WorldWideScience

Sample records for fe k-shell absorption

  1. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  2. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles

    Science.gov (United States)

    Liang, Bingbing; Wang, Shiliang; Kuang, Daitao; Hou, Lizhen; Yu, Bowen; Lin, Liangwu; Deng, Lianwen; Huang, Han; He, Jun

    2018-02-01

    FeCo-C core-shell nanoparticles (NPs) with diameters of 10-50 nm have been fabricated on a large scale by one-step metal-organic chemical vapor deposition using the mixture of cobalt acetylacetonate and iron acetylacetonate as the precursor. The Fe/Co molar ratio of the alloy nanocores and graphitization degree of C shells, and thus the magnetic and electric properties of the core-shell NPs, can be tuned by the deposition temperature ranging from 700 °C to 900 °C. Comparative tests reveal that a relatively high Fe/Co molar ratio and low graphitization degree benefit the microwave absorption (MA) performance of the core-shell NPs. The composite with 20 wt% core-shell NP obtained at 800 °C and 80 wt% paraffin exhibits an optimal reflection loss ({{R}}{{L}}) of -60.4 dB at 7.5 GHz with a thickness of 3.3 mm, and an effective absorption bandwidth (frequency range for RL ≤10 dB) of 9.2 GHz (8.8-18.0 GHz) under an absorber thickness of 2.5 mm. Our study provides a facile route for the fabrication of alloy-C core-shell nanostructures with high MA performance.

  4. The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites

    Science.gov (United States)

    Wan, Gengping; Luo, Yongming; Wu, Lihong; Wang, Guizhen

    2018-03-01

    CoFe/C core-shell structured nanocomposites (CoFe@C) have been fabricated through the thermal decomposition of acetylene with CoFe2O4 as precursor. The as-prepared CoFe@C was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the carbon shell in CoFe@C has a poor crystallization with a thickness about 5-30 nm and a content approximately 48.5 wt.%. Due to a good combination between intrinsic magnetic properties and high-electrical conductivity, the CoFe@C exhibits not only excellent absorption intensity but also wide frequency bandwidth. The minimum RL value of CoFe@C can reach - 44 dB at a thickness of 4.0 mm, and RL values below - 10 dB is up to 4.3 GHz at a thickness of 2.5 mm. The present CoFe@C may be a potential candidate for microwave absorption application.

  5. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  6. Determination of K shell absorption jump factors and jump ratios in the elements between Tm(Z = 69) and Os(Z = 76) by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaya, N.; Tirasoglu, E.; Apaydin, G.

    2008-01-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm (Z = 69) and Os(Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57 Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number

  7. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    Science.gov (United States)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  8. EVIDENCE FOR ULTRA-FAST OUTFLOWS IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. II. DETAILED PHOTOIONIZATION MODELING OF Fe K-SHELL ABSORPTION LINES

    International Nuclear Information System (INIS)

    Tombesi, F.; Cappi, M.; Dadina, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s –1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ∼10,000 km s –1 (∼0.03c) up to ∼100,000 km s –1 (∼0.3c), with a peak and mean value of ∼42,000 km s –1 (∼0.14c). The ionization parameter is very high and in the range log ξ ∼ 3-6 erg s –1 cm, with a mean value of log ξ ∼ 4.2 erg s –1 cm. The associated column densities are also large, in the range N H ∼ 10 22 -10 24 cm –2 , with a mean value of N H ∼ 10 23 cm –2 . We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected

  9. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  10. Controllable Fabrication of Fe3O4/ZnO Core–Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2–18 GHz Frequency Range

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2018-05-01

    Full Text Available In this study, Fe3O4/ZnO core–shell nanocomposites were synthesized through a chemical method of coating the magnetic core (Fe3O4 with ZnO by co-precipitation of Fe3O4 with zinc acetate in a basic medium of ammonium hydroxide. The phase structure, morphology and electromagnetic parameters of the Fe3O4/ZnO core–shell nanocomposites were investigated. The results indicated that the concentration of the solvent was responsible for controlling the morphology of the composites, which further influenced their impedance matching and microwave absorption properties. Moreover, Fe3O4/ZnO nanocomposites exhibited an enhanced absorption capacity in comparison with the naked Fe3O4 nanospheres. Specifically, the minimum reflection loss value reached −50.79 dB at 4.38 GHz when the thickness was 4.5 mm. It is expected that the Fe3O4/ZnO core–shell structured nanocomposites could be a promising candidate as high-performance microwave absorbers.

  11. Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles

    Science.gov (United States)

    Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.

    2018-02-01

    FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.

  12. Fe3O4@polyaniline yolk-shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption

    Science.gov (United States)

    Wang, Xiaoliang; Zhang, Minwei; Zhao, Jianming; Huang, Guoyong; Sun, Hongyu

    2018-01-01

    Unique Fe3O4/polyaniline (PANI) composite with yolk-shell micro/nanostructure (FPys) has been successfully synthesized by a facile silica-assisted in-situ polymerization and subsequent etching strategy. The structural and compositional studies of the FPys composites are performed by employing X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The yolk-shell morphology of the products is confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. When evaluated as anode material for lithium-ion batteries, the as-prepared FPys electrodes deliver superior capacity, better cycling stability and rate capability than those of bare Fe3O4 micro/nanospheres and Fe3O4/PANI core-shell (FPcs) electrodes. Moreover, FPys also exhibits excellent electromagnetic wave absorption performance when comparing to the synthesized Fe3O4-based electromagnetic wave absorbers, in which strong reflection loss and extensive response bandwidth can be achieved simultaneously. The excellent bifunctional properties of FPys material are associated with the specially designed hierarchical micro/nanostructures. The current strategy that application directed structural design can be applied to the synthesis of other multifunctional materials.

  13. Diffraction and absorption of inelastically scattered electrons for K-shell ionization

    International Nuclear Information System (INIS)

    Josefsson, T.W.; Allen, L.J.

    1995-01-01

    An expression for the nonlocal inelastic scattering cross section for fast electrons in a crystalline environment, which explicitly includes diffraction as well as absorption for the inelastically scattered electrons, is used to carry out realistic calculations of K-shell electron energy loss spectroscopy (EELS) and energy dispersive x-ray (EDX) analysis cross sections. The calculations demonstrate quantitatively why, in EDX spectroscopy, integration over the dynamical states of the inelastically scattered electron averages in such a way that an effective plane wave representation of the scattered electrons is a good approximation. This is only the case for large enough acceptance angles of the detector in an EELS experiment. For EELS with smaller detector apertures, explicit integration over the dynamical final states is necessary and inclusion of absorption for the scattered electrons is important, particularly for thicker crystals. 50 refs., 7 figs

  14. Damage to adenosine-triphosphate induced by monochromatic X rays around the K shell absorption edge of phosphorus

    International Nuclear Information System (INIS)

    Watanabe, Ritsuko; Ishikawa, Mitsuo; Takakura, Kaoru; Kobayashi, Katsumi

    1992-01-01

    Adenosine-triphosphate (ATP) is well known to have an important role in the energy metabolism in biological systems. The purpose of this study is to clarify the radiation effects on ATP specific to inner shell ionization. ATP, in concentrated aqueous solution, was irradiated with monochromatic X rays having energies of the resonance absorption peak of the phosphorus K shell, 2.153 keV, and slightly below and above the peak, 2.145 keV and 2.160 keV, selected from synchrotron radiation. Adenine, Adenosine 5'monophosphate (5'AMP) and Adenosine 5'diphosphate (5'ADP) were obtained as radioproducts by the method of high performance liquid chromatography (HPLC). G values of these products were calculated on the basis of the absorbed energy. When the ATP solution of 0.282 mol/l was irradiated with 2.160 keV X rays which can ionize the K shell of phosphorus, G values of Adenine, 5'AMP and 5'ADP were estimated to be 1.4, 0.40 and 0.46, respectively. These values were respectively 1.3, 2.9 and 3.8 times higher than those obtained upon irradiation with 2.146 keV X rays which cannot ionize the K shell of phosphorus. These energy dependent enhancements may reflect the difference in energy absorption processes, especially the Auger cascade in phosphorus may be suspected to play an important role in these enhancements

  15. Interchange core/shell assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 for microwave absorption

    Directory of Open Access Journals (Sweden)

    Jiaheng Wang

    2017-05-01

    Full Text Available Core/shell-structured CeO2/Fe3O4 and Fe3O4/CeO2 nanocapsules are prepared by interchange assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 as the core and the shell, and vice versa, using a facile two-step polar solvothermal method in order to utilize the room-temperature ferromagnetism and abundant O-vacancies in CeO2, the large natural resonance in Fe3O4, and the O-vacancy-enhanced interfacial polarization between CeO2 and Fe3O4 for new generation microwave absorbers. Comparing to Fe3O4/CeO2 nanocapsules, the CeO2/Fe3O4 nanocapsules show an improved real permittivity of 3–10% and an enhanced dielectric resonance of 1.5 times at 15.3 GHz due to the increased O-vacancy concentration in the CeO2 cores of larger grains as well as the O-vacancy-induced enhancement in interfacial polarization between the CeO2 cores and the Fe3O4 shells, respectively. Both nanocapsules exhibit relatively high permeability in the low-frequency S and C microwave bands as a result of the bi-magnetic core/shell combination of CeO2 and Fe3O4. The CeO2/Fe3O4 nanocapsules effectively enhance permittivity and permeability in the high-frequency Ku band with interfacial polarization and natural resonance at ∼15 GHz, thereby improving absorption with a large reflection loss of -28.9 dB at 15.3 GHz. Experimental and theoretical comparisons with CeO2 and Fe3O4 nanoparticles are also made.

  16. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core–shell nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Afghahi, S.S.S., E-mail: salmanafghahi@gmail.com [Materials Science and Engineering Imam Hossein University, Department of Engineering, Babaei Highway, P.O. Box: 15816-18711, Tehran (Iran, Islamic Republic of); Shokuhfar, A. [Advanced Materials and Nanotechnology Research Laboratory, Department of Materials Science and Engineering K.N. Toosi University of Technology, P.O. Box: 19395-1999, Tehran (Iran, Islamic Republic of)

    2014-12-15

    In this research synthesis of FeCo@C core–shell nanoparticles was done using a novel two step process including the microemulsion technique and alcohol catalytic chemical vapor deposition. X-ray diffraction, transmission electron microscopy, electron beam diffraction and energy dispersive spectroscopy confirm the formation of FeCo@graphite core–shell nanostructure. Compared with FeCo nanoparticles with an oxide shell, the graphite shell restricts the growth of the FeCo nanoparticles, leading to lower saturation magnetization and higher natural-resonance frequency. The electromagnetic characteristics including permittivity, permeability and loss tangents of FeCo nanoparticles/nanoencapsulates were determined in the frequency range of 2–18 GHz. Results show that the graphite coating dramatically improves electromagnetic wave absorption of FeCo nanoparticles due to several dielectric/magnetic loss mechanisms. The main mechanism enhancing the dielectric loss tangent is Deby's dual relaxation phenomenon and for magnetic loss is the ferromagnetic resonance. The maximum reflection loss of −40 dB at 2.5 mm thickness and the maximum effective absorption bandwidth (RL<−20 dB) of 5.6 GHz at 3 mm thickness were obtained for FeCo nanoencapsulates. - Highlights: • FeCo@C core–shell nanoparticles were synthesized using a novel two step process. • Graphite coating dramatically improves the EM wave absorption of FeCo NPs. • FeCo@C nanoparticles represent high values of both magnetic and dielectric losses. • Maximum RL of −40 dB was obtained at 2.5 mm thickness. • Maximum effective bandwidth (RL<−20 dB) of 5.6 GHz was obtained at 3 mm thickness.

  17. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  18. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  19. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  20. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    Science.gov (United States)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  1. K-SHELL PHOTOIONIZATION OF NICKEL IONS USING R-MATRIX

    International Nuclear Information System (INIS)

    Witthoeft, M. C.; Bautista, M. A.; GarcIa, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ion stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  2. K-Shell Photoionization of Nickel Ions Using R-Matrix

    Science.gov (United States)

    Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  3. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    International Nuclear Information System (INIS)

    Li, Zi; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping

    2016-01-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N 2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  4. Simultaneous K plus L shell ionized atoms during heavy-ion ...

    Indian Academy of Sciences (India)

    The fraction of simultaneous K plus L shell ionized atoms is estimated in Fe, Co and Cu elements using carbon ions at different projectile energies. The present results indicate that the fraction of simultaneous K plus L shell ionization probability decreases with increase in projectile energy as well as with increase in the ...

  5. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  6. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T. [Physics Department, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557 (United States); Smalyuk, V. A.; Regan, S. P.; Delettrez, J. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

    2014-08-15

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1–2 transitions in F- through Li-like Ti ions in the 4400–4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e} = 400–600 eV and N{sub e} = 3.0–10.0 × 10{sup 24} cm{sup −3} for all but the most distant Ti-doped layer, with error bars ∼5% T{sub e} value and ∼10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  7. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  8. High resolution X-ray spectra of solar flares. V. interpretation of inner-shell transitions in Fe XX-Fe XXIII

    International Nuclear Information System (INIS)

    Doschek, G.A.; Feldman, U.; Cowan, R.D.

    1981-01-01

    We discuss high-resolution solar flare iron line spectra recorded between 1.82 and 1.97 A by a spectrometer flown by the Naval Research Laboratory on an Air Force spacecraft launched on 1979 February 24. The emission line spectrum is due to inner-shell transitions in the ions Fe XX-Fe XXV. Using theoretical spectra and calculations of line intensities obtained by methods discussed by Merts, Cowan, and Magee, we derive electron temperatures as a function for time of two large class X flares. These temperatures are deduced from intensities of lines of Fe XXIII, Fe XXII, and Fe XXIV. Previous measurements by us have involved only lines of Fe XXIV and Fe XXV. We discuss the determination of the differential emission measure between about 12 x 10 6 K and 20 x 10 6 K using these temperatures. The possibility of determining electron densities in flare and tokamak plasmas using the inner-shell spectra of Fe XXI and Fe XX is discussed. We also discuss recent theoretical work by Mewe and Schrijver based on atomic data of Grineva, Safronova, and Urnov

  9. Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1993-01-01

    The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)

  10. Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?

    Science.gov (United States)

    Yaqoob, Tahir; Serlemitsos, Peter

    2005-01-01

    We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.

  11. Enhanced specific absorption rate of bi-magnetic nanoparticles for heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, Mohaned; Hempelmann, Rolf, E-mail: r.hempelmann@mx.uni-saarland.de

    2017-02-15

    Truncated octahedron bi-magnetic core/shell nanoparticles of Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4} with different size distributions have been synthesized, and their structural and magnetic properties have been studied. The structure and morphology of the core/shell nanostructures were established by using X-ray diffraction, and transmission electron microscopy. Dark field-TEM and X-ray photoelectron spectroscopy results confirmed the formation of bi-magnetic core/shell nanoparticles. The synthesized nanoparticles are superparamagnetic at room temperature. The Curie temperature increases with the increase of particle size from 360 K to 394 K. The experimental results showed that core/shell nanoparticles have a higher specific absorption rate compared to the core ones. These nanoparticles are interfacial exchange coupled between hard and soft magnetic phases. We demonstrated that the specific absorption rate could be tuned by the concentration of precursor and the synthesis time. - Highlights: • Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4} nanoparticles were synthesized by seed-mediated growth method. • Exchange-coupling between magnetic hard and soft phase of the magnetic nanoparticles affects the specific absorption rate. • The specific absorption rate could be tuned by the concentration of precursor and the synthesis time. • An increase of the core/shell magnetic nanoparticles size resulted in the increase of Curie temperature.

  12. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Nobukawa, Masayoshi [Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara, 630-8528 (Japan); Uchiyama, Hideki [Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 (Japan); Nobukawa, Kumiko K.; Koyama, Katsuji [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Yamauchi, Shigeo, E-mail: nobukawa@nara-edu.ac.jp [Department of Physics, Nara Women’s University, Kitauoyanishimachi, Nara, 630-8506 (Japan)

    2016-12-20

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand, the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.

  13. Optical absorption of carbon-gold core-shell nanoparticles

    Science.gov (United States)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  14. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  15. Photoionization of the Fe lons: Structure of the K-Edge

    Science.gov (United States)

    Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.

  16. Interparticle interactions of FePt core and Fe{sub 3}O{sub 4} shell in FePt/Fe{sub 3}O{sub 4} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hossein, E-mail: Akbari.ph@iauardabil.ac.ir [Department of Physics, Ardabil Branch, Islamic Azad University, Ardabil (Iran, Islamic Republic of); Zeynali, Hossein [Department of Physics, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of); Bakhshayeshi, Ali [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2016-02-22

    Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe{sub 3}O{sub 4} core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner–Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe{sub 3}O{sub 4} core/shell nanoparticles. There is a difference between the results from Stoner–Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe{sub 3}O{sub 4} core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions. - Highlights: • Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. • Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. • A theoretical model presented to calculate the shell thickness dependence of Coercivity. • Magnetic shells increase effective coupling between particles with increasing shell thickness. • Magnetization modes are more localized in the regions with

  17. Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles

    International Nuclear Information System (INIS)

    Stefan, M.; Pana, O.; Leostean, C.; Silipas, D.; Bele, C.; Senila, M.; Gautron, E.

