, not only the quantity of α-Mo was reduced and the quantity of Mo 5 SiB 2 was increased, but also new boride

  18. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  19. Nd-Fe-B sintered magnets fabrication by using atomized powders

    International Nuclear Information System (INIS)

    Goto, R; Sugimoto, S; Matsuura, M; Tezuka, N; Une, Y; Sagawa, M

    2011-01-01

    Nd-Fe-B sintered magnets are required to achieve high coercivity for improvement of their thermal stability. Dy is added to increase coercivity, however, this element decrease magnetization and energy products. Therefore, Dy-lean Nd-Fe-B sintered magnets with high coercivity are strongly demanded. To increase coercivity, it is necessary that microstructure of sintered magnets is consisted of both fine main phase particles and homogeneously distributed Nd-rich phases around the main phase. To meet those requirements, Nd-Fe-B atomized powders were applied to the fabrication process of sintered magnets. Comparing with the case of using strip casting (SC) alloys, jet-milled powders from atomized powders show homogeneous distribution of Nd-rich phase. After optimized thermal treatment, coercivities of sintered magnets from atomized powders and SC alloys reach 1050 kA·m-1 and 1220 kA·m-1, respectively. This difference in coercivity was due to initial oxygen concentration of starting materials. Consequently, Nd-rich phases became oxides with high melting points, and did not melt and spread during sintering and annealing.

  20. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  1. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  2. Initial stages of solid solution decomposition in Fe-Ti and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Ustinovshchikov, Yu.I.; Chen Shiren; Shirobokova, M.S.

    1993-01-01

    Structural analysis of Fe-Ti and Fe-Nb systems is performed. Formation of Laves phases proceed through the stage of the formation of a structure representing a periodic sequence of the regions enriched and depleted in alloying element. Abnormal changes in the properties of alloys of the given systems are noted; there changes reside in a decrease of alloy hardness during the formation of the above structure

  3. Enhanced saturation magnetization of Fe3Si nanodot-embedded Fe80Si17Nb3 flexible film for efficient wireless power transfer

    International Nuclear Information System (INIS)

    Pai, Yi-Hao; Yan, Zih-Yu; Fu, Ping-Hao

    2013-01-01

    An efficient magnetically coupled resonance response is performed using an iron silicide-based nanostructured magnetoelectric material with high saturation magnetization for the wireless charging of battery-powered consumer electronics. With 500 °C annealing, the self-assembled Fe 3 Si nanodots buried in the Fe 80 Si 17 Nb 3 host matrix with (220) lattice spacing of 1.99 Å corresponding to a volume density of 8.96 × 10 16 cm 3 , can be obtained and a maximum saturation magnetization of 244 emu g −1 achieved. The return loss of the antenna will be tuned to match the designed frequency with greater attenuated intensity (−0.39 dB) and a relatively narrow bandwidth (6 kHz) when the Fe 3 Si nanodot-embedded Fe 80 Si 17 Nb 3 sample is placed in a WiTricity system. An efficient wireless power transfer can be created and improved from 47.5% to 97.3%. The associated coil and loop antenna resonators are significantly readjusted to match the power transfer by putting this nanostructured magnetoelectric material in a WiTricity system. - Highlights: • The saturation magnetization is effective enhancement in the presence of Fe 3 Si nanodot buried in the Fe 80 Si 17 Nb 3 . • A saturation magnetization of 244 emu g −1 is proposed for high-efficiency wireless power transfer. • The return loss of the antenna will be tuned to match the designed frequency. • Such a wireless power transfer can be enhanced efficiency up to 97.3%

  4. Structural and magnetic characterization of Fe2CrSi Heusler alloy nanoparticles as spin injectors and spin based sensors

    Science.gov (United States)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.

    2018-05-01

    Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.

  5. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  6. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  7. Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling

    International Nuclear Information System (INIS)

    Duan, Yuping; Gu, Shuchao; Zhang, Zhonglun; Wen, Ming

    2012-01-01

    Highlights: ► The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by ball-milling. ► The microstructure and magnetic properties of alloy changed following milling. ► The powders milled for 10 h have the largest M s and strongest reflection loss. ► The permeability of the powders milled for 2 h is the largest. ► The charge exchange between Fe and Si is discussed base on first-principles. - Abstract: The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by a high-energy planetary ball-milling. The characterization of morphology, microstructure, and electromagnetic properties were measured by scanning electron microscope (SEM), X-ray diffractometer, vibrating sample magnetometer (VSM), vector network analyzer and the first principle method. The analysis results showed that the powders shape became flaky from fusiform. The powders showed a reduction of the average grain size and the increase of the internal strain, and then presented an adverse variation trend after 55 h milling. The powders that milled 10 h had the largest saturation magnetization M S (131 emu/g). The value μ′ of the powders decreased with increasing milling time at relatively lower frequency (2–8 GHz), but opposite variation tendency happened at higher frequency (8–18 GHz). Also, only short time milling can enhance the value of μ″ in the test frequency. The powders after 10 h milling showed excellent microwave absorption (RL < −10 dB) at the frequency 9.0–15.6 GHz and the absorption peak shifted regularly to the high frequency as the increased milling time. Furthermore, the effect of charge exchange between the Fe and Si on the saturation magnetization in the ball-milling process was also investigated by using density functional theory (DFT) of first principle.

  8. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  9. Microstructure and magnetic properties of nanostructured (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, N. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Souami, N. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Gorria, P. [Department of Physics and IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Bourzami, A. [Laboratoire d' Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), Université Sétif1, 19000 Sétif (Algeria); Lenoble, O. [Institut Jean Lamour, CNRS-Université de Lorraine, Boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy (France)

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe{sub 80}Al{sub 20} alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties. - Highlights: • Single-phase nanocrystalline (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} (x=0, 5, 10, 15 and 20 at%) powders were successfully fabricated by mechanical alloying for a milling time of 72 h. • The insertion of Si atoms leads to a unit-cell contraction and a decrease in the average crystallite size. • The hyperfine and magnetic properties of (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} were influenced by the Si content.

  10. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study of Fe-Ni-Si-B alloy and films on its base by X-ray photospectroscopy method

    International Nuclear Information System (INIS)

    Kozlenko, V.G.; Parfenenok, M.A.; Pukhov, I.K.; Shaposhnikov, A.N.; Shirkov, A.V.

    1983-01-01

    By the method of X ray photoelectron spectroscopy the chemical composition of Fe-Ni-Si-B alloy and films on its base prepared by ion-plasma sputtering is investigated. The identity of chemical bonds in film samples and initial target is revealed, realized are in them mostly Fe-B, Ni-C, Si-Si interatomic bonds. It is shown that lono. films contact with atmosphere is the cause of difference of film composition in the near-surface region (up to 100 nm) from its main volume composition

  12. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  13. Effect of calcium chloride on the preparation of NdFeB alloy powder by calciothermic reduction process

    International Nuclear Information System (INIS)

    Sidhu, R.K.; Verma, A.; Raina, K.K.

    1999-01-01

    The calciothermic reduction process has been identified to be one of the cost effective processes for producing NdFeB from Nd 2 O 3 . Use of CaCl 2 as slag former in calciothermic reduction is well established. This paper describes the effect of CaCl 2 on the various properties of NdFeB alloy powder prepared by calciothermic reduction. The effect of CaCl 2 on ease of disintegration of the reacted product during calcium leaching, particle size distribution, grain size, lattice parameters and residual calcium has been studied and compared with the alloy powder prepared without using calcium chloride. Addition of CaCl 2 has been found to result in easier disintegration, reduction in grain size and more uniform particle size distribution. Substantial decrease in the residual calcium in case of charge consisting of CaCl 2 was observed. The effect of lattice parameters was not found to be very significant. (author)

  14. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  15. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  16. Production of NdFeB powders by HDDR from sintered magnets

    International Nuclear Information System (INIS)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G.; Campos, M.F. de

    2010-01-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd 2 Fe 14 B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  17. Glass forming ability and magnetic properties of Co(40.2−x)Fe(20.1+x)Ni6.7B22.7Si5.3Nb5 (x=0–10) bulk metallic glasses produced by suction casting

    International Nuclear Information System (INIS)

    Sarlar, Kagan; Kucuk, Ilker

    2015-01-01

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) have a supercooled liquid region (∆T x ) of about 44 K. The saturation magnetizations (J s ) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J s 0.62−0.81 T with a low H c of 2−289 A/m of the alloys

  18. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Directory of Open Access Journals (Sweden)

    Xingjie Jia

    2018-05-01

    Full Text Available Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ∼17.5 nm, and exhibits a high Bs of ∼1.75 T and a low Hc of ∼5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  19. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Science.gov (United States)

    Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei

    2018-05-01

    Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  20. High coercivity in Fe-Nb-B-Dy bulk nanocrystalline magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, Grzegorz; Chrobak, Artur; Klimontko, Joanna [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice (Poland); Chrobak, Dariusz; Rak, Jan [Institute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow (Poland); Zivotsky, Ondrej; Hendrych, Ales [Department of Physics, VSB-TU Ostrava, Ostrava (Czech Republic)

    2016-11-15

    The paper refers to structural and magnetic properties of the (Fe{sub 80}Nb{sub 6}B{sub 14}){sub 1-x}Dy{sub x} (x = 0.08, 0.10, 0.12, 0.16) bulk nanocrystalline alloys prepared by making use of the vacuum suction casting technique. The samples are in a form of rods with different diameters d = 1.5, 1, and 0.5 mm. The phase structure was investigated by XRD technique and reveals an occurrence of magnetically hard Dy{sub 2}Fe{sub 14}B as well as other relatively soft Dy-Fe, Fe-B, and Fe phases dependently on the Dy content. The alloys show hard magnetic properties with high coercive field up to 5.5 T (for x = 0.12 and d = 0.5 mm). The observed magnetic hardening effect with the increase of cooling rate (decrease of sample diameter d) can be attributed to a formation of ultra-hard magnetic objects as well as increasing role of low dimensional microstructure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    Science.gov (United States)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  2. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  3. Influence of Microstructure on Microhardness of Fe81Si4B13C2 Amorphous Alloy after Thermal Treatment

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica, M.; Blagojević, V.; Minić, Dušan M.; Gavrilović, A.; Rafailović, L.; Žák, Tomáš

    42A, č. 13 (2011), s. 4106-4112 ISSN 1073-5623 R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z2041904 Keywords : bulk metallic-glass * mechanical properties * Fe81B13SI4C2 alloy * B alloys * alpha-Fe * crystallization * phase * nanocrystallization * behavior Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.545, year: 2011

  4. Crystallization processes in an amorphous Co-Fe-Cr-Si-B alloy under isothermal annealing

    Science.gov (United States)

    Fedorets, A. N.; Pustovalov, E. V.; Plotnikov, V. S.; Modin, E. B.; Kraynova, G. S.; Frolov, A. M.; Tkachev, V. V.; Tsesarskaya, A. K.

    2017-09-01

    Research present the crystallization processes investigation of the amorphous Co67Fe3Cr3Si15B12 alloy. In-situ experiments on heating in a transmission electron microscope (TEM) column were carried out. Critical temperatures influencing material structure are determined. The onset temperature of material crystallization was determined.

  5. Study of microstructure and correlative magnetic property in bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Man, H.; Xu, H. [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, H.W. [The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Tan, X.H., E-mail: tanxiaohua123@163.com [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Peng, J.C.; Bai, Q. [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer A fully dense bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} permanent magnet was obtained by the simple process of copper mold casting and subsequent annealed at 943 K. Black-Right-Pointing-Pointer The relationship between microstructures and correlative magnetic property of Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} alloy was investigated. Black-Right-Pointing-Pointer The high value of intrinsic coercivity of 1191 kA/m was obtained due to the existence of hard magnetic Nd{sub 2}Fe{sub 14}B phase. - Abstract: The correlation between microstructure and magnetic property of a bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} alloy are investigated. The microstructure of the as-cast Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} alloy shows a small amount of NbFeB phase with a grain size of 500 nm embedded in an amorphous matrix. The as-cast sample shows soft magnetic behavior at room temperature, after a heat treatment the hard magnetic properties are observed. A fully dense bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} permanent magnet is obtained with an intrinsic coercivity ({sub i}H{sub c}) of 1191 kA/m and a maximum energy product ((BH){sub max}) of 31.7 kJ/m{sup 3} after annealing at 943 K for 20 min. The corresponding microstructure consists of Nd{sub 2}Fe{sub 14}B, NdFe{sub 4}B{sub 4} and NbFeB phases. The existence of the hard magnetic Nd{sub 2}Fe{sub 14}B phase is the reason resulting in a high value of {sub i}H{sub c}. On the other hand, the influences of NdFe{sub 4}B{sub 4} and NbFeB phases in the annealed specimen on the magnetic properties are also discussed.

  6. The nonaqueous inhibition of Fe-Co-B-Si amorphous electrodes: An a.c. impedance study in HCl solutions

    International Nuclear Information System (INIS)

    Habib, K.; Abdullah, A.

    1995-01-01

    An electrochemical study on Fe-Co-B-Si amorphous electrodes has been conducted. The study was focused on determining the electrochemical impedance spectroscopy (EIS) of four different alloys of Fe-Co-B-Si in various HCl acid solutions. The A.C. impedance and the capacitance of Fe-Co-B-Si, Co-Fe-Ni-B-Si, Co-Fe-Mn-B-Si, and Co-Fe-Ni-Mo-B-Si alloys were obtained in 25, 50, 75 and 100% of HCl acid at room temperature. Electrochemical parameters, i.e., impedance, were found to vary depending on additions of the Ni, Mn, Ni-Mo to Fe-Co-B-Si alloy, the acid concentration, and the nanoscopic surface roughness of the electrodes. Consequently, a correlation between the obtained data is established

  7. Preparation of Pr-Fe-Co-B-Nb-M (M= Al, P, Cu, Ga and/or Gd) HDDR magnets and alloys and characterization of their magnetic properties and corrosion resistance

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de

    2009-01-01

    HDDR process has attracted great interest for producing polymer- bonded rare earth based magnets. It presents commercial advantages when compared with conventional sintered magnets owing to easy and low cost manufacturing. With the development of anisotropic powders using praseodymium, the expectations about this process grow e also the need for studying new compositions and alloy additions. In this work the magnetic properties of polymer-bonded magnets prepared with PrFeB magnetic alloys using HDDR process have been studied. Pr 14 Fe bal Co 16 B 6 Nb 0,1 was used as the reference alloy Phosphorus, copper, aluminium, gallium and gadolinium additions have been performed to increase the magnetic properties of the reference alloy. The microstructural characterization of the magnets has been carried out through optical microscopy and SEM. The complex microstructure influences the electrochemical behavior of the magnetic alloys. The literature about this subject is scarce. Thus, the corrosion resistance of the different alloys prepared during this work was evaluated using electrochemical impedance spectroscopy and potentiodynamic polarization curves. A correlation between the microstructural features and the electrochemical behavior of the alloys has been established. The results showed that phosphorus and aluminium additions up to 1.0wt% had a beneficial effect on the magnetic properties and corrosion resistance of the alloys. Copper additions, on the other hand, strongly diminished the magnetic properties of the reference alloy. (author)

  8. Crystallographic alignment in the recombination stage in d-HDDR process of Nd-Fe-B-Ga-Nb powders

    Directory of Open Access Journals (Sweden)

    Takashi Horikawa

    2016-05-01

    Full Text Available Nd-Fe-B-Ga-Nb magnetic powder was subjected to the dynamic hydrogen disproportionation desorption recombination treatment. For samples disproportionated at both 30 and 100 kPa of hydrogen pressure, the changes in the microstructure and grain orientation during recombination process were investigated. It was observed that even during the recombination process, the orientation relationship was maintained between α-Fe and NdH2+x grains formed after the disproportionation treatment at 30 kPa of hydrogen pressure, [110]α-Fe // [110]NdH2+x, (-110α-Fe // (-220NdH2+x. Additionally, the alignment of recombined Nd2Fe14BHy grains became clear after 30 min of DR treatment showing following orientation relationship: (001Nd2Fe14BHy // (110α-Fe and (110NdH2+x. In contrast, such a relationship was not observed in the sample disproportionated at 100 kPa of hydrogen pressure. This difference in the degree of alignment was also confirmed by measuring the magnetic property of the respective samples.

  9. Hot rolling effect on the characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2015-01-01

    Characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy after hot rolling have been studied. The objective of this research was to obtain of hot rolling effect on the characteristics of microstructures, hardness and phases formed in Zr-0.6Nb-0.5Fe-0.5Cr alloy. The hot rolling process of alloy carried out at temperature of 800 °C with retention time of 1.5 and 2 hours and a thickness reduction between 5 to 25 %. The results of this experiment showed that the Zr-0.6Nb-0.5Fe-0.5Cr alloy has Widmanstaetten structure with microstructure evolving into deformed columnar grains and deformed elongated grains with increasing thickness reduction. Besides, the longer the retention time at temperature of 800 °C is the larger are the grain structures and formation of α-Zr and Zr_3Fe phase. The hardness of Zr-0.6Nb-0.5Fe-0.5Cr alloy has same trends i.e the larger thickness reduction gives higher hardness. The Zr-0.6Nb-0.5Fe-0.5Cr alloy can under go hot rolling deformation at a thickness reduction of 25 % and the formation of α-Zr and Zr_3Fe can increased of hardness and strength of Zr-0.6 Nb-0.5 Fe-0.5 Cr alloy. (author)

  10. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Majid; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3} powder mixtures with sufficient amount of CaH{sub 2} were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys can be successfully synthesized by the reduction reaction of Fe{sub 2}O{sub 3} and B{sub 2}O{sub 3} with CaH{sub 2} during mechanical alloying. The structure of produced Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys was a combination of Fe and Fe{sub 2}B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  11. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun; Gong, Rongzhou, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Feng, Zekun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Yajie; Harris, V. G. [Department of Electrical and Computer Engineering, Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-05-07

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that the Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.

  12. Influence of alloying element of corrosion of Zr-Nb-Sn-Fe-Cu alloy and impedance characteristics of its oxide layer

    International Nuclear Information System (INIS)

    Park, S. Y.; Lee, M. H.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2000-01-01

    As a part of the advanced Zr fuel cladding development program, the autoclave corrosion test was performed on the series of Zr-0.2Nb-1.1Sn-Fe-Cu and Zr-0.4Nb-0.8Sn-Fe-Cu alloys in 70 ppm LiOH solution at 360 .deg. C. The oxide characteristics were investigated by using the Electrochemical Impedance Spectroscope(EIS) method. The corrosion resistance of the alloys was evaluated from the corrosion rate determined as a function of the concentration of main alloying elements such as Nb, Sn, Fe and Cu. The equivalent circuit was composed as a result of the spectrum from EIS measurements on the oxide layer that formed at pro- and post-transition regions. By using the capacitance characteristics of equivalent circuit, the thickness of impervious layer, it's electrical resistance and characteristics of space charge layer were evaluated. The corrosion characteristics of the Zr-Nb-Sn-Fe-Cu alloys were successfully explained by applying the EIS test results

  13. Detailed modeling of local anisotropy and transverse Ku interplay regarding hysteresis loop in FeCuNbSiB nanocrystalline ribbons

    Science.gov (United States)

    Geoffroy, Olivier; Boust, Nicolas; Chazal, Hervé; Flury, Sébastien; Roudet, James

    2018-04-01

    This article focuses on the modeling of the hysteresis loop featured by Fe-Cu-Nb-Si-B nanocrystalline alloys with transverse induced anisotropy. The magnetization reversal process of a magnetic correlated volume (CV), characterized by the induced anisotropy Ku, and a deviation of the local easy magnetization direction featuring the effect of a local incoherent anisotropy Ki, is analyzed, taking account of magnetostatic interactions. Solving the equations shows that considering a unique typical kind of CV does not enable accounting for both the domain pattern and the coercivity. Actually, the classical majority CVs obeying the random anisotropy model explains well the domain pattern but considering another kind of CVs, minority, mingled with classical ones, featuring a magnitude of Ki comparable to Ku, is necessary to account for coercivity. The model has been successfully compared with experimental data.

  14. Crystallization of amorphous Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Jakubczyk, E; Krajczyk, A; Jakubczyk, M

    2007-01-01

    The crystallization process of Fe 78 Si 9 B 13 metallic glass was investigated by DSC, X-ray diffraction, electrical resistivity, Hall effect and TEM methods. The investigations proved two-stages crystallization. By means of non-isothermal DSC experiments the activation energy and the Avrami exponent were determined for both stages. The created phases: α-Fe(Si) and (Fe,Si) 2 B were identified on the basis of X-ray and TEM investigations. However, TEM observations showed also a little amount of the FeB 49 phase as well as some rest of the amorphous phase. The electrical and Hall resistivities decrease abruptly after the creation of the phases out of the amorphous matrix

  15. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  17. Low temperature thermal conductivity of amorphous (Fe, Ni, Co) (P, B, Si) alloys and their change by heat treatment

    International Nuclear Information System (INIS)

    Pompe, G.; Gaafar, M.; Buettner, P.; Francke, T.

    1983-01-01

    The thermal conductivity of amorphous metallic alloys (Fe, Ni, Co)/sub 1-x/ (B, P, Si)/sub x/ is measured in the temperature range 2 to 100 K in the as-produced and heat-treated states. By taking into account the results of Matey and Anderson the influence of the nature of the metalloid and the number of metallic components can be discussed. The change of the thermal conductivity due to a structural relaxation caused by a heat treatment is very different. In the whole range of temperature a rise of the phonon thermal conductivity of the Fe-Co-B alloy is obtained, whereas no change is observed for the Fe-B alloy. At low temperature ( 80 B 20 is investigated. (author)

  18. Effect of heat treatment on the electrochemical behaviour and catalytic activity of metal-glass of an Fe76.1Cu1.0Nb3.0Si13.8B6.1

    International Nuclear Information System (INIS)

    Zhdanova, L.I.; Sharipova, E.Kh.; Lad'yanov, V.I.; Volkov, V.A.

    1999-01-01

    Effect of the different degree of the initial surface crystallization of Fe 76.1 Cu 1.0 Nb 3.0 Si 13.8 B 6.1 metal glasses on the electrochemical behaviour and catalytic activity of the alloy during thermal treatment of tapes was studied. Growth of amorphous-nanocrystalline structure during annealing is shown to improve protective properties of fast-hardened tapes. The highest corrosion resistance of the material is manifested when in nanocrystalline state subsequent to annealing under 550 deg C [ru

  19. Corrosion study of the passive film of amorphous Fe-Cr-Ni-(Si, P, B alloys

    Directory of Open Access Journals (Sweden)

    López, M. F.

    1996-12-01

    Full Text Available Amorphous Fe62Cr10Ni8X20 (X = P, B, Si alloys in 0.01M HCl solution have been investigated by means of standard electrochemical measurements in order to evaluate their corrosion resistance. The study reveals that the best corrosion behaviour is given by the Si containing amorphous alloy. X-ray photoelectron spectroscopy (XPS and Auger electron spectroscopy (AJES have been employed to study the composition of the passive layers, formed on the surface of the different amorphous alloys. The results on Fe62Cr10Ni8X20 show that a protective passive film, mainly consisting of oxidized chromium, greatly enhances its corrosion resistance.

    La resistencia a la corrosión de las aleaciones amorfas Fe62Cr10Ni8X20 (X = P, B, Si inmersas en HCl 0,01M se evaluó usando técnicas electroquímicas. Las técnicas de espectroscopia de fotoemisión de rayos X y espectroscopia Auger se emplearon para estudiar la composición de las capas pasivas, formadas en aire sobre la superficie de las aleaciones amorfas. Del estudio realizado se concluye que el mejor comportamiento frente a la corrosión viene dado por la aleación amorfa que contiene como metaloide Si. Esto es debido a que la capa pasiva de dicha aleación está formada principalmente de óxido de cromo, lo cual confiere una alta resistencia a la corrosión.

  20. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  1. Polarization and resistivity measurements of post-crystallization changes in amorphous Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Chattoraj, I.; Bhattamishra, A.K.; Mitra, A.

    1993-01-01

    The effects of grain growth and compositional changes on the electrochemical behavior and the resistivity of amorphous iron-boron-silicon (Fe 77.5 B 15 Si 7.5 ) alloys after crystallization were studied. Deterioration of the protective passive film was observed, along with increased annealing. Potentiodynamic polarization provided excellent information about microstructural and chemical changes. It was concluded that electrochemical measurements could be used in conjunction with resistivity measurements in direct studies of grain growth and chemical changes occurring in different phases of the devitrified alloy

  2. Crystallization of an amorphous Fe72Ni9Si8B11 alloy upon laser heating and isothermal annealing

    International Nuclear Information System (INIS)

    Girzhon, V.V.; Smolyakov, A.V.; Yastrebova, T.S.

    2003-01-01

    With the use of methods of x-ray diffraction, resistometric and metallographic analyses specific features of crystallization and phase formation in amorphous alloy Fe 72 Ni 9 Si 8 B 11 are studied under various heating conditions. It is shown that laser heating results in alloy crystallization by an explosive mechanism when attaining a certain density of irradiation power. It is stated that ribbon surface laser heating with simultaneous water cooling of an opposite surface allows manufacturing two-layer amorphous-crystalline structures of the amorphous matrix + α-(Fe, Si) - amorphous matrix type [ru

  3. In situ synthesis of NiAl–NbB2 composite powder through combustion synthesis

    International Nuclear Information System (INIS)

    Shokati, Ali Akbar; Parvin, Nader; Sabzianpour, Naser; Shokati, Mohammad; Hemmati, Ali

    2013-01-01

    Highlights: ► A Novel NiAl matrix composite powder with 0–40 wt.% NbB 2 was synthesized. ► Composite powders were synthesized by thermal explosion reaction of Ni–Al–Nb–B system. ► Microhardness of NiAl considerably increased with raising NbB 2 content. ► Synthesized composite powders is a good candidate as precursor for thermal barrier application. - Abstract: Synthesis of a novel NiAl matrix composite powder reinforced with 0–40 wt.% NbB 2 by combustion synthesis in thermal explosion mode was investigated. The elemental powders of Ni, Al, Nb, and amorphous boron were used as starting material. For all compositions final products consisted of only the NiAl and NbB 2 phases. Coarser NbB 2 with a relatively uniform distribution in NiAl matrix was formed with rising NbB 2 content. Microhardness of NiAl considerably increased from 377 ± 13 HV 0.05 to 866 ± 81 HV 0.05 for NiAl with 40 wt.% NbB 2 . High microhardness, proper size and distribution of NbB 2 in NiAl matrix make it a good candidate as precursor for thermal spray application.

  4. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  5. Enhanced saturation magnetization of Fe{sub 3}Si nanodot-embedded Fe{sub 80}Si{sub 17}Nb{sub 3} flexible film for efficient wireless power transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Yi-Hao, E-mail: paiyihao@mail.ndhu.edu.tw; Yan, Zih-Yu; Fu, Ping-Hao

    2013-07-15

    An efficient magnetically coupled resonance response is performed using an iron silicide-based nanostructured magnetoelectric material with high saturation magnetization for the wireless charging of battery-powered consumer electronics. With 500 °C annealing, the self-assembled Fe{sub 3}Si nanodots buried in the Fe{sub 80}Si{sub 17}Nb{sub 3} host matrix with (220) lattice spacing of 1.99 Å corresponding to a volume density of 8.96 × 10{sup 16} cm{sup 3}, can be obtained and a maximum saturation magnetization of 244 emu g{sup −1} achieved. The return loss of the antenna will be tuned to match the designed frequency with greater attenuated intensity (−0.39 dB) and a relatively narrow bandwidth (6 kHz) when the Fe{sub 3}Si nanodot-embedded Fe{sub 80}Si{sub 17}Nb{sub 3} sample is placed in a WiTricity system. An efficient wireless power transfer can be created and improved from 47.5% to 97.3%. The associated coil and loop antenna resonators are significantly readjusted to match the power transfer by putting this nanostructured magnetoelectric material in a WiTricity system. - Highlights: • The saturation magnetization is effective enhancement in the presence of Fe{sub 3}Si nanodot buried in the Fe{sub 80}Si{sub 17}Nb{sub 3}. • A saturation magnetization of 244 emu g{sup −1} is proposed for high-efficiency wireless power transfer. • The return loss of the antenna will be tuned to match the designed frequency. • Such a wireless power transfer can be enhanced efficiency up to 97.3%.

  6. Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shaobo; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Peng, Hui; Zhang, Hu

    2016-04-06

    Atomized, pre-alloyed Al-8.5Fe-1.3V-1.7Si (wt%) powder was used to fabricate solid components by electron beam melting (EBM). The residual porosity, chemical composition, microstructure and mechanical properties have been investigated. Results show that the relative density of as-built alloy under the optimized processing parameters was 98.2%. Compare to the initial alloy powder, the EBM parts demonstrated a restricted aluminum loss (~1 wt%) and a quite low oxygen pickup. The microstructure of the deposits was non-uniform. The fusion zone and heat affected zone exhibited a large number of fine spherical Al{sub 12}(Fe,V){sub 3}Si particles (30–110 nm) distributed uniformly in the α-Al matrix. Some coarser Fe- and V-riched rectangle-like Al{sub m}Fe phase (m=4.0–4.4) with 100–400 nm in size was precipitated in the melting boundary zone. The microhardness of the EBM samples was 153 HV in average. The average ultimate tensile strength (UTS) reached 438 MPa with the elongation of 12%. A ductile fracture mode of the tensile specimens was also revealed.

  7. Zr-Sn-Nb alloys. Preliminary studies

    International Nuclear Information System (INIS)

    Danon, C.A.; Arias, D.E.

    1993-01-01

    Studies of the Zr-Sn-Nb diagram have been started, focussing on the Zr-rich corner, near the composition of Zirlo commercial alloy, Zr-1Sn-1Nb, and with Fe and O contents usual in nuclear grade materials. Three alloys were melted, namely Zr-4Sn-2.4Nb (A), Zr-1Sn-3Nb (B) and Zr-2.1Sn-1Nb (C). α/β transformation temperatures were measured through the variation of electrical resistivity(p) vs temperature (T). Values of 560 deg C, 670 deg C and 750 deg C were measured for the α→α+β reaction and 980 deg C, 910 deg C and 1000 deg C for the α+β→β reaction, for the A, B and C alloys, respectively in that order. Some samples were submitted to heat treatments (62 and 216 hours at 825 deg C, 120 hours at 875 deg C). Optical and scanning electronic microscopy of those samples confirmed our resistivity results. (Author)

  8. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    International Nuclear Information System (INIS)

    Rajabi, M.; Vahidi, M.; Simchi, A.; Davami, P.

