WorldWideScience

Sample records for fe-b particles influence

  1. Chemical synthesis of magnetic Fe-B and Fe-Co-B particles and chains

    International Nuclear Information System (INIS)

    Fulmer, P.; Kim, J.; Manthiram, A.; Sanchez, J.M.

    1999-04-01

    With an objective to develop magnetic materials with high saturation magnetization for the Magnetically Assisted Chemical Separation (MACS) process the chemical synthesis of Fe-B and Fe-Co-B alloys by reducing iron and cobalt chloride solutions with potassium borohydride has been investigated systematically. The influence of the concentration of the reactants, applied magnetic field, reaction atmosphere, and method of mixing the reactants on the microstructure, particle size, composition and magnetic properties has been studied. Both M-B (M = Fe and Co) particles and elongated chains composed of nanometer size M-B particles have been obtained depending on the reaction conditions. The Fe-B samples exhibit saturation magnetization of M S of 120--190 emu/g, remanent magnetization M r of 10--22 emu/g, and coercive field H c of 400--900 Oe. A high M S value of 190 emu/g, which is close to the theoretical value of 218 emu/g for pure Fe, has been achieved particularly for samples with well-defined chain structures. Increasing the Co content in the Fe-Co-B alloys increases the boron content and thereby decreases the crystallinity and M S values although marginal increase in H c (1,250 Oe) and M r (36 emu/g) values could be made in some Fe-Co-B compositions. The chain structure with high M S may be attractive for other magnetic separation processes as well

  2. A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers

    Science.gov (United States)

    Schümann, M.; Borin, D. Y.; Huang, S.; Auernhammer, G. K.; Müller, R.; Odenbach, S.

    2017-09-01

    Magnetorheological elastomers are a type of smart hybrid material where elastic properties of a soft elastomer matrix are combined with magnetic properties of magnetic micro particles. This combination leads to a complex interplay of magnetic and elastic phenomena, of which the magnetorheological effect is the best described. In this paper, magnetically hard NdFeB-particles were used to obtain remanent magnetic properties. X-ray microtomography has been utilised to analyse the particle movement induced by magnetic fields. A particle tracking was performed; thus, it was possible to characterise the movement of individual particles. Beyond that, a comprehensive analysis of the orientation of all particles was performed at different states of magnetisation and global particle arrangements. For the first time, this method was successfully applied to a magnetorheological material with a technically relevant amount of magnetic NdFeB-particles. A significant impact of the magnetic field on the rotation and translation of the particles was shown.

  3. Influence of chemical composition of CoFeB on tunneling magnetoresistance and microstructure in polycrystalline CoFeB/MgO/CoFeB magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsunekawa, Koji; Choi, Young-Suk; Nagamine, Yoshinori; Djayaprawira, David D.; Takeuchi, Takashi; Kitamoto, Yoshitaka

    2006-01-01

    We report, for the first time, the correlation between tunneling magnetoresistance (TMR) and the microstructure of polycrystalline CoFeB/MgO/CoFeB magnetic tunnel junctions with various Co/Fe ratios in the (CoFe) 81 B 19 reference and free layers. It is found that the Co/Fe ratio in the (CoFe) 81 B 19 reference layer strongly affects the (001) out-of-plane texture of the MgO tunnel barrier, resulting in the variation in TMR ratio. Further microstructure characterization of the magnetic tunnel junction with a higher TMR ratio and a stronger (001) out-of-plane texture in the MgO tunnel barrier reveals a grain-to-grain lattice match between the crystallized bcc CoFeB reference layer and MgO with a 45deg rotational epitaxial relationship, that is, CoFeB(001)[110]//MgO(001)[100]. (author)

  4. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Cheng; Hsiao, Po-Jen [Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Sanmin District, Kaohsiung 80778, Taiwan (China); You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun [Metal Forming Technology Section, Metal Processing R and D Department, Metal Industries Research and Development Centre, 1001 Kaonan Highway, Kaohsiung 81160, Taiwan (China)

    2013-12-16

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets.

  5. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    International Nuclear Information System (INIS)

    Chang, Chao-Cheng; Hsiao, Po-Jen; You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun

    2013-01-01

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets

  6. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2018-05-01

    Full Text Available Feasibility of the electrophoresis deposition (EPD technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  7. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Science.gov (United States)

    Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.

    2018-05-01

    Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  8. Influence of cooling rate on microstructure of NdFeB strip casting flakes

    Energy Technology Data Exchange (ETDEWEB)

    Binglin Guo; Bo Li; Dongling Wang; Xiaojun Yu [Central Iron and Steel Research Inst., Beijing, BJ (China); Jifan Hu [Shandong Univ., Jinan (China)

    2005-07-01

    In this paper, flakes of NdFeB cast alloys were prepared by using the strip casting technique. Microstructure and composition of phases in NdFeB SC flakes were studied by SEM and energy spectra. Especially, the influences of cooling rate on the microstructure of SC flakes were discussed, helping us to master strip casting technology. The results show that the cooling rate plays an important role in obtaining the perfect microstructure of SC flakes, which thickness is supposed not less than 0.32mm in these studies. (orig.)

  9. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  10. Modeling of magnetic hystereses in soft MREs filled with NdFeB particles

    Science.gov (United States)

    Kalina, K. A.; Brummund, J.; Metsch, P.; Kästner, M.; Borin, D. Yu; Linke, J. M.; Odenbach, S.

    2017-10-01

    Herein, we investigate the structure-property relationships of soft magnetorheological elastomers (MREs) filled with remanently magnetizable particles. The study is motivated from experimental results which indicate a large difference between the magnetization loops of soft MREs filled with NdFeB particles and the loops of such particles embedded in a comparatively stiff matrix, e.g. an epoxy resin. We present a microscale model for MREs based on a general continuum formulation of the magnetomechanical boundary value problem which is valid for finite strains. In particular, we develop an energetically consistent constitutive model for the hysteretic magnetization behavior of the magnetically hard particles. The microstructure is discretized and the problem is solved numerically in terms of a coupled nonlinear finite element approach. Since the local magnetic and mechanical fields are resolved explicitly inside the heterogeneous microstructure of the MRE, our model also accounts for interactions of particles close to each other. In order to connect the microscopic fields to effective macroscopic quantities of the MRE, a suitable computational homogenization scheme is used. Based on this modeling approach, it is demonstrated that the observable macroscopic behavior of the considered MREs results from the rotation of the embedded particles. Furthermore, the performed numerical simulations indicate that the reversion of the sample’s magnetization occurs due to a combination of particle rotations and internal domain conversion processes. All of our simulation results obtained for such materials are in a good qualitative agreement with the experiments.

  11. Nanocomposite permanent magnetic materials Nd-Fe-B type: The influence of nanocomposite on magnetic properties

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2005-01-01

    Full Text Available The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others – the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.

  12. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  13. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  14. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Xia, M.; Abrahamsen, A.B.; Bahl, C.R.H.; Veluri, B.; Søegaard, A.I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10 4 ppm and 4·10 4 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  15. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, M., E-mail: maxi@dtu.dk [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Abrahamsen, A.B. [Department of Wind Energy, DTU Risø campus, Technical University of Denmark, Roskilde (Denmark); Bahl, C.R.H. [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Veluri, B.; Søegaard, A.I. [Grundfos A/S, DK-8850 Bjerringbro (Denmark); Bøjsøe, P. [Holm Magnetics APS, 2800 Kongens Lyngby (Denmark); Millot, S. [FJ Industries A/S, 5863 Ferritslev (Denmark)

    2017-01-15

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10{sup 4} ppm and 4·10{sup 4} ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  16. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon...

  17. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  18. Influence of Demagnetization-Temperature on Magnetic Performance of Recycled Nd-Fe-B Magnets

    DEFF Research Database (Denmark)

    Högberg, Stig; Bendixen, Flemming Buus; Mijatovic, Nenad

    2015-01-01

    Recycling rare earth permanent magnets is becoming an important alternative source of supply of raw materials for neodymium-iron-boron (Nd-Fe-B) permanent magnets. This article documents a recycling case-study in which isotropic binder-free magnet powder is extracted and recycled from hermeticall...

  19. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  20. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    Science.gov (United States)

    Hu, Sheng-qing; Peng, Kun; Chen, Hong

    2017-03-01

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.

  1. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sheng-qing, E-mail: joy_hsq@126.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Peng, Kun, E-mail: kpeng@hnu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Chen, Hong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-15

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10{sup −8} cm{sup 2} s{sup −1} and 2.4×10{sup −7} cm{sup 2} s{sup −1}, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions. - Highlights: • The optimum annealing conditions can be determined as 900 °C for 8 h. • The diffusion coefficient of Dy at 900 °Care determined to be 2.4×10{sup −7} cm{sup 2} s{sup −1}. • A maximum diffusion length of about 3 mm can be obtained.

  2. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C.

    2014-01-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H 2 SO 4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H 2 SO 4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates

  3. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn; Huang, Z.X.; Luo, J.M.; Zhong, Z.C., E-mail: zzhong.2006@yahoo.com.cn

    2014-04-15

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H{sub 2}SO{sub 4} solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H{sub 2}SO{sub 4} solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates.

  4. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Science.gov (United States)

    Xia, M.; Abrahamsen, A. B.; Bahl, C. R. H.; Veluri, B.; Søegaard, A. I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 104 ppm and 4·104 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small.

  5. Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway

    International Nuclear Information System (INIS)

    Ren Zhongyou; Wang Jiasu; Wang Suyu; Jiang He; Zhu Min; Wang Xiaorong; Song Honghai

    2003-01-01

    Levitation forces of YBaCuO bulk high temperature superconductors (HTS) with different shape and size over a NdFeB guideway were studied. Here, the concentrating magnetic field of the NdFeB guideway was 1.2 T, and the YBaCuO bulk HTSs include three cylindrical samples with different diameter and thickness and one hexagonal sample. The maximum levitation force is as high as 85.3 N at a gap of 5 mm between the bottom surface of YBaCuO bulk HTS and the top surface of the NdFeB guideway, where the applied magnetic field is about 0.8 T. The results show that the shape and the size have large influences on the levitation force of YBaCuO bulk HTSs

  6. Influence of {gamma} and neutron irradiation on the magnetic properties of Nd Fe B, Alnico, and Mn Al type permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, S; Setnescu, R; Kappel, W; Alexandru, St [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica, Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1996-12-31

    The influence of {gamma} and neutron irradiation on the magnetic properties of Nd Fe B, Alnico and Mn Al type permanent magnets was studied. With the used neutron energies and fluences, no changes in remanent induction values for Nd Fe B type permanent magnets are shown. For Alnico type permanent magnets the remanent induction changes are due to reversible variation of the magnetization directions. Only in case of Mn Al type permanent magnets irreversible structural changes take place, which lead to irreversible losses of induction. (author) 4 figs., 2 tabs., 12 refs. (author).

  7. Influence of γ and neutron irradiation on the magnetic properties of Nd Fe B, Alnico, and Mn Al type permanent magnets

    International Nuclear Information System (INIS)

    Jipa, S.; Setnescu, R.; Kappel, W.; Alexandru, St.

    1995-01-01

    The influence of γ and neutron irradiation on the magnetic properties of Nd Fe B, Alnico and Mn Al type permanent magnets was studied. With the used neutron energies and fluences, no changes in remanent induction values for Nd Fe B type permanent magnets are shown. For Alnico type permanent magnets the remanent induction changes are due to reversible variation of the magnetization directions. Only in case of Mn Al type permanent magnets irreversible structural changes take place, which lead to irreversible losses of induction. (author) 4 figs., 2 tabs., 12 refs. (author)

  8. Micromagnetic simulation of the influence of grain boundary on cerium substituted Nd-Fe-B magnets

    Directory of Open Access Journals (Sweden)

    D. Liu

    2017-05-01

    Full Text Available A three-dimensional finite element model was performed to study the magnetization reversal of (CexNd1-x2Fe14B nanocomposite permanent magnets. The influences of volume fraction, width and performance parameters of the grain boundary (GB composition on the coercivity were analyzed by the method of micromagnetic simulation. The calculation results indicate that the structure and chemistry of GB phase play important roles in Nd2Fe14B-based magnets. An abnormal increase in the value of coercivity is found to be connected with the GB phase, approximately when the percentage of doped cerium is between 20% and 30%. While the coercivity decreases directly with the increase in cerium content instead of being abnormal when there is no GB phase in magnets at all or the value of magnetocrystalline anisotropy or exchange integral is too large.

  9. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Eckert

    2014-07-01

    Full Text Available This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  10. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    Science.gov (United States)

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  11. Laboratory scale fabrication of Nd-Fe-B sintered magnets

    International Nuclear Information System (INIS)

    Rodrigues, Daniel; Beneduce Neto, Flavio; Landgraf, Fernando Jose Gomes; Neiva, Augusto Camara; Romero, Sergio; Missell, Frank Patrick

    1992-01-01

    Results are presented on magnetic properties of Nd-Fe-B sauntered magnets produced from 1 kg of alloy caste in vacuum induction furnace. The fabrication viability of these magnets, with properties similar to the commercial magnets, and the influence of particle size in the energy product, through the effect on the H k field, is confirmed

  12. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Jiasu; Wang Suyu; He Qingyong

    2007-01-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor

  13. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor.

  14. The influence of concentration of Nd-Fe-B powder in composite coating of optical fiber to the sensibility to external magnetic field

    Directory of Open Access Journals (Sweden)

    Radojević Vesna J.

    2005-01-01

    Full Text Available Multi-mode optical fiber with magnetic composite coating was investigated as an optical fiber sensor element (OFMSE for magnetic field sensing The composite coating was formed with dispersions of permanent magnet powder of Nd-Fe-B in poly (ethylene-co-vinyl acetate-EVA solutions in toluene. The influence of the applied external magnetic field on the change of intensity of the light signal propagate trough developed optical fibers sensor element was investigated. In this paper the influence of the content of magnetic powder in the composite coating on the optical propagation characteristics of optical fiber were particularly investigated.

  15. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    International Nuclear Information System (INIS)

    Zhang, Longcai; Wang Jiasu; He Qingyong; Zhang Jianghua; Wang Suyu

    2007-01-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state

  16. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Zhang Jianghua [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state.

  17. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  18. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    International Nuclear Information System (INIS)

    Qin Yujie; Hou Xiaojing

    2011-01-01

    Research highlights: → The relaxation properties of maglev forces have been investigated simultaneously. → Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. → The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. → The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  19. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yujie, E-mail: qyjswjtu@vip.sohu.co [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Hou Xiaojing [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2011-02-15

    Research highlights: {yields} The relaxation properties of maglev forces have been investigated simultaneously. {yields} Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. {yields} The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. {yields} The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  20. Influence of microstructural change of the interface between Nd2Fe14B and Nd-O phases on coercivity of Nd-Fe-B films by oxidation and subsequent low-temperature annealing

    International Nuclear Information System (INIS)

    Matsuura, Masashi; Tezuka, Nobuki; Sugimoto, Satoshi; Goto, Ryota

    2011-01-01

    This study provides the influence of microstructural change of the interface between Nd 2 Fe 14 B and Nd-O phases on coercivity of Nd-Fe-B thin films during annealing at low temperature (∼350 deg. C). All films were prepared by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under Ar gas atmosphere (O 2 content; ∼2 Vol.ppm). Then, the films were annealed at 250-350 deg. C under UHV condition. After oxidation, the coercivity of Nd-Fe-B film decreased to around 40% of the coercivity of as-deposited Nd-Fe-B film. The Nd-rich phase changed from α-Nd to amorphous Nd(-O), and the interface of Nd 2 Fe 14 B/Nd(-O) became rough. In the Nd-Fe-B films oxidized and subsequent annealed at 350 deg. C, the coercivity decreased to around 20%. In the films, poly crystalline hcp Nd 2 O 3 phase crystallized in Nd-rich phase, and there were some steps at the surface of Nd 2 Fe 14 B phase contacting with hcp Nd 2 O 3 phase. Regardless of crystal orientation of Nd 2 Fe 14 B, the microstructural changes of the interface described above were observed.

  1. Metal Injection Molding (MIM of NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Hartwig T.

    2014-07-01

    Full Text Available Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.

  2. Laboratory scale fabrication of Nd-Fe-B sintered magnets; Fabricacao de imas sinterizados de Nd-Fe-B em escala piloto

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Daniel; Beneduce Neto, Flavio; Landgraf, Fernando Jose Gomes; Neiva, Augusto Camara; Romero, Sergio; Missell, Frank Patrick

    1993-12-31

    Results are presented on magnetic properties of Nd-Fe-B sauntered magnets produced from 1 kg of alloy caste in vacuum induction furnace. The fabrication viability of these magnets, with properties similar to the commercial magnets, and the influence of particle size in the energy product, through the effect on the H{sub k} field, is confirmed 12 refs., 7 figs., 1 tab.

  3. New developments in NdFeB-based permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z.W.

    2011-01-01

    NdFeB based alloys have been used as permanent magnets for almost thirty years. The recent researches aim at optimizing the composition, microstructure and properties, reducing cost, and developing new processes. The demand for sintered magnet is increasing. Efforts are directed towards improving properties by controlling grain boundary diffusion, minimizing the rare earth (RE) content and also improving production yield. As for bonded magnets, to enhance remanence and energy product, nanocrystalline powders are employed. High thermal stability has been realized by mixing NdFeB with hard ferrite powders. For nanocrystalline and nano composite NdFeB based alloys, both compositional modification and microstructural optimization have been carried out. New approaches have also been proposed to prepare NdFeB magnets with idea structure. Surfactant assisted ball milling is a good top-down method to obtain nano sized hard magnetic particles and anisotropic nano flakes. Synthesis of NdFeB nanoparticles and NdFeB/Fe (Co) nano composite powders by bottom-up techniques, such as chemical reduction process and co-precipitation, has been successful very recently. To assemble nanocrystalline NdFeB powders or nanoparticles into bulk magnets, various novel consolidation processes including spark plasma sintering and high velocity press have been employed. Hot deformation can be selected as the process to achieve anisotropy in nanocrystalline magnets. (author)

  4. Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

    OpenAIRE

    N. Yogal; C. Lehrmann

    2014-01-01

    The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magn...

  5. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  6. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  7. Hydrocyclone Separation of Hydrogen Decrepitated NdFeB

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-11-01

    Full Text Available Hydrogen decrepitation (HD is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB magnets. During the HD process, the NdFeB breaks down into a matrix phase (Nd2Fe14BHx and RE-rich grain boundary phase. The grain boundary phase in the HD powder is <2 μm in size. Recycled NdFeB material has a higher oxygen content compared to the primary source material. This additional oxygen mainly occurs at the Rare Earth (RE rich grain boundary phase (GBP, because rare earth elements oxidise rapidly when exposed to air. This higher oxygen level in the material results in a drop in density, coercivity, and remanence of sintered NdFeB magnets. The particle size of the GBP is too small to separate by sieving or conventional screening technology. In this work, an attempt has been made to separate the GBP from the matrix phase using a hydrocyclone, and to optimise the separation process. HD powder, obtained from hard disk drive (HDD scrap NdFeB sintered magnets, was used as a starting material and passed through a hydrocyclone a total number of six times. The X-ray fluorescence (XRF analysis and sieve analysis of overflows showed the matrix phase had been directed to the underflow while the GBP was directed to the overflow. The optimum separation was achieved with three passes. Underflow and overflow samples were further analysed using an optical microscope and MagScan and matrix phase particles were found to be magnetic.

  8. Corrosion behaviour of Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Mummert, K.; El-Aziz, A.M.; Barkleit, G.; Schultz, L.; Rodewald, W.

    2000-01-01

    The corrosion behaviour of Nd-Fe-B permanent magnetic alloys as well as of single phases of these alloys have been investigated in sulphuric acid at room temperature and humid air at 150 C using mass loss and electrochemical techniques. Scanning electron microscopy and scanning probe microscopy were used to study the surface topography. The electrostatic surface potential was examined by scanning probe microscopy using tapping mode. A correlation between the electrostatic surface potential and the corrosion rate of these alloys was found. The higher the value of the electrostatic surface potential of the intergranular phases the higher is the corrosion sensitivity. The strength of the corrosion attack on the phases of sintered permanent magnetic alloys is as follows: Ferromagnetic phase < B-rich phase < Nd-rich phase. The differences in the chemical composition as well as in the preparation of these magnetic alloys have distinct influence on the corrosion resistance of the magnetic Nd-Fe-B alloys. (orig.)

  9. Microstructure Formation in Strip-Cast RE-Fe-B Alloys for Magnets

    Science.gov (United States)

    Yamamoto, Kazuhiko; Matsuura, Masashi; Sugimoto, Satoshi

    2017-07-01

    During the manufacturing of sintered NdFeB magnets, it is well known that the microstructure of the starting alloy has a strong influence on the processing and the magnetic properties of the product. In this study, we clarify the microstructure formation in strip-cast rare earth (R)-Fe-B alloys used to produce magnets. The microstructure of the alloy surface in contact with the cooling roll and its cross-section were observed using laser microscopy, field emission electron microprobe analysis, and transmission electron microscopy. The orientations of crystal grains were determined by X-ray diffraction and electron backscatter diffraction analyses. Petal-shaped structures were found to cover the alloy surface in contact with the cooling roll, each consisting of a central nucleation region and radially grown Nd2Fe14B dendritic structures. The nucleation region, consisting of a "disc" and "predendrites", occurs in the super-cooled region of the contact area between the cooling roll and melt. In the disc region, spherical Nd2Fe14B particles in the thickness direction increase in volume. These discs and predendrites observed in the super-cooled area negatively influence the magnetic orientation and sinterability in the produced magnets. Therefore, it is important to avoid excessive super-cooling to obtain optimum magnetic properties.

  10. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    Science.gov (United States)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  11. Powder alignment system for anisotropic bonded NdFeB Halbach cylinders \\ud

    OpenAIRE

    Zhu, Z.Q.; Xia, Z.P.; Atallah, K.; Jewell, G.W.; Howe, D.

    2000-01-01

    A Halbach cylinder, fabricated from pre-magnetized sintered NdFeB magnet segments, is proposed for the powder aligning system during the compression or injection moulding of anisotropic bonded Halbach oriented NdFeB ring magnets. The influence of leading design parameters of the powder aligning system, viz. the number of magnet segments per pole, their axial length and radial thickness, and their clearance from the mould, is investigated by finite element analysis, and validated experimentally

  12. Thin films of NdFeB deposited by PLD technique

    International Nuclear Information System (INIS)

    Constantinescu, C.; Scarisoreanu, N.; Moldovan, A.; Dinescu, M.; Petrescu, L.; Epureanu, G.

    2007-01-01

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization

  13. Thin films of NdFeB deposited by PLD technique

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Scarisoreanu, N. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Moldovan, A. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania)]. E-mail: dinescum@ifin.nipne.ro; Petrescu, L. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania); Epureanu, G. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania)

    2007-07-31

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization.

  14. Thermodynamic Description Of Ternary Fe-B-X Systems. Part 2: Fe-B-Ni

    Directory of Open Access Journals (Sweden)

    Miettinen J.

    2014-06-01

    Full Text Available Przedstawiono termodynamiczny opis trójskładnikowego układu Fe-B-Ni w kontekście nowej bazy danych dla układów Fe-B-X (X = Cr, Ni, Mn, Si, Ti, V, C. Parametry termodynamiczne dwuskładnikowych stopów Fe-B. Fe-Ni i B-Ni zostały są zaczerpnięte z wcześniejszych opracowań, przy tym opis B-Ni został nieznacznie zmodyfikowany. Parametry dla układu Fe-B-Ni zostały zoptymalizowane w tej pracy w oparciu o eksperymentalne równowagi fazowe i dane termodynamiczne zaczerpnięte z literatury. Roztwory stałe w układzie Fe-B-Ni opisano przy użyciu modelu roztworu substytucyjnego, a borki traktowane są jako fazy stechiometryczne lub półstechiometryczne typu (A.BpCq opisane przy użyciu modelu dwu podsieci.

  15. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  16. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  17. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    International Nuclear Information System (INIS)

    Jiang Yonggang; Fujita, Takayuki; Uehara, Minoru; Iga, Yuki; Hashimoto, Taichi; Hao, Xiuchun; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-μm-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 μm are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: → We demonstrate the fabrication of micro-magnets using silicon molding processes. → NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 μm. → The 12-μm-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. → Magnetic structures as narrow as 20 μm are fabricated using NdFeB magnetic powder. → VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  18. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yonggang, E-mail: yonggangj@gmail.com [School of Mechanical Engineering and Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191 (China); Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Fujita, Takayuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uehara, Minoru [NEOMAX Co. Ltd., 2-15-17, Egawa, Shimamoto-Cho, Mishima-gun, Osaka 618-0013 (Japan); Iga, Yuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hashimoto, Taichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hao, Xiuchun; Higuchi, Kohei [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Maenaka, Kazusuke [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2011-11-15

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-{mu}m-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 {mu}m are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: > We demonstrate the fabrication of micro-magnets using silicon molding processes. > NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 {mu}m. > The 12-{mu}m-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. > Magnetic structures as narrow as 20 {mu}m are fabricated using NdFeB magnetic powder. > VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  19. Environmental degradation of NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yan Gaolin [Wuhan University, School of Physics and Technology, Wuhan 430072 (China)], E-mail: gaolinyan@whu.edu.cn; McGuiness, P.J. [Jozef Stefan Institute (Slovenia); Farr, J.P.G.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Elms Road, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-06-10

    A mechanism for pitting of NdFeB magnet because of differential-aeration beneath a water droplet is proposed and observations of the localised corrosions are presented. NdFeB magnets exhibit general corrosion along the grain boundaries when etched in Viella's reagent. However, localised corrosion of these magnets results in a crater-like feature when corrosion is produced in an environmental chamber, e.g. when Nd{sub 16}Fe{sub 76}B{sub 8} magnets are corroded in the environmental chamber at 85 deg. C, relative humidity (RH): 80%. This is attributed to the condensation of water droplets on the surface of samples and the concentration gradient of oxygen dissolved in the droplets then influencing the corrosion process. It is thought that during the process of pitting, the high concentration of H{sup +} in the center of the pit accelerates the pit development; meanwhile, the cathodic Nd{sub 2}Fe{sub 14}B matrix phase absorbs the nascent hydrogen atoms. It is believed that pits start at the Nd-rich phase and then propagate along the grain boundaries.

  20. Magnetisation reversal on surface of Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Sun, H.; Woodward, R.; Street, R.

    1998-01-01

    Full text: Time dependent magnetisation processes on surface of isotropic and anisotropic Nd-Fe-B magnets were measured using a Magneto-Optic Magnetometer (MOM) and the data were analysed by means of the constitutive equation H = H(M, M). The surface magnetic viscosity parameter Λ (or fluctuation field H f ) was obtained. The activation volume v, which represents the volume of a negative magnetisation nuclei during a magnetisation reversal process was calculated from Λ. The results are compared with those of the corresponding bulk properties obtained by analysing the data measured using a Vibrating Sample Magnetometer (VSM). Similar to bulk materials, Λ for the surface magnetisation is nearly constant over a wide range of magnetisation for both isotropic and anisotropic Nd-Fe-B. However, the surface hysteresis loops are significantly different from the bulk materials, indicating a significant difference in the magnetisation reversal processes between the bulk and surface materials. The surface magnetisation reversal mechanism, its relation and influence to the bulk properties and therefore the performance of permanent magnet are discussed

  1. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    V. B. Naik

    2012-12-01

    Full Text Available We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB free layer (FL on magnetic and tunneling magnetoresistance (TMR properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA. It is found that the critical thickness (tc to sustain PMA is doubled (tc = 2.6 nm in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm. While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

  2. High saturation magnetization FeB(C) nanocapsules

    International Nuclear Information System (INIS)

    Ma, S.; Si, P.Z.; Zhang, Y.; Wu, B.; Li, Y.B.; Liu, J.J.; Feng, W.J.; Ma, X.L.; Zhang, Z.D.

    2007-01-01

    FeB(C) nanocapsules were prepared by arc-discharging Fe 80 B 20 alloy in Ar and CH 4 . X-ray diffraction and transmission electron microscopy analyses showed that the FeB(C) nanocapsules had a core-shell structure with α-Fe and Fe 3 B as cores and graphite as shells. The formation mechanism of the FeB(C) nanocapsules is discussed. The graphite shells display a strong anti-acid effect. The saturation magnetization at room temperature of the FeB(C) nanocapsules is much higher than that of Fe(B) nanocapsules. The blocking temperature of FeB(C) nanocapsules is above 300 K

  3. Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips

    Science.gov (United States)

    Jin, Jiaying; Bai, Guohua; Zhang, Yujing; Peng, Baixing; Liu, Yongsheng; Ma, Tianyu; Yan, Mi

    2018-05-01

    La and Ce substitution for Nd in the 2:14:1-type sintered magnet is of commercial interest to reduce the material cost and to balance the utilization of rare earth (RE) sources. As hydrogen decrepitation (HD) is widely utilized to prepare the magnetic powders during magnets fabrication, incorporating La and Ce into the Nd-Fe-B permanent magnets, however, may exert complex influences on the decrepitation behavior. In the present work, through a comparative study of the HD behaviors between the (La, Ce)-Fe-B strips and the conventional Nd-Fe-B ones, we find that similar to the Nd-Fe-B system, increasing hydrogen pressures from 2.5 to 5.5 MPa do not break the 2:14:1 tetragonal structure of (La, Ce)-Fe-B strips. The enhanced hydrogen absorption behaviors are observed with increasing pressure, which are still inferior to that of the Nd-Fe-B strips. This should be ascribed to the higher oxygen affinity of La and Ce than that of Nd, leading to the decreased amount of active RE-rich phase and limited hydrogen diffusion channel. As a result, the hydrogen absorption of 2:14:1 matrix phase is significantly suppressed, dramatically weakening the exothermic effect. This finding suggests that La and Ce with stable 2:14:1 tetragonal structure upon HD process are promising alternatives for Nd, despite that more precise oxygen control is necessary for the microstructure modification and magnetic performance enhancement of (La, Ce)-Fe-B sintered magnets.

  4. Investigation on microstructure and mechanical properties of Mo2FeB2 based cermets with and without PVA

    Science.gov (United States)

    Shen, Yupeng; Huang, Zhifu; Jian, Yongxin; Yang, Ming; Li, Kemin

    2018-03-01

    Mo2FeB2 based cermets with and without PVA have been investigated by x-ray diffractometry (XRD), x-ray photoelectron spectroscope (XPS) and scanning electron microscopy (SEM). The density and transverse rupture strength (TRS) of green compact, relative density, hardness (HRA), fracture toughness (KIC) and TRS of Mo2FeB2 based cermets were also measured. The results indicate that, compared with the Mo2FeB2 based cermets without PVA, the density of green compact with PVA can be improved slightly at the same pressure. However, the much higher TRS is obtained for the green compact without PVA. Meanwhile, Mo2FeB2 particles exhibit the finer and less congruity feature for Mo2FeB2 based cermets without PVA. In addition, the higher relative density, hardness, fracture toughness and TRS can be acquired for the cermets without PVA. Obviously, considering the mechanical properties and preparation period of Mo2FeB2 based cermets, no adding PVA is the optimized process of powder molding in the manufacture of Mo2FeB2 based cermets.

  5. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  6. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  7. MAGNETIC VISCOSITY IN NdFeB MAGNETS

    OpenAIRE

    Martinez , J.; Missell , F.

    1988-01-01

    The relaxation of the magnetization is calculated for isotropic and anisotropic magnets. For NdFeB magnets, the dependence of Sv on texture, above room temperature, is roughly consistent with the model, while the NdDyFeB magnets show no dependence upon texture.

  8. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel

    International Nuclear Information System (INIS)

    Fu Hanguang; Xiao Qiang; Kuang Jiacai; Jiang Zhiqiang; Xing Jiandong

    2007-01-01

    A new type of wear resistant low carbon Fe-B cast steel with granular borides can be obtained by alloying with titanium and cerium rare earth (RE). As a result, the as-cast eutectic boride structures of Fe-B cast steel are greatly refined and a blocky, less interconnected boride network is obtained from continuous ledeburite. After heat treatment, the boride eutectic in the modified Fe-B cast steel is in the form of a granular boride structure that appears to be isolated particles The guide rollers made of modified low carbon Fe-B cast steel show excellent wear resistance and thermal fatigue resistance in high speed wire mills

  9. Enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers by inhibiting Ta diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Liu, Qian-Qian; Liu, Yi-Wei; Zhao, Jian-Cheng [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Wu, Zheng-Long [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China); Feng, Chun, E-mail: fengchun@ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Li, Ming-Hua [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-03-01

    Graphical abstract: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis have been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation to some extent due to the oxygen deficit MgO{sub x} (x < 1), and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent during the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (K{sub CoFeB/MgO}). As a result, the perpendicular magnetic anisotropy at high annealing temperatures was maintained. - Highlights: • High annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers was realized. • X-ray photoelectron spectroscopy analysis has been performed to explore the reasons. • The prevention of Ta diffusion was realized by introducing Mg at the CoFeB/MgO interface. - Abstracts: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis has been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation, and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent in the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (KCoFeB/MgO). As a result, the perpendicular magnetic anisotropy at high annealing temperatures is maintained.

  10. Application of permanent magnets made from NdFeB powder and from mixtures of powders in DC motors

    International Nuclear Information System (INIS)

    Slusarek, B.; Dudzikowski, I.

    2002-01-01

    The paper presents the influence of magnetic properties of applied permanent magnets on the characteristics of DC motors excited with these magnets. In the factory-produced DC motors, excited with sintered ferrite magnets, authors replaced ferrite magnets with the dielectromagnets from NdFeB powder and from different mixtures of NdFeB and ferrite powders. The paper shows the increase of the power of the resultant DC motors according to the powders' content

  11. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  12. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  13. Characterization of nanocomposite NdFeB permanent magnetic materials

    International Nuclear Information System (INIS)

    Mat Husin Salleh; Hussain, P.; Mohammad, M.; Abd Aziz Mohamed

    2005-01-01

    The following topics were discussed: Introduction to NdFeB magnet, grain size measurement using XRD (X-ray diffraction), FESEM , TEM (Transmission Electron Microscopy) and SANS (Small-angle Neutron Scattering). The objective of the project are to analyze the structure of nano-crystallite formed in the melt spun ribbons after annealing by XRD, FESEM,TEM and SANS, to study the magnetic properties of nano-composite NdFeB melt spun ribbons and their bonded magnet and possible usage in small motor to replace the conventional NdFeB bonded magnet

  14. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  15. Effect of washing process on the magnetic properties of Nd-Fe-B nanoparticles prepared by reduction-diffusion method

    Science.gov (United States)

    Wang, Y.; Ahn, J.; Kim, D.; Ren, W. J.; Liu, W.; Zhang, Z. D.; Choi, C. J.

    2017-10-01

    Nd-Fe-B nanoparticles with a particle size below 50 nm and excellent magnetic properties were obtained via a novel route which makes use of both spray drying and reduction-diffusion processes. Uniform Nd-Fe-B particles were formed by the optimization of Ca amount as a reducing agent and additional washing by milling in ethanol media. Especially, we implemented a two-step washing process which contributed to the excellent magnetic properties with high remanence and coercivity. After the removal of CaO by novel washing process, the maximum energy product (BH)max of the particles showed 22.1 MGOe. This value is superior to those reported in reduction-diffusion process. We used Henkel plot to assume the mechanism of magnetic interactions of the Nd-Fe-B nanoparticles.

  16. Process and magnetic properties of cold pressed Ne Fe B bonded magnets

    International Nuclear Information System (INIS)

    Rodrigues, DAniel; Concilio, Gilberto Vicente; Landgraf, Fernando Jose Gomes; Zanchetta, Antonio Carlos

    1996-01-01

    Bonded magnets are polymer composites based on a mixture of a hard magnetic powder and a polymer. This mixture is processed as a traditional powder metallurgy material, cold pressed, or like a thermoplastic material, by injection molding. The polymeric phase to a large extent determines the mechanical properties of the composite, while magnetic powder determines its magnetic properties. They are less expensive and easier to produce, specially in the case of high complexity parts. This paper presents the relationship between process variables and magnetic properties of cold pressed Nd Fe B bonded magnets produced from melt spun flakes mixed with thermosetting resins. The experiments were done using Statistical Design of Experiments. The variables investigates were: uniaxial compaction pressure, binder type; binder content; size of Nd Fe B particles; addition of lubricant; and addition of small quantities of magnetic additives, particles of ferrites, iron, or alnico. (author)

  17. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  18. Temperature compensation of NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.

    1997-01-01

    Permanent magnet blocks of NdFeB have a relatively high maximum energy product. Because of its relatively low Curie temperature, however, NdFeB has a large temperature coefficient for its residual induction. The temperature coefficients of the relative magnetic fields (ΔB/B)/ΔT in the air gap of NdFeB dipole magnets were reduced from -1.1 x 10 -3 /c to less than 2 x 10 -5 /degree C under operating temperatures of ± 6 C. This was achieved passively by using 1.25-mm-thick strips of 30%-Ni-Fe alloy as flux shunts for the NdFeB blocks. The magnets with soft-steel poles and flux-return yokes were assembled and measured in a temperature-controlled environment

  19. Enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers by inhibiting Ta diffusion

    International Nuclear Information System (INIS)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Liu, Qian-Qian; Liu, Yi-Wei; Zhao, Jian-Cheng; Wu, Zheng-Long; Feng, Chun; Li, Ming-Hua; Yu, Guang-Hua

    2016-01-01

    Graphical abstract: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis have been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation to some extent due to the oxygen deficit MgO_x (x < 1), and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent during the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (K_C_o_F_e_B_/_M_g_O). As a result, the perpendicular magnetic anisotropy at high annealing temperatures was maintained. - Highlights: • High annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers was realized. • X-ray photoelectron spectroscopy analysis has been performed to explore the reasons. • The prevention of Ta diffusion was realized by introducing Mg at the CoFeB/MgO interface. - Abstracts: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis has been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation, and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent in the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (KCoFeB/MgO). As a result, the perpendicular magnetic anisotropy at high annealing temperatures is maintained

  20. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  1. Interaction domains in high-performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)], E-mail: t.woodcock@ifw-dresden.de; Khlopkov, K. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Walther, A. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); CEA Leti - MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Dempsey, N.M.; Givord, D. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); Schultz, L.; Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2009-05-15

    The magnetic domain structure in sputtered NdFeB thick films has been imaged by magnetic force microscopy. The local texture of the films was investigated by electron backscatter diffraction. The average misorientation of the grains was shown to decrease with increasing substrate temperature during deposition. Interaction domains were observed and are discussed with reference (i) to the sample grain size compared to the single domain particle size and (ii) to sample texture.

  2. Liquid coated melt-spun Nd-Fe-B powders for bonded magnets

    Science.gov (United States)

    Li, D.; Gaiffi, S.; Kirk, D.; Young, K.; Herchenroeder, J.; Berwald, T.