    2014-01-01

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe 3 O 4 –TiO 2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO 2 ) through a modified sol-gel process onto preformed magnetite (Fe 3 O 4 ) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe 3 O 4 and TiO 2 magnetic and optical properties, respectively.

  18. The influence of oxidation process on exchange bias in egg-shaped FeO/Fe{sub 3}O{sub 4} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Leszczyński, Błażej, E-mail: b.leszczynski@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Hadjipanayis, George C.; El-Gendy, Ahmed A. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Musiał, Andrzej [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Jarek, Marcin [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Skumiel, Andrzej [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2016-10-15

    Egg-shaped nanoparticles with a core–shell morphology were synthesized by thermal decomposition of an iron oleate complex. XRD and M(T) magnetic measurements confirmed the presence of FeO (wustite) and Fe{sub 3}O{sub 4} (magnetite) phases in the nanoparticles. Oxidation of FeO to Fe{sub 3}O{sub 4} was found to be the mechanism for the shell formation. As-made nanoparticles exhibited high values of exchange bias at 2 K. Oxidation led to decrease of exchange field from 2880 Oe (in as-made sample) to 330 Oe (in oxidized sample). At temperatures higher than the Néel temperature of FeO (200 K) there was no exchange bias. An interesting observation was made showing the exchange field to be higher than the coercive field at temperatures close to magnetite's Verwey transition. - Highlights: • Synthesis of monodispersed FeO nanoparticles is shown. • As-made FeO nanoparticle is antiferromagnetically ordered, when it is oxidized to Fe{sub 3}O{sub 4}, the FeO core becomes small and disordered. • Exchange bias in well-ordered and disordered core is different.

  19. Wind-embedded shocks in FASTWIND: X-ray emission and K-shell absorption

    Science.gov (United States)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2017-11-01

    EUV and X-ray radiation emitted from wind-embedded shocks can affect the ionization balance in the outer atmospheres of massive stars, and can also be the mechanism responsible for producing highly ionized atoms detected in the wind UV spectra. To investigate these processes, we implemented the emission from wind-embedded shocks and related physics into our atmosphere/spectrum synthesis code FASTWIND. We also account for the high energy absorption of the cool wind, by adding important K-shell opacities. Various tests justfying our approach have been described by Carneiro+(2016, A&A 590, A88). In particular, we studied the impact of X-ray emission on the ionization balance of important elements. In almost all the cases, the lower ionization stages (O iv, N iv, P v) are depleted and the higher stages (N v, O v, O vi) become enhanced. Moreover, also He lines (in particular He ii 1640 and He ii 4686) can be affected as well. Finally, we carried out an extensive discussion of the high-energy mass absorption coefficient, κν, regarding its spatial variation and dependence on T eff. We found that (i) the approximation of a radially constant κν can be justified for r >= 1.2R * and λ <= 18 Å, and also for many models at longer wavelengths. (ii) In order to estimate the actual value of this quantity, however, the He ii background needs to be considered from detailed modeling.

  20. The radiation effects of aspergillus oryzae spores with soft x-rays near the K shell absorption edges of C, N, O elements from synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Liang; Jiang Shiping; Wan Libiao; Ma Xiaodong; Li Meifang

    2007-01-01

    The dose deposition of different parts of Aspergillus oryzae spores were analyzed with soft X-ray energies near the K-shell absorption edges of C, N, O elements (4.4nm, 3.2nm and 2.3nm), respectively. At the same time, the spores were irradiated with the three wavelengths of soft X-rays on the soft X-ray microscopy from synchrotron radiation at NSRL, and the survivals were compared. The theoretical analyses showed that the deposition doses of different parts of the spore were varying with X-ray energies because of the effects of C, N, O K-shell absorption edges and elemental contents of the different parts of spore. The experimental studies proved three wavelengths of soft X-rays all had high killing abilities. Among these, 2.3nm wavelength X-rays had higher radiation damage to spore than that of 3.2nm, 4.4nm. (authors)

  1. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.

    Science.gov (United States)

    Yang, Jie; Bao, Chunxiong; Yu, Tao; Hu, Yingfei; Luo, Wenjun; Zhu, Weidong; Fu, Gao; Li, Zhaosheng; Gao, Hao; Li, Faming; Zou, Zhigang

    2015-12-09

    Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.

  2. [Experimental study and correction of the absorption and enhancement effect between Ti, V and Fe].

    Science.gov (United States)

    Tuo, Xian-Guo; Mu, Ke-Liang; Li, Zhe; Wang, Hong-Hui; Luo, Hui; Yang, Jian-Bo

    2009-11-01

    The absorption and enhancement effects in X-ray fluorescence analysis for Ti, V and Fe elements were studied in the present paper. Three bogus duality systems of Ti-V/Ti-Fe/V-Fe samples were confected and measured by X-ray fluorescence analysis technique using HPGe semiconductor detector, and the relation curve between unitary coefficient (R(K)) of element count rate and element content (W(K)) were obtained after the experiment. Having analyzed the degree of absorption and enhancement effect between every two elements, the authors get the result, and that is the absorption and enhancement effect between Ti and V is relatively distinctness, while it's not so distinctness in Ti-Fe and V-Fe. After that, a mathematics correction method of exponential fitting was used to fit the R(K)-W(K) curve and get a function equation of X-ray fluorescence count rate and content. Three groups of Ti-V duality samples were used to test the fitting method and the relative errors of Ti and V were less than 0.2% as compared to the actual results.

  3. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  4. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jian; Zhang, Wei; Wang, Feng; Yu, Xiao-Ying

    2018-04-11

    In this paper, a vacuum compatible microfluidic device, System for Analysis at the Liquid Vacuum Interface (SALVI), is integrated to hard x-ray absorption spectroscopy (XAS) to obtain the local structure of K3[Fe(CN)6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel of 500 μm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra show that the complex in water is Fe(III). The complex is present with octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K3[Fe(CN)6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities and it is a viable approach to enable multifaceted measurements of liquids in the future.

  5. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    Science.gov (United States)

    Zheng, Jian; Zhang, Wei; Wang, Feng; Yu, Xiao-Ying

    2018-05-01

    In this paper, a vacuum compatible microfluidic device, system for analysis at the liquid vacuum interface, is integrated to hard x-ray absorption spectroscopy to obtain the local structure of K3[Fe(CN)6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel 500 µm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra indicate a presence of Fe(III) in the complex in water, with an octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K3[Fe(CN)6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities. Using portable microfludic reactors provides a viable approach to enable multifaceted measurements of liquids in the future.

  6. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    Science.gov (United States)

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  7. Measurement of K-shell absorption jump factors and jump ratios in some lanthanide elements using EDXRF technique

    International Nuclear Information System (INIS)

    Polat, Recep; İçelli, Orhan; Yalçın, Zeynel; Pesen, Erhan; Orak, Salim

    2013-01-01

    Highlights: ► Mass attenuation coefficients, jump factor and jump ratio for lanthanide elements are obtained. ► The method used in this experiment is combined both transmission and scattering geometry. ► Secondary gamma rays energy is 59.5 keV. ► Experimental values of jump factor and jump ratio for K shell are new. ► The experimental values are in good agreement with those calculated theoretically. - Abstract: 59.5 keV gamma rays scattered by an aluminum foil have been used as a radiation source to measure the absorption jump factor and jump ratios for absorbers Ce, Pr, Nd, Sm, Eu and Tb. The theoretical and experimental values are compared with the corresponding ones in the literature

  8. Synthesis and characterization of Fe{sub 3}O{sub 4}–TiO{sub 2} core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, M., E-mail: maria.stefan@itim-cj.ro; Pana, O.; Leostean, C.; Silipas, D. [National Institute for R and D of Isotopic and Molecular Technology, 67–103 Donat St., 400295 Cluj-Napoca (Romania); Bele, C. [University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca (Romania); Senila, M. [INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 65 Donat St., 400293 Cluj-Napoca (Romania); Gautron, E. [Institute of Materials Jean Rouxel, 2 rue de la Houssière, P.O. Box 32229, 44322 Nantes Cedex 3 (France)

    2014-09-21

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe{sub 3}O{sub 4}–TiO{sub 2} nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO{sub 2}) through a modified sol-gel process onto preformed magnetite (Fe{sub 3}O{sub 4}) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe{sub 3}O{sub 4} and TiO{sub 2} magnetic and optical properties, respectively.

  9. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles

    Science.gov (United States)

    Lu, B.; Dong, X. L.; Huang, H.; Zhang, X. F.; Zhu, X. G.; Lei, J. P.; Sun, J. P.

    Iron (Fe) and nickel (Ni) nanoparticles were prepared by the DC arc-discharge method in a mixture of hydrogen and argon gases, using bulk metals as the raw materials. The microstructure of core/shell (metal/metal oxide) in nanoparticle formed after in situ passivation process. The complex electromagnetic parameters (permittivity ɛ=ɛr'+iɛr″ and permeability μ=μr'+iμr″) of the paraffin-mixed nanocomposite samples (paraffin:nanoparticles=1:1 in mass ratio) were measured in the frequency range of 2-18 GHz. The polarization mechanisms of the space charge and dipole coexist in both the Fe and Ni nanoparticles. The orientational polarization is a particular polarization for Fe nanoparticles and brings a relatively higher dielectric loss. Natural resonance is the main reason for magnetic loss and the corresponding frequencies are 11.6 and 5.2 GHz for the Fe and Ni nanoparticles, respectively. The paraffin composite with Fe nanoparticles provided excellent microwave absorption properties (reflection loss <-20 dB) in the range 6.8-16.6 GHz over the absorber thickness of 1.1-2.3 mm.

  10. CIRCUMSTELLAR SHELLS IN ABSORPTION IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz J.; Blondin, John M.; Reynolds, Stephen P.

    2009-01-01

    Progenitors of Type Ia supernovae (SNe) have been predicted to modify their ambient circumstellar (CSM) and interstellar environments through the action of their powerful winds. While there is X-ray and optical evidence for circumstellar interaction in several remnants of Type Ia SNe, widespread evidence for such interaction in Type Ia SNe themselves has been lacking. We consider prospects for the detection of CSM shells that have been predicted to be common around Type Ia SNe. Such shells are most easily detected in Na I absorption lines. Variable (declining) absorption is expected to occur soon after the explosion, primarily during the SN rise time, for shells located within ∼1-10 pc of a SN. The distance of the shell from the SN can be determined by measuring the timescale for line variability.

  11. Investigating the Role of Shell Thickness and Field Cooling on Saturation Magnetization and Its Temperature Dependence in Fe3O4/γ-Fe2O3 Core/Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2017-12-01

    Full Text Available Understanding saturation magnetization and its behavior with particle size and temperature are essential for medical applications such magnetic hyperthermia. We report the effect of shell thickness and field cooling on the saturation magnetization and its behavior with temperature in Fe3O4/γ-Fe2O3 core/shell nanoparticles of fixed core diameter (8 nm and several shell thicknesses. X-ray diffraction (XRD analysis and transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM were used to investigate the phase and the morphology of the samples. Selected area electron diffraction (SAED confirmed the core/shell structure and phases. Using a SQUID (San Diego, CA, USA, magnetic measurements were conducted in the temperature range of 2 to 300 K both under zero field-cooling (ZFC and field-cooling (FC protocols at several field-cooling values. In the ZFC state, considerable enhancement of saturation magnetization was obtained with the increase of shell thickness. After field cooling, we observed a drastic enhancement of the saturation magnetization in one sample up to 120 emu/g (50% larger than the bulk value. In both the FC and ZFC states, considerable deviations from the original Bloch’s law were observed. These results are discussed and attributed to the existence of interface spin-glass clusters which are modified by the changes in the shell thickness and the field-cooling.

  12. Surface structure of alpha-Fe sub 2 O sub 3 nanocrystal observed by O K-edge X-ray absorption spectroscopy

    CERN Document Server

    Zhang, J; Ibrahim, K; Abbas, M I; Ju, X

    2003-01-01

    X-ray absorption near edge structure (XANES) spectra is used as a probe of surface structure of alpha-Fe sub 2 O sub 3 nanocrystal, prepared by sol-gel method. We present O K-edge XANES of alpha-Fe sub 2 O sub 3 in nanocrystal and bulk by total electron yield at the photoemission station of Beijing Synchrotron Radiation Facility. The spectrum of alpha-Fe sub 2 O sub 3 shows a splitting of the pre-edge structure, which is interpreted as two subsets of Fe 3d t sub 2 sub g and e sub g orbitals in oxygen octahedral (O sub h) crystal field, and is also sensitive to long-range order effects. However, no distinguishable splitting of the pre-edge peak of nanocrystal alpha-Fe sub 2 O sub 3 is observed. This suggests that there exists the distorted octahedral coordination around Fe sites and also the long-range disorder due to the surface as compared with bulk alpha-Fe sub 2 O sub 3.

  13. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    Science.gov (United States)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  14. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.

    Science.gov (United States)

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang

    2018-02-16

    Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

  15. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    Science.gov (United States)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  16. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles

    International Nuclear Information System (INIS)

    Lu, B.; Dong, X.L.; Huang, H.; Zhang, X.F.; Zhu, X.G.; Lei, J.P.; Sun, J.P.

    2008-01-01

    Iron (Fe) and nickel (Ni) nanoparticles were prepared by the DC arc-discharge method in a mixture of hydrogen and argon gases, using bulk metals as the raw materials. The microstructure of core/shell (metal/metal oxide) in nanoparticle formed after in situ passivation process. The complex electromagnetic parameters (permittivity ε r =ε r ' +iε r '' and permeability μ r =μ r ' +iμ r '' ) of the paraffin-mixed nanocomposite samples (paraffin:nanoparticles=1:1 in mass ratio) were measured in the frequency range of 2-18 GHz. The polarization mechanisms of the space charge and dipole coexist in both the Fe and Ni nanoparticles. The orientational polarization is a particular polarization for Fe nanoparticles and brings a relatively higher dielectric loss. Natural resonance is the main reason for magnetic loss and the corresponding frequencies are 11.6 and 5.2 GHz for the Fe and Ni nanoparticles, respectively. The paraffin composite with Fe nanoparticles provided excellent microwave absorption properties (reflection loss <-20 dB) in the range 6.8-16.6 GHz over the absorber thickness of 1.1-2.3 mm

  17. X-ray magnetic absorption in Fe-Tb amorphous thin films

    CERN Document Server

    Kim, Chan Wook; Watanabe, Yasuhiro

    1999-01-01

    In order to investigate the magnetic structure of Fe-Tb amorphous thin films, we have performed magnetic circular dichroism (MCD) measurements by using the circularly polarized X-ray at the Fe K- and the Tb L2,3-edges in Fe sub 8 sub 8 Tb sub 1 sub 2 , Fe sub 8 sub 0 Tb sub 2 sub 0 , and Fe sub 6 sub 2 Tb sub 3 sub 8. In all samples, the spin-dependent absorption effects, DELTA mu t, were observed. Also, elementary information was obtained on the spin polarizations of the p- and the d-projected electrons lying in the unoccupied states near the Fermi levels in the samples.

  18. Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Zhu, Jianguo, E-mail: yanglin_1028@163.com; Xiao, Dingquan

    2014-04-15

    High-quality ZnSe:Fe/ZnSe core/shell nanocrystals were prepared via a hydrothermal microemulsion technique. Effective surface passivation of monodisperse ZnSe:Fe nanocrystals is achieved by overcoating them with a ZnSe shell. The samples were characterized by means of XRD, EDX, TEM, PSD, XPS, photoluminescence, and Raman spectrum. The results show that the as-synthesized nanocrystals are cubic zinc blende ZnSe structure with high purity and the average particle size of ZnSe:Fe/ZnSe core/shell nanocrystal is larger than that of ZnSe:Fe core. The growth of ZnSe shell causes a small red shift in PL spectra, and then the PL quantum yield (QY) increases from 16% before shell growth to the maximum of 37% after increasing shell thickness up to 1.2 monolayers (ML). Moreover, both transverse optic (TO) and longitudinal optic (LO) phonon modes of ZnSe are shifted toward lower frequency as compared with the reported ones. -- Highlights: • ZnSe:Fe/ZnSe core/shell QDs were prepared by a hydrothermal microemulsion method. • ZnSe shell efficiently passivates surface defects by serving as a physical barrier. • The particle size and PL properties can be turned with the growth of ZnSe shell. • The luminescence efficiency and stability of QDs could be improved in this manner.