    2009-01-01

    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 x 10 5 K/s and 5 x 10 7 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 deg. C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated. Results showed a profound effect of the cooling rate, consolidation stage, and transition metals on the microstructure and mechanical strength of Al-20Si-5Fe alloys. While microstructural refining was obtained at both cooling rates, the microstructure of the atomized powder exhibited the formation of fine primary silicon (∼ 1 μm), eutectic Al-Si phase with eutectic spacing of ∼ 300 nm, and δ-iron intermetallic. Supersaturated Al matrix containing 5-7 at.% silicon and nanometric Si precipitates (20-40 nm) were determined in the microstructure of the melt-spun ribbons. The hot consolidation resulted in coarsening of Si particles in the atomized particles, and precipitation of Si and Fe-containing intermetallics from the supersaturated Al matrix in the ribbons. The consolidated ribbons exhibited higher mechanical strength compared to the atomized powders, particularly at elevated temperatures. The positive influence of the transition metals on the thermal stability of the Al-20Si-5Fe alloy was noticed, particularly in the Ni-containing alloy.

  9. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  10. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  11. The Effects of a High Magnetic Field on the Annealing of [(Fe0.5Co0.50.75B0.2Si0.05]96Nb4 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2016-11-01

    Full Text Available In contrast with amorphous alloys, nanocrystalline soft magnetic materials show improved thermal stability and higher soft magnetic properties. The nanocrystalline soft magnetic composites are usually fabricated by partially crystallizing from parent amorphous alloys. This paper reports our experimental observation on the sequence of crystallization in metallic glass under a high magnetic field (HMF. An application of a HMF to bulk metallic glass (BMG of [(Fe0.5Co0.50.75B0.2Si0.05]96Nb4 prioritizes the precipitation of α-(Fe,Co phase separated from the subsequent precipitation of borides, (Fe,Co23B6, upon isothermal annealing at a glass transition temperature. Furthermore, it was observed that, through the annealing treatment under a HMF, a soft magnetic nanocomposite, in which only α-(Fe,Co phase uniformly distributes in amorphous matrix, was achieved for boron-bearing BMG. The promotion of the α-Fe or (Fe,Co phase and the prevention of the boride phases during the isothermal annealing process help to produce high-quality soft magnetic nanocomposite materials. The mechanism by which a HMF influences the crystallization sequence was interpreted via certain changes in Gibbs free energies for two ferromagnetic phases. This finding evidences that the annealing treatment under a HMF is suitable for enhancing the soft magnetic properties of high B content (Fe,Co-based bulk amorphous and nanocrystalline materials.

  12. Magnetoimpedance of stress and/or field annealed Fe73.5Cu1Nb3Si15.5B7 amorphous and nanocrystalline ribbon

    International Nuclear Information System (INIS)

    Miguel, C.; Zhukov, A.P.; Gonzalez, J.

    2003-01-01

    Magnetoimpedance (MI) response of as-cast and annealed Fe 73.5 Cu 1 Nb 3 Si 15.5 B 7 amorphous alloy ribbon has been investigated. The thermal treatments were performed by current annealing technique (density 45 A/mm 2 during 1-120 min) under the action of a tensile stress of 500 MPa and/or an axial magnetic field of 750 A/m. For short annealing time (less than 5 min), the three kinds of treatment induced an uniaxial magnetic anisotropy in the amorphous state with a maximum of MI of 15%, while for long annealing the nanocrystallization process occurs with larger MI effect of around 22%. This MI behaviour is explained taking into account the role of the induced magnetic anisotropy and the microstructural changes owing to the thermal treatments

  13. Mechanically alloyed PrFeB nanocrystalline magnets

    International Nuclear Information System (INIS)

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  14. Structure and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles derived from controlled crystallization of Nb-rich clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei [College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002 (China); Guo, Qianying [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Liu, Yongchang, E-mail: licmtju@163.com [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Yu, Liming; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China)

    2016-09-30

    This article describes the microstructural evolution and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles. According to the results obtained from X-ray diffraction and transmission electron microscope with Energy Dispersive Spectrometer, the bcc ultrafine grains and the disordered phase of Nb-rich nano-clusters were observed in the milled powders. The hot pressing (HP) resulted in a nearly equiaxed ferritic grains and dispersed nano-scale NbC (~8 nm) particles. The microstructure studies reveal that the formation of NbC nanoparticles is composed of nucleation and growth of the Nb-rich nano-clusters involving diffusion of their component. At room temperature the material exhibits an ultimate tensile strength of 700 MPa, yield strength of 650 MPa, and total elongation of 11.7 pct. The fracture surface studies reveal that a typical ductile fracture mode has occurred during tensile test.

  15. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  16. Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy

    Science.gov (United States)

    Fan, Y.; Liu, A. M.; Chen, Z.; Li, P. Z.; Zhang, C. H.

    2018-03-01

    By employing the glass fluxing technique in combination with cyclical superheating, the microstructural evolution of the undercooled Fe82B17Si1 alloy in the obtained undercooling range was studied. With increase in undercooling, a transition of cooling curves was detected from one recalescence to two recalescences, followed by one recalescence. The two types of cooling curves were fitted by the break equation and the Johnson-Mehl-Avrami-Kolmogorov model. Based on the cooling curves at different undercoolings, the recalescence rate was calculated by the multi-logistic growth model and the Boettinger-Coriel-Trivedi model. Both the recalescence features and the interface growth kinetics of the eutectic Fe82B17Si1 alloy were explored. The fitting results that were obtained using TEM (SAED), SEM and XRD were consistent with the changing rule of microstructures. Finally, the relationship between the microstructure and hardness was also investigated.

  17. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  18. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  19. Magnetic domain size effect on resistivity and Hall effect of amorphous Fe83-xZr7B10Mx (M=Ni, Nb) alloys

    International Nuclear Information System (INIS)

    Rhie, K.; Lim, W.Y.; Lee, S.H.; Yu, S.C.

    1997-01-01

    Studies of effective permeability, core loss and saturation magnetostriction of Fe 83-x Zr 7 B 10 M x (M=Ni, Nb) alloys revealed that the domain width is smallest around x=0.10. We measured the resistivity and low field Hall coefficients of these alloys and found that the maxima of resistivity and Hall coefficients occurred roughly at the same concentrations. Larger surface area of smaller domains is considered the reason. copyright 1997 American Institute of Physics

  20. Effect of crystallization condition on the Microwave properties of Fe-based amorphous alloy flakes and polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byoung-Gi [Department of Advanced Metallic Materials, Korea Institute of Materials Science, 531 Changwondaero, Changwon, Kyungnam (Korea, Republic of); Hong, Soon-Ho; Sohn, Keun Yong; Park, Won-Wook [School of Nano Engineering, Inje University, 607 Obang-dong, Kimhae, Kyungnam (Korea, Republic of); Kwon, Sang-Kyun; Song, Yong-Sul [Amosense Co., 185-1 Sucham-ri, Tongjin-myun, Gimposi, Kyungkido (Korea, Republic of); Lee, Taek-Dong, E-mail: bgmoon@kims.re.k [Department of Materials Science and Engineering, Korea Insititute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2009-01-01

    The electromagnetic (EM) wave absorption properties with a variation of crystallization temperature have been investigated in a sheet-type absorber made of the amorphous Fe{sub 73}Si{sub 16}B{sub 7}Nb{sub 3}Cu{sub 1}Finemet powder. With the variation of the annealing temperature, the magnetic and dielectric properties of the crystallized Fe-based absorber with a nano-structure were changed. The complex permittivity increased with increasing the annealing temperature, whereas the complex permeability was maximized after annealing at 530 deg. C for 1 hour. The absolute value of the reflection parameter, |S{sub 11}|, increased with increasing annealing temperature of the nanocrystalline alloy powder. On the contrary, the transmission one, |S{sub 21}|, showed the highest value after annealing at 530 deg. C for 1 hour, which is regarded as the optimum temperature for the improvement of EM wave absorption properties.

  1. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  2. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  3. Microstructural characterization and grain growth kinetics of atomized Fe-6%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Florio Filho, A.; Bolfarini, C.; Kiminami, C.S. [Dept. de Engenharia de Materiais, Univ. Federal de Sao Carlos, Sao Carlos SP (Brazil)

    2001-07-01

    The microstructural characterization of the overspray powders is considered an important step to evaluate the as-cast microstructure of preforms fabricated by spray forming process. The particles generated during the high pressure gas atomization fly toward a substrate located at the middle height into the atomization chamber and consolidate to a dense deposit. The solidification process begins already during the flight of the droplets and high cooling rate can be achieved by the droplets of the molten metal during the atomization step. Consequently, the microstructure of the preform has some typical features presented by rapidly solidified metals as low level of porosity and segregation and it is strongly influenced by the thermal history of the droplets during flight. In the present work the microstructure of the particles of the Fe-6%Si alloy was analysed by light microscopy and scanning electron microscopy (SEM). The experimental determination of the kinetic exponent n for grain boundary migration in both powder and preform was determined by isothermal treatment under argon atmosphere. It has been stated that the larger the particle size the greater the grain size in Fe-6%Si alloy. It was observed also that the interface morphology is strongly related to the particle size. Furthermore, the grain growth kinetic in the preform seems to not obey the migration mechanism where the self diffusion of elemental Fe drive the boundary displacement. (orig.)

  4. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  5. Annealing effects on the microwave linewidth broadening of FeCuNbSiB ferromagnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Alves, M. J. P.; Gonzalez-Chavez, D. E.; Sommer, R. L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2015-03-28

    We systematically investigate the annealing effects on the microwave linewidth broadening of FeCuNbSiB ferromagnetic films with thickness of 100 nm. We correlate the non-uniform residual stress obtained from grazing incidence x-ray diffraction measurements with the ferromagnetic resonance (FMR) linewidth due to effective field inhomogeneities measured from broadband ferromagnetic resonance absorption measurements. We also estimate the annealing temperature effect on the Gilbert and two-magnon scattering contributions to the total ferromagnetic resonance FMR linewidth. We show that the effective field inhomogeneities constitute the main contribution to the microwave linewidth, while this contribution is related to the non-uniform residual stress in the films which is reduced by thermal annealing.

  6. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  7. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B., E-mail: givmartins@yahoo.com.br, E-mail: vladimir@las.inpe.br, E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF (Brazil); Nunes, C.A., E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Polo Urbo Industrial; Borges Junior, L.A., E-mail: borges.jr@itelefonica.com.br [Centro Universitario de Volta Redond (UNIFOA), Volta Redonda, RJ (Brazil)

    2009-07-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  8. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    International Nuclear Information System (INIS)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B.; Silva, C.R.M.; Nunes, C.A.

    2009-01-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  9. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.

    Science.gov (United States)

    Tavares, A M G; Ramos, W S; de Blas, J C G; Lopes, E S N; Caram, R; Batista, W W; Souza, S A

    2015-11-01

    In the development of new materials for orthopedic implants, special attention has been given to Ti alloys that show biocompatible alloy elements and that are capable of reducing the elastic modulus. Accordingly, Ti-Nb-Si alloys show great potential for application. Thus, this is a study on the microstructures and properties of Ti-35Nb-xSi alloys (x=0, 0.15, 0.35 and 0.55) (wt%) which were thermally treated and cooled under the following conditions: furnace cooling (FC), air cooling (AC), and water quenching (WQ). The results showed that Si addition is effective to reduce the density of omega precipitates making beta more stable, and to produce grain refinement. Silicides, referred as (Ti,Nb)3Si, were formed for alloys containing 0.55% Si, and its formation presumably occurred during the heating at 1000°C. In all cooling conditions, the hardness values increased with the increasing of Si content, as a result from the strong Si solid solution strengthening effect, while the elastic modulus underwent a continuous reduction due to the reduction of omega precipitates in beta matrix. Lower elastic moduli were observed in water-quenched alloys, which concentration of 0.15% Si was more effective in their reduction, with value around 65 GPa. Regarding Ti-35Nb-xSi alloys (x=0, 0.15 and 0.35), the "double yield point" phenomenon, which is typical of alloys with shape memory effect, was observed. The increase in Si concentration also produced an increase from 382 MPa to 540 MPa in the alloys' mechanical strength. Ti-35Nb-0.55Si alloy, however, showed brittle mechanical behavior which was related to the presence of silicides at the grain boundary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect Of The Desorption-Recombination Temperature On The Microstructure And Magnetic Properties Of HDDR Processed Nd-Fe-B Powders

    Directory of Open Access Journals (Sweden)

    Lee J.-G.

    2015-06-01

    Full Text Available The effect of the desorption-recombination temperature on the microstructure and magnetic properties of hydrogenation-disproportionation-desorption-recombination (HDDR processed Nd-Fe-B powders was studied. The NdxB6.4Ga0.3Nb0.2Febal (x=12.5-13.5, at.% casting alloys were pulverized after homogenizing annealing, and then subjected to HDDR treatment. During the HDDR process, desorption-recombination (DR reaction was induced at two different temperature, 810°C and 820°C. The higher Nd content resulted in enhanced coercivity of the HDDR powder, and which was attributed to the thicker and more uniform Nd-rich phase along grain boundaries. But this uniform Nd-rich phase induced faster grain growth. The remanence of the powder DR-treated at 820°C is higher than that DR-treated at 810°C. In addition, it was also confirmed that higher DR temperature is much more effective to improve squareness.

  11. Glass forming ability and magnetic properties of Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses produced by suction casting

    Energy Technology Data Exchange (ETDEWEB)

    Sarlar, Kagan [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Physics Department, Kamil Ozdag Faculty of Sciences, Karamanoglu Mehmetbey University, YunusEmre Campus, 70100 Karaman (Turkey); Kucuk, Ilker, E-mail: ikucuk@uludag.edu.tr [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2015-01-15

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) have a supercooled liquid region (∆T{sub x}) of about 44 K. The saturation magnetizations (J{sub s}) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J{sub s} 0.62−0.81 T with a low H{sub c} of 2−289 A/m of the alloys.

  12. Correlation between zirconium oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Myung Ho; Choi, Byoung Kwon; Jeong, Yong Hwan; Jung, Youn Ho

    2001-01-01

    To evaluate the correlation of Zr oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys, the corrosion behavior of the alloys was tested in the autoclave containing 70 ppm LiOH solution at 360 .deg. C. The characteristics of the oxide on the alloys were investigated by using the electrochemical impedance spectrosocpy (EIS) method. The corrosion resistance of the alloys was evaluated from the corrosion rate determined as a function of the concentration of Nb. The equivalent circuit of the oxide was composed on the base of the spectrum from EIS measurements on the oxide layers that had formed at pre-and post-transition regions on the curve of corrosion rate. By using the capacitance characteristics of the equivalent circuit, the thickness of impervious layer, it's electrical resistance and characteristics of space charge layer were evaluated. The corrosion characteristics of the Zr-Nb-Sn-Fe-Cu alloys were successfully explained by applying the EIS test results

  13. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe{sub 78}Si{sub 9}B{sub 13} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhanwei, Liu; Dunbo, Yu, E-mail: yudb2008@126.com; Kuoshe, Li; Yang, Luo; Chao, Yuan; Zilong, Wang; Liang, Sun; Kuo, Men

    2017-08-15

    Highlights: • Thermal stability of Fe-Si-B amorphous alloy is enhanced by Y addition. • Y addition can improve soft magnetic properties of Fe-Si-B amorphous alloy. • Decomposition of metastable Fe{sub 3}B phase is related to Y content in Fe-Si-B matrix. - Abstract: A series of amorphous Fe-Si-B ribbons with various Y addition were prepared by melt-spinning. The effect of Y addition on crystallization behavior, thermal and magnetic properties was systematically investigated. With the increase of Y content, the initial crystallization temperature shifted to a higher temperature, indicating that the thermal stability of amorphous state in Fe-Si-B-Y ribbon is enhanced compared to that of Fe-Si-B alloy. Meanwhile, compared to the two exothermic peaks in the samples with lower Y content, a new exothermic peak was found in the ribbons with Y content higher than 1 at%, which corresponded to the decomposition of metastable Fe{sub 3}B phase. Among all the alloys, Fe{sub 76.5}Si{sub 9}B{sub 13}Y{sub 1.5} alloy exhibits optimized magnetic properties, with high saturation magnetization M{sub s} of 187 emu/g and low coercivity H{sub cJ} of 7.6 A/m.

  14. Microstructural evolution and structure property correlation in Zr-1Nb and Zr-1Nb-1Sn-0.1Fe alloys

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Chakravartty, J.K.; Dey, G.K.

    2005-01-01

    This study summarizes the evolution of microstructure and precipitation behavior in binary Zr-1Nb and quaternary Zr-1Nb-1Sn-0.1Fe alloys after different thermo mechanical processing. The processed microstructure and morphology of constituent phases and precipitates have been studied in detail using transmission electron microscopy (TEM). Microstructural studies have revealed the shape, size, size distribution and the nature of precipitate phases. Martensite formation and its tempering behavior have been studied in detail in both the alloys. Recrystallization studies on these alloys have been carried out with a view to understand the recrystallization mechanism. In case of the binary alloy the second phase recipitates were of the β type having composition varying from β I (20 wt% Nb) to β II (85 wt% Nb) depending on the heat treatment temperature and time. The second phase precipitates in the quaternary alloy were intermetallic Zr-Nb-Fe type and also β type rich in Zr. The orientation relationship existing between the precipitating phases and the a matrix were established in case of both the alloys. High resolution electron microscopy (HREM) of the martensitic microstructure and the recrystallized microstructure has revealed the internal structure and the interface structure of the martensite and the precipitating phases respectively. Structure-property correlation studies have been carried out on the heat-treated samples to evaluate the effect of the thermo mechanical processing on the microstructures and hence mechanical properties. (author)

  15. Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons

    International Nuclear Information System (INIS)

    Xu, J.; Yang, Y.Z.; Li, W.; Chen, X.C.; Xie, Z.W.

    2016-01-01

    The dependency of phosphorous content on the glass forming ability, thermal stability and soft magnetic properties of Fe 83.4 Si 2 B 14−x P x Cu 0.5 C 0.1 (x=0,1,2,3,4) alloys was investigated. The experimental results showed that the substitution of B by P increased the glass forming ability in this alloy system. The Fe 83.4 Si 2 B 10 P 4 Cu 0.5 C 0.1 alloy shows a fully amorphous character. Thermal stability of melt-spun ribbons increases and temperature interval between the first and second crystallization peaks enlarges with the increase of P content. And the saturation magnetic flux density (Bs) shows a slight increase with the increase of P content. The Fe 83.4 Si 2 B 11 P 3 Cu 0.5 C 0.1 nanocrystalline alloy exhibits a high Bs about 200.6 emu/g. The Bs of fully amorphous alloy Fe 83.4 Si 2 B 10 P 4 Cu 0.5 C 0.1 drops dramatically to 172.1 emu/g, which is lower than that of other nanocrystallines. Low material cost and excellent soft magnetic properties make the FeSiBPCuC alloys promise soft magnetic materials for industrial applications. - Highlights: • Partial substituting B by P helps to improve the glass forming ability of the alloy. • The addition of P content reduces the thermal stability and improves heat treatment temperature region for these alloys. • The Fe 83.4 Si 2 B 11 P 3 Cu 0.5 C 0.1 nanocrystalline alloy exhibits a high saturation magnetic density of 200.6 emu/g.

  16. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  17. Modification of amorphous metal alloys and nanocrystals by radiation

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.

    2017-01-01

    The paper deals with radiation damage and modification of amorphous metal alloys by neutron irradiation and electrons. Initial experiments were focused on electron irradiation, with various amorphous precursors as well as nanocrystalline alloys: Fe_8_1Nb_7B_1_2, (Fe_3Ni_1)_8_1Nb_7B_1_2, (Fe_3Ni_1)_8_1Nb_7B_1_2 and NANOMET Fe_8_1_._6B_9_._6Si_4_._8P_3Cu_1 being selected for the irradiated objects. The experimental part summarizes the previous results obtained by Moessbauer spectroscopy as well as XRD. (authors)

  18. Magnetic and structural properties of the Nd2(Fe100-xNbx)14B system prepared by arc melting

    International Nuclear Information System (INIS)

    Oyola Lozano, D.; Zamora, L. E.; Perez Alcazar, G. A.; Rojas, Y. A.; Bustos, H.; Greneche, J. M.

    2006-01-01

    In this work the magnetic and structural properties are investigated by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction of Nd 2 (Fe 100-x Nb x ) 14 B powdered alloys with x = 0, 2 and 4 prepared by arc melting. The Moessbauer spectra of the samples were fitted with several contributions from: Nd 2 Fe 14 B, α-Fe and a paramagnetic phase associated with Nd 1.1 Fe 4 B 4 for x = 0 and additionally from NbFeB and Nd 2 Fe 17 for x = 2 and x = 4. The relative fractions of α-Fe and Nd 2 Fe 14 B are smaller for x = 4 than for x = 0, indicating that the amount of these two phases is reduced with increasing Nb content, while the relative fraction of Nd 2 Fe 17 increases. The α-Fe grain size slightly decreases while that of the Nd 2 Fe 14 B phase is increasing, when the Nb content increases. The hysteresis loops indicate that these samples behave as hard ferromagnets, with a coercive field which decreases when the Nb content increases, but with rather low remanent magnetization.

  19. Synthesis of Nb-18%Al alloy by mechanical alloying method

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Dollar, M.

    1999-01-01

    The main goal of this study was attempt to employ by mechanical alloying to produce Nb-Al alloy. The Nb-rich alloy composition was selected in order to receive the ductile niobium solid solution (Nb ss ) phase in the final, equilibrium state. This ductile phase was believed to prevent crack propagation in the consolidated alloy and thus to improve its ductility and toughness. Elemental powders of niobium (99.8% pure and -325 mesh) and aluminium (99.9% pure and -325 mesh) were used as starting materials. These powders were mixed to give the nominal compositions od 82% Nb and 18% Al (atomic percent). Mechanical alloying was carried out in a Szegvari laboratory attritor mill in an argon atmosphere with the controlled oxygen level reduced to less than 10 ppm. The total milling time was 86 hours. During the course of milling powder samples were taken out after 5, 10 and 20 hours, which allowed characterization of the powder morphology and progress of the mechanical alloying process. The changes in particle morphology during milling were examined using a scanning electron microscope and the phase analysis was performed in a X-ray diffractometer with CoK α radiation. Initially, particles' size increased and their appearance changed from the regular to one of the flaky shape. X-ray diffraction patterns of examined powders as a function of milling time are presented. Peaks from Al, through much weaker than in the starting material, were still present after 5 hours of milling but disappeared completely after 10 hours of milling. With increasing milling time, the peaks became broader and their intensities decreased. Formation of amorphous phase was observed after 86 hours of milling. This was deducted from a diffuse halo observed at the 2Θ angle of about 27 o . Intermetallic phases Nb 3 Al and Nb 2 Al were found in the consolidated material only. (author)

  20. Nanocrystal Growth in Thermally Treated Fe75Ni2Si8B13C2 Amorphous Alloy

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Blagojević, V.; Minić, Dušan M.; David, Bohumil; Pizúrová, Naděžda; Žák, Tomáš

    43A, č. 9 (2012), s. 3062-3069 ISSN 1073-5623 R&D Projects: GA MŠk 1M0512 Institutional support: RVO:68081723 Keywords : Nanocrystal growth * Fe75Ni2Si8B13C2 * Amorphous alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.627, year: 2012

  1. Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.-M. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany); Key Lab of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gebert, A. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)], E-mail: a.gebert@ifw-dresden.de; Roth, S.; Kuehn, U.; Schultz, L. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)

    2008-07-14

    This paper presents investigations on the effect of Si on the glass-forming ability, thermal stability and magnetic properties of the Fe-Co-Zr-Mo-W-B samples (group I: Fe{sub 60}Co{sub 8}Zr{sub 10}Mo{sub 5}W{sub 2}B{sub 15-x}Si{sub x}, 1 {<=} x {<=} 4; group II: Fe{sub 60}Co{sub 8}Zr{sub 10-x}Mo{sub 5}W{sub 2}B{sub 15}Si{sub x}, 0 {<=} x {<=} 4; group III: Fe{sub 60}Co{sub 8}Zr{sub 8}Mo{sub 5}W{sub 2}B{sub 17-x}Si{sub x}, 0 {<=} x {<=} 2) prepared by melt spinning, injection casting, and centrifugal casting methods. It is found that the glass-forming ability (GFA) of the alloys in group I is more deteriorated than that in group II, and that the alloys in group III can be cast into the rods of 1-3 mm diameter without crystalline reflections in their XRD patterns. For the amorphous ribbons and rods, a non-monotonic change of the nearest neighbour distance r{sub 1} with increasing Si content c{sub Si} was detected, which is parallel to that of the glass transition and crystallization temperatures T{sub g} and T{sub x}, but opposite to that of the magnetization at room temperature M{sub RT} and the Curie temperature T{sub c}. This correlation can be interpreted by a structure model presuming that iron atoms appear simultaneously in two types of local structures in the amorphous samples.

  2. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  3. Production of NdFeB powders by HDDR from sintered magnets; Obtencao de pos de NdFeB por HDDR a partir de imas sinterizados

    Energy Technology Data Exchange (ETDEWEB)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, B.F.A. da; Takiishi, H [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Campos, M.F. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2010-07-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd{sub 2}Fe{sub 14}B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  4. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    Science.gov (United States)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  5. Mecano-synthesis of the alloy 25%Fe-50%Cu-25%Nb

    International Nuclear Information System (INIS)

    Sousa, Keytiane; Oliveira, Michel Picanco de; Guimaraes, Renan da Silva; Moreira Junior, Valdenir; Filgueira, Marcello

    2016-01-01

    In general, this study aims at the application of mechanical grinding to the system 25% Fe-50% Cu-25% Nb and studies the production process of these powders during milling. The evolution of the structure during the synthesis and the effect of variation of the grinding time were studied by diffraction of X-rays (XRD) and Scanning Electron Microscopy coupled EDS (SEM + EDS) in order to obtain the sizes of crystallites, the phase formation and its evolution with grinding time, and also the homogeneity of the mixture. The particle size distribution was analyzed by laser sedigraph technique. The powders synthesis were performed for milling time of 2.5, 5 and 10 hours. The mechanical grinding showed to be effective with the solid solution formation in the early grinding times. The XRD showed the solid solution formation with subsequent reduction and disappearance of Cu peaks. Through the technique of laser sedigraph it was observed the increase of the particle size followed by the its reduction in the milling time of 10h, a fact that characterizes the mechanical grinding process for ductile powder particles. Thus, the study demonstrated the effectiveness of the mechanical grinding to obtain powder of Fe-Cu-Nb and further processing and application of diamond cutting tools. (author)

  6. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    International Nuclear Information System (INIS)

    Jin, Y.; O'Connell, A.; Kharel, P.; Lukashev, P.; Staten, B.; Tutic, I.; Valloppilly, S.; Herran, J.; Mitrakumar, M.; Bhusal, B.; Huh, Y.; Yang, K.; Skomski, R.; Sellmyer, D. J.

    2016-01-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L2 1 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (T C ) significantly above room temperature. The measured T C for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μ B /f.u. and 2.78 μ B /f.u., respectively, which are close to the theoretically predicted value of 3 μ B /f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  7. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    Science.gov (United States)

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  9. Mecano-synthesis of the alloy 25%Fe-50%Cu-25%Nb; Mecano-sintese da liga 25%Fe-50%Cu-25%Nb

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Keytiane; Oliveira, Michel Picanco de; Guimaraes, Renan da Silva; Moreira Junior, Valdenir; Filgueira, Marcello, E-mail: marcello.filgueira@pq.cnpq.br [Universidade Estadual do Norte Fluminense (CCT/LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    In general, this study aims at the application of mechanical grinding to the system 25% Fe-50% Cu-25% Nb and studies the production process of these powders during milling. The evolution of the structure during the synthesis and the effect of variation of the grinding time were studied by diffraction of X-rays (XRD) and Scanning Electron Microscopy coupled EDS (SEM + EDS) in order to obtain the sizes of crystallites, the phase formation and its evolution with grinding time, and also the homogeneity of the mixture. The particle size distribution was analyzed by laser sedigraph technique. The powders synthesis were performed for milling time of 2.5, 5 and 10 hours. The mechanical grinding showed to be effective with the solid solution formation in the early grinding times. The XRD showed the solid solution formation with subsequent reduction and disappearance of Cu peaks. Through the technique of laser sedigraph it was observed the increase of the particle size followed by the its reduction in the milling time of 10h, a fact that characterizes the mechanical grinding process for ductile powder particles. Thus, the study demonstrated the effectiveness of the mechanical grinding to obtain powder of Fe-Cu-Nb and further processing and application of diamond cutting tools. (author)

  10. Compression behavior of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.

    2015-12-01

    Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.

  11. Formation of AlFeSi phase in AlSi12 alloy with Ce addition

    Directory of Open Access Journals (Sweden)

    S. Kores

    2012-04-01

    Full Text Available The influence of cerium addition on the solidification sequence and microstructure constituents of the Al-Si alloys with 12,6 mass % Si was examined. The solidification was analyzed by a simple thermal analysis. The microstructures were examined with conventional light and scanning electron microscopy. Ternary AlSiCe phase was formed in the Al-Si alloys with added cerium during the solidification process. AlSiCe and β-AlFeSi phases solidified together in the region that solidified the last. Cerium addition influenced on the morphology of the α-AlFeSi phase solidification.

  12. Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate

    International Nuclear Information System (INIS)

    Peng, B.; Zhang, W.L.; Liu, J.D.; Zhang, W.X.

    2011-01-01

    FeCoSiB/Cu/FeCoSiB sandwich layers were deposited on flexible substrate to develop flexible stress/strain sensors. The influence of stress on the impedance of the multilayers is reported. The results show that the variation of the impedance increases with the increase in deflection of the free end of the cantilever. A relative change in impedance of 6.4% is obtained in the FeCoSiB(1.5 μm)/Cu(0.25 μm)/FeCoSiB(1.5 μm) sandwich layers at 1 MHz with deflection of 2 mm. The stress impedance effects are sensitive to the frequency of the current and the thickness of both FeCoSiB and Cu layers. The stress impedance effect increases with the increase in the thickness of FeCoSiB or Cu layers. The stress impedance effect increases slightly with the increase in frequency and decreases with the further increase in frequency, which can be understood by the stress and frequency-dependent permeability of magnetic films. - Research highlights: → We deposited FeCoSiB/Cu/FeCoSiB multilayer on flexible substrate. → We studied the stress impedance effect of FeCoSiB/Cu/FeCoSiB multilayer. → Stress impedance effect increases with thickness of both FeCoSiB and Cu layer.→ Stress impedance effect is dependent on current frequency. → Results are understood using stress and frequency-dependent permeability.