    1999-04-01

    The liquid coating (LC) has been employed to apply epoxy and lubricant over the surface of rapidly solidified Nd-Fe-B powder particles. The LC led to an improvement of physical and magnetic properties for the powders and magnets compared to the dry blending and the encapsulation methods. The LC powders have excellent flowability and can be used for bonded magnets requiring very close tolerances; further bonded magnets made using this powder posses higher strength.

  3. Recent development in bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Ma, B.M.; Herchenroeder, J.W.; Smith, B.; Suda, M.; Brown, D.N.; Chen, Z.

    2002-01-01

    The magnetic properties of isotropic NdFeB powders used for bonded magnets are compared. The characteristics of two newly developed powders, namely MQP-13-9 and MQP-S-9-8 were compared with respect to existing powders. The advantages of spherical powders for injection molding were highlighted. Development targets for the 180 deg. C application and NdFeB nanocomposites were also discussed

  4. NdFeB Residue to Be Recycled

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ NdFeB is a permanent magnetic material with excellent performances. It is widely used in electronics and communications. Around 30% of rare earth elements (among which 90% is Nd, others are Tb and Dy) and 2-3% of Co element are contained in the material. NdFeB plays an important role in the development of our society and our economy.

  5. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  6. High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Abbas, Nadeem; Fang, Qiuli; Wang, Fang; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-11-01

    Hard magnetic NdFeB submicro/nanoflakes were successfully prepared by surfactant-assisted ball milling at low temperature (SABMLT) by specially using 2-methyl pentane and trioctylamine (TOA) as solvent and surfactant, respectively. Influences of the amount of TOA and milling temperature on the crystal structure, morphology and magnetic performances of the as-prepared NdFeB powders were investigated systematically. There is significant difference on morphology between the NdFeB powders milled at room and low temperature. The NdFeB powders with flaky morphology could be obtained even with a small amount of TOA by SABMLT, which could not be achieved by surfactant-assisted ball milling at room temperature (SABMRT). The better crystallinity, better grain alignment, higher coercivity, larger saturation magnetization and remanence ratio were achieved in the samples prepared by SABMLT. Furthermore, the final NdFeB powders prepared by SABMLT possessed a lower amount of residual TOA than those prepared by SABMRT. It was demonstrated that SABMLT is a promising way to fabricate rare-earth-transition metal nanoflakes with high anisotropy for permanent magnetic materials. The effective method of preparing NdFeB flakes by lowering temperature will be also useful to fabricate flakes of other functional materials.

  7. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  8. Single step preparation of NdFeB alloy by magnesiothermic reduction-diffusion process

    International Nuclear Information System (INIS)

    Singha, Vinay Kant; Surendranathana, A.O.; John Berchmans, L.

    2014-01-01

    Magnesiothermic reduction is a new approach to produce the NdFeB alloy on a commercial scale. Similar studies were conducted for the preparation of LaNi 5 and SmCo 5 using magnesium as the reductant. In the present investigation NdFeB Hard magnetic bulk materials were synthesized by metallothermic 'Reduction – Diffusion (R-D) Process' using Magnesium as a reductant. For this process oxide precursors of Nd, Fe and B were blended with flux (LiCl/CaCl 2 ) and Mg chips were sandwiched in alternate layers. Thermal analysis (TGA/DTA) was carried out to find the dissociation and decomposition temperature of the reactants. The phase analysis, structure, and elemental composition were assessed by X-ray diffraction (XRD) and electron dispersive spectrometry (EDS). The infrared (IR) spectra were recorded by Fourier transform infrared spectrometer (FTIR). The morphological features and particle size was assessed by scanning electron microscope (SEM). The magnetic behaviour of the alloy was assessed using electron paramagnetic resonance (EPR) and vibratory sample magnetometer (VSM). From these studies it has been concluded that the NdFeB magnetic particles can be prepared using magnesium as the reductant. The process is faster and consumes very less amount of energy for the completion as compared to conventional calciothermic reduction process. Traces of MgO were detected in the alloy which increases the perpendicular anisotropy, thus increasing the coercivity of the material

  9. The production and characterization of Ptfe bonded Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Mokal, B.; Williams, A.J.; Hay, J.N.; Harris, I.R.

    1996-01-01

    A study of the processing and characteristics of PTFE bonded Nd Fe B magnets has been carried out. PTFE was used because of its low coefficient of friction, thus enabling its flow between the particles of Nd Fe B powder. PTFE also increases the resistance to corrosion of the magnet. In these investigations, the production of bonded magnets by cold compaction and by hot processing (HP) of MQ powders using PTFE as the binder was investigated . Magnetic, microstructural, and mechanical properties were investigated and are presented together with a correlation with the different processing techniques used. The corrosion behaviour of the hot pressed magnets was also investigated. These studies could lead to the development of simpler and more effective processing routes for the production of bonded magnets. (author)

  10. Interaction domains in high performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, Tom; Khlopkov, Kirill; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, IMW, Dresden (Germany); Walther, Arno [Insitut Neel, CNRS-UJF, Grenoble (France); CEA Leti - MINATEC, Grenoble (France); Dempsey, Nora; Givord, Dominique [Insitut Neel, CNRS-UJF, Grenoble (France)

    2009-07-01

    Thick sputtered films (5-300 micron) of NdFeB have excellent hard magnetic properties which make them attractive for applications in micro-electro-mechanical systems (MEMS). A two step process consisting of triode sputtering and high temperature annealing produced films with energy densities approaching those of sintered NdFeB magnets. Magnetic force microscopy (MFM) using hard magnetic tips showed that the films deposited without substrate heating and at 300 C exhibited magnetic domains typical of low anisotropy materials. These films were amorphous in the as-deposited state. The film deposited at 500 C was crystalline and displaid hard magnetic properties. This was reflected in the magnetic microstructure which showed interaction domains typical of highly textured and high magnetic anisotropy materials with a grain size below or equal to the critical single-domain particle limit. With increasing substrate temperature, the domain patterns of the annealed films became coarser, indicating higher degrees of texture.

  11. Corroded microstructure of HDDR-NdFeB magnetic powders

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Itakura, M.; Tomokiyo, Y.; Kuwano, N.; Machida, K.

    2004-01-01

    The microstructure of corroded HDDR-NdFeB magnetic powders in bonded magnet has been investigated by transmission electron microscopy. Following an exposure time of 300 h at 398 K in air, the HDDR-NdFeB magnetic powders are found covered with an altered layer about 300 nm thick on the surface. The layer is composed of α-Fe grains 5-10 nm in diameter and h-Nd 2 O 3 grains smaller than 5 nm. Under the altered layer, corrosion has proceeded along the Nd 2 (Fe,Co) 14 B grain boundaries to leave a wetting layer composed of a dense mixture of α-Fe and h-Nd 2 O 3 phase. The appearance of α-Fe grains in both of the altered layer wetting layer leads to the high magnetic flux loss of the corroded HDDR-NdFeB bonded magnet

  12. Magnetic viscosity and texture in NdFeB magnets

    International Nuclear Information System (INIS)

    Martinez, J.C.; Missell, F.P.

    1988-01-01

    The dependence of the magnetic viscosity on texture can be used to study a model recently proposed by Givord and co-workers to describe the angular dependence of the coercive field in NdFeB magnets. We have measured the magnetic viscosity parameter S/sub v/ for samples of Magnequench (MQ) II and III as a function of magnetic field H and temperature T above room temperature. Near room temperature, S/sub v/ for MQ II is smaller than for MQ III, while for temperatures above ∼70 0 C, the opposite behavior is observed. This temperature dependence is discussed and compared with that observed in sintered NdFeB and NdDyFeB magnets

  13. Harvinaisten maametallien talteenotto NdFeB -magneeteista

    OpenAIRE

    Kangas, Sanna

    2017-01-01

    Tutkielman kirjallisessa osassa käsitellään yleisesti harvinaisia maametalleja, niiden ominaisuuksia, valmistusta, käyttökohteita ja kierrätystä lopputuotteista. Harvinaisten maametallien käyttökohteista keskitytään neodyymi-rauta-boori -magneetteihin (NdFeB -magneetit) ja niiden kierrätykseen. Tutkielmassa käydään läpi erilaiset harvinaisten maametallien hydrometallurgiset ja pyrometallurgiset talteenottomenetelmät. Tutkimusprojektissa pyrittiin kehittämään NdFeB -magneettien kierrätysme...

  14. Metal Injection Molding (MIM) of NdFeB Magnets

    OpenAIRE

    Hartwig T.; Lopes L.; Wendhausen P.; Ünal N.

    2014-01-01

    Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM) is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of ...

  15. Effect of annealing on the magnetic properties and microstructure of NdFeB/Tb multilayered films

    Energy Technology Data Exchange (ETDEWEB)

    Li, D S; Suzuki, S; Liu, W F; Horikawa, T; Machida, K [Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: machida@casi.osaka-u.ac.jp

    2009-02-01

    The magnetic properties of NdFeB/Tb multilayered films annealed at 773-1273K were investigated by evaluating the effect of Tb spacer layer and comparing them with those of NdFeB single layered films. The as-deposited NdFeB/Tb film with a amorphous structure was crystallized at the higher annealing temperature than 923K and Nd-rich phases were formed at 1073 K, meanwhile the coercivity increased substantially. By observations of the microstructure, Tb element was found to diffuse into the Nd-rich phases to form a Tb-enriched phase around the Nd{sub 2}Fe{sub 14}B primary phase particles in the multilayered films.

  16. Effect of annealing on the magnetic properties and microstructure of NdFeB/Tb multilayered films

    International Nuclear Information System (INIS)

    Li, D S; Suzuki, S; Liu, W F; Horikawa, T; Machida, K

    2009-01-01

    The magnetic properties of NdFeB/Tb multilayered films annealed at 773-1273K were investigated by evaluating the effect of Tb spacer layer and comparing them with those of NdFeB single layered films. The as-deposited NdFeB/Tb film with a amorphous structure was crystallized at the higher annealing temperature than 923K and Nd-rich phases were formed at 1073 K, meanwhile the coercivity increased substantially. By observations of the microstructure, Tb element was found to diffuse into the Nd-rich phases to form a Tb-enriched phase around the Nd 2 Fe 14 B primary phase particles in the multilayered films.

  17. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong; Bahl, Christian R.H.; Abrahamsen, Asger Bech; Bez, Henrique Neves; Link, Joosep; Veinthal, Renno

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m 3 . The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  18. Nd-Fe-B sintered magnets fabrication by using atomized powders

    International Nuclear Information System (INIS)

    Goto, R; Sugimoto, S; Matsuura, M; Tezuka, N; Une, Y; Sagawa, M

    2011-01-01

    Nd-Fe-B sintered magnets are required to achieve high coercivity for improvement of their thermal stability. Dy is added to increase coercivity, however, this element decrease magnetization and energy products. Therefore, Dy-lean Nd-Fe-B sintered magnets with high coercivity are strongly demanded. To increase coercivity, it is necessary that microstructure of sintered magnets is consisted of both fine main phase particles and homogeneously distributed Nd-rich phases around the main phase. To meet those requirements, Nd-Fe-B atomized powders were applied to the fabrication process of sintered magnets. Comparing with the case of using strip casting (SC) alloys, jet-milled powders from atomized powders show homogeneous distribution of Nd-rich phase. After optimized thermal treatment, coercivities of sintered magnets from atomized powders and SC alloys reach 1050 kA·m-1 and 1220 kA·m-1, respectively. This difference in coercivity was due to initial oxygen concentration of starting materials. Consequently, Nd-rich phases became oxides with high melting points, and did not melt and spread during sintering and annealing.

  19. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    Science.gov (United States)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-07-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  20. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mural, Zorjana, E-mail: zorjana.mural@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Kollo, Lauri [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Xia, Manlong; Bahl, Christian R.H. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Abrahamsen, Asger Bech [Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Bez, Henrique Neves [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Veinthal, Renno [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2017-05-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m{sup 3}. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  1. Physical and magnetic properties, microstructure of bonded magnet NdFeB prepared by using synthesis rubber

    International Nuclear Information System (INIS)

    Suprapedi; Sardjono, P.; Muljadi

    2016-01-01

    The magnet permanent has been made by using NdFeB (NQP-B) powder with purity 99.90% and polymer rubber with purity 90%. This research was done to determine the effect of the polymer (rubber) composition as binder in the manufacture of bonded magnet NdFeB on physical properties, microstructure and magnetic properties. Bonded magnets are magnet material made from a mixture of magnetic powder as a filler and the polymer as a matrix material or as binder to bind the magnetic particles. The NdFeB (NQP-B) powder fractions of bonded magnets NdFeB investigated were as follows: a) 97 wt.% of NdFeB (NQP-B) and 3 wt.% of rubber,b) 95wt.% of NdFeB (NQP-B) and 5 wt.% of rubber, c) 93 wt.% of NdFeB (NQP-B) and 7 wt.% of rubber, d) 91 wt.% of NdFeB (NQP-B) and 9 wt.% of rubber. Both raw materials were mixed by using mixer until homogen with total weight about 16 g for each sample, then added 0.3 ml of catalyst and mixed again and put in dies mould and compacted at pressure 30 MPa, then dried for 2 hours at room temperature. The dried samples was characterized such as: bulk density measurement and magnetic properties by using BH-curve permeagraph. The bulk density values of the sample bonded NdFeB magnets using the binder 3% wt. and 5% wt. rubber are respectively 4,70 g/cm 3 and 4.88 g/cm 3 . The result from BH- curve shows that the highest value of remanence (Br = 5.12 kGauss) is at sample with 3% wt. of rubber, but sample with 5% wt. of rubber has lowest value of remanance (Br = 4.40 kGauss). Based on the observation of the SEM photograph shown that the rubber material has been successfully covered the whole surface of the grain and fill some of the voids that are in the grain boundary. (paper)

  2. Physical and magnetic properties, microstructure of bonded magnet NdFeB prepared by using synthesis rubber

    Science.gov (United States)

    Suprapedi; Sardjono, P.; Muljadi

    2016-11-01

    The magnet permanent has been made by using NdFeB (NQP-B) powder with purity 99.90% and polymer rubber with purity 90%. This research was done to determine the effect of the polymer (rubber) composition as binder in the manufacture of bonded magnet NdFeB on physical properties, microstructure and magnetic properties. Bonded magnets are magnet material made from a mixture of magnetic powder as a filler and the polymer as a matrix material or as binder to bind the magnetic particles. The NdFeB (NQP-B) powder fractions of bonded magnets NdFeB investigated were as follows: a) 97 wt.% of NdFeB (NQP-B) and 3 wt.% of rubber,b) 95wt.% of NdFeB (NQP-B) and 5 wt.% of rubber, c) 93 wt.% of NdFeB (NQP-B) and 7 wt.% of rubber, d) 91 wt.% of NdFeB (NQP-B) and 9 wt.% of rubber. Both raw materials were mixed by using mixer until homogen with total weight about 16 g for each sample, then added 0.3 ml of catalyst and mixed again and put in dies mould and compacted at pressure 30 MPa, then dried for 2 hours at room temperature. The dried samples was characterized such as: bulk density measurement and magnetic properties by using BH-curve permeagraph. The bulk density values of the sample bonded NdFeB magnets using the binder 3% wt. and 5% wt. rubber are respectively 4,70 g/cm3 and 4.88 g/cm3. The result from BH- curve shows that the highest value of remanence (Br = 5.12 kGauss) is at sample with 3% wt. of rubber, but sample with 5% wt. of rubber has lowest value of remanance (Br = 4.40 kGauss). Based on the observation of the SEM photograph shown that the rubber material has been successfully covered the whole surface of the grain and fill some of the voids that are in the grain boundary.

  3. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  4. Coupling phenomena and scalability of CoFeB/Ru/CoFeB sandwiches

    International Nuclear Information System (INIS)

    Wiese, N.

    2006-02-01

    The work of this thesis has to be seen in the context of magnetoresistive phenomena and their applications. It was the aim of this thesis, to implement a new material system, an amorphous CoFeB alloy, and to study its properties in magnetic tunnel junctions (MTJ). Main focus was the investigation of the coupling phenomena in these materials and the effect for their technical application. The work is relevant for application in magnetoresistive devices and partly has been carried out within the project ''Magnetoresistive logic devices''. In order to compete with the rapid downscaling in feature size of silicon semiconductors, the spin-dependent devices will also have to be scaled down to the sub-micrometer range. In the second part of this thesis, therefore, the concept of an Artificial Ferrimagnet (AFi) has been transferred to elements of sub-micrometer size. In order to get access to this small scale at experiments, patterning has been performed by electron-beam lithography, leading to sizes comparable to recent MRAM devices. In order to characterize the resulting patterns, a magneto-optical Kerr effect setup has been purchased, installed, and modified. A systematic study of the switching behavior as well as the related coupling phenomena at sub-micrometer size is presented. Emphasis is given at the interlayer exchange coupling and the exchange bias effect. Most of the phenomena for spin-dependent devices listed above are relevant for the discussion of the measurements presented in this thesis. Therefore, the first chapter covers a short introduction to most of them. The second chapter highlights the measurement methods used within this thesis. In the third chapter, the experimental results are presented and discussed. This chapter is separated into three main sections, covering the experiments at unpatterned magnetic multilayers, at patterned samples, and the studies of exchange bias effect. In the last chapter, the thesis is summarized and an outlook for further

  5. Phase analysis of Fe-B-V system

    Czech Academy of Sciences Publication Activity Database

    Homolová, V.; Výrostková, A.; Čiripová, L.; Kroupa, Aleš

    2013-01-01

    Roč. 51, č. 2 (2013), s. 135-139 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP108/10/1908 Institutional support: RVO:68081723 Keywords : CALPHAD method * Fe-B-V system * phase diagram Subject RIV: BJ - Thermodynamics Impact factor: 0.546, year: 2013

  6. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    Science.gov (United States)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  7. Development of NdFeB magnet through hydrogen decrepitation

    International Nuclear Information System (INIS)

    Akhtar, S.; Farooque, M.; Haider, A.; Ahmad, Z.

    2009-01-01

    Neodymium based magnets are the powerful permanent magnet of today. This paper will discuss iron based rare earth magnets. NdFeB sintered magnet material has been developed. The magnets are produced by powder metallurgy route involving hydrogen decrepitation technique for making fine powder. After melting and casting, the NdFeB alloy is subject to hydrogen atmosphere. Hydrogen slowly absorbs into the solid alloy and makes it brittle, which upon milling becomes fine powder. Hydrogen is then removed by placing the powder at temperature around 800 deg. C under vacuum. Then the powders are pressed under isostatic conditions and sintered at temperature range of 1020-1050 deg. C. Post sintering is done at 800 deg. C and 580 deg. C followed by quenching. Energy product in the range of 8 MGOe is achieved. (author)

  8. Ce-didymium-Fe-B sintered permanent magnets

    International Nuclear Information System (INIS)

    Homma, M.; Okada, M.; Sugimoto, S.

    1985-01-01

    Present works report the development of the low cost R-Fe-B permanent magnets. The best magnetic properties obtained in this studies are Br=13.5 kG, iHc=10.2 kOe and (BH)max=40 MGOe with an Fe-33.5wt%(5Ce-Didymium)-1wt% B alloy. Topics considered in this paper include cerium alloys, boron alloys, fabrication, capitalized cost, iron alloys, permanent magnets, and magnetic properties

  9. NdFeB permanent magnets with various Nd content

    Czech Academy of Sciences Publication Activity Database

    Žák, Tomáš; Talijan, N.; Ćosović, V.; Grujić, A.

    2008-01-01

    Roč. 113, č. 1 (2008), s. 279-282 ISSN 0587-4246. [Czech and Slovak Conference on Magnetism /13./ (CSMAG'07). Košice, 09.08.2007-12.08.2007] R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : NdFeB permanent magnets * Mossbauer effect * X-ray Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  10. Corrosion of NdFeB permanent magnet materials

    International Nuclear Information System (INIS)

    Warren, G.W.; Gao, G.; Li, Q.

    1991-01-01

    NdFeB is an important class of new magnetic materials, however corrosion resistance is a serious concern and literature on the electrochemical behavior of NdFeB is scarce. This paper reports the results of an electrochemical investigation of the corrosion behavior of sintered NdFeB magnets obtained from three manufacturers. Linear polarization (cyclic voltammetry) experiments were conducted in aqueous solutions ranging in pH from 0.7 to 13.5. A limited degree of passivation was observed in all solutions which is believed to be due to the formation of a complex Fe-Nd oxide and/or hydroxide film. The presence of a small amount of chloride ion, 10 to 100 ppm, shows only a slight effect, but higher concentrations (1000 ppm) cause a total breakdown in passivity and a dramatic increase in anodic current. The cathodic potential sweep shows an abrupt and unusual oxidation process, giving rise to an oxidation peak not commonly seen. This peak may result from dissolution of the film or preferential attack of intergranular phases

  11. NdFeB thick films prepared by tape casting

    International Nuclear Information System (INIS)

    Pawlowski, B.; Schwarzer, S.; Rahmig, A.; Toepfer, J.

    2003-01-01

    NdFeB films of thickness between 100 and 800 μm were prepared by tape casting of a slurry containing 84-95 wt% of commercial NdFeB powder (MQP-B, -Q and -S). After curing the flexible green tapes at 120 deg. C non-porous magnetic films are obtained. The remanence of the films is in the range of 350-450 mT and the coercivity is between 300 and 800 kA/m depending on the type of MQP powder used. The magnetic properties of the films are discussed in relation to film composition and type of magnetic material. For MEMS applications the thick films are magnetized with a multi-pole stripe pattern with 1 mm pole pitch. The induction at the surface of the films was measured with a Hall probe and compared to theoretical calculations. The results indicate that the films are completely magnetized regardless of the film thickness. Tape-casted NdFeB thick films are promising candidates for applications in micro-systems or actuators. Miniaturization of the magnet components is one of the key issues in the development of electromagnetic micro-systems, thus creating a need for replacement of small sintered magnets by magnetic thick film components. Other applications include encoders

  12. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  13. Magnetization switching diagram of a perpendicular synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Talantsev, A. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Lu, Y.; Hamadeh, A.; Pirro, P.; Hauet, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine (France); Morgunov, R., E-mail: morgunov2005@yandex.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Tambov State Technical University, 392000 Tambov (Russian Federation); Mangin, S. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine (France)

    2017-07-01

    Highlights: • Anisotropy, Zeeman and exchange energy determine sequence of magnetic transitions. • Three temperature ranges manifest different shapes of the hysteresis loop. • The critical transition fields are temperature dependent. - Abstract: Magnetic configurations in synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer with strong perpendicular anisotropy have been systematically studied. Magnetization versus field hysteresis loop has been measured for different temperature ranging from 5 to 300 K. The applied field – temperature (H-T) magnetization switching diagram has been constructed by extracting the different switching fields as a function of temperature. This switching diagram can be well explained by considering the competition between energy barrier of layer’s magnetization reversal, interlayer exchange coupling, and Zeeman energy.

  14. Magnetization switching diagram of a perpendicular synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer

    International Nuclear Information System (INIS)

    Koplak, O.; Talantsev, A.; Lu, Y.; Hamadeh, A.; Pirro, P.; Hauet, T.; Morgunov, R.; Mangin, S.

    2017-01-01

    Highlights: • Anisotropy, Zeeman and exchange energy determine sequence of magnetic transitions. • Three temperature ranges manifest different shapes of the hysteresis loop. • The critical transition fields are temperature dependent. - Abstract: Magnetic configurations in synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer with strong perpendicular anisotropy have been systematically studied. Magnetization versus field hysteresis loop has been measured for different temperature ranging from 5 to 300 K. The applied field – temperature (H-T) magnetization switching diagram has been constructed by extracting the different switching fields as a function of temperature. This switching diagram can be well explained by considering the competition between energy barrier of layer’s magnetization reversal, interlayer exchange coupling, and Zeeman energy.

  15. Effect of annealing on microstructure evolution in CoFeB/MgO/CoFeB heterostructures by positron annihilation

    Science.gov (United States)

    Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua

    2013-09-01

    As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.

  16. Electronic Structures Localized at the Boron Atom in Amorphous Fe-B and Fe-B-P Alloys

    Science.gov (United States)

    Yasuda, Hidehiro; Nakayama, Hiroshi; Fujita, Hiroshi

    1989-11-01

    The electronic structures localized at the B in amorphous Fe-B and Fe-B-P alloys and their crystallized alloys were studied by Auger valence electron spectroscopy and the states of solute B are discussed based on the change in the degree of covalent bonding and the charge transfer between the Fe and B atoms. In amorphous phases, the charge transfers from Fe to B above 15at%B where B atoms occupy the substitutionallike situations, and from B to Fe below 15at%B where B atoms occupy the interstitiallike situations. Magnetic properties depend on such states of solute B. In crystalline phases, covalent bonding becomes dominant because the electron excitation occurs to the B2p state. Consequently, amorphous phases are more metallic in character than crystalline phases and amorphous structures are stabilized by a mixture of more than two different bonding states.

  17. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  18. Influence of particle size in silo discharge

    Directory of Open Access Journals (Sweden)

    Gella Diego

    2017-01-01

    Full Text Available Recently Janda et al. [Phys. Rev. Lett. 108, 248001 (2012] reported an experimental study where it was measured the velocity and volume fraction fields of 1 mm diameter stainless steel beads in the exit of a two-dimensional silo. In that work, they proposed a new expression to predict the flow of granular media in silos which does not explicitly include the particle size as a parameter. Here, we study if effectively, there is not such influence of the particle size in the flux equations as well as investigate any possible effect in the velocity and volume fraction fields. To this end, we have performed high speed motion measurements of these magnitudes in a two-dimensional silo filled with 4 mm diameter beads of stainless steel, the same material than the previous works. A developed tracking program has been implemented to obtain at the same time both, the velocity and volume fraction. The final objective of this work has been to extend and generalize the theoretical framework of Janda et al. for all sizes of particles. We have found that the obtained functionalities are the same than in the 1 mm case, but the exponents and other fitting parameters are different.

  19. Elevated temperature study of Nd-Fe-B--based magnets with cobalt and dysprosium additions

    International Nuclear Information System (INIS)

    Gauder, D.R.; Froning, M.H.; White, R.J.; Ray, A.E.

    1988-01-01

    This paper discusses the elevated temperature performance of Nd-Fe-B magnets containing 0--15 wt. % cobalt substitutions for iron and 0--10 wt. % dysprosium substitutions for neodymium. Test samples were prepared using conventional powder metallurgy techniques. Elevated temperature hysteresis loop and open-circuit measurements were performed on the samples to investigate irreversible losses and long term aging losses at 150 0 C. Magnets with high amounts of both cobalt and dysprosium exhibited lower losses of coercivity and magnetization. Dysprosium had more influence on the elevated temperature performance of the material than did cobalt

  20. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar

    2005-01-01

    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  1. Processing and physical metallurgy of NdFeB and other R.E. magnets

    International Nuclear Information System (INIS)

    Ormerod, J.

    1985-01-01

    The background to the developmetn of NdFeB-based permanent magnets is described. The processing of NdFeB permanent magnets is outlined and compared with the production of SmCo-based permanent magnets. Some metallographic observations of sintered NdFeB magnets are presented. Finally, the improvement and future development of NdFeB and related permanent magnet materials are discussed

  2. Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Wang, Fang; Fang, Qiuli; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-02-01

    Hard magnetic NdFeB submicron and nanoflakes were successfully prepared by surfactant-assisted ball milling at room temperature (SABMRT) and low temperature (SABMLT) by using oleic acid (OA), oleylamine (OLA) and trioctylamine (TOA) as surfactant, respectively. Among the surfactants used, OA and OLA have similar effects on the morphology of the NdFeB nanoflakes milled at both room and low temperature. In the case of TOA, irregular micron-sized particles and submirco/nanoflakes were obtained for the NdFeB powders prepared by SABMRT and SABMLT, respectively. Samples prepared by SABMLT show better crystallinity and better degree of grain alignment than that prepared by SABMRT with the same surfactant. Comparing with the samples milled at RT, higher coercivity and larger remanence ratio were achieved in the NdFeB samples prepared at LT. The amounts of residual surfactants in final NdFeB powders were also calculated, which reveals that the final NdFeB powders milled at LT possess lower amount of residual surfactants than those milled at RT. It was found that lowering milling temperature of SABM would be a promising way for fabricating permanent magnetic materials with better hard magnetic properties.

  3. Effect of calcium chloride on the preparation of NdFeB alloy powder by calciothermic reduction process

    International Nuclear Information System (INIS)

    Sidhu, R.K.; Verma, A.; Raina, K.K.

    1999-01-01

    The calciothermic reduction process has been identified to be one of the cost effective processes for producing NdFeB from Nd 2 O 3 . Use of CaCl 2 as slag former in calciothermic reduction is well established. This paper describes the effect of CaCl 2 on the various properties of NdFeB alloy powder prepared by calciothermic reduction. The effect of CaCl 2 on ease of disintegration of the reacted product during calcium leaching, particle size distribution, grain size, lattice parameters and residual calcium has been studied and compared with the alloy powder prepared without using calcium chloride. Addition of CaCl 2 has been found to result in easier disintegration, reduction in grain size and more uniform particle size distribution. Substantial decrease in the residual calcium in case of charge consisting of CaCl 2 was observed. The effect of lattice parameters was not found to be very significant. (author)

  4. Magnetic viscosity and coercivity mechanisms in sintered and melt spun NdFeB

    International Nuclear Information System (INIS)

    Street, R.; Bingham, D.; Day, R.K.; Dunlop, J.B.

    1988-01-01

    Magnetic viscosity parameters kT/q(=Sv) of sintered and melt spun NdFeB vary with internal field. During initial magnetization of thermally demagnetized specimens signifiant viscosity occurs with melt spun NdFeB but is negligible with sintered NdFeB. Differences in mechanisms of magnetization account for this behaviour

  5. Fast neutron Damage Studies on NdFeB Materials

    OpenAIRE

    Anderson, S.; Spencer, J.; Wolf, Z.; Boussoufi, M.; Baldwin, A.; Pellett, D.; Volk, J.

    2005-01-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and gamma’s over the life of the facility. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at the P...

  6. Zinc and resin bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    2002-01-01

    Zinc and resin bonded NdFeB magnets were processed. Basic magnetic parameters as well as compressive strength were evaluated versus annealing temperature and volume fraction of the bonding agent. For the zinc bonded magnets phase composition was investigated. The additional NdZn 5 phase was found in the Zn bonded magnets after annealing. Comparison of the Zn and resin bonded magnets reveals higher remanence for the former and higher coercivity for the latter. For the Zn and resin bonded magnets, 15 wt.% Zn / 370 o C and 7-10 wt.% resin were chosen as the optimal processing parameters. (author)

  7. Blending additions to PrFeB and NdFeB-type magnets

    International Nuclear Information System (INIS)

    Ahmad, A.; Harris, I.R.

    2001-01-01

    The RFeB system has been developed over the last fifteen years to provide permanent magnets of the highest quality for advanced applications. These magnets exhibit high saturation and good coercivity but their poor corrosion resistance and high temperature properties had led to considerable research in improving these properties by alloying additions. The majority of studies in to the effects of additions to RFeB magnets have been made by alloy modification at a pre-casting stage. This is a somewhat inflexible route with many casts being required to investigate the systematic effect of a particular addition on properties. In this work, additions have been made by the powder blending technique. By blending powders prior to sintering a wide range of composing can be assessed rapidly using only a small number of starting alloys. Manufacturers could take advantage of this technique by obtaining a large quantity of a base alloy, and then adjusting its properties accordingly to customer requirements. Pr and Nd-based magnets have been prepared by blending with Co and Al powder. The paper reports the domain structure of as cast alloys, microstructure, magnetic properties and curie temperature of sintered magnets made by blending with Co and Al particles. Magnets were made by varying the Co contents from 0 to 10 at % with both alloys. Al blended magnets of Nd-based alloys were made by varying the Al content from 0 to 3 at %. It has been found that blending is very effective way of adding Co and Al to these alloys. There is an improvement in the curie temperature and magnetic properties of the blended magnets. (author)

  8. Microstructure and Magnetic Properties of NdFeB Films through Nd Surface Diffusion Process

    OpenAIRE

    Liu, Wenfeng; Zhang, Mingang; Zhang, Kewei; Chai, Yuesheng

    2017-01-01

    Ta/Nd/NdFeB/Nd/Ta films were deposited by magnetron sputtering on Si (100) substrates and subsequently annealed for 30 min at 923 K in vacuum. It was found that the microstructure and magnetic properties of Ta/Nd/NdFeB/Nd/Ta films strongly depend on the NdFeB layer thickness. With NdFeB layer thickness increasing, both the grain size and the strain firstly reduce and then increase. When NdFeB layer thickness is 750 nm, the strain reaches the minimum value. Meanwhile, both the in-plane and per...

  9. The demagnetising factors for bonded neodymium iron boron (NdFeB) magnets

    International Nuclear Information System (INIS)

    Wang, Z.

    2000-10-01

    Both analytical and computational methods have been, for the first time, employed to study the demagnetising factors for bonded magnets. The demagnetising factors for bonded NdFeB magnets are dependent on the external shape of the bonded magnet, the shapes of magnetic particles, the magnetic loading percentage and the distributions of magnetic particles. Particularly, it has been shown that the demagnetising factor along the length of an infinitely long bonded magnet is not equal to zero but that it also depends on the shapes of the magnetic particles, magnetic loading percentage and the distribution of magnetic particles. However, the sum of the demagnetising factors along the x, y and z directions is, as expected, unity for all bonded magnets. The demagnetising factor for a fully dense magnet, which is dependent only on the external shape of the magnet, can be considered as a special case of bonded magnets in which the magnetic loading is 100%. Simplified formulae for calculating the demagnetising factors for simple shaped magnets such as cuboid, cylindroid and ellipsoid shapes were obtained and the values are in reasonable agreement with precise analytical solutions. A Lorentz ''sphere'' concept has, for the first time, been employed to calculate the demagnetising factors for hollow magnets and bonded NdFeB magnets. The simplified formulae for hollow magnets and bonded magnets were derived. Computer programmes based on the basic energy method were developed and employed to calculate the demagnetising factors for bonded magnet models, such as a one-dimensional NdFeB ribbon array, two-dimensional bonded magnets and three-dimensional bonded magnets. A finite difference method and a finite element method have been, for the first time, employed to calculate the demagnetising factors for two-dimensional bonded magnet models and the results are comparable with those obtained using the basic energy method. Procedures for calculating demagnetising curves (J vs H) for

  10. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane, E-mail: j.thielsch@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany)

    2010-10-15

    Textured composite samples consisting of Nd{sub 13.6}Fe{sub 73.6}Ga{sub 0.6}Co{sub 6.6}B{sub 5.6} (MQU-F{sup TM}) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  11. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    International Nuclear Information System (INIS)

    Thielsch, Juliane; Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver

    2010-01-01

    Textured composite samples consisting of Nd 13.6 Fe 73.6 Ga 0.6 Co 6.6 B 5.6 (MQU-F TM ) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  12. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  13. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  14. High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Yu, Tao [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhu, Zhengyong; Zhong, Huicai [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Khamis, Khamis Masoud [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191 (China)

    2016-07-15

    The perpendicular magnetic anisotropy (PMA) of a series of top MgO/CoFeB/W stacks were studied. In these stacks, the thickness of CoFeB is limited in a range of 1.1–2.2 nm. It was found that the stack can still maintain PMA in a 1.9 nm thick CoFeB free layer. Besides, we investigated the thermal stability factor ∆ of a spin transfer torque magnetic random access memory (STT-MRAM) by inserting an ultra-thin W film of 0.8 nm between two CoFeB films. The result shows a clear PMA behavior for the samples with CoFeB thickness up to 2.5 nm, and an in-plane magnetic anisotropy (IMA) when the CoFeB is thicker than 2.5 nm. Moreover, the thermal stability factor ∆ of the CoFeB stack with W insertion is about 132 for a 50 nm size STT-MRAM device, which is remarkably improved compared to 112 for a sample without W insertion. Our results represent an alternative way to realize the endurance at high annealing temperature, high-density and high ∆ in STT-MRAM device by ultra-thin W insertion. - Highlights: • The MgO/CoFeB/W multilayer can still maintain PMA in a CoFeB thickness of 1.9 nm. • The sample with 2.5 nm thickness of CoFeB by W insertion can still maintain PMA. • The sample with W insertion can still maintain PMA until the annealing temperature as high as 350 °C. • The thermal stability factor ∆ of sample with W insertion could be increase to about 132 for a 50 nm size STT-MRAM device.

  15. Nd composition dependence of microstructure and magnetic properties for gradient sputtered NdFeB films

    International Nuclear Information System (INIS)

    Li Shandong; Wang Dawei; Fang Jianglin; Duh, J.-G.; Wang Yinying; Wu Yizhi; Huang Junheng; Zheng Hongjun

    2008-01-01

    NdFeB films with Nd compositions varied from 13.34 to 24.30 at% were deposited by DC gradient sputtering using targets Nd 12.5 Fe 71.5 B 16 and Nd. The hard magnetic properties, grain growth direction and magnetic domain structures were dramatically influenced by Nd composition. The samples with intermediate Nd concentrations exhibited optimal magnetic properties and microstructures, such as large squareness ratio over 0.9, large energy product up to 174 kJ/m 3 , and vertical domain structure. However, the samples with higher and lower Nd compositions showed almost isotropic loops. (0 0 l) as main X-ray diffraction peaks in the optimal Nd composition region indicated most of Nd 2 Fe 14 B grains with c-axis perpendicular to the film plane, while NdFeB grains in other region are almost random growth. The good magnetic properties can be attributed to the vertical growth of Nd 2 Fe 14 B grains

  16. Nd composition dependence of microstructure and magnetic properties for gradient sputtered NdFeB films

    Energy Technology Data Exchange (ETDEWEB)

    Li Shandong [Department of Physics, Fujian Normal University, Fuzhou 350007 (China)], E-mail: dylsd007@yahoo.com.cn; Wang Dawei [Department of Physics, Fujian Normal University, Fuzhou 350007 (China); Fang Jianglin [Center for Materials Analysis, Nanjing University, Nanjing 210093 (China); Duh, J.-G. [Department of Materials Science and Engineering, National TsingHua Universtiy, Hsinchu, Taiwan (China); Wang Yinying; Wu Yizhi; Huang Junheng; Zheng Hongjun [Department of Physics, Fujian Normal University, Fuzhou 350007 (China)

    2008-08-15

    NdFeB films with Nd compositions varied from 13.34 to 24.30 at% were deposited by DC gradient sputtering using targets Nd{sub 12.5}Fe{sub 71.5}B{sub 16} and Nd. The hard magnetic properties, grain growth direction and magnetic domain structures were dramatically influenced by Nd composition. The samples with intermediate Nd concentrations exhibited optimal magnetic properties and microstructures, such as large squareness ratio over 0.9, large energy product up to 174 kJ/m{sup 3}, and vertical domain structure. However, the samples with higher and lower Nd compositions showed almost isotropic loops. (0 0 l) as main X-ray diffraction peaks in the optimal Nd composition region indicated most of Nd{sub 2}Fe{sub 14}B grains with c-axis perpendicular to the film plane, while NdFeB grains in other region are almost random growth. The good magnetic properties can be attributed to the vertical growth of Nd{sub 2}Fe{sub 14}B grains.