  19. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K. [Lawrence Livermore National Laboratory, P.O. Box 808 L170, Livermore, California 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  20. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  1. Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites

    Science.gov (United States)

    Kuila, S.; Tiwary, Sweta; Sahoo, M. R.; Barik, A.; Babu, P. D.; Siruguri, V.; Birajdar, B.; Vishwakarma, P. N.

    2018-02-01

    CoFe2O4 (core)/BiFeO3 (shell) nanoparticles are prepared by varying the relative molar concentration of core and shell materials (40%CoFe2O4-60%BiFeO3, 50%CoFe2O4-50%BiFeO3, and 60%CoFe2O4-40%BiFeO3). The core-shell nature is confirmed from transmission electron microscopy on these samples. A plot of ΔM (=MFC-MZFC) vs temperature suggests the presence of two types of spin dynamics: (a) particle size dependent spin blocking and (b) spin-disorder. These two spin dynamic processes are found to contribute independently to the generation of magnetoelectric voltage. Very clear first order and second order magnetoelectric voltages are recorded. The resemblance of the first order magnetoelectric coefficient vs temperature plot to that of building up of order parameters in the mean field theory suggests that spin disorder can act like one of the essential ingredients in building the magnetoelectric coupling. The best result is obtained for the 50-50 composition sample, which may be due to better coupling of magnetostrictive CoFe2O4, and piezoelectric BiFeO3, because of the optimum thickness of shell and core.

  2. The role of interfacial metal silicates on the magnetism in FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Desautels, R. D., E-mail: rddesautels@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Toyota Research Institute of North America, Ann Arbor, Michigan 48169 (United States); Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rowe, M. P. [Toyota Research Institute of North America, Ann Arbor, Michigan 48169 (United States); Lierop, J. van [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2015-05-07

    We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments have shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO{sub 2}-based interfacial shell.

  3. Determination of K shell fluorescence cross-section and Kβ/Kα intensity ratios for Fe, Se, Te, FeSe, FeTe and TeSe

    International Nuclear Information System (INIS)

    Saydam, M.; Aksoy, C.; Cengiz, E.; Alaşalvar, C.; Tıraşoğlu, E.; Apaydın, G.

    2012-01-01

    The fluorescence cross-sections (σ Ki ) and the intensity ratios K β /K α for pure Fe, Se, Te elements and FeSe, FeTe, TeSe complexes have been investigated. The samples were excited by 59.5 keV γ-rays from 241 Am annular radioactive source and emitted X-rays. They were counted by an Ultra-LEGe detector with resolution of 150 eV at 5.9 keV. For pure elements results have been compared with the theoretical calculated values. According to our results band length and mutual interaction of atoms affected the results. We claimed that these effects would help researchers who study on superconductors, especially determining which compound can be show the superconductor properties. - Highlights: ► TeSe, FeSe and FeTe complexes have affected each other in terms of charge transfer. ► Fe excitement and enhancement have been made by Se and Te. ► Attractive interactions between electrons can help to becoming superconductivity.

  4. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  5. Fe3O4@polyaniline yolk–shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Zhang, Minwei; Zhao, Jianming

    2017-01-01

    Unique Fe3O4/polyaniline (PANI) composite with yolk-shell micro/nanostructure (FPys) has been successfully synthesized by a facile silica-assisted in-situ polymerization and subsequent etching strategy. The structural and compositional studies of the FPys composites are performed by employing X......-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The yolk-shell morphology of the products is confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. When evaluated as anode material for lithium-ion batteries, the as-prepared FPys electrodes...

  6. Extended x-ray absorption fine structure study of MnFeP0.56Si0.44 compound

    International Nuclear Information System (INIS)

    Li Ying-Jie; Haschaolu W; Wurentuya; Song Zhi-Qiang; Ou Zhi-Qiang; Tegus O; Nakai Ikuo

    2015-01-01

    The MnFeP 0.56 Si 0.44 compound is investigated by x-ray diffraction, magnetic measurements, and x-ray absorption fine structure spectroscopy. It crystallizes in Fe 2 P-type structure with the lattice parameters a = b = 5.9823(0) Å and c = 3.4551(1) Å and undergoes a first-order phase transition at the Curie temperature of 255 K. The Fe K edge and Mn K edge x-ray absorption fine structure spectra show that Mn atoms mainly reside at 3g sites, while 3f sites are occupied by Fe atoms. The distances between the absorbing Fe atom and the first and second nearest neighbor Fe atoms in a 3f-layer shift from 2.65 Å and 4.01 Å in the ferromagnetic state to 2.61 Å and 3.96 Å in the paramagnetic phase. On the other hand, the distance between the 3g-layer and 3f-layer changes a little as 2.66 Å–2.73 Å below the Curie temperature and 2.68 Å–2.75 Å above it. (paper)

  7. Fe Core–Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer

    Directory of Open Access Journals (Sweden)

    Rakesh P. Chaudhary

    2017-10-01

    Full Text Available The aim of this study is to fabricate a hybrid composite of iron (Fe core–carbon (C shell nanoparticles with enhanced magnetic properties for contrast enhancement in magnetic resonance imaging (MRI. These new classes of magnetic core–shell nanoparticles are synthesized using a one-step top–down approach through the electric plasma discharge generated in the cavitation field in organic solvents by an ultrasonic horn. Transmission electron microscopy (TEM observations revealed the core–shell nanoparticles with 10–85 nm in diameter with excellent dispersibility in water without any agglomeration. TEM showed the structural confirmation of Fe nanoparticles with body centered cubic (bcc crystal structure. Magnetic multi-functional hybrid composites of Fe core–C shell nanoparticles were then evaluated as negative MRI contrast agents, displaying remarkably high transverse relaxivity (r2 of 70 mM−1·S−1 at 7 T. This simple one-step synthesis procedure is highly versatile and produces desired nanoparticles with high efficacy as MRI contrast agents and potential utility in other biomedical applications.

  8. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  9. Visible and IR photoluminescence of c-FeSi@a–Si core–shell nano-fibres produced by vapour transport

    Energy Technology Data Exchange (ETDEWEB)

    Thabethe, Sibongiseni [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria 0001 (South Africa); Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Linganiso, Ella; Motaung, David; Mashapa, Matete G.; Nkosi, Steven [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria 0001 (South Africa); Arendse, Christopher J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Mwakikunga, Bonex W., E-mail: bmwakikunga@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria 0001 (South Africa); Department of Physics and Biochemical Sciences, University of Malawi, The Polytechnic, Private Bag 303, Chichiri, Blantyre 3 (Malawi)

    2013-11-15

    The procedures for the synthesis of amorphous ε-FeSi/Si core–shell nanofibres by vapour transport in a CVD configuration are reported. Crystallite studies by the Williamson-Hall method show the sizes to be typically about 8.0 nm which agrees with TEM value of 7.9 nm fibre diameter with a compressive strain of about 0.04. Features in the photoluminescence of these FeSi core–shells in both visible and IR are at 410 nm, 1062 nm, 1414 nm and 1772 nm and absorption feature at 1000 cm{sup −1} from FTIR are explained from density functional theory (DFT) ab initio calculations. PL confirms the intra-band transition whereas FTIR agrees perfectly with the band-to-band transition whose band gap energy is 0.13 eV for FeSi. FTIR also unveils inter-band transition which DFT calculation could not predict. Raman spectroscopy data confirm FeSi and nano-Si presence. -- Highlights: • New PL data has been obtained for the c-FeSi@a–Si nano-fibres in the range (0.7–3.1 eV). • FTIR unveils the band-to-band transition within this narrow band gap FeSi. • The new data are explained through electronic energy band structure and density of states of FeSi. • Intra-band transitions as well as quantum confinement are responsible for blue shifts.

  10. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    International Nuclear Information System (INIS)

    Tian, Y.; Wu, D.; Yu, B.; Jia, X.; Zhan, S.

    2011-01-01

    Fe 3 O 4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe 2 O 3 shell was produced in situ on the surface of the Fe 3 O 4 nanoparticle by surface oxidation in molten salts, forming α-Fe 2 O 3 /Fe 3 O 4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe 3 O 4 nanoparticles were oxidized. Furthermore, the obtained a-Fe 2 O 3 /Fe 3 O 4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe 2 O 3 /Fe 3 O 4 nanoparticles were more efficient than the self-prepared α-Fe 2 O 3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  11. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  12. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    International Nuclear Information System (INIS)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-01-01

    Fe 3 O 4 @Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe 3 O 4 nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe 3 O 4 nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe 3 O 4 @Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes

  13. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  14. Characteristic K-shell x-ray production by protons below 500 keV

    International Nuclear Information System (INIS)

    Wheeler, R.M.; Chaturvedi, R.P.; Zander, A.R.

    1974-01-01

    The total thick target yield of K-shell x-rays produced in Ni by incident protons over the energy range 90 to 415 keV was measured. Similar measurements with 130 to 415 keV protons were made for Ti, Mn, Fe, Cu, and Zn. The East Texas State University 150 keV Cockcroft--Walton accelerator was used to study Ni K-shell x-rays produced by 90 to 150 keV protons. The remaining data were taken with the SUNY College at Cortland 400 keV Van de Graaff generator. The characteristic x-rays were measured with high resolution Si(Li) detectors. Using the most recent values of K-shell fluorescent yields, x-ray ionization cross sections were calculated and compared to theoretical predictions based on the binary encounter approximation (BEA) model. It was found that even though the data were lower than those expected by the BEA theory, they lie on a universal curve. A comprehensive summary of x-ray ionization cross section references covering the proton energy range up to 500 keV is also included. Possible applications of low energy accelerators (E/sub p/ less than or equal to 500 keV) for further experimental work is discussed

  15. Molecular single photon double K-shell ionization

    International Nuclear Information System (INIS)

    Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.

    2014-01-01

    We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained

  16. X-Ray Absorption in Carbon Ions Near the K-Edge

    Science.gov (United States)

    Hasoglu, M. F.; Abdel-Naby, Sh. A.; Nikolic, D.; Gorczyca, T. W.; McLaughlin, B. M.

    2007-06-01

    K-shell photoabsorption calculations are important for determining the elemental abundances of the interstellar medium (ISM) from observed X-ray absorption spectra. Previously, we performed reliable K-shell photoabsorption calculations for oxygen [1-3] and neon [4,5] ions. We have executed detailed R-matrix calculations for carbon ions, including Auger broadening, by using an optical potential, and relaxation effects, by using pseudoorbitals with the necessary pseudoresonance elimination. This work was funded by NASA's Astronomy Physics Research and Analysis (APRA) and Solar and Heliospheric Physics (SHP) Supporting Research and Technology (SR&T) programs. References: [1] T. W. Gorczyca and B. M. McLaughlin. J Phys. B. 33 L859 (2000) [2] A. M. Juett, et al., Astrophys. J. 612, 308 (2004) [3] J. Garcia et al., Astrophys. J. Supp. S. 158, 68 (2005) [4] T. W. Gorczyca., Phys. Rev. A. 61, 024702 (2000) [5] A. M. Juett, et al., Astrophys. J. 648, 1066 (2006)

  17. Magnetically separable core–shell ZnFe_2O_4@ZnO nanoparticles for visible light photodegradation of methyl orange

    International Nuclear Information System (INIS)

    Kulkarni, Suresh D.; Kumbar, Sagar; Menon, Samvit G.; Choudhari, K.S.; Santhosh, C.

    2016-01-01

    Highlights: • Phase pure, magnetic ZnFe_2O_4@ZnO nanoparticles synthesized with excellent yield. • ZnFe_2O_4@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe_2O_4@ZnO. • Excellent reusability of ZnFe_2O_4@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe_2O_4@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area of 41 m"2/g and visible light absorption make ZnFe_2O_4@ZnO nanoparticles a good solar photocatalyst. ZnFe_2O_4@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe_2O_4@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe_2O_4@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.

  18. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    International Nuclear Information System (INIS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-01-01

    Double-shelled sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 /Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe 3 O 4 /TiO 2 support by a in situ reduction of HAuCl 4 with NaBH 4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO 2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 microspheres. The sea urchin-like structure composed of TiO 2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe 3 O 4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe 3 O 4 /TiO 2 /Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min −1 and turnover frequency is 5457 h −1 . (paper)

  19. K-shell absorption jump factors and jump ratios in elements between Tm ( Z = 69) and Os ( Z = 76) derived from new mass attenuation coefficient measurements

    Science.gov (United States)

    Kaya, Necati; Tıraşoğlu, Engin; Apaydın, Gökhan; Aylıkcı, Volkan; Cengiz, Erhan

    2007-08-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2O 3, Yb 2O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time.

  20. K-shell absorption jump factors and jump ratios in elements between Tm (Z = 69) and Os (Z = 76) derived from new mass attenuation coefficient measurements

    International Nuclear Information System (INIS)

    Kaya, Necati; Tirasoglu, Engin; Apaydin, Goekhan; Aylikci, Volkan; Cengiz, Erhan

    2007-01-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2 O 3 , Yb 2 O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57 Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time

  1. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  2. Determination of Ca, Cr, Cu, Fe, K, Mg, Na and Zn in Brazilian medicinal plants by neutron activation and atomic absorption; Determinacao de Ca, Cr, Cu, Fe, K, Mg, Na e Zn em plantas medicinais brasileiras por ativacao neutronica e absorcao atomica

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ricardo P. de; Sabino, Claudia de Vilhena S.; Franco, Milton B.; Amaral, Angela M.; Guedes, Joao B.; Assis, Adilson de C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Leite, Simone C.A.L.; Silva, Isabel R. [Pontificia Univ. Catolica de Minas Gerais, Belo Horizonte, MG (Brazil)

    2002-07-01

    Medicinal plants are available in the markets in Belo Horizonte, Minas Gerais. The objective of this work is to investigate the Ca, Cr, Cu, Fe, K, Mg, Na e Zn concentrations in two lots of usually known diuretics plants (azeitona do mato, cabelo de milho, cavalinha, cervejinha do campo, chapeu de couro, congonha de bugre, marmelinho do campo and quebra pedra) bought with an interval of time - six months - between the purchases. The elemental concentrations were determined applying k{sub 0} instrumental neutron activation analysis and atomic absorption spectrophotometry analysis. (author)

  3. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Yang, L.; Zhen, L.; Xu, C.Y.; Sun, X.Y.; Shao, W.Z.

    2011-01-01

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  4. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L., E-mail: lzhen@hit.edu.c [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y.; Sun, X.Y.; Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-15

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  5. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  6. Structural and magnetic properties of CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell nanocomposite prepared by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, A.A. [Department of Physics, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo (Egypt); EL-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com [Department of Physics, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo (Egypt); ALsuqia, Ibrahim [Department of Physics, Faculty of Education and Applied Science, Hajjah University, Alshahli, Hajjah (Yemen)

    2015-12-01

    CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell magnetic nanocomposite was synthesized by using hydrothermal method.The analysis of XRD indicated the coexistence of CoFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}as core/shell composite. The core/shell structure of the composite sample has been confirmed by HR-TEM images, EDX and FT-IR measurements. The size of obtained core/shell nanoparticles was 17 nm in core diameter and about 3 nm in shell thickness. The magnetization measurements showed that both the coercive field and the saturation magnetization of the resulting core/shell nanocomposite were slightly decreased compared to those of the CoFe{sub 2}O{sub 4} core but the thermal stability is of the magnetization parameter was enhanced. Furthermore, superparamagnetic phase is established at temperatures higher than the room temperature. The results were discussed in terms of the surface pinning and the magnetic interaction at the interface between the core and shell. - Highlights: • CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell could be prepared by hydrothermal method. • The structural analysis proved the formation of NiFe{sub 2}O{sub 4} shell with thickness 3 nm. • The thermal stability of M{sub s} and H{sub c} is enhanced due to the presence of NiFe{sub 2}O{sub 4} as a shell. • Super paramagnetic transition is confirmed and the effective magnetic anisotropy was calculated.

  7. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    International Nuclear Information System (INIS)

    Rajabi, S.K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-01-01

    Magnetic Fe 3 O 4 @CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe 3 O 4 @HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe 3 O 4 core and a CuO shell. The Fe 3 O 4 @CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe 3 O 4 -CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe 3 O 4 @CuO core-shell release of copper ions. These Cu 2+ ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe 3 O 4 @CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe 3 O 4 . • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  8. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    Science.gov (United States)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  9. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  10. An X-ray absorption spectroscopic study of the metal site preference in Al1−xGaxFeO3

    International Nuclear Information System (INIS)

    Walker, James D.S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO 3 (Pna2 1 ; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al 1−x Ga x FeO 3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L 2,3 -, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al 1−x Ga x FeO 3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO 3 than in GaFeO 3 , implying more anti-site disorder is present in AlFeO 3 . - Graphical abstract: Al 1−x Ga x FeO 3 has been investigated by XANES. Through examination of Al L 2,3 -, Ga K-, and Fe K-edge XANES spectra, it was found that more anti-site disorder of the Fe atoms is present in AlFeO 3 compared to in GaFeO 3 . Highlights: ► Al 1−x Ga x FeO 3 was investigated by X-ray absorption spectroscopy. ► Ga prefers to occupy the tetrahedral site in Al 1−x Ga x FeO 3 . ► Fe prefers to occupy the octahedral sites in Al 1−x Ga x FeO 3 as x increases. ► More anti-site disorder is present in AlFeO 3 compared to in GaFeO 3.