  13. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  14. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  15. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    Science.gov (United States)

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes and their performance comparison

    International Nuclear Information System (INIS)

    Ko, S.; Hong, S.I.; Kim, K.T.

    2010-01-01

    Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes were studied and compared. The creep rates of the annealed Zr-Nb-O alloy were found to be greater than those of the stress-relieved Zr-Nb-Sn-Fe alloy. Zr-Nb-O alloy was found to have stress exponents of 5-7 independent of stress level whereas Zr-Nb-Sn-Fe alloy exhibited the transition of the stress exponent from 6.5 to 7.5 in the lower stress region to ∼4.2 in the higher stress region. The reduction of stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained in terms of the dynamic solute-dislocation effect caused by Sn atoms. The constancy of stress exponent without the transition was observed in Zr-Nb-O alloy, supporting that the decrease of the stress exponent with increasing stress in Zr-Nb-Sn-Fe is associated with Sn atoms. The difference of creep life between annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe is not large considering the large difference of strength level between annealed Zr-Nb-O and annealed stress-relieved Zr-Nb-Sn-Fe. The better-than-expected creep life of annealed Zr-Nb-O alloy can be attributable to the combined effects of creep ductility enhancement associated with softening and the decreased contribution of grain boundary diffusion due to the increased grain size.

  17. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  18. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  19. Progress of HDDR NdFeB powders modulated by the diffusion of low melting point elements and their alloys

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available The hydrogenation-disproportionation-desorption-recombination (HDDR process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application of HDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.

  20. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    Science.gov (United States)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  1. The role of silicon on the microstructure and magnetic behaviour of nanostructured (Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Hocine, M. [Département de Génie Mécanique, Faculté de Technologies, Université de M' sila, B.P 166 Ichbelia, M' sila (Algeria); UR-MPE, M' hamed Bougara University, Boumerdes, 35000 Algeria (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, Mieres, 33600 Spain (Spain); Gorria, P. [Department of Physics, EPI, University of Oviedo, Gijón, 33203 Spain (Spain); Rahal, B. [Nuclear Research Centre of Algiers, 02Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Blanco, J.A. [Department of Physics, University of Oviedo, CalvoSotelo St., Oviedo, 330 07 Spain (Spain); Sunol, J.J. [Departament de Fisica, Universitat de Girona, Campus de Montillivi, Girona, 17071 Spain (Spain); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes, 35000 Algeria (Algeria)

    2017-01-15

    Single-phase(Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} nanostructured powders (x=0,5, 10, 15 and 20) have been elaborated by mechanical alloying in order to investigate the effect of silicon on the microstructure and magnetic properties of these alloys. A disordered Fe(Co, Si) solid solution with body centred cubic (bcc) crystal structure is formed after 72 h of milling for all the compositions. The addition of Si gives rise to a progressive decrease of the lattice parameter, from about 2.865 Å for the binary Fe{sub 70}Co{sub 30} compound down to 2.841 Å for the powder with x=20. The sample with the uppermost Si content exhibits the lowest value for the mean grain size (≈10 nm) as well as the largest microstrain (above 1.1%). All the samples are ferromagnetic at room temperature, although the saturation magnetization value reduces almost linearly by adding Si to the composition. A similar trend is observed for the hyperfine magnetic field obtained from the analysis of the room temperature Mössbauer spectra. The hyperfine field distributions show a broad double-peak shape for x>0, which can be ascribed to multiple local environments for the Fe atoms inside a disordered solid solution. - Highlights: • Single-phase (Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} nanostructured powders (x=0, 5, 10, 15 and 20) have been elaborated by mechanical alloying. • The sample with the uppermost Si content exhibits the lowest value for the mean grain size. • The magnetic and hyperfine parameters of (Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} depended intimately on Si content.

  2. Improved magnetoimpedance and mechanical properties on nanocrystallization of amorphous Fe68.5Si18.5Cu1Nb3B9 ribbons

    International Nuclear Information System (INIS)

    Sahoo, Trilochan; Majumdar, B.; Srinivas, V.; Srinivas, M.; Nath, T.K.; Agarwal, G.

    2013-01-01

    The effect of heat-treatment temperature on evolution of microstructures, mechanical and soft magnetic properties and magnetoimpedance (MI) effect in rapidly solidified Fe 68.5 Si 18.5 Cu 1 Nb 3 B 9 ribbons, has been investigated. The as-quenched ribbons were subjected to heat-treatment at different temperatures between 400 and 600 °C for 1 h under high vacuum. Detailed structural studies on the ribbons heat-treated at and above 525 °C revealed the presence of nanocrystalline Fe 3 Si phases embedded in a residual amorphous matrix. The ribbon heat-treated at 550 °C temperature exhibits maximum ductility, maximum relative permeability of 4.8×10 4 , minimum coercivity of 0.1 Oe, and maximum MI value of 62%. The enhanced MI effect is believed to be related to the magnetic softening of 550 °C heat-treated ribbons. However, the magnetic properties and MI effect deteriorated in the samples heat-treated above 550 °C due to the coarsening of grain sizes. The soft magnetic behavior of the nanocrystalline ribbons are discussed in the light of random anisotropy model, whereas the MI effect is discussed through standard skin effect in electrodynamics. - Highlights: • Microstructure was tuned by controlled crystallization to obtain superior magnetic properties. • Improved MI in the heat-treated ribbons is attributed to the superior electromagnetic properties. • Correlation between MI and magnetic properties of nc-Fe 68.5 Si 18.5 Cu 1 Nb 3 B 9 is established. • All the observed features are consistent with the proposed random anisotropy model

  3. Effect of Fe substitution on the structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.W.; Yan, J.L., E-mail: yjl@gxu.edu.cn; Feng, E.L.; Tang, G.W.; Zhou, K.W.

    2017-01-15

    The structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} compounds were studied. Analysis of X-ray powder diffraction and energy dispersive X-Ray spectroscopy revealed that Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the Mn{sub 5}Si{sub 3}-type structure (space group P6{sub 3}/mcm), maintaining the structure of Mn{sub 5}Ge{sub 3}; and alloys with x=1.5 and 2 consist of the major Mn{sub 5}Si{sub 3}-type phase and the minor Ni{sub 2}In-type phase (space group P6{sub 3}/mmc). The results of Rietveld refinement showed that the cell parameters for the Mn{sub 5}Si{sub 3}-type phase decrease with increasing Fe content. The positive slopes in Arrott plots indicate that a second-order ferromagnetic to paramagnetic transition occurs. The Curie temperature increases with increasing Fe content from 182 K for x=0.6 to 224 K for x=2. The maximum magnetic entropy change of 3.7 J/(kg K) for x=0.8 was found under a magnetic field change of 0–20 kOe. - Highlights: • Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the hexagonal Mn{sub 5}Si{sub 3}-type structure. Alloys with x=1.5 and 2 consist of a major Mn{sub 5}Si{sub 3}-type phase and a secondary Ni{sub 2}In-type phase. • The cell parameters decrease and the Curie temperature increases with increasing x in Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys. • The maximum -∆S{sub M} of 3.7 J/(kg K) and RCP of 211 J/kg for x=0.8 was found under a magnetic field change of 0–20 kOe.

  4. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  5. Unidirectional solidification of a Nbss/Nb5Si3 in-situ composite

    International Nuclear Information System (INIS)

    Guo, X.P.; Ding, X.; Zhang, J.; Fu, H.Z.; Guan, P.; Kusabiraki, K.

    2005-01-01

    The directionally solidified specimens of Nb-13.52 Si-22.60 Ti-6.88 Hf-2.54 Cr-2.24 Al alloy were prepared in an electron beam floating zone melting furnace at the withdrawing rate of 0.1, 0.3, 0.6, 1.0, 2.4 and 6.0 mm/min. All the primary Nb solid solution (Nb ss ) columns, Nb ss + (Nb) 3 Si/(Nb) 5 Si 3 eutectic colonies and divorced (Nb) 3 Si/(Nb) 5 Si 3 plates or chains align well along the longitudinal axis of the specimens. With increasing of the withdrawing rate, the microstructure is gradually refined, and the amount of Nb ss + (Nb) 3 Si/(Nb) 5 Si 3 eutectic colonies increases. Both the room temperature ultimate tensile strength σ b and fracture toughness K Q are improved for the directionally solidified specimens. The tensile fracture occurs in a cleavage way. (orig.)

  6. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    International Nuclear Information System (INIS)

    Gorny, Anton; Manickaraj, Jeyakumar; Cai, Zhonghou; Shankar, Sumanth

    2013-01-01

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al 13 Fe 4 , τ 5 -Al 8 Fe 2 Si and τ 6 -Al 9 Fe 2 Si 2 phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s −1 . Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ 5 -Al 8 SiFe 2 and τ 6 -Al 9 Fe 2 Si 2 . The τ 5 -Al 8 SiFe 2 phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ 6 -Al 9 Fe 2 Si 2 through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al 13 Fe 4 binary phase precludes the evolution of the τ 5 during solidification and subsequently transforms into the τ 6 phase during solidification. These observations are anomalous to the publications as prior art and simulation predictions of thermodynamic phase diagrams of these alloys, wherein, only one intermetallic phases in the

  7. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    Science.gov (United States)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  8. Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Füzerová, Jana, E-mail: jana.fuzerova@tuke.sk [Faculty of Mechanical Engineering, Technical University, Letná 1, 042 00 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 040 23 Košice (Slovakia); Bureš, Radovan; Fáberová, Mária [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2013-11-15

    Rapidly quenched ribbons of Fe{sub 73}Cu{sub 1}Nb{sub 3}Si{sub 16}B{sub 7} were ball milled and cryomilled to get powder and warm consolidated to get bulk compacts. The data presented here are relative to different experimental procedures, one corresponding to milling at room temperature (sample R1) and the other corresponding to cryomilling at temperature of liquid nitrogen (sample L1). It was found that the properties of the initial powder influenced the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys. Permeability and core loss are structure sensitive and depend on factors such as powder size and shape, porosity, purity, and internal stress. Permeability spectra of sample R1 decreases with increasing the frequency and its values are larger than that for sample L1 at low frequencies. On the other hand the permeability of sample L1 remains steady up to 1 kHz and at certain frequency is larger than that for sample R1. Also there are different frequency dependences of the imaginary parts of permeability and loss factor, respectively. The cryomilling of the amorphous ribbon positively influences on the AC magnetic properties at higher frequencies (above 100 Hz) of resulting bulk sample. - Highlights: • We prepared two different amorphous powder vitroperm samples. • We have examined changes in the properties of the bulk samples prepared by compaction. • It was found that properties of the initial powder influence the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys.

  9. Structural and magnetic properties of Fe76P5(Si0.3B0.5C0.2)19 amorphous alloy

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Tiberto, P.; Baricco, M.; Sirkin, H.; Moya, J.A.

    2012-01-01

    Highlights: ► Fe 76 P 5 (Si 0.3 B 0.5 C 0.2 ) 19 amorphous alloy in ribbons and 1 mm and 2 mm rod samples. ► Good glass forming ability with ΔT = 50 K and γ = 0.37 and off-eutectic composition. ► Good soft magnetic properties with magnetization saturation of 1.44 T. ► Geometrical factors are the primary causes of magnetic losses in frequencies above 10 Hz. - Abstract: Recently, bulk amorphous alloys were produced in the Fe–B–Si–P–C system with high glass forming ability, excellent magnetic properties and the advantage of containing no expensive glass-forming elements, such as Ga, Y, Cr or Nb, having, therefore, a good perspective of commercial applications. In the present work, the Fe 76 P 5 (Si 0.3 B 0.5 C 0.2 ) 19 amorphous alloy prepared by two quenching techniques has been studied. Amorphous ribbons of about 40 μm thick were obtained by planar-flow casting together with cylinders having 1 and 2 mm diameter produced by copper mold injection casting. All the samples appear fully amorphous after X-ray diffraction analysis. A comprehensive set of thermal data (glass, crystallization, melting and liquidus temperatures) were obtained as well as a description of the melting and solidification processes. Mechanical microhardness tests showed that the samples have a hardness of 9.7 ± 0.3 GPa. Good soft-magnetic properties were obtained, including a high magnetization of 1.44 T and a low coercivity (4.5 A/m for ribbons and 7.5 A/m in the case of 1 mm rod samples, both in as-cast state). Thermomagnetic studies showed a Curie temperature around 665 K and the precipitation of new magnetic phases upon temperatures of 1000 K. Furthermore, the frequency dependence of magnetic losses at a fixed peak induction was studied. The results suggest the occurrence of a fine magnetic domain structure in bulk samples. The good soft magnetic properties of the bulk metallic glass obtained by copper mold casting for this particular Fe-based composition suggests possible

  10. Electron-irradiation induced changes in structural and magnetic properties of Fe and Co based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.N., E-mail: kane_sn@yahoo.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Satalkar, M., E-mail: satalkar.manvi@gmail.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Ghosh, A.; Shah, M. [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Ghodke, N. [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001 (India); Pramod, R.; Sinha, A.K.; Singh, M.N.; Dwivedi, J. [Raja Ramanna Centre for Advanced Technology, P.O. CAT, Indore 452013 (India); Coisson, M.; Celegato, F.; Vinai, F.; Tiberto, P. [INRIM, Electromagnetism Division, Strada Delle Cacce 91, I-10135 TO (Italy); Varga, L.K. [RISSPO, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary)

    2014-12-05

    Highlights: • Enhancement of Ms by low electron irradiation dose in Fe-based alloy. • Variation of magnetic properties by electron irradiation induced ordered phase. • Electron irradiation alters TM-TM distance and, magnetic properties. - Abstract: Electron-irradiation induced changes in structural and, magnetic properties of Co{sub 57.6}Fe{sub 14.4}Si{sub 4.8}B{sub 19.2}Nb{sub 4}, Fe{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4} and, Co{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4} metallic glasses were studied using magnetic hysteresis and, synchrotron X-ray diffraction measurements. Results reveal composition dependent changes of magnetic properties in electron irradiated metallic glasses. A low electron irradiation dose (15 kGy) enhances saturation magnetization (up to 62%) in Fe-based alloy (Fe{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4}). Synchrotron XRD measurements reveal that electron irradiation transforms the amorphous matrix to a more ordered phase, accountable for changes in magnetic properties.

  11. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    Science.gov (United States)

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of crystal texture in R-lean RFeCoNbB (R = Nd, Pr) alloy during melt spinning processes

    International Nuclear Information System (INIS)

    Li, Wei; Li, Lanlan; Liu, Yanguo; Zhang, Xiangyi

    2012-01-01

    Highlights: ► We study the texture development during the melt spinning processes of R-lean alloys. ► A strong (0 0 l) texture parallel to the ribbon plane for (Nd,Pr) 2 Fe 14 B is obtained. ► The texture for R 2 Fe 14 B crystals can develop by a seeding effect of α-Fe texture. ► The anisotropic nanocomposite magnet yields M r = 0.78M s and large (BH) max = 25.2 MGOe. - Abstract: The formation of crystal texture of R 2 Fe 14 B nanocrystals in R–Fe–B (R = rare earth) alloys with low R content ( 2 Fe 14 B nanocrystals during the melt spinning processes of Nd 3.6 Pr 5.4 Fe 80 Co 3 NbB 7 by effectively employing the seeding effect of α-Fe nanocrystal texture. The (Nd,Pr) 2 Fe 14 B nanocrystals produced from the R-lean alloy at a wheel speed of 18 m/s show a strong (0 0 l) texture parallel to the ribbon plane, which yields a high remanence M r = 0.78M s and a large energy product (BH) max = 25.2 MGOe for the α-Fe/(Nd,Pr) 2 Fe 14 B nanocomposite ribbons. The present study provides a promising approach to prepare anisotropic nanocomposite magnets from R-lean alloys.

  13. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    Science.gov (United States)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  14. Soft magnetic properties of FeRuGaSi alloy films: SOFMAX

    International Nuclear Information System (INIS)

    Hayashi, K.; Hayakawa, M.; Ishikawa, W.; Ochiai, Y.; Iwasaki, Y.; Aso, K.

    1988-01-01

    To advance new soft magnetic materials of an FeGaSi alloy into the commercial world, improvements on various properties were designed by introducing additive elements without sacrificing its high saturation magnetic induction. The detailed studies on the diversified properties, such as saturation magnetic induction, film internal stress, wear resistivity, and so on, were performed. High-frequency permeability of the laminated structure film was also investigated. As a result, the Ru-added FeRuGaSi alloy films, whose typical compositions are Fe 72 Ru 4 Ga 7 Si 17 and Fe 68 Ru 8 Ga 7 Si 17 (at. %), prove to be excellent soft magnetic materials especially appropriate for the magnetic recording/playback head core use

  15. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  16. B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering

    Science.gov (United States)

    Jia, Jianbo; Liu, Wenchao; Xu, Yan; Chen, Chen; Yang, Yue; Luo, Junting; Zhang, Kaifeng

    2018-05-01

    Grain growth behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy was investigated by applying a series of isothermal treatment tests over a wide range of temperatures and holding times. An isothermal treatment scheme was conducted in the B2 phase region (1070-1110 °C) and α 2 + B2 phase region (1010-1050 °C) at holding times of 10, 30 min, 1, 2, and 3 h, respectively. The effects of temperature and holding time on the microstructure evolution and microhardness of the P/M Ti-22Al-25Nb alloy at elevated temperatures were evaluated using optical microscope, scanning electron microscope, x-ray diffraction, and Vickers hardness test techniques. The results revealed that the alloy's treated microstructure was closely linked to temperature and holding time, respectively. The change law of B2 grain growth with holding time and temperature can be well interpreted by the Beck equation and Hillert equation, respectively. The B2 grain growth exponent n and activation energy Q were acquired based on experimental data in the α 2 + B2 and B2 phase regions. In addition, the grain growth contour map for the P/M Ti-22Al-25Nb alloy was constructed to depict variations in B2 grain size based on holding time and temperature.

  17. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  18. Thermal treatment of the Fe78 Si9 B13 alloy and the analysis of it magnetic properties through Moessbauer spectroscopy and Positronium annihilation

    International Nuclear Information System (INIS)

    Lopez M, A.

    2005-01-01

    The present work is divided in five chapters. In the first one a general vision of the amorphous alloys is given from antecedents, structure, obtaining methods, properties and problems that at the moment, focusing us in a certain moment to the iron base alloys and the anomalous problem of hardness that it presents the alloy Fe 78 Si 9 B 13 like previously mention us. The second chapter tries on the basic theory of the techniques of Moessbauer spectroscopy and Positron Annihilation spectroscopy, used for the characterization of our alloy as well as the complementary technique of X-ray diffraction (XRD) to observe that the amorphous phase was even studying. The third chapter describes the experimental conditions that were used to study the alloy Fe 78 Si 9 B 13 in each one of their thermal treatments. In the fourth chapter the obtained results and their discussion are presented. In the fifth chapter the conclusions to which were arrived after analyzing the results are presented. (Author)

  19. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Anton; Manickaraj, Jeyakumar [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada)

    2013-11-15

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al{sub 13}Fe{sub 4}, τ{sub 5}-Al{sub 8}Fe{sub 2}Si and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s{sup −1}. Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ{sub 5}-Al{sub 8}SiFe{sub 2} and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2}. The τ{sub 5}-Al{sub 8}SiFe{sub 2} phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al{sub 13}Fe{sub 4} binary phase precludes the evolution of the τ{sub 5} during solidification and subsequently transforms into the τ{sub 6} phase during solidification. These observations are anomalous to the publications as prior art and

  20. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  1. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    International Nuclear Information System (INIS)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-01-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction

  2. Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings

    Science.gov (United States)

    Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.

    2018-03-01

    High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.

  3. Intermediate phases in the hydrogen disproportionated state of NdFeB-type powders

    International Nuclear Information System (INIS)

    Yi, G.; Chapman, J. N.; Brown, D. N.; Harris, I. R.

    2001-01-01

    Transmission electron microscopy studies have been carried out on partially disproportionated NdFeB-type alloys. A new intermediate magnetic (NIM) phase has been identified. Moreover, the lamella structure which subsequently develops from the tetragonal NIM phase comprises a tetragonal NdFe-containing (IL) phase and α-Fe. The experimental data show strong evidence of a well-defined crystallographic relation between both the NIM and lamella phases and between the IL phase and α-Fe. These observations give insight into how crystallographic texture, and hence anisotropy, can be developed in NdFeB-type powders processed by the hydrogenation, disproportionation, desorption, and recombination route. copyright 2001 American Institute of Physics

  4. Thermal treatment induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 metallic glass

    Science.gov (United States)

    Shah, M.; Satalkar, M.; Kane, S. N.; Ghodke, N. L.; Sinha, A. K.; Varga, L. K.; Teixeira, J. M.; Araujo, J. P.

    2018-05-01

    Effect of thermal annealing induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 alloy is presented. The changes in properties were observed using synchrotron x-ray diffraction technique (SXRD), atomic force microscopy (AFM), magneto-optical kerr effect (MOKE) and bulk magnetic measurements. Significant variations on the both side of surface occur for the annealing temperature upto 500 °C promotes the surface crystallization. Surface roughness appears due to presence of nanocrystallization plays an important role in determining magnetic properties. Observed lower value of bulk coercivity Hc of 6.2 A/m annealed temperature at 450 °C/1 h ascribed to reduction of disorder as compared to the surface (both shiny and wheel side observed by MOKE measurement) whereas improvement of bulk saturation magnetization with annealing temperature indicates first near neighbor shell of Fe atoms are surrounded by Fe atoms. Evolution of coercivity of surface and bulk with annealing temperature has been presented in conjunction with the structural observations.

  5. Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/{alpha}-Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu Ying, E-mail: Liuying5536@163.com [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China) and Key Laboratory of Advanced Special Material and Technology, Ministry of Education, Chengdu 610065 (China); Ma Yilong [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2012-07-15

    Bulk anisotropic NdFeB/{alpha}-Fe nano-composites were obtained directly from alloys of Nd{sub 11}Dy{sub 0.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd{sub 11}Dy{sub 0.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nb has great influence on the microstructure and magnetic properties of (NdDy){sub 11.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0-2.0) nanocomposites. Black-Right-Pointing-Pointer Most of Nb atoms gather in the grain boundary to form Nb-rich amorphous intergranular phase, not NbFeB boride. Black-Right-Pointing-Pointer Furthermore, grain alignment can be prompt by the Nb-rich solid intergranular phase during deform. Black-Right-Pointing-Pointer Remanence, coercivity and (BH){sub m} of deformed (NdDy){sub 11.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposite is 1.04T, 563 kA/m and 146 kJ/m{sup 3} respectively. Black-Right-Pointing-Pointer This study provides an alternative method for prepare anisotropic nanocomposite direct from Nd-lean alloys with low cost.

  6. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1998-01-01

    Microstructural features of rapidly solidified powders and preforms of Al 80 Fe 10 V 4 Si 6 alloy produced by spray forming process have been studied. The atomization and spray deposition were carried out using a confined gas atomization process and the microstructural features were characterized using scanning electron microscopy and transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The microstructure of a wide size range of atomized powders invariably revealed cellular and dendritic morphology. The extent of dendritic region and the dendritic arm spacing were observed to increase with power particle size. The TEM investigations indicated the presence of ultrafine second-phase particles in the intercellular or interdendritic regions. In contrast, the spray deposits of the alloy showed considerable variation in microstructure and size and dispersion of the second-phase particles at specific distances from the deposit-substrate interface and the exterior regions of the deposit. Nevertheless, considerable homogeneity was observed in the microstructure toward the center of the spray deposit. The formation and distribution of a cubic phase α-Al(Fe, V)Si has been characterized in both atomized powders and spray deposits. A one-dimensional heat flow model has been used to analyze the evolution of microstructure during atomization and also during spray deposition processing of this alloy. The results indicate that thermal history of droplets in the spray on deposition surface and their solidification behavior considerably influence the microstructural features of the spray deposits

  7. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2017-03-01

    Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  9. Preparing Magnetocaloric LaFeSi Uniform Microstructures by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Vicente, N.; Ocanã, J.; Neves Bez, Henrique

    2014-01-01

    Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder...... from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker...

  10. Phase Transformation Behavior of Oxide Particles Formed in Mechanically Alloyed Fe-5Y{sub 2}O{sub 3} Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.

  11. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    International Nuclear Information System (INIS)

    Jiang Yonggang; Fujita, Takayuki; Uehara, Minoru; Iga, Yuki; Hashimoto, Taichi; Hao, Xiuchun; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-μm-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 μm are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: → We demonstrate the fabrication of micro-magnets using silicon molding processes. → NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 μm. → The 12-μm-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. → Magnetic structures as narrow as 20 μm are fabricated using NdFeB magnetic powder. → VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  12. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yonggang, E-mail: yonggangj@gmail.com [School of Mechanical Engineering and Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191 (China); Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Fujita, Takayuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uehara, Minoru [NEOMAX Co. Ltd., 2-15-17, Egawa, Shimamoto-Cho, Mishima-gun, Osaka 618-0013 (Japan); Iga, Yuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hashimoto, Taichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hao, Xiuchun; Higuchi, Kohei [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Maenaka, Kazusuke [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2011-11-15

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-{mu}m-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 {mu}m are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: > We demonstrate the fabrication of micro-magnets using silicon molding processes. > NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 {mu}m. > The 12-{mu}m-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. > Magnetic structures as narrow as 20 {mu}m are fabricated using NdFeB magnetic powder. > VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  13. Stress and annealing induced changes in the Curie temperature of amorphous and nanocrystalline FeZr and FeNb based alloys

    International Nuclear Information System (INIS)

    Gorria, P.; Orue, I.; Fernandez-Gubieda, M.L.; Plazaola, F.; Zabala, N.; Barandiaran, J.M.

    1996-01-01

    The stress and annealing dependence of the Curie temperature in FeZrBCu alloys is presented. A change of about 50 /GPa has been observed. The change in amorphous matrix composition upon crystallization produces an expected increase in T C (about 200 C) which is similar to the experimentally observed increase. This behaviour is opposite to that observed in Fe-Nb based alloys. (orig.)

  14. Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys

    Directory of Open Access Journals (Sweden)

    Anna Morozova

    2017-11-01

    Full Text Available The effects of Si and Zr on the microstructure, microhardness and electrical conductivity of Al-Fe-Si-Zr alloys were studied. An increase in the Zr content over 0.3 wt. % leads to the formation of primary Al3Zr inclusions and also decreases mechanical properties. Therefore, the Zr content should not be more than 0.3 wt. %, although the smaller content is insufficient for the strengthening by the secondary Al3Zr precipitates. The present results indicate that high content of Si significantly affects the hardness and electrical conductivity of the investigated alloys. However, the absence of Si led to the formation of harmful needle-shaped Al3Fe particles in the microstructure of the investigated alloys after annealing. Therefore, the optimum amount of Si was 0.25–0.50 wt. % due to the formation of the Al8Fe2Si phase with the preferable platelet morphology. The maximum microhardness and strengthening effects in Al-1% Fe-0.25% Si-0.3% Zr were observed after annealing at 400–450 °C due to the formation of nanosized coherent Al3Zr (L12 dispersoids. The effect of the increasing of the electrical conductivity can be explained by the decomposition of the solid solution. Thus, Al-1% Fe-0.25% Si-0.3% Zr alloy annealed at 450 °C has been studied in detail as the most attractive with respect to the special focus on transmission line applications.

  15. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    Gueneau, C.; Ansara, I.

    1994-01-01

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  16. Core losses of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bitoh, T; Ishikawa, T; Okumura, H, E-mail: teruo_bitoh@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, 015-0055 (Japan)

    2011-01-01

    The soft magnetic properties of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} cast bulk metallic glass (BMG) with thickness of 0.3-1.0 mm have been investigated. The BMG specimens exhibit high relative permeability of (9-29)x10{sup 3} at 0.40 A/m and 50 Hz and low coercivity of 4.0 A/m. The core losses of the 0.3 mm thick BMG specimen are lower than those of commercial Fe-6.5 mass% Si steel (6.5Si) with the same thickness, and are comparable to those of the 0.10 mm thick 6.5Si. The low core losses of the BMG originate from the low coercivity and high electrical resistivity.

  17. Study of the structural, electronic and magnetic properties of ScFeCrT (T=Si, Ge) Heusler alloys by first principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Muhammad Nasir [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Javed, Athar, E-mail: athar.physics@pu.edu.pk [Department of Physics, University of the Punjab, Lahore 54590 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan)

    2017-03-15

    Spin polarized structural, electronic, magnetic and bonding properties of ScFeCrT (T=Si, Ge) Heusler alloys are studied by employing density functional theory. The total energy calculation (for a static lattice) shows that both alloys are structurally stable in ferromagnetic phase with compressibility C{sub ScFeCrSi}>C{sub ScFeCrGe}. The electronic and band structure analysis show that the ScFeCrT alloys exhibit half-metallic ferromagnetic (HMF) behaviour for spin ↑ channel while semiconducting behaviour in spin ↓ channel. Both alloys exhibit total magnetic moment, M{sub Total}=3.0 µ{sub B}/cell obeying the Slater Pauling rule, M{sub SPR}=(N{sub v} –18)μ{sub B}. For ScFeCrSi and ScFeCrGe alloys, the charge density and interatomic bonding character show highly covalent and polar covalent character, respectively. For both alloys, 100% spin polarization (for spin ↑ state) is expected which is an indication of their suitability for applications in spintronic devices. - Highlights: • Heusler alloys ScFeCrT (T= Si, Ge) are studied by first principles approach. • Structural, electronic, magnetic and bonding properties are reported. • Both alloys show half-metallicity and ferromagnetic behaviour. • Combination of properties shows the suitability of alloys in spintronic devices.

  18. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Silveyra, J.M.; Chromcikova, M.; Janickovic, D.; Sitek, J.; Svec, P.; Vlasak, G.

    2010-01-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  19. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P., E-mail: pavol.butvin@savba.s [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Butvinova, B. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Silveyra, J.M. [Instituto de Technologias y Ciencias de la Ingenieria H.F. Long, Facultad de Ingenieria, UBA-CONICET, Buenos Aires (Argentina); Chromcikova, M. [Vitrum Laugaricio - Joint Glass Centre of the Inst. of Inorg. Chem., SAS Bratislava and A. Dubcek University of Trencin, 911 50 Trencin (Slovakia); Janickovic, D. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Sitek, J. [Dept. of Nuclear Phys. and Technol., FEI, Slovak University of Technology, 812 19 Bratislava (Slovakia); Svec, P.; Vlasak, G. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2010-10-15

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  20. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Science.gov (United States)

    Butvin, P.; Butvinová, B.; Silveyra, J. M.; Chromčíková, M.; Janičkovič, D.; Sitek, J.; Švec, P.; Vlasák, G.