  17. Electrodeposition of amorphous Ni-P coatings onto Nd-Fe-B permanent magnet substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.B [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); Cao, F.H [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); Zhang, Z. [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China)]. E-mail: eaglezzy@zjuem.zju.edu.cn; Zhang, J.Q [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-12-15

    Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H{sub 3}PO{sub 3} on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni{sub 2}P/Ni{sub 3}P and the resultant formation of multi-phase coatings (such as Ni{sub 2}P-P)

  18. Production for high thermal stability NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China)], E-mail: iyy2000@163.com; Zhang, J.; Hu, S.Q.; Han, Z.D. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2008-04-15

    To improve sintered NdFeB magnets' thermal stability and magnetic properties, combined addition of elements Cu and Gd was investigated. It was found that with Gd addition increase to 1.0%, the temperature coefficient {alpha} improved from -0.15 to -0.05%/deg. C (maximum working temperature 120 deg. C), but the remanence and the maximum energy product linearly decreased. With addition of Cu in Gd-containing magnets the intrinsic coercivity increased greatly, and the remanence increased also because of their density improvement, and optimum Cu content was achieved at 0.2%. Microstructure analysis showed that most of the Cu distributed at grain boundaries and led to clear and smooth morphologies. Magnets with high thermal stability {alpha}=-0.05%/deg. C and magnetic properties were obtained with addition of Gd=0.8% and Cu=0.2%.

  19. Fast Neutron Damage Studies on NdFeB Materials

    CERN Document Server

    Spencer, James; Baldwin, A; Boussoufi, Moe; Pellet, David; Volk, James T; Wolf, Zachary

    2005-01-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas over the life of the facility. Although the linacs will be superconducting, there are still many potential uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the radiation damage situation for rare earth permanent magnet materials was presented at PAC2003 and our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC2004 where the damage appeared proportional to the distances between the effective operating points and Hc. Here we have extended those doses and included more commercial samples together with the induced radioactivities associated with their respective dopants. Hall probe data for the external induction distributions are compared with vector magnetizatio...

  20. Fast Neutron Damage Studies on NdFeB Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.; Spencer, J.; Wolf, Z.; /SLAC; Baldwin, A.; Pellett, D.; Boussoufi, M.; /UC, Davis

    2005-05-17

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and {gamma}'s over the life of the facility [1]. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at PAC03 [2]. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC04 [3]. We have extended the doses, included other manufacturer's samples, and measured induced radioactivities which are discussed in detail.

  1. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  2. Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet

    Science.gov (United States)

    Yang, Lijing; Bi, Mengxue; Jiang, Jianjun; Ding, Xuefeng; Zhu, Minggang; Li, Wei; Lv, Zhongshan; Song, Zhenlun

    2017-06-01

    For the balanced consumption of rare-earth elements, cerium (Ce) was partially used for NdFeB magnets instead of Nd. The corrosion behaviour of the (Nd,Ce)FeB magnet with different Ce contents in 3.5% NaCl solution was investigated by SEM, XRD, EDS and electrochemical tests. After immersion, the weight loss was calculated and the magnetic properties of the samples were measured. Results showed that Ce affected the corrosion of the (Nd,Ce)FeB magnet. Compared with the NdFeB magnet without Ce but of the same grade as the magnetic energy product, (Nd,Ce)FeB magnet showed better corrosion resistance. With increased Ce content, the corrosion resistances and magnetic properties of (Nd,Ce)FeB magnets were investigated.

  3. The epoxy resin variation effect on microstructure and physical properties to improve bonded NdFeB flux magnetic density

    International Nuclear Information System (INIS)

    Rusnaeni, N.; Sarjono, Priyo; Muljadi; Noer, Nasrudin

    2016-01-01

    NdFeB magnets have been fabricated from a mixture of powder NdFeB (MPQ-B+) and epoxy resins (ER) with a variation of 0% wt, 2% wt, 4% wt and 6% wt. The pellets samples were made by pressing 4 tons of the mixture powder at room temperature before curing at 100°C for 1 hour. The SEM-EDX results showed the microstructure with ER were evenly smeared the NdFeB magnetic particles due to higher percent C and lower transition metals value. Sample with 2% wt epoxy resin was able to achieve the highest density of 5.35 g/cm 3 and the highest magnetic flux of 2121 Gauss. The magnetic properties characterization using the permagraph indicates that the sample pellets with 2% wt epoxy resin has a value of remanence (Br) = 4.92 kG, coercivity (Hc) = 7.76 kOe, and energy product (Bhmax) = 4.58 MGOe. Despite low remanence value in the pellet samples, the resistance to demagnetization value was still acceptable. (paper)

  4. The epoxy resin variation effect on microstructure and physical properties to improve bonded NdFeB flux magnetic density

    Science.gov (United States)

    Rusnaeni, N.; Sarjono, Priyo; Muljadi; Noer, Nasrudin

    2016-11-01

    NdFeB magnets have been fabricated from a mixture of powder NdFeB (MPQ-B+) and epoxy resins (ER) with a variation of 0% wt, 2% wt, 4% wt and 6% wt. The pellets samples were made by pressing 4 tons of the mixture powder at room temperature before curing at 100°C for 1 hour. The SEM-EDX results showed the microstructure with ER were evenly smeared the NdFeB magnetic particles due to higher percent C and lower transition metals value. Sample with 2% wt epoxy resin was able to achieve the highest density of 5.35 g/cm3 and the highest magnetic flux of 2121 Gauss. The magnetic properties characterization using the permagraph indicates that the sample pellets with 2% wt epoxy resin has a value of remanence (Br) = 4.92 kG, coercivity (Hc) = 7.76 kOe, and energy product (Bhmax) = 4.58 MGOe. Despite low remanence value in the pellet samples, the resistance to demagnetization value was still acceptable.

  5. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  6. On the cooling rate of strip cast ingots for sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mse_yanmi@dial.zju.edu.cn; Wu, J.M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Luo, W. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cui, X.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Ying, H.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2007-04-30

    Effects of the cooling rate of strip cast ingots on magnetic properties of sintered NdFeB magnets were studied. It is found that the magnetic properties greatly depend on wheel speed due to different alloy microstructures, which affect readily the particle size distribution of powders obtained after the subsequent jet milling. At higher cooling rate, interlamellar spacing between Nd-rich platelets of the alloy was small, resulting in a lower saturated magnetization due to increased amounts of small particles after jet milling. With further decreasing cooling rate, the resultant larger interlamellar spacing led to too large particle sizes as well as a more irregular shape; thus deteriorated the magnetic properties of the final magnet. A model was developed to disclose the effects of particle sizes on the magnetic alignment process. In the current investigation, optimum magnetic properties of the final magnets were obtained with a cooling rate of 2.6 m/s for preparing the strip. The magnets made by conventionally cast ingot technique exhibited the lowest magnetic properties because of the slowest cooling rate.

  7. The analysis of adhesion failure between Ni-coating and sintered NdFeB substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hengxiu, Y; Yong, D; Zhenlun, S, E-mail: yanghengxiu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 (China)

    2011-01-01

    Ni-coating was widely used to protect the sintered NdFeB magnet from corrosion by Watt electro-deposition solution. However, the protection failure always occurs due to poor adhesion strength between Ni-coating and NdFeB substrate. In present work, the adhesion strength of the Ni-coating on NdFeB substrate was measured by vertical tensile method to strip Ni-coating from NdFeB substrate. The results revealed that the adhesion failure was occurred in the side of the NdFeB substrate due to a weak zone sometimes shown cracks located inside of NdFeB substrate, rather than in the interface between Ni-coating and NdFeB substrate. Comparing with cross section morphology of NdFeB magnet after pretreatment, it is concluded that the crack could be formed during the electro-deposition process. The effect of the pH value of bath on adhesion strength indicated that the crack could be induced due to electrochemical hydrogenation of NdFeB substrate during electro-deposition.

  8. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets.

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Nlebedim, I C; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R R; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A; Paranthaman, M Parans

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3 , and the room temperature magnetic properties are: intrinsic coercivity H ci  = 688.4 kA/m, remanence B r  = 0.51 T, and energy product (BH) max  = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  9. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  10. NdFeB magnets for high-power motors

    International Nuclear Information System (INIS)

    Oswald, B.; Soell, M.; Berberich, A.

    1998-01-01

    The use of REM in electric motors especially in the case of servo drives is state of the art today. Whether permanent magnet types SmCo or NdFeB are also suitable for high power main drives has to be decided regarding criteria which apply to high power machines. In this paper operation characteristics of common electric motors and especially those of drives with controlled speed are presented. In the case of electric motors with REM, increased output power and high efficiency at the same time are to be expected in comparison to classical drives. This makes them attractive for a number of applications. However their speed range is restricted for fundamental reasons as normally weakening of field is not possible. It is to be expected that due to their advantages the use of permanent magnet motors for elevated output power also will increase. Besides other forms they can be used also as special design such as e.g. round or flat linear motors. Their power density (force density) makes them attractive for numerous applications in this form. A comparison between permanent magnet motors with superconducting motors made of bulk HTS material gives insight into the wide area of future design of electrical machines. (orig.)

  11. Mechanically alloyed PrFeB nanocrystalline magnets

    International Nuclear Information System (INIS)

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  12. A preparation method and effects of Al–Cr coating on NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Lin, Min; Xia, Qingping

    2012-01-01

    A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: ► The Al–Cr coating can be prepared by dipping in solution, shaking dry and heating. ► The coating morphology shows to be an intense overlapping structure. ► The barrier effect combines with passivation and cathodic protection. ► The anticorrosion abilities improve while magnetic properties change little. ► Compared with other surface treatments, this method is convenient and low cost.

  13. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Lin, Min, E-mail: linm@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, 519 Road Zhuangshi, District Zhenghai, Ningbo 315201, People' s Republic of China (China); Xia, Qingping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-11-15

    A 50 {mu}m Al-Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 Degree-Sign C. The morphology and composition of the Al-Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al-Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al-Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al-Cr coating moves positively from -0.67 to -0.48 V, which is in accordance with Nyquist and Bode plots. The Al-Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: Black-Right-Pointing-Pointer The Al-Cr coating can be prepared by dipping in solution, shaking dry and heating. Black-Right-Pointing-Pointer The coating morphology shows to be an intense overlapping structure. Black-Right-Pointing-Pointer The barrier effect combines with passivation and cathodic protection. Black-Right-Pointing-Pointer The anticorrosion abilities improve while magnetic properties change little. Black-Right-Pointing-Pointer Compared with other surface treatments, this method is convenient and low cost.

  14. Experiments for obtaining field influence mass particles.

    CERN Document Server

    Yahalomi, E

    2010-01-01

    Analyzing time dilation experiments the existence of a universal field interacting with moving mass particles is obtained. It is found that mass particle changes its properties depend on its velocity relative to this universal scalar field and not on its velocity relative to the laboratory. High energy proton momentum, energy and mass were calculated obtaining new results. Experiments in high energy accelerators are suggested as additional proofs for the existence of this universal field. This universal field may explain some results of other high energy experiments.

  15. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    International Nuclear Information System (INIS)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-01-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H ci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H 2 gas. Expansion of the NdFeB crystal lattice in both ATF and H 2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd 2 Fe 14 B, reducing coercivity.

  16. Microstructure and Magnetic Properties of NdFeB Films through Nd Surface Diffusion Process

    Directory of Open Access Journals (Sweden)

    Wenfeng Liu

    2017-01-01

    Full Text Available Ta/Nd/NdFeB/Nd/Ta films were deposited by magnetron sputtering on Si (100 substrates and subsequently annealed for 30 min at 923 K in vacuum. It was found that the microstructure and magnetic properties of Ta/Nd/NdFeB/Nd/Ta films strongly depend on the NdFeB layer thickness. With NdFeB layer thickness increasing, both the grain size and the strain firstly reduce and then increase. When NdFeB layer thickness is 750 nm, the strain reaches the minimum value. Meanwhile, both the in-plane and perpendicular coercivities firstly drastically increase and then slowly decrease with NdFeB layer thickness increasing. The highest in-plane and perpendicular coercivities can be obtained at NdFeB layer thickness of 750 nm, which are 21.2 kOe and 19.5 kOe, respectively. In addition, the high remanence ratio (remanent magnetization/saturation magnetization of 0.87 can also be achieved in Ta/Nd/NdFeB (750 nm/Nd/Ta film.

  17. Meteorological influences on coastal new particle formation

    NARCIS (Netherlands)

    Leeuw, G. de; Kunz, G.J.; Buzorius, G.; O`Dowd, C.D.

    2002-01-01

    The meteorological situation at the midlatitude coastal station of Mace Head, Ireland, is described based on observations during the New Particle Formation and Fate in the Coastal Environment (PARFORCE) experiments in September 1998 and June 1999. Micrometeorological sensors were mounted near the

  18. Efek Waktu Wet Milling dan Suhu Annealing Terhadap Sifat Fisis, Mikrostruktur dan Magnet dari Flakes NdFeB

    OpenAIRE

    Sipahutar, Wahyu Solafide

    2015-01-01

    Had made research manufacture NdFeB magnets of flakes of wet milling process using a ball mill to the physic properties, microstructure, and magnetic properties with variations milling time is 16 hours, 24 hours, 48 hours, 72 hours. Powder result of mechanical milling using a ball mill and then analyzed the resulting particle size by using PSA and XRD. Then do the manufacture of test samples in the form of pellets by compaction process through print isotropy. Having obtained a sample of pelle...

  19. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet.

    Science.gov (United States)

    Zhang, Haijun; Li, Yafei; Hou, Jianhou; Du, Aijun; Chen, Zhongfang

    2016-10-12

    By introducing the commonly utilized Fe atoms into a two-dimensional (2D) honeycomb boron network, we theoretically designed a new Dirac material of FeB 2 monolayer with a Fermi velocity in the same order of graphene. The electron transfer from Fe atoms to B networks not only effectively stabilizes the FeB 2 networks but also leads to the strong interaction between the Fe and B atoms. The Dirac state in FeB 2 system primarily arises from the Fe d orbitals and hybridized orbital from Fe-d and B-p states. The newly predicted FeB 2 monolayer has excellent dynamic and thermal stabilities and is also the global minimum of 2D FeB 2 system, implying its experimental feasibility. Our results are beneficial to further uncovering the mechanism of the Dirac cones and providing a feasible strategy for Dirac materials design.

  20. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinlong; Mao Shoudong; Sun Kefei [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li Xiaomin [Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050 (China); Song Zhenlun [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)], E-mail: songzhenlun@nimte.ac.cn

    2009-11-15

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  1. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Li Jinlong; Mao Shoudong; Sun Kefei; Li Xiaomin; Song Zhenlun

    2009-01-01

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  2. Domain structures and magnetization reversal in Co/Pd and CoFeB/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123 (Oman); Ranjbar, M. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden)

    2015-05-07

    Domain structures and magnetization reversal of (Co/Pd) and (CoFeB/Pd) multilayers with 7 and 14 repeats were investigated. The Co-based multilayers show much larger coercivities, a better squareness, and a sharper magnetization switching than CoFeB-based multilayers. From magnetic force microscopy observations, both structures show strong reduction in domains size as the number of repeats increases but the magnetic domains for Co-based multilayers are more than one order of magnitude larger than for CoFeB-based multilayers. By imaging domains at different times, breaks in the (CoFeB/Pd) multilayer stripes were observed within only few hours, while no change could be seen for (Co/Pd) multilayers. Although CoFeB single layers are suitable for magnetoresistive devices due to their large spin polarization and low damping constants, their lamination with Pd suffers mainly from thermal instability.

  3. Magnetic and structural properties of NdFeB thin film prepared by step annealing

    International Nuclear Information System (INIS)

    Serrona, Leo K.E.B.; Sugimura, A.; Fujisaki, R.; Okuda, T.; Adachi, N.; Ohsato, H.; Sakamoto, I.; Nakanishi, A.; Motokawa, M.

    2003-01-01

    The crystallization of the amorphous phase into the tetragonal Nd 2 Fe 14 B (PHI) phase and the corresponding changes in magnetic properties have been examined by step annealing experiment using a 2 μm thick NdFeB film sample. Microstructural and magnetic analysis indicate that the film was magnetically soft as deposited with the coercivity H ciperp -1 and the remnant magnetization 4πM rperp -1 was developed and diffraction analysis showed evidence of PHI phase 002l peaks being aligned perpendicular to the film plane. At an optimum annealing temperature of 575 deg. C, the remnant magnetization of this anisotropic thin film is around 0.60 T with intrinsic coercivity of ∼1340 kA m -1 . Annealing the film sample at 200 deg. C≤T ann ≤750 deg. C showed variations in magnetic properties that were mostly due to the change in the perpendicular anisotropy. Based on 4πM sperpendicular values plotted against T ann , a dip in 4πM sperpendicular values was observed as T ann increased in the soft-to-hard magnetic characteristics transition region and rose as the hard crystalline phase started to form. The results show that the magnetic properties of the NdFeB film were slightly influenced by the presence of NdO, film surface roughening and the small increase in crystal size as a consequence of repeated heat treatment. At T ann ∼300 deg. C, the nominal saturation magnetization indicated a certain degree of weak perpendicular magnetic anisotropy in the film sample considered to be essential in the enhancement of coercivity in crystallized films

  4. Influence of Torrefaction on Single Particle Combustion of Wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2016-01-01

    This study focuses on the influence of torrefaction on the char reactivity, char yield, and combustion time of 3-5 mm spherical wood particles in a single particle combustion reactor (SPC) operating at a nominal temperature of 1231 °C. The devolatilization times were reduced and the char burnout...

  5. Influence of agitation intensity on flotation rate of apatite particles

    Directory of Open Access Journals (Sweden)

    Francisco Gregianin Testa

    Full Text Available Abstract The agitation intensity has a directly influence on flotation performance, lifting the particles and promoting the contact of bubbles and particles. In this paper, the energy input by the agitation on apatite flotation was investigated. The influence of pulp agitation in the flotation rate of particles with different sizes and two dosage levels was evaluated by batch testing. The flotation tests were conducted in an oscillating grid flotation cell (OGC, developed to promote a near isotropic turbulence environment. The cell is able to control the intensity of agitation and measure the energy transferred to the pulp phase. A sample of pure apatite was crushed (P80=310µm, characterized and floated with sodium oleate as collector. Four levels of energy dissipation, from 0.1 to 2 kWm-3, and two levels of collector dosage are used during the tests. The flotation kinetics by particle size were determined in function of the energy transferred. The results show a strong influence of the agitation intensity on the apatite flotation rate with both low and high dosage. For fine particles, when increasing the energy input, the flotation rate increase too, and this fact can be attributed to elevation of bubble-particle collisions. The kinetic result for the coarse particles demonstrated a reduction of the flotation rate whenever the energy input for this particle size was increased, whereby the turbulence caused by the agitation promotes the detachment of bubble-particle.

  6. Effects of powder flowability on the alignment degree and magnetic properties for NdFeB sintermagnets

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [School of Physics and Microelectronics, Shandong University, 250100 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Han, G.B. [School of Physics and Microelectronics, Shandong University, 250100 (China); Bai, G. [School of Physics and Microelectronics, Shandong University, 250100 (China); Liu, T. [School of Physics and Microelectronics, Shandong University, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, 250100 (China); Yantai Shougang Magnetic Material CO, LTD, 265500 (China)

    2006-04-15

    The magnetic powders for sintered NdFeB magnets have been prepared by using the strip casting (SC), hydrogen decrepitation (HD) and jet milling (JM) techniques. The effects of powder flowability and addition of a lubricant on the alignment degree and the hard magnetic properties of sintered magnets have been studied. The results show that the main factor affecting powder flowability is the aggregation of magnetic particles for powders in a loose state, but it is the friction between the powder particles for powders that are in a compact state. The addition of a lubricant with suitable dose can slightly prevent the congregating of powders, obviously decrease the friction between the powder particles, improve the powder flowability, and increase the alignment degree, remanence and energy product density of sintered magnets. Mixing a suitable dose of lubricant and adopting rubber isostatic pressing (RIP) with a pulse magnetic field, we have succeeded in producing the sintered NdFeB magnet with high hard magnetic properties of B {sub r}=14.57 KG, {sub j}H {sub c}=14.43 KOe (BH){sub max}=51.3 MGOe.

  7. Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application.

    Science.gov (United States)

    Périgo, E A; Silva, S C; de Sousa, E M B; Freitas, A A; Cohen, R; Nagamine, L C C M; Takiishi, H; Landgraf, F J G

    2012-05-04

    Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd(2)Fe(14)BH(x) during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H(max) ~ 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K ≤ ΔT(max) ≤ 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as ~2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 µg ml(-1)) due to the coating applied during milling.

  8. Effects of rare earth oxide addition on NdFeB magnets

    International Nuclear Information System (INIS)

    Ohashi, K.; Yokoyama, T.; Tawara, Y.

    1988-01-01

    The effects of addition of rare-earth oxides on the magnetic properties of Nd-Fe-B sintered magnets are studied. The addition of Dy 2 O 3 and Tb 4 O 7 leads to an increase in intrinsic coercivity. For addition of Dy 2 O 3 , the optimum conditions for powder mixing and the optimum Dy 2 O 3 particle size were determined. A mixing time of more than 10 minutes, and a Dy 2 O 3 particle size of less than 3 μm, are required to obtain a high intrinsic coercivity. EPMA measurements of NdFeBAl magnets with Dy 2 O 3 added reveal an inhomogeneous distribution of Dy in the Nd 2 Fe 14 B matrix: the material is Dy-rich near grain boundaries, but Dy-poor within the matrix. The appearance of such an inhomogeneous distribution of Dy is attributed to the reduction of Dy 2 O 3 in the Nd-rich phases, followed by diffusion of the resulting Dy atoms into the matrix

  9. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    . The second part of the thesis explores an experimental production technique for (Nd,Dy)-Fe-B sintered magnets that involves blending powders with different Dy contents and grain sizes. As precursors, a Dy - free base powder (BP) and a Dy - rich anisotropy powder (AP) were mixed. During the sintering, a core - shell microstructure was created, similar to the immediate surface region of grain boundary diffusion processed magnets. However, the powder blending technique allows the production of magnets of any size, without the geometric limitations of the grain boundary diffusion process. As a novelty to previous works, the AP consists mainly of (Nd,Dy)-Fe-B φ - phase instead of Dy - rich binary compounds. The main advantages are the avoidance of deleterious secondary phases within the magnet and a decreased sintering temperature. Of the several used AP compounds, the best magnetic properties were achieved with thermally homogenized (Nd{sub 0.725}Dy{sub 0.275}){sub 15}Fe{sub 79}B{sub 6}. However, with 1.63 T the coercivity of the blended magnet is below the value of a conventionally produced single - powder magnet. The reason is most likely the presence of a high amount of grains with Dy - rich cores within the microstructure, as was found with scanning electron microscopy. These grains are unmolten AP particles, which were not milled fine enough. To solve this problem, the utilization of more sophisticated milling equipment than the planetary ball milling available in this work is proposed.

  10. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  11. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Science.gov (United States)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity Hci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H2 gas. Expansion of the NdFeB crystal lattice in both ATF and H2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets.

  12. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  13. How does particle size influence caking in lactose powder?

    DEFF Research Database (Denmark)

    Carpin, Melanie Anne; Bertelsen, H.; Dalberg, A.

    2017-01-01

    Particle size distribution (PSD) is known to influence product properties such as flowability and compressibility. When producing crystalline lactose, different steps can affect the PSD of the final powder. The aim of this study was to investigate the influence of PSD on caking and the mechanisms...

  14. Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current.

    Science.gov (United States)

    He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua

    2013-10-07

    The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.

  15. Growth, microstructure, and hard magnetic properties of Nd-Fe-B layers; Wachstum, Mikrostruktur und hartmagnetische Eigenschaften von Nd-Fe-B-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, U.

    2004-07-01

    In this thesis with pulsed laser deposition Nd-Fe-B layers were deposited. The Nd-Fe-B layers were deposited both on chromium and on tantalum buffers. The layers, which were deposed on tantalum buffers, showed a strong dependence of the nicrostructure and the magnetic properties on the deposition temperature. On layers which were deposited at deposition temperatures around 630 C on the tantalum buffer, the epitactical growth of Nd{sub 2}Fe{sub 14}B could be observed. Summarizingly these layers can be described as micrometer-large and parallely oriented single crystals.

  16. Adjustable ferromagnetic resonance frequency in CoO/CoFeB system

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau-Brault, A. [CEA Le Ripault, BP16, 37260 Monts (France); GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France); Dubourg, S. [CEA Le Ripault, BP16, 37260 Monts (France); Thiaville, A. [LPS, CNRS UMR 8502, University of Paris-Sud, 91405 Orsay Cedex (France); Rioual, S. [LMB EA4522, University of Brest, 6 av. Le Gorgeu, 29238 Brest Cedex 3 (France); Valente, D. [GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France)

    2015-01-21

    Static and dynamic properties of (CoO/CoFeB){sub n} multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained.

  17. Adjustable ferromagnetic resonance frequency in CoO/CoFeB system

    International Nuclear Information System (INIS)

    Bonneau-Brault, A.; Dubourg, S.; Thiaville, A.; Rioual, S.; Valente, D.

    2015-01-01

    Static and dynamic properties of (CoO/CoFeB) n multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained

  18. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  19. Enhancement of exchange coupling interaction of NdFeB/MnBi hybrid magnets

    Science.gov (United States)

    Nguyen, Truong Xuan; Nguyen, Khanh Van; Nguyen, Vuong Van

    2018-03-01

    MnBi ribbons were fabricated by melt - spinning with subsequent annealing. The MnBi ribbons were ground and mixed with NdFeB commercial Magnequench powders (MQA). The hybrid powder mixtures were subjected thrice to the annealing and ball-milling route. The hybrid magnets (100 - x)NdFeB/xMnBi, x=0, 30, 40, 50 and 100 wt% were in-mold aligned in an 18 kOe magnetic field and warm compacted at 290 °C by 2000 psi uniaxial pressure for 10 min. An enhancement of the exchange coupling of NdFeB/MnBi hybrid magnets was obtained by optimizing the magnets' microstructures via annealing and ball-milling processes. The magnetic properties of prepared NdFeB/MnBi hybrid magnets were studied and discussed in details.

  20. Designing a Virtual laboratory for Simulating to Production of Nanocomposite NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Musa Faruk Çakir

    2014-02-01

    Full Text Available The talent figure for a permanent magnet is the multiplication of the maximum energy (BHmax. Less volume magnet is required for the production of magnet flux density if the BHmax value is higher. Mathematical functions are obtained from the data related to resiudal flux density, magnetic coercitivy, permanent magnet flux product capability, Curie temperature and density which were obtained as a result of the studies on different NdFeB alloys in the laboratory. Besides this, mathematical functions of NdFeB hard magnet’s resiudal flux density are obtained by adding elements. In this study, a virtual laboratory for producing nanocompositedNdFeB magnet has been designed. The virtual laboratory software has been used to simulate NdFeB hard magnets for industrial utilities.

  1. Spacer layer effect and microstructure on multi-layer [NdFeB/Nb]n films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Yao, Y.-D.; Chin, T.-S.; Kronmueller, H.

    2002-01-01

    Spacer layer effect on multi-layer [NdFeB/Nb] n films has been investigated from the variation of magnetic properties and microstructure of the films. From a HRTEM cross-section view observation, the average grain size of [NdFeB/Nb] n multi-layers was controlled by both annealing temperature and thickness of NdFeB layer. Selected area diffraction pattern indicated that the structure of Nb spacer layer was amorphous. The grain size and coercivity of [NdFeB x /Nb] n films change from 50 nm and 16.7 kOe to 167 nm and 9 kOe for films with x=40 nm, n=10 and x=200 nm, n=2, respectively

  2. The influence of crushed rock salt particle gradation on compaction

    International Nuclear Information System (INIS)

    Ran, C.; Daemen, J.J.K.

    1994-01-01

    This paper presents results of laboratory compaction testing to determine the influence of particle size, size gradation and moisture-content on compaction of crushed rock salt. Included is a theoretical analysis of the optimum size gradation. The objective is to evaluate the relative densities that can be achieved with tamping techniques. Initial results indicate that compaction increases with maximum particle size and compaction energy, and varies significantly with article size gradation and water content

  3. Influence of gravity on inertial particle clustering in turbulence

    Science.gov (United States)

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  4. Gravity influence on the clustering of charged particles in turbulence

    Science.gov (United States)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  5. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Frederick E., E-mail: frederick.e.pinkerton@gm.com [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Balogh, Michael P.; Ellison, Nicole [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Foto, Aldo [Element Materials Technology Wixom, Inc (United States); Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P. [Powertrain Materials/Fluids/AMPPD Engineering and Labs, GFL VE/PT Materials Engineering, General Motors LLC, Pontiac, MI 48340 (United States)

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H{sub ci} of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H{sub 2} gas. Expansion of the NdFeB crystal lattice in both ATF and H{sub 2} identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd{sub 2}Fe{sub 14}B, reducing coercivity.

  6. Net Shape 3D Printed NdFeB Permanent Magnet

    OpenAIRE

    Jacimovic, J.; Binda, F.; Herrmann, L. G.; Greuter, F.; Genta, J.; Calvo, M.; Tomse, T.; Simon, R. A.

    2016-01-01

    For two decades, NdFeB based magnets have been a critical component in a range of electrical devices engaged in energy production and conversion. The magnet shape and the internal microstructure of the selected NdFeB grade govern their efficiency and size. However, stricter requirements on device efficiency call for better performing magnets preferably with novel functionality not achievable today. Here we use 3D metal printing by Selective Laser Melting to fabricate dense net shape permanent...

  7. Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijing [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Bi, Mengxue [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026 (China); Jiang, Jianjun; Ding, Xuefeng [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Minggang; Li, Wei [Functional Materials Research Institute, Central Iron & Steel Research Institute, Beijing 100081 (China); Lv, Zhongshan [Ningbo Shuo Teng new material Co., Ltd., Cixi 315301 (China); Song, Zhenlun, E-mail: songzhenlun@nimte.ac.cn [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-06-15

    Highlights: • A little Ce could promote the magnets for a better corrosion resistance. • With increased Ce contents, the corrosion resistances of magnets decrease. • As the corrosion developed, the magnetic properties decreased. - Abstract: For the balanced consumption of rare-earth elements, cerium (Ce) was partially used for NdFeB magnets instead of Nd. The corrosion behaviour of the (Nd,Ce)FeB magnet with different Ce contents in 3.5% NaCl solution was investigated by SEM, XRD, EDS and electrochemical tests. After immersion, the weight loss was calculated and the magnetic properties of the samples were measured. Results showed that Ce affected the corrosion of the (Nd,Ce)FeB magnet. Compared with the NdFeB magnet without Ce but of the same grade as the magnetic energy product, (Nd,Ce)FeB magnet showed better corrosion resistance. With increased Ce content, the corrosion resistances and magnetic properties of (Nd,Ce)FeB magnets were investigated.

  8. Analysis of physical and magnetic properties of composite NdFeB bind with polyvinyl alcohol

    Science.gov (United States)

    Ramlan; Sardjono, P.; Muljadi; Setiabudidaya, D.; Gulo, F.

    2018-03-01

    The composite magnet NdFeB has been made using magnetic powder MQP-B and polyvinyl alcohol (PVA) as the binder. The mixing compositions of raw materials used are: 95 wt% NdFeB - 5 wt% PVA, 92.5 wt% NdFeB - 7.5 wt% PVA, 90 wt.% NdFeB - 10 wt% PVA, and 87.5 wt% NdFeB - 12.5 wt% PVA. Both raw materials are weighed according to the composition, and then mixed until homogeneous. Furthermore, pellet forming was made using dry pressing at 50 kgf/cm2 pressures and continued with drying at 100 °C and 10 mmbar for 4 hours. The characterization includes bulk density, hardness, compressive strength measurements, and magnetic properties testing. The characterization results show that the optimal composition of binder PVA is achieved at 5–7.5 wt% NdFeB composite magnet with following properties: bulk density = 5.21–5.25 g/cm3, hardness = 302.17 - 304.32 Hv, compressive strength = 25.17–3.17 kgf/cm2, magnetic flux = 1150-1170 Gauss, remanence = 70.90–74.97 emu/g or 4.7–5.0 kGauss, coercivity = 8.68–8.76 kOe, and energy product = 2.89–3.04 MgOe.

  9. Influence of particle shedding from silicone tubing on antibody stability.

    Science.gov (United States)

    Saller, Verena; Hediger, Constanze; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2018-05-01

    Peristaltic pumps are increasingly employed during fill & finish operations of a biopharmaceutical drug, due to sensitivity of many biological products to rotary piston pump-related stresses. Yet, possibly also unit operations using peristaltic pumps may shed particulates into the final product due to abrasion from the employed tubing. It was the aim of this study to elucidate the potential influence of particles shed from peristaltic pump tubing on the stability of a drug product. Spiking solutions containing shed silicone particles were prepared via peristaltic pumping of placebo under recirculating conditions and subsequently characterized. Two formulated antibodies were spiked with two realistic, but worst-case levels of particles and a 6-month accelerated stability study with storage at 2-8, 25 and 40°C were conducted. Regarding the formation of aggregates and fragments, both mAbs degraded at their typically expected rates and no additional impact of spiked particles was observed. No changes were discerned however in turbidity, subvisible and visible particle assessments. Flow imaging data for one of the mAb formulations with spiked particles suggested limited colloidal stability of shed particles as indicated by a similar increase in spiked placebo. Shed silicone particles from peristaltic pump tubing are assumed to not impair drug product stability. © 2016 Royal Pharmaceutical Society.

  10. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air...

  11. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  12. Characterization of the magnetic properties of NdFeB thick films exposed to elevated temperatures

    Science.gov (United States)

    Fujiwara, Ryogen; Devillers, Thibaut; Givord, Dominique; Dempsey, Nora M.

    2018-05-01

    Hard magnetic films used in magnetic micro-systems may be exposed to elevated temperatures during film and system fabrication and also during use of the micro-system. In this work, we studied the influence of temperature on the magnetic properties of 10 μm thick out-of-plane textured NdFeB films fabricated by high rate triode sputtering. Out-of-plane hysteresis loops were measured in the range 300K - 650K to establish the temperature dependence of coercivity, magnetization at 7 T and remanent magnetization. Thermal demagnetization was measured and magnetization losses were recorded from 350K in films heated under zero or low (-0.1 T) external field and from 325 K for films heated under an external field of -0.5 T. The effect of thermal cycling under zero field on the remanent magnetization was also studied and it was found that cycling between room temperature and 323 K did not lead to any significant loss in remanence at room temperature, while a 4% drop is recorded when the sample is cycled between RT and 343K. Measurement of hysteresis loops at room temperature following exposure to elevated temperatures reveals that while remanent magnetisation is practically recovered in all cases, irreversible losses in coercivity occur (6.7 % following heating to 650K, and 1.3 % following heating to 343K). The relevance of these results is discussed in terms of system fabrication and use.

  13. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method

    Science.gov (United States)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-12-01

    Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were

  14. Influence of removal time and particle size on the particle substrate adhesion force

    Directory of Open Access Journals (Sweden)

    M. A. Felicetti

    2008-03-01

    Full Text Available An investigation was conducted on influence of removal time on the particle substrate adhesive force. The centrifuge technique was used to determine the adhesion force at different compression and removal rates. A microcentrifuge with a maximum rotation of 14000 rpm was used to both compress upon particles and remove them from the surface of the substrate. An image analysis program (Image-Pro Plus 4.5 was employed to monitor the number of particles adhering to and removed from the surface of the substrate after each increase in angular speed. The influence of removal time on the adhesion force was investigated, using removal times of 1, 3 and 5 minutes, which indicated that removal time does not interfere with the adhesion force within the diameter range analyzed here.

  15. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation); Golovnia, O.A., E-mail: golovnya@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation); Protasov, A.V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation)

    2017-04-15

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 µm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 – 1.2 T to the filling density 2.6 – 3.2×10{sup 3} kg/m{sup 3}. It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×10{sup 3} kg/m{sup 3}, the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with B{sub r} ≥1.34 T, H{sub c} ≥950 kA/m, (BH){sub max} ≥340 kJ/m{sup 3}, and the degree of alignment exceeding 96% were produced. - Highlights: • The pressless process (PLP) in magnet production is studied. • A new method of the loading of powder in an applied DC magnetic field is suggested. • The method allows achieving higher degree of alignment in moderate magnetic field. • Density of sintered magnets is studied experimentally and via DEM simulation. • Low density is caused by the formation of magnetostatic chains of powder particles.

  16. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Popov, A.G.; Golovnia, O.A.; Protasov, A.V.

    2017-01-01

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 µm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 – 1.2 T to the filling density 2.6 – 3.2×10 3 kg/m 3 . It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×10 3 kg/m 3 , the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with B r ≥1.34 T, H c ≥950 kA/m, (BH) max ≥340 kJ/m 3 , and the degree of alignment exceeding 96% were produced. - Highlights: • The pressless process (PLP) in magnet production is studied. • A new method of the loading of powder in an applied DC magnetic field is suggested. • The method allows achieving higher degree of alignment in moderate magnetic field. • Density of sintered magnets is studied experimentally and via DEM simulation. • Low density is caused by the formation of magnetostatic chains of powder particles.

  17. Influence of colloid particle profile on sentinel lymph node uptake

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Nunez, Eutimio Gustavo [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil)], E-mail: eutimiocu@yahoo.com; Linkowski Faintuch, Bluma; Teodoro, Rodrigo; Pereira Wiecek, Danielle [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Martinelli, Jose Roberto [Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Gomes da Silva, Natanael; Castanheira, Claudia E. [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Santos de Oliveira Filho, Renato [Faculty of Medicine, Federal University of Sao Paulo, SP 04020-041 (Brazil); Pasqualini, Roberto [CIS bio international, Research and Development, Gif sur Yvette, 91192 (France)

    2009-10-15

    Introduction: Particle size of colloids employed for sentinel lymph node (LN) detection is not well studied. This investigation aimed to correlate particle size and distribution of different products with LN uptake. Methods: All agents (colloidal tin, dextran, phytate and colloidal rhenium sulfide) were labeled with {sup 99m}Tc according to manufacturer's instructions. Sizing of particles was carried out on electron micrographs using Image Tool for Windows (Version 2.0). Biodistribution studies in main excretion organs as well as in popliteal LN were performed in male Wistar rats [30 and 90 min post injection (p.i.)]. The injected dose was 0.1 ml (37 MBq) in the footpad of the left posterior limb. Dynamic images (0-15 min p.i.) as well as static ones (30 and 90 min) were acquired in gamma camera. Results: Popliteal LN was clearly reached by all products. Nevertheless, particle size remarkably influenced node uptake. Colloidal rhenium sulfide, with the smallest diameter (5.1x10{sup -3}{+-}3.9x10{sup -3} {mu}m), permitted the best result [2.72{+-}0.64 percent injected dose (%ID) at 90 min]. Phytate displayed small particles (<15 {mu}m) with favorable uptake (1.02{+-}0.14%ID). Dextran (21.4{+-}12.8 {mu}m) and colloidal tin (39.0{+-}8.3 {mu}m) were less effective (0.55{+-}0.14 and 0.06{+-}0.03%ID respectively). Particle distribution also tended to influence results. When asymmetric, it was associated with biphasic uptake which increased over time; conversely, symmetric distribution (colloidal tin) was consistent with a constant pattern. Conclusion: The results are suggesting that particle size and symmetry may interfere with LN radiopharmaceutical uptake.