  11. Fluoride adsorption from aqueous solution by magnetic core-shell Fe_3O_4@alginate-La particles fabricated via electro-coextrusion

    International Nuclear Information System (INIS)

    Zhang, Yahui; Lin, Xiaoyan; Zhou, Quisheng; Luo, Xuegang

    2016-01-01

    Graphical abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe_3O_4@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl"−, SO_4"2"−, HCO_3"− and PO_4"3"− had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe_3O_4@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  12. From core/shell to hollow Fe/γ-Fe_2O_3 nanoparticles: evolution of the magnetic behavior

    International Nuclear Information System (INIS)

    Nemati, Z; Khurshid, H; Alonso, J; Phan, M H; Mukherjee, P; Srikanth, H

    2015-01-01

    High quality Fe/γ-Fe_2O_3 core/shell, core/void/shell, and hollow nanoparticles with two different sizes of 8 and 12 nm were synthesized, and the effect of morphology, surface and finite-size effects on their magnetic properties including the exchange bias (EB) effect were systematically investigated. We find a general trend for both systems that as the morphology changes from core/shell to core/void/shell, the magnetization of the system decays and inter-particle interactions become weaker, while the effective anisotropy and the EB effect increase. The changes are more drastic when the nanoparticles become completely hollow. Noticeably, the morphological change from core/shell to hollow increases the mean blocking temperature for the 12 nm particles but decreases for the 8 nm particles. The low-temperature magnetic behavior of the 12 nm particles changes from a collective super-spin-glass system mediated by dipolar interactions for the core/shell nanoparticles to a frustrated cluster glass-like state for the shell nanograins in the hollow morphology. On the other hand for the 8 nm nanoparticles core/shell and hollow particles the magnetic behavior is more similar, and a conventional spin glass-like transition is obtained at low temperatures. In the case of the hollow nanoparticles, the coupling between the inner and outer spin layers in the shell gives rise to an enhanced EB effect, which increases with increasing shell thickness. This indicates that the morphology of the shell plays a crucial role in this kind of exchange-biased systems. (paper)

  13. Chemical synthesis of Fe/Fe{sub 3}O{sub 4} core-shell composites with enhanced soft magnetic performances

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bai, E-mail: byang@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Xiaopan [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yang, Xueying [Hi-tech Industry Standardization Institute, Hubei Standardization and Quality Institution, Wuhan 430061 (China); Yu, Ronghai [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-04-15

    The large-grain Fe/Fe{sub 3}O{sub 4} composite particles with average size of about 1.2 µm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe{sub 3}O{sub 4} as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe{sub 3}O{sub 4} composites leads to their high saturation magnetization of 119.6 A m{sup 2} Kg{sup -1}. Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe{sub 3}O{sub 4} composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm{sup -3}. The fully compacted sample shows good soft magnetic properties including high magnetic induction B{sub 1.2k} {sub (H=1200} {sub A/m)} of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices. - Highlights: • Micron-sized Fe/Fe{sub 3}O{sub 4} composites are prepared by a one-step solvothermal method. • High saturation magnetization and low coercivity are obtained in the composites. • Good air stability and high bulk density occurs in the composites. • High magnetic induction and good frequency-dependent properties are achieved.

  14. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating X-ray Absorption Spectra of Large Chemical Systems.

    Science.gov (United States)

    Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2018-02-08

    In this work, the efficiency of first-principles calculations of X-ray absorption spectra of large chemical systems is drastically improved. The approach is based on the previously developed restricted open-shell configuration interaction singles (ROCIS) method and its parametrized version, based on a density functional theory (DFT) ground-state determinant ROCIS/DFT. The combination of the ROCIS or DFT/ROCIS methods with the well-known machinery of the pair natural orbitals (PNOs) leads to the new PNO-ROCIS and PNO-ROCIS/DFT variants. The PNO-ROCIS method can deliver calculated metal K-, L-, and M-edge XAS spectra orders of magnitude faster than ROCIS while maintaining an accuracy with calculated spectral parameters better than 1% relative to the original ROCIS method (referred to as canonical ROCIS). The method is of a black box character, as it does not require any user adjustments, while it scales quadratically with the system size. It is shown that for large systems, the size of the virtual molecular orbital (MO) space is reduced by more than 90% with respect to the canonical ROCIS method. This allows one to compute the X-ray absorption spectra of a variety of large "real-life" chemical systems featuring hundreds of atoms using a first-principles wave-function-based approach. Examples chosen from the fields of bioinorganic and solid-state chemistry include the Co K-edge XAS spectrum of aquacobalamin [H 2 OCbl] + , the Fe L-edge XAS spectrum of deoxymyoglobin (DMb), the Ti L-edge XAS spectrum of rutile TiO 2 , and the Fe M-edge spectrum of α-Fe 2 O 3 hematite. In the largest calculations presented here, molecules with more than 700 atoms and cluster models with more than 50 metal centers were employed. In all the studied cases, very good to excellent agreement with experiment is obtained. It will be shown that the PNO-ROCIS method provides an unprecedented performance of wave-function-based methods in the field of computational X-ray spectroscopy.

  15. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  16. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, Jane G. [Stanford Univ., CA (United States)

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 Å. The Fe-Fe distance was determined to be 3.4 Å. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  17. High saturation magnetization FeB(C) nanocapsules

    International Nuclear Information System (INIS)

    Ma, S.; Si, P.Z.; Zhang, Y.; Wu, B.; Li, Y.B.; Liu, J.J.; Feng, W.J.; Ma, X.L.; Zhang, Z.D.

    2007-01-01

    FeB(C) nanocapsules were prepared by arc-discharging Fe 80 B 20 alloy in Ar and CH 4 . X-ray diffraction and transmission electron microscopy analyses showed that the FeB(C) nanocapsules had a core-shell structure with α-Fe and Fe 3 B as cores and graphite as shells. The formation mechanism of the FeB(C) nanocapsules is discussed. The graphite shells display a strong anti-acid effect. The saturation magnetization at room temperature of the FeB(C) nanocapsules is much higher than that of Fe(B) nanocapsules. The blocking temperature of FeB(C) nanocapsules is above 300 K

  18. Inner-shell vacancy production and multiple ionization effects in 0.1-1.75 MeV/u Mn, Fe, Co, Ni, Cu + Au, Bi collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ciortea, C. E-mail: ciortea@tandem.nipne.ro; Piticu, I.; Dumitriu, D.E.; Fluerasu, D.; Enulescu, A.; Szilagyi, S.Z.; Enescu, S.E.; Gugiu, M.M.; Dumitrescu, T.A

    2003-05-01

    Vacancy production in 0.1-1.75 MeV/u Mn, Fe, Co, Ni, Cu + Au, Bi collisions has been studied by measuring integral inner-shell ionization cross-sections and mean outer-shell ionization probabilities at the Tandem accelerator of NIPNE, Bucharest. X-ray spectra induced by ion beams of Mn, Fe, Co, Ni and Cu impinging on thin solid-foil targets of Au and Bi have been measured. Total ionization cross-sections for the K-shell of the projectile and L{sub 3}-subshell of the target, as well as vacancy sharing probabilities, corrected for the effect of multiple ionization, are reported. The experimental results are discussed in terms of two model calculations.

  19. (FeCo)3Si-SiOx core-shell nanoparticles fabricated in the gas phase

    International Nuclear Information System (INIS)

    Bai Jianmin; Xu Yunhao; Thomas, John; Wang Jianping

    2007-01-01

    A method of fabricating core-shell nanoparticles by using an integrated nanoparticle deposition technique in the gas phase is reported. The principle of the method is based on nanoparticle growth from the vapour phase, during which elements showing lower surface energies prefer to form the shells and elements showing higher surface energies prefer to stay in the cores. This method was applied successfully to the Fe-Co-Si ternary system to fabricate core-shell-type nanoparticles. The nanoparticles were exposed in air after collection to achieve oxidation. The analysis results based on transmission electron microscopy (TEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and a superconducting quantum interference device (SQUID) showed that the core parts are magnetic materials of body-centred cubic (bcc) structured (FeCo) 3 Si of 15 nm in diameter, and the shell parts are amorphous SiO x of 2 nm in thickness. These core-shell-type nanoparticles show a magnetic anisotropy constant of about 7 x 10 5 erg cm -3 and a saturation magnetization of around 1160 emu cm -3 , which is much higher than that of iron oxide. After annealing at 300 deg. C in air (FeCo) 3 Si-SiO x core-shell-type nanoparticles showed a little bit of a drop in magnetic moment, while pure FeCo nanopariticles totally lost their magnetic moment. This means that the shells of SiO x are dense enough to prevent the magnetic cores from oxidation

  20. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Michel [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Bagus, Paul S. [Department; Arenholz, Elke [Advanced; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2017-10-02

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

  1. Ex-vivo evaluation of crab shell chitosan as absorption enhancer in ...

    African Journals Online (AJOL)

    This study was aimed at evaluating crab shell chitosan as absorption enhancer in ciprofloxacin tablet formulation using the ex-vivo model. Six batches of ciprofloxacin tablets containing varying concentrations of crab shell-derived chitosan ranging from 0 to 5% w/w at 1% w/w intervals were produced. Batch CTS-0 ...

  2. Synthesis of Pd-coated FeCo@Fe/C core-shell nanoparticles: microwave-induced ‘top-down’ nanostructuring and decoration

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2013-01-01

    Full Text Available We report a novel microwave-induced fast and efficient synthesis of sub-10 nm sized palladium-decorated FeCo@Fe core–shell nanoparticles (ca. 3–7 nm) from a large-sized FeCo@Fe (0.21–1.5 µm) precursor, suggesting ‘top-down’ nanosizing. The high...

  3. Recent advances in the synthesis of Fe{sub 3}O{sub 4}@AU core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Salihov, Sergei V. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S. [Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700 (Russian Federation); Sviridenkova, Natalia V.; Savchenko, Alexander G. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Klyachko, Natalya L. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Golovin, Yury I. [Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Chufarova, Nina V., E-mail: chnv@pharmcluster.ru [Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700 (Russian Federation); Beloglazkina, Elena K. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Majouga, Alexander G., E-mail: majouga@org.chem.msu.ru [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation)

    2015-11-15

    Fe{sub 3}O{sub 4}@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe{sub 3}O{sub 4} nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe{sub 3}O{sub 4}@Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes.

  4. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core-shell

  5. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  6. Charge-transfer and Mott-Hubbard Excitations in FeBo3: Fe K-edge resonant Inelastic x-ray scattering study

    International Nuclear Information System (INIS)

    Kim, J.; Shvydko, Y.

    2011-01-01

    Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO 3 single crystal reveal a wealth of information on ∼ 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s - -3d) and the main-edge (1s - -4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO 3 based on the experimental data.

  7. Fabrication of core-shell Fe{sub 3}O{sub 4}@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingxiang, E-mail: qxyangzz@163.com; Zhao, Qianqian; Ren, ShuangShuang; Lu, Qiongqiong; Guo, Xinmeng; Chen, Zhijun, E-mail: chenzj@zzuli.edu.cn

    2016-12-15

    Facile regeneration of an adsorbent is very important for commercial feasibility. One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) with diameter about of 350 nm were successfully synthesized. The growth of MIL-100(Fe) shell on the surface of Fe{sub 3}O{sub 4} was utilized precursor as crystal seed via in-situ step hydrothermal reaction. It is a simple way to obtain well organized core-shell MOF composites, compared to the step-by-step method. MMCs were firstly used to uptake of Cr(VI) anions in aqueous solution. Adsorption experiments were carried out in batch sorption mode investigating with the factors of contact time (0–1000 min), pH (from 2 to 12), dose of adsorbent (4–25 mg), and initial Cr(VI) concentration (range from 10 to 100 ppm). - Graphical abstract: One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) were successfully synthesized. Utilizing Fe{sub 3}O{sub 4} precursor as crystal seed to grow MIL-100(Fe) shell by in-situ step hydrothermal reaction. It is a simple way to obtain core-shell MOF composites. MMCs could effectively uptake of Cr(VI) anions in aqueous solution. - Highlights: • Fe{sub 3}O{sub 4}@MIL-100(Fe) composites with core-shell structure were successfully prepared through a simple method. • The influence factors on Cr(VI) adsorption by Fe{sub 3}O{sub 4}@MIL-100(Fe) were investigated. • Cr(VI) can efficiently adsorbed by Fe{sub 3}O{sub 4}@MIL-100(Fe) composites from aqueous solution.

  8. Ferromagnetic resonance on oxideless magnetic Fe and FeRh nanoparticles; Ferromagnetische Resonanz an oxidfreien magnetischen Fe und FeRh Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Trunova, Anastasia

    2009-05-25

    This work is dedicated to investigations of structural and magnetic properties of the colloidal Fe/Fe{sub x}O{sub y} nanocubes (13 nm) and the Fe{sub x}Rh{sub 100-x} core/shell nanoparticles (2 nm). As compared with other works, where the measurements on oxidized nanoparticles were carried out, we additionally performed investigations on nanoparticles in an oxide free state. In order to make the measurements on oxide free particles possible, oxygen- and hydrogenplasma was used to remove the ligands and reduce the oxide shell of the Fe nanocubes. The oxide free Fe nanocubes were covered with a Ag/Pt protective coating to prevent them from new oxidation. This method allowed carrying out the magnetic measurements on oxide free Fe nanocubes. Micromagnetic simulations as well as simulations of the high frequency susceptibility were used for the data analysing. It was found that both the g-factor g=2.09{+-}0.01 and the anisotropy constant K{sub 4}=(4.8{+-}0.5).10{sup 4} J/m{sup 3} coincide with that of bulk iron. However, the saturation magnetization M{sub S}(5 K)=(1.2{+-}0.12).10{sup 6} A/m differs from the bulk value by 30%. The reduction by 30% compared to the bulk value in the case of nanoparticles may be caused by the following possible reasons: a) the presence of inner oxide layer (approx. 10 at.%) that cannot be reduced; b) the anti-parallel order between magnetic moments of iron core and magnetic moments of antiferomagnetic iron oxide; c) some structural changes of the surface after plasma treatment. The obtained damping parameter {alpha}=0.03{+-}0.005 is ten times larger than that of the Fe layers as it is known for nanoparticles systems in general. The core/shell Fe{sub x}Rh{sub 100-x} nanoparticles (x=80,50) were produced under Ar-atmosphere and were sealed into a quartz tube to prevent oxidation. The analysis of g-factors shows that the value for the FePh nanoparticles with Fe-rich core is larger (g=2.08{+-}0.01) than that for the nanoparticles with Rh

  9. Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites.

    Science.gov (United States)

    Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian

    2009-04-09

    Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.

  10. Nondipole effects in the angular distribution of photoelectrons from the C K shell of the CO molecule

    International Nuclear Information System (INIS)

    Hosaka, K.; Teramoto, T.; Adachi, J.; Yagishita, A.; Golovin, A. V.; Takahashi, M.; Watanabe, N.; Jahnke, T.; Weber, Th.; Schoeffler, M.; Schmidt, L.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Osipov, T.; Prior, M. H.; Landers, A. L.; Semenov, S. K.; Cherepkov, N. A.

    2006-01-01

    Measurements and calculations of a contribution of the nondipole terms in the angular distribution of photoelectrons from the C K shell of randomly oriented CO molecules are reported. In two sets of measurements, the angular distribution in the plane containing the photon polarization and the photon momentum vectors of linearly polarized radiation and the full three-dimensional photoelectron momentum distribution after absorption of circularly polarized light have been measured. Calculations have been performed in the relaxed core Hartree-Fock approximation with a fractional charge. Both theory and experiment show that the nondipole terms are very small in the photon energy region from the ionization threshold of the K shell up to about 70 eV above it

  11. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    Science.gov (United States)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  13. Characterization of rust layer formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich environment by Cl and Fe K-edge XANES measurements

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    Chloride in atmosphere considerably reduces the corrosion resistance of conventional weathering steel containing a small amount of Cr. Ni is an effective anticorrosive element for improving the corrosion resistance of steel in a Cl-rich environment. In order to clarify the structure of the protective rust layer of weathering steel, Cl and Fe K-edge X-ray absorption near edge structure (XANES) spectra of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich atmosphere were measured. The Fe K-XANES measurements enable the characterization of mixture of iron oxides such as rust. The chemical composition of the rust was determined by performing pattern fitting of the measured spectra. All the rust is composed mainly of goethite, akaganeite, lepidocrocite and magnetite. Among these iron oxides, akaganeite in particular is the major component in the rust. Additionally, the amount of akaganeite in the rust of Fe-Ni alloy is much greater than that in rust of Fe-Cr alloy. Akaganeite is generally considered to facilitate the corrosion of steel, but our results indicate that akaganeite in the rust of Fe-Ni alloy is quantitatively different from that in rust of Fe-Cr alloy and does not facilitate the corrosion of steel. The shoulder peak observed in Cl K-XANES spectra reveals that the rust contains a chloride other than akaganeite. The energy of the shoulder peak does not correspond to that of any well-known chlorides. In the measured spectra, there is no proof that Cl, by combining with the alloying element, inhibits the alloying element from acting in corrosion resistance. The shoulder peak appears only when the content of the alloying element is lower than a certain value. This suggests that the generation of the unidentified chloride is related to the corrosion rate of steel. (author)

  14. Study of the Variability of the Reflection Component in Seyfert 1 Galaxies: Connecting the Fe K Variability with the Compton Hump

    Science.gov (United States)

    Ponti, G.; Miniutti, G.; Malaguti, G.; Gallo, L.; Goldwurm, A.