    2010-10-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  1. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Argonne National Lab., IL (USA)); Baxter, D.J. (Argonne National Lab., IL (USA) INCO Alloy Ltd., Hereford, England (UK))

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined over a wide temperature range (650 to 1000{degree}C), with particular emphasis on the effects of alloy Cr content and the radiation of reactive elements such as Nb and Zr. Both Nb and Zr are shown to promote protective oxidation behavior on the 12 wt % Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen/sulfur environments. Additions of Nb and Zr at 3 wt % level resulted in stabilization of Cr{sub 2}O{sub 3} scale and led to a barrier layer of Nb- or Zr-rich oxide at the scale/metal interface, which acted to minimize the transport of base metal cations across the scale. Oxide scales were preformed in sulfur-free environments and subsequently exposed to oxygen/sulfur mixed-gas atmospheres. Preformed scales were found to delay the onset of breakaway corrosion. Corrosions test results obtained under isothermal and thermal cycling conditions are presented. 58 refs., 55 figs., 8 tabs.

  2. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  3. Developments with melt spun RE-Fe-B powder for bonded magnets

    International Nuclear Information System (INIS)

    Brown, D.N.; Chen, Z.; Guschl, P.; Campbell, P.

    2006-01-01

    Rapidly quenched isotropic rare earth iron boride (RE-Fe-B) powders have found many applications throughout the electronics, automotive and white goods industries. The magnetic performance, thermal stability, corrosion resistance and processability of a powder are important factors when selecting a RE-Fe-B powder for a particular application. For electronic devices that operate at ambient temperatures, high remanence (B r ) tends to be a priority and RE 2 Fe 14 B/α-Fe nanocomposite powder magnets are favoured. Alternatively, automotive applications tend to require greater thermal stability and corrosion resistance, which are satisfied by single-phase RE 2 Fe 14 B powder magnets with higher intrinsic coercivity (H ci ). This article reviews the performance of commercially available rapidly solidified RE-Fe-B powders and recent developments made to address the demands of applications

  4. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  5. Mössbauer and XRD study of the Fe65Si35 alloy obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Vélez, G. Y.; Rodríguez, R. R.; Melo, C. A.; Pérez Alcázar, G. A.; Zamora, Ligia E.; Tabares, J. A.

    2011-01-01

    A study was made on the alloy Fe 65 Si 35 using x-ray diffraction and Mössbauer spectrometry. The alloy was obtained by mechanical alloying in a high energy planetary mill, with milling times of 15, 30, 50, 75 and 100 h. The results show that in the alloys two structural phases are present, a Fe-Si BCC disordered phase and ferromagnetic, and a Fe-Si SC phase, whose nature is paramagnetic and which decreases with milling time. In the temporal evolution of the milling two stages are differentiated: one between 15 and 75 h of milling, in which silicon atoms diffuse into the bcc matrix of iron and its effect is to reduce the hyperfine magnetic field; the other, after 75 h of milling, where the alloy is consolidated, the effect of the milling is only to increase the disorder of the system, increasing the magnetic order.

  6. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    International Nuclear Information System (INIS)

    Park, Gyu-Hyeon; Lee, Gwang-Yeob; Kim, Hyeon-Ah; Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi; Kim, Do-Hyang; Lee, Min-Ha

    2016-01-01

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  7. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyu-Hyeon [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, Gwang-Yeob [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyeon-Ah [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kim, Do-Hyang [Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Min-Ha, E-mail: mhlee1@kitech.re.kr [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of)

    2016-10-15

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  8. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D., E-mail: fanxd@seu.edu.cn; Shen, B.L., E-mail: blshen@seu.edu.cn

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe{sub 86}B{sub 7}C{sub 7} alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe{sub 3}C and α-Fe phase impedes the devitrification. • Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity.

  9. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    Science.gov (United States)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  10. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  11. Phase transition temperature in the Zr-rich corner of Zr-Nb-Sn-Fe alloys

    Science.gov (United States)

    Canay, M.; Danón, C. A.; Arias, D.

    2000-08-01

    The influence of small composition changes on the phase transformation temperature of Zr-1Nb-1Sn-0.2(0.7)Fe alloys was studied in the present work, by electrical resistivity measurements and metallographic techniques. For the alloy with 0.2 at.% Fe we have determined Tα↔α+β=741°C and Tα+β↔β=973°C, and for the 0.7 at.% Fe the transformation temperatures were T α↔α+β=712°C and T α+β↔β=961°C. We have verified that the addition of Sn stabilized the β phase.

  12. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Joguet, D. [Laboratoire d' Etudes et de Recherches sur les Matériaux, les Procédés et les Surfaces LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Robin, G. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Peltier, L. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Ecole Nationale Supérieure d' Arts et Métiers, F-57078 Metz (France); Laheurte, P. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France)

    2016-05-01

    Ti–Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti–Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti–26Nb ingot. - Highlights: • Biomimetic implants can be provided from additive manufacturing with Ti–Nb. • We made parts in a Ti–Nb alloy elaborated in situ from a mixture of elemental powders. • Process parameters have a significant impact on homogeneity and compactness. • Non-columnar elongated beta-grains are stacked with an orientation {001}<100 >. • Low Young's modulus is achieved by this texture.

  13. Magnetic hysteresis properties of melt-spun Nd-Fe-B alloys prepared by centrifugal method

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Pushkarsky, V.I.; Markin, P.E.; Zaikov, N.K.; Tarasov, E.N.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching onto the internal surface of an iron spinning wheel at tangential speeds in the range 5-20 m/s are reported. The alloy composition was Nd-36% wt, B-1.2% wt. and Fe-remainder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in applied range (18 kOe at 5 m/s and 22 kOe at 20 m/s), whereas the grain size of the basic phase (2-14-1) ste[ily decreases when the speed rises, starting from 2-3 μm for 5 m/s alloy down to the 200-300 nm for 20 m/s alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for tr[itionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbon in a vibration mill causes the coercivity drop to 7 kOe after 120 min of treatment. However, this operation increases the powder alignment ability and, as a result, the energy product for a fully dense magnet from anisotropic powder prepared from some ribbons rises to 20-23 MGOe. (orig.)

  14. Structural evolution of Fe-50 at.% Al powders during mechanical alloying and subsequent annealing processes

    International Nuclear Information System (INIS)

    Haghighi, Sh. Ehtemam; Janghorban, K.; Izadi, S.

    2010-01-01

    Iron aluminides, despite having desirable properties like excellent corrosion resistance, present low room-temperature ductility and low strength at high temperatures. Mechanical alloying as a capable process to synthesize nanocrystalline materials is under consideration to modify these drawbacks. In this study, the microstructure of iron aluminide powders synthesized by mechanical alloying and subsequent annealing was investigated. Elemental Fe and Al powders with the same atomic percent were milled in a planetary ball mill for 15 min to 100 h. The powder milled for 80 h was annealed at temperatures of 300, 500 and 700 o C for 1 h. The alloyed powders were disordered Fe(Al) solid solutions which were transformed to FeAl intermetallic after annealing. The effect of the milling time and annealing treatment on structural parameters, such as crystallite size, lattice parameter and lattice strain was evaluated by X-ray diffraction. Typically, these values were 15 nm, 2.92 A and 3.1% for the disordered Fe(Al) solid solution milled for 80 h and were 38.5 nm, 2.896 A and 1.2% for the FeAl intermetallic annealed at 700 o C, respectively.

  15. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  16. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Wear of Flame-Sprayed Ni-Cr-B-Si Powder Coating on Journal for Seal Contact

    Directory of Open Access Journals (Sweden)

    Hu Sheng-Yen

    2016-01-01

    Full Text Available Flame-sprayed techniques is used in this paper to coat Ni-Cr-B-Si powder on low-carbon steel or bearing steel materials of the journal surface. The wear tester is used to explore material properties of the binding capability, surface hardness, wear and friction within each layer depth. The normal force is applied in addition to the cladding layer by not only using bearing ball but also oil seal pieces, to explore rubber material of oil seal contact journal. In experiments to explore the material and processing conditions affect the microstructure and hardness of the cladding layer, and at the same hardness, surface roughness to affect the performance of the mill run.The results showed that spraying Ni-Cr-B-Si alloy powder in mild steel sheet to melt and run, cladding layer and the substrate has a uniform distribution of fine abrasive particles and binding effect, causing the substrate surface hardness (HRC about promotion 10 times. While, if sprayed Ni-Cr-B-Si alloy powder to steel panels bearing surface because the surface coated compact structure, can reduce the surface roughness and the coefficient of friction, and more improve the wear resistance of the cladding layer.

  18. Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys

    Directory of Open Access Journals (Sweden)

    Łukiewska Agnieszka

    2017-06-01

    Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

  19. Electrical and structural characterization of Nb-Si thin alloy film

    International Nuclear Information System (INIS)

    Nava, F.; Psaras, P.A.; Takai, H.; Tu, K.N.; Valeri, S.; Bisi, O.

    1986-01-01

    The structural and electrical properties of a Nb-Si thin alloy film as a function of temperature have been studied by Auger electron spectrometry, Rutherford backscattering spectroscopy, transmission electron microscopies, and in situ electrical resistivity and Hall coefficient measurements. The NbSi/sub 2.8/ films were deposited by double electron-gun coevaporation onto oxidized silicon. For electrical measurements samples of a van der Pauw pattern were made through metallic masks. In the as-deposited state the coevaporated alloy film was amorphous. Upon annealing a precipitous drop in resistivity near 270 0 C has been determined to be the amorphous to crystalline phase transformation. The kinetics of the transformation has been determined by isothermal heat treatment over the temperature range of 224 0 to 252 0 C. An apparent activation energy of 1.90 eV has been measured. The nucleation and growth kinetics in the crystallization process show a change in the power of time dependence from 5.5 to 2.4. The microstructures of films at various states of annealing have been correlated to the resistivity change. The crystalline NbSi 2 shows an anomalous metallic behavior. The resistivity (rho) versus temperature curve has a large negative deviation from linearity (dfl) and it approaches a saturation value (rho/sub sat/) as temperature increases. The resistivity data are fitted by two empirical expressions put forth to explain the resistivity behavior in A15 superconductors at low and high temperatures. One is based on the idea that ideal resistivity must approach some limiting value in the regime where the mean free path becomes comparable to the interatomic spacing and the other is based on a selective electron--phonon assisted scattering

  20. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy

    Science.gov (United States)

    Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.

    2018-06-01

    The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.

  1. Thermodynamic calculation and an experimental study of the combustion synthesis of (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohong, E-mail: matinbow@163.com; Lu, Qiong; Wu, Guangzhi; Shi, Jialing; Sun, Zhi

    2015-08-25

    Highlights: • (Mo{sub 1−x}Nb{sub x})Si{sub 2} alloys were synthesized by a simple and energy-saving process of SHS. • Theoretical adiabatic temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} was calculated for the first time. • The variation of the actual temperature is consistent with theoretical temperature. - Abstract: The theoretical adiabatic temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1) is calculated. The results indicate that the theoretical adiabatic temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} increases with an increasing Nb content when (Mo{sub 1−x}Nb{sub x})Si{sub 2} is of a single-phase structure, but decreases with an increasing Nb content when (Mo{sub 1−x}Nb{sub x})Si{sub 2} is of a double-phase structure. All of the temperatures are higher than 1800 K, indicating that (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1) can be prepared by the combustion synthesis method. In this work, (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1) alloys are successfully synthesized by the combustion synthesis process from elemental powders of Mo, Nb, and Si. The highest combustion temperature and combustion product structure are studied. The results confirm that the variation of the experimental maximum combustion temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} is consistent with that of the theoretical adiabatic temperature. The combustion products are non-equilibrium species, and a supersaturated solid solution of C11{sub b} type (Mo{sub 1−x}Nb{sub x})Si{sub 2} forms during combustion synthesis.

  2. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  3. Spacer layer effect and microstructure on multi-layer [NdFeB/Nb]n films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Yao, Y.-D.; Chin, T.-S.; Kronmueller, H.

    2002-01-01

    Spacer layer effect on multi-layer [NdFeB/Nb] n films has been investigated from the variation of magnetic properties and microstructure of the films. From a HRTEM cross-section view observation, the average grain size of [NdFeB/Nb] n multi-layers was controlled by both annealing temperature and thickness of NdFeB layer. Selected area diffraction pattern indicated that the structure of Nb spacer layer was amorphous. The grain size and coercivity of [NdFeB x /Nb] n films change from 50 nm and 16.7 kOe to 167 nm and 9 kOe for films with x=40 nm, n=10 and x=200 nm, n=2, respectively

  4. Defects spectroscopy by means of the simple trapping model of the Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Lopez M, A.; Cabral P, A.; Garcia S, S.F.

    2007-01-01

    In this work it is analyzed quantitatively the results of the positron annihilation in the Fe 78 Si 9 B 13 alloy by means of the simple trapping model. From this analysis its are derived: a reason of positron trapping in the defects (K), the defects concentration (C d ) and the electronic density associated to the defect (n d ); both first parameters, (K, C d ) its increase and n d diminishes when increasing the alloy temperature. From this analysis it is also inferred that the defect consists of a multi vacancy of between 15 and 20 mono vacancies. (Author)

  5. Structural and magnetic properties of Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Tiberto, P. [INRIM, Electromagnetism Division, Torino (Italy); Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Sirkin, H. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [GIM - IESIING, Universidad Catolica de Salta, INTECIN (UBA-CONICET) (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy in ribbons and 1 mm and 2 mm rod samples. Black-Right-Pointing-Pointer Good glass forming ability with {Delta}T = 50 K and {gamma} = 0.37 and off-eutectic composition. Black-Right-Pointing-Pointer Good soft magnetic properties with magnetization saturation of 1.44 T. Black-Right-Pointing-Pointer Geometrical factors are the primary causes of magnetic losses in frequencies above 10 Hz. - Abstract: Recently, bulk amorphous alloys were produced in the Fe-B-Si-P-C system with high glass forming ability, excellent magnetic properties and the advantage of containing no expensive glass-forming elements, such as Ga, Y, Cr or Nb, having, therefore, a good perspective of commercial applications. In the present work, the Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy prepared by two quenching techniques has been studied. Amorphous ribbons of about 40 {mu}m thick were obtained by planar-flow casting together with cylinders having 1 and 2 mm diameter produced by copper mold injection casting. All the samples appear fully amorphous after X-ray diffraction analysis. A comprehensive set of thermal data (glass, crystallization, melting and liquidus temperatures) were obtained as well as a description of the melting and solidification processes. Mechanical microhardness tests showed that the samples have a hardness of 9.7 {+-} 0.3 GPa. Good soft-magnetic properties were obtained, including a high magnetization of 1.44 T and a low coercivity (4.5 A/m for ribbons and 7.5 A/m in the case of 1 mm rod samples, both in as-cast state). Thermomagnetic studies showed a Curie temperature around 665 K and the precipitation of new magnetic phases upon temperatures of 1000 K. Furthermore, the frequency dependence of magnetic losses at a fixed peak induction was studied. The results suggest the occurrence of a fine magnetic domain structure in bulk

  6. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  7. Mössbauer spectroscopy study of the disordering process of Fe{sub 70}Si{sub 30} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Nieves Cano 12, 01006 Vitoria (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain)

    2014-12-05

    Highlights: • Ball milled Fe{sub 70}Si{sub 30} alloy has three different structure (D0{sub 3}, D8{sub 8} and B20). • The amount of D8{sub 8} and B20 structures varies the Si content of the D0{sub 3} structure. • The disordering process has three different stages. • The behavior of the magnetization with milling time can be explained in terms of the behavior of the different structures. - Abstract: In this work we study systematically the influence of mechanical attrition on the magnetic and structural properties of annealed Fe{sub 70}Si{sub 30} alloy by means of Mössbauer spectroscopy, X-ray diffraction measurements and magnetic measurements. In order to obtain different stages of disorder the annealed (ordered) alloys were deformed by ball milling during different number of hours. The annealed alloy presents two different structures (D0{sub 3} and D8{sub 8}) and the deformation of the annealed sample with ball milling induces the appearance of B20 structure. The variation of the amount of D8{sub 8} and B20 structures makes the Si content of the D0{sub 3} structure vary, which affects the magnetic properties. The disordering process has three different stages, characterized with different magnetic behaviors.

  8. Hard magnetic properties of rapidly annealed NdFeB thin films on Nb and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; Evans, J.; O'Shea, M.J.; Du Jianhua

    2001-01-01

    NdFeB thin films of the form A (20 nm)/NdFeB(d nm)/A(20 nm), where d ranges from 54 to 540 nm and the buffer layer A is Nb or V were prepared on a Si(1 0 0) substrate by magnetron sputtering. The hard Nd 2 Fe 14 B phase is formed by a 30 s rapid anneal or a 20 min anneal. Average crystallite size ranged from 20 to 35 nm with the rapidly annealed samples having the smaller crystallite size. These samples also exhibited a larger coercivity and energy product than those treated by a 20 min vacuum anneal. A maximum coercivity of 26.3 kOe at room temperature was obtained for a Nb/NdFeB (180 nm)/Nb film after a rapid anneal at 725 deg. C. Initial magnetization curves indicate magnetization rotation rather than nucleation of reverse domains is important in the magnetization process. A Brown's equation analysis of the coercivity as a function of temperature allowed us to compare the rapidly annealed and 20 min annealed samples. This analysis suggests that rapid annealing gives higher quality crystalline grains than the 20 min annealed sample leading to the observed large coercivity in the rapidly annealed samples

  9. Characterization of crystallization kinetics of a Ni- (Cr, Fe, Si, B, C, P) based amorphous brazing alloy by non-isothermal differential scanning calorimetry

    International Nuclear Information System (INIS)

    Raju, S.; Kumar, N.S. Arun; Jeyaganesh, B.; Mohandas, E.; Mudali, U. Kamachi

    2007-01-01

    The thermal stability and crystallization kinetics of a Ni- (Cr, Si, Fe, B, C, P) based amorphous brazing foil have been investigated by non-isothermal differential scanning calorimetry. The glass transition temperature T g , is found to be 720 ± 2 K. The amorphous alloy showed three distinct, yet considerably overlapping crystallization transformations with peak crystallization temperatures centered around 739, 778 and 853 ± 2 K, respectively. The solidus and liquidus temperatures are estimated to be 1250 and 1300 ± 2 K, respectively. The apparent activation energies for the three crystallization reactions have been determined using model free isoconversional methods. The typical values for the three crystallization reactions are: 334, 433 and 468 kJ mol -1 , respectively. The X-ray diffraction of the crystallized foil revealed the presence of following compounds Ni 3 B (Ni 4 B 3 ), CrB, B 2 Fe 15 Si 3 , CrSi 2 , and Ni 4.5 Si 2 B

  10. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  11. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  12. Role of aluminium addition on structure of Fe substituted Fe73· 5 ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Role of aluminium addition on structure of Fe substituted Fe73.5−Si13.5B9Nb3Cu1Al alloy ribbons. Gautam Agarwal Himanshu Agrawal M Srinivas B Majumdar N K Mukhopadhyay. Volume 36 Issue 4 August 2013 pp 613-618 ...

  13. Microhardness evaluation alloys Hf-Si-B; Avaliacao de microdureza de ligas Hf-Si-B

    Energy Technology Data Exchange (ETDEWEB)

    Gigolotti, Joao Carlos Janio; Costa, Eliane Fernandes Brasil [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Rocha, Elisa Gombio; Coelho, Gilberto Carvalho, E-mail: carlosjanio@uol.com.br, E-mail: eliane-costabrasi@hotmail.com, E-mail: cnunes@demar.eel.usp.br, E-mail: elisarocha@alunos.eel.usp.br, E-mail: coelho@demar.eel.usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil)

    2014-08-15

    The technological advance has generated increasing demand for materials that can be used under high temperature, what includes intermetallic MR-Si-B (MR = refractory metal) alloys with multiphase structures, that can also be applied in oxide environments. Thus, this work had for objective the micro hardness study of the Hf-Si-B system alloys, heat treated at 1600 deg C, in the Hf rich region. Hf-Si-B alloys had been produced with blades of Hf (min. 99.8%), Si (min. 99.998%) and B (min. 99.5%), in the voltaic arc furnace and heat treated at 1600 deg C under argon atmosphere. The relationship of the phases had been previously identified by X-ray diffraction and contrast in backscattered electron imaging mode. The alloys had their hardness analyzed by method Vickers (micro hardness) with load of 0.05 kgf and 0.2 kgf and application time of 20 s. The results, obtained from the arithmetic mean of measurements for each alloy on the heterogeneous region, showed a mean hardness of 11.08 GPA, with small coefficient of variation of 3.8%. The borides HfB2 (19.34 GPa) e HfB - 11.76 GPa, showed the hardness higher than the silicides Hf2Si (8.57 GPa), Hf5Si3 (9.63 GPa), Hf3Si2 (11.66 GPa), Hf5Si4 (10.00 GPa), HfSi (10.02 GPa) e HfSi2 (8.61 GPa). (author)

  14. FINEMET type alloy without Si: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Muraca, D.; Cremaschi, V.; Moya, J.; Sirkin, H.

    2008-01-01

    Magnetic and structural properties of a Finemet type alloy (Fe 73.5 Ge 15.5 Nb 3 B 7 Cu 1 ) without Si and high Ge content were studied. Amorphous material was obtained by the melt spinning technique and was heat treated at different temperatures for 1 h under high vacuum to induce the nanocrystallization of the sample. The softest magnetic properties were obtained between 673 and 873 K. The role of Ge on the ferromagnetic paramagnetic transition of the as-quenched alloys and its influence on the crystallization process were studied using a calorimetric technique. Moessbauer spectroscopy was employed in the nanocrystallized alloy annealed at 823 K to obtain the composition of the nanocrystals and the amorphous phase fraction. Using this data and magnetic measurements of the as-quenched alloy, the magnetic contribution of nanocrystals to the alloy annealed at 823 K was estimated via a linear model

  15. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  16. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    International Nuclear Information System (INIS)

    Pan, Mingxiang; Zhang, Pengyue; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-01-01

    Exchange-coupled SmCo 5 /Nd 2 Fe 14 B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo 5 and Nd 2 Fe 14 B powders. The influence of Nd 2 Fe 14 B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH) max =2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo 5 single-phase magnet and SmCo 5 /Nd 2 Fe 14 B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo 5 /Nd 2 Fe 14 B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet

  17. Effect of Nb aggregates on Zr2Fe

    International Nuclear Information System (INIS)

    Ramos, Cinthia P.

    2001-01-01

    The binary Zr-Fe phase diagram revision, performed by Arias et al., accepted the intermetallic Zr 2 Fe crystalline structure as tetragonal and determined that the presence of a third element like oxygen, nitrogen or carbon, stabilizes a cubic phase. Nevitt et al. studying Ti, Zr and Hf alloys with transition metals as second or third element and ternary systems with oxygen as third element, systematized the occurrence of phases with a cubic Ti 2 Ni type crystalline structure. From previous studies in the Zr-Nb-Fe system, it is an agreed fact that Nb presence in the Zr 2 Fe intermetallic stabilizes a cubic Ti 2 Ni type phase. The purpose of the present work is to determine the stability range of the Zr 2 Fe intermetallic with Nb contents, the existence range of the ternary cubic Ti 2 Ni type phase (designated Λ) and the corresponding two-phase region. We analyze as cast and heat treated (800 C degrees) Zr-Nb-Fe alloys with 35 atomic % Fe and Nb contents between 0.5 and 15 atomic %. The determination and characterization of the phases is made by optical and scanning electron microscopy, X-ray diffraction microprobe analysis and Moessbauer Spectroscopy. Joining these techniques together it is found, among many other things, that the Zr 2 Fe phase would accept up to around 0.5 atomic % Nb in solution and that the two-phase region Zr 2 Fe+Λ would be stable in the (0.5 - 3.5) Nb atomic % range. It is proposed as well a 800 C degrees section of the ternary (Zr-Nb-Fe) in the studied region. (author) [es

  18. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  19. Magnetic and Structural Properties of the Mechanically Alloyed Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B System

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, D. Oyola, E-mail: doyola@ut.edu.co [University of Tolima, Department of Physics (Colombia); Zamora, L. E.; Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Rojas, Y. A.; Bustos, H. [University of Tolima, Department of Physics (Colombia); Greneche, J. M. [UMR CNRS 6087, Laboratoire de Physique de l' Etat Condense (France)

    2005-02-15

    In this work we report the magnetic and structural properties obtained by Moessbauer spectrometry, Vibrating Sample Magnetometer and X-ray diffraction of milled powders with initial composition Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B with x = 0 and x = 4. The mixtures were ball milled for different times up to 240 h. Structural and microstructural parameters were derived from high statistics X-ray patterns and discussed as a function of milling time. The Moessbauer spectra of the samples were fitted by means of a sextet and an hyperfine field distribution, associated to a pure iron phase ({alpha}-Fe) and a disordered iron-based phase, respectively. The {alpha}-Fe grain size decreases from 50 nm for 6 h up to 5 nm for 240 h milling time. The Vibrating Sample Magnetometer results allow to conclude that these samples behave as soft ferromagnets.

  20. Peculiarities of phase transformation in Ni3Fe powder alloy

    International Nuclear Information System (INIS)

    Nuzhdin, A.A.

    1990-01-01

    Ordering process in sintered powder alloy Ni 3 Fe by normal and high temperatures was studied. Thermal stresses connected with porosity level of material effect on transformation peculiarities. The changes of electric conductivity, thermal expansion coefficient, bulk modulus during transformation were studied. The analysis of this changes was made

  1. Fluxing purification and its effect on magnetic properties of high-B{sub s} FeBPSiC amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jing [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Yue, Shiqiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Kong, Fengyu [School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016 (China); Qiu, Keqiang, E-mail: kqqiu@163.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Chang, Chuntao; Wang, Xinmin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Liu, Chain-Tsuan, E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2017-07-01

    Highlights: • Surface crystallization in Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was inhibited by flux purification. • Amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was made with industrial process and materials. • The ribbons exhibit high B{sub s} of 1.65 T, low H{sub c} of 2 A/m, and high μ{sub e} of 9.7 × 10{sup 3}. • High melting point inclusions trigger the surface crystallization as nuclei. - Abstract: A high-B{sub s} amorphous alloy with the base composition Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-B{sub s} of 1.65 T, low H{sub c} of 2.0 A/m, and high μ{sub e} of 9.7 × 10{sup 3} at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-B{sub s} FeBPSiC amorphous alloys.

  2. The impact of Ti and temperature on the stability of Nb5Si3 phases: a first-principles study.

    Science.gov (United States)

    Papadimitriou, Ioannis; Utton, Claire; Tsakiropoulos, Panos

    2017-01-01

    Nb-silicide based alloys could be used at T > 1423 K in future aero-engines. Titanium is an important additive to these new alloys where it improves oxidation, fracture toughness and reduces density. The microstructures of the new alloys consist of an Nb solid solution, and silicides and other intermetallics can be present. Three Nb 5 Si 3 polymorphs are known, namely αNb 5 Si 3 ( tI 32 Cr 5 B 3 -type, D8 l ), βNb 5 Si 3 ( tI 32 W 5 Si 3 -type, D8 m ) and γNb 5 Si 3 ( hP 16 Mn 5 Si 3 -type, D8 8 ). In these 5-3 silicides Nb atoms can be substituted by Ti atoms. The type of stable Nb 5 Si 3 depends on temperature and concentration of Ti addition and is important for the stability and properties of the alloys. The effect of increasing concentration of Ti on the transition temperature between the polymorphs has not been studied. In this work first-principles calculations were used to predict the stability and physical properties of the various Nb 5 Si 3 silicides alloyed with Ti. Temperature-dependent enthalpies of formation were computed, and the transition temperature between the low (α) and high (β) temperature polymorphs of Nb 5 Si 3 was found to decrease significantly with increasing Ti content. The γNb 5 Si 3 was found to be stable only at high Ti concentrations, above approximately 50 at. % Ti. Calculation of physical properties and the Cauchy pressures, Pugh's index of ductility and Poisson ratio showed that as the Ti content increased, the bulk moduli of all silicides decreased, while the shear and elastic moduli and the Debye temperature increased for the αNb 5 Si 3 and γNb 5 Si 3 and decreased for βNb 5 Si 3 . With the addition of Ti the αNb 5 Si 3 and γNb 5 Si 3 became less ductile, whereas the βNb 5 Si 3 became more ductile. When Ti was added in the αNb 5 Si 3 and βNb 5 Si 3 the linear thermal expansion coefficients of the silicides decreased, but the anisotropy of coefficient of thermal expansion did not change significantly.

  3. The effect of minor alloying elements on oxidation and hydrogen pickup in Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ploc, R.A.

    2002-01-01

    In CANDU reactors, fuel and coolant are contained in horizontal pressure tubes made of Zr-2.5 wt% Nb alloy. In the past decade, the effect of more than 20 impurity elements, in various concentrations, on oxidation and deuterium pickup (at 300 o C, pD = 10.5, Li 2 O) have been investigated in over 70 Zr-2.5Nb alloys. The studies were performed using non-consumable arc-melted alloy logs that were rolled and made into corrosion coupons and corroded in autoclaves. This study represents one of the largest collections of previously unpublished data on the effect of impurity elements on oxide film growth and deuterium pickup in a zirconium alloy. Elements such as Al, Ti, Mn, and Pt, to name but a few, were found to significantly accelerate the corrosion process. Some elements, such as tin, had a positive effect on oxidation (lowers the rate of oxide film development) and a negative effect on hydrogen pickup (increases pickup). Three parameters were important to the corrosion process, namely, microstructure, surface finish, and synergistic interactions between the impurity elements. The above studies culminated in two response surface analyses (RSA). The first was conducted on the effect of C and Fe on oxygen and deuterium pickup in Zr-2.5Nb drop castings corroded at 325 o C in CANDU conditions. The second study was performed in autoclaves at 300 o C on the affect of four impurity elements, C, Fe, Cr, and Si, in Zr-2.5Nb micro-tubes, which possess the same microstructure as full-size pressure tubes. The first RSA revealed a quadratic dependence of corrosion on C and Fe concentrations, with an optimum resistance at about 30 ppm (wt) C and 1100 ppm (wt) Fe. This has been partially confirmed by out-reactor corrosion of Zr-2.5Nb-Fe micro-pressure tubes. Trends in- and out-reactor were similar for oxidation but different in magnitude for deuterium pickup. There is no linear dependence on the Fe concentration in-reactor, implying that Fe and C form a complex. The second RSA

  4. The effect of minor alloying elements on oxidation and hydrogen pickup in Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ploc, R.A.