  18. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, J.; Shui, J.L.; Zhang, S.L.; Wei, X.; Xiang, Y.J.; Xie, S.; Zhu, C.F.; Chen, C.H.

    2005-01-01

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship

  19. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Shui, J.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhang, S.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wei, X. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xiang, Y.J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xie, S. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhu, C.F. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Chen, C.H. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)]. E-mail: cchchen@ustc.edu.cn

    2005-04-05

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship.

  20. [The cytotoxicity of N48 NdFeB magnets coated with titanium-nitride].

    Science.gov (United States)

    Cao, Xiao-Ming; Hou, Zhi-Ming; Chu, Ming

    2008-04-01

    To evaluate the effect of N48 NdFeB magnets coated with titanium-nitride on the growth and apoptosis of L929 mouse fibroblast cells, and to determine the material biocompatibility. The NdFeB magnets coated with titanium-nitride, bare NdFeB magnets and ordinary brackets were put into RPMI-1640 to prepare fusions. L929 mouse fibroblast cells were cultivated in the negative control liquid, positive control liquid, 100%, 50% and 25% sample fusions, respectively. The cell proliferation vitality was detected by MTT assay and the relative growth rate was calculated.Cell scatter diagrams of the negative control liquid, 100% titanium-nitride coated magnets fusion and bare magnets fusion were detected by flow cytometry Annexin V/PI double staining method. The ratios of normal cells, early apoptosis, advanced apoptosis and necrosis cells were calculated. The results were analyzed for paired t test using SPSS11.5 software package. The toxic levels of N48 NdFeB coated with titanium-nitride were ranked as 0-1. The toxic levels of bare magnets were ranked as 2. The cell scatter diagrams showed that there was no significant difference in living cell, early apoptosis and necrosis between magnets coated with titanium-nitride and control group. But there was significant difference between the bare magnets group and control group. The N48 NdFeB magnets coated with titanium-nitride have good biocompatibility.

  1. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    2017-06-01

    Full Text Available The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ∼50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ∼30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  2. Perpendicularly magnetized CoFeB multilayers with tunable interlayer exchange for synthetic ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, P., E-mail: ppirro@physik.uni-kl.de [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Hamadeh, A.; Lavanant-Jambert, M. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Meyer, T. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Tao, B.; Rosario, E.; Lu, Y.; Hehn, M.; Mangin, S.; Petit Watelot, S. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France)

    2017-06-15

    Highlights: • MgO/CoFeB/Ta/CoFeB/MgO multilayers as synthetic ferrimagnets. • Comprehensive characterization by measurement of static and dynamic properties. • Different pinning for domain walls with different alignment of the individual layers. - Abstract: A study of the multilayer system MgO/CoFeB(1.1 nm)/Ta(t)/CoFeB(0.8 nm)/MgO is presented, where the two CoFeB layers are separated by a Ta interlayer of varying thickness t. The magnetization properties deduced from complementary techniques such as superconducting quantum interference magnetometry, ferromagnetic resonance frequency measurements and Brillouin light scattering spectroscopy can be tuned by changing the Ta thickness between t = 0.25 nm, 0.5 nm and 0.75 nm. For t = 0.5 nm, a ferromagnetic coupling is observed, whereas for t = 0.75 nm, the antiferromagnetic coupling needed to construct a synthetic ferrimagnet is realized. In the latter case, the shape of magnetic domain walls between two ferrimagnetic alignments or between a ferro- and a ferrimagnetic alignment is very different. This behavior can be interpreted as a result of the change in dipolar as well as interlayer exchange energy and domain wall pinning, which is an important conclusion for the realization of data storage devices based on synthetic ferri- and antiferromagnets.

  3. Production of NdFeB powders by HDDR from sintered magnets; Obtencao de pos de NdFeB por HDDR a partir de imas sinterizados

    Energy Technology Data Exchange (ETDEWEB)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, B.F.A. da; Takiishi, H [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Campos, M.F. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2010-07-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd{sub 2}Fe{sub 14}B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  4. Effect of Cu addition on coercivity and interfacial state of Nd-Fe-B/Nd-rich thin films

    International Nuclear Information System (INIS)

    Matsuura, M; Sugimoto, S; Fukada, T; Tezuka, N; Goto, R

    2010-01-01

    This study provides the effect of Cu addition on coercivity (H cJ ) and interfacial microstructure in Nd-Fe-B/Nd-rich thin films. All films were deposited by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under several atmospheres with different oxygen content. Then, the films were annealed at 250-550 0 C under UHV. The films oxidized in low vacuum (10 -2 -10 -5 Pa) (under low oxygen state) exhibited the recovery of H cJ by the annealing at 450 0 C. On the contrary, the H cJ of the films oxidized in Ar (under high oxygen state) decreased with increasing annealing temperature. However, the H cJ increased drastically at the temperatures above 550 0 C. In addition, the Cu added films, which were annealed at temperatures above 350 0 C, showed higher coercivities than the films without Cu addition. The XRD analysis suggested the existence of C-Nd 2 O 3 phase in the Cu added films annealed at 550 0 C. It can be considered that the Cu addition decreases the eutectic temperature of Nd-rich phase and influences the interfacial state between Nd 2 Fe 14 B and Nd-rich phase.

  5. Trapped magnetic field in a (NdFeB)–(MgB{sub 2}) pair-type bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Aldica, Gheorghe [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania); Burdusel, Mihail [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania); Faculty of Materials Science and Engineering, ‘‘Politehnica’’ University of Bucharest, Splaiul Independentei 316, 060042 Bucharest (Romania); Badica, Petre, E-mail: badica2003@yahoo.com [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania)

    2014-10-15

    Highlights: • Dense MgB{sub 2} discs were obtained by ex-situ Spark Plasma Sintering. • A NdFeB–MgB{sub 2} pair-type bulk magnet was tested for different working conditions. • The polarity of the NdFeB permanent magnet influences macro flux jumps of MgB{sub 2}. • Trapped field of the pair was 2.45 T (20 K) and 3.3 T (12 K). - Abstract: Superconducting bulk discs, S, of 20 mm in diameter and 3.5 or 3.3 mm thickness of MgB{sub 2} (pristine or added with cubic BN, respectively) with density above 97% were prepared by Spark Plasma Sintering. Discs were combined in a pair-type sandwich-like arrangement with a permanent NdFeB axially magnetised magnet, PM (∼0.5 T). Measurement of the trapped field, B{sub tr}, with temperature, time, and the reduction rate of the applied magnetic field was performed using a Hall sensor positioned at the centre between the superconductor and the permanent magnet. It is shown that the permanent magnet with certain polarity favors higher trapped field of the superconductor owing to suppression of flux jumps specific for high density MgB{sub 2} samples. The B{sub tr} of the PM–S pair was 2.45 T (20 K) and 3.3 T (12 K)

  6. Trapped magnetic field in a (NdFeB)–(MgB2) pair-type bulk magnet

    International Nuclear Information System (INIS)

    Aldica, Gheorghe; Burdusel, Mihail; Badica, Petre

    2014-01-01

    Highlights: • Dense MgB 2 discs were obtained by ex-situ Spark Plasma Sintering. • A NdFeB–MgB 2 pair-type bulk magnet was tested for different working conditions. • The polarity of the NdFeB permanent magnet influences macro flux jumps of MgB 2 . • Trapped field of the pair was 2.45 T (20 K) and 3.3 T (12 K). - Abstract: Superconducting bulk discs, S, of 20 mm in diameter and 3.5 or 3.3 mm thickness of MgB 2 (pristine or added with cubic BN, respectively) with density above 97% were prepared by Spark Plasma Sintering. Discs were combined in a pair-type sandwich-like arrangement with a permanent NdFeB axially magnetised magnet, PM (∼0.5 T). Measurement of the trapped field, B tr , with temperature, time, and the reduction rate of the applied magnetic field was performed using a Hall sensor positioned at the centre between the superconductor and the permanent magnet. It is shown that the permanent magnet with certain polarity favors higher trapped field of the superconductor owing to suppression of flux jumps specific for high density MgB 2 samples. The B tr of the PM–S pair was 2.45 T (20 K) and 3.3 T (12 K)

  7. Saturation of VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB magnetic tunnel junctions

    Science.gov (United States)

    Williamson, M.; de Rozieres, M.; Almasi, H.; Chao, X.; Wang, W.; Wang, J.-P.; Tsoi, M.

    2018-05-01

    Voltage controlled magnetic anisotropy (VCMA) currently attracts considerable attention as a novel method to control and manipulate magnetic moments in high-speed and low-power spintronic applications based on magnetic tunnel junctions (MTJs). In our experiments, we use ferromagnetic resonance (FMR) to study and quantify VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB MTJ pillars. FMR is excited by applying a microwave current and detected via a small rectified voltage which develops across MTJ at resonance. The VCMA effective field can be extracted from the measured resonance field and was found to vary as a function of electrical bias applied to MTJ. At low applied biases, we observe a linear shift of the VCMA field as a function of the applied voltage which is consistent with the VCMA picture based on the bias-induced electron migration across the MgO/CoFeB interface. At higher biases, both positive and negative, we observe a deviation from the linear behavior which may indicate a saturation of the VCMA effect. These results are important for the design of MTJ-based applications.

  8. Influence of rescattering on the strange particle spectrum

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C; Aichelin, J.

    1997-01-01

    Applying a new method of rescattering which is based on the neural network technique we study the influence of rescattering on the spectra of strange particles produced in heavy ion reactions. In contradistinction to formal approaches the rescattering is done explicitly and not in a perturbative fashion. We present a comparison of our calculations for the system Ni (1.93 A.GeV) + Ni with recent data of the FOPI collaboration. We find that even for this small system rescattering changes the observables considerably but does not invalidate the role of the kaons as a messenger from the high density zone. We cannot confirm the conjecture that the kaon flow can be of use for the determination of the optical potential of the kaon. The experimental results agree with the computations showing a minimal change of the K + particles in the nuclear matter. Probably, the situation is very different for the K - particles

  9. Improved magnetic properties and fracture strength of NdFeB by dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, M. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mse_yanmi@dial.zju.edu.cn; Yu, L.Q. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Wu, J.M. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cui, X.G. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2006-11-15

    Effects of the dehydrogenation of the hydrogen decrepitated (HD) powders on the magnetic properties and the fracture strength of sintered NdFeB magnets were studied. It was found that the lattice parameters and the crystal phase of NdFeB changed significantly with the various hydrogen contents of the resultant HD powders due to the different degrees of dehydrogenation. The magnetic properties and fracture strength increased with decreasing hydrogen content, reaching the maximum increases of 200% for both intrinsic coercivity and bending strength, which can be ascribed to the improved microstructure of the sintered NdFeB magnets. The hydrogen remaining in the HD powders diffused out and affected drastically the grain and grain boundaries by the hydrogen out-take channel during the subsequent sintering process.

  10. Preparation and properties of [(NdFeB)x/(Nb)z]n multi-layer films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Chin, T.-S.; Yao, Y.-D.; Melsheimer, A.; Fisher, S.; Drogen, T.; Kelsch, M.; Kronmueller, H.

    2003-01-01

    Multi-layer [(NdFeB) x /(Nb) z ] n films with 200 nm≥x≥10 nm, 10 nm≥z≥0, 40≥n≥2, prepared by ion beam sputtering and subsequent annealing, show significantly enhanced coercivity due to the reduced grain size that enhances the anisotropy of individual grains. After annealing at 630 deg. C, some Nd 2 Fe 14 B grains were enriched with Nb and isolated as the thickness of the Nb spacer layer increases. For multi-layer (NdFeB x /Nb z ) n films with 100 nm ≥x≥25 nm, 5 nm≥z≥2 nm, their coercivity and remanence ratio are better than that of a single NdFeB film. Up to 17.8 kOe room temperature coercivity has been obtained for a sample with x=25 nm, z=5 nm and n=16

  11. Improved magnetic properties and fracture strength of NdFeB by dehydrogenation

    International Nuclear Information System (INIS)

    Yan, M.; Yu, L.Q.; Wu, J.M.; Cui, X.G.

    2006-01-01

    Effects of the dehydrogenation of the hydrogen decrepitated (HD) powders on the magnetic properties and the fracture strength of sintered NdFeB magnets were studied. It was found that the lattice parameters and the crystal phase of NdFeB changed significantly with the various hydrogen contents of the resultant HD powders due to the different degrees of dehydrogenation. The magnetic properties and fracture strength increased with decreasing hydrogen content, reaching the maximum increases of 200% for both intrinsic coercivity and bending strength, which can be ascribed to the improved microstructure of the sintered NdFeB magnets. The hydrogen remaining in the HD powders diffused out and affected drastically the grain and grain boundaries by the hydrogen out-take channel during the subsequent sintering process

  12. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    Directory of Open Access Journals (Sweden)

    Marek Przybylski

    2016-04-01

    Full Text Available Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  13. Methods of characterization of multiphase Nd-Fe-B melt-spun alloys

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2007-01-01

    Full Text Available Nanocomposite permanent magnetic materials based on Nd-Fe-B alloys with a low Nd content are a new type of permanent magnetic material. The microstructure of these nanocomposite permanent magnets is composed of a mixture of magnetically soft and hard phases providing the so called exchange coupling effect. Beside the optimization process parameters, methods of characterization have a very important role in the design of an optimal magnetic matrix of multiphase melt-spun Nd-Fe-B alloys. Different methods and techniques of characterization were used for observation and study of the microstructure evolution during crystallization. A summary results of measurements using different methods of characterization are presented to enable a better insight into relations between the microstructure and magnetic properties of the investigated melt-spun Nd-Fe-B alloys. .

  14. A study of coFeB magnetic yoke based on planar electromagnet

    Science.gov (United States)

    Qin, L.; Li, Q.; Yuan, Yong J.

    2017-07-01

    This paper studies the fabrication of a novel planar electromagnet consisting of a planar copper coil and a magnetic yoke. CoFeB was used as the magnetic yoke material instead of the traditional permanent magnets. The planar electromagnet was fabricated and optimized to maximize the electromagnetic force, especially with varying CoFeB thickness. The micro-planar electromagnet was fabricated successfully by the traditional micro-electro-mechanical-system (MEMS) techniques and XRD, VSM were used to characterize the performance of the electromagnet. The planar electromagnet exhibits superior perpendicular magnetic anisotropy (PMA) and 0.006 emu of MS was achieved following 2 min deposition of CoFeB thin film. By integrating with other micro apparatuses, it is anticipated that the planar electromagnet will have potential applications in areas such as biosensors, biological medicine, drug delivery, chemical analysis and environmental monitoring.

  15. Magnetization Reversal Mechanism for CoFeB Ferromagnetic Nanotube Arrays

    International Nuclear Information System (INIS)

    Hai-Rui, Liu; Qing-Feng, Lu; Shamaila, S.; Jun-Yang, Chen; Sharif, R.; Xiu-Feng, Han

    2009-01-01

    CoFeB nanotube arrays are fabricated in anodic aluminum oxide (AAO) membranes and track etched polycarbonate (PCTE) membranes by using an electrochemical method, and their magnetic properties are investigated by vibrating sample magnetometry. The coercivity H c and remanent squareness S Q of these CoFeB nanotube arrays are derived from hysteresis loops as a function of angle between the field and tube axis. The H c (θ) curves for CoFeB nanotube arrays in AAO and PCTE membranes show M-type variation, while they change shape from M to mountain-type as the tube length increases. However, the overall easy axis perpendicular to tube axis does not change with tube length. The different angular dependences are attributed to different magnetization reversal mechanisms. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  16. Developments with melt spun RE-Fe-B powder for bonded magnets

    International Nuclear Information System (INIS)

    Brown, D.N.; Chen, Z.; Guschl, P.; Campbell, P.

    2006-01-01

    Rapidly quenched isotropic rare earth iron boride (RE-Fe-B) powders have found many applications throughout the electronics, automotive and white goods industries. The magnetic performance, thermal stability, corrosion resistance and processability of a powder are important factors when selecting a RE-Fe-B powder for a particular application. For electronic devices that operate at ambient temperatures, high remanence (B r ) tends to be a priority and RE 2 Fe 14 B/α-Fe nanocomposite powder magnets are favoured. Alternatively, automotive applications tend to require greater thermal stability and corrosion resistance, which are satisfied by single-phase RE 2 Fe 14 B powder magnets with higher intrinsic coercivity (H ci ). This article reviews the performance of commercially available rapidly solidified RE-Fe-B powders and recent developments made to address the demands of applications

  17. Characterization of corrosion products from Nd-Fe-B magnets used in dental prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Rogero, Sizue O.; Costa, Isolda; Dantas, Elisabeth; Oliveira, Mara C.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    A special group of magnets composed mainly by Nd-Fe-B has been widely used in dental applications as retentive devices for overdentures, due to their strong force and compactness. Dental materials should present high corrosion resistance and be innocuous to human tissues, however, Nd-Fe-B magnets are highly susceptible to corrosion. This work presents results obtained in the elemental analysis of Nd-Fe-B magnets and their corrosion products. The corrosion products were analyzed in the extracts of culture medium where the magnets had been immersed for 10 days at 37 deg C. Elements B, Co, Fe, La, Nd, Dy, Pr, Sm, Ho, Yb and Lu were found in the magnet and the analysis of extract indicated that Co, Fe and Nd are released from the magnet to the extract. Toxicity was also investigated in this extract using the neutral red uptake cytotoxicity assay. Acknowledgements: To FAPESP and CNPq for financial support. (author)

  18. Characterization of corrosion products from Nd-Fe-B magnets used in dental prostheses

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Rogero, Sizue O.; Costa, Isolda; Dantas, Elisabeth; Oliveira, Mara C.L.

    2002-01-01

    A special group of magnets composed mainly by Nd-Fe-B has been widely used in dental applications as retentive devices for overdentures, due to their strong force and compactness. Dental materials should present high corrosion resistance and be innocuous to human tissues, however, Nd-Fe-B magnets are highly susceptible to corrosion. This work presents results obtained in the elemental analysis of Nd-Fe-B magnets and their corrosion products. The corrosion products were analyzed in the extracts of culture medium where the magnets had been immersed for 10 days at 37 deg C. Elements B, Co, Fe, La, Nd, Dy, Pr, Sm, Ho, Yb and Lu were found in the magnet and the analysis of extract indicated that Co, Fe and Nd are released from the magnet to the extract. Toxicity was also investigated in this extract using the neutral red uptake cytotoxicity assay. Acknowledgements: To FAPESP and CNPq for financial support. (author)

  19. Joule heating of Fe-B metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Lipka, J.

    1993-01-01

    Amorphous Fe 80 B 20 and Fe 83 B 17 ribbons were heated in air and in vacuum, respectively, by a dc electric current passing through the specimen. During the Joule heating, 57 Fe transmission Moessbauer spectra were recorded. Ribbons of the same geometrical dimensions, cut from a natural iron foil, were treated in the same way as a reference. The influence of the current-induced magnetic field in addition to the Joule heating is supposed to cause fluctuations in a short-range order observed. Changes in the hyperfine magnetic fields are compared with those obtained by a conventional heating in a vacuum furnace. (orig.)

  20. Influence of particles on sonochemical reactions in aqueous solutions.

    Science.gov (United States)

    Keck, A; Gilbert, E; Köster, R

    2002-05-01

    Numerous publications deal with the possible application of ultrasound for elimination of organic pollutants as a tool for water pollution abatement. Most of the experiments were performed in pure water under laboratory conditions. For developing technologies that hold promise it is necessary to investigate the effect of ultrasound in natural systems or waste water where particulate matter could play an important role. In this paper the influence of quartz particles (2-25 microm) on the chemical effects of ultrasound in aqueous system using a high power ultrasound generator (68-1028 kHz, 100 W, reactor volume 500 ml) is reported. In pure water in dependence on particle size, concentration and frequency the formation rate of hydrogen peroxide under Ar/O2 (4:1) shows a maximum using 206 kHz in presence of 3-5 microm quartz particles (4-8 g/l). Under these conditions the yield of peroxide is higher than without quartz. Additionally under N2/O2 (4:1) besides hydrogen peroxide the formation of nitrite/nitrate was measured. Compared to pure water quartz particle depressed the formation of nitrite/nitrate up to 10-fold but not the formation of H2O2. According to the results of H2O2 formation the elimination of organic compounds by sonolysis (206 kHz) and the influence of quartz particles were investigated. As organic compounds salicylic acid, 2-chlorobenzoic acid and p-toluenesulfonic acid were used. The influence of quartz on the oxidation of organic compounds (206 kHz) is similar to that on the formation of H2O2.

  1. NdFeB nanoparticles prepared by wet-milling

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane; Lyubina, Julia; Woodcock, Thomas; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden (Germany)

    2010-07-01

    Since the prediction of a giant energy product of textured nanocomposite magnets those materials where believed to be the next generation of permanent magnets. For effective exchange-coupling in such two-phase magnets grain sizes need to be in the range of the domain wall width of the hard magnetic phase. That makes a homogenous phase distribution and a microstructure with nanograins necessary. One option of preparing such materials is the synthesis of magnetic nanoparticles which further could be aligned and compacted to a bulk magnet. For this we performed wet-milling experiments of a NdFeGaNbB alloy. XRD studies revealed that by using a surfactant and a solvent during the high energy ball milling process amorphization sets in later than compared to dry milling experiments under the same conditions. Dynamic Light Scattering investigations showed a Gauss distribution of the particle size with a mean diameter of about 12nm which was also proven by TEM. Magnetic properties were measured with SQUID and showed so far rather poor coercivity values.

  2. Influence of particle size distributions on magnetorheological fluid performances

    International Nuclear Information System (INIS)

    Chiriac, H; Stoian, G

    2010-01-01

    In this paper we investigate the influence that size distributions of the magnetic particles might have on the magnetorheological fluid performances. In our study, several size distributions have been tailored first by sieving a micrometric Fe powder in order to obtain narrow distribution powders and then by recomposing the new size distributions (different from Gaussian). We used spherical Fe particles (mesh -325) commercially available. The powder was sieved by means of a sieve shaker using a series of sieves with the following mesh size: 20, 32, 40, 50, 63, 80 micrometers. All magnetic powders were characterized through Vibrating Sample Magnetometer (VSM) measurements, particle size analysis and also Scanning Electron Microscope (SEM) images were taken. Magnetorheological (MR) fluids based on the resulted magnetic powders were prepared and studied by means of a rheometer with a magnetorheological module. The MR fluids were measured in magnetic field and in zero magnetic field as well. As we noticed in our previous experiments particles size distribution can also influence the MR fluids performances.

  3. A route for recycling Nd from Nd-Fe-B magnets using Cu melts

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Martina; Gebert, Annett, E-mail: a.gebert@ifw-dresden.de; Stoica, Mihai; Uhlemann, Margitta; Löser, Wolfgang

    2015-10-25

    Phase evolutions in Nd-Fe-B magnet/Cu systems have been explored with regard to Nd recycling. It was demonstrated that large scale phase separation into a ferromagnetic Fe(B)-rich ingot core with α-Fe main phase and a non-magnetic (Cu,Nd)-rich ingot rim takes place upon arc melting with Cu fractions ≥ 21.5 wt.-%. The re-solidification of the Nd{sub 2}Fe{sub 14}B magnet main phase is suppressed. The rim consists of the Cu{sub 2}Nd main phase and CuNd/Cu{sub 4}Nd minority phases in which Al traces from the magnetic material are gathered. Induction melting of such Nd-Fe-B/Cu mixtures can support the separation of these phase regions with very sharp boundaries. Main features of liquid phase separation and microstructure evolution have been interpreted on the basis of Nd-Fe-Cu phase diagram data. The key advantage with respect to Nd recycling from Nd-Fe-B permanent magnet scrap is the substantial accumulation of Nd in the (Cu,Nd)-rich region of the phase separated solidified specimen, which can be easily detached from the Fe-rich part by mechanical-magnetic treatments. Such portions contained up to ∼44 wt.-% Nd (25 at.-%) in first lab-scale experiments. Nd recovery from the (Cu,Nd)-rich fractions is possible by exploiting the large chemical property differences between the reactive rare earths elements and Cu. - Highlights: • phase evolution analysis in Nd-Fe-B magnet/Cu systems with regard to Nd recycling. • Cu ≥ 21 wt.-%, large scale phase separation- Fe(B)-rich ingot core, (Cu,Nd)-rich rim. • high Nd content (∼44 wt.-%) of (Cu,Nd)-rich region, mechanical-magnetic treatments.

  4. Magnetic and microstructural properties of thin NdFeB based films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bommer, Lars; Goll, Dagmar [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)

    2010-07-01

    The magnetic and microstructural properties of NdFeB and NdFeB/Fe thin films and nanostructures are presented. Samples with Cr buffer and protection layer (minimum thickness: d=50 nm) have been produced by ion beam sputtering at elevated temperatures (T{sub s}=700 C) using Al{sub 2}O{sub 3} and MgO(001) single crystal substrates. Films deposited on Al{sub 2}O{sub 3} substrates show c-axis growth in out-of-plane direction down to thicknesses of the NdFeB film of d=10 nm with coercivities up to {mu}{sub 0}H{sub c}=1 T. The texture of films deposited on MgO(001) substrates is less pronounced and films below d=20 nm show no hard magnetic behavior. For comparison, films were deposited at room temperature on Al{sub 2}O{sub 3} and MgO(001) followed by post-annealing in Ar atmosphere (T{sub pa}=525-650 C) leading to coercivities as high as {mu}{sub 0}H{sub c}=1.2 T but with isotropic behavior. By TEM images the grain structure of the NdFeB samples is studied. Bilayers of NdFeB (d=50 nm) and Fe (d=0-20 nm) show fully exchange coupled behavior. From the temperature dependence of the coercivity the microstructural parameters of all samples have been determined. Furthermore NdFeB periodical patterns were produced by means of electron beam lithography with dot sizes of 1000 nm and 500 nm, respectively.

  5. Comparison of properties of Nd-Fe-B and Sm-Co permanent magnets

    International Nuclear Information System (INIS)

    Ervens, W.

    1985-01-01

    In this paper permanent magnet materials on the basis of RECo and NdFeB are compared in terms of manufacturing processes, magnetic values at ambient and elevated temperatures, maximum operating temperatures and magnetization behaviour. At the present stage of development NdFeB-magnets are superior to the high coercivity RECo-magnets in their B/sub r/ - and (BH)/sub ma//sup -/ values at room temperature but are inferior to them at temperatures higher than 120 0 C

  6. In-situ magnetization of NdFeB magnets for permanent magnet machines

    International Nuclear Information System (INIS)

    Chang, L.; Eastham, T.R.; Dawson, G.E.

    1991-01-01

    In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper

  7. The Effect of Nano-TiC Addition on Sintered Nd-Fe-B Permanent Magnets

    DEFF Research Database (Denmark)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets....... It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop...

  8. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    Science.gov (United States)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  9. In situ Fabrication of Fe-TiB{sub 2} Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH{sub 2} Powder Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Xuan-Khoa [Hanoi Uneversity of Science and Technology, Hanoi (Viet Nam); Bae, Sun-Woo; Kim, Ji Soon [University of Ulsan, Ulsan (Korea, Republic of)

    2017-01-15

    Fe-TiB{sub 2} powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH{sub 2}) powder mixture. Mechanical activation of the (FeB+TiH{sub 2}) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not the same after 1 hour milling time. The particle size of the (FeB+ TiH{sub 2}) powder mixture was reduced to the nanometer scale, and each constituent was homogeneously distributed. A sharp exothermic peak was observed at a lower temperature (749 ℃) on the DSC curves for the (FeB+TiH{sub 2}) powder mixture milled for 3 hours, compared to the one milled for 1 hour (774 ℃). These peaks were confirmed to have resulted from the formation reaction of the TiB{sub 2} phase, from Ti and B elements in the FeB. The Fe-TiB{sub 2} composite powder fabricated in situ exhibited only two phases of Fe and TiB{sub 2} with homogeneous distribution. The size of the TiB{sub 2} particulates in the Fe matrix was less than 5 nm.

  10. Joule heating of Fe-B metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, M.; Sitek, J.; Lipka, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava, Slovak Republic (Czechoslovakia))

    1993-04-01

    Amorphous Fe[sub 80]B[sub 20] and Fe[sub 83]B[sub 17] ribbons were heated in air and in vacuum, respectively, by a dc electric current passing through the specimen. During the Joule heating, [sup 57]Fe transmission Moessbauer spectra were recorded. Ribbons of the same geometrical dimensions, cut from a natural iron foil, were treated in the same way as a reference. The influence of the current-induced magnetic field in addition to the Joule heating is supposed to cause fluctuations in a short-range order observed. Changes in the hyperfine magnetic fields are compared with those obtained by a conventional heating in a vacuum furnace. (orig.).

  11. Preparation and Properties of Anisotropic Nano-crystalline NdFeB Powders Made by Hydrogen Decrepitation of Die Upsetting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yi, P P; Lee, D; Yan, A R, E-mail: ypp@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2011-01-01

    Anisotropic nanocrystalline NdFeB powders were prepared by hydrogen decrepitation (HD) of die upsetting magnets. The effects of varying temperatures of HD on the microstructure and magnetic properties of the anisotropic NdFeB particles were studied. It shows that the powders which obtained by HD process at higher temperature were larger than that at lower temperature, and the HD powders show a well anisotropy at 723 K, the remanence (B{sub r}) was more than 12.46 kG, the maximum energy product ((BH){sub max}) was 19.06 MGOe, and the coercivity (H{sub cj}) was 7.2 kOe. The microstructure of the anisotropic powders revealed that with a reasonable HD temperature, the platelet grains were not destroyed. They were nearly 150-300 nm long and 30-50 nm wide. The results indicate that HD process was an effective way to prepare the anisotropic NdFeB powders.

  12. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    Science.gov (United States)

    Lakshmanan, Saravanan; Rao, Subha Krishna; Muthuvel, Manivel Raja; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal

    2017-08-01

    Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (Ts) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (Ms) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  13. Nd-Fe-B/Sm-M/Nd-M (M = Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability

    Science.gov (United States)

    Grigoras, M.; Lostun, M.; Urse, M.; Borza, F.; Chiriac, H.; Lupu, N.

    2018-02-01

    Hybrid magnets of Nd12Fe82B6(2:14:1-phase)/Nd9.4Fe59Co25.3Ti6.3(3:29-phase) and Nd12Fe82B6/Sm11.1Co65.8Fe8.9Cu10.7Zr3.5(2:17-phase) with different weight ratio have been prepared by spark plasma sintering pressing technique from ball-milled powders obtained from melt-spun ribbons. Influence of the ratio between the two phases on the magnetic properties and thermal stability of the hybrid magnets was studied. It has been found that the ratio has a remarkable influence, especially on the thermal stability of the bulk magnets. However, the magnetic properties of such type of hybrid magnets result not only from the type and ratio of components but also from the interaction between them. It was found that in NdFeB/3:29 hybrid magnets with 15% content of 3:29-phase, the temperature coefficients of remanence (α) and of coercivity (β) are improved from -0.095 to -0.082 (%/°C) and from -0.57 to -0.47 (%/°C), respectively, as compared to the Nd2Fe14B single-phase counterpart. While for the NdFeB/2:17 hybrid magnets the content of 2:17-phase is not significantly influencing the temperature coefficient of induction (α), the temperature coefficient of °C (β) increases up to -0.41 (%/°C) for 10% content of 2:17-phase. The increase in the reversible temperature coefficients of hybrid magnets indicate a remarkable improvement of their thermal stability.

  14. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...

  15. Liquid metal extraction of Nd from NdFeB magnet scrap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanchen [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    This research involves using molten magnesium (Mg) to remove neodymium (Nd) from NdFeB magnet scrap by diffusion. The results show that liquid metal extraction of Nd may be a viable and inexpensive method for recovering the expensive rare earth element Nd for use in Mg castings.

  16. Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature

    NARCIS (Netherlands)

    Venkatesan, P.; Vander Hoogerstraete, Tom; Hennebel, Tom; Binnemans, Koen; Sietsma, J.; Yang, Y.

    2018-01-01

    NdFeB magnet waste is one of the important secondary resources from which rare-earth elements (REEs) can be recovered. Herein we present an electrochemical route to selectively extract REEs from the magnet waste at room temperature. First, the magnet waste was partially leached with HCl. The

  17. Exploring high-pressure FeB{sub 2}: Structural and electronic properties predictions

    Energy Technology Data Exchange (ETDEWEB)

    Harran, Ismail [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Al Fashir University (Sudan); Wang, Hongyan [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Chen, Yuanzheng, E-mail: cyz@calypso.org.cn [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Jia, Mingzhen [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Wu, Nannan [School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010 (China)

    2016-09-05

    The high pressure (HP) structural phase of FeB{sub 2} compound is investigated by using first-principles crystal structure prediction based on the CALYPSO technique. A thermodynamically stable phase of FeB{sub 2} with space group Imma is predicted at pressure above 225 GPa, which is characterized by a layered orthorhombic structure containing puckered graphite-like boron layers. Its electronic and mechanical properties are identified and analyzed. The feature of band structures favors the occurrence of superconductivity, whereas, the calculated Pugh's ratio reveals that the HP Imma structure exhibits ductile mechanical property. - Highlights: • The high pressure structural phase of FeB{sub 2} compound is firstly investigated by the CALYPSO technique. • A thermodynamically stable Imma phase of FeB{sub 2} is predicted at pressure above 225 GPa. • The Imma structure is characterized by a 2D boron network containing puckered graphite-like boron layers. • The band feature of Imma structure favors the occurrence of superconductivity. • The calculated Pugh's ratio suggests that the Imma structure exhibits ductile mechanical property.

  18. Scaling of anomalous hall effect in amorphous CoFeB Films with accompanying quantum correction

    KAUST Repository

    Zhang, Yan; Mi, Wenbo; Wang, Xiaocha; Guo, Zaibing

    2015-01-01

    Scaling of anomalous Hall effect in amorphous CoFeB films with thickness ranging from 2 to 160 nm have been investigated. We have found that the scaling relationship between longitudinal (ρxx) and anomalous Hall (ρAH) resistivity is distinctly

  19. Improvement of the microstructure and magnetic properties of sintered NdFeB permant magnets

    International Nuclear Information System (INIS)

    Vial, F.; Rozendaal, E.; Sagawa, M.

    1998-01-01

    A correlation between sintered NdFeB process, microstructure of the products at each step of the process and magnetic properties has been established. To increase (BH) max of sintered NdFeB magnets, the total rare-earth content in the alloy has to be decreased and to keep coercivity as high as possible, the unavoidable oxygen pick-up has to be substantially reduced. The composition improvements tend to create a high sensitivity to form abnormal grain growth which can potentially occur during the sintering operation. Special attention has been given to characterising, understanding the mechanisms and solving this defect which could affect the magnetic properties. In addition, the composition and each step of the process have been optimised to improve magnetic properties, thermal stability and corrosion resistance of the NdFeB permanent magnets. These collaborative studies have resulted in a significant improvement of both remanence and coercivity of the sintered NdFeB permanent magnets, covering a wide coercivity range from 800 to 2500 kA/m (10 to 35 kOe) with respective associated energy products of 400 to 270 kJ/m3 (52 to 35 MGOe). (orig.)

  20. Investigation Procedure of Magnetic Performances of NdFeB Permanent Magnets

    DEFF Research Database (Denmark)

    Calin, Marius-Daniel; Helerea, Elena; Ritchie, Ewen

    2011-01-01

    The permanent magnet applications based on carbon steel magnets, hard ferrites and AlNiCo magnets classes are renewed with new classes of advanced magnetic materials based on rare earth elements, the Sm-Co and NdFeB types. Performance increase of the hard magnetic materials and their use in speci......The permanent magnet applications based on carbon steel magnets, hard ferrites and AlNiCo magnets classes are renewed with new classes of advanced magnetic materials based on rare earth elements, the Sm-Co and NdFeB types. Performance increase of the hard magnetic materials and their use...... in specific applications impose also great advances in the field of magnetic measurement. New researches need to be validated in order to investigate the NdFeB permanent magnets performances, including their stability under different thermal operational regimes. In this paper a specific investigation...... procedure of magnetic performances of NdFeB permanent magnets in correlation with the range of operating temperature is proposed based on modern hysteresisgraph method and impulse magnetization technique....

  1. Adhesive and Cohesive Strength in FeB/Fe2B Systems

    Science.gov (United States)

    Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.

    2018-05-01

    In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.

  2. Magnetic properties of melt-spun Nd-rich NdFeB alloys with Dy and Ga substitutions

    International Nuclear Information System (INIS)

    Harland, C.L.; Davies, H.A.

    1998-01-01

    The results of a systematic investigation of the effects of Dy and Ga additions on the magnetic properties of a Nd-rich NdFeB alloy are presented and discussed. Particular attention is given to the effect of increasing Dy substitutions on the coercivity of the Nd 18 Fe 76 B 6 alloy. Substitution of 30% of the Nd by Dy resulted in a coercivity increase from 1590 to 3290 kA m -1 . However, contrary to previous suggestions, substitution of 1% of the Fe by Ga was found to have only a small influence on the magnetic properties of all the alloys in the compositional series (Nd 100-x Dy x ) 18 Fe 76 B 6 (x=0-30). (orig.)

  3. A comparative thermomagnetic study of melt-spun Nd-Fe-B alloys with different Nd content

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2009-01-01

    Full Text Available Changes in the phase composition and magnetic properties of three types of commercial Nd-Fe-B alloys with different Nd content - low (10-12 wt%, near stoichiometric (21-25 wt% and rich (26-29 wt% caused by thermomagnetic analysis (TM were observed in regard to optimal magnetic state. Phase compositions of investigated alloys before and after TM measurement up to 800°C were compared using 57Fe Mössbauer spectroscopy and X-Ray analysis. The TM measurements decompose all three materials and the main products of decomposition process α-Fe and Fe2B phase. Observed changes in structure and phase composition had direct influence on magnetic properties. Loss of magnetic properties induced by thermal decomposition is clearly illustrated on corresponding SQUID hysteresis loops.

  4. Ta thickness-dependent perpendicular magnetic anisotropy features in Ta/CoFeB/MgO/W free layer stacks

    Energy Technology Data Exchange (ETDEWEB)

    Yang, SeungMo; Lee, JaBin; An, GwangGuk [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, JaeHong [Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, WooSeong [Nano Quantum Electronics Lab, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, JinPyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-07-31

    We describe Ta underlayer thickness influence on thermal stability of perpendicular magnetic anisotropy in Ta/CoFeB/MgO/W stacks. It is believed that thermal stability based on Ta underlay is associated with thermally-activated Ta atom diffusion during annealing. The difference in Ta thickness-dependent diffusion behaviors was confirmed with X-ray photoelectron spectroscopy analysis. Along with a feasible Ta thickness model, our observations suggest that an appropriate seed layer choice is needed for high temperature annealing stability, a critical issue in the memory industry. - Highlights: • We observed changes in the diffusion behavior with regard to Ta seed layer thickness. • It was observed that a thinner Ta seed layer induced more annealing-stable features. • However, ultra-thin (0.75 nm) Ta shows unstable characteristics about the annealing process. • It was possibly due to a rugged interface of the Ta layer by the island growth process.