    2009-05-01

    We present preliminary results of an ongoing project devoted to the study of the continuum and Fe K band variability in a sample of bright AGNs. These kind of studies may break the spectral degeneracy between the different absorption/emission models, allowing ``safe'' measurements of the disc and black hole properties from the broad line shapes. In fact, the Fe K band, alone, allows a first separation between the different components. Here we show the case of NGC 3783 which shows both a constant and a variable reflection component as well as strong ionized absorption. We show that a fundamental contribution will be given by Simbol-X that will allow to simultaneously measure not only the Fe K variability, but also the connected reflection hump variations.

  15. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  16. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  17. Fabrication of Fe{sub 3}O{sub 4}@CuO core-shell from MOF based materials and its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, S.K. [Department of Chemistry, University of Guilan, University Campus 2, Rasht (Iran, Islamic Republic of); Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir [Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht (Iran, Islamic Republic of); Ghafourian, S. [Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam (Iran, Islamic Republic of)

    2016-12-15

    Magnetic Fe{sub 3}O{sub 4}@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe{sub 3}O{sub 4}@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe{sub 3}O{sub 4} core and a CuO shell. The Fe{sub 3}O{sub 4}@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe{sub 3}O{sub 4}-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe{sub 3}O{sub 4}@CuO core-shell release of copper ions. These Cu{sup 2+} ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe{sub 3}O{sub 4}@CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe{sub 3}O{sub 4}. • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  18. Fluoride adsorption from aqueous solution by magnetic core-shell Fe{sub 3}O{sub 4}@alginate-La particles fabricated via electro-coextrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yahui [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Lin, Xiaoyan, E-mail: lxy20100205@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Zhou, Quisheng [A State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Xuegang [Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China)

    2016-12-15

    Graphical abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl{sup −}, SO{sub 4}{sup 2−}, HCO{sub 3}{sup −} and PO{sub 4}{sup 3−} had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  19. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    Science.gov (United States)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  20. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    Science.gov (United States)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  1. A novel platform of hemoglobin on core-shell structurally Fe{sub 3}O{sub 4}-Au nanoparticles and its direct electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yang; Han Ting; Chen Chao; Bao Ning; Yu Chunmei [Institute of Analytical Chemistry for Life Science, School of Public Health, Nantong University, Nantong 226019 (China); Gu Haiying, E-mail: hygu@ntu.edu.c [Institute of Analytical Chemistry for Life Science, School of Public Health, Nantong University, Nantong 226019 (China)

    2011-03-30

    (SEM) and energy dispersive spectra (EDS), were coated onto GCE mediated by chitosan so as to provide larger surface area for anchoring Hb. The thermodynamics, dynamics and catalysis properties of Hb immobilized on Fe{sub 3}O{sub 4}-Au NPs were discussed by UV-visible spectrum (UV-vis), electrochemical impedance spectroscopy (EIS), electrochemical quartz crystal microbalance technique (EQCM) and cyclic voltammetry (CV). The electrochemical parameters of Hb on Fe{sub 3}O{sub 4}-Au NPs modified GCE were further carefully calculated with the results of the effective working area as 3.61 cm{sup 2}, the surface coverage concentration ({Gamma}) as 1.07 x 10{sup -12} mol cm{sup -2}, the electron-transfer rate constant (K{sub s}) as 1.03 s{sup -1}, the number of electron transferred (n) as 1.20 and the standard entropy of the immobilized Hb ({Delta}S{sup 0}') as calculated to be -104.1 J mol{sup -1} K{sup -1}. The electrocatalytic behaviors of the immobilized Hb on Fe{sub 3}O{sub 4}-Au NPs were applied for the determination of hydrogen peroxide (H{sub 2}O{sub 2}), oxygen (O{sub 2}) and trichloroacetic acid (TCA). The possible functions of Fe{sub 3}O{sub 4} core and Au shell as a novel platform for achieving Hb direct electrochemistry were discussed, respectively.

  2. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Na, Zhaolin; Huang, Gang; Liang, Fei; Yin, Dongming; Wang, Limin

    2016-08-16

    The preparation of novel one-dimensional core-shell Fe/Fe2 O3 nanowires as anodes for high-performance lithium-ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2 O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core-shell Fe/Fe2 O3 nanowire maintains an excellent reversible capacity of over 767 mA h g(-1) at 500 mA g(-1) after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g(-1) , a stable capacity as high as 538 mA h g(-1) could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high-performance LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An X-ray absorption spectroscopic study of the metal site preference in Al1-xGaxFeO3

    Science.gov (United States)

    Walker, James D. S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO3 (Pna21; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al1-xGaxFeO3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L2,3-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al1-xGaxFeO3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO3 than in GaFeO3, implying more anti-site disorder is present in AlFeO3.

  4. Negative impact of oxygen molecular activation on Cr(VI) removal with core–shell Fe@Fe2O3 nanowires

    International Nuclear Information System (INIS)

    Mu, Yi; Wu, Hao; Ai, Zhihui

    2015-01-01

    Highlights: • The presence of oxygen inhibited Cr(VI) removal efficiency with nZVI by near 3 times. • Cr(VI) removal with nZVI was related to adsorption, reduction, co-precipitation, and adsorption reactions. • Molecular oxygen activation competed donor electrons from Fe 0 core and surface bound Fe(II) of nZVI. • Thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell of nZVI leaded to the electron transfer inhibition. - Abstract: In this study, we demonstrate that the presence of oxygen molecule can inhibit Cr(VI) removal with core–shell Fe@Fe 2 O 3 nanowires at neutral pH of 6.1. 100% of Cr(VI) removal was achieved by the Fe@Fe 2 O 3 nanowires within 60 min in the anoxic condition, in contrast, only 81.2% of Cr(VI) was sequestrated in the oxic condition. Removal kinetics analysis indicated that the presence of oxygen could inhibit the Cr(VI) removal efficiency by near 3 times. XRD, SEM, and XPS analysis revealed that either the anoxic or oxic Cr(VI) removal was involved with adsorption, reduction, co-precipitation, and re-adsorption processes. More Cr(VI) was bound in a reduced state of Cr(III) in the anoxic process, while a thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell, leading to inhibiting the electron transfer, was found under the oxic process. The negative impact of oxygen molecule was attributed to the oxygen molecular activation which competed with Cr(VI) adsorbed for the consumption of donor electrons from Fe 0 core and ferrous ions bound on the iron oxides surface under the oxic condition. This study sheds light on the understanding of the fate and transport of Cr(VI) in oxic and anoxic environment, as well provides helpful guide for optimizing Cr(VI) removal conditions in real applications

  5. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    Science.gov (United States)

    Hell, Natalie; Brown, G. V.; Wilms, J.; Beiersdorfer, P.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2015-08-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11 ≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5eV, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6eV resolution shows that the analysis of spectra taken at ECS resolution allows us to determine the transition energies of the strongest components.Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA's APRA program.

  6. Hot rotating fp shell Fe isotopes near proton drip line

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2003-01-01

    F p shell 44-58 Fe nuclei have been investigated in highly excited state using the statistical theory of hot rotating nucleus. Effects of thermal and rotational excitation at drip line nuclei are studied

  7. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2015-07-15

    , materials absorptance determined from the total transmittance and reflectance spectra revealed a broader absorption interval including visible light, indicating potential uses of these nanostructures on solar energy appliances. - Graphical abstract: Display Omitted - Highlights: • Uniform ZnO nanorods (core)–metal oxide (shell) were obtained sequentially by AACVD. • Shells were structured of homogeneous single or multi-layered non-mixed metal oxides. • ZnO nanorod core was preserved during the shell synthesis. • Optical absorptance revealed visible interval absorption for FeO{sub x} shell samples. • Materials can be suitable for photocatalytic or photovoltaic applications.

  8. Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors

    Science.gov (United States)

    Hu, Yong; Wang, Ruizhi; Wang, Shige; Ding, Ling; Li, Jingchao; Luo, Yu; Wang, Xiaolin; Shen, Mingwu; Shi, Xiangyang

    2016-01-01

    We herein report the development of multifunctional folic acid (FA)-targeted Fe3O4 @ Au nanostars (NSs) for targeted multi-mode magnetic resonance (MR)/computed tomography (CT)/photoacoustic (PA) imaging and photothermal therapy (PTT) of tumors. In this present work, citric acid-stabilized Fe3O4/Ag composite nanoparticles prepared by a mild reduction route were utilized as seeds and exposed to the Au growth solution to induce the formation of Fe3O4 @ Au core/shell NSs. Followed by successive decoration of thiolated polyethyleneimine (PEI-SH), FA via a polyethylene glycol spacer, and acetylation of the residual PEI amines, multifunctional Fe3O4 @ Au NSs were formed. The designed multifunctional NSs possess excellent colloidal stability, good cytocompatibility in a given concentration range, and specific recognition to cancer cells overexpressing FA receptors. Due to co-existence of Fe3O4 core and star-shaped Au shell, the NSs can be used for MR and CT imaging of tumors, respectively. Likewise, the near infrared plasmonic absorption feature also enables the NSs to be used for PA imaging and PTT of tumors. Our study clearly demonstrates a unique theranostic nanoplatform that can be used for high performance multi-mode imaging-guided PTT of tumors, which may be extendable for theranostics of different diseases in translational medicine. PMID:27325015

  9. In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk-shell nanocapsules

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Liu, Wenjie; Zhang, Xiue; Shen, Xiao; Li, Wenlong; Diao, Guowang; Chen, Ming

    2017-03-01

    In this paper nitrogen-doped carbon-encapsulation Fe3O4 yolk-shell magnetic nanocapsules (Fe3O4@C-N nanocapsules) have been successfully constructed though a facile hydrothermal method and subsequent annealing process. Fe3O4 nanoparticles are completely enclosed in nitrogen-doped carbon shells with void space between the nanoparticle and the shell. The yolk-shell structure allows Fe3O4 nanoparticles to expand freely without breaking the outer carbon shell during the lithiation/delithiation processes. The volume expansion of Fe3O4 results in the in-depth nanocrystallization. Fortunately, the new generated small nanoparticles can increase the capability with the cycle increase due to the unique confinement effect and excellent electronic conductivity of the nitrogen-doped carbon shells. Hence, after 150 cycles, the discharge capacity of Fe3O4@C-N-700 nanocapsules still remained 832 mA h g-1 at 500 mA g-1, which corresponds to 116.7% of the lowest capacity (713 mA h g-1) at the 16th cycle. We believe that the yolk-shell structure is conducive to enhance the capacity of easy pulverization metal oxidation during the charge/discharge processes.

  10. Ferromagnetic resonance on oxideless magnetic Fe and FeRh nanoparticles

    International Nuclear Information System (INIS)

    Trunova, Anastasia

    2009-01-01

    This work is dedicated to investigations of structural and magnetic properties of the colloidal Fe/Fe x O y nanocubes (13 nm) and the Fe x Rh 100-x core/shell nanoparticles (2 nm). As compared with other works, where the measurements on oxidized nanoparticles were carried out, we additionally performed investigations on nanoparticles in an oxide free state. In order to make the measurements on oxide free particles possible, oxygen- and hydrogenplasma was used to remove the ligands and reduce the oxide shell of the Fe nanocubes. The oxide free Fe nanocubes were covered with a Ag/Pt protective coating to prevent them from new oxidation. This method allowed carrying out the magnetic measurements on oxide free Fe nanocubes. Micromagnetic simulations as well as simulations of the high frequency susceptibility were used for the data analysing. It was found that both the g-factor g=2.09±0.01 and the anisotropy constant K 4 =(4.8±0.5).10 4 J/m 3 coincide with that of bulk iron. However, the saturation magnetization M S (5 K)=(1.2±0.12).10 6 A/m differs from the bulk value by 30%. The reduction by 30% compared to the bulk value in the case of nanoparticles may be caused by the following possible reasons: a) the presence of inner oxide layer (approx. 10 at.%) that cannot be reduced; b) the anti-parallel order between magnetic moments of iron core and magnetic moments of antiferomagnetic iron oxide; c) some structural changes of the surface after plasma treatment. The obtained damping parameter α=0.03±0.005 is ten times larger than that of the Fe layers as it is known for nanoparticles systems in general. The core/shell Fe x Rh 100-x nanoparticles (x=80,50) were produced under Ar-atmosphere and were sealed into a quartz tube to prevent oxidation. The analysis of g-factors shows that the value for the FePh nanoparticles with Fe-rich core is larger (g=2.08±0.01) than that for the nanoparticles with Rh-rich core and coincides within error bars with the g-factor of bulk

  11. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  12. Characterization of the core-shell interaction of differently stabilized transition-metal nanoparticles by means of X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Bucher, S.

    2002-05-01

    Transition metal nanoparticles with different surfactants were investigated using X-ray absorption spectroscopy (XAS) to obtain information about the interaction between metal core and protecting shell. For tetraalkylammoniumchloride stabilized Pd- and Co-colloids, a detailed model of the interaction between the metal core and the stabilizing shell could be established, in which chlorine is the connecting element between the metal core and the organic protection cover. Different lengths of the alkyl-chains can cause different equilibrium positions for the chlorine atoms. At aluminum-organic stabilized Pt-colloids, Al K-XANES and Pt L III -XAS were carried out. In this case, it turned out that aluminum is the connecting element between metal core and protection shell. After modification of the shell by connecting different molecules to the outside of the shell, rearrangements of the shell could be observed. In contrast to the surfactant stabilized systems discussed above, metallic covers, especially gold coatings, of Co-particles did not lead to a complete protection shell. In all cases, the cobalt in the nanoparticles was oxidized. A core shell structure could not be verified for any of the metallic stabilized colloids. (orig.)

  13. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    Science.gov (United States)

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Directory of Open Access Journals (Sweden)

    Zhenjun Xia

    2016-05-01

    Full Text Available Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  15. Investigation of electronic states of infinite-layer SrFeO2 epitaxial thin films by X-ray photoemission and absorption spectroscopies

    International Nuclear Information System (INIS)

    Chikamatsu, Akira; Matsuyama, Toshiya; Hirose, Yasushi; Kumigashira, Hiroshi; Oshima, Masaharu; Hasegawa, Tetsuya

    2012-01-01

    Highlights: ► Electronic states of infinite-layer SrFeO 2 films have been experimentally observed. ► Fe 3d states have higher densities of states in the valence-band region. ► Three peaks derived from Fe 3d states were observed in the conduction-band region. ► Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO 2 epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p–3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3–5 eV and 5–8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d xy , 3d xz + 3d yz , and 3d x 2 –y 2 . In addition, the indirect bandgap value of the SrFeO 2 film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  16. Anomalous non-resonant microwave absorption in SmFeAs(O,F) polycrystalline sample

    Energy Technology Data Exchange (ETDEWEB)

    Onyancha, R.B., E-mail: 08muma@gmail.com [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710 (South Africa); Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Singh, S.J. [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden, D-01171 Dresden (Germany); Hayashi, K.; Ogino, H. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Srinivasu, V.V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710 (South Africa)

    2017-02-15

    Highlights: • The non-resonant microwave absorption (NRMA) line shape in evolved with microwave power. • Observed a cross over from ‘normal’ absorption to ‘anomalous’ absorption as a function of microwave power. • The anomalous absorption has been explained in the context of non-hysteretic Josephson junction. - Abstract: Here we present the non-resonant microwave absorption (NRMA) studies on SmFeAsO{sub 0.88}F{sub 0.12} polycrystalline sample measured at 6.06 K with the magnetic field swept from −250 G to +250 G at a frequency of 9.45 GHz. It was observed that the (NRMA) line shape evolves as a function of microwave power. Again, the signal intensity increases from 22.83 µW to 0.710 mW where it reaches a maximum and quite remarkably it changed from ‘normal’ absorption to ‘anomalous’ absorption at 2.247 mW, then the intensity decreases with further increase of microwave power. The crossover from ‘normal’ to ‘anomalous’ NRMA absorption and its dependence on microwave power is a new phenomenon in iron pnictides superconductors and we have attributed this anomaly to come from non-hysteretic Josephson junction.