    2002-01-01

    In CANDU reactors, fuel and coolant are contained in horizontal pressure tubes made of Zr-2.5 wt% Nb alloy. In the past decade, the effect of more than 20 impurity elements, in various concentrations, on oxidation and deuterium pickup (at 300 deg C, pD = 10.5, Li 2 O) have been investigated in over 70 Zr-2.5Nb alloys. The studies were performed using non-consumable arc-melted alloy logs that were rolled and made into corrosion coupons and corroded in autoclaves. This study represents one of the largest collections of previously unpublished data on the effect of impurity elements on oxide film growth and deuterium pickup in a zirconium alloy. Elements such as Al, Ti, Mn, and Pt, to name but a few, were found to significantly accelerate the corrosion process. Some elements, such as tin, had a positive effect on oxidation (lowers the rate of oxide film development) and a negative effect on hydrogen pickup (increases pickup). Three parameters were important to the corrosion process, namely, microstructure, surface finish, and synergistic interactions between the impurity elements. The above studies culminated in two response surface analyses (RSA). The first was conducted on the effect of C and Fe on oxygen and deuterium pickup in Zr-2.5Nb drop castings corroded at 325 deg C in CANDU conditions. The second study was performed in autoclaves at 300 deg C on the affect of four impurity elements, C, Fe, Cr, and Si, in Zr-2.5Nb micro-tubes, which possess the same microstructure as full-size pressure tubes. The first RSA revealed a quadratic dependence of corrosion on C and Fe concentrations, with an optimum resistance at about 30 ppm (wt) C and 1100 ppm (wt) Fe. This has been partially confirmed by out-reactor corrosion of Zr-2.5Nb-Fe micro-pressure tubes. Trends in- and out-reactor were similar for oxidation but different in magnitude for deuterium pickup. There is no linear dependence on the Fe concentration in-reactor, implying that Fe and C form a complex. The second

  5. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  6. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  7. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan, E-mail: mse_wangy@ujn.edu.cn

    2017-05-15

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively. - Highlights: • Co, Cu, Ag additions affect crystallization behavior of FeSiBAlNi amorphous HEAs. • Crystallization products in FeSiBAlNi Co/Ag reveal high phase stability. • Proper FeSi-rich and FeB-rich phases are beneficial to improve magnetic property. • Annealing treatment improves semi-hard magnetic property compared to as-milled state. • Annealing near exothermic peak temperature shows best enhancing effect on magnetism.

  8. In situ Fabrication of Fe-TiB{sub 2} Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH{sub 2} Powder Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Xuan-Khoa [Hanoi Uneversity of Science and Technology, Hanoi (Viet Nam); Bae, Sun-Woo; Kim, Ji Soon [University of Ulsan, Ulsan (Korea, Republic of)

    2017-01-15

    Fe-TiB{sub 2} powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH{sub 2}) powder mixture. Mechanical activation of the (FeB+TiH{sub 2}) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not the same after 1 hour milling time. The particle size of the (FeB+ TiH{sub 2}) powder mixture was reduced to the nanometer scale, and each constituent was homogeneously distributed. A sharp exothermic peak was observed at a lower temperature (749 ℃) on the DSC curves for the (FeB+TiH{sub 2}) powder mixture milled for 3 hours, compared to the one milled for 1 hour (774 ℃). These peaks were confirmed to have resulted from the formation reaction of the TiB{sub 2} phase, from Ti and B elements in the FeB. The Fe-TiB{sub 2} composite powder fabricated in situ exhibited only two phases of Fe and TiB{sub 2} with homogeneous distribution. The size of the TiB{sub 2} particulates in the Fe matrix was less than 5 nm.

  9. Metallurgical study and phase diagram calculations of the Zr-Nb-Fe-(Sn,O) system

    International Nuclear Information System (INIS)

    Toffolon, C.

    2000-01-01

    The Framatome M5 TM Zr-Nb-O alloy with small amounts of Fe is of interest for nuclear applications (PWR fuel cladding).The behaviour of this kind of alloy for in-service conditions strongly depends on the microstructure. Therefore, a metallurgical study of alloys of the Zr-Nb-Fe-(O-Sn) system has been developed in order to study the influence of chemical composition variabilities of Nb, Fe and O and thermal treatments on the resultant microstructure. In order to get some insight on the physical metallurgy of Zr-Nb-Fe-(Sn,O) alloys and to minimize the experiments, it is useful to build a thermodynamic database. With this object, it was necessary to re-optimize and to calculate the low order binary systems such as Fe-Nb and Nb-Sn in order to assess the Zr-Nb-Fe-(Sn,O) system. Then, the experimental studies concerned: the influence of small variations in Nb and O contents on the α/β transus temperatures. A comparison between experimental results and thermodynamic predictions showed a good agreement; the precipitation kinetics of βNb and intermetallic phases in the α phase domain. These experiments showed that the kinetics depends on the initial metallurgical conditions; the determination of the crystallographic structure and the stoichiometry of the ternary Zr-Nb-Fe intermetallic compounds as a function of the temperature. Finally, these experimental data were used to propose a first assessment of the Zr-Nb-Fe(O∼1200 ppm) system. (author)

  10. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  11. Strain-softening behavior of an Fe-6.5 wt%Si alloy during warm deformation and its applications

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → An Fe-6.5 wt%Si alloy exhibits strain-softening behavior after large deformation. → The decrease of the order degree is responsible for the strain-softening behavior. → The strain-softening behavior of Fe-6.5 wt%Si alloy can be applied in cold rolling. → An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm is fabricated by cold rolling. - Abstract: An Fe-6.5 wt%Si alloy with columnar grains was compressed at a temperature below its recrystallization temperature. The Vickers hardness and structure of the alloy before and after deformation were investigated. The results showed that with an increase in the degree of deformation, Vickers hardness of the alloy initially increased rapidly and then decreased slowly, indicating that the alloy had a strain-softening behavior after a large deformation. Meanwhile, the work-hardening exponent of the alloy decreased significantly. Transmission electron microscopy confirmed that the decrease of the order degree was responsible for the strain-softening behavior of the deformed alloy. Applying its softening behavior, the Fe-6.5 wt%Si alloy with columnar grains was rolled at 400 deg. C and then at room temperature. An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm was fabricated. The surface of the strip was bright and had no obvious edge cracks.

  12. Preparation and properties of [(NdFeB)x/(Nb)z]n multi-layer films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Chin, T.-S.; Yao, Y.-D.; Melsheimer, A.; Fisher, S.; Drogen, T.; Kelsch, M.; Kronmueller, H.

    2003-01-01

    Multi-layer [(NdFeB) x /(Nb) z ] n films with 200 nm≥x≥10 nm, 10 nm≥z≥0, 40≥n≥2, prepared by ion beam sputtering and subsequent annealing, show significantly enhanced coercivity due to the reduced grain size that enhances the anisotropy of individual grains. After annealing at 630 deg. C, some Nd 2 Fe 14 B grains were enriched with Nb and isolated as the thickness of the Nb spacer layer increases. For multi-layer (NdFeB x /Nb z ) n films with 100 nm ≥x≥25 nm, 5 nm≥z≥2 nm, their coercivity and remanence ratio are better than that of a single NdFeB film. Up to 17.8 kOe room temperature coercivity has been obtained for a sample with x=25 nm, z=5 nm and n=16

  13. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    Science.gov (United States)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the

  14. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  15. Effect of pre-deformation temperature on reverse transformation characteristic in Fe-Mn-Si based alloys

    International Nuclear Information System (INIS)

    Wang, D.; Xing, X.; Chen, J.; Dong, Z.; Liu, W.

    2000-01-01

    Two alloys of A: Fe-28Mn-6Si-5Cr(wt.%) and B: Fe-13Mn-5Si-12Cr-6Ni(wt.%) with different Ms temperatures were selected to be subjected to tensile deformation under different temperatures. The effect of deformation temperature on shape memory effect (SME) and the reverse transformation kinetics were studied respectively. It was found that: (1) The best SME could be obtained by deformation at Ms temperature; (2) The As temperature varied with deformation temperature. The lower the deformation temperature was, the lower the As temperature would be; (3) Some non-transformation related strain recovery between deformation temperature and As temperature was observed to be resulted from the retraction of stacking faults. The facts that the variation of As temperature with deformation temperature, as well as the non-transformation strain recovery imply that the γ→ε martensitic transformation in Fe-Mn-Si based shape memory alloys exhibits quasithermoelastic property. (orig.)

  16. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  17. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mingxiang; Zhang, Pengyue, E-mail: Zhang_pengyue@cjlu.edu.cn; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-06-01

    Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B powders. The influence of Nd{sub 2}Fe{sub 14}B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH){sub max}=2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo{sub 5} single-phase magnet and SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet.

  18. Microstructure evolution and mechanical properties of Ti−22Al−25Nb alloy joints brazed with Ti−Ni−Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Cai, X.Q.; Yang, Z.W., E-mail: tjuyangzhenwen@163.com; Qiu, Q.W.; Wang, D.P.; Liu, Y.C.

    2016-10-01

    Ti{sub 45}Ni{sub 45}Nb{sub 10} (at.%) brazing alloy, fabricated by arc melting, was successfully used to braze Ti−22Al−25Nb (at.%) alloy. The microstructures of Ti{sub 45}Ni{sub 45}Nb{sub 10} brazing alloy and Ti−22Al−25Nb alloy brazed joints were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and micro-area X-ray diffraction (XRD). The effects of the brazing parameters on the interfacial microstructure and mechanical properties of the Ti−22Al−25Nb alloy brazed joints were investigated. The results showed that the joint was primarily comprised of two characteristic zones: diffusion zone I and central zone II, and the reaction phases formed in the brazed joint were the B2, O, τ{sub 3}, and Ti{sub 2}Ni phase. The crystal orientation of B2 phase in diffusion zone I was consistent with that in the Ti−22Al−25Nb substrate. The O phase was precipitated from the B2 phase. As the brazing temperature or holding time increased, τ{sub 3} was gradually replaced by the B2 phase, and the Ti{sub 2}Ni phase decreased and ultimately disappeared. The maximum shear strength achieved at room temperature was 318 MPa when the joint was brazed at 1180 °C for 20 min, whereas it was 278 MPa at 650 °C. Crack primarily propagated in the τ{sub 3} compound, which was extremely hard and brittle, and partially traversed the B2 and O phases. - Highlights: • Ti{sub 45}Ni{sub 45}Nb{sub 10} alloy was successfully developed to braze Ti−22Al−25Nb alloy. • Ti−22Al−25Nb alloy was transformed from B2 phase into the O + B2 duplex phase after brazing. • Crystal orientation of B2 in joint was dependent on metal substrate. • Correlation between joint microstructure and mechanical properties was revealed. • Ti−22Al−25Nb brazed joint had excellent ambient and high temperature strength.

  19. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  20. Nanocrystallization in amorphous Fe40Ni40(Si+B)19Mo1-2 ribbons

    International Nuclear Information System (INIS)

    Saiseng, S.; Winotai, P.; Nilpairuch, S.; Limsuwan, P.; Tang, I.M.

    2004-01-01

    Cut Fe 40 Ni 40 (Si+B) 19 Mo 1-2 ribbons were annealed for 2 h at various temperatures between 350 deg. C and 600 deg. C. XRD and Mossbauer effect spectroscopy (ME) measurements were then performed on all of the ribbons. The magnetic properties of several ribbons were measured using a vibrating sample magnetometer (VSM). A differential thermal analysis scan (over the range 20-800 deg. C) of the as-cast ribbon showed two phase transitions; the first at 454 deg. C and the second at 525 deg. C. Both the XRD and ME spectra of the as cast, the 350 deg. C and 400 deg. C annealed ribbons showed that they were amorphous. The ME spectra of the 450 deg. C, 475 deg. C and 500 deg. C annealed ribbons showed that these ribbons contained α-Fe, α-Fe(Si) and t-Fe 2 B nanocrystallites. For the ribbons annealed above 550 deg. C, crystallites of t-Fe 2 B, t-Fe 3 B, t-Fe 5 SiB 2 and FCC-FeNi appeared, with the α-Fe and α-Fe(Si) crystallites disappearing. The sextets of all of the Fe compounds appeared in the ME spectra of the 525 deg. C annealed ribbon. The VSM measurements supported the picture of a two-stage phase transitions; amorphous phase→a nanocrystalline phase (Fe-containing nanocrystallites in an amorphous matrix) at 454 deg. C and then a second transition, the nanocrystalline phase→a disordered alloy containing Fe-B and Fe-Ni crystallites at 525 deg. C

  1. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  2. Metallurgical study and phase diagram calculations of the Zr-Nb-Fe-(Sn,O) system; Etude metallurgique et calculs des diagrammes de phases des alliages base zirconium du systeme: Zr-Nb-Fe-(O,Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Toffolon, C. [CEA/Saclay, Dept. d' Etudes du Comportement des Materiaux (DECM), 91 - Gif-sur-Yvette (France)]|[Paris-6 Univ., 75 (France)

    2000-07-01

    The Framatome M5{sup TM} Zr-Nb-O alloy with small amounts of Fe is of interest for nuclear applications (PWR fuel cladding).The behaviour of this kind of alloy for in-service conditions strongly depends on the microstructure. Therefore, a metallurgical study of alloys of the Zr-Nb-Fe-(O-Sn) system has been developed in order to study the influence of chemical composition variabilities of Nb, Fe and O and thermal treatments on the resultant microstructure. In order to get some insight on the physical metallurgy of Zr-Nb-Fe-(Sn,O) alloys and to minimize the experiments, it is useful to build a thermodynamic database. With this object, it was necessary to re-optimize and to calculate the low order binary systems such as Fe-Nb and Nb-Sn in order to assess the Zr-Nb-Fe-(Sn,O) system. Then, the experimental studies concerned: the influence of small variations in Nb and O contents on the {alpha}/{beta} transus temperatures. A comparison between experimental results and thermodynamic predictions showed a good agreement; the precipitation kinetics of {beta}Nb and intermetallic phases in the {alpha} phase domain. These experiments showed that the kinetics depends on the initial metallurgical conditions; the determination of the crystallographic structure and the stoichiometry of the ternary Zr-Nb-Fe intermetallic compounds as a function of the temperature. Finally, these experimental data were used to propose a first assessment of the Zr-Nb-Fe(O{approx}1200 ppm) system. (author)

  3. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  4. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  5. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    Science.gov (United States)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  6. Corroded microstructure of HDDR-NdFeB magnetic powders

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Itakura, M.; Tomokiyo, Y.; Kuwano, N.; Machida, K.

    2004-01-01

    The microstructure of corroded HDDR-NdFeB magnetic powders in bonded magnet has been investigated by transmission electron microscopy. Following an exposure time of 300 h at 398 K in air, the HDDR-NdFeB magnetic powders are found covered with an altered layer about 300 nm thick on the surface. The layer is composed of α-Fe grains 5-10 nm in diameter and h-Nd 2 O 3 grains smaller than 5 nm. Under the altered layer, corrosion has proceeded along the Nd 2 (Fe,Co) 14 B grain boundaries to leave a wetting layer composed of a dense mixture of α-Fe and h-Nd 2 O 3 phase. The appearance of α-Fe grains in both of the altered layer wetting layer leads to the high magnetic flux loss of the corroded HDDR-NdFeB bonded magnet

  7. The formation mechanism of mechanically alloyed Fe-20 at% Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, F., E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Otmani, A. [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Djekoun, A. [Laboratoire de Magnetisme et Spectroscopie des Solides, LM2S, Universite Badji Mokhtar, BP 12 Annaba 23000 (Algeria); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans (France)

    2013-01-15

    The formation mechanism of the mechanically alloyed Fe-20 at% Al, from elemental Fe and Al powders, has been investigated. The experimental results indicate the formation of a nanocrystalline bcc {alpha}-Fe(Al) solid solution with a lattice parameter close to a{sub {alpha}-Fe(Al)}=0.2890 nm, where each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere. The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Aluminum particles undergo an important refinement to the nanometer scale and then they stick on Fe particles of large sizes. A large number of clear Al/Fe interface areas were generated. The short diffusion path and the presence of high concentration of defects accelerated the solid state reaction. - Highlights: Black-Right-Pointing-Pointer A nanocrystalline bcc {alpha}-Fe(Al) solid solution is formed from elemental Fe and Al powders. Black-Right-Pointing-Pointer The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Black-Right-Pointing-Pointer Each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere.

  8. Interaction between solute atoms and radiation defects in Fe-Ni-Si and Fe-Mn-Si alloys under irradiation with proton ions at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi, 990-9585 (Japan); Abe, Hiroaki [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-12-15

    Isochronal annealing followed by residual resistivity measurements at 12 K was performed in Fe-0.6Ni-0.6Si and Fe-1.5Mn-0.6Si alloys irradiated with 1 MeV proton ions below 70 K, and recovery stages were compared with those of Fe–0.6Ni and Fe–1.5Mn. The effects of silicon addition in the Fe-Ni alloy was observed as the appearance of a new recovery stage at 282–372 K, presumably corresponding to clustering of solute atoms in matrix, and as a change in mixed dumbbell migration at 122–142 K. Silicon addition mitigated the manganese effect in Fe–Mn alloy that is obstructing the recovery of radiation defects. Reduction of resistivity in Fe-Mn-Si alloy also suggested formation of small solute atom clusters.

  9. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  10. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb2MB2 (M=Fe, Ru, Os) from first principles calculations

    International Nuclear Information System (INIS)

    Touzani, Rachid St.; Fokwa, Boniface P.T.

    2014-01-01

    The Nb 2 FeB 2 phase (U 3 Si 2 -type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb 2 OsB 2 (space group P4/mnc, no. 128, a twofold superstructure of U 3 Si 2 -type) with distorted Nb-layers and Os 2 -dumbbells was recently achieved, “Nb 2 RuB 2 ” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb 2 FeB 2 and Nb 2 OsB 2 , but also predict “Nb 2 RuB 2 ” to crystalize with the Nb 2 OsB 2 structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb 2 FeB 2 , originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb 2 FeB 2 (U 3 Si 2 structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb 2 RuB 2 ” is predicted to crystallize with the recently discovered Nb 2 OsB 2 twofold superstructure (space group P4/mnc, no. 128) of U 3 Si 2 structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be responsible for the stabilization of this superstructure. Highlights: • Nb 2 FeB 2 is predicted to order antiferromagnetically.

  11. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  12. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  13. Coercivity enhancement in HDDR near-stoichiometric ternary Nd–Fe–B powders

    International Nuclear Information System (INIS)

    Wan, Fangming; Han, Jingzhi; Zhang, Yinfeng; Wang, Changsheng; Liu, Shunquan; Yang, Jinbo; Yang, Yingchang; Sun, Aizhi; Yang, Fuqiang; Song, Renbo

    2014-01-01

    Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. The coercivity of the powders was improved from 208.6 to 980.1 kA/m by the subsequent diffusion treatment using the Pr–Cu alloy. For comparison, Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 alloy, in which Pr and Cu elements were directly added into the original Nd–Fe–B alloy, was also treated by the same HDDR process and the coercivity was only 557.3 kA/m. Microstructural investigations showed that a large area of (Nd, Pr)-rich phases concentrated at triangle regions in the HDDR Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 powders, while the (Nd, Pr)-rich phases distributed uniformly in the diffusion treated powders. The uniform grain boundary layer can pin the motion of domain wall more effectively, resulting in a higher coercivity in diffusion treated HDDR Nd–Fe–B powders. - Highlights: • Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. • The coercivity of the powders was improved from 2.62 to 12.31 kOe by the diffusion of Pr–Cu alloy. • The uniform grain boundary layer leads to a higher coercivity in diffusion treated powders

  14. Process-oriented microstructure evolution of V{sub ss}-V{sub 3}Si-V{sub 5}SiB{sub 2}; Prozessabhaengige Mikrostrukturausbildung von V{sub ss}-V{sub 3}Si-V{sub 5}SiB{sub 2}-Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Manja; Koeppe-Grabow, Birte [Magdeburg Univ. (Germany)

    2017-05-15

    Vanadium silicide alloys are potentially interesting high temperature materials, since they combine high mechanical strength at temperatures of up to 1 000 C with a low density. In this study, the microstructures of innovative V-Si-B high temperature materials are examined using different analytical methods. The selected V-9Si-13B model alloy was manufactured using a powder metallurgical process route as well as an ingot metallurgical process. The alloys show a vanadium solid solution phase as well as the high-strength silicide phases V{sub 3}Si and V{sub 5}SiB{sub 2}. Especially for the powder metallurgically fabricated alloy, showing finely dispersed phases, the quantification of microstructural constituents is difficult. The phases, however, can be separated from one another via computer tomography.

  15. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    Science.gov (United States)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  16. Time temperature transformation diagram for secondary crystal products of Co-based Co-Fe-B-Si-Nb-Mn soft magnetic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    DeGeorge, V., E-mail: vdegeorge@cmu.edu; Zoghlin, E.; Keylin, V.; McHenry, M. [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2015-05-07

    Secondary crystallization is the subject of much investigation in magnetic amorphous and nanocomposites (MANCs) as it limits the long term and thermal stability of their operation in device applications, including power electronics, sensors, and electric motors. Secondary crystal products [Blazquez et al., Philos. Mag. Lett. 82(7), 409–417 (2002); Ohodnicki et al., Phys. Rev. B 78, 144414 (2008); Willard et al., Metall. Mater. Trans. A 38, 725 (2007)], nanostructure and crystallization kinetics [Hsiao et al., IEEE Trans. Magn. 38(5), 3039 (2002); McHenry et al., Scr. Mater. 48(7), 881 (2003)], and onset temperatures and activation energies [Ohodnicki et al., Acta. Mater. 57, 87 (2009); Long et al., J. Appl. Phys. 101, 09N114 (2007)] at constant heating have been reported for similar alloys. However, a time-temperature-transformation (TTT) diagram for isothermal crystallization, more typical of application environments, has not been reported in literature. Here, a TTT diagram for the Co based, Co-Fe-Si-Nb-B-Mn MANC system is presented, along with a method for determining such. The method accounts for the presence of primary crystal phases and yields crystal fraction of secondary phase(s) by using a novel four stage heating profile. The diagram, affirmed by Kissinger activation energy analysis, reports thermal stability of the MANC for millennia at conventional device operating temperatures, and stability limits less than a minute at elevated temperatures. Both extremes are necessary to be able to avoid secondary crystalline products and establish operating limits for this mechanically attractive, high induction soft magnetic nanocomposite.

  17. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  18. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  19. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  20. Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Williams, A.J.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2014-01-15

    The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with compositions, Nd{sub 13.4}Dy{sub 0.8}Al{sub 0.7}Nb{sub 0.3}Fe{sub 78.5}B{sub 6.3} and Nd{sub 12.5}Dy{sub 1.8}Al{sub 0.9}Nb{sub 0.6}Co{sub 5.0}Fe{sub 72.8}B{sub 6.4} (atomic%). It has been shown that by increasing the processing temperature, an increase in the equilibrium pressure for disproportionation and in the overall reaction time was observed. The magnetic properties of the lower Dy content magnet were affected significantly by the change in processing temperature with a peak in properties observed at 880 °C producing magnetic powder with a remanence of 1.08 (±0.02) T, a coercivity of 840 (±17) kA m{sup −1}, and a maximum energy product of 175 (±2.5) kJ m{sup −3}. Further work on magnets with a significantly higher Dy content has shown that simultaneous processing of sintered magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a range of magnetic properties are produced depending on the initial compositions of the samples in the input feed. - Highlights: • Reduced oxidation during the HDDR processing in this work compared to the previous paper resulted in a powder with a higher coercivity. • Increasing the hydrogen pressure for disproportionation allowed for Dy, Co rich NdFeB compositions to be processed. • Mixed compositions (which will be typical from “real scrap”) can be processed simultaneously in the same equipment. • Mixed feeds produced lower magnetic properties due to overprocessing of the low Dy content compositions.

  1. Effect of hydrogenation disproportionation conditions on magnetic anisotropy in Nd-Fe-B powder prepared by dynamic hydrogenation disproportionation desorption recombination

    Directory of Open Access Journals (Sweden)

    Masao Yamazaki

    2017-05-01

    Full Text Available Various anisotropic Nd-Fe-B magnetic powders were prepared by the dynamic hydrogenation disproportionation desorption recombination (d-HDDR treatment with different hydrogenation disproportionation (HD times (tHD. The resulting magnetic properties and microstructural changes were investigated. The magnetic anisotropy was decreased with increasing tHD. In the d-HDDR powders with higher magnetic anisotropy, fine (200–600 nm and coarse (600–1200 nm Nd2Fe14B grains were observed. The coarse Nd2Fe14B grains showed highly crystallographic alignment of the c-axis than fine Nd2Fe14B grains. In the highly anisotropic Nd2Fe14B d-HDDR powder, a large area fraction of lamellar-like structures consisting of NdH2 and α-Fe were observed after HD treatment. Furthermore, the mean diameter of the lamellar-like regions, where lamellar-like structures orientate to the same direction in the HD-treated alloys was close to that of coarse Nd2Fe14B grains after d-HDDR treatment. Thus, the lamellar-like regions were converted into the crystallographically aligned coarse Nd2Fe14B grains during desorption recombination treatment, and magnetic anisotropy is closely related to the volume fraction of lamellar-like regions observed after HD treatment.

  2. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    Science.gov (United States)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  3. Identification of new phases in the Zr-Nb-Fe system

    International Nuclear Information System (INIS)

    Granovsky, Marta S.; Arias, Delia E.; Lena, Esteban M.

    1999-01-01

    Intermediate phases in the Zr - rich region of the Zr - Nb - Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microanalysis. The chemical composition ranges of the alloys here studied were (52 - 97) at. % Zr, (14 - 0.9) at. % Nb and (38 - 0.6) at. % Fe. The phases found in this region were the solid solutions α(Zr) and β(Zr), the intermetallic Zr 3 Fe with less than 0.2 at. % Nb in solution, and two new ternary phases: (Zr + Nb) 2 Fe, identified as a cubic Ti 2 Ni - type structure and another compound with composition close to Zr - 12 at. % Nb - 50 at. % Fe. (author)

  4. First-principles study of electronic properties of Si doped FeSe{sub 0.9} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-05-23

    We have performed first-principles study of electronic and superconducting properties of FeSe{sub 0.9-x}Si{sub x} (x = 0.0, 0.05) alloys using Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). In our calculations, we used the local density approximation (LDA) for the exchange correlation potential. Our calculations show that these alloys are nonmagnetic in nature. We found that the substitution of Si at Se site into FeSe{sub 0.9} made subtle affects in the electronic structure with respect to the parent FeSe. The results have been analyzed in terms of changes in the density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe{sub 0.9} and FeSe{sub 0.85}Si{sub 0.05} alloys.

  5. Thermal plasma synthesis of transition metal nitrides and alloys

    International Nuclear Information System (INIS)

    Ronsheim, P.; Christensen, A.N.; Mazza, A.

    1981-01-01

    Applications of arc plasma processing to high-temperature chemistry of Group V nitrides and Si and Ge alloys are studied. The transition metal nitrides 4f-VN, 4f-NbN, and 4f-TaN are directly synthesized in a dc argon-nitrogen plasma from powders of the metals. A large excess of N 2 is required to form stoichiometric 4f-VN, while the Nb and Ta can only be synthesized with a substoichiometric N content. In a dc argon plasma the alloys V 3 Si, VSi 2 , NbSi 2 , NbGe 2 , Cr 3 Si, and Mo 3 Si are obtained from powder mixtures of the corresponding elements. The compounds are identified by x-ray diffraction patterns and particle shape and size are studied by electron microscopy

  6. FeNbB bulk metallic glass: the influence of fluxing technique

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Mihai; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Kumar, Santosh [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Roth, Stefan [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Ram, Shanker [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Yavari, Alain Reza [LTPCM-CNRS, Institut National Politechnique de Grenoble, 1130 Rue de la Piscine, BP 75, Saint Martin d' Heres Campus 38402 (France)

    2008-07-01

    Recently, a new Fe-based BMG containing only 3 elements and a very high boron (Fe{sub 66}Nb{sub 4}B{sub 30}) content was synthesized. The preparation of this BMG was done by employing the copper mould casting method and using the fluxing technique. This new BMG is ferromagnetic, with a Curie temperature around 550 K and a saturation magnetization of 105 emu/g. Differential scanning calorimetry (DSC) investigations revealed a reduced glass transition temperature of 0.58 and an extension of the supercooled liquid region of about 31 K, values which indicate a relatively good thermal stability. Fluxed and not-fluxed master alloys were used to cast samples. The present work aims to discuss, for both kinds of samples, the kinetics of the phase formation using the Kissinger analysis and Johnson-Mehl-Avrami plots, correlated with the results obtained from X-ray diffraction (XRD) of samples with different metastable structures. Additionally, the magnetic behaviour of different phase(s) is discussed.

  7. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  8. Evaluation of mechanical alloying to obtain Cu-Al-Nb shape memory alloy

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Amorim da Silva

    2005-06-01

    Full Text Available The technical viability of preparing a Cu-Al-Nb shape memory alloy by high energy ball milling in a planetary mill has been evaluated. The alloy Cu-13Al-2Nb (wt. (% was prepared by mixing pure elemental powders. A ball-to-powder weight ratio of 6:1 and rotation rate of 150 rpm in argon atmosphere were the main processing parameters. The milling time ranged from 1 to 65 hours. Changes in microstructure as a function of milling time were investigated, using X-ray diffraction analysis and scanning electron microscopy. To investigate the viability of producing sintered parts from milled powders, the conventional powder metallurgy route was used. The milled powders were compacted in a cylindrical die at 900 MPa. Sintering was carried out in argon atmosphere at 850 °C for 6 hours. This study has shown that high energy ball milling, combined with pressing and sintering, can be used to promote the formation of a copper-aluminum solid solution and achieve final sintered densities of 91% of the theoretical density.

  9. Formation of coarse Al13Fe4 particles and their effects in an RS/PM Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Lee, Sunghak; Lee, D.Y.; Ahn, Sangho.