  5. Characterisation of the aqueous corrosion process in NdFeB melt spun ribbon and MQI bonded magnets

    Science.gov (United States)

    McCain, Stephen

    A major factor limiting the use and longevity of rare earth based magnetic materials is their susceptibility to aqueous corrosion and associated detrimental effects upon the magnetic properties of the material. This process was investigated through a combination of exposure to simulated environmental conditions and hydrogen absorption/desorption studies (HADS) in conjunction with magnetic characterisation. This study utilises NdFeB MQP-B melt-spun ribbon manufactured by Magnequench, in the form of MQI bonded magnets and also in its unbonded state as MQ powder. Specifically, it was concerned with how effective a variety of bonding media (epoxy resin,PTFE, zinc) and surface coatings (PTFE, Qsil, zinc LPPS, Dex-Cool) were at limiting the impact of aqueous corrosion in MQI bonded magnets. To characterise the effect of hydrogen absorption upon the magnetic properties of the MQP-B, hydrogen uptake was induced followed by a series of outgassing heat treatments with subsequent magnetic characterisation accompanied by HADS techniques performed after each outgas. This allowed comparisons to be made between the effects of aqueous corrosion process and hydrogen absorption upon the magnetic properties of the alloy.. This study has clearly demonstrated the link between the abundance of environmental moisture and rate of Hci losses in MQI bonded magnets. In addition to this the key mechanism responsible for the degradation of magnetic properties has been identified. These losses have been attributed to the absorption of hydrogen generated by the dissociation of water in the presence of NdFeB during the aqueous corrosion process. It has been shown that the use of a bonding media that is impermeable to water can limit the effects of aqueous corrosion by limiting water access to the Magnequench particles (MQP) and also the positive effects of the use of suitable surface coatings has been shown to be effective for the same reason..

  6. Influence of rescattering on the spectra of strange particles

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C.; Kerveno, M.; Le Pallec, J.Ch.; Aichelin, J.

    1996-11-01

    Applying a new method of rescattering based on neural network technique the influence of rescattering on the spectra of strange particles produced in heavy ion reactions is studied. A comparison of our calculations for the system Ni(1.93 A GeV)+Ni with recent data of the FOPI collaboration is presented. It is found that even for this small system rescattering changes the observables considerably but does not invalidate the role of the kaons as a messenger from the high density zone. (K.A.)

  7. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  8. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    International Nuclear Information System (INIS)

    Zhang, Pengjie; Xu, Guangqing; Liu, Jiaqin; Yi, Xiaofei; Wu, Yucheng; Chen, JingWu

    2016-01-01

    Graphical abstract: Zn coated NdFeB specimens pretreated with different technologies possess different adhesive strengths and anticorrosion properties. And the combined technology of sandblasting and pickling (5 s) achieves the best comprehensive performance. - Highlights: • Zn coated NdFeB specimens are achieved with different pretreating technologies. • Combined technology possesses the highest adhesive strength. • Combined technology possesses excellent anticorrosion property. - Abstract: Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm 2 ) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  9. Enhancement in (BHmax of PLD-made isotropic Nd-Fe-B thick film magnets deposited on Si substrates

    Directory of Open Access Journals (Sweden)

    M. Nakano

    2017-05-01

    Full Text Available Increase in Nd contents of a PLD-made isotropic Nd-Fe-B thick-film magnet enabled us to enhance the thickness of the film magnet deposited on a Si substrate because the linear expansion coefficient of Nd is an intermediate value between Nd2Fe14B and Si. The large amount of Nd, however, degraded the residual magnetic polarization and (BHmax. In the study, we reduced the Nd contents of each Nd-Fe-B film by inserting a Nd or a Nd-rich Nd-Fe-B buffer layer between a Nd-Fe-B film and a Si substrate in order to suppress the mechanical destruction together with the improvement in magnetic properties. It was found that the mechanical property of a Nd-Fe-B film comprising the Nd-Fe-B buffer layer in the thickness range from 10 to 60 μm was superior than that of a sample with the Nd buffer layer. Resultantly, an average (BHmax value of Nd-Fe-B films with each Nd-Fe-B buffer layer deposited on Si substrates could be enhanced by approximately 15 kJ/m3 compared to that of non-buffer-layered films.

  10. Enhanced exchange anisotropy in IrMn/CoFeB systems and its correlation with uncompensated interfacial spins

    DEFF Research Database (Denmark)

    Du, Yuqing; Pan, Genhua; Moate, Roy

    2010-01-01

    Bottom pinned exchange bias systems of IrMn/CoFe and IrMn/CoFeB on CoFe seed layers were studied. Enhanced exchange anisotropy has been observed for IrMn/CoFeB samples annealed at 350 °C. The ferromagnetic and antiferromagnetic layers of both samples are polycrystalline and textured {110} for the...

  11. Noise spectroscopy of CoFeB/MgO/CoFeB magnetic tunnel junctions in the presence of thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Liebing, N. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, d-38116 Braunschweig (Germany); Serrano-Guisan, S., E-mail: santiago.serrano-guisan@inl.int [International Iberian Nanotechnology Laboratory, Avenida Mestre Jose Veiga, 4715-330 Braga (Portugal); Rott, K.; Reiss, G. [University of Bielefeld, Department of Physics, Univesitätesstr. 25, d-33615 Bielefeld (Germany); Schumacher, H.W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, d-38116 Braunschweig (Germany)

    2016-02-15

    We present experimental data of the precessional dynamics of the free layer of CoFeB/MgO/CoFeB based magnetic tunnel junctions (MTJ) in the presence of thermal gradients across the MTJ. The free layer precession is investigated by noise spectroscopy. Thermal gradients of the order of tens of mK/nm across the MTJ are generated by electrical heating. Without applied thermal gradients we find spin transfer torque modified magnetization precession. With increasing thermal gradients we generally observe a decrease of the precession frequency which could be related to an increasing overall free layer temperature. However an asymmetry of the line width behavior for parallel and antiparallel orientation points towards additional effects beyond thermal activation. This could be a hint for the modification of the precessional dynamics in magnetic tunnel junctions by thermal spin torques. - Highlights: • Thermal gradients induced magnetization dynamics on MTJ structures are explored. • Magnetic noise spectroscopy is carried out to study the efficiency of such effects. • A decrease of resonance frequency is observed at both MTJ states for large ∇T. • An asymmetric linewidth behavior is observed for both MTJ states under ∇T. • Additional thermal effects beyond thermal activation must be considered.

  12. Effect of Low-Frequency AC Magnetic Susceptibility and Magnetic Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Yuan-Tsung Chen

    2014-01-01

    Full Text Available In this investigation, the low-frequency alternate-current (AC magnetic susceptibility (χac and hysteresis loop of various MgO thickness in CoFeB/MgO/CoFeB magnetic tunneling junction (MTJ determined coercivity (Hc and magnetization (Ms and correlated that with χac maxima. The multilayer films were sputtered onto glass substrates and the thickness of intermediate barrier MgO layer was varied from 6 to 15 Å. An experiment was also performed to examine the variation of the highest χac and maximum phase angle (θmax at the optimal resonance frequency (fres, at which the spin sensitivity is maximal. The results reveal that χac falls as the frequency increases due to the relationship between magnetization and thickness of the barrier layer. The maximum χac is at 10 Hz that is related to the maximal spin sensitivity and that this corresponds to a MgO layer of 11 Å. This result also suggests that the spin sensitivity is related to both highest χac and maximum phase angle. The corresponding maximum of χac is related to high exchange coupling. High coercivity and saturation magnetization contribute to high exchange-coupling χac strength.

  13. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, Saravanan; Rao, Subha Krishna [Nanotechnology Research Centre, SRM University, Kattankulathur, Chennai 603203 (India); Muthuvel, Manivel Raja [Defence Metallurgical Research Laboratory (DMRL), Hyderabad 500058 (India); Chandrasekaran, Gopalakrishnan [Nanotechnology Research Centre, SRM University, Kattankulathur, Chennai 603203 (India); Therese, Helen Annal, E-mail: helen.a@ktr.srmuniv.ac.in [Nanotechnology Research Centre, SRM University, Kattankulathur, Chennai 603203 (India)

    2017-08-01

    Highlights: • Ta/CoFeB(50 nm)/Ta thin films were deposited at various substrate temperatures (T{sub s}). • CoFeB films deposited at T{sub s} such as RT, 450 °C, 475 °C and 500 °C exhibited perpendicular coercivity. • CoFeB deposited at 475 °C displayed a higher coercivity of 315 Oe and a low M{sub s} of 169 emu/cc. • The enhanced crystallization of CoFeB at the Ta/CoFeB interface results in higher H{sub c} (⟂). - Abstract: Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (T{sub s}) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (M{sub s}) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  14. Influence of Particle Size on Properties of Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Kurajica, S

    2010-02-01

    Full Text Available Expanded graphite has been applied widely in thermal insulation, adsorption, vibration damping, gasketing, electromagnetic interference shielding etc. It is made by intercalation of natural flake graphite followed by thermal expansion. Intercalation is a process whereby an intercalant material is inserted between the graphene layers of a graphite crystal. Exfoliation, a huge unidirectional expansion of the starting intercalated flakes, occurs when the graphene layers are forced apart by the sudden decomposition and vaporization of the intercalated species by thermal shock. Along with production methodologies, such as the intercalation process and heat treatment, the raw material characteristics, especially particle size, strongly influence the properties of the final product.This report evaluates the influence of the particle size of the raw material on the intercalation and expansion processes and consequently the properties of the exfoliated graphite. Natural crystalline flake graphite with wide particle diameter distribution (between dp = 80 and 425 µm was divided into four size-range portions by sieving. Graphite was intercalated via perchloric acid, glacial acetic acid and potassium dichromate oxidation and intercalation procedure. 5.0 g of graphite, 7.0 g of perchloric acid, 4.0 g of glacial acetic acid and 2.0 g of potassium dichromate were placed in glass reactor. The mixture was stirred with n = 200 min–1 at temperature of 45 °C during 60 min. Then it was filtered and washed with distilled water until pH~6 and dried at 60 °C during 24 h. Expansion was accomplished by thermal shock at 1000 °C for 1 min. The prepared samples were characterized by means of exfoliation volume measurements, simultaneous differential thermal analysis and thermo-gravimetry (DTA/TGA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, BET measurements and scanning electron microscopy (SEM.X-ray diffraction indicated a change of distance

  15. Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB.

    Science.gov (United States)

    Rades, Steffi; Kornowski, Andreas; Weller, Horst; Albert, Barbara

    2011-06-20

    The reaction of lithium tetrahydridoborate and iron bromide in high boiling ether as reaction medium produces an ultrafine, pyrophoric and magnetic precipitate. X-ray and electron diffraction proved the product to be amorphous. According to X-ray absorption fine structure spectroscopy (XAFS) the precipitate has FeB structure up to nearly two coordination spheres around an iron absorber atom. Transmission electron microscopy (TEM) confirms the ultrafine powder to be nanoscale. Subsequent annealing at 450 °C causes the atoms to arrange in a more distinct FeB structure, and further thermal treatment to 1050 °C extends the local structure to the α-modification of FeB. Between 1050 °C and 1500 °C α-FeB is transformed into β-FeB. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influences on particle shape in underwater pelletizing processes

    Energy Technology Data Exchange (ETDEWEB)

    Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  17. Interface interaction in the B4C/(Fe-B-C) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wetting behavior in the B 4 C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B 4 C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B 4 C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations

  18. Scaling of anomalous hall effect in amorphous CoFeB Films with accompanying quantum correction

    KAUST Repository

    Zhang, Yan

    2015-05-08

    Scaling of anomalous Hall effect in amorphous CoFeB films with thickness ranging from 2 to 160 nm have been investigated. We have found that the scaling relationship between longitudinal (ρxx) and anomalous Hall (ρAH) resistivity is distinctly different in the Bloch and localization regions. For ultrathin CoFeB films, the sheet resistance (Rxx) and anomalous Hall conductance (GAH) received quantum correction from electron localization showing two different scaling relationships at different temperature regions. In contrast, the thicker films show a metallic conductance, which have only one scaling relationship in the entire temperature range. Furthermore, in the dirty regime of localization regions, an unconventional scaling relationship View the MathML sourceσAH∝σxxα with α=1.99 is found, rather than α=1.60 predicted by the unified theory.

  19. Ion-beam mixing and tribology of Fe/B multilayers

    International Nuclear Information System (INIS)

    Hu, R.; Rehn, L.E.; Baldo, P.M.; Fenske, G.R.

    1990-01-01

    This paper reports the interdiffusion of Fe and B trilayer specimens during 1-MeV Kr + bombardment studied using Rutherford backscattering and electron microscopy. The square of the interdiffusion distance during mixing at 300 degrees C was found to depend linearly on the irradiation dose. Arrhenius behavior with an apparent activation enthalpy of 0.7 eV was observed for the mixing between 200 and 500 degrees C. Electron microscopy of ion-beam mixed multilayer specimens revealed that two crystalline compounds, Fe 2 B and Fe 3 B, formed during bombardment at 450 degrees C, while two different amorphous Fe/B phases formed at 300 degrees C. Substantially improved adhesion and reduced friction were observed for Fe/B multilayers ion-beam mixed onto M50 steel substrates at 450 degrees C

  20. Hard magnetic property and δM(H) plot for sintered NdFeB magnet

    International Nuclear Information System (INIS)

    Gao, R.W.; Zhang, D.H.; Li, W.; Li, X.M.; Zhang, J.C.

    2000-01-01

    The hard magnetic properties and the interactions between the grains for sintered Nd 16 Fe 73 Co 5 B 6 magnets are investigated by using δM(H) plot technique. The results show that the δM(H) plot of NdFeB sintered magnet can explain the effects of the microstructure (size, shape and orientation of the grains) and the intergrain interactions on the hard magnetic properties of the magnet. However, the value of δM(H) is positive when the applied field is not strong enough, which means that the common δM(H) plot theory is not completely consistent with the sintered NdFeB magnet

  1. The Pulse Thermal Processing of NdFeB-Based Nanocomposite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z. Q. [University of Texas; Wang, Z. L. [Georgia Institute of Technology; Liu, J. P. [University of Texas; Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

    2006-01-01

    Pulse-thermal processing (PTP) based on high-density plasma arc lamp technology has been utilized to crystallize melt-spun NdFeB-based amorphous ribbons to form magnetic nanocomposites consisting of Nd{sub 2}Fe{sub 14}B and {alpha}-Fe phases. After applying suitable pulses, the NdFeB-based ribbons were developed with hard magnetic properties. The highest coercivity can be obtained for ribbons with a thickness of 40 {micro}m after PTP treatments consisting of a 400 A pulse for 0.25 s for ten times. The correlation between PTP parameters and magnetic properties indicates that PTP is an effective approach to control the structure and properties of nanostructured magnetic materials.

  2. Effect of process on the magnetic properties of bonded NdFeB magnet

    International Nuclear Information System (INIS)

    Li, J.; Liu, Y.; Gao, S.J.; Li, M.; Wang, Y.Q.; Tu, M.J.

    2006-01-01

    The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm 3 and the maximum energy product can reach 114 kJ/m 3

  3. NdFeB magnets with zero temperature coefficient of induction

    International Nuclear Information System (INIS)

    Ma, B.M.; Narasimhan, K.S.V.L.; Hurt, J.C.

    1986-01-01

    Temperature compensation for the induction of NdFeB type magnets has been investigated. A computer assisted alloy selection method was adopted to identify composition of zero temperature coefficient of induction over -50 to 200 0 C. Selected alloys were processed into magnet by the conventional powder metallurgy method. The experimental temperature coefficient on the sintered magnet correlated with the prediction satisfactory. Holmium is an essential ingredient required for temperature compensation of NdFeB magnets. A magnet, (Nd/sub 0.23/Ho/sub 0.64/Dy/sub 0.13/)/sub 15/Fe/sub 79/B/sub 6/ with B/sub r/ of 7,700 Gauss, H/sub c/ of 7,700 Oe, H/sub ci/ of 20,600 Oe, Bh/sub max/ of 14.8 MGOe and temperature coefficient of -0.029% per 0 C over -50 to +150 was obtained

  4. Intermediate phases in the hydrogen disproportionated state of NdFeB-type powders

    International Nuclear Information System (INIS)

    Yi, G.; Chapman, J. N.; Brown, D. N.; Harris, I. R.

    2001-01-01

    Transmission electron microscopy studies have been carried out on partially disproportionated NdFeB-type alloys. A new intermediate magnetic (NIM) phase has been identified. Moreover, the lamella structure which subsequently develops from the tetragonal NIM phase comprises a tetragonal NdFe-containing (IL) phase and α-Fe. The experimental data show strong evidence of a well-defined crystallographic relation between both the NIM and lamella phases and between the IL phase and α-Fe. These observations give insight into how crystallographic texture, and hence anisotropy, can be developed in NdFeB-type powders processed by the hydrogenation, disproportionation, desorption, and recombination route. copyright 2001 American Institute of Physics

  5. Study of high-coercivity sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Department of Mathematics and Physics, Xi' an Institute of Technology, Xi' an, 710032 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Sun, Y. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Han, G.B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Baotou Rare Earth Research Institute, Batou 014030 (China)

    2007-01-15

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of {sub j} H {sub c}=25.6 kOe, B {sub r}=13.2 kG and (BH){sub max}=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.

  6. Effect of process on the magnetic properties of bonded NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Liu, Y. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)]. E-mail: liuying5536@163.com; Gao, S.J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Li, M. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Wang, Y.Q. [South-West Magnetic Science and Technology Developing Company, Mianyang, 621600 (China); Tu, M.J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)

    2006-04-15

    The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm{sup 3} and the maximum energy product can reach 114 kJ/m{sup 3}.

  7. Production of NdFeB powders by HDDR from sintered magnets

    International Nuclear Information System (INIS)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G.; Campos, M.F. de

    2010-01-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd 2 Fe 14 B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  8. Structure and Properties of Nd-Fe-B Alloy Subjected to HDDR Process

    Directory of Open Access Journals (Sweden)

    Szymański M.

    2016-03-01

    Full Text Available In this paper the Hydrogenation, Disproportionation, Desorption and Recombination (HDDR route was tested, for the Nd-Fe-B master alloy, as a prospective procedure for recycling of sintered scrap neodymium magnets. The HDDR method is based on the hydrogen induced reversal phase transformation of Nd-Fe-B alloy: Nd2Fe14B + (2±x H2 = 2NdH2±x + Fe2B + 12Fe. Microstructural observations (SEM, phase constitution studies (XRD and measurement of magnetic properties (VSM were done to investigate the HDDR transformation progress. It was observed that disproportionation reaction starts at the grain boundaries, where the Nd-rich phase is located. Average grain size was reduced and coercive material was produced as a result of the HDDR process. Obtained results are similar to literature data.

  9. Corrosion behaviour of Nd-Fe-B magnets containing Co and Cr

    International Nuclear Information System (INIS)

    Pawlowska, G.; Bala, H.; Szymura, S.

    1993-01-01

    The effect of partial substitution of iron by Co and Cr on corrosion behaviour of Nd 16 Fe 76 B 8 permanent magnets has been investigated. Small additions of Cr (1 to 4%at) are enough to ensure maximal corrosion inhibition. Greater amount of Cr into Nd-Fe-B alloy (>8%at), against expectations, practically do not affect the corrosion behaviour and additionally, considerably worsen its magnetic properties. Corrosion tests have shown a distinct effect of cobalt addition on the inhibition of both acid corrosion and the abnormal dissolution process of the Nd-Fe-Co-B magnets. Cobalt additions inhibit the atmosphere corrosion of Nd-Fe-B permanent magnets, especially a salt-spray environment. (author). 6 refs, 4 figs, 1 tab

  10. Repair effect on patterned CoFeB-based magnetic tunneling junction using rapid thermal annealing

    International Nuclear Information System (INIS)

    Wu, K.-M.; Wang, Y.-H.; Chen, Wei-Chuan; Yang, S.-Y.; Shen, Kuei-Hung; Kao, M.-J.; Tsai, M.-J.; Kuo, C.-Y.; Wu, J.-C.; Horng, Lance

    2007-01-01

    Rapid thermal treatment without applying magnetic field reconstructing magnetic property of Co 60 Fe 20 B 20 was studied through magnetoresistance (R-H) measurement. In this paper, we report that the switching behaviors of CoFeB were obviously improved through rapid thermal annealing for only a brief 5 min. The squareness and reproduction of minor R-H loops were enhanced from 100 deg. C to 250 deg. C . Tunneling magnetoresistance (TMR) that is about 35% in the as-etched cells increases up to 44% after 250 deg. C rapid annealing and still shows about 25% TMR even after 400 deg. C treating. Therefore, repair purpose annealing is some what different from crystallizing purpose annealing. Applying magnetic field during repair annealing was not necessary. Brief thermal treatment improves CoFeB switching behavior indeed, and causes less damage at high temperature

  11. Microstructure and magnetic properties of Nd-Fe-B-(Re, Ti alloys

    Directory of Open Access Journals (Sweden)

    Hasiak Mariusz

    2015-03-01

    Full Text Available The microstructure and magnetic properties of nanocomposite hard magnetic Nd-Fe-B-(Re, Ti materials with different Nd and Fe contents are studied. The role of Re and Ti addition in phase composition and volume fraction of the Nd-Fe-B phase is determined. All samples are annealed at the same temperature of 993 K for 10 min. Mössbauer spectroscopy shows that the addition of 4 at.% of Re to the Nd8Fe78B14 alloy leads to creation of an ineligible amount of the magnetically hard Nd2Fe14B phase. Moreover, the microstructure and magnetic characteristics recorded in a wide range of temperatures for the Nd8Fe79−xB13Mx (x = 4; M = Re or Ti alloys are also analyzed.

  12. Study of high-coercivity sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Bai, G.; Gao, R.W.; Sun, Y.; Han, G.B.; Wang, B.

    2007-01-01

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of j H c =25.6 kOe, B r =13.2 kG and (BH) max =39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors

  13. Interface interaction in the B{sub 4}C/(Fe-B-C) system

    Energy Technology Data Exchange (ETDEWEB)

    Aizenshtein, M. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); Frage, N. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)], E-mail: nfrage@bgu.ac.il

    2008-11-15

    The wetting behavior in the B{sub 4}C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B{sub 4}C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B{sub 4}C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations.

  14. Analysis of NdFeB thin films prepared by facing target sputtering

    International Nuclear Information System (INIS)

    Shivalingappa, L.; Mohan, S.; Ghantasala, M.K.; Sood, D.K.

    1999-01-01

    In this paper, we present the details of our work on the deposition and characterization of NdFeB thin films. These films were prepared using facing target sputtering technique. The silicon(100) substrates were maintained at a substrate temperature of 400 to 600 deg C during deposition. Film structure, composition and magnetic properties are analyzed using Rutherford Backscattering Spectroscopy (RBS) and X-ray Diffraction (XRD) techniques. Films deposited below 400 deg C were x-ray amorphous, while the onset of crystallinity was observed with the films deposited at 500 deg C. Typical film composition was Nd:Fe:B = 2.2:12.5:2. Film composition appear to be a function of deposition conditions. Oxygen has been found to be the main impurity in the films. Oxygen content in the film reduced as the substrate temperature is increased

  15. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.

    2014-09-08

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  16. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Zaibing; Zhang, Xixiang

    2014-01-01

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  17. Microstructure, texture, and magnetic properties of backward extruded NdFeB ring magnets

    International Nuclear Information System (INIS)

    Gruenberger, W.; Hinz, D.; Schlaefer, D.; Schultz, L.

    1996-01-01

    Radially-oriented NdFeB ring magnets have been prepared by backward extrusion of melt-spun material. The average remanence measured in the radial direction reaches values above 1.2 T. Due to the inhomogeneity of the deformation, the magnetic properties and X-ray diffraction patterns revealed a gradual improvement of the alignment from the outer shell to regions near the inner surface of the ring. (orig.)

  18. Radiation hardness of permanent magnets of NdFeB in high energy neutron fields

    International Nuclear Information System (INIS)

    Shchegolev, V.Yu.

    2003-01-01

    Magnetic properties of NdFeB permanent magnet samples were measured before and after irradiation with conditions similar to conditions of DRIBs (phase 1) (FLNR, JINR) facility. Demagnetization of the samples after 8-day irradiation was found to be in the range of 17 to 87 %. Estimation of magnet 'life time' was made in the case of setting up these magnets on ECR ion source of DRIBs (phase 1) facility. Possible reasons of considerable demagnetization of the magnets are discussed. (author)

  19. Radiation Hardness of Permanent Magnets of NdFeB in High Energy Neutrons Field

    CERN Document Server

    Schegolev, V Yu

    2003-01-01

    Magnetic properties of NdFeB permanent magnet samples were measured before and after irradiation with conditions similar to conditions of DRIBs (phase 1) (FLNR, JINR) facility. Demagnetization of the samples after 8-day irradiation was found to be in the range of 17 to 87 \\%. Estimation of magnet "life tim" was made in the case of setting up these magnets on ECR ion source of DRIBs (phase 1) facility. Possible reasons of considerable demagnetization of the magnets are discussed.

  20. On the angular dependence of the coercivity of NdFeB hard magnets

    International Nuclear Information System (INIS)

    Jahn, L.; Christoph, V.; Pastuschenko, J.S.

    1989-01-01

    In order to test the model assumptions on hard magnetic properties of sintered NdFeB magnets, a comparison of the measured and calculated values of the magnetization and remanence coercivities H C and H R , respectively, as a function of the angle between texture axis and external field θ in Nd 16 Fe 76 B 8 and (Nd 0.9 Tb 0.1 ) 16 Fe 76 B 8 is given and explained qualitatively

  1. Radiation hardness of permanent magnets of NdFeB in high energy neutron fields

    CERN Document Server

    Shchegolev, V Y

    2003-01-01

    Magnetic properties of NdFeB permanent magnet samples were measured before and after irradiation with conditions similar to conditions of DRIBs (phase 1) (FLNR, JINR) facility. Demagnetization of the samples after 8-day irradiation was found to be in the range of 17 to 87 %. Estimation of magnet 'life time' was made in the case of setting up these magnets on ECR ion source of DRIBs (phase 1) facility. Possible reasons of considerable demagnetization of the magnets are discussed.

  2. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    Science.gov (United States)

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Technological parameter effect on properties of sintered hard-magnetic type Nd-Fe-B materials

    International Nuclear Information System (INIS)

    Rastegaev, V.S.; Stepanova, G.I.; Gudim, Z.Yu.

    1989-01-01

    The effect of each technological operation on manufacturing hard magnets from Nd-Fe-B alloys on properties of sintered permanent magnets is studied. It is noted that violation of the metting regime can result in burn-up of boron and rare earths, and violation of the grinding mode-formation of nonmagnetic powder fractions, etc. Special attention is paid to material protection against oxidation by introducing passivating additions and creating of particular conditions for alloy sintering and heat treatment

  4. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  5. The comparative study of Nd-Fe-B magnetic materials with different Nd content

    Czech Academy of Sciences Publication Activity Database

    Grujić, A.; Žák, Tomáš; Ćosović, V.; Stajić-Trošić, J.; Spasojević, V.; Talijan, N.

    2009-01-01

    Roč. 3, č. 5 (2009), s. 477-480 ISSN 1842-6573 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : Rapid quenched Nd-Fe-B alloy * Chemical composition * Phase composition * Magnetic properties * Performance permanent-magnets * Nanocrystalline composite * Alloys * Phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.451, year: 2009

  6. Development of a phosphating process for corrosion protection in NdFeB magnets

    International Nuclear Information System (INIS)

    Silva, Adonis Marcelo Saliba

    2001-01-01

    NdFeB magnets are important materials, which produce better energy efficiency in electrical devices, but they are rather vulnerable to corrosion. In this study, a phosphating treatment for protection against corrosion of NdFeB magnets has been investigated. Phosphating is generally used as a pretreatment in the application of protective coatings. This treatment increases the corrosion assistance in defective areas of the coating as well as improves the adhesion between coating and substrate. A commercial NdFeB magnet produced by powder metallurgy has been used and the effect of the following parameters on phosphating was studied: time of phosphating; pH of phosphating solution; anodic polarization and molybdate addition to the phosphating solution. The results showed a significant increase in the corrosion resistance of magnets phosphated in a solution concentrated between 10-20 g/L NaH 2 PO 4 , pH in the range of 3 to 4.6, acidulated preferably with H 3 PO 4 at room temperature (20±1) deg C. Conversion coatings formed at solutions of pH 3.8 showed better corrosion resistance. Phosphating times longer than 4 hours increased the magnet corrosion resistance 10 to 20 times. This resistance improves with higher immersion times. Anodic polarization of the magnet in the range 200-400 mV SCE accelerated phosphating. Results indicated that molybdate interacts preferentially with Nd rich phase of the magnet. In addition to the newly developed technology in this work for NdFeB corrosion protection, two methodologies have been introduced to facilitate electrochemical analyses: selection of samples of similar electrochemical behavior, based on the current density after 200s of constant anodic polarization; and evaluation of the corrosion protection provided by conversion coatings by monitoring of gas evolution during corrosion in acid solution. (author)

  7. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  8. Perpendicular magnetic anisotropy and the magnetization process in CoFeB/Pd multilayer films

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Quach, Duy-Truong; Hung, Tran Quang

    2014-01-01

    The perpendicular magnetic anisotropy (PMA) and dynamic magnetization-reversal process in [CoFeB t nm/Pd 1.0 nm]n(t = 0.4, 0.6, 0.8, 1.0 and 1.2 nm; n = 2 − 20) multilayer films have been studied by means of magnetic hysteresis and Kerr effect measurements. Strong and controllable PMA with an eff...

  9. Perpendicular magnetic anisotropy of CoFeB\\Ta bilayers on ALD HfO2

    Directory of Open Access Journals (Sweden)

    Bart F. Vermeulen

    2017-05-01

    Full Text Available Perpendicular magnetic anisotropy (PMA is an essential condition for CoFe thin films used in magnetic random access memories. Until recently, interfacial PMA was mainly known to occur in materials stacks with MgO\\CoFe(B interfaces or using an adjacent crystalline heavy metal film. Here, PMA is reported in a CoFeB\\Ta bilayer deposited on amorphous high-κ dielectric (relative permittivity κ=20 HfO2, grown by atomic layer deposition (ALD. PMA with interfacial anisotropy energy Ki up to 0.49 mJ/m2 appears after annealing the stacks between 200°C and 350°C, as shown with vibrating sample magnetometry. Transmission electron microscopy shows that the decrease of PMA starting from 350°C coincides with the onset of interdiffusion in the materials. High-κ dielectrics are potential enablers for giant voltage control of magnetic anisotropy (VCMA. The absence of VCMA in these experiments is ascribed to a 0.6 nm thick magnetic dead layer between HfO2 and CoFeB. The results show PMA can be easily obtained on ALD high-κ dielectrics.

  10. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  11. Novel Extraction Process Of Rare Earth Elements From NdFeB Powders Via Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Chung K.W.

    2015-06-01

    Full Text Available The alkaline treatment of NdFeB powders in NaOH solution at various equivalent amounts of NaOH at 100°C was performed. The resultant powders were then leached in 0.5M H2SO4 solution at 25°C for 2 minutes. At 5 equivalents of NaOH, neodymium in NdFeB powders was partially transformed to neodymium hydroxide. The transformation of neodymium to neodymium hydroxide actually occurred at 10 equivalents of NaOH and was facilitated by increasing the equivalent of NaOH from 10 to 30. In addition, iron was partially transformed to magnetite during the alkaline treatment, which was also promoted at a higher equivalent of NaOH. The leaching yield of neodymium from alkaline-treated powders was increased with an increasing equivalent of NaOH up to 10; however, it slightly decreased with the equivalent NaOH of over 10. The leaching yield of iron was inversely proportional to that of rare earth elements. NdFeB powders treated at 10 equivalents of NaOH showed a maximum leaching yield of neodymium and dysprosium of 91.6% and 94.6%, respectively, and the lowest leaching yield of iron of 24.2%, resulting in the highest selective leaching efficiency of 69.4%.

  12. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  13. A preliminary electron backscattered diffraction study of sintered NdFeB-type magnets.

    Science.gov (United States)

    Lillywhite, S J; Williams, A J; Davies, B E; Harris, I R

    2002-03-01

    This paper reports, for the first time, the use of electron backscattered diffraction (EBSD) to study orientation in sintered NdFeB type magnets. The magnetic properties of NdFeB magnets are greatly improved if a strong crystallographic texture is firstly achieved, namely, the direction of the c-axis is along the direction of magnetization. A systematic survey of sample preparation techniques showed that samples that were mechanically polished and then etched gave the most reliable EBSD data. Analyses were made using both fully automated EBSD scans and by EBSD measurements taken after manual movement of the beam. The EBSD results are presented as secondary electron SEM micrographs, orientation images and 001 pole figures. For the selection of grains investigated, the deviation of the c-axis was shown to be between 10 degrees and 30 degrees from the ideal [001]//magnetization direction. It is demonstrated that EBSD is a valuable tool for characterizing the microstructure and texture relationships and for assessing the performance of the processing routes of NdFeB magnets.

  14. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Williams, A.J., E-mail: a.j.williams@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2012-01-15

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10({+-}0.02) T and an intrinsic coercivity of 800 ({+-}16) kA m{sup -1} and giving a (BH){sub max} of 129({+-}2.5) kJ m{sup -3}. - Highlights: > Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. > Reaction pressure increases with increasing processing temperature. > Best magnetic properties achieved by processing at 880 deg. C.

  15. Application of bonded NdFeB magnet for C-Band circulator component

    Science.gov (United States)

    Kristiantoro, T.; Idayanti, N.; Sudrajat, N.; Septiani, A.; Dedi

    2016-11-01

    In this paper bonded NdFeB permanent magnets of the crashed-ribbon type were made as an alternative for circulator magnet to improve their magnetic performance. The fabrication process is also easier than the sintered NdFeB because there had no shrinkage of product (such as sintered barium ferrite magnet), with the others advantages as follows; large freeness of product shapes, high precision of dimension and good corrosion resistance. The dimension of the samples was measured to calculate its bulk densities and the magnetic properties were characterized by Permagraph to obtain values such as; Remanence induction (Br) in kG, Coercivity value (Hcj) in kOe, the Maximum energy product (BH max) in MGOe. Whereas the surface magnetic field strength (B) was observed by the Gauss-meter. The bonded NdFeB permanent magnets revealed 6.39 kG of Br, 6.974 kOe of Hcj and 7.13 MGOe of BHmax. The circulator performance was measured using Vector Network Analyzer (VNA). The optimum values of the circulator measurement at a frequency of 5 GHz show a VSWR value of 1.062 and insertion loss of -0.463 dB. The bonded magnet could be used as component of permanent magnets on the circulator that working on C-Band at a frequency range of 4 GHz - 8 GHz.

  16. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R.; Williams, A.J.

    2012-01-01

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m -1 and giving a (BH) max of 129(±2.5) kJ m -3 . - Highlights: → Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. → Reaction pressure increases with increasing processing temperature. → Best magnetic properties achieved by processing at 880 deg. C.

  17. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  18. Perpendicular magnetic anisotropy and the magnetization process in CoFeB/Pd multilayer films

    International Nuclear Information System (INIS)

    Ngo, Duc-The; Tran, Quang-Hung; Møhave, Kristian; Quach, Duy-Truong; Phan, The-Long; Kim, Dong-Hyun

    2014-01-01

    The perpendicular magnetic anisotropy (PMA) and dynamic magnetization-reversal process in [CoFeB t nm/Pd 1.0 nm] n (t = 0.4, 0.6, 0.8, 1.0 and 1.2 nm; n = 2 − 20) multilayer films have been studied by means of magnetic hysteresis and Kerr effect measurements. Strong and controllable PMA with an effective uniaxial anisotropy up to 7.7 × 10 6  Jm −3 and a saturation magnetization as low as 200 emu cm −3 are achieved. The surface/interfacial anisotropy of the CoFeB/Pd interfaces—the main contribution to the PMA—is separated from the effective uniaxial anisotropy of the films and appears to increase with the number of CoFeB/Pd bilayers. Observation of the magnetic domains during a magnetization-reversal process, using polar magneto-optical Kerr microscopy, reveals the detailed behavior of the nucleation and displacement of the domain walls. (paper)

  19. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    Science.gov (United States)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  20. Towards understanding of magnetization reversal in Nd-Fe-B nanocomposites: analysis by high-throughput micromagnetic simulations

    Science.gov (United States)

    Erokhin, Sergey; Berkov, Dmitry; Ito, Masaaki; Kato, Akira; Yano, Masao; Michels, Andreas

    2018-03-01

    We demonstrate how micromagnetic simulations can be employed in order to characterize and analyze the magnetic microstructure of nanocomposites. For the example of nanocrystalline Nd-Fe-B, which is a potential material for future permanent-magnet applications, we have compared three different models for the micromagnetic analysis of this material class: (i) a description of the nanocomposite microstructure in terms of Stoner-Wohlfarth particles with and without the magnetodipolar interaction; (ii) a model based on the core-shell representation of the nanograins; (iii) the latter model including a contribution of superparamagnetic clusters. The relevant parameter spaces have been systematically scanned with the aim to establish which micromagnetic approach can most adequately describe experimental data for this material. According to our results, only the last, most sophisticated model is able to provide an excellent agreement with the measured hysteresis loop. The presented methodology is generally applicable to multiphase magnetic nanocomposites and it highligths the complex interrelationship between the microstructure, magnetic interactions, and the macroscopic magnetic properties.

  1. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  2. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengjie [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Liu, Jiaqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Yi, Xiaofei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, JingWu [Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China)

    2016-02-15

    Graphical abstract: Zn coated NdFeB specimens pretreated with different technologies possess different adhesive strengths and anticorrosion properties. And the combined technology of sandblasting and pickling (5 s) achieves the best comprehensive performance. - Highlights: • Zn coated NdFeB specimens are achieved with different pretreating technologies. • Combined technology possesses the highest adhesive strength. • Combined technology possesses excellent anticorrosion property. - Abstract: Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm{sup 2}) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  3. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  4. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    International Nuclear Information System (INIS)

    Ono, K.; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-01-01

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D sw (100.0 ± 4.9 meV.Å 2 ) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  5. Effects of proton irradiation on electronic structure of NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: lzhen@hit.edu.cn; Xu, C.Y.; Sun, X.Y.; Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2009-09-15

    Effects of proton irradiation on electronic structure and atomic local structure of N35EH-type NdFeB permanent magnet were investigated by soft X-ray absorption spectrometry and Moessbauer spectrometry. The local coordination environment of Fe atoms changes after proton irradiation, and the average hyperfine field H{sub in} of the magnets decreases from 288.4 to 286.9 kOe. The effects of irradiation on Fe atoms local environment at different lattice sites are different. The near edge structure of Fe L{sub 3} edge is changed, indicating the density of unoccupied state of Fe 3d electrons increases after proton irradiation.