  17. {sup 57}Fe Mössbauer spectroscopic studies of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yuu, E-mail: tsuchiya.yuu1990@gmail.com; Ikeda, Shugo; Kobayashi, Hisao [University of Hyogo (Japan)

    2016-12-15

    We have investigated the physical properties of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2} samples using {sup 57}Fe Mössbauer spectroscopy. The observed {sup 57}Fe Mössbauer spectra were reconstructed using a major antiferromagnetic ordered K{sub 2}Fe{sub 4}Se{sub 5} phase and a minor paramagnetic phase down to 5 K, despite being superconducting below 32.2 K in K{sub x}Fe{sub 2-y}Se{sub 2}. The analysis of {sup 57}Fe Mössbauer spectrum for K{sub x}Fe{sub 2-y}S{sub 2} at 290 K confirms the presence of a major antiferromagnetic ordered K{sub 2}Fe{sub 4}S{sub 5} phase and a minor paramagnetic phase in the K{sub x}Fe{sub 2-y}S{sub 2} single crystal. The derived hyperfine interaction parameters of the paramagnetic phase in K{sub x}Fe{sub 2-y}S{sub 2} suggest that the microstructure of this phase in K{sub x}Fe{sub 2-y}S{sub 2} is similar to that of the superconducting phase in K{sub x}Fe{sub 2-y}Se{sub 2} although the K{sub x}Fe{sub 2-y}S{sub 2} single crystals exhibit no superconductivity down to 5 K.

  18. Magnetic Behavior of Ni-Fe Core-Shell and Alloy Nanowires

    Science.gov (United States)

    Tripathy, Jagnyaseni; Vargas, Jose; Spinu, Leonard; Wiley, John

    2013-03-01

    Template assisted synthesis was used to fabricate a series of Ni-Fe core-shell and alloy nanowires. By controlling reaction conditions as well as pore structure, both systems could be targeted and magnetic properties followed as a function of architectures. In the core-shell structure coercivity increases with decrease in shell thickness while for the alloys, coercivity squareness improve with increase pore diameter. Details on the systematic studies of these materials will be presented in terms of hysteretic measurements, including first order reversal curves (FORC), and FMR data. Magnetic variation as a function of structure and nanowire aspect ratios will be presented and the origins of these behaviors discussed. Advanced Material Research Institute

  19. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    Science.gov (United States)

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in

  20. Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure

    Directory of Open Access Journals (Sweden)

    Salehizadeh Hossein

    2012-01-01

    Full Text Available Abstract Background Fe3O4-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. Results Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe3O4 monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au3+ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD, Fourier Transformed Infrared Spectroscopy (FTIR, Transmission Electron Microscopy (TEM, and Atomic Force Microscopy (AFM indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. Conclusions A rapid, mild method for synthesizing Fe3O4-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

  1. Magnetic Fe{sub 3}O{sub 4}-Au core-shell nanostructures for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.A.; Adams, S.A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lopez-Luke, T. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Cento de Investigaciones en Optica, A.P. 1-948 Leon, Gto. 37150 (Mexico); Torres-Castro, A. [Universidad Autonoma de Nuevo Leon, A.P. 126-F, Monterrey, NL, 66450 (Mexico)

    2012-11-15

    The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe{sub 3}O{sub 4}-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe{sub 3}O{sub 4} material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 10{sup 6}, which is {proportional_to} 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe{sub 3}O{sub 4}-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as ''hot spots'' due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe{sub 3}O{sub 4} core, coupled with the optical properties of the Au shell, make the Fe{sub 3}O{sub 4}-Au nanoparticles unique for various potential applications including biological sensing and therapy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Mini, S.M.; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of ∼2.5μ B per interface Pd atom

  3. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.

    1980-01-01

    In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the fact that processes involving electrons other than the K-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the ''Fermi sea'' of the target-atom orbitals. In 1973 a theorem was proved by one of the present authors demonstrating that all these multielectron processes cancel in an independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole production by charge transfer to the ion. The authors demonstrate that multihole production does not obey this simple rule and that the probability for multihole production is not the product of independent single-electron probabilities. The correct expressions that should be used for these processes are given, together with new results for charge-transfer processes accompanied by hole production

  4. Synthesis of Fe5C2@SiO2 core@shell nanoparticles as a potential candidate for biomedical application

    Science.gov (United States)

    Ahmadpoor, Fatemeh; Shojaosadati, Seyed Abbas; Delavari H, Hamid; Christiansen, Gunna; Saber, Reza

    2018-05-01

    A new strategy for water-dispersibility of hydrophobic carbide nanostructures was proposed. In this regard, hydrophobic Fe5C2 nanoparticles (NPs) with size ranging 25–40 nm were synthesized and coated with 12–15 nm silica shell for biomedical applications. X-ray diffraction (XRD) results revealed that Fe5C2 NPs with monoclinic structure were successfully prepared. The crystalline structure of Fe5C2 NPs was remained unchanged and saturation magnetization of core remained nearly constant after coating with silica shell. Moreover, Raman spectroscopy identified D-band of amorphous carbon shells which was also confirmed by transmission electron microscopy (TEM). Finally, Fe5C2@SiO2 core@shell NPs demonstrated no significant cytotoxicity and appropriate heat generating which makes them a promising candidate for magnetic fluid hyperthermia applications.

  5. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption

    KAUST Repository

    Zhong, Bo; Sai, Tianqi; Xia, Long; Yu, Yuanlie; Wen, Guangwu

    2017-01-01

    In the current report, we have demonstrated that the high-efficient production of SiC/SiO2 core-shell nanowires can be achieved through the introduction of trace of water vapor during the chemical vapor deposition process. The yield of the SiC/SiO2 core-shell nanowires is dramatically improved due to the introduction of water vapor. The SiC/SiO2 core-shell nanowires exhibit an excellent microwave absorption property in the frequency range of 2.0–18.0GHz with a very low weight percentage of 0.50wt.% in the absorbers. A minimum reflection loss value of −32.72dB (>99.99% attenuation) at 13.84GHz has been observed with the absorber thickness of 3.0mm. Moreover, the SiC/SiO2 core-shell nanowires based absorber can reach an effective absorption bandwidth (<−10dB) of 5.32GHz with the absorber thickness of 3.5mm. Furthermore, a possible absorption mechanism is also proposed in detail for such effective attenuation of microwave which can be attributed to the dielectric loss and magnetic loss of SiC/SiO2 core-shell nanowires.

  6. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-02-21

    In the current report, we have demonstrated that the high-efficient production of SiC/SiO2 core-shell nanowires can be achieved through the introduction of trace of water vapor during the chemical vapor deposition process. The yield of the SiC/SiO2 core-shell nanowires is dramatically improved due to the introduction of water vapor. The SiC/SiO2 core-shell nanowires exhibit an excellent microwave absorption property in the frequency range of 2.0–18.0GHz with a very low weight percentage of 0.50wt.% in the absorbers. A minimum reflection loss value of −32.72dB (>99.99% attenuation) at 13.84GHz has been observed with the absorber thickness of 3.0mm. Moreover, the SiC/SiO2 core-shell nanowires based absorber can reach an effective absorption bandwidth (<−10dB) of 5.32GHz with the absorber thickness of 3.5mm. Furthermore, a possible absorption mechanism is also proposed in detail for such effective attenuation of microwave which can be attributed to the dielectric loss and magnetic loss of SiC/SiO2 core-shell nanowires.

  7. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    International Nuclear Information System (INIS)

    Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources

  8. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    CERN Document Server

    Tamura, M; Aoki, Y; Ikeda, J; Sato, K; Fujita, F; Homma, A; Sawamura, T; Narita, M

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.

  9. Core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles with high photocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liyun, E-mail: zhengliyun@126.com [Hebei University of Engineering, College of Materials Science and Engineering (China); Wang, Shuling; Zhao, Lixin [Hebei University of Engineering, College of Mechanical and Equipment Engineering (China); Zhao, Shuguo [Handan Polytechnic College, Mechanical and Electrical Department (China)

    2016-11-15

    Core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles with BiOI sheath have been synthesized by a solvothermal reaction method and were characterized by transmission electron microscopy (TEM) with an energy dispersive spectrum (EDS), high-resolution TEM and X-ray diffraction (XRD). Their photocatalytic activities were evaluated by methylene blue (MB) under the simulated solar light. The results indicate that the spherical Fe{sub 3}O{sub 4} particles were coated with BiOI sheath when the sample were synthesized at 160 °C with ethylene glycol and deionized water, forming a core/shell structure. The degradation rate of MB assisted with the core/shell Fe{sub 3}O{sub 4}/BiOI catalysts reached 98 % after 40-min irradiation. The catalytic performance enhancement of the core/shell Fe{sub 3}O{sub 4}/BiOI catalysts mainly attributes to the band structure that can improve the generation efficiency, separation and transfer process of the photo-induced electron–hole pairs and decrease their recombination. The magnetic Fe{sub 3}O{sub 4} core not only contributes to the efficient separation of electron and holes, but also helps catalysts be collected conveniently using a magnet for reuse. After five repeated trials, the degradation rate of MB still maintains over 90 % and the saturated magnetization of the catalysts remains 51.5 emu/g, which indicate that the core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles have excellent photocatalytic stability and are recyclable for decomposing organic pollutants under visible light irradiation.

  10. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  11. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  12. Effect of some factors on foliar absorption and mobility of Fe59 in plant

    International Nuclear Information System (INIS)

    Mohamed, F.A.

    1990-01-01

    Three experiments were conducted under greenhouse conditions using Fe 59 and seedlings of guava and orange to study the effect of PH value (3-8), Fe SO 4 concentrations in combination with three values of PH on foliar absorption and mobility of Fe. In addition, a comparative study to evaluate some compounds of iron for foliar spray was achieved. Foliar absorption of Fe 59 by guava leaves and its mobility were considerably influenced by PH value of spray solution. Maximum absorption and translocation were observed at PH 6. However, most of the absorbed iron 'about 90%' was retained in the treated leaves and the portion 'about 10%' acropetally and basipetally translocated. Upward transport of iron was more pronounced than downward one. Total iron in plant derived from applied FeSO 4 was greatly increased, whereas utilization percent of it was reduced by increasing the rate of Fe in spray solution. Generally, FeSO 4 had a good efficiency which ranged from about 25-43%. Specific absorption of iron by orange leaves was higher than that of guava leaves. From plant nutritional point of view, efficiency of FeSo 4 , Fe-metalosate and multi mineral-metalosate as different sources of Fe through foliar application remarkably varied and FeSO 4 was highly efficient one in comparison with metalosate compounds

  13. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures.

    Science.gov (United States)

    Khan, U; Li, W J; Adeela, N; Irfan, M; Javed, K; Wan, C H; Riaz, S; Han, X F

    2016-03-21

    The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3[combining macron]. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ∼25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.

  14. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    Science.gov (United States)

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  15. Experimental study of K-shell ionization of low-Z solids in collisions with intermediate-velocity carbon ions and the local plasma approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kadhane, U [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Montanari, C C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Tribedi, Lokesh C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2003-07-28

    K-shell vacancy production in low-atomic-number (Z{sub t} = 17-29) solid targets has been measured in collisions of highly charged carbon ions with energies of 1.5-6 MeV u{sup -1}. The K-shell ionization cross sections of Cl, K, Ti, Fe and Cu are derived from the measured K x-ray cross sections. The present data-set has been used to test the predictions of a theoretical model based on the local plasma approximation (LPA). This theory takes into account the response of solid core electrons working within the dielectric formalism. We find that this ab initio ion-solid model gives very good agreement with the measured data for Fe and Cu targets, while it tends to under-estimate the data for the most symmetric collision systems studied here. We discuss the range of validity of the LPA in terms of the symmetry parameter and the impact velocity. On the other hand, a model based on the perturbed stationary state approximation, designed for ion-atom collisions (ECPSSR) is found to give excellent agreement with the measured data for all target elements over the whole energy range. All the measured cross sections for different targets are found to follow a universal scaling rule predicted by the ECPSSR.

  16. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    Science.gov (United States)

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  17. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite

    International Nuclear Information System (INIS)

    Min, Dandan; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-01-01

    Highlights: • Flake carbonyl iron/Fe 3 O 4 composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe 3 O 4 composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe 3 O 4 (FCI/Fe 3 O 4 ) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe 3 O 4 composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe 3 O 4 composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe 3 O 4 composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  18. Investigation of electronic states of infinite-layer SrFeO{sub 2} epitaxial thin films by X-ray photoemission and absorption spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Matsuyama, Toshiya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Hirose, Yasushi [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Kumigashira, Hiroshi; Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656 (Japan); Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Electronic states of infinite-layer SrFeO{sub 2} films have been experimentally observed. Black-Right-Pointing-Pointer Fe 3d states have higher densities of states in the valence-band region. Black-Right-Pointing-Pointer Three peaks derived from Fe 3d states were observed in the conduction-band region. Black-Right-Pointing-Pointer Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO{sub 2} epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p-3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3-5 eV and 5-8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d{sub xy}, 3d{sub xz} + 3d{sub yz}, and 3d{sub x}{sup 2}{sub -y}{sup 2}. In addition, the indirect bandgap value of the SrFeO{sub 2} film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  19. Efficient charge carriers induced by extra outer-shell electrons in iron-pnictides: a comparison between Ni- and Co-doped CaFeAsF

    International Nuclear Information System (INIS)

    Zhang Min; Yu Yi; Tan Shun; Zhang Yuheng; Zhang Changjin; Zhang Lei; Qu Zhe; Ling Langsheng; Xi, Chuanying

    2010-01-01

    A comprehensive study of the difference between CaFe 1-x Ni x AsF and CaFe 1-x Co x AsF systems has been carried out by measuring the efficient charge carrier concentration, the valence states and the superconducting phase diagram. It is found that at the same doping level, Ni doping introduces nearly twice the number of charge carriers as Co doping. However, x-ray absorption near-edge spectroscopy measurements reveal that the valence state of Fe in both systems is close to 2, indicating that there is no valence mismatch. We suggest that the charge carriers in CaFe 1-x M x AsF (M=transition metal elements) are not induced by valence mismatch but come from the difference in the number of outer-shell electrons. We also suggest that with Ni and Co doping, the systems change from a multi-band material in the underdoped regions to a single-band state in the overdoped regions.

  20. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    Science.gov (United States)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  1. K-shell jump ratios and jump factors for molybdenum and silver by using 2D-geometrical configuration and a weak gamma source

    International Nuclear Information System (INIS)

    Francis Maria Anand, L.; Gudennavar, S.B.; Bubbly, S.G.; Joseph, Daisy

    2013-01-01

    The article presents a simple method of measuring K-shell absorption jump ratios and jump factors for elements in the field of X-ray spectroscopy. The K-shell jump ratios and jump factors for Molybdenum and Silver are measured by adopting 2ŏ-geometrical configuration and a weak gamma source. The characteristic K X-ray photons are excited in the targets using 32.8 keV barium X-ray photons from a weak 137 Cs radioactive source that is produced due to the internal conversion of cesium nucleus (IC). The fluorescent K X-ray photons are detected using low energy Si(Li) detector coupled to a 8k multichannel analyser. The K X-ray intensity ratios from X-ray fluorescent spectrum are measured experimentally, the total atomic attenuation cross section and the total atomic scattering cross sections are calculated using WinXcom software. The K-shell jump factor and jump ratio are computed using the measured K X-ray intensity ratios and the calculated K a , X-ray production cross section. The computed values of K-shell jump factor and jump ratio for molybdenum and silver are compared with the theoretical values and others' experimental data and are presented. The amount of uncertainty in the experimental measurement of K X-ray intensity ratios is less than 5%. Thus the 2ŏ-geometrical configuration method with weak gamma source can be an alternative simple method to measure the jump factors and the jump ratios of pure elements in the field of X-ray spectroscopy. (author)

  2. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    Science.gov (United States)

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  3. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  4. Fabrication of α-Fe/Fe3C/Woodceramic Nanocomposite with Its Improved Microwave Absorption and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Weihong Zhou

    2018-05-01

    Full Text Available Furan resin and fir powder pretreated by FeCl3 and aqueous ammonia solution were used to fabricate α-Fe/Fe3C/woodceramic nanocomposite. The bands of the pretreated wood powder were characterized by Fourier transform infrared spectroscopy (FTIR. The structural characterization of the nanocomposites was performed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The microwave absorption of the nanocomposites was measured by a vector network analyzer in the range of 2–18 GHz. The mechanical properties of the composites were also investigated. XRD and SEM results show that the α-Fe and Fe3C nanoparticles are in-situ generated and disperse in the matrix of the woodceramic. The diameters of these nanoparticles increase with the increasing of concentration of FeCl3 solution. The experimental results show that both the complex permittivity and the complex permeability of α-Fe/Fe3C/woodceramic nanocomposites increase as the concentration of FeCl3 solution increases. The composites pretreated with 0.60 mol·L−1 FeCl3 have the best absorption properties. The maximum value of reflection loss (RL at 3 mm thickness reaches −25.60 dB at 10.16 GHz and the bandwidth below −10 dB is about 2.5 GHz. Compared to woodceramic, the bending strength and compressive strength of α-Fe/Fe3C/woodceramic nanocomposites increase by 22.5% and 18.7% at most, respectively.