    1991-01-01

    The present paper analyzed the fracture behavior of an RS/PM Al-Fe-V-Si alloy after high temperature exposure, in particular the effects of coarse Al13Fe4 particles formed during the exposure at 480 C. In situ SEM observations of crack opening processes found that brittle cleavage fracture occurred at these coarse Al13Fe4 particles, leading to the reduction in strength, fracture toughness, and ductility of the Al-Fe-V-Si alloy exposed to high temperatures. The results of fracture toughness were also interpreted using a simplified ductile fracture initiation model based on a basic assumption that crack extension starts to occur at a certain critical strain over a microstructurally significant critical distance. This model correlates microstructure to fracture toughness, confirming that the presence of coarse Al13Fe4 particles is the main metallurgical factor for the embrittlement phenomenon in the Al-Fe-V-Si alloy after high temperature exposure. 12 refs

  10. Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Kamiyama, Satoshi

    2011-01-01

    In the present work, we investigated donor-acceptor-pair emission in N-B doped fluorescent 6H-SiC, by means of photoluminescence, Raman spectroscopy, and angle-resolved photoluminescence. The photoluminescence results were interpreted by using a band diagram with Fermi-Dirac statistics. It is shown...... intensity in a large emission angle range was achieved from angle-resolved photoluminescence. The results indicate N-B doped fluorescent SiC as a good wavelength converter in white LEDs applications....

  11. Internal friction of Fe-B alloys neutron irradiated at low temperature

    International Nuclear Information System (INIS)

    Kitajima, Kazunori; Futagami, Koji; Abe, Hironobu; Yoshida, Hiroyuki.

    1975-01-01

    Measurements were made on the internal friction of Fe-B alloys irradiated by neutron at 16 0 K to the dose of 3x10 16 nvt (>1 MeV) and 6x10 17 nvt (thermal). Boron was used to enhance the production of defects by the nuclear transformation B 10 (n,α)Li 7 . Relaxation peaks were found in specimens containing dispersed fine precipitates of NbB 2 in range of B 500--7200 wt ppm and Nb 2000--30000 wt ppm. The most prominent peak is the one with the peak temperature of 169 0 K at the frequency of 264 c/sec. Activation energy determined from the peak shift is 0.28+-0.01 eV, which is nearly equal to that of migration of self-interstitial reported on pure iron. However activation energy of the decay of peaks by annealing is about 0.7 eV. Interpretation was presented that the peak may be attributed to re-orientation of self-interstitials loosely bound to a boron atom. (auth.)

  12. Resistivity changes of some amorphous alloys undergoing nanocrystallization

    Science.gov (United States)

    Barandiarán, J. M.; Fernández Barquín, L.; Sal, J. C. Gómez; Gorría, P.; Hernando, A.

    1993-10-01

    The electrical resistivity of amorphous alloys with compositions: Fe 73.5Nb 3Cu 1Si 13.5B 9, Fe 86Zr 7Cu 1B 6 and Co 80Nb 8B 12 has been studied in the temperature range from 300 to 1100 K, where crystallization occurs. The products of crystallization and the grain size have been studied by X-ray diffraction. In a first step, all the alloys crystallize with small grains of a few nanometers in diameter (nanocrystalline state), and the resistivity behavior at this process accounts for the difference between the amorphous and nanocrystalline phases. The nanocrystalline phases are: α-Fe-Si, α-Fe and fcc Co for the three compounds studied respectively. A second process, at which grain growth and precipitation of intermetallic compounds and borides takes place, has been found for all the alloys. The resistivity is sensitive, not only to the total transformed sample amount, but to the topological distribution of the crystalline phases, and therefore shows a more complex behavior than other well established techniques, as differential scanning calorimetry. This supplementary information given by the resistivity is also discussed.

  13. Effects of the Nanostructured Fe-V-Nb Modificators on the Microstructure and Mechanical Properties of Si-Mn Steel

    Directory of Open Access Journals (Sweden)

    Tiebao Wang

    2012-01-01

    Full Text Available The nanostructured Fe-V-Nb master alloy was prepared in vacuum rapid quenching furnace and then was added in the steel melts as modificators before casting. Next, the effects of the nanostructured Fe-V-Nb modificators on the microstructure and mechanical properties of the steel were studied. The results show that the grain size of the steel has been effectively refined, which is mainly because the dispersed nanoscale particles can produce more nucleation sites during the solidification of the liquid steel. Tensile properties and fracture morphology reveal that the yield strength and toughness of the steel modified by nanostructured Fe-V-Nb modificators are better than that of the microalloyed steel. TEM analysis shows that vanadium and niobium in the modificators exist in the form of (V, Nb C which effectively increases the nucleation rate and leads to better mechanical properties of the steel.

  14. Improved magnetoimpedance and mechanical properties on nanocrystallization of amorphous Fe{sub 68.5}Si{sub 18.5}Cu{sub 1}Nb{sub 3}B{sub 9} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Trilochan [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Proof and Experimental Establishment, Balasore 756025 (India); Majumdar, B. [Defence Metallurgical Research Laboratory, Hyderabad 500068 (India); Srinivas, V., E-mail: veeturi@iitm.ac.in [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Srinivas, M. [Defence Metallurgical Research Laboratory, Hyderabad 500068 (India); Nath, T.K. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Agarwal, G. [Department of Metallurgical Engineering, Banaras Hindu University, Varanasi 221005 (India)

    2013-10-15

    The effect of heat-treatment temperature on evolution of microstructures, mechanical and soft magnetic properties and magnetoimpedance (MI) effect in rapidly solidified Fe{sub 68.5}Si{sub 18.5}Cu{sub 1}Nb{sub 3}B{sub 9} ribbons, has been investigated. The as-quenched ribbons were subjected to heat-treatment at different temperatures between 400 and 600 °C for 1 h under high vacuum. Detailed structural studies on the ribbons heat-treated at and above 525 °C revealed the presence of nanocrystalline Fe{sub 3}Si phases embedded in a residual amorphous matrix. The ribbon heat-treated at 550 °C temperature exhibits maximum ductility, maximum relative permeability of 4.8×10{sup 4}, minimum coercivity of 0.1 Oe, and maximum MI value of 62%. The enhanced MI effect is believed to be related to the magnetic softening of 550 °C heat-treated ribbons. However, the magnetic properties and MI effect deteriorated in the samples heat-treated above 550 °C due to the coarsening of grain sizes. The soft magnetic behavior of the nanocrystalline ribbons are discussed in the light of random anisotropy model, whereas the MI effect is discussed through standard skin effect in electrodynamics. - Highlights: • Microstructure was tuned by controlled crystallization to obtain superior magnetic properties. • Improved MI in the heat-treated ribbons is attributed to the superior electromagnetic properties. • Correlation between MI and magnetic properties of nc-Fe{sub 68.5}Si{sub 18.5}Cu{sub 1}Nb{sub 3}B{sub 9} is established. • All the observed features are consistent with the proposed random anisotropy model.

  15. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    International Nuclear Information System (INIS)

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  16. Moessbauer spectroscopy characterization of Zr-Nb-Fe phases

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C.P. [CONICET, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)]. E-mail: ciramos@cnea.gov.ar; Granovsky, M.S. [CAC-CNEA, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina); Saragovi, C. [CAC-CNEA, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2007-02-01

    The aim of this work was the characterization of the ternary phases and of those coming from the corresponding binary systems in the Zr-Nb-Fe diagram by means of Moessbauer spectroscopy. This is part of a complete study involving a tentative isothermal section at 900 deg. C of the center of the Zr-Nb-Fe diagram which will be published elsewhere. Zr-Nb-Fe alloys with Nb contents between 5 and 50 at% and Fe contents between 10 and 60 at% were analyzed after a heat treatment at 900 deg. C for 4 month. Moessbauer characterization of the phases was complemented by optical and scanning electron microscopies, X-ray diffraction and electron microprobe analysis. From the obtained results it can be inferred that Fe in both of the Laves phases present in this system (Zr(FeNb){sub 2} and (ZrNb)Fe{sub 2}) sees different environments, producing quadrupole splitting and hyperfine field distributions, respectively. Two types of body centered cubic {beta} phases (Zr-rich and Nb-rich) were found having noticeable differences in their Moessbauer parameters. Furthermore it was shown that the ternary Fe(NbZr){sub 2} compound would show magnetic character at low temperatures. Concentration dependence of the hyperfine parameters and their relations with the lattice parameters contributed to the structural characterization of the phases.

  17. Moessbauer spectroscopy characterization of Zr-Nb-Fe phases

    International Nuclear Information System (INIS)

    Ramos, C.P.; Granovsky, M.S.; Saragovi, C.

    2007-01-01

    The aim of this work was the characterization of the ternary phases and of those coming from the corresponding binary systems in the Zr-Nb-Fe diagram by means of Moessbauer spectroscopy. This is part of a complete study involving a tentative isothermal section at 900 deg. C of the center of the Zr-Nb-Fe diagram which will be published elsewhere. Zr-Nb-Fe alloys with Nb contents between 5 and 50 at% and Fe contents between 10 and 60 at% were analyzed after a heat treatment at 900 deg. C for 4 month. Moessbauer characterization of the phases was complemented by optical and scanning electron microscopies, X-ray diffraction and electron microprobe analysis. From the obtained results it can be inferred that Fe in both of the Laves phases present in this system (Zr(FeNb) 2 and (ZrNb)Fe 2 ) sees different environments, producing quadrupole splitting and hyperfine field distributions, respectively. Two types of body centered cubic β phases (Zr-rich and Nb-rich) were found having noticeable differences in their Moessbauer parameters. Furthermore it was shown that the ternary Fe(NbZr) 2 compound would show magnetic character at low temperatures. Concentration dependence of the hyperfine parameters and their relations with the lattice parameters contributed to the structural characterization of the phases

  18. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    Science.gov (United States)

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  19. Release of Si from silicon, a ferrosilicon (FeSi alloy and a synthetic silicate mineral in simulated biological media.

    Directory of Open Access Journals (Sweden)

    Gunilla Herting

    Full Text Available Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG, an alloy (ferrosilicon, FeSi and a mineral (aluminium silicate, AlSi has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH4 in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media.

  20. Study of the magnetic and structural properties of nanostructured powders of Nd{sub 2}Fe{sub 14}B mechanically alloyed

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, L.E.; Perez Alcazar, G.A. [Department of Physics, University of Valle, A.A. 25360, Cali (Colombia); Rojas, Y.A.; Bustos, H. [Department of Physics, University of Tolima, A.A. 546, Ibague (Colombia); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS6087, 72085 Le Mans Cedex 9 (France); Oyola Lozano, D.

    2007-07-01

    In this work we report the magnetic and structural properties obtained by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction, of powder of Nd{sub 2}Fe{sub 14}B prepared by mechanical alloying. The mixtures were ball milled during 48 hours and submitted to heat treatments between 500 and 900 C under an argon atmosphere. Structural parameters were derived from high statistics X-ray patterns. The Moessbauer spectra registered at 300 K for samples without heat treatment were fitted by means of a sextet and a hyperfine field distribution, associated to a residual pure iron phase ({alpha}-Fe) and a disordered iron-based phase, respectively. From the spectra at 300 K the formation of the Fe{sub 3}C phase is observed for samples heat treated at 900 C. A quenching above 900 C accelerates the formation of the Fe{sub 3}C phase. The hysteresis loops allow to conclude that these samples behave as soft ferromagnets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  2. New developments in NdFeB-based permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z.W.

    2011-01-01

    NdFeB based alloys have been used as permanent magnets for almost thirty years. The recent researches aim at optimizing the composition, microstructure and properties, reducing cost, and developing new processes. The demand for sintered magnet is increasing. Efforts are directed towards improving properties by controlling grain boundary diffusion, minimizing the rare earth (RE) content and also improving production yield. As for bonded magnets, to enhance remanence and energy product, nanocrystalline powders are employed. High thermal stability has been realized by mixing NdFeB with hard ferrite powders. For nanocrystalline and nano composite NdFeB based alloys, both compositional modification and microstructural optimization have been carried out. New approaches have also been proposed to prepare NdFeB magnets with idea structure. Surfactant assisted ball milling is a good top-down method to obtain nano sized hard magnetic particles and anisotropic nano flakes. Synthesis of NdFeB nanoparticles and NdFeB/Fe (Co) nano composite powders by bottom-up techniques, such as chemical reduction process and co-precipitation, has been successful very recently. To assemble nanocrystalline NdFeB powders or nanoparticles into bulk magnets, various novel consolidation processes including spark plasma sintering and high velocity press have been employed. Hot deformation can be selected as the process to achieve anisotropy in nanocrystalline magnets. (author)

  3. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  4. Preparation of Nb-Si phases by cathode sputtering, in particulat the superconducting phase of epitactically grown A15-Nb3Si

    International Nuclear Information System (INIS)

    Siefken, U.

    1979-01-01

    The search for new superconducting materials with high transition temperatures is concentrated on alloys with a cubic A15 structure (Cr 3 Si structure). In this paper we present the preparation of metastable A15-Nb 3 Si which is expected to have a very high transition temperature Tsub(c). The properties of the A15 structure which are relevant for superconductivity are described, in particular the orthogonal chains as the most important structural characteristic, metastability, and the relation between lattice defects and transition temperature. For target compositions of 75% Nb / 25% Si and 80% Nb / 20% Si A15-Nb 3 Si transition temperatures of Tsub(c) = 5.3 K and Tsub(c) = 7.5 K have been measured respectively, with lattice constants asub(o) = 5.19 A and asub(o) = 5.18 A. (orig.) [de

  5. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  6. Study of the magnetic interaction in nanocrystalline Pr-Fe-Co-Nb-B permanent magnets

    Science.gov (United States)

    Dospial, M.; Plusa, D.; Ślusarek, B.

    2012-03-01

    The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity. The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.

  7. Mn and Fe Impurities in Si$_{1-x}$ Ge$_{x}$ alloys

    CERN Multimedia

    2002-01-01

    Following our investigations of Mn and Fe impurities in elemental semiconductors and in silicon in particular by means of on-line $^{57}$Fe Mössbauer spectroscopy, utilizing radioactive $^{57}$Mn$^{+}$ ion beams at ISOLDE, we propose to extend these studies to bulk and epitaxially-grown Si$_{1-x}$Ge$_{x}$ alloys. In these materials, although already successfully employed in electronic devices, little is known about point defects and important harmful 3d impurities. The experiments aim to determine a variety of fundamental properties: The lattice location of ion-implanted Mn/Fe, the electronic and vibrational properties of dilute Fe impurities in different lattice sites, the charge-state and composition dependence of the diffusivity of interstitial Fe on an atomic scale, the reactions and formation of complexes with lattice defects created by the $^{57}$Mn implantation or by the recoil effect in the nuclear decay to the Mössbauer state of $^{57m}$Fe. Feasibility studies in 2003 indicate that these aims can b...

  8. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  9. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  10. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  11. Stress impedance effects in flexible amorphous FeCoSiB magnetoelastic films

    International Nuclear Information System (INIS)

    Zhang Wanli; Peng Bin; Su Ding; Tang Rujun; Jiang Hongchuan

    2008-01-01

    Amorphous FeCoSiB films were deposited on the flexible polyimide substrates (Kapton type (VN)) by DC magnetron sputtering. Stress impedance (SI) effects of the flexible amorphous FeCoSiB magnetoelastic films were investigated in details. The results show that a large stress impedance effect can be observed in the flexible amorphous FeCoSiB magnetoelastic films. And the results also show a bias magnetic field plays an important role in the stress impedance of FeCoSiB films. Applied a bias magnetic field during depositing can induce obvious in-plane anisotropy in the FeCoSiB films, and a larger SI effect can be obtained with a stronger anisotropy in FeCoSiB films. Argon pressure has a significant effect on the SI effect of the FeCoSiB films. The SI of the FeCoSiB films reaches a maximum of 7.6% at argon pressure of 1.5 Pa, which can be explained by the change of residual stress in FeCoSiB films

  12. Crystallization kinetics of Fe-B based amorphous alloys studied in-situ using X-rays diffraction and differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Santos D.R. dos

    2001-01-01

    Full Text Available The crystallization processes for the amorphous metallic alloys Fe74B17Si2Ni4Mo3 and Fe86B6Zr7Cu1 (at. % were investigated using X-rays diffraction measurements performed in-situ during Joule-heating, with simultaneous monitoring of the electrical resistance. We determined the main structural transitions and crystalline phases formed during heating, and correlated these results to the observed resistance variations. As the annealing current is increased, the resistance shows an initial decrease due to stress relaxation, followed by a drop to a minimum value due to massive nucleation and growth of alpha-Fe nanocrystals. Further annealing causes the formation of small fractions of Fe-B, B2Zr or ZrO2, while the resistance increases due to temperature enhancement. In situ XRD measurements allowed the identification of metastable phases, as the gamma-Fe phase which occurs at high temperatures. The exothermal peaks observed in the differential scanning calorimetry (DSC for each alloy corroborate the results. We also have performed DSC measurements with several heating rates, which allowed the determination of the Avrami exponent and crystallization activation energy for each alloy. The obtained activation energies (362 and 301 kJ/mol for Fe-B-Zr-Cu; 323 kJ/mol for Fe-B-Si-Ni-Mo are comparable to reported values for amorphous iron alloys, while the Avrami exponent values (n = 1.0 or n = 1.2 are consistent with diffusion controlled crystallization processes with nucleation rates close to zero.

  13. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  14. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  15. Electronic Structures Localized at the Boron Atom in Amorphous Fe-B and Fe-B-P Alloys

    Science.gov (United States)

    Yasuda, Hidehiro; Nakayama, Hiroshi; Fujita, Hiroshi

    1989-11-01

    The electronic structures localized at the B in amorphous Fe-B and Fe-B-P alloys and their crystallized alloys were studied by Auger valence electron spectroscopy and the states of solute B are discussed based on the change in the degree of covalent bonding and the charge transfer between the Fe and B atoms. In amorphous phases, the charge transfers from Fe to B above 15at%B where B atoms occupy the substitutionallike situations, and from B to Fe below 15at%B where B atoms occupy the interstitiallike situations. Magnetic properties depend on such states of solute B. In crystalline phases, covalent bonding becomes dominant because the electron excitation occurs to the B2p state. Consequently, amorphous phases are more metallic in character than crystalline phases and amorphous structures are stabilized by a mixture of more than two different bonding states.

  16. Surface modification and its role in the preparation of FeSi gradient alloys with good magnetic property and ductility

    Science.gov (United States)

    Yu, Haiyuan; Bi, Xiaofang

    2018-04-01

    Realization of the effective Si penetration at a lower processing temperature is a challenge, but of significance in reducing the strict requirements for the equipment and realizing cost-cutting in production. In this work, we have modified the surface microstructure of Fe-3 wt%Si alloy by using surface mechanical attrition treatment. The modified surface microstructure is characteristic of nanocrystalline, which is found to significantly enhance the efficiency of subsequent Si penetration into the alloy, and successively leading to the decrease of penetration temperature up to 200 °C. As a consequence, the Si gradient distribution across thickness can be readily controlled by changing penetration time, and FeSi alloys with various gradients are prepared by chemical vapor deposition along with subsequent annealing process. The dependence of magnetic and mechanical properties on Si gradient for demonstrates that the increase of Si gradient reduces core losses, especially at higher frequencies, and meanwhile improves ductility of FeSi alloys as well. The mechanism underlying the effect of Si gradient is clarified by combining magnetostriction measurement and domain structure observations. This work provides a facile and effective way for achieving gradient FeSi alloys with good magnetic property and ductility.

  17. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  18. Role of Nb in glass formation of Fe–Cr–Mo–C–B–Nb BMGs

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Fuqiang, E-mail: fuqiangzhai@gmail.com [Departament Física Aplicada, EETAC, Universitat Politècnica Catalunya-BarcelonaTech, Esteve Terradas 5, 08860 Castelldefels (Spain); Pineda, Eloi [Departament Física i Enginyeria Nuclear, ESAB, Universitat Politècnica Catalunya- BarcelonaTech, Esteve Terradas 8, 08860 Castelldefels (Spain); Duarte, M. Jazmín [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany); Crespo, Daniel [Departament Física Aplicada, EETAC, Universitat Politècnica Catalunya-BarcelonaTech, Esteve Terradas 5, 08860 Castelldefels (Spain)

    2014-08-01

    Highlights: • The Fe{sub 46}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub 4} BMG of 3 mm Ø was produced for the first time. • The compressive strength of Fe–Cr–Mo–C–B–Nb BMG is reported. • The fragility parameter of Fe–Cr–Mo–C–B–Nb BMG was studied. • The microscopic mechanism is explained by E{sub g}, E{sub x}, E{sub p} and m parameters. - Abstract: A new Fe-based bulk metallic glass with superior glass-forming ability (GFA), Fe{sub 46}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub 4}, was developed based on the Fe–Cr–Mo–C–B alloy system by minor addition of Nb. The effects of Nb addition on glass formation of the Fe{sub 50−x}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub x} (x = 0, 2, 4 and 6 at.%) alloys were investigated. The optimum addition content of Nb was determined as 4 at.% by X-ray diffraction and differential scanning calorimeter analysis. A fully amorphous rod sample with 3 mm in diameter was produced by using commercial-grade raw materials and a copper mold casting technique. This alloy shows an ultimate compressive strength of 1920 MPa and Vicker’s hardness 1360 H{sub V}, which is two to three times that of conventional high strength steel and suggests a promising potential for applications combining outstanding corrosion and wear resistance properties. The crystallization kinetics studies found that the activation energies for glass transition, onset of crystallization and crystallization peak were higher than those of other reported Fe-based bulk metallic glasses. The value of the fragility parameter m for the Fe{sub 46}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Nb{sub 4} alloy was calculated to be 34, indicating that the Fe–Cr–Mo–C–B–Nb alloy system is a strong glass former according to the Angell’s classification scheme. It is inferred that the more sequential change in the atomic size, the generation of new atomic pairs with large negative heats of mixing and the amount of oxygen in the molten liquid

  19. Thermal treatment of the Fe78Si9B13 alloy in it amorphous phase studied by means of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Cabral P, A.; Lopez, A.; Garcia S, F.

    2003-01-01

    The magnetic and microhardness changes, dependents of the temperature that occur in the Fe 78 Si 9 B 13 alloy in it amorphous state were studied by means of the Moessbauer spectroscopy and Vickers microhardness. According to the Moessbauer parameters and in particular that of the hyperfine magnetic field, this it changes according to the changes of the microhardness; i.e. if the microhardness increases, the hyperfine magnetic field increases. The registered increment of hardness in the amorphous state of this alloy should be considered as anomalous, according to the prediction of the Hall-Petch equation, the one that relates negative slopes with grain sizes every time but small. (Author)

  20. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb{sub 2}MB{sub 2} (M=Fe, Ru, Os) from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: Boniface.Fokwa@ac.rwth-aachen.de

    2014-03-15

    The Nb{sub 2}FeB{sub 2} phase (U{sub 3}Si{sub 2}-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128, a twofold superstructure of U{sub 3}Si{sub 2}-type) with distorted Nb-layers and Os{sub 2}-dumbbells was recently achieved, “Nb{sub 2}RuB{sub 2}” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb{sub 2}FeB{sub 2} and Nb{sub 2}OsB{sub 2}, but also predict “Nb{sub 2}RuB{sub 2}” to crystalize with the Nb{sub 2}OsB{sub 2} structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb{sub 2}FeB{sub 2}, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb{sub 2}FeB{sub 2} (U{sub 3}Si{sub 2} structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb{sub 2}RuB{sub 2}” is predicted to crystallize with the recently discovered Nb{sub 2}OsB{sub 2} twofold superstructure (space group P4/mnc, no. 128) of U{sub 3}Si{sub 2} structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be

  1. Effect of Si on the reversibility of stress-induced martensite in Fe-Mn-Si shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, N. [Centre for Material and Fibre Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Dunne, D.P., E-mail: druce_dunne@uow.edu.au [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2010-12-15

    Fe-Mn-Si is a well-characterized ternary shape memory alloy. Research on this alloy has consistently shown that the addition of 5-6 wt.% Si is desirable to enhance the reversibility of stress-induced martensite vis-a-vis shape memory. This paper examines the effect of Si on the morphology and the crystallography of the martensite in the Fe-Mn-Si system. It is concluded that the addition of Si increases the c/a ratio of the martensite, reduces the transformation volume change and decreases the atomic spacing difference between the parallel close-packed directions in the austenite-martensite interface (habit) plane. It is proposed that, in addition to austenite strengthening, Si enhances reversibility by reducing the volume change and the interfacial atomic mismatch between the martensite and the austenite. Although shape memory is improved, transformation reversibility remains limited by the necessary misfit dislocations that accommodate the atomic spacing differences in the interface.

  2. Effect of Si on the reversibility of stress-induced martensite in Fe-Mn-Si shape memory alloys

    International Nuclear Information System (INIS)

    Stanford, N.; Dunne, D.P.

    2010-01-01

    Fe-Mn-Si is a well-characterized ternary shape memory alloy. Research on this alloy has consistently shown that the addition of 5-6 wt.% Si is desirable to enhance the reversibility of stress-induced martensite vis-a-vis shape memory. This paper examines the effect of Si on the morphology and the crystallography of the martensite in the Fe-Mn-Si system. It is concluded that the addition of Si increases the c/a ratio of the martensite, reduces the transformation volume change and decreases the atomic spacing difference between the parallel close-packed directions in the austenite-martensite interface (habit) plane. It is proposed that, in addition to austenite strengthening, Si enhances reversibility by reducing the volume change and the interfacial atomic mismatch between the martensite and the austenite. Although shape memory is improved, transformation reversibility remains limited by the necessary misfit dislocations that accommodate the atomic spacing differences in the interface.

  3. The influence of ingot annealing on the corrosion resistance of a PrFeCoBNbP alloy

    International Nuclear Information System (INIS)

    Oliveira, M.C.L.; Takiishi, H.; Faria, R.N.; Costa, I.

    2008-01-01

    The influence of the annealing time on the corrosion resistance of a Pr-Fe-Co-B-Nb alloy with the addition of 0.1 wt% P was investigated here using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The cast ingot alloys were annealed at 1100 deg. C for 10, 15 and 20 h. The specimens were immersed for 30 days in naturally aerated 0.02 M Na 2 HPO 4 solution at room temperature, during which period the evolution of the electrochemical behavior was assessed using EIS. The results indicated that the corrosion resistance of the Pr 14 Fe bal Co 16 B 6 Nb 0.1 P 0.25 alloy was related to the annealing time and, hence, to its microstructure. Annealing at 1100 deg. C for 10 h was insufficient to eliminate the Fe-α phase from the alloy microstructure, whereas annealing for 15 and 20 h removed an increasing amount of Fe-α phase, thereby increasing the alloy's corrosion resistance

  4. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    Science.gov (United States)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  5. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  6. Consolidation of mechanically alloyed nanocrystalline Cu-Nb-ZrO{sub 2} powder by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Eymann, K., E-mail: Konrad.Eymann@tu-dresden.de [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany); Riedl, T.; Bram, A.; Ruhnow, M.; Boucher, R.; Kirchner, A.; Kieback, B. [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Solid solution of Cu-Nb was achieved by mechanically alloying Cu, Nb and ZrO{sub 2}. Black-Right-Pointing-Pointer In as-milled state the Cu-Nb-ZrO{sub 2} powders show an average Cu grain size of 16 nm. Black-Right-Pointing-Pointer Mechanical and electrical properties are studied in dependence of thermal exposure. Black-Right-Pointing-Pointer Compaction at 1000 Degree-Sign C/1 min using SPS increases Cu grain size to 43 nm. Black-Right-Pointing-Pointer Bulk samples reach a maximum IACS of 16% and 98% relative density. - Abstract: This work presents the synthesis of ultra fine grained high-strength Cu-Nb-ZrO{sub 2} bulk samples via mechanical alloying and spark plasma sintering. Technologically relevant properties such as density, micro-hardness, and electrical conductivity were studied in terms of the compaction parameters, in particular the sintering temperature and holding time. An optimum process parameter combination has been found T = 950 Degree-Sign C, t = 1 min, and 65 MPa, which yield a micro-hardness of 325 HV, 97.5% relative density, and electrical conductivity of 10% IACS. The dependence of these properties on the compaction parameters is explained by analyzing the microstructure, i.e. grain size, presence and distribution of phases, and porosity, with X-ray diffraction, optical and electron microscopy as well as with an Archimedes densitometer.

  7. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    Science.gov (United States)

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  8. Amorphization and evolution of magnetic properties during mechanical alloying of Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30}: Dependence on starting boron microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, L.M.; Blázquez, J.S., E-mail: jsebas@us.es; Ipus, J.J.; Conde, A.

    2014-02-05

    Highlights: • Mechanical alloying of Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30} leads to amorphous phase with B inclusions. • Using optimized amorphous B, amorphization occurs earlier. • B is more effectively introduced in the matrix using amorphous B. • Magnetoelasic contribution to effective magnetic anisotropy is negligible. -- Abstract: Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30} composition was mechanically alloyed using three different types of boron powders in the starting mixture: crystalline β-B, commercial amorphous B and optimized amorphous B via ball milling. Using optimized amorphous B, amorphization process of the alloy is more efficient but milling to optimize amorphous B introduces some iron contamination. Boron inclusions (100–150 nm in size) remain even after long milling times. However, using amorphous boron reduces the fraction of boron distributed as inclusions to ∼40% of the total B. Thermal stability at the end of the milling process is affected by the initial boron microstructure. Coercivity is reduced a half using amorphous B instead of crystalline B in the starting mixture.

  9. Magnetic properties evolution of a high permeability nanocrystalline FeCuNbSiB during thermal ageing

    Science.gov (United States)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-07-01

    It is found to be one of the major issues while designing an aircraft, mass and volume have to be reduced in order to achieve energy efficiency. This leads to a high compactness of the electrical components which enables them to withstand at high temperatures. The magnetic components which are responsible for the electrical energy conversion, therefore exposed to high temperatures in working conditions. Their thermal ageing becomes a serious problem and deserves a particular attention. The FeCuNbSiB nanocrystalline materials have been selected for this ageing study because they are used in power electronic systems very frequently. The objective of the study is based on monitoring the magnetic characteristics under the condition of several continuous thermal ageing (100, 150, 200 and 240 °C). An important, experimental work of magnetic characterization is being done through a specific monitoring protocol and X-ray diffraction (XRD) along with magnetostriction measurements was carried out to support the study of the evolution of the anisotropy energies with aging. The latter is discussed in this paper to explain and give the hypothesis about the aging phenomena. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  10. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    Science.gov (United States)

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  11. A physical model of the effect of irreversible changes in structure and properties of amorphous alloys caused by low-temperature treatment

    International Nuclear Information System (INIS)

    Zajchenko, S.G.; Glezer, A.M.