  6. Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets

    Science.gov (United States)

    Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul

    2017-11-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.

  7. Effect of grain alignment distribution on magnetic properties in (MM, Nd)-Fe-B sintered magnets

    Science.gov (United States)

    Yu, Xiaoqiang; Yue, Ming; Zhu, Minggang; Liu, Weiqiang; Li, Yuqing; Xi, Longlong; Li, Jiajie; Zhang, Jiuxing; Li, Wei

    2018-03-01

    H cj of (MM x Nd1-x )-Fe-B sintered magnets decreases distinctly with x increasing when misch metal (MM) content (x) ranges from 0.3 to 1. Practical application is taken into consideration so that the (MM0.6Nd0.4)-Fe-B components are chosen to analyze the changes in behavior of the magnetic properties. Both Magnet II and Magnet III belong to (MM0.6Nd0.4)-Fe-B sintered magnets, however, it should be noted that Magnet II is prepared by the single alloying method (SAM) and Magnet III is prepared by the double main phase alloy method (DMPAM). Core-shell structures of the magnets prepared by DMPAM can result in the higher H cj and lower knee-point coercivity (H k) compared with that by SAM. Furthermore, for Magnet II, the abnormal grain growth contributes to a better grain alignment and smaller distribution coefficient (σ) defined as the degree of grain alignment, which will enforce a higher tendency of the H cj decreasing and H k increasing. The expression of their normalized coercivity h(σ) is deduced by combining Gao’s starting field model with Kronmüller’s nucleation mechanism. Based on the overall h(σ) ~ σ curve, the best desirable h(σ) value is calculated when σ  =  0.09. Theoretically, for Magnet III, the resultant larger σ should be attributed to the more uniform grain alignment. In addition, the deviations of grain size distributions on the c-plane become more remarkable with more MM concentrates, which can be presented by SEM images. Meanwhile, by means of the pole figures, it is also verified that the grain alignment distribution becomes much more diverse with x increasing. Therefore, it can be predicted whether the grain alignment distribution is significant for H k and H cj of (MM x Nd1-x )-Fe-B sintered magnets (x  ≠  0.6) prepared by SAM/DMPAM or not.

  8. Highly textured Nd-Fe-B films grown on amorphous substrates

    International Nuclear Information System (INIS)

    Hannemann, Ullrich; Melcher, Steffen; Faehler, Sebastian

    2004-01-01

    Thin films with an almost perfect alignment of Nd 2 Fe 14 B grains with the c-axis (easy magnetisation direction) perpendicular to the film plane were achieved on amorphous SiN substrates using pulsed laser deposition. The texture arises due to epitaxial growth on a Ta(1 1 0) buffer deposited prior to the Nd-Fe-B film. Out-of-plane coercivity of 1.3 T and remanence to saturation magnetisation ratio around 0.95 are obtained for Nd-rich films. An analysis of the coercivity mechanism shows that the switching mechanism is nucleation dominated, independent of the Nd content

  9. Highly textured Nd-Fe-B films grown on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, Ullrich E-mail: u.hannemann@ifw-dresden.de; Melcher, Steffen; Faehler, Sebastian

    2004-05-01

    Thin films with an almost perfect alignment of Nd{sub 2}Fe{sub 14}B grains with the c-axis (easy magnetisation direction) perpendicular to the film plane were achieved on amorphous SiN substrates using pulsed laser deposition. The texture arises due to epitaxial growth on a Ta(1 1 0) buffer deposited prior to the Nd-Fe-B film. Out-of-plane coercivity of 1.3 T and remanence to saturation magnetisation ratio around 0.95 are obtained for Nd-rich films. An analysis of the coercivity mechanism shows that the switching mechanism is nucleation dominated, independent of the Nd content.

  10. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  11. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  12. Hot-working behavior of cast Pr-Fe-B magnets

    International Nuclear Information System (INIS)

    Shimoda, T.; Akioka, K.; Kobayashi, O.; Yamagami, T.; Ohki, T.; Miyagawa, M.; Yuri, T.

    1989-01-01

    The hot-working behavior of cast Pr-Fe-B magnets is investigated. The hot-working is done both at a low strain rate (hot-pressing) and a high strain rate (hot-rolling). Magnetic alignment induced by the hot-working is found to be closely related to the macrostructure of the cast ingots and the direction of principal stress. The appropriate structure is a columnar structure. The c-axis of the Pr2Fe14B phase is lying in the plane perpendicular to the growth direction of the dendrites. The principal stress during working should be given perpendicular to the growth direction

  13. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  14. On the functional form of particle number size distributions: influence of particle source and meteorological variables

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne; Gilardoni, Stefania

    2018-04-01

    Particle number size distributions (PNSDs) have been collected periodically in the urban area of Milan, Italy, during 2011 and 2012 in winter and summer months. Moreover, comparable PNSD measurements were carried out in the rural mountain site of Oga-San Colombano (2250 m a.s.l.), Italy, during February 2005 and August 2011. The aerosol data have been measured through the use of optical particle counters in the size range 0.3-25 µm, with a time resolution of 1 min. The comparison of the PNSDs collected in the two sites has been done in terms of total number concentration, showing higher numbers in Milan (often exceeding 103 cm-3 in winter season) compared to Oga-San Colombano (not greater than 2×102 cm-3), as expected. The skewness-kurtosis plane has been used in order to provide a synoptic view, and select the best distribution family describing the empirical PNSD pattern. The four-parameter Johnson system-bounded distribution (called Johnson SB or JSB) has been tested for this aim, due to its great flexibility and ability to assume different shapes. The PNSD pattern has been found to be generally invariant under site and season changes. Nevertheless, several PNSDs belonging to the Milan winter season (generally more than 30 %) clearly deviate from the standard empirical pattern. The seasonal increase in the concentration of primary aerosols due to combustion processes in winter and the influence of weather variables throughout the year, such as precipitation and wind speed, could be considered plausible explanations of PNSD dynamics.

  15. Numerical analysis of the influence of particle charging on the fume formation process in arc welding

    International Nuclear Information System (INIS)

    Tashiro, Shinichi; Matsui, Sho; Tanaka, Manabu; Murphy, Anthony B

    2013-01-01

    In order to clarify the influence of electrostatic forces caused by charging of particles on the coagulation process in fume formation in arc welding, a previously developed fume formation model is modified to consider the influence of charging, for both local thermodynamic equilibrium (LTE) and non-LTE conditions. The model takes into account formation of the particles from metal vapour by nucleation, growth of the particles by condensation of metal vapour and coagulation of the particles by collisions to form secondary particles. Results are obtained for both ballistic and Brownian motion of the particles. It is found that the growth of secondary particles is suppressed when the average particle charge becomes significant, because charging of the particle hinders collisions among secondary particles through the strong repulsive electrostatic force. Furthermore, deviations from LTE strongly affect the coagulation process, because the increased electron density at a given gas temperature increases the charging of particles. Brownian motion leads to larger secondary particles, since the average particle speed is increased. The influence of Brownian motion and particle charging cancel each other to a large extent, particularly when deviations from LTE are considered. (paper)

  16. Influence of dome phosphor particle concentration on mid-power LED thermal resistance

    NARCIS (Netherlands)

    Alexeev, A.; Martin, G.; Hildenbrand, V.D.; Bosschaart, K.J.

    2016-01-01

    The modern white mid-power LEDs usually contain phosphor particles encapsulated in silicone dome material. The particles convert the blue light emitted from the epitaxial layer and play significant role in thermal processes of LED packages. In this paper the influence of the phosphor particles

  17. Effect of Mechanical Activation on the In Situ Formation of TiB2 Particulates in the Powder Mixture of TiH2 and FeB

    Directory of Open Access Journals (Sweden)

    Huynh X.-K.

    2017-06-01

    Full Text Available The in situ formation of TiB2 particulates via an interface reaction between Ti and FeB powders was studied. The effects of mechanical activation by high-energy milling on the decomposition of TiH2 and the interface reactions between Ti and FeB powders to form TiB2 were investigated. Powder mixtures were fabricated using planetary ball-milling under various milling conditions. The specific ball-milling energy was calculated from the measured electrical power consumption during milling process. High specific milling energy (152.6 kJ/g resulted in a size reduction and homogeneous dispersion of constituent powders. This resulted in a decrease in the decomposition temperature of TiH2 and an increase in the formation reaction of TiB2 particulates in the Fe matrix, resulting in a homogeneous microstructure of nanoscale TiB2 evenly distributed within the Fe matrix. In contrast, the powder mixture milled with low specific milling energy (36.5 kJ/g showed an inhomogeneous microstructure composed of relatively large Fe-Fe2B particles surrounded by a thin layer of Fe-TiB2 within a finely dispersed Fe-TiB2 matrix region.

  18. Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/{alpha}-Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu Ying, E-mail: Liuying5536@163.com [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China) and Key Laboratory of Advanced Special Material and Technology, Ministry of Education, Chengdu 610065 (China); Ma Yilong [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2012-07-15

    Bulk anisotropic NdFeB/{alpha}-Fe nano-composites were obtained directly from alloys of Nd{sub 11}Dy{sub 0.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd{sub 11}Dy{sub 0.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nb has great influence on the microstructure and magnetic properties of (NdDy){sub 11.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0-2.0) nanocomposites. Black-Right-Pointing-Pointer Most of Nb atoms gather in the grain boundary to form Nb-rich amorphous intergranular phase, not NbFeB boride. Black-Right-Pointing-Pointer Furthermore, grain alignment can be prompt by the Nb-rich solid intergranular phase during deform. Black-Right-Pointing-Pointer Remanence, coercivity and (BH){sub m} of deformed (NdDy){sub 11.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposite is 1.04T, 563 kA/m and 146 kJ/m{sup 3} respectively. Black-Right-Pointing-Pointer This study provides an alternative method for prepare anisotropic nanocomposite direct from Nd-lean alloys with low cost.

  19. Phase diagrams from ab-initio calculations: Re-W and Fe-B

    Energy Technology Data Exchange (ETDEWEB)

    Hammerschmidt, Thomas; Bialon, Arthur; Palumbo, Mauro; Fries, Suzana G.; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    The CALPHAD (CaLculation of Phase Diagrams) method relies on Gibbs energy databases and is of limited predictive power in cases where only limited experimental data is available for constructing the Gibbs energy databases. This is problematic for, e.g., the calculation of the phase transformation kinetics within phase field simulations that not only require the thermodynamic equilibrium data but also information on metastable phases. Such information is difficult to obtain directly from experiment but ab-initio calculations may supplement experimental databases as they comprise metastable phases and arbitrary chemical compositions. We present simulations for two prototypical systems: Re-W and Fe-B. For both systems we calculate the heat of formation for an extensive set of structures using ab-initio calculations and employ the total energies in CALPHAD in order to determine the corresponding phase diagrams. We account for the configurational entropy within the Bragg-Williams approximation and neglect the phenomenological excess-term that is commonly used in CALPHAD as well as the contribution of phonons and electronic excitations to the free energy. According to our calculations the complex intermetallic phases in Re-W are stabilized by the configurational entropy. For Fe-B, we calculate metastable and stable phase diagrams including recently predicted new stable phases.

  20. Magnetic hysteresis properties of melt-spun Nd-Fe-B alloys prepared by centrifugal method

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Pushkarsky, V.I.; Markin, P.E.; Zaikov, N.K.; Tarasov, E.N.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching onto the internal surface of an iron spinning wheel at tangential speeds in the range 5-20 m/s are reported. The alloy composition was Nd-36% wt, B-1.2% wt. and Fe-remainder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in applied range (18 kOe at 5 m/s and 22 kOe at 20 m/s), whereas the grain size of the basic phase (2-14-1) ste[ily decreases when the speed rises, starting from 2-3 μm for 5 m/s alloy down to the 200-300 nm for 20 m/s alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for tr[itionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbon in a vibration mill causes the coercivity drop to 7 kOe after 120 min of treatment. However, this operation increases the powder alignment ability and, as a result, the energy product for a fully dense magnet from anisotropic powder prepared from some ribbons rises to 20-23 MGOe. (orig.)

  1. Magnetic properties of centrifugally prepared melt-spun Nd-Fe-B alloys and their powders

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Kozlov, A.I.; Markin, P.E.; Pushkarskiy, V.I.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching on to the internal surface of an iron spinning wheel at the tangential speeds in the range 5-20 m/sec are reported. The alloy composition was Nd-36% wt. B-1.2% wt. and Fe-reminder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in the applied range (1430 kA/m at 5 m/sec and 1750 kA/m at 20 m/sec), whereas the grain size of the basic phase (2-14-1) steadily decreases when the speed rises, starting from 2-3 μm for 5 m sec alloy down to the 200-300 nm for 20 m/sec alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for traditionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbons subjected to hydrogen and annealing treatments causes the coercivity drop. However, this operations increase the powder alignment ability and, as a result, the energy product for fully dense magnet from such powder rises to 160-180 kJ/m 3 . (orig.)

  2. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.

    Science.gov (United States)

    Kitagawa, Jiro; Uemura, Ryohei

    2017-08-14

    There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.

  3. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  4. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  5. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  6. Effect of transient annealing on patterned CoFeB-based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Lin, Shiao-Chi; Wu, Jong-Ching [Department of Physics and Taiwan SPIN Research Center, National Changhua University of Education, Changhua 50007 (China); Kao, Ming-Jer; Tsai, Ming-Jinn [Industrial Technology Research Institute, Hsinchu 31040 (China); Horng, Lance

    2007-12-15

    In this study, the transient annealing effect on the switching behavior of microstructured Co{sub 60}Fe{sub 20}B{sub 20}-based magnetic tunnel junctions has been studied through magnetoresistance measurements (R-H loop). Elliptical shape of devices with long/short axis of 4/2 micrometers was patterned out of sheet film stack of: Ta(20)/PtMn(15)/CoFeB(3)/Al(0.7)-oxide/CoFeB(2)/Ru(8)/Ta(40) (thickness unit in nanometers) after a conventional long time field cooling annealing. The transient annealing was then executed by sample loading into a furnace with pre-set temperatures ranging from 100 to 400 C for only 5 minutes in the absence of any external magnetic field. The vortex-like reverse of free layer in as-etched MTJ evidently changes to single-domain-like reverser after 200{proportional_to}250 C transient annealing. The magnetoresistance was found to increase with increasing annealing temperatures up to 265 C and then slowly decrease at higher annealing temperatures. The transient thermal annealing creates obvious efforts to repair magnetic properties of MTJ cell befor 265 C annealing and results in less damage at temperature of 350 C and 400 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Effect of transient annealing on patterned CoFeB-based magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Lin, Shiao-Chi; Wu, Jong-Ching; Kao, Ming-Jer; Tsai, Ming-Jinn; Horng, Lance

    2007-01-01

    In this study, the transient annealing effect on the switching behavior of microstructured Co 60 Fe 20 B 20 -based magnetic tunnel junctions has been studied through magnetoresistance measurements (R-H loop). Elliptical shape of devices with long/short axis of 4/2 micrometers was patterned out of sheet film stack of: Ta(20)/PtMn(15)/CoFeB(3)/Al(0.7)-oxide/CoFeB(2)/Ru(8)/Ta(40) (thickness unit in nanometers) after a conventional long time field cooling annealing. The transient annealing was then executed by sample loading into a furnace with pre-set temperatures ranging from 100 to 400 C for only 5 minutes in the absence of any external magnetic field. The vortex-like reverse of free layer in as-etched MTJ evidently changes to single-domain-like reverser after 200∝250 C transient annealing. The magnetoresistance was found to increase with increasing annealing temperatures up to 265 C and then slowly decrease at higher annealing temperatures. The transient thermal annealing creates obvious efforts to repair magnetic properties of MTJ cell befor 265 C annealing and results in less damage at temperature of 350 C and 400 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. The influence of final state interaction on two-particle correlations in multiple production of particles and resonances

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1996-01-01

    The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)

  9. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    Science.gov (United States)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  10. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  11. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping, E-mail: linggp@zju.edu.cn

    2014-06-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl{sub 2}–AlCl{sub 3}–1-ethyl-3-methylim-idazolium chloride (MnCl{sub 2}–AlCl{sub 3}–EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm{sup 2}, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L{sub c} > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  12. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    International Nuclear Information System (INIS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-01-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl 2 –AlCl 3 –1-ethyl-3-methylim-idazolium chloride (MnCl 2 –AlCl 3 –EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm 2 , while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L c > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  13. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    Science.gov (United States)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  14. A comparative study of magnetoresistance and magnetic structure in recycled vs. virgin NdFeB-type sintered magnets

    Science.gov (United States)

    Shen, Shida; Tsoi, Maxim; Prosperi, Davide; Tudor, Catalina O.; Dove, Stephen K.; Bevan, Alex I.; Furlan, Gojmir; Zakotnik, Miha

    2017-11-01

    Recycled NdFeB magnets are emerging as a viable alternative to virgin NdFeB, because of lower production costs and environmental impacts. Recycled NdFeB magnets produced via the recently reported magnet-to-magnet (m2 m™) recycling process display unanticipated enhancements of magnetic and physical properties that may arise because of their unique microstructure. In the present study, we compare electrical transport and magnetic properties of these recycled magnets (Grade: N42SH, Br = 1289 mT, Hcj = 1876 kA/m, BHmax = 323.4 kJ/m3, Dy content = 4.0 wt%) with an equivalent grade of commercial NdFeB magnet produced from virgin material by conventional techniques (Grade: N42SH, Br = 1215 mT, Hcj = 1943 kA/m, BHmax = 285.0 kJ/m3, with Dy content = 4.6 wt%). Atomic force microscopy (AFM) and magnetic force microscopy (MFM) analyses revealed very similar surface morphology and magnetic structure for the virgin and recycled samples. However, bulk electrical transport measurements demonstrated a 27% enhancement in the resistivity of the recycled magnets. This suggests that the electrical properties of NdFeB alloys are enhanced during Grain Boundary Engineering™ (GBE™). Moreover, point-contact measurements, used to probe the electrical transport properties on the microscopic scale, found similar results to those of the bulk measurements.

  15. Influence of synthesis conditions on particle morphology of ...

    Indian Academy of Sciences (India)

    Wintec

    diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Cu/ZnO ... Considerable attention has been paid to copper metal nano- particles .... And also energy dispersive scanning (EDS) analyses of sample ...

  16. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q., E-mail: liuweiqiang77@hotmail.co [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Sun, H. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yi, X.F. [Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui 231500 (China); Liu, X.C.; Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhang, J.X. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2010-07-02

    Nd-Fe-B permanent magnets with a small amount of Dysprosium (Dy) nanoparticles doping were prepared by conventional sintered method, and the microstructure and magnetic properties of the magnets were studied. Investigation shows that the coercivity rises gradually, while the remanence decreases simultaneously with increased Dy doping amount. As a result, the magnet with 1.5 wt.% Dy exhibits optimal magnetic properties. Further investigation presumed that Dy is enriched as (Nd, Dy){sub 2}Fe{sub 14}B phase in the surface region of the Nd{sub 2}Fe{sub 14}B matrix grains indicated by the enhancement of the magneto-crystalline anisotropy field of the Nd{sub 2}Fe{sub 14}B phase. As a result, the magnet doped with a small amount of Dy nanoparticles possesses remarkably enhanced coercivity without sacrificing its magnetization noticeably.

  17. Barkhausen jumps and magnetic viscosity in NdFeB magnets

    International Nuclear Information System (INIS)

    LoBue, M.; Basso, V.; Beatrice, G.; Bertotti, C.; Durin, G.; Sasso, C.P.

    2005-01-01

    We present the analysis of Barkhausen noise measured on a Nd-Fe-B sintered sample during viscosity experiments at constant applied field H. The measured jump sizes give direct evidence that the dominant magnetization process is the reversal of a single or of a small group of grains. The Barkhausen noise average amplitude allows to evaluate the viscosity coefficient S and the related activation volume v a . We found v a 1/3 ∼ 6nm which is comparable to the domain wall width, in agreement with previous interpretations. The Barkhausen jump sizes show a power-law distribution independent of the time elapsed from the beginning of the relaxation. This fact validates the interpretation of the observed relaxations as due to thermal activation over a distribution of energy barriers

  18. Studies on the Production of NdFeB Alloy by Calciothermic Reduction of Neodymium Oxide

    International Nuclear Information System (INIS)

    Charoensri, Apisara

    2003-06-01

    Neodymium-Iron-Boron (NdFeB) is a class of permanent magnets having the highest energy product (BH max ). It has been used in various electronic devices of small size and light weight. This research is to study the preparation of Neodymium-Iron-Boron alloy by calciothermic reduction of neodymium oxide mixed with iron and iron-boron. The reduction process essentially involves the compaction of the charge mixture with calcium metal and then heating at 900-1200οC in argon atmosphere. The results show that charge blend compaction, temperature and time of reaction are important parameters of the process. It is found that at proper conditions, magnetic phase structure of Neodymium-Iron-Boron alloy can be prepared satisfactory although the alloy produced from the reduction contains higher impurities of oxygen and calcium than the alloy produced from the conventional method using Nd metal

  19. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets

    Science.gov (United States)

    Li, W.; Zhou, Q.; Zhao, L. Z.; Wang, Q. X.; Zhong, X. C.; Liu, Z. W.

    2018-04-01

    A systematic investigation on the anisotropic grain boundary diffusion in sintered Nd-Fe-B magnets is carried out by micromagnetic simulation. The results indicate that the critical reason for the anisotropic diffusion effect is not the difference in the amount of Dy diffused along different directions but the macroscopic demagnetizing field. The diffusion parallel to the easy axis from both pole surfaces of the magnet can increase the nucleation fields in the two major regions with large macroscopic demagnetizing fields, where the reverse domains can nucleate easily. As a consequence, the grain boundary diffusion along the directions parallel to the easy axis from two pole surfaces is more effective to improve the coercivity of the magnets than that along other directions. It is also found that, to enhance the coercivity, only a limited diffusion depth is required. The present result is in good agreement with the recent experimental findings.

  20. Computer-aided topological analysis of Nd-Fe-B ternary system

    International Nuclear Information System (INIS)

    Liu, G.; Xu, P.; Zhang, W.

    1993-01-01

    A three-dimensional partially matrixed topological model of the Nd-Fe-B ternary phase diagram has been established based on experimental results assessed comprehensively with the aid of a computer-aided design and graphic and graphics software, AutoCAD (R10), and application programs developed in this work. Vertical sections at 5.88 at.% B, Nd:B = 1:1, Fe-Nd/sub 2/Fe/sub 14/B-Nd, Nd/sub 2/Fe/sub 17/-Nd/sub 2/Fe/sub 7/B/sub 6/ have been cut out from the model and the corresponding phase relationships have been analyzed. Among them, those on the Nd-rich protons of both the sections at 5.88 at.% B and Nd:B = 2:1 and those on the Nd/sub 2/Fe/sub 14/B-Nd section are given for the first time. (author)

  1. Nitrided FeB amorphous thin films for magneto mechanical systems

    International Nuclear Information System (INIS)

    Fernandez-Martinez, I.; Martin-Gonzalez, M.S.; Gonzalez-Arrabal, R.; Alvarez-Sanchez, R.; Briones, F.; Costa-Kraemer, J.L.

    2008-01-01

    The structural, magnetic and magnetoelastic properties of Fe-B-N amorphous films, sputtered from a Fe 80 B 20 target, in a mixture of argon and nitrogen gas, are studied for different nitrogen partial pressures. Nitrogen incorporates into the film preserving the amorphous structure, and modifying magnetic properties. The amount of nitrogen that incorporates into the amorphous structure is found to scale linearly with the nitrogen partial pressure during film growth. The structure, magnetization, field evolution, magnetic anisotropy and magnetostrictive behaviour are determined for films with different nitrogen content. An ∼20% increase of both the saturation magnetization and the magnetostriction constant values is found for moderate (∼8%) nitrogen content when compared to those for pure Fe 80 B 20 amorphous films. These improved properties, together with the still low coercivity of the amorphous films offer great potential for their use in magnetostrictive micro and nano magneto mechanical actuator devices

  2. Barkhausen jumps and magnetic viscosity in NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    LoBue, M. [Instituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy)]. E-mail: lobue@ien.it; Basso, V. [Instituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); Beatrice, G. [Instituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); Bertotti, C. [Instituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); Durin, G. [Instituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); Sasso, C.P. [Instituto Elettrotecnico Nazionale Galileo Ferraris, Strada delle Cacce 91, 10135 Torino (Italy)

    2005-04-15

    We present the analysis of Barkhausen noise measured on a Nd-Fe-B sintered sample during viscosity experiments at constant applied field H. The measured jump sizes give direct evidence that the dominant magnetization process is the reversal of a single or of a small group of grains. The Barkhausen noise average amplitude allows to evaluate the viscosity coefficient S and the related activation volume v{sub a}. We found v{sub a}{sup 1/3} {approx} 6nm which is comparable to the domain wall width, in agreement with previous interpretations. The Barkhausen jump sizes show a power-law distribution independent of the time elapsed from the beginning of the relaxation. This fact validates the interpretation of the observed relaxations as due to thermal activation over a distribution of energy barriers.

  3. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2005-11-21

    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  4. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    Science.gov (United States)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  5. Reduction of crystallization temperature of the Nd-Fe-B thin films by Cu addition

    International Nuclear Information System (INIS)

    Ma Yungui; Yang Zheng; Matsumoto, M.; Morisako, A.; Takei, S.

    2004-01-01

    Nonmagnetic Cu element has been doped into the sputtered Nd-Fe-B thin films. It is found that the introduction of suitable amount of copper atoms could reduce the crystallization temperature of the 2:14:1 phase by near 100 deg. C, compared with that without Cu. For the 15 nm Nd 16 Fe 70.2 Cu 1.8 B 12 film deposited at 340 deg. C, perpendicular coercivity and remanent magnetization ratio of 350 kA/m and 0.96 have been successfully obtained. Cu addition would lead to the grain growth, but the average grain size in the films could be greatly decreased through lowering the deposition temperature. These results are compared with those found in the fabrication of FePtCu films

  6. Development of cryogenic undulators with PrFeB magnets at SOLEIL

    Energy Technology Data Exchange (ETDEWEB)

    Valléau, M., E-mail: valleau@synchrotron-soleil.fr; Benabderrahmane, C.; Briquez, F.; Berteaud, P.; Tavakoli, K.; Zerbib, D.; Chapuis, L.; Marteau, F.; Marcouillé, O.; El Ajjouri, T.; Vétéran, J.; Sharma, G.; Tilmont, M.; Castro, J. Da Silva; N’Guyen, M.-H.; Béchu, N.; Rommeluère, P.; Louvet, M.; Nadji, A.; Herbeaux, C. [Synchrotron-Soleil, L’Orme des Merisisers, 91192 BP 34, Gif Sur Yvette (France); and others

    2016-07-27

    Short period high field undulators are of interest for X-ray brilliance enhancement in synchrotron radiation applications and for compact Free Electron Lasers. Cryogenic in-vacuum undulators [1] are one of the possible solutions. At SOLEIL, PrFeB magnets were directly chosen, even if still under development at that time. Indeed, they enable to avoid the spin transition reorientation phenomenon which occurs with NdFeB magnets [2] and the magnets can be cooled down directly at 77 K. The first selected grade CR53 from Hitachi presents a remanence of 1.35 T at 293 K and 1.57 T at 77 K, with a coercivity of 1355 kA/m at 293 K and 6000 kA/m at 77 K. A 2 m long cryogenic undulator of period 18 mm was first built in-house, with a specific Hall probe bench directly installed in the final vacuum chamber. This first cryogenic undulator has been in operation on the storage ring for 4 years [3]. A second U18 cryo-ready undulator using a slightly different magnet grade with a higher coercivity and modules with magnets surrounded by two half poles for easier magnetic optimization is under construction. A third 3 m long cryo-ready undulator U15 with a period of 15 mm is under development. It will be first used for the LUNEX5 FEL [4, 5] project (COXINEL demonstration of FEL amplification with a laser wakefield acceleration [6]). The measurement bench will include a correction of the Hall probe position and angle, the field integrals will be measured with a stretched wire.

  7. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  8. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    Science.gov (United States)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  9. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  10. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  11. Characterisation of NdFeB thin films prepared on (100)Si substrates with SiO2 barrier layers

    International Nuclear Information System (INIS)

    Sood, D.K.; Muralidhar, G.K.

    1998-01-01

    This work presents a systematic study of the deposition and characterization of NdFeB films on substrates of Si(100) and of SiO2 layer thermally grown on Si(100) held at RT, 360 deg C or 440 deg C. The post-deposition annealing is performed at 600 or 800 deg C in vacuum. The films are characterised using the analytical techniques of RBS, SIMS, XRD, OM and SEM. Results indicate that SiO2 is, in deed, an excellent diffusion barrier layer till 600 deg C but becomes relatively less effective at 800 deg C. Without this barrier layer, interdiffusion at the Si-NdFeB film interface leads to formation of iron silicides, α-Fe and B exclusion from the diffusion zone, in competition with the formation of the magnetic NdFeB phase. (authors)

  12. Factors Influencing the Ignition and Burnout of a Single Biomass Particle

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Kær, Søren Knudsen; Yin, Chungen

    2011-01-01

    Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat/mass/moment......Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat...... concentration were not very significant. The influences of these factors on particle burnout were much more remarkable than ignition behaviour....

  13. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  14. Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB

    International Nuclear Information System (INIS)

    Yu, L.Q.; Wen, Y.H.; Yan, M.

    2004-01-01

    Dy and Nb were added into the sintered NdFeB magnets with the aim of improving their magnetic properties and corrosion resistance. It was found that intrinsic coercivity of magnets is promoted whilst remanence is reduced as a result of Dy addition. Simultaneous addition of Dy and Nb not only gives rise to greatly improved coercivity, but also suppresses the undesirable effect of Dy on the remanence. The optimum magnetic properties were achieved when 1.0% Dy and 1.5% Nb were incorporated. Moreover, corrosion resistance of NdFeB magnets improves with the increase in the content of Dy and Nb

  15. Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    B. Fang

    2015-06-01

    Full Text Available We report on tunnel magnetoresistance and electric-field effect in the Mo buffered and capped CoFeB/MgO magnetic tunnel junctions (MTJs with perpendicular magnetic anisotropy. A large tunnel magnetoresistance of 120% is achieved. Furthermore, this structure shows greatly improved thermal stability and stronger electric-field-induced modulation effect in comparison with the Ta/CoFeB/MgO-based MTJs. These results suggest that the Mo-based MTJs are more desirable for next generation spintronic devices.

  16. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  17. Influence of soil particle shape on saturated hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Zięba Zofia

    2017-03-01

    Full Text Available The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0C index (Parylak, 2000, which expresses the variability of several shape properties, such as sphericity, angularity and roughness.

  18. The Influence of Suspended Inert Solid Particles on Zinc Corrosion

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1996-01-01

    The rate of corrosion of electroplated zinc in near-neutral chloride solutions can be lowered by as much as 75% by adding fine, inert particles of substances such as MnO2, Fe3O4, SiC and TiN to the well-stirred solution. Spreading of local areas of etching is also stopped. Copyright (C) 1996...

  19. Influence of Magnolol on the bystander effect induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W.; Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, the influence of Magnolol on the bystander effect in alpha-particle irradiated Chinese hamster ovary (CHO) cells was examined. The bystander effect was studied through medium transfer experiments. Cytokinesis-block micronucleus (CBMN) assay was performed to quantify the chromosome damage induced by alpha-particle irradiation. Our results showed that the alpha-particle induced micronuclei (MN) frequencies were suppressed with the presence of Magnolol.

  20. Influence of the precursors on the properties of alumina supported rhodium particles

    International Nuclear Information System (INIS)

    Coq, B.; Figueras, F.; Tazi, T.

    1989-01-01

    The effect of chlorine on the properties of Rh particles supported on alumina was studied using the hydroconversion of alkanes as a molecular probe. Chloride ions on the alumina have little influence on the Rh particles. Chlorine adsorbed on the Rh particles decreases the chemisorption capacity and increases the metal-support interaction, which results in modifications of their catalytic properties. Depending on the alkane processed, specific activity can be depressed up to four orders of magnitude. (orig.)

  1. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  2. Influence of cellulose ether particle size on water retention of freshly-mixed mortars

    OpenAIRE

    Patural , Laetitia; Govin , Alexandre; Grosseau , Philippe; Ruot , Bertrand; Deves , Olivier

    2009-01-01

    International audience; Cellulose ethers are polymers frequently introduced into mortar formulations in order to improve water retention capacity and workability of the freshly-mixed materials. Physico-chemical parameters of these admixtures (molecular weight, granulometry, substitution degrees, etc) seem to have a strong influence on mortar water retention capacity. In this paper, the influence of cellulose ether particle size was studied. Two behaviors were highlighted regarding the particl...

  3. Evaluation of effect of surface treatment on corrosion resistance of Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Martins, Emerson Alves

    2009-01-01

    Nd-Fe-B magnets produced by powder metallurgy are highly susceptible to corrosion due to their complex microstructure and intrinsic porosity due to their fabrication process. Moreover, these magnets have excellent magnetic properties and find many applications. In the nuclear area, permanent magnets based on rare earth transition-iron-boron (Ne-Fe-B) are used in the manufacture of magnetic media (magnetic levitation) for ultra-centrifuges used for isotopic enrichment of uranium employed in nuclear reactors. In dentistry these types of magnets are used to fix total and partial prostheses on implants; in orthodontics to correct dental malocclusion and make moves; in buco-maxillo-facial surgery for setting facial prostheses of large defects of the face. In electronic equipment, they are used in scales, locks, electric motors and particularly in the manufacturing of hard drives of computers. The objective of this study is to evaluate the corrosion resistance of the magnet tested and surface treatments that could replace chromating that generates toxic residues and present high cost of processing waste with treatments that are environmentally friendly. The evaluation of the corrosion resistance was carried out through the analysis potentiodynamic polarization curves, electrochemical impedance spectroscopy, monitoring of corrosion potential as a function of test time and scanning electron microscopy to try to correlate the magnet microstructure with its corrosion resistance. The results show that these magnets are highly susceptible to corrosion that occurs preferentially in the Nd-rich phase, located in the boundaries of the magnetic matrix phase (ψ). Treatment with silane, cerium, sam, Cr 6 + , tricationic phosphate followed by bath of chromium trioxide and in NaH 2 PO 4 solution for 24 hours followed by bath of zinc sulphate did not improve the corrosion resistance of the magnet. Among the treatments used, immersion in NaH 2 PO 4 solution for 24 hours pH=3.8 was the

  4. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  5. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  6. An environmentally friendly electro-oxidative approach to recover valuable elements from NdFeB magnet waste

    NARCIS (Netherlands)

    Venkatesan, P.; Sun, Z.; Sietsma, J.; Yang, Y.

    2018-01-01

    In this manuscript, we demonstrate a room temperature electrochemical process for efficiently recycling NdFeB magnet waste. First, the magnet waste was completely leached with HCl and then, in-situ electrochemical oxidation was performed to selectively oxidize Fe(II) in the leachate to Fe(III).

  7. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap : A Critical Review

    NARCIS (Netherlands)

    Yang, Y.; Walton, A; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O; Buchert, M; Steenari, B-M,; Van Gerven, T; Jones, PT; Binnemans, K

    2017-01-01

    NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid

  8. Micro-structuring of thick NdFeB films using high-power plasma etching for magnetic MEMS application

    International Nuclear Information System (INIS)

    Jiang, Yonggang; Fujita, Takayuki; Higuchi, Kohei; Maenaka, Kazusuke; Masaoka, Shingo; Uehara, Minoru

    2011-01-01

    This paper describes the micro-patterning of thick NdFeB magnetic films using a high-power plasma etching method. The effects of RF bias power and gas composition on the selectivity and etching rate are experimentally studied. A maximum etching rate of 60 nm min −1 is achieved with an inductively coupled plasma power of 500 W and a RF bias power of 200 W. A maximum selectivity of 0.26 between hard baked AZP4903 photoresist and NdFeB magnetic films is achieved when volumetric Cl 2 concentration is 2.5%. NdFeB micro-magnets as thick as 4.2 µm are achieved by using AZP4903 photoresist. Magnetic film as thick as 10 µm can be patterned by using SU-8 photoresist with a thickness of 100 µm as the mask. The magnetic property of patterned microstructures is characterized using a vibrating sample magnetometer and the magnetic field distribution is measured using a Hall effect sensor IC. The characterization results indicate that the patterned magnetic microstructures have a high magnetic remanance of 1.0 T, which is comparable to that of the non-patterned NdFeB films.

  9. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  10. The permanent NdFeB magnets in the circuits for magnetic filters and the first technological tests

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel; Mucha, Pavel

    2005-01-01

    Roč. 78, - (2005), s. 31-39 ISSN 0301-7516 R&D Projects: GA AV ČR IBS3046004 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic circuit * magnetic filter * rare earth magnets ( NdFeB ) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.965, year: 2005

  11. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, Material Flow Analysis (MFA) has been carried out to perform the detailed mapping...

  12. Magnetic Reversal and Thermal Stability of CoFeB Perpendicular Magnetic Tunnel Junction Arrays Patterned by Block Copolymer Lithography

    KAUST Repository

    Tu, Kun-Hua; Fernandez Martin, Eduardo; almasi, hamid; Wang, Weigang; Navas Otero, David; Ntetsikas, Konstantinos; Moschovas, Dimitrios; Avgeropoulos, Apostolos; Ross, Caroline A

    2018-01-01

    Dense arrays of pillars, with diameters of 64 and 25 nm, were made from a perpendicular CoFeB magnetic tunnel junction thin film stack using block copolymer lithography. While the soft layer and hard layer in the 64 nm pillars reverse at different

  13. Local profile dependence of coercivity in (MM0.3Nd0.7)-Fe-B sintered magnets

    Science.gov (United States)

    Yu, Xiaoqiang; Zhu, Minggang; Liu, Weiqiang; Li, Wei; Sun, Yachao; Shi, Xiaoning; Yue, Ming

    2018-03-01

    Two magnets with the same nominal composition of (MM0.3Nd0.7)-Fe-B (Marked as A) and [(La0.27Ce0.53Pr0.03Nd0.17)0.3Nd0.7]-Fe-B (Marked as B) were prepared using traditional powder metallurgical process, respectively. In order to point out the difference between two magnets, the magnetic properties, microstructure and magnetic domain of both magnets were investigated. Both magnets have the same elements, but different raw materials of misch-metal (MM) and La/Ce/Pr/Nd pure metal, which induces different magnetic properties. The magnet A with Br of 13.1 kGs, Hcj of 7.6 kOe, (BH)max of 37.8 MGOe and magnet B with Br of 13.4 kGs, Hcj of 5.8 kOe, (BH)max of 34.5 MGOe are obtained. Although both magnets have the similar Br, magnet A has higher coercivity than that of magnet B. According to refined results of characteristic X-ray diffraction peaks, there is a hard magnetic main phase with higher magnetic anisotropy field (HA) in magnet A and opposite case happens on magnet B. SEM images demonstrate that magnet A has more continuous RE-rich phase and smaller grain size compared to that of magnet B, which contributes to enhancing the coercivity. In addition, two main phases of [Nd0.82(La, Ce)0.18]-Fe-B and [Nd0.75(La, Ce)0.25]-Fe-B were detected by the EDX calculation, and the two main phases in both magnets were observed by magnetic domains again. Compared to magnet B, 2:14:1 main phases in magnet A contain more [Nd0.82(La, Ce)0.18]-Fe-B main phases and less [Nd0.75(La, Ce)0.25]-Fe-B main phases, which also leads to higher coercivity due to the different HA among Nd2Fe14B, La2Fe14B and Ce2Fe14B phases. Therefore, it is concluded that MM substitution could exhibit better magnetic properties than (La0.27Ce0.53Pr0.03Nd0.17)-metal substitution. Furthermore, applications of MM are beneficial to fabricate (MM, Nd)-Fe-B permanent magnets with lower cost.