  5. Synthesis and microwave absorption enhancement of Fe-doped NiO@SiO2@graphene nanocomposites

    International Nuclear Information System (INIS)

    Wang, Lei; Huang, Ying; Ding, Xiao; Liu, Panbo; Zong, Meng; Wang, Yan

    2013-01-01

    Highlights: • Fe-doped NiO@SiO 2 @graphene composites have excellent microwave performance. • The reflection loss of Fe doped NiO@SiO 2 @graphene was below −10 dB in 7–11 GHz. • The maximum absorption of Fe-doped NiO@SiO 2 @graphene was −51.2 dB at 8.6 GHz. -- Abstract: Fe-doped NiO@SiO 2 @graphene nanocomposites have been successfully fabricated for the first time, in which Fe-doped NiO nanoparticles are about 3 nm in diameter. In order to measure their electromagnetic properties, Fe-doped NiO@SiO 2 @graphene (25 wt%) wax composites were then prepared. The experimental results show that Fe-doped NiO@SiO 2 @graphene nanocomposites exhibit significantly enhanced microwave absorption performance in terms of both the maximum reflection loss value and the absorption bandwidth in comparison with NiO@SiO 2 @graphene. The maximum reflection loss of Fe-doped NiO@SiO 2 @graphene nanocomposites can reach −51.2 dB at 8.6 GHz with a thickness of 4 mm, and the absorption bandwidth with the reflection loss below −10 dB is 4 GHz (from 7 to 11 GHz). Therefore, this kind of nanocomposites may have the potential as high-efficient absorbers for microwave absorption applications

  6. Fe K-EDGE X-RAY ABSORPTION SPECTROSCOPY OF SILICATE MINERALS AND GLASSES

    OpenAIRE

    Binsted , N.; Greaves , G.; Henderson , C.

    1986-01-01

    Structural parameters determined for crystalline iron, fayalite and aegirine agree closely with X-ray crystallograhic data. A glass of NaFeSi2O6 composition has Fe predominantly present as Fe3+ in tetrahedral coordination i.e. as a network former. CaFeSiO4 and CaFeSi2O6 glasses have about 1/3 of the total Fe in octahedral coordination i.e. as a network modifier.

  7. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei

    2013-06-12

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  8. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei; Hu, Junqing; Zhu, Yihan; Zou, Rujia; Chen, Zhigang; Yang, Shiping; Li, Runwei; Su, Qianqian; Han, Yu; Liu, Xiaogang

    2013-01-01

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  9. Does lead use the intestinal absorptive pathways of iron? Impact of iron status on murine 210Pb and 59Fe absorption in duodenum and ileum in vivo

    International Nuclear Information System (INIS)

    Elsenhans, Bernd; Janser, Heinz; Windisch, Wilhelm; Schuemann, Klaus

    2011-01-01

    Highlights: → Absorption of 210 Pb increases much less than that of 59 Fe in murine duodena. → 210 Pb-absorption is almost equally high in murine duodenal and ileal segments. → 59 Fe absorption is much lower in ileal than in duodenal segments. → There must be an additional DMT1-independet pathway for intestinal Pb absorption. -- Abstract: Background: Human isotope studies and epidemiological trials are controversial as to whether lead absorption shares the absorptive pathways of iron and whether body lead content can be reduced by iron supplementation. Aim: To compare the impact of iron-deficiency on 59 Fe- and 210 Pb-absorption rates in duodenal and ileal segments. Methods: 59 Fe- and 210 Pb-absorption was determined in ligated duodenal and ileal segments from juvenile and adult iron-deficient and iron-adequate C57Bl6 wild-type mice (n = 6) in vivo at luminal concentrations corresponding to human exposure (Fe: 1 and 100 μmol/L; Pb: 1 μmol/L). Results and discussion: 59 Fe-absorption increased 10-15-fold in iron-deficient duodena from adult and adolescent mice. Ileal 59 Fe-absorption was 4-6 times lower than in iron-adequate duodena showing no adaptation to iron-deficiency. This in accordance to expectation as the divalent metal transport 1 (DMT1) shows low ileal expression levels. Juvenile 59 Fe-absorption was about twice as high as in adult mice. In contrast, duodenal 210 Pb-absorption was increased only 1.5-1.8-fold in iron-deficiency in juvenile and adult mice and, again in contrast to 59 Fe, ileal 210 Pb-absorption was as high as in iron-adequate duodena. Conclusions: The findings suggest a DMT1-independent pathway to mediate lead absorption along the entire small intestine in addition to DMT1-mediated duodenal uptake. Ileal lead absorption appears substantial, due the much longer residence of ingesta in the distal small intestine. Differences in lead-solubility and -binding to luminal ligands can, thus, explain the conflicting findings regarding the

  10. The K-shell ionisation of atoms by relativistic protons

    International Nuclear Information System (INIS)

    Davidovic, D.M.; Moiseiwitsch, B.L.; Norrington, P.H.

    1978-01-01

    The K-shell ionisation of atoms by protons travelling with relativistic velocities is investigated using an extension of the first-order time-dependent perturbation-theory treatment of Moeller (Ann. Phys. Lpz.; 14:531 (1932)), taking Dirac plane waves for the description of the incident and scattered protons and the Darwin approximation for the relativistic wavefunctions of the K-shell atomic electrons and the ejected electron. The differential cross sections and total cross sections are calculated. Results are compared with those of earlier workers. (author)

  11. One-pot synthesis of porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites used as recyclable magnetic antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weijun, E-mail: wjfang81@gmail.com [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Zheng, Jun; Chen, Cheng [Center of Modern Experimental Technology, Anhui University, Hefei 230039, Anhui (China); Zhang, Huabing; Lu, Yunxia [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Ma, Ling [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian (China); Chen, Guangjun [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China)

    2014-05-01

    Porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites featuring sustainable and recyclable antibacterial activity have been successfully prepared via a facile one-pot hydrothermal method. The unique structural feature of the Ag@Fe{sub 3}O{sub 4} nanocomposites with Ag embedded in porous Fe{sub 3}O{sub 4} shell endows them with the ability of sustained-release of silver ions. Their antimicrobial activity studies were investigated on both Gram negative Escherichia coli and Gram positive Bacillus subtilis, which demonstrate that the nanocomposites are highly toxic to microorganisms and exhibit sustainable antibacterial activity. Besides, the Ag@Fe{sub 3}O{sub 4} nanocomposites can be separated easily from the medium by a small magnet, which provided an effective way to eliminate the residual nanosilver from the surroundings. We finally demonstrate that the recovered nanocomposites exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Highlights: • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites have been successfully prepared via a simple one-pot hydrothermal method. • The as-prepared Ag@Fe{sub 3}O{sub 4} nanocomposites exhibit high antibacterial activity against both Gram-positive and Gram-negative bacteria. • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites show a stronger antibacterial ability than the solid Fe{sub 3}O{sub 4} shell/silver core nanocomposites. • The recovery nanocomposites still have antibacterial activity and can be reused.

  12. Iron-59 absorption from soy hulls: intrinsic vs extrinsic labeling

    International Nuclear Information System (INIS)

    Lykken, G.I.; Mahalko, J.R.; Nielsen, E.J.; Dintzis, F.R.

    1986-01-01

    As part of an evaluation of the validity of the extrinsic labeling technique for measuring iron absorption, absorption from soy hulls extrinsically labeled ( 59 Fe added to bread dough) was compared with that from soy hulls intrinsically labeled ( 59 Fe incorporated into the soy plant during growth). Century soybeans were grown in a greenhouse. After pods had formed and were filling, each plant was stem injected twice, at 3 day intervals, with 22 μCi 59 Fe as FeCl 2 in 25 μl of 0.5 M HCl solution. After the plants had senesced, the soybeans were harvested, dried, shelled and the hulls removed. Standard meals containing 3.5 mg Fe/meal and up to 0.06 μCi 59 Fe in a soy hull bun were fed on 2 consecutive days to free-living volunteers in a crossover design. Absorption of 59 Fe was greater from intrinsically labeled soy hulls than from extrinsically labeled soy hulls, 20 +/- 20% vs 15 +/- 11% (n=14, p > 0.05 by paired t-test). Apparent absorption ranged from 1.3% to 77% from intrinsically labeled soy hulls and .5% to 29% from extrinsically labeled soy hulls with the highest absorption occurring in persons with low serum ferritin (S.F. < 8 ng/ml). These findings provide additional evidence that the extrinsic labeling method is a valid measure of iron bioavailability to humans

  13. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    Science.gov (United States)

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  14. Spherical implosion experiments on OMEGA: measurements of the cold, compressed shell

    Energy Technology Data Exchange (ETDEWEB)

    Yaakobi, B.; Smalyuk, V.A.; Delettrez, J.A.; Town, R.P.J.; Marshall, F.J.; Glebov, V.Y.; Petrasso, R.D.; Soures, J.M.; Meyerhofer, D.D.; Seka, W. [Rochester Univ., NY (United States). Lab. for Laser Energetics

    2000-07-01

    Targets in which a titanium-doped layer is incorporated into the shell provide a variety of diagnostic signatures (absorption lines, K-edge absorption, K{alpha} imaging) for determining the areal density and dimensions of the shell around peak compression. Here we apply these methods to demonstrate the improvement in target performance when SSD is implemented on slow-rising laser pulses. We introduce a new method to study the uniformity of imploded shells: using a recently developed pinhole-array x-ray spectrometer, we obtain core images at energies below and above the K-edge energy of titanium. The ratio between such images reflects the nonuniformity of the shell alone. Finally, we compare the results with those of 1-D LILAC simulations, as well as 2-D ORCHID simulations that allow for the imprinting of laser non-uniformity on the target. The experimental results are replicated much better by ORCHID than by LILAC. (authors)

  15. The Atomic Physics of Fe K alpha: Toward Accurate Abundance Diagnostics for Supernova Remnants

    Science.gov (United States)

    Brickhouse, Nancy

    2009-09-01

    We propose to conduct a case study of Fe XVI K alpha emission produced during the transient ionization of a supernova remnant. This study includes critical evaluation of the existing data for electron impact inner-shell ionization and fluorescence yields, including tests conducted using a variety of theoretical atomic physics methods. Standard and newly developed atomic codes will be used. Once error estimates for the atomic data are complete, we will propagate these errors using the APEC code to simulate spectra and determine the overall accuracy of iron abundances determined from X-ray spectra.

  16. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    Science.gov (United States)

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    Science.gov (United States)

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P sauce does not affect Zn bioavailability in children.

  18. Gas phase synthesis of core-shell Fe@FeO{sub x} magnetic nanoparticles into fluids

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Sitki, E-mail: aksitki61@gmail.com; Thornton, Stuart C.; Binns, Chris [University of Leicester, Department of Physics and Astronomy (United Kingdom); Denby, Phil [Ensol As, Nesttun (Norway)

    2016-12-15

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO{sub x} nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO{sub x} nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 10{sup 4} J/m{sup 3} (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO{sub x} suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM{sup −1} s{sup −1}.

  19. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  20. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  1. Fe3O4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range

    International Nuclear Information System (INIS)

    Li Xinghua; Yi Haibo; Zhang Junwei; Feng Juan; Li Fashen; Xue Desheng; Zhang Haoli; Peng Yong; Mellors, Nigel J.

    2013-01-01

    Fe 3 O 4 –graphene hybrid materials have been fabricated by a simple polyol method, and their morphology, chemistry and crystal structure have been characterized at the nanoscale. It is found that each Fe 3 O 4 nanoparticles decorated on the graphene has a polycrystalline fcc spinel structure and a uniform chemical phase. Raman spectroscopy, Fourier transform infrared spectroscopy, thermogravimetry/differential thermal analysis, X-ray diffraction, and transmission electron microscopy suggest that Fe 3 O 4 nanoparticles are chemically bonded to the graphene sheets. Electromagnetic wave absorption shows that the material has a reflection loss exceeding −10 dB in 7.5–18 GHz for an absorber thickness of 1.48–3 mm, accompanying a maximum reflection loss value of −30.1 dB at a 1.48-mm matching thickness and 17.2-GHz matching frequency. Theoretic analysis shows that the electromagnetic wave absorption behavior obeys quarter-wave principles. The results suggest that the magnetic Fe 3 O 4 –graphene hybrids are good candidates for the use as a light-weight electromagnetic wave-absorbing material in X- and K u -bands.

  2. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    Science.gov (United States)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  3. Fe K-Edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials

    Science.gov (United States)

    Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.

    2018-03-01

    XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.

  4. Millimeter wave absorption by confined acoustic modes in CdSe/CdTe core-shell quantum dots

    International Nuclear Information System (INIS)

    Liu, T-M; Lu, J-Y; Kuo, C-C; Wen, Y-C; Lai, C-W; Yang, M-J; Chou, P-T; Murray, D B; Saviot, L; Sun, C-Kuang

    2007-01-01

    Taking advantage of the specific core-shell charge separation structure in the CdSe/CdTe core-shell Type-II quantum dots (QDs), we experimentally observed the resonant-enhanced dipolar interaction between millimeter-wave (MMW) photons and their corresponding (l = 1) confined acoustic phonons. With proper choice of size, the absorption band can be tuned to desired frequency of MMW imaging. Exploiting this characteristic absorption, in a fiber-scanned MMW imaging system, we demonstrated the feasibility of CdSe/CdTe QDs as the contrast agents of MMW imaging

  5. Yolk-Shelled C@Fe3 O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    He, Jiarui; Luo, Liu; Chen, Yuanfu; Manthiram, Arumugam

    2017-09-01

    Owing to the high theoretical specific capacity (1675 mA h g -1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe 3 O 4 (YSC@Fe 3 O 4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe 3 O 4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe 3 O 4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe 3 O 4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm -2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  7. X-Ray Absorption Spectroscopy of Fe-Substituted Allophane and Imogolite

    Science.gov (United States)

    Baker, L. L.; Strawn, D. G.; Nickerson, R. D.; McDaniel, P.

    2011-12-01

    Martian rocks and sediments contain weathering products including clay minerals formed as a result of interaction between rocks and water, and these materials can act as important indicators of past surface conditions on Mars. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals, including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which may affect their spectral and physical properties as well as their eventual recrystallization products. Detection and quantification of such minerals in natural environments on Earth is difficult due to their variable chemical composition and lack of long-range crystalline order. Their accurate detection and quantification on Mars requires a better understanding of how composition affects their spectral properties and evolution to more crystalline phases. Aluminosilicate nanoparticles of varying composition were synthesized with isomorphically substituted Fe at Fe:Al ratios of 1:100. Allophanes were synthesized with Al:Si ratios of 2:1, 1:1, and 1:3. The substituted Fe was probed using Fe K-edge X-ray absorption fine structure spectroscopy (XAFS). The XAFS spectrum contains information about the molecular environment surrounding the target atom, and is an ideal technique for studying poorly crystalline materials that are difficult to characterize using bulk methods such as XRD. The near-edge (XANES) and extended (EXAFS) portions of the XAFS spectrum were examined, and allophane backscattering paths were fit using coordinates for a modified nanoball model (1). XANES spectra rule out ferrihydrite in the synthetic samples, suggesting all Fe was incorporated into the aluminosilicate structure. The XAFS results suggest that Fe substituted into the allophane structure is present as Fe(III) in octahedral coordination in a well-ordered sheet. Some Fe

  8. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  9. Further measurements of K shell photoelectric cross sections for some elements in the range 26<=Z<=41 at 74 keV. [74. 409 keV

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-12-01

    K shell photoelectric cross sections in elements Fe, Ni, Cu, Zn, As, Se, Br, Sr, Zr and Nb have been measured at 74.409 keV. The targets were irradiated with x radiation and gamma radiation beams. In confirmation with the earlier results, the present results also show fairly good agreement with theory.

  10. K-shell ionization probability in energetic nearly symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Tserruya, I.; Schmidt-Boecking, H.; Schuch, R.

    1977-01-01

    Impact parameter dependent K-x-ray emission probabilities for the projectile and target atoms have been measured in 35 MeV Cl on Cl, Cl on Ti and Cl on Ni collisions. The sum of projectile plus target K-shell ionization probability is taken as a measure of the total 2psigma ionization probability. The 2pπ-2psigma totational coupling model is in clear disagreement with the present results. On the other hand the sum of probabilities is reproduced both in shape and absolute magnitude by the statistical model for inner-shell ionization. The K-shell ionization probability of the higher -Z collision partner is well described by this model including the 2psigma-1ssigma vacancy sharing probability calculated as a function of the impact parameter. (author)

  11. Hydrogen absorption in Zr(Alsub(x)Bsub(1-x))2 (B = Fe, Co) Laves phase compounds

    International Nuclear Information System (INIS)

    Jacob, I.; Shaltiel, D.