    2002-01-01

    A low temperature ΔT-effect physical model for amorphous metallic alloys (AMA) is developed. Using Ni-P, Fe-Co-Si-B, Co-Ni-Fe-Si-B, Fe-Si-B, Fe-Ni-Si-B, Fe-Cu-Nb-Si-B alloys the studies are carried out which results support basic concepts of the theory, namely: a motive force for atom drift, resulting in irreversible changes of a short-range order, is at the heart of longitudinal oscillations of AMA ribbon initiate the process of changing the initial short-range order. Variations of topological and short-range orders are responsible for a decrease in yield strength and Young modulus, a Curie point shift, an increase of saturation magnetization at an insignificant drop of coercive force or a significant drop of coercive force at a slight increase of saturation magnetization [ru

  12. Moessbauer study of proton-exchanged LiNbO3:Fe

    International Nuclear Information System (INIS)

    Engelmann, H.; Andler, G.; Dezsi, I.

    1990-01-01

    Topotactic proton exchange (Li against H) can be achieved by treating LiBnO 3 with appropriate acids. In order to investigate the effect of proton exchange on Fe-impurities we studied LiNbO 3 :Fe powder material treated in sulphuric acid and LiNbO 3 :Fe single crystals treated in benzoic acid by Moessbauer spectroscopy. During the topotactic ion exchange only the Li-ions are exchanged for protons, whereas the Fe-impurities are retained in the material. (orig.)

  13. Comparison of Two Powder Processing Techniques on the Properties of Cu-NbC Composites

    Directory of Open Access Journals (Sweden)

    B. D. Long

    2014-01-01

    Full Text Available An in situ Cu-NbC composite was successfully synthesized from Cu, Nb, and C powders using ball milling and high pressure torsion (HPT techniques. The novelty of the new approach, HPT, is the combination of high compaction pressure and large shear strain to simultaneously refine, synthesize, and consolidate composite powders at room temperature. The HPTed Cu-NbC composite was formed within a short duration of 20 min without Fe contamination from the HPT’s die. High porosity of 3–9%, Fe and niobium oxidations, from grinding media and ethanol during ball milling led to low electrical conductivity of the milled Cu-NbC composite. The electrical conductivity of the HPTed Cu-NbC composite showed a value 50% higher than that of milled Cu-NbC composite of the same composition.

  14. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  15. Development of NdFeB magnet through hydrogen decrepitation

    International Nuclear Information System (INIS)

    Akhtar, S.; Farooque, M.; Haider, A.; Ahmad, Z.

    2009-01-01

    Neodymium based magnets are the powerful permanent magnet of today. This paper will discuss iron based rare earth magnets. NdFeB sintered magnet material has been developed. The magnets are produced by powder metallurgy route involving hydrogen decrepitation technique for making fine powder. After melting and casting, the NdFeB alloy is subject to hydrogen atmosphere. Hydrogen slowly absorbs into the solid alloy and makes it brittle, which upon milling becomes fine powder. Hydrogen is then removed by placing the powder at temperature around 800 deg. C under vacuum. Then the powders are pressed under isostatic conditions and sintered at temperature range of 1020-1050 deg. C. Post sintering is done at 800 deg. C and 580 deg. C followed by quenching. Energy product in the range of 8 MGOe is achieved. (author)

  16. Thermal treatment of the Fe{sub 78} Si{sub 9} B{sub 13} alloy and the analysis of it magnetic properties through Moessbauer spectroscopy and Positronium annihilation; Tratamiento termico de la aleacion Fe{sub 78} Si{sub 9} B{sub 13} y el analisis de sus propiedades magneticas mediante Espectroscopia de Moessbauer y Aniquilacion de positronio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A

    2005-07-01

    The present work is divided in five chapters. In the first one a general vision of the amorphous alloys is given from antecedents, structure, obtaining methods, properties and problems that at the moment, focusing us in a certain moment to the iron base alloys and the anomalous problem of hardness that it presents the alloy Fe{sub 78}Si{sub 9}B{sub 13} like previously mention us. The second chapter tries on the basic theory of the techniques of Moessbauer spectroscopy and Positron Annihilation spectroscopy, used for the characterization of our alloy as well as the complementary technique of X-ray diffraction (XRD) to observe that the amorphous phase was even studying. The third chapter describes the experimental conditions that were used to study the alloy Fe{sub 78}Si{sub 9}B{sub 13} in each one of their thermal treatments. In the fourth chapter the obtained results and their discussion are presented. In the fifth chapter the conclusions to which were arrived after analyzing the results are presented. (Author)

  17. Structural Investigation of Rapidly Quenched FeCoPtB Alloys

    International Nuclear Information System (INIS)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.

    2011-01-01

    Two sets of Fe 52-x Co x Pt 28 B 20 (x = 0-26 at.%) and Fe 60-x Co x Pt 25 B 15 (x = 0-40 at.%) alloys were prepared in the form of ribbons by the rapid quenching technique. Structure of the samples was characterized by Moessbauer spectroscopy and X-ray diffraction. In the as-quenched alloys the amorphous phase coexisted with the fcc-(Fe,Co)Pt disordered solid solution. Differential scanning calorimetry measurements performed in the range 50-720 ± C revealed one or two exothermal peaks. The magnetically hard ordered L1 0 (Fe,Co)Pt and magnetically soft (Fe,Co) 2 B nanocrystalline phases were formed due to thermal treatment of the alloys. The influence of Co content on the structure of the as-quenched and heated alloys was studied. (authors)

  18. Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy

    Science.gov (United States)

    Wu, Yingwei; Peng, Kun

    2018-06-01

    Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.

  19. Microstructure and mechanical properties of Ti–22Al–25Nb alloy fabricated by vacuum hot pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianbo, E-mail: jiajianbohit@163.com [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical Engineering, Beihua University, Jilin 132021 (China); Zhang, Kaifeng; Jiang, Shaosong [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-20

    A study has been undertaken to verify the feasibility of using a powder metallurgy (P/M) approach to fabricate Ti–22Al–25Nb alloys. Pre-alloyed powders with a nominal composition of Ti–22Al–25Nb (at%) obtained by argon atomization were sieved to the spherical size less than 180 μm and used for the fabrication of P/M Ti–22Al–25Nb alloys via hot pressing in vacuum. Vacuum hot pressing sintering was carried out in a temperature range of 950–1200 °C with a pressure of 35 MPa for 1 h followed by furnace cooling. Microstructure and phase composition examinations of the as-atomized powders and hot pressed (HP'ed) samples were conducted by applying optical microscopy, back-scatter electron imaging and X-ray diffraction analysis. Tensile tests were studied at room temperature and 650 °C, respectively. The results showed that all HP'ed samples were composed of coarse equiaxed B2 grains, fine lamellar O phase inside the B2 grains, and some α{sub 2} along B2 grain boundaries. The elongations of HP'ed samples were less than 3.95%, indicating the bad ductility at room temperature. However, the elongations were improved as the tensile temperature increased to 650 °C. The sample sintered at 1050 °C exhibited a better ductility with the elongation of 7.97% at 650 °C than that of other samples.

  20. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  1. Preparation of U-Si/U-Me (Me = Fe, Ni, Mn) aluminum-dispersion plate-type fuel (miniplates) for capsule irradiation

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Itoh, Akinori; Akabori, Mitsuo

    1993-06-01

    Details of equipment installed, method adopted and final products were described on the preparation of uranium silicides and other fuels for capsule irradiation. Main emphasis was placed on the preparation of laboratory-scale aluminum-dispersion plate-type fuel (miniplates) loaded to the first and second JMTR silicide capsules. Fuels contained in the capsules are as follows: (A) uranium-silicide base alloys U 3 Si 2 , Mo- added U 3 Si 2 , U 3 Si 2 +U 3 Si, U 3 Si 2 +USi, U 3 Si, U 3 (Si 0.8 Ge 0.2 ), U 3 (Si 0.6 Ge 0.4 ) (B) U 6 Me-type alloys with higher uranium density U 6 Mn, U 6 Ni, U 6 (Fe 0.4 Ni 0.6 ), U 6 (Fe 0.6 Mn 0.4 ) The powder-metallurgical picture-frame method was adopted and laboratory-scale technique was established for the preparation of miniplates. As a result of inspection for capsule irradiation, miniplates were prepared to meet the requirements of specification. (author)

  2. Improved soft magnetic properties in nanocrystalline FeCuNbSiB Nanophy{sup ®} cores by intense magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Madugundo, Rajasekhar; Geoffroy, Olivier [Univ. Grenoble Alpes, Inst NEEL, F-38000 Grenoble (France); CNRS, Inst NEEL, F-38000 Grenoble (France); Grenoble Electrical Engineering Laboratory (G2Elab), Bâtiment GreEn-ER, 21 avenue des martyrs, 38031 Grenoble (France); Waeckerle, Thierry [Aperam Research Center, 58160 Imphy (France); Frincu, Bianca; Kodjikian, Stéphanie [Univ. Grenoble Alpes, Inst NEEL, F-38000 Grenoble (France); CNRS, Inst NEEL, F-38000 Grenoble (France); Rivoirard, Sophie, E-mail: sophie.rivoirard@neel.cnrs.fr [Univ. Grenoble Alpes, Inst NEEL, F-38000 Grenoble (France); CNRS, Inst NEEL, F-38000 Grenoble (France)

    2017-01-15

    The effect of high external magnetic field (up to 7 T) on soft magnetic properties in nanocrystalline Fe{sub 74.1}Si{sub 15.7}Nb{sub 3.1}B{sub 6.1}Cu{sub 1} Nanophy{sup ®} cores has been investigated. The as-quenched amorphous ribbons were nanocrystallized by annealing between 540 and 620 °C in transverse magnetic field. By varying annealing field from 0 to 7 T, induced anisotropy ranging from as low as 4 J/m{sup 3} to as high as 41 J/m{sup 3} is obtained. It is responsible for an increase in the cut-off frequency up to 300 kHz when the material is submitted to dynamic magnetic excitations. A minimum coercivity of 0.74 A/m is observed in the core annealed in 1 T associated to low losses. The relative permeability decreases on increasing the annealing field intensity with a minimum value of 13,654 at 7 T. Such permeability level opens the way to new applications of the Nanophy{sup ®} alloys. - Highlights: • Effect of magnetic field (0–7 T) in nanocrystalline Nanophy{sup ®} cores was investigated. • Amorphous ribbons were annealing between 540 and 620 °C in transverse magnetic field. • Induced anisotropy ranging from 4 to 41 J/m{sup 3} was obtained by annealing in field 0−7 T. • Permeability ranging between 135,122 and 13,654 was obtained. • A minimum coercivity of 0.74 A/m was observed.

  3. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Erlei [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Kemin, E-mail: zhangkm@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zou, Jianxin [National Engineering Research Center of Light Alloys Net Forming & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-30

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10{sup −5} A cm{sup −2} to 1.64 × 10{sup −6} A cm{sup −2}. The results show that laser cladding is an efficient method to improve

  4. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, J.; Shui, J.L.; Zhang, S.L.; Wei, X.; Xiang, Y.J.; Xie, S.; Zhu, C.F.; Chen, C.H.

    2005-01-01

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship

  5. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Shui, J.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhang, S.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wei, X. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xiang, Y.J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xie, S. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhu, C.F. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Chen, C.H. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)]. E-mail: cchchen@ustc.edu.cn

    2005-04-05

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship.

  6. Structure and Mechanical Properties of Powdered Quasicrystalline Al94Fe3Cr3 Alloy Consolidated by Quasi-Hydrostatic Compression

    Directory of Open Access Journals (Sweden)

    Alexandra I. Yurkova

    2017-10-01

    Full Text Available Background. Quasicrystalline Al-based alloys belong to the class of the state-of-the-art metal materials for the application in light engineering constructions, primarily in aviation and the motor transport industry. These materials are commonly made in the form of powders, which is due to the high productivity of powder metallurgy methods. Therefore, the powder consolidation methods are of great importance in the production of products, which is associated with certain difficulties, and consequently, they should be chosen considering not only the quasicrystals’ propensity to brittle fracture but also the metastable nature of the quasicrystalline phases. Certain possibilities in this direction are provided by the quasi-hydrostatic compression method, which can provide a non-trivial combination of strength and ductility properties of materials. Objective. The aim of the paper is to investigate the effect of high pressure under quasi-hydrostatic compression on the formation of structure, phase composition and mechanical properties of the quasicrystalline Al94Fe3Cr3 alloy. Methods. 40 μm Al94Fe3Cr3 alloy quasicrystalline powder was fabricated by water-atomisation technique. Consolidation of quasicrystalline powder was performed by quasi-hydrostatic compression technique in high-pressure cells at room temperature at a pressure of 2.5, 4, and 6 hPa. Structure, phase composition and mechanical characteristics of Al94Fe3Cr3 alloy were performed by scanning electron microscopy (SEM, X-ray diffraction andmicromechanical tests. Results. Using the phase X-ray analysis and SEM, the content of the quasicrystalline icosahedral phase (i-phase in the Al94Fe3Cr3 alloy structure was completely preserved after its consolidation at different pressures (2.5, 4, and 6 hPa under quasi-hydrostatic compression at room temperature. Despite the high pressure applied in the consolidation process, the morphology of quasicrystalline phase particles located in the a

  7. Microstructure and tensile properties of Fe-40 at. pct Al alloys with C, Zr, Hf, and B additions

    Science.gov (United States)

    Gaydosh, D. J.; Draper, S. L.; Nathal, M. V.

    1989-01-01

    The influence of small additions of C, Zr, and Hf, alone or in combination with B, on the microstructure and tensile behavior of substoichiometric FeAl was investigated. Tensile properties were determined from 300 to 1100 K on powder which was consolidated by hot extrusion. All materials possessed some ductility at room temperature, although ternary additions generally reduced ductility compared to the binary alloy. Adding B to the C- and Zr-containing alloys changed the fracture mode from intergranular to transgranular and restored the ductility to approximately 5 percent elongation. Additions of Zr and Hf increased strength up to about 900 K. Fe6Al6Zr and Fe6Al6Hf precipitates, both with identical body-centered tetragonal structures, were identified as the principal second phase in these alloys. Strength decreased steadily as temperature increased above 700 K, as diffusion-assisted mechanisms became operative. Although all alloys had similar strengths at 1100 K, Hf additions significantly improved high-temperature ductility by suppressing cavitation.

  8. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  9. Magnetic induction heating of FeCr nanocrystalline alloys

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J.I.; Pastor, J.M.; Olivera, J.; Soto-Armañanzas, J.

    2012-01-01

    In this work the thermal effects of magnetic induction heating in (FeCr) 73.5 Si 13.5 Cu 1 B 9 Nb 3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia. - Highlights: ► Amorphous and nanocrystalline Fe based alloys with tailored Curie temperature of the amorphous phase. ► Induction heating effects under the action of a ac magnetic field. ► Self-regulated characteristics based on the control of the Curie temperature. ► Dominant role of the eddy-current losses in the self-heating phenomena.

  10. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si9B13 Glass Particles

    Directory of Open Access Journals (Sweden)

    Lingyu Guo

    2015-08-01

    Full Text Available The AA6061-T6 aluminum alloy samples including annealed Fe78Si9B13 particles were prepared by friction stir processing (FSP and investigated by various techniques. The Fe78Si9B13-reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200 plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe78Si9B13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe78Si9B13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure.

  11. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  12. A long-term ultrahigh temperature application of layered silicide coated Nb alloy in air

    Science.gov (United States)

    Sun, Jia; Fu, Qian-Gang; Li, Tao; Wang, Chen; Huo, Cai-Xia; Zhou, Hong; Yang, Guan-Jun; Sun, Le

    2018-05-01

    Nb-based alloy possessed limited application service life at ultrahigh temperature (>1400 °C) in air even taking the effective protective coating strategy into consideration for last decades. In this work a long duration of above 128 h at 1500 °C in air was successfully achieved on Nb-based alloy thanked to multi-layered silicide coating. Through optimizing interfaces, the MoSi2/NbSi2 silicide coating with Al2O3-adsorbed-particles layer exhibited three-times higher of oxidation resistance capacity than the one without it. In MoSi2-Al2O3-NbSi2 multilayer coating, the Al2O3-adsorbed-particles layer playing as an element-diffusion barrier role, as well as the formed porous Nb5Si3 layer as a stress transition zone, contributed to the significant improvement.

  13. Ab initio studies of Co{sub 2}FeAl{sub 1−x}Si{sub x} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Szwacki, N. Gonzalez, E-mail: gonz@fuw.edu.pl; Majewski, Jacek A., E-mail: jam@fuw.edu.pl

    2016-07-01

    We present results of extensive theoretical studies of Co{sub 2}FeAl{sub 1−x}Si{sub x} Heusler alloys, which have been performed in the framework of density functional theory employing the all-electron full-potential linearized augmented plane-wave scheme. It is shown that the Si-rich alloys are more resistive to structural disorder and as a consequence Si stabilizes the L2{sub 1} structure. Si alloying changes position of the Fermi level, pushing it into the gap of the minority spin-band. It is also shown that the hyperfine field on Co nuclei increases with the Si concentration, and this increase originates mostly from the changes in the electronic density of the valence electrons. - Highlights: • GGA+U calculations: μ and E{sub g} dependence on the value of U for Co{sub 2}FeAl and Co{sub 2}FeSi. • Behavior of magnetic hyperfine fields on the Co site of Co{sub 2}FeAl{sub 1−x}Si{sub x} versus x. • DFT proof of suppression of formation of antisites defects with x in Co{sub 2}FeAl{sub 1−x}Si{sub x}.

  14. PRODUCTION, DIELECTRIC PROPERTY AND MICROWAVE ABSORPTION PROPERTY OF SiC(Fe SOLID SOLUTION POWDER BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    XIAOLEI SU

    2014-03-01

    Full Text Available SiC(Fe solid solution powders were synthesized by sol–gel method under different reaction time, using methyltriethoxysilane as the silicon and carbon source and analytic ferric chloride as the dopant, respectively. The synthesized powders have been characterized by XRD, SEM and Raman spectra. Results show that the lattice constant decreases with increasing reaction time. The electric permittivities of SiC samples were determined in the frequency range of 8.2 ~ 12.4 GHz. Results show that the permittivity of SiC decreases with increasing reaction time. The SiC(Fe solid solution powder with reaction time of 4 h with 2 mm thickness exhibit the best microwave absorption property in X-band range (8.2 - 12.4 GHz. The microwave absorption mechanism has been discussed.

  15. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  16. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    Science.gov (United States)

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content

  17. Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension-compression loading of an Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Sawaguchi, Takahiro; Sahu, Puspendu; Kikuchi, Takehiko; Ogawa, Kazuyuki; Kajiwara, Setsuo; Kushibe, Atsumichi; Higashino, Masahiko; Ogawa, Takatoshi

    2006-01-01

    The present work concerns the damping behavior of an Fe-28Mn-6Si-5Cr-0.5NbC (mass%) shape memory alloy determined by low cycle fatigue tests, and the corresponding deformation mechanism under cyclic tension-compression loading. The specific damping capacity increases with increasing strain amplitude and reaches saturation at ∼80%, above the strain amplitude of 0.4%. Quantitative X-ray diffraction analyses and microstructural observations using atomic force microscopy revealed that a significant amount of the tensile stress-induced ε martensite is reversely transformed into the austenite by subsequent compression; in other words, the stress-induced 'reverse' martensitic transformation takes place in the alloy

  18. Obtaining beta phase in Ti through processing in high energy mill powders of Ti and Nb

    International Nuclear Information System (INIS)

    Milanez, Mateus; Ferretto, Aline; Rocha, Marcio Roberto da; Arnt, Angela Coelho; Milanez, Alexandre; Schaeffer, Lirio

    2014-01-01

    An orthopedic implant, ideal, must meet the requirements of biocompatibility, have good mechanical properties among others. Titanium and Niobium exhibit biocompatibility and the β-Ti phase relationships have the highest strength / weight among all titanium alloys, presenting lower values of elastic modulus. The alloy has mechanically produced specific microstructural characteristics and improved mechanical properties compared with conventional powder metallurgy. In this study, a titanium alloy with different additions of niobium was used. The metal powders were mixed via mechanical alloy in high energy mill (attritor). The powder samples were analyzed by X-ray diffraction (X-RD) and property held by adhesive wear testing with a Pin-on-Disk. The present study revealed that through the high-energy milling is possible the atomic interaction between Ti and Nb particles and the mechanical properties are affected by the concentration of Nb. (author)

  19. Hydriding properties of amorphous Ni-B alloy studied by DSC and thermogravimetry

    International Nuclear Information System (INIS)

    Spassov, T.; Rangelova, V.

    1999-01-01

    The hydrogenation behaviour of melt-spun Ni 81.5 B 18.5 amorphous alloy was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG) and compared with the hydriding properties of a Fe-B-Si glass. It was found that the amorphous Ni-B alloy absorbs larger amounts of hydrogen than the Fe-B-Si glass, as the initial kinetics of hydrogen absorption and desorption of both the alloys are comparable. Hydrogen absorption and desorption reactions in Ni-B were observed to proceed with similar rates at ca. 300 K. The hydrogen desorption is revealed in DSC as an endothermic peak in the 350-450 K range, preceding the crystallization peak of the amorphous alloy. The enthalpy of hydrogen desorption (ΔH des =22 kJ/mol H 2 ) for Ni-B was found to be smaller than that for the Fe-B-Si glass, which finding is in contrast to the results on hydrogen diffusion in crystalline αFe and Fe-based alloys and Ni and Ni-based alloys. The hydrogen desorption temperature and enthalpy for Ni 81.5 B 18.5 were found to be independent of the amount of hydrogen absorbed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Investigation of structural relaxation, crystallization process and magnetic properties of the Fe-Ni-Si-B-C amorphous alloy

    International Nuclear Information System (INIS)

    Kalezic-Glisovic, A.; Novakovic, L.; Maricic, A.; Minic, D.; Mitrovic, N.

    2006-01-01

    The differential scanning calorimetry method was used for investigating the crystallization process of the Fe 89.8 Ni 1.5 Si 5.2 B 3 C 0.5 amorphous alloy. It was shown that the examined alloy crystallizes in three stages. The first crystallization stage occurs at 799 K, the second at 820 K and the third at 888 K. Temperature dependence of the magnetic susceptibility relative change was investigated by the modified Faraday method in the temperature region from room temperature up to 900 K. It has been established that the Curie temperature is about 700 K for amorphous state. The magnetic susceptibility increases by 30% after the first heating up to 710 K. During the second heating up to 840 K the alloy loses its ferromagnetic features in the temperature region from 710 to 750 K, upon which it again regains the same. After the second heating magnetic susceptibility decreases by 23% as compared to the amorphous starting value and by 53% as compared to the value before the second heating. The crystallized alloy maintains ferromagnetic features in the whole temperature region during the heating up to 900 K

  1. Investigation of structural relaxation, crystallization process and magnetic properties of the Fe-Ni-Si-B-C amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kalezic-Glisovic, A. [Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Technical Faculty Cacak, Svetog Save 65, 32000 Cacak (Serbia and Montenegro)]. E-mail: aleksandrakalezic@eunet.yu; Novakovic, L. [Faculty of Physics, Studentski trg 16, 11000 Belgrade (Serbia and Montenegro); Maricic, A. [Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Technical Faculty Cacak, Svetog Save 65, 32000 Cacak (Serbia and Montenegro); Minic, D. [Faculty of Physical Chemistry, Studentski trg 16, 11000 Belgrade (Serbia and Montenegro); Mitrovic, N. [Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Technical Faculty Cacak, Svetog Save 65, 32000 Cacak (Serbia and Montenegro)]. E-mail: nmitrov@tfc.kg.ac.yu

    2006-07-15

    The differential scanning calorimetry method was used for investigating the crystallization process of the Fe{sub 89.8}Ni{sub 1.5}Si{sub 5.2}B{sub 3}C{sub 0.5} amorphous alloy. It was shown that the examined alloy crystallizes in three stages. The first crystallization stage occurs at 799 K, the second at 820 K and the third at 888 K. Temperature dependence of the magnetic susceptibility relative change was investigated by the modified Faraday method in the temperature region from room temperature up to 900 K. It has been established that the Curie temperature is about 700 K for amorphous state. The magnetic susceptibility increases by 30% after the first heating up to 710 K. During the second heating up to 840 K the alloy loses its ferromagnetic features in the temperature region from 710 to 750 K, upon which it again regains the same. After the second heating magnetic susceptibility decreases by 23% as compared to the amorphous starting value and by 53% as compared to the value before the second heating. The crystallized alloy maintains ferromagnetic features in the whole temperature region during the heating up to 900 K.

  2. Influence of microstructure on the accelerated corrosion in Zr-Nb alloys

    International Nuclear Information System (INIS)

    Muller, S; Lanzani, L

    2012-01-01

    The influence of microstructure on the accelerated corrosion of Zr-1%Nb and Zr-2.5%Nb (CANDU's pressure tube material) has been studied. The behavior of Zircaloy-4 was also studied in order to compare the Zr-Nb alloys with an alloy that does not have niobium as an alloying element. The corrosion tests were carried out in LiOH 0.1M at 340 o C, in LiOH 1M at the same temperature and in steam at 400 o C. The results showed that the behavior of Zr-Nb alloys in steam at 400 o C is similar to that of Zircaloy-4 in this medium. However, Zr-Nb alloys are more sensitive than Zircaloy-4 to the presence of LiOH. The results suggest that the niobium concentration in the matrix is the parameter that defines the oxidation rate in Zr-Nb alloys, while the presence of second phases in these alloys (β--Zr/β-Nb/Zr-Nb-Fe) could be related with the growth of non-protective oxides in LiOH solutions. In LiOH 1M, the corrosion resistance of Zr-Nb alloys is similar to that of Zircaloy-4, except for the Zr-1Nb martensitic material which showed a sharp increase in the oxidation rate in this medium (author)

  3. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    International Nuclear Information System (INIS)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-01-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H ci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H 2 gas. Expansion of the NdFeB crystal lattice in both ATF and H 2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd 2 Fe 14 B, reducing coercivity.

  4. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Frederick E., E-mail: frederick.e.pinkerton@gm.com [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Balogh, Michael P.; Ellison, Nicole [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Foto, Aldo [Element Materials Technology Wixom, Inc (United States); Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P. [Powertrain Materials/Fluids/AMPPD Engineering and Labs, GFL VE/PT Materials Engineering, General Motors LLC, Pontiac, MI 48340 (United States)

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H{sub ci} of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H{sub 2} gas. Expansion of the NdFeB crystal lattice in both ATF and H{sub 2} identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd{sub 2}Fe{sub 14}B, reducing coercivity.

  5. Hyperfine interaction and some thermomagnetic properties of amorphous and partially crystallized Fe70−xMxMo5Cr4Nb6B15 (M = Co or Ni, x = 0 or 10 alloys

    Directory of Open Access Journals (Sweden)

    Rzącki Jakub

    2015-03-01

    Full Text Available As revealed by Mössbauer spectroscopy, replacement of 10 at.% of iron in the amorphous Fe70Mo5Cr4Nb6B15 alloy by cobalt or nickel has no effect on the magnetic structure in the vicinity of room temperature, although the Curie point moves from 190 K towards ambient one. In the early stages of crystallization, the paramagnetic crystalline Cr12Fe36Mo10 phase appears before α-Fe or α-FeCo are formed, as is confirmed by X-ray diffractometry and transmission electron microscopy. Creation of the crystalline Cr12Fe36Mo10 phase is accompanied by the amorphous ferromagnetic phase formation at the expense of amorphous paramagnetic one.

  6. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  7. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  8. Change of structure and some mechanical properties during processing of AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Kovacs-Csetenyi, E.; Griger, A.; Turmezey, T.; Suchanek, V.

    1990-01-01

    The aim of this work was to study the change of structure and some mechanical properties during processing of AlMn(Fe,Si) alloys. An emphasis was given to the effect of Fe and Si on the properties measured in deformed and annealed states, because of its technological importance

  9. Structural and magnetic evolution of nanostructured Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Raanaei, Hossein, E-mail: hraanaei@yahoo.com [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Abbasi, Sadeq [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Behaein, Saeed [Department of Physics, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-15

    The structural and magnetic properties of nanocrystalline alloy powder Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} prepared by mechanical alloying have been characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and differential scanning calorimeter (DSC). It is shown that the crystallite size has been decreased significantly to about 15 nm after 8 h milling time. On continuing the milling time mechanical crystallization and subsequently the alloying process were noticed up to 190 h. Saturation magnetization decreased during the whole process while coercivity achieved the highest value at the crystallization stage. Post treatment of milled powder at 190 h revealed crystalline constituent elements. - Highlights: • This article focuses on mechanical alloying of Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} system. • Mechanical crystallization is observed. • Structural and magnetic properties were investigated. • The heat treatment revealed the crystalline phases of constituent elements.

  10. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  11. Particle stimulated nucleation during dynamic and metadynamic recrystallisation of Ni-30%Fe-Nb-C alloy

    International Nuclear Information System (INIS)

    Pereloma, Elena V.; Mannan, Parvez; Casillas, Gilberto; Saleh, Ahmed A.

    2017-01-01

    For the first time, a combination of scanning transmission electron microscopy and electron back-scattering diffraction is used to elucidate the early stages of particle stimulated recrystallisation at Nb carbides in Ni-30wt.%Fe alloy subjected to high temperature plane strain compression. While particles with sizes even below 1 μm were found to induce dynamic or metadynamic recrystallisation, only a small fraction of coarse particles served as nucleation sites. - Highlights: • The early stages of particle stimulated recrystallisation at Nb carbides are elucidated • A combination of transmission electron microscopy and electron back scattering diffraction used • Particles below 1 μm size could induce dynamic or metadynamic recrystallization

  12. Particle stimulated nucleation during dynamic and metadynamic recrystallisation of Ni-30%Fe-Nb-C alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pereloma, Elena V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); UOW Electron Microscopy Centre, University of Wollongong, Wollongong, NSW 2500 (Australia); Mannan, Parvez [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Casillas, Gilberto [UOW Electron Microscopy Centre, University of Wollongong, Wollongong, NSW 2500 (Australia); Saleh, Ahmed A. [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2017-03-15

    For the first time, a combination of scanning transmission electron microscopy and electron back-scattering diffraction is used to elucidate the early stages of particle stimulated recrystallisation at Nb carbides in Ni-30wt.%Fe alloy subjected to high temperature plane strain compression. While particles with sizes even below 1 μm were found to induce dynamic or metadynamic recrystallisation, only a small fraction of coarse particles served as nucleation sites. - Highlights: • The early stages of particle stimulated recrystallisation at Nb carbides are elucidated • A combination of transmission electron microscopy and electron back scattering diffraction used • Particles below 1 μm size could induce dynamic or metadynamic recrystallization.