  14. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  15. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Science.gov (United States)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  16. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Nlebedim, I.C. [Ames Laboratory, Ames, IA 50011 (United States); Ucar, Huseyin; Hatter, Christine B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); McCallum, R.W. [Ames Laboratory, Ames, IA 50011 (United States); McCall, Scott K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kramer, M.J. [Ames Laboratory, Ames, IA 50011 (United States); Paranthaman, M. Parans [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  17. The effect of temperature on the magnetization reversal mechanism in sintered PrFeB

    International Nuclear Information System (INIS)

    Crew, D. C.; Lewis, L. H.; Welch, D. O.; Pourarian, F.

    2000-01-01

    To understand the effects of nucleation fields and intergranular dipolar interactions on the magnetization reversal mechanism, recoil curves from the major hysteresis loop have been measured on a sample of sintered PrFeB as a function of temperature from 150 to 300 K. At room temperature the reversible magnetization behavior indicates a reversal mechanism of nucleation of domain walls whose motion after nucleation is resisted by dipolar fields. As the temperature is reduced, the coercivity, and hence the nucleation field, is observed to increase while the dipolar fields, dependent on microstructure and saturation magnetization, remain approximately constant. These temperature-dependent changes in the relative magnitudes of the dipolar field and nucleation field cause the reversible magnetization behavior to change from domain wall motion to rotation. This change in behavior is attributed to the supposition that at temperatures where the nucleation field exceeds the dipolar field, once nucleated, domain walls are swept out of the material. (c) 2000 American Institute of Physics

  18. Crystallographic orientation analysis in HDDR process of anisotropic Nd-Fe-B magnet powders

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Rina, E-mail: 3ES15002M@s.kyushu-u.ac.jp [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Science and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga 816-8580 (Japan); Itakura, Masaru [Department of Applied Science for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Nobuhiro; Morimoto, Koichiro [R& D Division, Toda Kogyo Corp., 1-4 Meijishinkai, Otake, Hiroshima 739-0652 (Japan)

    2017-07-01

    Highlights: • Over 70% of the Nd{sub 2}Fe{sub 14}B grains after the HDDR process are aligned within 30°. • The c-axis alignment of Nd{sub 2}Fe{sub 14}B slightly deteriorates by the Nd-rich phase formation. • α-Fe grains possess a uniaxial and 〈1 1 3〉 oriented texture in the decomposed stage. • α-Fe is most likely to induce the texture development of recombined Nd{sub 2}Fe{sub 14}B. - Abstract: Microstructural changes and crystallographic orientation information in the hydrogenation-decomposition-desorption-recombination (HDDR) process of Nd-Fe-B alloy were investigated using electron backscatter diffraction (EBSD) and precession electron diffraction (PED) in order to understand the mechanism of anisotropy inducement in the HDDR process. Recombined Nd{sub 2}Fe{sub 14}B grains were found to nucleate at the interfaces between NdH{sub 2} and α-Fe grains and to have a [0 0 1]-oriented texture from the beginning of the recombination reaction. The Fe grains form with alignment of one of the 〈1 1 3〉 directions at decomposed stage. This suggests that α-Fe most likely induces texture development of recombined Nd{sub 2}Fe{sub 14}B.

  19. Internal friction of Fe-B alloys neutron irradiated at low temperature

    International Nuclear Information System (INIS)

    Kitajima, Kazunori; Futagami, Koji; Abe, Hironobu; Yoshida, Hiroyuki.

    1975-01-01

    Measurements were made on the internal friction of Fe-B alloys irradiated by neutron at 16 0 K to the dose of 3x10 16 nvt (>1 MeV) and 6x10 17 nvt (thermal). Boron was used to enhance the production of defects by the nuclear transformation B 10 (n,α)Li 7 . Relaxation peaks were found in specimens containing dispersed fine precipitates of NbB 2 in range of B 500--7200 wt ppm and Nb 2000--30000 wt ppm. The most prominent peak is the one with the peak temperature of 169 0 K at the frequency of 264 c/sec. Activation energy determined from the peak shift is 0.28+-0.01 eV, which is nearly equal to that of migration of self-interstitial reported on pure iron. However activation energy of the decay of peaks by annealing is about 0.7 eV. Interpretation was presented that the peak may be attributed to re-orientation of self-interstitials loosely bound to a boron atom. (auth.)

  20. Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics.

    Science.gov (United States)

    Arumugam, Prabhu U; Clark, Emily A; Fritsch, Ingrid

    2005-02-15

    Bonded neodymium-iron-boron (NdFeB) permanent magnets in a paired configuration were successfully used to control mass transport in redox-based, magnetohydrodynamics (MHD). Control of fluid flow based on magnetic fields has potential for use in portable lab-on-a-chip (LOAC) and analytical devices. Bonded magnets, composed of magnetic powder and organic binder materials, are less expensive and easier to fabricate and pattern than electromagnets and sintered permanent magnets, which have been previously used in MHD studies on electrochemical systems. The ability to pattern bonded magnets near and around the electrodes is expected to allow for better control over the magnetic field distribution and solution flow. Current was generated at an 800-microm-radius platinum disk electrode in a solution of 0.06 M nitrobenzene and 0.5 M tetra-n-butylammonium hexafluorophosphate in acetonitrile. Increases in limiting current in the presence of the magnetic field, which indicate enhancement in mass transport, for sintered (210+/-14%, N = 4, where B(r) = 1.23 T and magnetic field strength is 0.55 T) and bonded (94+/-8%, N = 4, where B(r) = 0.41 T and magnetic field strength is 0.20 T) magnets, were similar to those obtained using an electromagnet with the same magnetic flux densities. The magnetic field strength and not the magnet type is important in controlling fluid flow, which is encouraging for integration of bonded permanent magnets into LOAC devices.

  1. High-performance nanocrystalline NdFeB magnets by CAPA process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.T. [Tesla Co., Ltd., 340-1 Songsan-Ri, Yanggam-Myeon, Hwasung City, Gyeonggi-Do, 445-396 (Korea, Republic of)]. E-mail: htkim@gotesla.com; Kim, Y.B. [Korea Research Institute Standards and Sciences, 305-600, Daejeon (Korea, Republic of); Jeon, J.W. [Chonbuk National University, 756-356, Jeonju (Korea, Republic of); Jang, I.H. [Tesla Co., Ltd., 340-1 Songsan-Ri, Yanggam-Myeon, Hwasung City, Gyeonggi-Do, 445-396 (Korea, Republic of); Kapustin, G.A. [RRC Kurchatov Institute, Moscow, 123182 (Russian Federation); Kim, H.S. [Chonbuk National University, 756-356, Jeonju (Korea, Republic of)

    2006-09-15

    The anisotropic NdFeB magnets were prepared from the melt-spun isotropic powders by CAPA process. The precursor isotropic magnet shows the uniform magnetic properties according to the overall position in the magnet. In the case of the anisotropic magnet, the outer position shows higher remanence and energy product compared to the center position. The magnetic properties of the anisotropic magnet obtained from Nd{sub 14}Fe{sub 80}B{sub 6} powders are B{sub r}=15kG, {sub i}H{sub c}=4.1kOe and BH{sub max}=36MGOe. In the case of addition of Zn to Nd{sub 14}Fe{sub 80}B{sub 6} powders, the energy product increased because of the improved coercivity. The magnetic properties of the Zn-added magnet are B{sub r}=14.5kG, {sub i}H{sub c}=9.7kOe and BH{sub max}=52MGOe. The Zn addition is effective to depress Nd{sub 2}Fe{sub 14}B grain growth of the interparticle regions during plastic deformation.

  2. Effect of crystal alignment on the remanence of sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Kawai, T.; Ma, B.M.; Sankar, S.G.; Wallace, W.E.

    1990-01-01

    Nd 15.4 Fe 77.8 B 6.8 magnets of various degrees of crystal alignment have been prepared by the conventional powder metallurgy technique. The alignment of these magnets have been determined by x-ray diffraction and fitting the standard deviation of a Gaussian distribution for the relative intensity versus the angle between the normals of (hkl) and the tetragonal c axis. The standard deviation is a good indicator for crystal alignment. An aligning field of 8 kOe is found to be essential to obtain a well-aligned NdFeB magnet. The remanence of sintered magnets is directly affected by the crystal alignment. Furthermore, the effect of crystal alignment on the remanence follows the theoretical prediction of the Stoner--Wohlfarth model. Below the spin reorientation temperature, the effect of crystal alignment on the shape of hysteresis loop becomes more significant. The remanences extrapolated from first and second quadrant of the hysteresis loops have been found to be consistent with the prediction of Stoner--Wohlfarth model

  3. Synthesis and magnetic properties of Ta/NdFeB-based composite microwires

    Energy Technology Data Exchange (ETDEWEB)

    Szary, P., E-mail: philipp.szary@uni.lu; Périgo, E. A.; Michels, A. [Physics and Materials Science Research Unit, University of Luxembourg, 162 Avenue de la Faïencerie, L-1511 Luxembourg, Grand Duchy of Luxembourg (Luxembourg); Luciu, I.; Duday, D.; Wirtz, T.; Choquet, P. [Science and Analysis of Materials (SAM), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg (Luxembourg)

    2015-05-07

    Magnetic NdFeB-based microwire composites have been prepared by the direct current magnetron sputtering technique in a specifically designed sputtering chamber for thin-film deposition in wire geometry. As substrate wire material, we have employed steel and Ta. Annealing of the substrate wires during the deposition process was performed by ohmic heating through the application of a direct current. Samples were characterized by means of vibrating sample magnetometry (VSM) and scanning electron microscopy. Best properties have been encountered when using Ta wires as core (substrate) material. The VSM data show a dramatic impact of the current applied during the deposition process on the magnetic properties. For higher current values, i.e., higher annealing temperatures, the wires exhibit a reversal process that is typical for a two-phase system. Moreover, an increase of the coercive field (and remanent magnetization) is observed, which is ascribed to a modification of the magnetic phase present in the sample due to the annealing. We find an indication for the formation of a magnetic easy-axis direction which is azimuthally oriented around the wire axis.

  4. Measurement of NdFeB permanent magnets demagnetization induced by high energy electron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Temnykh, Alexander B. [Wilson Lab, Cornell University, LEPP, Ithaca, NY 14850 (United States)], E-mail: abt6@cornell.edu

    2008-03-11

    Demagnetization of NdFeB permanent magnets has been measured as function of radiation dose induced by high energy electrons. The magnet samples were of different intrinsic coercive forces, {approx_equal}12 and {approx_equal}20KOe, dimensions and direction of magnetization. 5 GeV electron beam from 12 GeV Cornell Synchrotron was used as a radiation source. A calorimetric technique was employed for radiation dose measurement. Results indicated that depending on the sample intrinsic coercive force, shape and direction of magnetization the radiation dose causing 1% of demagnetization of the sample varies from 0.0765{+-}0.005Mrad to 11.3{+-}3.0Mrad, i.e., by more than a factor of 100. Experimental data analysis revealed that demagnetization of the given sample induced by radiation is strongly correlated with the sample demagnetizing temperature. This correlation was approximated by an exponential function with two parameters obtained from the data fitting. The function can be used to predict the critical radiation dose for permanent magnet assemblies like undulator magnets based on its demagnetizing temperature. The latter (demagnetization temperature) can be determined at the design stage from 3-D magnetic modeling and permanent magnet material properties.

  5. Multi-phase EBSD mapping and local texture analysis in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G., E-mail: t.woodcock@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany)

    2011-02-15

    A combination of electron backscatter diffraction and energy-dispersive X-ray spectroscopy has been used to identify the crystal structure and composition of all the phases present in commercially available NdFeB sintered magnets and to map their spatial distribution. The Nd{sub 2}Fe{sub 14}B and NdO grains were shown to have low defect densities. The fcc Nd-rich and Nd{sub 2}O{sub 3} grains had intra-grain misorientation angles of up to 14{sup o}, which was shown to be due to defects. Large numbers ({approx}100) of data points for each phase were used to study texture in the NdO, Nd{sub 2}O{sub 3} and Nd{sub 2}Fe{sub 14}B phases. The Nd{sub 2}Fe{sub 14}B grains exhibited a <0 0 1> fibre texture. The Nd oxide phases showed no strong texture, which implied that no strongly preferred orientation relationships between those phases and Nd{sub 2}Fe{sub 14}B exist. The result was shown to be valid for optimally annealed samples exhibiting high coercivity and as-sintered samples exhibiting low coercivity.

  6. Removing metal debris from thermosetting EMC powders by Nd-Fe-B permanent magnets

    Directory of Open Access Journals (Sweden)

    Liaw Yowching

    2017-01-01

    Full Text Available During the preparation of thermosetting encapsulation molding compounds (EMCs for semiconductor packaging, metal debris are always present in the EMC powders due to the hard silica fillers in the compound. These metal debris in the EMC powders will cause circuit shortage and therefore have to be removed before molding. In this study, Nd-Fe-B permanent magnets are used to remove these debris. The results show that the metal debris can be removed effectively as the rate of accumulation of the metal debris increases as time proceeds in the removing operation. The removal effectiveness of the debris is affected by both the magnetic flux density and the flow around the magnet. The wake flow behind the magnet is a relatively low speed recirculation region which facilities the attraction of metal debris in the powders. Thus, the largest amount of the accumulated EMC powders occurs downstream of the magnet. Hence, this low speed recirculation region should be better utilized to enhance the removal efficiency of the metal debris.

  7. The temperature dependence of magnetic anisotropy of Nd-Fe-B thin films

    Science.gov (United States)

    Sato, Takuya; Hashimoto, Ryuji; Tanaka, Yoshitomo; Suzuki, Kenichi; Enokido, Yasushi; Choi, Kyung-Ku; Suzuki, Takao

    2018-05-01

    The magnetic properties of Nd-Fe-B thin films with the three different compositions (#1: Nd12.6Fe81.5B5.9, #2: Nd14.6Fe78.1B7.4 and #3: Nd22.6Fe66.2B11.2) are discussed. With increasing Nd content, the c-axis orientation along the film normal is enhanced. It is found that sample #2 possesses the saturation magnetization Ms very close to that for Nd2Fe14B over a temperature range from 100 to about 300K. The magnetic anisotropy constant Ku2 for sample #2 is the highest among those samples, but smaller by about 20%, as compared to that for Nd2Fe14B. It is of interest to note that the temperature TR at which Ku1 changes its sign is lower by about 30K as compared to that previously reported for Nd2Fe14B. The reason for this discrepancy is not clear, but could be due to the presence of the minority phases of Nd-rich compounds and also a possible contribution of the magneto-elastic effect to the net magnetic anisotropy.

  8. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    International Nuclear Information System (INIS)

    Nlebedim, I.C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R.W.; McCall, Scott K.; Kramer, M.J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  9. Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Liu Xiaoxi; Ishida, Go; Morisako, Akimitsu

    2011-01-01

    The microstructure and magnetic properties of Nd-Fe-B films with thicknesses from 100 nm to 3 nm have been investigated. All the films show excellent perpendicular magnetic anisotropy with a squareness ratio of 1 in the perpendicular direction and almost zero coercivity in the in-plane direction. Of particular interest is that the initial magnetization curves sensitively depended on the film thickness. Films thicker than 15 nm show steep initial magnetization curve. Although the films have coercivities larger than 21 kOe, the films can be fully magnetized from the thermally demagnetized state with a field as small as 5 kOe. With the decrease of film thickness to 5 nm, the initial magnetization curve becomes flat. The evolution of initial magnetization curves with film thickness can be understood by the microstructure of the films. Films with thickness of 15 nm show close-packed grains without any intergranular phases. Such microstructures lead to steep initial magnetization curves. On the other hand, when the film thickness decreased to 3 nm, the film thickness became nonuniform. Such microstructure leads to flat initial magnetization curves.

  10. Influence of quartz particles on wear in vertical roller mills

    DEFF Research Database (Denmark)

    Jensen, Lucas R.D.; Friis, Henrik; Fundal, Erling

    2010-01-01

    The standard closed circuit comminution process commonly employed in industrial vertical roller mills has been analyzed to determine the influence of typical abrasive minerals on wear rates. With the main focus on raw mixes used in cement plants, synthetic mixtures imitating were prepared. Using...

  11. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  12. Influence of alpha-particles on parameters of plasma confined in open traps

    International Nuclear Information System (INIS)

    Chebotaev, P.Z.

    1987-01-01

    The numerical calculations of the longitudinal motion in multi-mirror reactor have shown that the energy contribution of α-particles has substantial influence on the gain factor (the given off thermonuclear energy/ the initial imparted energy) in the temperature region 5-7 keV. The numerical technique has been developed that takes into account the radial distribution of alpha particles caused by their drag on electrons. This effect is substantial for ρ α /R ≥ 1/2 (where ρ α is alpha particles gyro radius, R is plasma radius), e.g. for Gas-Dinamic trap. In a Tandem-Mirror reactor some part of fusion alpha particles have the probability to slow down to the plasma energy, that can lead to the 'poisoning' of the reactor by the thermonuclear reaction products. The fusion alpha particles can have a strong effect on accumulation of impurities with z ≤ 15 and thermal alpha particles in TMR. (orig.)

  13. Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

    International Nuclear Information System (INIS)

    Busch, Wibke; Bastian, Susanne; Trahorsch, Ulrike; Iwe, Maria; Kühnel, Dana; Meißner, Tobias; Springer, Armin; Gelinsky, Michael; Richter, Volkmar; Ikonomidou, Chrysanthy; Potthoff, Annegret; Lehmann, Irina; Schirmer, Kristin

    2011-01-01

    Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.

  14. The influence of human physical activity and contaminated clothing type on particle resuspension.

    Science.gov (United States)

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    International Nuclear Information System (INIS)

    Meakin, J.P.; Speight, J.D.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J.; Walton, A.

    2016-01-01

    Highlights: • Room temperature atmospheric oxidation behaviour of sintered NdFeB. • 3D laser confocal microscopy measurement of oxide phase growth. • Significant height increase of oxide phase only observed at triple points. • Raman spectroscopy identified oxide phase to be Nd 2 O 3 . • Diffusion coefficient determined to be 4 × 10 −13 cm 2 /s. - Abstract: Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.— computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd 2 O 3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10 −13 cm 2 /sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated

  16. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meakin, J.P., E-mail: jxm764@bham.ac.uk; Speight, J.D.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J.; Walton, A.

    2016-08-15

    Highlights: • Room temperature atmospheric oxidation behaviour of sintered NdFeB. • 3D laser confocal microscopy measurement of oxide phase growth. • Significant height increase of oxide phase only observed at triple points. • Raman spectroscopy identified oxide phase to be Nd{sub 2}O{sub 3}. • Diffusion coefficient determined to be 4 × 10{sup −13} cm{sup 2}/s. - Abstract: Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.— computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd{sub 2}O{sub 3} and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10{sup −13} cm{sup 2}/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth

  17. Magnetic and structural properties of spark plasma sintered nanocrystalline NdFeB-powders

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2015-10-15

    Near-stoichiometric NdFeB melt-spun ribbons have been subjected to spark plasma sintering varying the process temperature T{sub SPS} and pressure p{sub SPS} between 600 and 800 °C and 50–300 MPa, respectively. Produced bulk magnets were analyzed regarding microstructure and magnetic properties. For all samples the intrinsic coercivity H{sub c,J} gradually decreases with increasing sintering temperature and pressure, while residual induction B{sub r} increases simultaneously with sample density. Densities close to the theoretical limit were achieved for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. With increasing T{sub SPS} precipitations of Nd-rich and Fe-rich phases have been observed as a result of a decomposition of the hard magnetic Nd{sub 2}Fe{sub 14}B phase. Under optimum sintering conditions of p{sub SPS}=300 MPa and T{sub SPS}=650 °C high-density bulk magnets with H{sub c,J}=652 kA/m, B{sub r}=0.86 T and (BH){sub max}=106 kJ/m{sup 3} have been produced. - Highlights: • Consolidation close to the theoretical density for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. • Highest (BH){sub max} of 106 kJ/m{sup 3} for p{sub SPS}=300 MPa and T{sub SPS}=650 °C with 98% theo. • H{sub c,J} gradually decreases with increasing T{sub SPS}, while B{sub r} increases simultaneously with. • With increasing T{sub SPS}, Nd- and Fe-rich precipitations are observed. • Reduction in t{sub SPS} is economic but does not increase (BH){sub max} significantly.

  18. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Science.gov (United States)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNPcell) appeared to be magnetic field- and concentration-dependent. In H-field, MNPcell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNPcell, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNPcell in the L-field may reach as high as 80% of that in H-field during 1-6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNPcell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo.

  19. Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaodong [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Guo, Shuai; Chen, Kan; Chen, Renjie; Lee, Don [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); You, Caiyin, E-mail: caiyinyou@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2016-12-01

    A dual-alloy method was applied to tune the distribution of Ce for enhancing the performance of Nd-Ce-Fe-B sintered magnets with a nominal composition of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B. In comparison to the single alloy of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B, the coercivity was enhanced from 10.3 kOe to 12.1 kOe and the remanence was increased from 13.1 kG to 13.3 kG for the magnets with a dual-alloy method. In addition, the remanence temperature coefficient α and coercivity temperature coefficient β were also slightly improved for the magnet with the dual alloys. The results of microstructure characterizations show the uniform distribution of Ce for the magnet with a single alloy, and the coexistence of the Ce-rich and Ce-lean regions for the magnet with the dual alloys. In combinations with the nucleation of reversal domains and magnetic recoil curves, the property enhancement of magnets with a dual-alloy method was well explained. - Highlights: • Improved magnetic properties were obtained in dual-alloy magnet. • This is due to the tuning of Ce distribution and the change in microstructure. • The magnetic hardening effect can be observed in dual-alloy magnet.

  20. Influence of radiation induced defect clusters on silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra

    2011-10-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10{sup 35} cm{sup -2}s{sup -1}. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to {phi}{sub eq}=10{sup 16} cm{sup -2}. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E{sub C}-0.460 eV and E205a at E{sub C}-0.395 eV where E{sub C} is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V{sub 3}) defect. Furthermore, isochronal annealing experiments have shown that the V{sub 3} defect

  1. Influence of radiation induced defect clusters on silicon particle detectors

    International Nuclear Information System (INIS)

    Junkes, Alexandra

    2011-10-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10 35 cm -2 s -1 . In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to Φ eq =10 16 cm -2 . The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E C -0.460 eV and E205a at E C -0.395 eV where E C is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V 3 ) defect. Furthermore, isochronal annealing experiments have shown that the V 3 defect exhibits a bistability, as does the leakage current. In oxygen

  2. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, F., E-mail: f.bittner@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Schultz, L. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Schwöbel, C. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Fraunhofer ISC, Projektgruppe für Werkstoffkreisläufe und Ressourcenstrategie IWKS, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Zickler, G.A.; Fidler, J. [Technische Universität Wien, Institute of Solid State Physics, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Üstüner, K.; Katter, M. [Vacuumschmelze GmbH & Co. KG, 63412 Hanau (Germany)

    2017-03-15

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  3. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    International Nuclear Information System (INIS)

    Bittner, F.; Woodcock, T.G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G.A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-01-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  4. Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder

    Science.gov (United States)

    Gong, Haijun; Dilip, J. J. S.; Yang, Li; Teng, Chong; Stucker, Brent

    2017-12-01

    The particle size distribution and powder morphology of metallic powders have an important effect on powder bed fusion based additive manufacturing processes, such as selective laser melting (SLM). The process development and parameter optimization require a fundamental understanding of the influence of powder on SLM. This study introduces a pre-alloyed titanium alloy Ti-6Al-4V powder, which has a certain amount of small particles, for SLM. The influence of small particle inclusion is investigated through microscopy of surface topography, elemental and microstructural analysis, and mechanical testing, compared to the Ti-6Al-4V powder provided by SLM machine vendor. It is found that the small particles inclusion in Ti-6Al-4V powder has a noticeable effect on extra laser energy absorption, which may develop imperfections and deteriorate the SLM fatigue performance.

  5. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

    Science.gov (United States)

    Zhang, Yuwei; Guo, Zhansheng

    2018-03-01

    Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

  6. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  7. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  8. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  9. Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer

    Science.gov (United States)

    Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.

    2018-05-01

    In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.

  10. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  11. High performance hard magnetic NdFeB thick films for integration into micro-electro-mechanical systems

    International Nuclear Information System (INIS)

    Dempsey, N. M.; Walther, A.; May, F.; Givord, D.; Khlopkov, K.; Gutfleisch, O.

    2007-01-01

    5 μm thick NdFeB films have been sputtered onto 100 mm Si substrates using high rate sputtering (18 μm/h). Films were deposited at ≤500 deg. C and then annealed at 750 deg. C for 10 min. While films deposited at temperatures up to 450 deg. C have equiaxed grains, the size of which decreases with increasing deposition temperature, the films deposited at 500 deg. C have columnar grains. The out-of-plane remanent magnetization increases with deposition temperature, reaching a maximum value of 1.4 T, while the coercivity remains constant at about 1.6 T. The maximum energy product achieved (400 kJ/m 3 ) is comparable to that of high-quality NdFeB sintered magnets

  12. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  13. Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon.

    Science.gov (United States)

    Melki, Pamela N; Ledoux, Frédéric; Aouad, Samer; Billet, Sylvain; El Khoury, Bilal; Landkocz, Yann; Abdel-Massih, Roula M; Courcot, Dominique

    2017-08-01

    In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM 2.5-0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.

  14. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle charge and total-to-infective particle ratio.

    Science.gov (United States)

    Sviben, Dora; Forcic, Dubravko; Ivancic-Jelecki, Jelena; Halassy, Beata; Brgles, Marija

    2017-06-01

    Viral particles are used in medical applications as vaccines or gene therapy vectors. In order to obtain product of high purity, potency and safety for medical use purification of virus particles is a prerequisite, and chromatography is gaining increased attention to meet this aim. Here, we report on the use of ion-exchange and hydrophobic interaction chromatography on monolithic columns for purification of mumps virus (MuV) and measles virus (MeV). Efficiency of the process was monitored by quantification of infective virus particles (by 50% cell culture infective dose assay) and total virus particles, and monitoring of their size (by Nanoparticle Tracking Analysis). Ion-exchange chromatography was shown to be inefficient for MuV and best results for MeV were obtained on QA column with recovery around 17%. Purification of MuV and MeV by hydrophobic interaction chromatography resulted in recoveries around 60%. Results showed that columns with small channels (d=1.4μm) are not suitable for MuV and MeV, although their size is below 400nm, whereas columns with large channels (6μm) showed to be efficient and recoveries independent on the flow rate up to 10mL/min. Heterogeneity of the virus suspension and its interday variability mostly regarding total-to-infective particle ratio was observed. Interestingly, a trend in recovery depending on the day of the harvest was also observed for both viruses, and it correlated with the total-to-infective particle ratio, indicating influence of the virus sample composition on the chromatography results. Copyright © 2017. Published by Elsevier B.V.

  15. Phase composition, structure and magnetic behaviour of low neodymium rapid-quenched Nd-Fe-B alloys

    Czech Academy of Sciences Publication Activity Database

    Ćosović, V.; Žák, Tomáš; Talijan, N.; Grujić, A.; Stajić-Trošić, J.

    2008-01-01

    Roč. 456, 1-2 (2008), s. 251-256 ISSN 0925-8388 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : multiphase Nd(Pr)-Fe-B alloys * rapid solidification * magnetic measurements * Mossbauer spectroscopy * X-ray diffraction * Nanocrystalline composite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  16. Susceptibility of CoFeB/AlOx/Co Magnetic Tunnel Junctions to Low-Frequency Alternating Current

    Directory of Open Access Journals (Sweden)

    Yuan-Tsung Chen

    2013-10-01

    Full Text Available This investigation studies CoFeB/AlOx/Co magnetic tunneling junction (MTJ in the magnetic field of a low-frequency alternating current, for various thicknesses of the barrier layer AlOx. The low-frequency alternate-current magnetic susceptibility (χac and phase angle (θ of the CoFeB/AlOx/Co MTJ are determined using an cac analyzer. The driving frequency ranges from 10 to 25,000 Hz. These multilayered MTJs are deposited on a silicon substrate using a DC and RF magnetron sputtering system. Barrier layer thicknesses are 22, 26, and 30 Å. The X-ray diffraction patterns (XRD include a main peak at 2θ = 44.7° from hexagonal close-packed (HCP Co with a highly (0002 textured structure, with AlOx and CoFeB as amorphous phases. The full width at half maximum (FWHM of the Co(0002 peak, decreases as the AlOx thickness increases; revealing that the Co layer becomes more crystalline with increasing thickness. χac result demonstrates that the optimal resonance frequency (fres that maximizes the χac value is 500 Hz. As the frequency increases to 1000 Hz, the susceptibility decreases rapidly. However, when the frequency increases over 1000 Hz, the susceptibility sharply declines, and almost closes to zero. The experimental results reveal that the mean optimal susceptibility is 1.87 at an AlOx barrier layer thickness of 30 Å because the Co(0002 texture induces magneto-anisotropy, which improves the indirect CoFeB and Co spin exchange-coupling strength and the χac value. The results concerning magnetism indicate that the magnetic characteristics are related to the crystallinity of Co.

  17. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  18. Hard magnetic properties of rapidly annealed NdFeB thin films on Nb and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; Evans, J.; O'Shea, M.J.; Du Jianhua

    2001-01-01

    NdFeB thin films of the form A (20 nm)/NdFeB(d nm)/A(20 nm), where d ranges from 54 to 540 nm and the buffer layer A is Nb or V were prepared on a Si(1 0 0) substrate by magnetron sputtering. The hard Nd 2 Fe 14 B phase is formed by a 30 s rapid anneal or a 20 min anneal. Average crystallite size ranged from 20 to 35 nm with the rapidly annealed samples having the smaller crystallite size. These samples also exhibited a larger coercivity and energy product than those treated by a 20 min vacuum anneal. A maximum coercivity of 26.3 kOe at room temperature was obtained for a Nb/NdFeB (180 nm)/Nb film after a rapid anneal at 725 deg. C. Initial magnetization curves indicate magnetization rotation rather than nucleation of reverse domains is important in the magnetization process. A Brown's equation analysis of the coercivity as a function of temperature allowed us to compare the rapidly annealed and 20 min annealed samples. This analysis suggests that rapid annealing gives higher quality crystalline grains than the 20 min annealed sample leading to the observed large coercivity in the rapidly annealed samples

  19. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  20. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  1. Effect of composition polymeric PVB binder on physical, magnetic properties and microstructure of bonded magnet NdFeB

    Science.gov (United States)

    Sardjono, P.; Muljadi; Suprapedi; Sinuaji, P.; Ramlan; Gulo, F.

    2017-04-01

    The bonded magnet NdFeB has been made by using the hot press method and using Poly Vinyl Butiral (PVB) as a binder. The composition of polymeric binder was varied: 0, 2, 4, 6 and 7 % of weight. Both raw materials are weighed and mixed according to the composition of PVB, then formed by hot press with a pressure 30 MPa, a temperature of 160 ° C and holding time for 30 minutes. The bulk density was measured by using Archimedes method. SEM observation was done to determine the microstructure of bonded magnet NdFeB. The flux magnetic value was measured by using a Gauss meter and the measurement of hysteresis curves was done to know value of remanence Br, coercivity Hc and energy product BHmax by using VSM. According to the characterization results show that the best composition of PVB is 2 of weight. The properties of bonded magnet NdFeB of those compositions are the bulk density around 5.66 g/cm3. Flux Magnetic value: 1862 Gauss, Br value: 5000 kGauss, Hc value: 8.49 kOe and BHmax value : 5.10 MGOe. According of SEM observation results show that the polymer matrix of PVB appears to have covered on all surface grain and filled grain boundary.

  2. Analysis of grain growth process in melt spun Fe-B alloys under the initial saturated grain boundary segregation condition

    International Nuclear Information System (INIS)

    Chen, Z.; Liu, F.; Yang, X.Q.; Fan, Y.; Shen, C.J.

    2012-01-01

    Highlights: → We compared pure kinetic, pure thermodynamic and extended thermo-kinetic models. → An initial saturated GB segregation condition of nanoscale Fe-B alloys was determined. → The controlled-mechanism was proposed using two characteristic times (t 1 and t 2 ). - Abstract: A grain growth process in the melt spun low-solid-solubility Fe-B alloys was analyzed under the initial saturated grain boundary (GB) segregation condition. Applying melt spinning technique, single-phase supersaturated nanograins were prepared. Grain growth behavior of the single-phase supersaturated nanograins was investigated by performing isothermal annealing at 700 deg. C. Combined with the effect of GB segregation on the initial GB excess amount, the thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] was extended to describe the initial GB segregation condition of nanoscale Fe-B alloys. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, an initial saturated GB segregation condition was determined. The controlled-mechanism of grain growth under initial saturated GB segregation condition was proposed using two characteristic annealing times (t 1 and t 2 ), which included a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and pure thermodynamic-controlled process (t ≥ t 2 ).

  3. The influence of human physical activity and contaminated clothing type on particle resuspension

    International Nuclear Information System (INIS)

    McDonagh, A.; Byrne, M.A.

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to “contaminate” the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. -- Highlights: • Experimental investigation of the resuspension of hazardous particles from clothing. • Influence of human physical activity

  4. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  5. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    International Nuclear Information System (INIS)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-01-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNP cell ) appeared to be magnetic field- and concentration-dependent. In H-field, MNP cell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNP cell , suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNP cell in the L-field may reach as high as 80% of that in H-field during 1–6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNP cell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo. - Graphical abstract: Averaged MNP uptake by glioma cells in the low and non-uniformed magnetic field reached as high as 80% of that in uniformed magnetic field, which is probably due to both heterogeneous distributions of MNPs in the non-uniformed magnetic field and high capacity of the MNP uptake by these cells. - Highlights: • Enhanced sedimentation

  6. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Ching; Chang, Fan-Yu [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Tu, Shu-Ju [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Chen, Jyh-Ping [Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Ma, Yunn-Hwa, E-mail: yhma@mail.cgu.edu.tw [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan City 33305, Taiwan, ROC (China)

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNP{sub cell}) appeared to be magnetic field- and concentration-dependent. In H-field, MNP{sub cell} reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNP{sub cell}, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNP{sub cell} in the L-field may reach as high as 80% of that in H-field during 1–6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNP{sub cell} analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo. - Graphical abstract: Averaged MNP uptake by glioma cells in the low and non-uniformed magnetic field reached as high as 80% of that in uniformed magnetic field, which is probably due to both heterogeneous distributions of MNPs in the non-uniformed magnetic field and high capacity of the MNP uptake by these cells. - Highlights:

  7. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  8. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  9. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    Science.gov (United States)

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  10. The influence of gas-to-particle conversion on measurements of ammonia exchange over forest

    NARCIS (Netherlands)

    Oss, R. van; Duyzer, J.; Wyers, P.

    1998-01-01

    Measurements of vertical gradients of ammonium nitrate aerosol and NH3 are used together with HNO3 concentrations to study the influence of gas-to-particle conversion (gtpc) on surface exchange processes above a forest. A numerical model of surface exchange, in which a description of gtpc was

  11. Physics of Particle Entrainment Under the Influence of an Impinging Jet

    Science.gov (United States)

    2008-12-01

    Approved for public release; distribution unlimited 1 PHYSICS OF PARTICLE ENTRAINMENT UNDER THE INFLUENCE OF AN IMPINGING JET Robert Haehnel...Ing. Wesen. Heft 361). Phares, D.J., Smedley , G.T. and Flagan, R.C. (2000) "The wall shear stress produced by the normal impingement of a jet on a

  12. The influence of magnetic field on the inertial deposition of a particle on a rotating disk

    International Nuclear Information System (INIS)

    Tsatsin, P O; Beskachko, V P

    2008-01-01

    The problem of inertial deposition attracts considerable attention in the connection with the separating of detrimental impurities and the refining of liquid metals. In the present investigation the deposition of particles suspended in a conducting melt on the rotating disk in the presence of axial uniform magnetic field is considered. The field of the fluid velocities is computed by means of the MHD-analogue of Karman reduction, which makes possible to reduce initial governing nonlinear partial differential equations to a two-point boundary value problem for the set of ordinary differential equations. The influence of magnetic field on dia-and paramagnetic particle deposition effect was estimated. The results reveal that magnetic field has significant effect on particle parameters, especially for magnetic particles

  13. Influence of firebed temperature on inorganic particle emissions in a residential wood pellet boiler

    Science.gov (United States)

    Gehrig, Matthias; Jaeger, Dirk; Pelz, Stefan K.; Weissinger, Alexander; Groll, Andreas; Thorwarth, Harald; Haslinger, Walter

    2016-07-01

    The temperature-dependent release of inorganic elements is the first step of the main formation pathway of particle emissions in automatically fired biomass burners. To investigate this step, a residential pellet boiler with an underfeed-burner was equipped with a direct firebed cooling. This test setup enabled decreased firebed temperatures without affecting further parameters like air flow rates or oxygen content in the firebed. A reduction of particle emissions in PM1-fraction at activated firebed cooling was found by impactor measurement and by optical particle counter. The affected particles were found in the size range boiler ash showed no statistically significant differences due to the firebed cooling. Therefore, our results indicate that the direct firebed cooling influenced the release of potassium (K) without affecting other chemical reactions.

  14. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant

    Directory of Open Access Journals (Sweden)

    Zhixiang Chen

    2018-03-01

    Full Text Available Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and entrainment recovery calculation, laser particle size experiments, adsorption tests, and advancing contact angle measurement as well as scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The maximum recovery increased with particle size increases in the absence of galactomannan FPY (Fenugreek polysaccharide. The obviously suppressed effect was observed for the size fraction of −74 + 38 μm after reacting with FPY, but low efficiency was received for −38 μm and −10 μm, respectively. Laser particle size analysis indicated that the FPY has a certain function for the flocculation of fine particles. It is beneficial for reducing recovery by entrainment. EDS and advancing contact angle test results showed that the difference in contact angles probably is a result of genuine differences in the quantity of O and Mg bearing surface species, while the contact angle varied with particle size fraction in the absence of FPY. Adsorption and SEM test results demonstrated that in the case of −74 + 38 μm, the depressant adsorption density on the mineral surface is higher than the other two size fractions. On the whole, FPY probably is not enough of a depressant for talc suppression.