  13. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  14. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  15. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  16. Hysteresis properties of the amorphous high permeability Co66Fe3Cr3Si15B13 alloy

    Directory of Open Access Journals (Sweden)

    V. S. Tsepelev

    2018-04-01

    Full Text Available The scaling law of minor loops was studied on an amorphous alloy Co66Fe3Cr3Si15B13 with a very high initial permeability (more than 150000 and low coercivity (about 0.1 A/m. An analytical expression for the coercive force in the Rayleigh region was derived. The coercive force is connected with the maximal magnetic field Hmax via the reversibility coefficient μi/ηHmax. Reversibility coefficient shows the relationship between reversible and irreversible magnetization processes. A universal dependence of magnetic losses for hysteresis Wh on the remanence Br with a power factor of 1.35 is confirmed for a wide range of magnetic fields strengths.

  17. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  18. The application of photoelectron spectroscopy in the study of corrosion and oxidation mechanisms of alloys: Inconel 182, Fe/Cu(100 and U-Zr-Nb

    International Nuclear Information System (INIS)

    Mendonca, Renato de

    2011-05-01

    In. this work a study of the oxidation/corrosion process of three systems of metallic materials by Photoemission Spectroscopy is presented. In the first system, it was investigated the corrosion of Ineonel 182 at simulated Pressurized Water Reactor (PWR) environment. Samples with and without surface chemical treatment were exposed to the simulated environment for until 18 weeks. The oxide layer formed on the surfaces of the samples at different conditions was characterized by Scanning Electron Microscopy and XPS coupled with argon ion sputtering. The comparison between the oxide films grown on the samples showed that the oxide layer formed on the chemically treated sample is thinner and relatively Cr-rich. In second system it was studied the initial oxidation at room temperature of epitaxial films of Fe evapored on Cu (100). The films were deposited with two different thicknesses in order to get tbe fcc Fe (100) and bcc Fe (110) surfaces. The results, obtained by photoemission spectroscopy at the TEMPO beamline of the Synchrotron Soleil, showed the formation of distinct oxides films. The surfaces also presented different kinetics of oxidation and the (110) Fe-bcc showed highest reactivity. The analysis of the data indicated the Fe 1-x O formation on fcc Fe (100) and suggested the Fe 1-x O and FC 3 0 4 formation on (110) Fe-bcc surface. In the last system, it was investigated the initial oxidation of U-Zr-Nb alloys at room temperature. For this experiment, the alloys were exposed to oxygen in ultra high vacuum. The analysis of the U 4f peak showed the fast formation of U) 2 on the surfaces and similar kinetics of oxidation between the U and the U-Zr-Nb alloy. The alloying elements showed slower oxidation. The Zr 3d peak suggested the zr0 2 formation while the Nb 3d peak showed a remarkable enlargement that became necessary a deconvolution which indicated the formation ofNhO , Nb0 2 and N 2 0 5 . (author)

  19. Effect of Co content on structure and magnetic behaviors of high induction Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rajat K., E-mail: rajat@nmlindia.org; Panda, Ashis K.; Mitra, Amitava

    2016-11-15

    The replacement of Fe with Co is investigated in the (Fe{sub 1−x}Co{sub x}){sub 79}Si{sub 8.5}B{sub 8.5}Nb{sub 3}Cu{sub 1} (x=0, 0.05, 0.2, 0.35, 0.5) amorphous alloys. The alloys are synthesized in the forms of ribbons by single roller melt spinning technique, and the structural and magnetic properties of annealed ribbons are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), B–H curve tracer, respectively. All as-cast alloys are structurally amorphous, however, their magnetic properties are varying with Co addition. The Co addition within 5–20 at% results in moderate thermal stability, saturation induction, Curie temperature and lowest coercivity, while 35 at% Co causes highest saturation induction, coercivity, Curie temperature and lowest thermal stability. On devitrification, the magnetic properties change with the generation of α-FeCo nanocrystallites and (FeCo){sub 23}B{sub 6}, Fe{sub 2}B phases during primary and secondary crystallization stages, respectively. A small amount Co is advantageous for maintaining finer nanocrystallites in amorphous matrix even after annealing at 600 °C, leading to high saturation magnetization (>1.5 T) and low coercivity (~35 A/m). The improved magnetic properties at elevated temperatures indicate these alloys have a potential for high frequency transformer core applications. - Highlights: • The structural and magnetic behaviors of Fe based amorphous alloys have been investigated with the effect of Co content. • The Co has no adverse effect on amorphization of alloys. • A small amount Co causes the superior improvement of magnetic properties at elevated temperatures. • Therefore, it is important not only for academic research but also for industrial applied research.

  20. Effect of hydridation on structure of amorphous and amorphous-crystalline Fe40Ni40B20 and Co70Fe5Si15B10 bands

    International Nuclear Information System (INIS)

    Il'inskij, A.G.; Brovko, A.P.; Zelinskaya, G.M.; Kosenko, N.S.; Khristenko, T.M.; Kobzenko, G.F.; Shkola, A.A.

    1988-01-01

    The structure of amorphous and amorphous-crystaliline Fe 40 Ni 40 B 20 and Co 70 Fe 5 Si-1 5 B 10 alloys, exposed to hydridation at different temperatures, is studied by X-ray diffraction technique. The presence of crystalline constituent in amorphous bands was determined on DRON-3 device and by method of small-angle scattering. The experimental data obtained verify, that hydridation does not only prevent the formation of crystalline phases at annealing, but leads, as well, to disappearance of band crystalline constituent in case of its presence

  1. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  2. Defects spectroscopy by means of the simple trapping model of the Fe{sub 78}Si{sub 9}B{sub 13} alloy; Espectroscopia de defectos mediante el modelo de atrapamiento simple de la aleacion Fe{sub 78}Si{sub 9}B{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Cabral P, A.; Garcia S, S.F. [Laboratorio de Fisica Avanzada, Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. El Cerillo Piedras Blancas, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    In this work it is analyzed quantitatively the results of the positron annihilation in the Fe{sub 78}Si{sub 9}B{sub 13} alloy by means of the simple trapping model. From this analysis its are derived: a reason of positron trapping in the defects (K), the defects concentration (C{sub d}) and the electronic density associated to the defect (n{sub d}); both first parameters, (K, C{sub d}) its increase and n{sub d} diminishes when increasing the alloy temperature. From this analysis it is also inferred that the defect consists of a multi vacancy of between 15 and 20 mono vacancies. (Author)

  3. Composition-dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.; Zhao, L.Z.; Zhang, C.; Jiao, D.L.; Zhong, X.C.; Liu, Z.W.

    2016-02-15

    Aiming at high-performance low-cost NdFeB magnets, the magnetic properties and microstructure for melt spun nanocrystalline (Nd{sub 1−x}M{sub x}){sub 10}Fe{sub 84}B{sub 6} (M=La, Ce, or La{sub 0.5}Ce{sub 0.5}; x=0–0.7) alloys were investigated. Relatively, LaCe-substituted alloys show high values of the remanent magnetization M{sub r}, the maximum energy product (BH){sub max} and the coercivity H{sub c}, up to 114 emu/g (1.07 T), 147 kJ/m{sup 3} and 471 kA/m, respectively, at x=0.1. The unusual increase in coercivity for the alloys with 10% La or 10% La{sub 0.5}Ce{sub 0.5} substitution is possibly attributed to the phase segregation in alloys with certain La or LaCe contents. The reduced Curie temperature and spin-reorientation temperature were obtained for La, Ce or LaCe substituted alloys. Transmission electron microscope analysis has revealed that a fine and uniform distributed grain structure leads to remanence enhancement for La{sub 0.5}Ce{sub 0.5} substituted alloys. The present results indicate that partially substituting Nd by La or/and Ce cannot only effectively reduce the cost of nanocrystalline NdFeB based magnetic powders but also can maintain a relatively good combination of magnetic properties.

  4. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  5. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  6. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  7. Influence of Al addition on the thermal stability and mechanical properties of Fe76.5-xCu1Si13.5b9Alx amorphous alloys

    Directory of Open Access Journals (Sweden)

    Sun Y.Y.

    2012-01-01

    Full Text Available This paper fabricated Fe76.5-xCu1Si13.5B9Alx (x=0,1,2,3,5,7 at.% amorphous ribbons using singleroller melt-spinning method. The effect of Al content on the thermal stability and mechanical properties was investigated. The results indicated that Al addition have little effect on the amorphous formation ability of the alloys. On the other hand, increasing the Al content can substantially increase Tx2, which corresponds to the crystallization of Fe borides. Nanoindentation tests indicated that hardness of the alloys increase slightly with increasing the Al content, and Young’s modulus has a complicated relationship with the Al content.

  8. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    Science.gov (United States)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  9. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    Science.gov (United States)

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  10. Deposition and cyclic oxidation behavior of a protective (Mo,W)(Si,Ge) 2 coating on Nb-base alloys

    International Nuclear Information System (INIS)

    Mueller, A.; Wang, G.

    1992-01-01

    A multicomponent diffusion coating has been developed to protect Nb-base alloys from high-temperature environmental attach. A solid solution of molybdenum and tungsten disilicide (Mo, W)Si 2 , constituted the primary coating layer which supported a slow-growing protective silica scale in service. Germanium additions were made during the coating process to improve the cyclic oxidation resistance by increasing the thermal expansion coefficient of the vitreous silica film formed and to avoid pesting by decreasing the viscosity of the protective film. In this paper, the development of the halide-activated pack cementation coating process to produce this (Mo,W)(Si,Ge) 2 coating on Nb-base alloys is described. The results of cyclic oxidation for coupons coated under different conditions in air at 1370 degrees C are presented. Many coupons have successfully passed 200 1 h cyclic oxidation tests at 1370 degrees C with weight-gain values in the range of 1.2 to 1.6 mg/cm 2

  11. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications.

    Science.gov (United States)

    Fischer, M; Laheurte, P; Acquier, P; Joguet, D; Peltier, L; Petithory, T; Anselme, K; Mille, P

    2017-06-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  13. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  14. Evaluation the homogenisation behaviour of Sm-Fe-Nb materials by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sinan, S. A.; Muryaed, Y.; Alhweg, F. A.

    2004-01-01

    The microstructure of cast and annealed Sm-Fe-Nb materials were investigated by Moessbauer spectroscopy. The aim of the present work is to study the effect of Nb additions upon the microstructure of Sm 2 Fe 17 material and evaluation the homogenisation behaviour of different Sm-Fe-Nb materials. The niobium free cast material consisting of the Sm 2 Fe 17 phase and significant amounts of the free iron (α -Fe). Therefore, the homogenisation process is necessary to eliminate the free iron and produce a single Sm 2 Fe 17 phase material. This process takes long annealing time, up to seven days. The Sm 9 .5 Fe 8 7.5 Nb 3 alloy contains the lowest amount of α-Fe among, the Sm-Fe-Nb materials. Thus the homogenisation step was carried out with treatment time (12 hours) smaller than the reported annealing time of Nb-free material (Sm 2 Fe 17 ). Therefore, the addition of at 3% Nb reduces the manufacturing cost of the Sm 2 Fe 17 and makes this based material for permanent magnets, more industrially desirable, due to elimination the free iron with lowest treatment time. Also it was found that the existence of the paramagnetic NbFe 2 phase becomes higher after the homogenisation process, which can be explained due to the diffusion of Nb from Sm 2 Fe 17 phase to paramagnetic NbFe 2 phase, during the annealing process. (authors)

  15. Application of permanent magnets made from NdFeB powder and from mixtures of powders in DC motors

    International Nuclear Information System (INIS)

    Slusarek, B.; Dudzikowski, I.

    2002-01-01

    The paper presents the influence of magnetic properties of applied permanent magnets on the characteristics of DC motors excited with these magnets. In the factory-produced DC motors, excited with sintered ferrite magnets, authors replaced ferrite magnets with the dielectromagnets from NdFeB powder and from different mixtures of NdFeB and ferrite powders. The paper shows the increase of the power of the resultant DC motors according to the powders' content

  16. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. I. Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation

  17. Study of the central region of the ternary diagram Zr-Nb-Fe, Part II

    International Nuclear Information System (INIS)

    Ramos, C; Saragovi, C; Arias, D; Granovsky, M

    2004-01-01

    This work continues with the identification and characterization of the intermetallic phases and of the two-phase and three-phase fields associated with the central region of the Zr-Nb-Fe phase diagram. In order to more precisely define the two-phase field βZr + λ 2 and to specify the range of existence in the zone with the highest Fe content for the λ2 phase, new alloys were smelted with the following nominal compositions: Zr 55 Nb 35 Fe 10 and Zr 35 Nb 5 Fe 60 . These alloys were submitted to a thermal treatment at 900 o C for 4 months. The techniques used to identify and characterize the phases in the samples were: optic metallography and electronic sweep, x-ray diffraction and Mossbauer spectroscopy. An isothermic cut of the central region for the Zr-Nb-Fe diagram is proposed considering previous results and those obtained in this work (Cw)

  18. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  19. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-04-01

    Full Text Available A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt % were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA route followed by spark plasma sintering (SPS and rapid cooling. Neutron Powder Diffraction (NPD, Electron Back Scattering Diffraction (EBSD, and Transmission Electron Microscopy (TEM were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  20. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  1. Histomorphologic evaluation of Ti-13Nb-13Zr alloys processed via powder metallurgy. A study in rabbits

    International Nuclear Information System (INIS)

    Bottino, M.C.; Coelho, P.G.; Yoshimoto, M.; Koenig, B.; Henriques, V.A.R.; Bressiani, A.H.A.; Bressiani, J.C.

    2008-01-01

    This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route

  2. Histomorphologic evaluation of Ti-13Nb-13Zr alloys processed via powder metallurgy. A study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Bottino, M.C. [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254 1530 3rd Avenue South, Birmingham, AL, 35294 (United States); Coelho, P.G. [Department of Biomaterials and Biomimetics, New York University, College of Dentistry, 345 East 24th Street, Room 804S, New York, NY, 10100 (United States)], E-mail: pgcoelho@nyu.edu; Yoshimoto, M. [Materials Science and Technology Center, Institute for Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, Sao Paulo, SP, 05508-000 (Brazil); Koenig, B. [Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo (ICB-USP) Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-900 (Brazil); Henriques, V.A.R. [Materials Division (AMR/IAE), CTA Brazilian Aerospace Technical Center, Sao Jose dos Campos, SP, 12228-904 (Brazil); Bressiani, A.H.A.; Bressiani, J.C. [Materials Science and Technology Center, Institute for Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, Sao Paulo, SP, 05508-000 (Brazil)

    2008-03-10

    This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route.

  3. Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    Science.gov (United States)

    Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc

    2015-07-01

    The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.

  4. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Science.gov (United States)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity Hci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H2 gas. Expansion of the NdFeB crystal lattice in both ATF and H2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets.

  5. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  6. Effect of composition and heat treatment on the phase formation of mechanically alloyed Cr-B and Mo-B powders

    International Nuclear Information System (INIS)

    Wu, H M; Hu, C J; Pai, K Y

    2009-01-01

    Blended elemental Cr-B and Mo-B powders in atomic ratio of 67:33, 50:50, and 20:80 were subjected to mechanical alloying up to 60 h and subsequent heat treatment to investigate effect of composition and heat treatment on the phase formation of Cr-B and Mo-B powders. It was studied by X-ray diffraction and differential thermal analysis. Mechanical alloying these powder mixtures for 60 h leads essentially to a amorphous structure except for the Mo 20 B 80 powder, which creates a partially amorphous MoB 4 structure. Annealing at lower temperatures relieves the strains cumulative in the milled powders and creates no new phase. The structures obtained after annealing the milled powders at higher temperature vary and depend on the overall composition of the powder mixtures. Annealing the milled Mo-B powders having greater Mo content ends up with a dissociation reaction at higher temperature.

  7. Influence of the fabrication conditions on the high frequency magnetic response of melt spun Fe73.5Si13.5B9Nb3Cu1

    International Nuclear Information System (INIS)

    Pascual, L.; El Ghannami, M.; Vazquez, M.; Gomez-Polo, C.; Univ. Publica de Navarra, Pamplona

    1998-01-01

    The aim of this work is to analyze the influence of the fabrication conditions on the magnetic properties of Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 melt-spun nanocrystalline ribbons. Different initial structures, amorphous and partially crystalline, have been obtained during the rapid solidification procedure. The structural characterization shows that a decrease in the quenching rate through a reduction in the tangential wheel velocity, gives rise to a partially crystalline state, characterized by the appearance of a textured α-FeSi nanocrystalline phase. The occurrence of the crystalline fraction in the initial as-cast state gives rise to a magnetic hardening with respect to the amorphous sample casted at higher quenching rate. However, the evolution of coercivity under thermal treatments is roughly independent of the initial structure. Moreover, a detailed analysis of the ac susceptibility as a function of annealing temperature shows that the ribbon obtained at lower quenching rate presents higher susceptibility values in the optimum magnetic state (T a = 550 C. 1 h) in a wide range of driving frequency (up to 100 kHz). (orig.)

  8. The influence of second-phase dispersion on environmental embrittlement of Ni3(Si,Ti) alloys

    International Nuclear Information System (INIS)

    Takasugi, T.; Hanada, S.

    1999-01-01

    Some quaternary Ni 3 (Si,Ti) alloyed with transition elements V, Nb, Zr and Hf was prepared beyond their maximum solubility limits to investigate the effect of second-phase dispersion on moisture-induced embrittlement. V-added Ni 3 (Si,Ti) alloy contained ductile fcc-type Ni solid solution as the second-phase, while Nb-, Zr- and Hf-added Ni 3 (Si,Ti) alloys contained hard dispersion compounds as the second-phase. V- and Nb-added Ni 3 (Si,Ti) alloys did not display reduced tensile elongation in air, indicating that their second phases have the effect of suppressing the moisture-induced embrittlement. Possible mechanisms for the beneficial effect by the second phase on the moisture-induced embrittlement of V- and Nb-added Ni 3 (Si,Ti) alloys are discussed in association with hydrogen behavior and deformation property in the constituent phases or at matrix/second-phase interface

  9. Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB

    International Nuclear Information System (INIS)

    Yu, L.Q.; Wen, Y.H.; Yan, M.

    2004-01-01

    Dy and Nb were added into the sintered NdFeB magnets with the aim of improving their magnetic properties and corrosion resistance. It was found that intrinsic coercivity of magnets is promoted whilst remanence is reduced as a result of Dy addition. Simultaneous addition of Dy and Nb not only gives rise to greatly improved coercivity, but also suppresses the undesirable effect of Dy on the remanence. The optimum magnetic properties were achieved when 1.0% Dy and 1.5% Nb were incorporated. Moreover, corrosion resistance of NdFeB magnets improves with the increase in the content of Dy and Nb

  10. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  11. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  12. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  13. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi; Dlouhy, Ivo; Brno University of Technology

    2014-01-01

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s -1 to 50 K s -1 . However, the α phase is partially retained at the cooling rate of 300 K s -1 . A fully lamellar structure appears at cooling rates lower than 10 K s -1 .

  14. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi [Yokohama National University (Japan). Div. of Materials Science and Chemical Engineering; Dlouhy, Ivo [Institute of Physics of Materials, Brno (Czech Republic); Brno University of Technology (Czech Republic). Inst. of Materials Science and Engineering

    2014-11-15

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s{sup -1} to 50 K s{sup -1}. However, the α phase is partially retained at the cooling rate of 300 K s{sup -1}. A fully lamellar structure appears at cooling rates lower than 10 K s{sup -1}.

  15. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    International Nuclear Information System (INIS)

    Fabrizi, A; Timelli, G

    2016-01-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al 15 (Fe,Mn,Cr) 3 Si 2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al 5 (Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates. (paper)

  16. KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr- 0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN

    Directory of Open Access Journals (Sweden)

    Sungkono Sungkono

    2015-07-01

    Full Text Available KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr-0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN. Logam paduan Zr-Nb-Fe-Cr dikembangkan sebagai material kelongsong elemen bakar dengan fraksi bakar tinggi untuk reaktor daya maju. Dalam penelitian ini telah dibuat paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr yang mendapat perlakuan panas pada temperatur 650 dan 750°C dengan waktu penahanan 1–2 jam. Tujuan penelitian adalah mendapatkan karakter paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas dan pengerolan dingin yaitu mikrostruktur, struktur kristal dan fasa-fasa yang ada dalam paduan. Hasil penelitian menunjukkan bahwa paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650ºC, 1-2 jam mempunyai struktur butir ekuiaksial dengan ukuran butir bertambah besar seiring dengan bertambahnya waktu penahanan. Sementara itu, pasca perlakuan panas (750ºC, 1-2 jam terjadi perubahan mikrostruktur paduan dari butir ekuiaksial dan kolumnar menjadi butir ekuiaksial lebih besar. Paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650°C, 1 jam dan (750°C, 1 jam tidak dapat dirol dingin dengan reduksi tebal 5 – 10%, sedangkan pasca perlakuan panas (650ºC, 2 jam dan (750°C, 1.5-2 jam mampu menerima deformasi dingin dengan reduksi ketebalan 5-10% tanpa mengalami keretakan. Senyawa Zr2Fe, ZrCr2 dan FeCr teridentifikai dari hasil uji kristalografi paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr.   MICROSTRUCTURE AND PHASE CHARACTERISTICSOF Zr-0.3%Nb-0.5%Fe-0.5%Cr ALLOY POST HEAT TREATMENT AND COLD ROLLING. Zr-Nb-Fe-Cr alloys was developed as fuel elements cladding with high burn up for advanced power reactors. In this research has been made of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy were heat treated with varying temperatures at650 and 750°C for 1 until 2 hours. The objectives of this research was to obtain the character of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy post heat treatment and cold rolling, microstructure nomenclature, crystal structure and phases that presents in the

  17. Oxidation Behavior of Mo-Si-B Alloys in Wet Air; TOPICAL

    International Nuclear Information System (INIS)

    M. Kramer; A. Thom; O. Degirmen; V. Behrani; M. Akinc

    2002-01-01

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing uses such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. The present work investigated the effect of water vapor on the oxidation behavior of Mo-Si-B phase assemblages. Three alloys were studied: Alloy 1= Mo(sub 5)Si(sub 3)B(sub x) (T1)- MoSi(sub 2)- MoB, Alloy 2= T1- Mo(sub 5)SiB(sub 2) (T2)- Mo(sub 3)Si, and Alloy 3= Mo- T2- Mo(sub 3)Si. Tests were conducted at 1000 and 1100C in controlled atmospheres of dry air and wet air nominally containing 18, 55, and 150 Torr H(sub 2)O. The initial mass loss of each alloy was approximately independent of the test temperature and moisture content of the atmosphere. The magnitude of these initial losses varied according to the Mo content of the alloys. All alloys formed a continuous, external silica scale that protected against further mass change after volatilization of the initially formed MoO(sub 3). All alloys experienced a small steady state mass change, but the calculated rates cannot be quantitatively compared due to statistical uncertainty in the individual mass measurements. Of particular interest is that Alloy 3, which contains a significant volume fraction of Mo metal, formed a protective scale. All alloys formed varying amounts of subscale Mo and MoO(sub 2). This implies that oxygen transport through the external silica scale has been significantly reduced. For all alloys, water vapor accelerated the growth of a multiphase interlayer at the silica scale/unoxidized alloy interface. This interlayer is likely composed of fine Mo and MoO(sub 2) that is dispersed within a thin silica matrix. Alloy 3 was particularly sensitive to water accelerated growth of this interlayer. At 1100 C, the scale thickness after 300 hours increased from about 20 mm in dry air to nearly 100 mm in wet air

  18. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  19. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    The specified alloys consist of Ni, Cr and Fe as main constituents, and Mo, Nb, Si, Zr, Ti, Al, C and B as minor constituents. They are said to exhibit high weldability and long-time structural stability, as well as low swelling under nuclear radiation conditions, making them especially suitable for use as a duct material and control element cladding for sodium-cooled nuclear reactors. (U.K.)

  20. Investigation into solubility and diffusion in SiC-NbC, SiC-TiC, SiC-ZrC systems

    International Nuclear Information System (INIS)

    Safaraliev, G.K.; Tairov, Yu.M.; Tsvetkov, V.F.; Shabanov, Sh.Sh.

    1991-01-01

    An investigation is carried out which demonstrates solid-phase interaction between SiC and NbC, TiC and ZrC monocrystals. The monocrystals are subjected to hot pressing in SiC powder with dispersity of 5x10 -6 m. The pressing temperature is 2270-2570 K and pressure is varied in the range of 20-40 MPa. Element composition and the distribution profile in a thin layer near the boundary of SiC-NbC, SiC-TiC and SiC-ZrC are investigated by the Anger spectroscopy method. The obtained results permit to make the conclusion in the possibility of solid solution formation in investigated systems

  1. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  2. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  3. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    Science.gov (United States)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  4. Effect of hydrogenation pressure on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio; Galdino, Gabriel Souza; Bressiani, Ana Helena; Faria Junior, Rubens Nunes de; Takiishi, Hidetoshi

    2009-01-01

    The effects of the hydrogenation stage on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy have been studied. Powder alloys have been produced by hydrogenation with 250 MPa or 1 GPa and via high energy planetary ball milling. Samples were isostatically pressed at 200 MPa and sintered at 1150 deg C for 7, 10 and 13 hours. Elastic modulus and microhardness were determined using a dynamic mechanical analyzer (DMA) and a Vickers microhardness tester. Density of the samples was measured using a liquid displacement system. Microstructure and phases presents were analyzed employing scanning electron microscopy (SEM). Elastic modulus were 81.3 ± 0.8 and 62.6 ± 0.6 GPa for samples produced by 250 MPa and 1 GPa hydrogenation, respectively when sintered for 7h. (author)

  5. Production of an Amorphous Fe_<75>Si_<10>B_<15> Sheet by a Metallic Mold Casting Method and its Properties

    OpenAIRE

    Inoue, Akihisa; Yamamoto, Hirokazu; Saito, Takanobu; Masumoto, Tsuyosi

    1993-01-01

    The application of a metallic mold casting method to an Fe_Si_B_ alloy with the largest glass-forming ability in (Fe, Co, Ni)-Si-B system was found to cause the formation of a mostly single amorphous phase in a sheet form with a thickness of 0.1 mm. No distinct difference in thermal stability (crystallization temperature and heat of crystallization), hardness, Curie temperature and magnetization is detected between the as-cast sheet and the melt-spun amorphous ribbon with a thickness of 0.02 ...

  6. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  7. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    Science.gov (United States)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-06-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  8. Obtaining of U-2.5Zr7.5Nb and U-3Zr-9Nb alloys by sintering process

    International Nuclear Information System (INIS)

    Mazzeu, Thiago de Oliveira; Paula, Joao Bosco de; Ferraz, Wilmar Barbosa; Santos, Ana Maria Matildes dos; Brina, Jose Giovanni Mascarenhas

    2011-01-01

    The development of metallic fuels with low enrichment to be used in research and test reactors, as well in the future pressurized water reactors, focuses on the search for uranium alloys of high density. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in Belo Horizonte is developing the U-2.5Zr-7.5Nb and U- 3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed at 400MPa and then sintered under a vacuum of about 5 x 10-6 Torr at temperatures ranging from 1050 deg to 1300 deg C. The densities of the alloys were measured geometrically and by hydrostatic method using water. The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the elements of alloying were identified by energy dispersive X-ray spectroscopy (SEM/EDS) analysis. The obtained results showed a small increasing density with rising sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was also qualitatively observed that the superficial oxidation of the pellets increased with increasing sintering temperature thus avoiding the fusion of the alloys at higher temperatures. (author)

  9. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  10. Three-peak behavior in giant magnetoimpedance effect in Fe73.5-x Cr x Nb3Cu1Si13.5B9 amorphous ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Pineda-Gomez, P.

    2007-01-01

    A systematic study of the giant magnetoimpedance (GMI) effect in Fe 73.5- x Cr x Nb 3 Cu 1 Si 13.5 B 9 amorphous ribbons with x=0, 2, 4, 6, 8 and 10 is presented. The complex impedance in these compounds was measured for applied fields from -80 to 80 Oe at room temperature, via the so-called four-probe technique. Depending on the frequency, the experimentally observed GMI curves usually exhibit two types of behavior, namely single-peak (SP), and two-peak (TP). In this work, we emphasize the presence of a 'three-peak behavior' in GMI curves. It occurs between SP and TP behaviors. The mechanisms leading to the three-peak behavior are discussed

  11. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  12. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  13. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    International Nuclear Information System (INIS)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa

    2011-01-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the α and γ phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  14. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil)

    2011-07-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the {alpha} and {gamma} phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  15. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  16. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  17. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  18. Method of mechanochemical synthesis for the production of nanocrystalline Nb-Al alloys

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tret'yakov, K.V.; Logacheva, A.I.; Logunov, A.V.; Razumovskij, I.M.

    2004-01-01

    Using X-ray diffraction and DS analyses the process of solid phase synthesis on cooperative comminution of components (Nb, Al, Cr) in a planetary ball mill is investigated. Powder nanocrystalline Nb 3 Al base alloys of various compositions with simultaneous introduction of chromium are synthesized. High power milling results in block size of ∼ 20 nm. It is shown that final chromium dissolution and partial decomposition of Nb(Al) supersaturated solid solutions proceed after heating up to 1100 deg C only. With the help of doping with niobium by the method of mechanical alloying, a two-phase alloy Nb 3 Al + Nb 2 Al having been produced by arc melting, is corrected by composition and transferred to the two-phase region of Nb 3 Al + Nb(Al). It is revealed that the process of niobium aluminide phase formation during mechanochemical synthesis and the process of mechanical activation of Nb-Al system intermetallics enriched with niobium always proceed through formation of supersaturated solid solutions. The mechanism of the process is probably associated with stacking faults formation due to deformation [ru

  19. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Nlebedim, I.C. [Ames Laboratory, Ames, IA 50011 (United States); Ucar, Huseyin; Hatter, Christine B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); McCallum, R.W. [Ames Laboratory, Ames, IA 50011 (United States); McCall, Scott K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kramer, M.J. [Ames Laboratory, Ames, IA 50011 (United States); Paranthaman, M. Parans [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  20. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    International Nuclear Information System (INIS)

    Nlebedim, I.C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R.W.; McCall, Scott K.; Kramer, M.J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.