  15. Experimental investigation of particle size distribution influence on diffusion controlled coarsening

    International Nuclear Information System (INIS)

    Fang, Zhigang; Patterson, B.R.

    1993-01-01

    The influence of initial particle size distribution on coarsening during liquid phase sintering has been experimentally investigated using W-14Ni-6Fe alloy as a model system. It was found that initially wider size distribution particles coarsened more rapidly than those of an initially narrow distribution. The well known linear relationship between the cube of the average particle radius bar r -3 , and time was observed for most of the coarsening process, although the early stage coarsening rate constant changed with time, as expected with concomitant early changes in the tungsten particle size distribution. The instantaneous transient rate constant was shown to be related to the geometric standard deviation, 1nσ, of the instantaneous size distributions, with higher rate constants corresponding to larger 1nσ values. The form of the particle size distributions changed rapidly during early coarsening and reached a quasi-stable state, different from the theoretical asymptotic distribution, after some time. A linear relationship was found between the experimentally observed instantaneous rate constant and that computed from an earlier model incorporating the effect of particle size distribution. The above results compare favorably with those from prior theoretical modeling and computer simulation studies of the effect of particle size distribution on coarsening, based on the DeHoff communicating neighbor model

  16. Influence of maize flour particle size on gluten-free breadmaking.

    Science.gov (United States)

    de la Hera, Esther; Talegón, María; Caballero, Pedro; Gómez, Manuel

    2013-03-15

    Maize, one of the suitable grains for coeliac consumption, is, together with rice, the most cultivated cereal in the world. However, the inclusion of maize flour in gluten-free bread is a minority and studies are scarce. This paper analyses the influence of different maize flour types and their particle sizes on the quality of two types of bread without gluten (80% and 110% water in the formulation) obtained from them. We also analysed the microstructure of the dough and its behaviour during the fermentation. Finer flours had a lower dough development during fermentation in all cases. Among the different types of flour, those whose microstructure revealed compact particles were those which had higher specific bread volume, especially when the particle size was greater. Among the formulations, the dough with more water gave breads with higher specific volume, an effect that was more important in more compact flours. The higher volume breads had lower values of hardness and resilience. The type of corn flour and mainly its particle size influence significantly the dough development of gluten-free bread during fermentation and therefore the final volume and texture of the breads obtained. The flours having coarser particle size are the most suitable for making gluten-free maize bread. © 2012 Society of Chemical Industry.

  17. The influence of Co-Cr and UHMWPE particles on infection persistence : An in vivo study in mice

    NARCIS (Netherlands)

    Hosman, Anton H.; Bulstra, Sjoerd K.; Sjollema, Jelmer; van der Mei, Henny C.; Busscher, Henk J.; Neut, Danielle

    Wear of metal-on-metal (cobaltchromium, CoCr particles) and metal-on-polyethylene (ultra-high-molecular-weight polyethylene, UHMWPE particles) bearing surfaces in hip prostheses is a major problem in orthopedics. This study aimed to compare the influence of CoCr and UHMWPE particles on the

  18. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  19. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    Science.gov (United States)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  20. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  1. The role of Mg interface layer in MgO magnetic tunnel junctions with CoFe and CoFeB electrodes

    Directory of Open Access Journals (Sweden)

    Hyunsoo Yang

    2012-03-01

    Full Text Available The tunneling spin polarization (TSP is directly measured from reactively sputter deposited crystalline MgO tunnel barriers with various CoFe(B compositions using superconducting tunneling spectroscopy. We find that the Mg interface layer thickness dependence of TSP values for CoFeB/Mg/MgO junctions is substantially different from those for CoFe/Mg/MgO especially in the pre-annealed samples due to the formation of boron oxide at the CoFeB/MgO interface. Annealing depletes boron at the interface thus requiring a finite Mg interface layer to prevent CoFeOx formation at the CoFeB/MgO interface so that the TSP values can be optimized by controlling Mg thickness.

  2. Relations microstructure - magnetic properties - squareness factor of PrFeB and NdFeB sintered magnets prepared with hydrogen

    International Nuclear Information System (INIS)

    Perigo, Elio Alberto

    2009-01-01

    In this work, it has firstly been evaluated the preparation of Pr 16 Fe 76 B 8 sintered permanent magnets (% at.) by means of high-energy milling using a planetary ball mill. The influence of both milling speed and time has been verified. The best magnetic properties [J R = (1.02 ± 0.02) T, μ 0J H c = (1.42 ± 0.03) T and (BH) max = (200 ± 4) kJm -3 ] have been found for a permanent magnet prepared with the magnetic alloy milled during 75 minutes using a rotational milling speed of 200 rpm. In order to improve the remanence, the hydrogen decrepitation process time has been reduced from 60 minutes to 2 minutes. In this case, it has been obtained a sintered magnet with J R = (1.14 ± 0.02) T, μ 0J H c = (1.44 ± 0.03) T and (BH) max = (250 ± 5) kJm -3 due to the improvement of crystallographic alignment of the hard magnetic phase. During such investigation, a new methodology to quantify the parameter has been developed. Subsequently, for the first time, a quantitative correlation between the microstructure and the squareness factor in anisotropic sintered RE 16 Fe 76 B 8 (RE = Nd or Pr) magnets has been proposed. The presented expression utilizes the mean size, the mean elongation and the mean roundness of the hard magnetic grains as well as their respective standard deviations. The squareness factor can be improved with a microstructure with rounder grains and with a sharp grain size distribution. The grain size homogeneity is more important to enhance the squareness factor compared to grain shape homogeneity. Furthermore, it has also been verified that the annealing after sintering improves the grain shape homogeneity and the milling enhances the grain size homogeneity. Moreover, the effect of the temperature on the squareness factor of anisotropic sintered magnets has also been evaluated. Such parameter is mainly controlled by the sample's microstructure, in agreement with the proposed expression. Furthermore, a quantitative correlation between the maximum

  3. Numerical Study of the influence of a ribbon geometry of experiment on measuring particle angular distributions

    International Nuclear Information System (INIS)

    Artemov, A.S.

    1996-01-01

    The values and nature of systematic errors in small-angle particle scattering experiments using ribbon-like beams are investigated by numerical simulation. As shown, the extent of the influence of a ribbon geometry of experiment on the result of measurement is significantly dependent on the shape of the measured angular distribution in an elementary act of interaction. The algorithm of experimental material treatment, obtained in measuring the widths at half maximum of the angular differential cross sections of secondary particles, is presented using an example of specific distributions and certain experimental setup. (author). 12 refs., 7 figs

  4. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    Science.gov (United States)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  5. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  6. The impact of processing parameters on the properties of Zn-bonded Nd-Fe-B magnets

    Science.gov (United States)

    Kelhar, Luka; Zavašnik, Janez; McGuiness, Paul; Kobe, Spomenka

    2016-12-01

    We report on the effect of loading factor and pressure on the density and the magnetic properties of Zn-bonded Nd-Fe-B magnets produced by pulsed-electric-current sintering (PECS). The idea behind this study is to fabricate bonded magnets with a metallic binder in order for the bonded magnet to operate at temperatures higher than 180 °C: the current upper-limit for polymer-bonded magnets. These composites are made of hard-magnetic powder in the form of melt-spun ribbons bonded with the low-melting-point metal Zn. The binder additions were varied from 10 to 30 wt%, and pressures of 50 and 500 MPa were applied. The high-pressure mode with 20 wt% Zn resulted in a 24% increase of Jr, compared to the low-pressure mode. The magnetic measurements revealed a maximum remanence of 0.64 T for 10 wt% Zn, while the coercivity is largely unaffected by the processing conditions. The density of the composites was up to 7.0 g/cm3, corresponding to 94% of the theoretical density. Compared to commercial polymer-bonded magnets, the Zn-bonded counterparts exhibit a slightly lower Jr, but the coercivity is retained. We show that there is a minor diffusion of Zn into the Nd-Fe-B, forming a 1 μm thin transition layer, but it does not harm the magnetic properties. These metal-bonded Nd-Fe-B magnets are ideal for use in high-temperature automotive applications like under-the-hood sensors and other magnet-based devices that are close to the engine.

  7. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  8. Variation of magnetic properties with mischmetal content in the resource saving magnets of MM-Fe-B ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu-bai, E-mail: lzbgj@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Li-chen [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Geng, Xiao-peng [Inner Mongolia Baotou Steel Rare Earth Magnetic Materials Co.Ltd, Baotou 014030 (China); Hu, Feng-xia; Sun, Ji-rong; Shen, Bao-gen [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-15

    Magnetic materials of MM-Fe-B (MM=mischmetal) ribbons were prepared using melt spinning method by varying the content of MM. The ribbons contain minor phases besides the main phase of Re{sub 2}Fe{sub 14}B. X-ray techniques show that the diffraction peak intensities of the minor phase Fe{sub 3}B vary with the content of constituent elements, indicating that the amount of minor phase could be tunable. The squareness of hysteresis loop is the best in MM{sub 13}Fe{sub 80.5}B{sub 6.5} ribbons, which should mainly ascribe to the less amount of minor phase. Henkel plots verify the more uniform magnetization reversals in MM{sub 13}Fe{sub 80.5}B{sub 6.5} ribbons, and the energy product achieves to the maximum of 12.74 MGOe with the coercivity of 6.50 kOe. With the increase of MM content the coercivity increases monotonically, and reaches to 9.13 kOe in MM{sub 15}Fe{sub 77.5}B{sub 7.5} ribbons, which should be related with the nature of the defects in the main phase. These investigations show that optimizing the content of constituent elements and phase constitution could improve magnetic properties in the resource-saving magnets of MM-Fe-B ribbons. - Highlights: • MM-Fe-B (MM=mischmetal) ribbons contains the minor phases besides the main phase of Re{sub 2}Fe{sub 14}B. • The amount of minor phases varies with the content of constituent elements. • The energy product of 12.74 MGOe is obtained in MM{sub 13}Fe{sub 80.5}B{sub 6.5} ribbons by optimizing the phase constitution.

  9. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    Science.gov (United States)

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  10. From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid

    OpenAIRE

    Vander Hoogerstraete, Tom; Blanpain, Bart; Van Gerven, Tom; Binnemans, Koen

    2014-01-01

    A chemical process which consumes a minimum amount of chemicals to recover rare-earth metals from NdFeB magnets was developed. The recovery of rare-earth elements from end-of-life consumer products has gained increasing interest during the last few years. Examples of valuable rare earths are neodymium and dysprosium because they are important constituents of strong permanent magnets used in several large or growing application fields (e.g. hard disk drives, wind turbines, electric vehicles, m...

  11. Identification of an eta boride phase as a crystallization product of a NiMoFeB amorphous alloy

    International Nuclear Information System (INIS)

    Kim, Y.W.; Rabenberg, L.; Bourell, D.L.

    1988-01-01

    A new, apparently metastable, Mo--Ni boride phase has been observed in transmission electron microscope samples of rapidly consolidated MoNiFeB metallic glass powders. The phase is cubic with lattice parameter 1.083 nm. Its space group as determined by electron diffraction is Fd3-barm and its approximate composition is Mo 3 Ni 3 B. Because its structure, its composition, and its role as a transition phase are analogous to those of eta carbide (M 6 C) in steels and cemented carbides, this phase has tentatively been named ''eta boride.''

  12. EXPERIMENTAL STUDIES FOR DEVELOPMENT HIGH-POWER AUDIO SPEAKER DEVICES PERFORMANCE USING PERMANENT NdFeB MAGNETS SPECIAL TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Constantin D. STĂNESCU

    2013-05-01

    Full Text Available In this paper the authors shows the research made for improving high-power audio speaker devices performance using permanent NdFeB magnets special technology. Magnetic losses inside these audio devices are due to mechanical system frictions and to thermal effect of Joules eddy currents. In this regard, by special technology, were made conical surfaces at top plate and center pin. Analysing results obtained by modelling the magnetic circuit finite element method using electronic software package,was measured increase efficiency by over 10 %, from 1,136T to13T.

  13. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    Rao, D.; Upadhyaya, G.S.

    2001-01-01

    In the present investigation Mo 2 FeB 2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  14. Investigation of coercivity mechanism in hot deformed Nd-Fe-B permanent magnets by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Yano, M.; Manabe, A.; Shoji, T.; Kato, A.; Ono, K.; Harada, M.; Kohlbrecher, J.

    2014-01-01

    The magnetic reversal behaviors of single domain sized Nd-Fe-B permanent magnets, with and without isolation between the Nd 2 Fe 14 B grains, was clarified using small-angle neutron scattering (SANS). The SANS patterns obtained arose from changes in the magnetic domains and were analyzed using the Teubner–Stray model, a phenomenological correlation length model, to quantify the periodicity and morphology of the magnetic domains. The results indicated that the magnetic reversal evolved with the magnetic domains that had similar sized grains. The grain isolation enabled us to realize the reversals of single domains

  15. Magnetic Reversal and Thermal Stability of CoFeB Perpendicular Magnetic Tunnel Junction Arrays Patterned by Block Copolymer Lithography

    KAUST Repository

    Tu, Kun-Hua

    2018-04-10

    Dense arrays of pillars, with diameters of 64 and 25 nm, were made from a perpendicular CoFeB magnetic tunnel junction thin film stack using block copolymer lithography. While the soft layer and hard layer in the 64 nm pillars reverse at different fields, the reversal of the two layers in the 25 nm pillars could not be distinguished, attributed to the strong interlayer magnetostatic coupling. First order reversal curves were used to identify the steps that occur during switching, and the thermal stability and effective switching volume were determined from scan rate dependent hysteresis measurements.

  16. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    International Nuclear Information System (INIS)

    Liu Wen-Feng; Zhang Min-Gang; Zhang Ke-Wei; Zhang Hai-Jie; Chai Yue-Sheng; Xu Xiao-Hong

    2016-01-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. (paper)

  17. Influence of particle plasmon resonance on the photoluminescence of organic semiconductor blend

    Science.gov (United States)

    Dou, Fei; Peng, Chunzeng; Liu, Hongmei; Wang, Jiyou; Feng, Shengfei; Zhang, Xinping

    2010-05-01

    We investigate the influence of particle plasmon resonance of Au nanoislands structures on the exciplex emission in the polymer blend of poly (9, 9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly (9,9'-dioctylfluorene-co-bis-N,N'- (4-butylphenyl)-bis-N,N'-phenyl-l,4-phenylenediamine) (PFB). The experimental results indicate that when the particle plasmon resonance of the gold nanoisland structures overlaps the spectral range of the exciplex emission, significant enhancement of the photoluminescence can be observed. Furthermore, longer lifetime has been measured for the red-shift emission of the exciplex. We proposed that the localized field due to the particle plasmon resonance of the Au nanoislands has modulated the mechanisms for the formation of exciplex, which may be related to the exciton diffusion, charge transfer, and phase separation at the interface between the two materials.

  18. The influence of particle size on intermediate and final stages of molybdenum sintering

    International Nuclear Information System (INIS)

    Uskokovic, D.; Novakovic, B.; Petrovic, V.; Ristic, M.M.

    1982-01-01

    The influence of initial particle size on kinetics of molybdenum sintering was investigated. Three fractions of monodispersed molybdenum powder (2, 5 and 10 μm) were used as well as a polydispersed powder with mean particle size of 12 μm. Decrease in particle size accelerates to a great extent densification and grain growth processes. During sintering of 10 μm powder and to a smaller extent in the case of polydispersed powder, Zeners's relation was confirmed. Quantitative equations for the intermediate sintering stages could not be fitted to the investigated particulate systems, even though the grain growth process could be described by cubic law and though the volume diffusion coefficient and the surface energy were known with great reliability. (Auth.)

  19. The influence of mesoscale and submesoscale circulation on sinking particles in the northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Guangpeng Liu

    2018-04-01

    Full Text Available Mesoscale eddies and fronts in the ocean greatly impact lateral transport and in turn the trajectories of sinking particles. Such influence was explored for April and October 2012 in the Gulf of Mexico using numerical simulations performed with a regional model at 1-km horizontal resolution. Results are compared qualitatively to field samples from two sediment traps located at GC600 (27°22.5 N, 90°30.7 W and AT357 (27°31.5 N, 89°42.6 W, 81 km apart. In April the traps collected a comparable amount of material, while in October the flux at GC600 greatly exceeded that at AT357. Through inverse calculations, several thousand particle trajectories were reconstructed multiple times from the ocean surface to the depth of the traps (approximately 1,000 m using a range of sinking velocities, 20–100 m d–1. Taken together, model results and trap data indicate that cross-shore transport of riverine input induced by mesoscale eddies, and convergence and divergence processes at the scale of a few kilometers, significantly impact the trajectory of sinking particles. The large majority of modeled particles reach the bottom faster than would be expected by their sinking speeds alone. This finding is associated with submesoscale-induced horizontal convergence in the mixed layer that aggregates particles preferentially in downwelling regions, accelerating their descent. Furthermore, this study confirms that the cone of influence of vertical fluxes is highly variable in both space and time in the presence of an energetic eddy field, especially for particles with sinking velocity of 50 m d–1 or less. It also demonstrates that the variability of vertical fluxes in the Gulf of Mexico is highly complex and can be understood only by considering the mesoscale circulation and seasonal cycle of primary productivity, which in turn are linked to riverine inputs, wind forcing and the seasonal cycle of the mixed-layer depth.

  20. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    Science.gov (United States)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  1. Safety of information in electronic equipment influenced by the charged space particles

    Directory of Open Access Journals (Sweden)

    Ksenia Gennad’evna Sizova

    2016-10-01

    Full Text Available A version of the existing evaluation method of electronic equipment to the influence of charged space particles causing single event effects for the purpose of improving the accuracy of calculation in the field of information safety is suggested. On the basis of the existing and modified methods radiation tolerance of real payload spacecraft responsible for the security of transmitted information are defined. The results of comparison are introduced. Significant differences not only in quantitative but also in qualitative character of tolerance indicators are revealed. It is demonstrated that the modified method allows to take into account the functional complexity of the hardware and the application efficiency of the sophisticated single event effects protection tools. To confirm the applicability of the modified method of equipment tolerance evaluation method to the influence of charged space particles causing single event effects proposals to the procedure of ground tests of the payload and the space experiment are developed.

  2. Influence of primary-particle density in the morphology of agglomerates.

    Science.gov (United States)

    Camejo, M D; Espeso, D R; Bonilla, L L

    2014-07-01

    Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental works.

  3. Influence of thermophoresis on particle removal in a moving granular bed filter and heat exchanger

    International Nuclear Information System (INIS)

    Rudnick, S.N.; First, M.W.; Price, J.M.

    1981-01-01

    Bench-scale investigations were made to determine the influence of thermophoresis on particle removal in a moving granular bed filter. A continuous flow of 2-mm diameter ceramic granules at ambient temperature entered the top of the filter and moved slowly downward under the influence of gravity countercurrent to the gas stream. At an inlet gas temperature of 240 0 C, gas mass velocity of 0.12 kg/(s.m 2 ), and granule velocities up to 0.015 cm/s, clean bed collection efficiency for a submicrometer sodium chloride aerosol was found to increase the more the gas was cooled, indicating that thermophoretic forces were playing a measurable role in particle collection

  4. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  5. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and ... compared to the crystalline form. The rank of solubility was found to be QC-big=QC-small>CM>crystalline. For the physical stability, the highest crystallization rate was observed for CM, and the slowest rate was detected for QC-big, with an intermediate rate occurring for QC-small. QC exhibited lower...

  6. Influence of resistivity on energetic trapped particle-induced internal kink modes

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1986-01-01

    The influence of resistivity on energetic trapped particle-induced internal kink modes, dubbed ''fishbones'' in the literature, is explored. A general dispersion relation, which recovers the ideal theory in its appropriate limit, is derived and analyzed. An important implication of the theory for present generation fusion devices such as the Joint European Torus [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, London, 1984), Vol I, p.11] is that they will be stable to fishbone activity

  7. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.

    Science.gov (United States)

    Siddabattuni, Sasidhar; Schuman, Thomas P; Dogan, Fatih

    2013-03-01

    The interface between the polymer and the particle has a critical role in altering the properties of a composite dielectric. Polymer-ceramic nanocomposites are promising dielectric materials for many electronic and power devices, combining the high dielectric constant of ceramic particles with the high dielectric breakdown strength of a polymer. Self-assembled monolayers of electron rich or electron poor organophosphate coupling groups were applied to affect the filler-polymer interface and investigate the role of this interface on composite behavior. The interface has potential to influence dielectric properties, in particular the leakage and breakdown resistance. The composite films synthesized from the modified filler particles dispersed into an epoxy polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, and leakage current measurements. The data indicate that significant reduction in leakage currents and dielectric losses and improvement in dielectric breakdown strengths resulted when electropositive phenyl, electron-withdrawing functional groups were located at the polymer-particle interface. At a 30 vol % particle concentration, dielectric composite films yielded a maximum energy density of ~8 J·cm(-3) for TiO2-epoxy nanocomposites and ~9.5 J·cm(-3) for BaTiO3-epoxy nanocomposites.

  8. The influence of annealing temperature on the strength of TRISO coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabel.vanrooyen@pbmr.co.z [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa)

    2010-07-31

    The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 {sup o}C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 {sup o}C.

  9. The influence of annealing temperature on the strength of TRISO coated particles

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Neethling, J.H.; Rooyen, P.M. van

    2010-01-01

    The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 o C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 o C.

  10. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  11. Solubility of hot fuel particles from Chernobyl--influencing parameters for individual radiation dose calculations.

    Science.gov (United States)

    Garger, Evgenii K; Meisenberg, Oliver; Odintsov, Oleksiy; Shynkarenko, Viktor; Tschiersch, Jochen

    2013-10-15

    Nuclear fuel particles of Chernobyl origin are carriers of increased radioactivity (hot particles) and are still present in the atmosphere of the Chernobyl exclusion zone. Workers in the zone may inhale these particles, which makes assessment necessary. The residence time in the lungs and the transfer in the blood of the inhaled radionuclides are crucial for inhalation dose assessment. Therefore, the dissolution of several kinds of nuclear fuel particles from air filters sampled in the Chernobyl exclusion zone was studied. For this purpose filter fragments with hot particles were submersed in simulated lung fluids (SLFs). The activities of the radionuclides (137)Cs, (90)Sr, (239+240)Pu and (241)Am were measured in the SLF and in the residuum of the fragments by radiometric methods after chemical treatment. Soluble fractions as well as dissolution rates of the nuclides were determined. The influence of the genesis of the hot particles, represented by the (137)Cs/(239+240)Pu ratio, on the availability of (137)Cs was demonstrated, whereas the dissolution of (90)Sr, (239+240)Pu and (241)Am proved to be independent of genesis. No difference in the dissolution of (137)Cs and (239+240)Pu was observed for the two applied types of SLF. Increased solubility was found for smaller hot particles. A two-component exponential model was used to describe the dissolution of the nuclides as a function of time. The results were applied for determining individual inhalation dose coefficients for the workers at the Chernobyl construction site. Greater dose coefficients for the respiratory tract and smaller coefficients for the other organs were calculated (compared to ICRP default values). The effective doses were in general lower for the considered radionuclides, for (241)Am even by one order of magnitude. © 2013 Elsevier B.V. All rights reserved.

  12. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ∼29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ∼2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  13. The Role of Annealing Temperature on Structural and Magnetic Properties of NdFeB Thin Films

    Directory of Open Access Journals (Sweden)

    A. Khanjani

    2016-06-01

    Full Text Available In the present research NdFeB thin films coupled with buffer and capping layer of W were formed on Si/SiO2 substrate by means of RF magnetron sputtering. The system was annealed at vaccum at different temperatures of 450, 500, 550,. 600 and 650 °C Phase analysis was carried out by XRD and it was found that NdFeB was formed without the formation of any kind of secondary phase. The cross sectional and grain size of the thin films were measured by scanning electron microscopy. Morphological studies were performed by atomic force microscopy. Magnetic properties of thin films including coercivity, saturation of magnetization and hysteresis area were evcaluated by vibrating sample magnetometer. It was found that by annealing at 400 °C the amorphous layer was formed.The highest intensity of peaks was formed at 550 °C and with an increase in temperature the intensity was declined. The grain size was increased by temperature and had an impact on the coercivity. With an increase of temperature up to 600 °C, perpendicular coercivity was increased and then by further increase of temperatute, coercivity was reduced. Based on the obtained data the temperature of 600 °C was selected as the optimum annealing temperature for reaching enhanced structural and magnetic feature.

  14. Progress of HDDR NdFeB powders modulated by the diffusion of low melting point elements and their alloys

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available The hydrogenation-disproportionation-desorption-recombination (HDDR process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application of HDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.

  15. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  16. XMCD study of the local magnetic and structural properties of microcrystalline NdFeB-based alloys

    Science.gov (United States)

    Menushenkov, A. P.; Ivanov, V. G.; Shchetinin, I. V.; Zhukov, D. G.; Menushenkov, V. P.; Rudnev, I. A.; Ivanov, A. A.; Wilhelm, F.; Rogalev, A.; Savchenko, A. G.

    2017-01-01

    X-ray Magnetic Circular Dichroism (XMCD) technique was used to investigate local magnetic properties of microcrystalline Nd10.4Zr4.0Fe79.2B6.4 samples, oriented along either easy or hard magnetization direction. The Nd L 2,3 and Fe K edge XMCD spectra were measured at room temperature under a magnetic field of T. A very strong dependence of XMCD spectra on the sample orientation has been observed at the Nd L 2,3-edges, whereas the Fe K-edge XMCD spectra are found to be practically isotropic. This result indicates that magnetic anisotropy of NdFeB-based alloys originates from the Nd sublattice. In addition, element selective magnetization curves have been recorded by measuring the intensity of XMCD signals as a function of an applied magnetic field up to T. To find a correlation between local and macroscopic magnetic properties of studied samples we compared these data with magnetization curves, measured by vibrating sample magnetometer up to T. Results are important for understanding the origin of high-coercivity state in NdFeB-based intermetallic compounds.

  17. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate

    Science.gov (United States)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  18. The effect of additional elements on the magnetic properties of hot-rolled Nd-Fe-B alloys

    International Nuclear Information System (INIS)

    Chang, W.C.; Nakamura, H.; Paik, C.R.; Sugimoto, S.; Okada, M.; Homma, M.

    1992-01-01

    The magnetic properties of hot-rolled Nd 16 Fe bal. B 6 M 1.5 (M = Cu, Ga and Al) and Nd 16 Fe 76 B 5.5 Ga 1.5 Al 1 alloys were investigated, in order to study the role of additive elements in improving the magnetic properties in the Nd-Fe-B system. It is found that the original grain size of Cu, Ga or Ga-Al added alloys is much finer than that of the ternary and Al added alloys. But the grain size is almost identical for all the alloys after hot-rolling at 1000degC with 90% reduction in thickness. The coercivity of hot-rolled alloys with Cu, Ga or Ga-Al addition is not improved as was expected, because Nd-rich liquid phase in these alloys is very easily squeezed out during high-reduction-ratio rolling. Less quantity and nonuniform distribution of Nd-rich phase between distributed grains are believed to be the main reasons to depress the effect on the grain boundary smoothing. This effect is not the same as those observed in the Pr-Fe-B system. The highest magnetic properties achieved in this study are B r = 10 kG, i H c = 8.2 kOe, (BH) max = 18.5 MGOe for the Nd 16 Fe 76.5 B 6 Al 1.5 alloy. (orig.)

  19. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  20. Experimental Research of Influence of a Relative Particles Positioning in a Gas Stream on Characteristics of their Aerodynamic Traces

    Directory of Open Access Journals (Sweden)

    Volkov Roman S.

    2016-01-01

    Full Text Available The cycle of experimental studies on determination of length of aerodynamic traces of the particles which are flowed round by an air stream is executed. When carrying out researches, panoramic optical methods for diagnostics of multiphase flows of PIV and PTV were used. Velocities of an air flow were varied in the range of 1-3 m/s. The sizes of particles changed from 1mm to 5 mm. The defining influence of the sizes of particles and velocities of an air stream on length of aerodynamic traces is established. Influence of a relative positioning of particles on features of formation of an aerodynamic trace is shown.

  1. The influence of design and fuel parameters on the particle emissions from wood pellets combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Gebart, Rikard [Energy Technology Centre, Piteaa (Sweden)

    2005-02-01

    temperature yields decreasing emissions of coarse fly ash and soot particles, however, the emissions of submicron fly ash particles increases simultaneously. Increased mixing rate in the combustion chamber will also decrease the emissions of soot particles. In addition to the operating conditions, significant differences in particle emissions were found between different biomass fuels. For the particles that were dominated by ash elements the particle emissions were correlated to the ash concentration in the unburned fuel. However, if the combustion condition allowed for organic particles, the sooting tendency of each fuel becomes important. Furthermore, the results showed that the fuel type affects the particle emissions more than the influence from different operating and construction parameters.

  2. Influence of Dissipative Particle Dynamics parameters and wall models on planar micro-channel flows

    Science.gov (United States)

    Wang, Yuyi; She, Jiangwei; Zhou, Zhe-Wei; microflow Group Team

    2017-11-01

    Dissipative Particle Dynamics (DPD) is a very effective approach in simulating mesoscale hydrodynamics. The influence of solid boundaries and DPD parameters are typically very strong in DPD simulations. The present work studies a micro-channel Poisseuille flow. Taking the neutron scattering experiment and molecular dynamics simulation result as bench mark, the DPD results of density distribution and velocity profile are systematically studied. The influence of different levels of coarse-graining, the number densities of wall and fluid, conservative force coefficients, random and dissipative force coefficients, different wall model and reflective boundary conditions are discussed. Some mechanisms behind such influences are discussed and the artifacts in the simulation are identified with the bench mark. Chinese natural science foundation (A020405).

  3. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption

    International Nuclear Information System (INIS)

    Garcia M, A.

    2001-01-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  4. ‘Sticky business’: The influence of streambed periphyton on particle deposition and infiltration

    Science.gov (United States)

    Salant, Nira L.

    2011-03-01

    Strong feedbacks exist between physical and ecological components of aquatic systems. Aquatic plants can alter flow and sedimentation patterns, in turn influencing habitat condition and organism responses. In this study, I investigate the interactions between streambed periphyton, particle deposition and infiltration, and flow hydraulics to determine the influence of these organisms on the local environment. In a series of flume experiments, I measured the effects of two contrasting forms of periphyton at several densities and growth stages on near-bed hydraulics, particle loss from the water column, surface deposition, and subsurface infiltration. Data show that periphyton assemblages altered the rate and quantity of particle deposition via several mechanisms, including shear stress modification, surface adhesion, and bed clogging. Although trends varied for different size classes within a suspension of fine sediment, diatoms and algae had distinctly different effects on hydraulics, deposition, and infiltration. In general, diatoms increased the rate of decline in suspended particle concentrations relative to non-periphyton surfaces by reducing shear stresses and enhancing surface deposition via adhesion. Increases in diatom biomass, however, reduced the quantity and depth of particle infiltration, presumably by clogging interstitial pore spaces, in turn lowering rates of concentration decline. In contrast, all algal growth stages had slower or similar rates of concentration decline compared to non-periphyton conditions, due to partial clogging by high biomass and a lack of adhesion at the bed surface. Clogging effects were counteracted at later growth stages, however, as late-stage algal structures increased shear stresses and downward advection, in turn increasing amounts of infiltration. Compiled data from several field studies and experiments demonstrate a positive relation between periphyton biomass and inorganic mass, but also show a wide range in the

  5. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses

    Science.gov (United States)

    Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.

    2018-04-01

    Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol

  6. Influence of microorganism content in suspended particles on the particle-water partitioning of mercury in semi-enclosed coastal waters.

    Science.gov (United States)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle-water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a]algae to transfer Hg to marine food chains. © 2013.

  7. Influence of shielding gas on fume formation rate and particle size distribution for optimised GMAW

    International Nuclear Information System (INIS)

    Carpenter, K.R.; Monaghan, B.J.; Nicholson, A.; Cuiuri, D.; Norrish, J.

    2010-01-01

    The influence of shielding gas on fume formation rate (FFR) and particle size distribution has been investigated by using a technique developed for automatic control of the welding voltage in gas metal arc welding (GMAW). The results for automatic control are compared with the use of a fixed voltage. Significant reductions in FFR and a general decrease in average particle size were observed using the automatic control technique. This reduction in FFR was attributed to improved metal transfer stability, via a reduction in the occurrence of repelled globular transfer, by promoting the 'drop-spray' transfer condition, together with a reduction in the arc length. FFR and particle size were strongly related to the C O2 content of the shielding gas, where FFR increased as percent C 02 increased, due mainly to the dominant influence of C O2 on weld transfer and arc characteristics. The results indicate that FFR for GMAW in the spray regime should be determined by using optimised welding conditions for each shielding gas composition.

  8. Influence of packing and dispersion of particles on the cement content of concretes

    Directory of Open Access Journals (Sweden)

    B. L. DAMINELI

    Full Text Available Abstract Due to environmental issues, the concrete chain seeks to reduce CO2 emissions. However, growing demand from developing countries causes the increase of CO2 emissions in production to exceed decreases generated by industrial actions, such as improving kilns and clinker replacement. New strategies are important. Changes in the concrete formulation, making it more efficient, can help if these changes produce concrete with the same performance and lower cement consumption. In this regard, the improvement of packing and dispersion of particles increases this efficiency. The better the packing, the lower the volume of voids between particles, thereby requiring lower fluid content (water to permit flow. The dispersion of the particles also decreases the water content for the same fluidity. The less the water content, the smaller the water/cement (w/c ratio, and the greater the resistance. Thus, both strategies increase the efficiency by uncoupling obtaining fluidity from the water content. This study investigated the influence of packing and dispersion on the efficiency of cement use in concrete. The increase of packing and the complete dispersion of fine particles has been shown to improve efficiency, as measured by the ratio between binder consumption and compressive strength (the performance parameter used in most practical applications.

  9. Influence of process variables on permeability and anisotropy of Biso-coated HTGR fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.; Thiele, B.A.

    1977-11-01

    The effect of several important process variables on the fraction of defective particles and anisotropy of the low-temperature isotropic (LTI) coating layer was determined for Biso-coated HTGR fuel particles. Process variables considered are deposition temperature, hydrocarbon type, diluent type, and percent diluent. The effect of several other variables such as coating rate and density that depend on the process variables were also considered in this analysis. The fraction of defective particles was controlled by the dependent variables coating rate and LTI density. Coating rate was also the variable controlling the anisotropy of the LTI layer. Diluent type and diluent concentration had only a small influence on the deposition rate of the LTI layer. High-quality particles in terms of anisotropy and permeability can be produced by use of a porous plate gas distributor if the coating rate is between 3 and 5 μm/min and the coating density is between about 1.75 and 1.95 g/cm 3

  10. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  11. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Constantinescu, C.; Patroi, E.; Codescu, M.; Dinescu, M.

    2013-01-01

    Highlights: ► NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. ► Nitrogen inclusion in thin film structures is related to improved coercitivity. ► Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3ω and 4ω) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 °C), nitrogen gas pressure, and radiofrequency power (75–150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  12. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  13. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    International Nuclear Information System (INIS)

    Tao, Lei; Li, Heqin; Shen, Jiong; Qiao, Kai; Wang, Wei; Zhou, Chu; Zhang, Jing; Tang, Qiong

    2015-01-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H 2 SO 4 solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film

  14. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C., E-mail: catalin.constantinescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania); Patroi, E.; Codescu, M. [National Institute for Research and Development in Electrical Engineering - Advanced Research, 313 Spl. Unirii, Sector 3, RO-030138, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. Black-Right-Pointing-Pointer Nitrogen inclusion in thin film structures is related to improved coercitivity. Black-Right-Pointing-Pointer Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3{omega} and 4{omega}) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 Degree-Sign C), nitrogen gas pressure, and radiofrequency power (75-150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  15. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lei [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Shen, Jiong [Earth-Panda Advance Magnetic Material Co., Ltd., Anhui Lujiang 231500 (China); Qiao, Kai; Wang, Wei; Zhou, Chu [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Anhui Hefei 230009 (China)

    2015-02-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H{sub 2}SO{sub 4} solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film.

  16. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    Science.gov (United States)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  17. Nitrogen mineralization and denitrification as influenced by crop residue particle size

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, E.S.

    1997-01-01

    1: N-15-labelled ground (less than or equal to 3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic N-15 and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days......Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment...... for measuring gross N mineralization and denitrification. Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg(-1) soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg(-1) soil) than from cut barley (2.7 mg...

  18. Measurements on very small single crystals of NdFeB using a vibrating reed magnetometer

    International Nuclear Information System (INIS)

    Richter, H.J.; Hempel, K.A.; Verhoef, R.

    1988-01-01

    Nd 2 Fe 14 B single crystals with magnetic moments ranging from 1.6 x 10 -8 Acm 2 to 9.5 x 10 -7 Acm 2 are measured using the ultra high sensitivity vibrating reed magnetometer. The hysteresis loops are compared to those of BaFe 12 O 19 single crystals. It turns out that the magnetization reversal of the Nd 2 Fe 14 B samples is similar to that of BaFe 12 O 19 single crystals if the ferrite samples are considerably bigger in size. This does not hold for bigger Nd 2 Fe 14 B particles where stronger domain wall pinning is observed. For very small grains of Nd 2 Fe 14 B there is still evidence of domain wall processes while for BaFe 12 O 19 grains of the same size true single domain behaviour can be observed

  19. The influence of the fractal particle size distribution on the mobility of dry granular materials

    Directory of Open Access Journals (Sweden)

    Vallejo Luis E.

    2017-01-01

    Full Text Available This study presents an experimental analysis on the influence of the particle size distribution (psd on the mobility of dry granular materials. The psd obeys a power law of the form: N(L>d=kd-Df, where N is the number of particles with diameter L greater than a given diameter d, k is a proportionality constant, and Df is the fractal dimension of the psd. No laboratory or numerical study has been conducted to date analysing how a fractal psd influences the mobility of granular flows as in the case of rock avalanches. In this study, the flow characteristics of poly-dispersed granular materials that have a fractal psd were investigated in the laboratory. Granular mixtures having different fractal psd values were placed in a hollow cylinder. The cylinder was lifted and the distance of flow of the mixture was measured with respect to the original position of the cylinder. It was determined that the distance of flow of the mixtures was directly related to their fractal psd values. That is, the larger the distance of flow of the mixture, the larger is the fractal psd of the granular mixture tested. Thus, the fractal psd in dry granular mixtures seems to have a large influence on the easiness by which dry granular mixtures move in the field.

  20. Influence of Boron on the Creep Behavior and the Microstructure of Particle Reinforced Aluminum Matrix Composites

    Directory of Open Access Journals (Sweden)

    Steve Siebeck

    2018-02-01

    Full Text Available The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs. The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al3BC can be reliably detected by X-ray diffraction (XRD, it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM and scanning transmission electron microscopy (STEM investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al3BC particles is detectable, which allows conclusions about the microstructure/property relationship.