    1978-01-01

    The hydrogen absorption capacity of the systems Zr(Alsub(x)Fesub(1-x)) 2 and Zr(Alsub(x)Cosub(1-x)) 2 (0 = 2 (A = V, Cr, Mn; B = Fe, Co; 0 =< x =< 1). The maximum hydrogen content in both systems is achieved for x approximately 2/12 at 40 atm and 80 K. Further increase of the Al content leads, however, to a steep decrease in the hydrogen capacity. This general behaviour is well described by a phenomenological model, recently proposed by the authors, thus supporting the importance of short-range neighbouring effects for the hydrogen absorption capacity. The influence of Al on the hydrogen sorption properties in different intermetallic compounds is discussed. (author)

  12. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  13. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  14. Measurement of vacancy transfer probability from K to L shell using ...

    Indian Academy of Sciences (India)

    73, No. 4. — journal of. October 2009 physics pp. 711–718. Measurement of vacancy transfer probability from K to L shell using K-shell fluorescence yields. ¨O S¨O˘GÜT1,∗, E BÜYÜKKASAP2, A KÜC¸ ÜK¨ONDER1 and T TARAKC¸ IO ˇGLU1. 1Department of Physics, Faculty of Science and Letters, Kahramanmaras Sütçü ˙ ...

  15. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  16. Copper K-shell emission cross sections for laser–solid experiments

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J. R.; Betti, R.; Nilson, P. M.; Solodov, A. A. [Fusion Science Center for Extreme States of Matter, Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15

    Published measurements and models of the cross section for electrons causing K-shell emission from copper are reviewed to find a suitable expression to use when analyzing K{sub α}-emission measurements in laser–solid experiments at peak intensities above 10{sup 18} W/cm{sup 2}. Few measurements exist in the 0.1- to 10-MeV electron energy range currently of interest, leaving a number of possible suitable models that are summarized here with a number of typing errors corrected. Two different limiting forms for the cross section at relativistic energies are used, and existing measurements do not give a clear indication as to which is correct. Comparison with the limiting form of electron stopping power indicates an alternative relativistic form and also that the density-effect correction will be important in copper above 10 MeV. For data analysis relying on relative K{sub α} emission caused by electrons with energy much greater than the K-shell binding energy, the existing uncertainty in cross sections is unimportant, but it will be a source of uncertainty when using absolute values and for electron energies up to ∼6× the binding energy. K-shell emission caused by photons and protons is also briefly reviewed.

  17. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe{sub 3}O{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dandan, E-mail: mdd4776@126.com; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-08-01

    Highlights: • Flake carbonyl iron/Fe{sub 3}O{sub 4} composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe{sub 3}O{sub 4} (FCI/Fe{sub 3}O{sub 4}) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe{sub 3}O{sub 4} composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe{sub 3}O{sub 4} composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  18. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  19. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    Science.gov (United States)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  20. An HST COS 'SNAPSHOT' spectrum of the K supergiant λ Vel (K4Ib-II)

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Kenneth G. [NASA/GSFC Code 667, Greenbelt, MD 20771 (United States); Ayres, Thomas R. [University of Colorado, CASA, 389-UCB, Boulder, CO 80309 (United States); Harper, Graham M. [School of Physics, Trinity College, Dublin 2 (Ireland); Kober, Gladys; Nielsen, Krister E.; Wahlgren, Glenn M., E-mail: Kenneth.G.Carpenter@nasa.gov [Deptartment of Physics, Catholic University of America, Washington, DC 20064 (United States)

    2014-10-10

    We present a far-ultraviolet spectrum of the K4 Ib-II supergiant λ Vel obtained with the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) as a part of the SNAPshot program 'SNAPing coronal iron' (GO 11687). The observation covers a wavelength region (1326-1467 Å) not previously recorded for λ Vel at a spectral resolving power of R ∼ 20,000 and displays strong emission and absorption features, superposed on a bright chromospheric continuum. Fluorescent excitation is responsible for much of the observed emission, mainly powered by strong H I Lyα and the O I (UV 2) triplet emission near λ1304. The molecular CO and H{sub 2} fluorescences are weaker than in the early-K giant α Boo while the Fe II and Cr II lines, also pumped by H I Lyα, are stronger in λ Vel. This pattern of relative line strengths between the two stars is explained by the lower iron-group element abundance in α Boo, which weakens that star's Fe II and Cr II emission without reducing the molecular fluorescences. The λ Vel spectrum shows fluorescent Fe II, Cr II, and H{sub 2} emission similar to that observed in the M supergiant α Ori, but more numerous well-defined narrow emissions from CO. The additional CO emissions are visible in the spectrum of λ Vel since that star does not have the cool, opaque circumstellar shells that surround α Ori and produce broad circumstellar CO (A-X) band absorptions that hide those emissions in the cooler star. The presence of Si IV emission in λ Vel indicates a ∼8 × 10{sup 4} K plasma that is mixed into the cooler chromosphere. Evidence of the stellar wind is seen in the C II λλ1334,1335 lines and in the blueshifted Fe II and Ni II wind absorption lines. Line modeling using Sobolev with Exact Integration for the C II lines indicates a larger terminal velocity (∼45 versus ∼30 km s{sup –1}) and turbulence (∼27 versus <21 km s{sup –1}) with a more quickly accelerating wind (β = 0.35 versus 0.7) at the time of

  1. Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance

    International Nuclear Information System (INIS)

    Wang, Lei; Zhu, Jianfeng; Yang, Haibo; Wang, Fen; Qin, Yi; Zhao, Ting; Zhang, Pei

    2015-01-01

    Highlights: • Graphene@Fe 3 O 4 @SiO 2 @polyaniline hierarchical structures have been fabricated. • The reflection loss of the composites is below −10 dB in 10.5–16.3 GHz. • The maximum absorption of the composites is −40.7 dB at 12.5 GHz. - Abstract: Hierarchical graphene@Fe 3 O 4 @SiO 2 @polyaniline quaternary composite is fabricated subtly. Their microwave absorption properties are also investigated in the 2–18 GHz frequency range. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) reveal that Fe 3 O 4 @SiO 2 @polyaniline core@shell@shell heteronanostructures are densely covered on the surfaces of graphene, and form hierarchical structures. Compared with two-dimensional binary nanocomposites of graphene@Fe 3 O 4 , the hierarchical structure exhibits enhanced EM absorption in terms of both the maximum reflection loss value and the absorption bandwidth. The maximum reflection loss value can reach −40.7 dB at 12.5 GHz with a thickness of 2.5 mm and the bandwidth corresponding to the reflection loss below −10 dB is 5.8 GHz (from 10.5 to 16.3 GHz)

  2. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  3. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  4. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe{sub 2}O{sub 3} nanoparticles formed in dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Domracheva, Natalia E., E-mail: ndomracheva@gmail.com; Vorobeva, Valerya E. [Zavoisky Kazan Physical-Technical Institute (Russian Federation); Gruzdev, Matvey S. [Institute of Solution Chemistry (Russian Federation); Pyataev, Andrew V. [Kazan Federal University (Russian Federation)

    2015-02-15

    We are presenting the investigation of the optical, magnetic, and photoinduced superparamagnetic properties of single-domain γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) with diameters of about 2.5 nm formed in second-generation poly(propylene imine) dendrimer. The optical absorption studies indicated direct allowed transition with the band gap (4.5 eV), which is blue shift with respect to the value of the bulk material. Low-temperature blocking of the NPs magnetic moments at 18 K is determined by SQUID measurements. The influence of pulsed laser irradiation on the superparamagnetic properties of γ-Fe{sub 2}O{sub 3} NPs was studied by EPR spectroscopy. It has been shown that irradiation of the sample held in vacuo and cooled in zero magnetic field to 6.9 K leads to the appearance of a new EPR signal, which decays immediately after the irradiation is stopped. The appearance and disappearance of this new signal can be repeated many times at 6.9 K when we turn on/turn off the laser. We suppose that the generation of conduction band electrons by irradiation into the band gap of the γ-Fe{sub 2}O{sub 3} changes the superparamagnetic properties of NPs. Graphical Abstract: Features of the behavior of single-domain γ-Fe{sub 2}O{sub 3} nanoparticles formed in dendrimer were found by UV-Vis and EPR spectroscopy: “blue” shift in optical absorption, a significant increase in the band gap width and variation of superparamagnetic properties under light irradiation.

  5. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-01-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs

  6. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia.

    Science.gov (United States)

    Chung, Ren-Jei; Shih, Hui-Ting

    2014-01-24

    Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.

  7. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  8. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  9. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  10. Enhanced microwave absorption and magnetic phase transitions of nanoparticles of multiferroic LaFeO3 incorporated in multiwalled carbon nanotubes (MWCNTs)

    International Nuclear Information System (INIS)

    Mitra, A.; Mahapatra, A.S.; Mallick, A.; Chakrabarti, P.K.

    2017-01-01

    Highlights: • Nanoparticles of LaFeO 3 are successfully incorporated in MWCNTs. • Interestingly, phase transitions of LaFeO 3 -MWCNTs are observed in magnetic data. • Superparamagnetic relaxations of LFO in MWCNTs are found at and above ∼298 K. • Microwave absorption of LFO is highly enhanced in the composite of LFO-MWCNTs. - Abstract: Multiferroic nanoparticles of LaFeO 3 (LFO) are prepared by a combination of sono-chemical and sol-gel auto combustion method. The as prepared sample is calcined at 500 °C for 5 h to get the desired crystallographic phase. To enhance the microwave absorption, nanoparticles of LFO are incorporated in the matrix of multi-walled carbon nanotubes (MWCNTs). Crystallographic phases of LFO and LFO-MWCNTs are confirmed by analyzing the X-ray diffractograms (XRD) using Rietveld method. The average size of nanoparticles, crystallographic phase, morphology, and incorporation of LFO nanoparticles in MWCNTs are also obtained by high-resolution transmission electron microscope (HRTEM). Micrographs, nanocrystalline fringe pattern and selected area electron diffraction pattern recorded during HRTEM observations confirmed the formation of the desired nanocomposite phase of LFO-MWCNTs. FTIR and Raman spectroscopy of LFO and LFO-MWCNTs are also recorded at room temperature (RT) which confirm the presence of the individual component in the nanocomposite sample. Hysteresis loops at different temperatures from 300 K down to 5 K, zero field cooled (ZFC) and field cooled (FC) magnetizations (M) as a function of temperature (T) of LFO-MWCNTs are recorded in SQUID magnetometer. Analysis of the observed magnetic data of LFO-MWCNTs suggests the presence of superparamagnetism above ∼298 K and a spin-glass like behavior is found below ∼50 K. The electromagnetic wave absorbing properties in X and K u bands of microwave regions (8–12 GHz and 12–18 GHz) measured by a vector network analyzer (VNA) confirm the significant enhancement of microwave

  11. Influence of interstitial solutions (H, N) on cerium electronic state in Ce-Fe intermetallic compounds: X-ray Absorption Spectroscopy (XAS) study

    International Nuclear Information System (INIS)

    Chaboy, J.; Marcelli, A.; Bozukov, L.

    1995-03-01

    It is presented an x-ray absorption spectroscopy (XAS) investigation performed at the L-edges of the rare-earth and at the K-edge of iron in the R-Fe intermetallic compounds (La, Ce) 2 Fe 14 BH χ and Ce 2 Fe 17 (H,N) χ , to elucidate the role of the interstitial doping into the electronic and magnetic properties of these systems. Comparison with x-ray circular magnetic dichroism (XCMD) experiments has been carried out to clarify the localization of 4f magnetic moment at the Ce sites upon hydriding. Both XAS and XCMD results evidence the interplay between the structural and magnetic changes, that are associated to the modification of the hybridization between the Fe(3d) and Ce(5d) bands

  12. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  13. Synthesis, structure and magnetic properties of Fe-Gd nanocapsules coated with B2O3/H3BO3 and Fe3BO5+GdBO3

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Buschow, K.H.J.; Zhang, W.S.; Klaasse, J.C.P.; Boer, F.R. de

    2004-01-01

    Nanocapsules consisting of B 2 O 3 /H 3 BO 3 encapsulating Fe-Gd cores have been synthesized by an arc-discharge process using metal-boron alloys as cathode. Most of the nanocapsules have a well-constructed shell/core structure with a uniform B 2 O 3 /H 3 BO 3 shell. Heat-treatment induces reactions between the shell and the core, resulting in the formation of a Fe 3 BO 5 +GdBO 3 matrix embedded with Fe nanoparticles, reduction of the metallic-core size and decrease of the blocking temperature T B . Above T B , the magnetization curves plotted vs. H/T overlap and show zero coercivity. Below T B , the coercivity shows a linear dependence when plotted vs. T 1/2 . However, the coercivity-T 1/2 curve below 60 K has a different slope from that above 60 K, indicating the existence of two different magnetic phases in the nanocapsules. Different from bulk Fe 3 BO 5 , nanoscale Fe 3 BO 5 particles have a lower transition temperature to the weak-ferromagnetic state, and magnetic hysteresis is absent due to size effects

  14. Rational Design of Multifunctional Fe@γ-Fe2 O3 @H-TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy.

    Science.gov (United States)

    Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun

    2018-03-01

    Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe2O3 core-shell nanomaterials.

    Science.gov (United States)

    Liu, Jingyi; Hu, Wenyong; Sun, Maogui; Xiong, Ouyang; Yu, Haibin; Feng, Haopeng; Wu, Xuan; Tang, Lin; Zhou, Yaoyu

    2018-06-13

    The degradation of norfloxacin by Fenton reagent with core-shell Fe@Fe 2 O 3 nanomaterials was studied under neutral conditions in a closed batch system. Norfloxacin was significantly degraded (90%) in the Fenton system with Fe@Fe 2 O 3 in 30 min at the initial pH 7.0, but slightly degraded in Fenton system without Fe@Fe 2 O 3 under the same experimental conditions. The intermediate products were investigated by gas chromatography-mass spectrometry, and the possible Fenton oxidation pathway of norfloxacin in the presence of Fe@Fe 2 O 3 nanowires was proposed. Electron spin resonance spectroscopy was used to identify and characterize the free radicals generated, and the mechanism for norfloxacin degradation was also revealed. Finally, the reusability and the stability of Fe@Fe 2 O 3 nanomaterials were studied using x-ray diffraction and scanning electron microscope, which indicated that Fe@Fe 2 O 3 is a stable catalyst and can be used repetitively in environmental pollution control.

  16. Inner-shell vacancy production and mean charge states of MeV/u Fe, Co, Ni and Cu ions in Au and Bi solid targets

    Energy Technology Data Exchange (ETDEWEB)

    Ciortea, C. E-mail: ciortea@tandem.nipne.ro; Dumitriu, Dana; Enescu, Sanda E.; Enulescu, A.; Fluerasu, Daniela; Piticu, I.; Szilagyi, Z.S

    2002-06-01

    The average charge states of 0.1-1.5 MeV/u Fe, Co, Ni and Cu ions in solid Au and Bi targets have been determined, by estimating the mean numbers of outer-shell spectator vacancies during the K-vacancy decay. The latter quantities were obtained from the yield and energy shifts of the K{alpha}, {beta} X-rays, by comparing with calculations in the independent electron approximation. The reported equilibrium charges, mostly characteristic for the inside of the target, are in fairly agreement with Nikolaev and Dmitriev semi-empirical formula [Phys. Lett. 28A (1968) 277].

  17. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  18. ESTIMATION OF MEASUREMENT UNCERTAINTY IN THE DETERMINATION OF Fe CONTENT IN POWDERED TONIC FOOD DRINK USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The evaluation of uncertainty measurement in the determination of Fe content in powdered tonic food drink using graphite furnace atomic absorption spectrometry was carried out. The specification of measurand, source of uncertainty, standard uncertainty, combined uncertainty and expanded uncertainty from this measurement were evaluated and accounted. The measurement result showed that the Fe content in powdered tonic food drink sample was 569.32 µg/5g, with the expanded uncertainty measurement ± 178.20 µg/5g (coverage factor, k = 2, at confidende level 95%. The calibration curve gave the major contribution to the uncertainty of the final results.   Keywords: uncertainty, powdered tonic food drink, iron (Fe, graphite furnace AAS

  19. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2014-01-01

    Full Text Available Iron core gold shell nanoparticles grafted with Methotrexate (MTX and indocyanine green (ICG were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid (PSMA to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2 via the magnetic hyperthermia mechanism and the release of MTX.

  20. Enhanced microwave absorption and magnetic phase transitions of nanoparticles of multiferroic LaFeO{sub 3} incorporated in multiwalled carbon nanotubes (MWCNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, A.; Mahapatra, A.S.; Mallick, A.; Chakrabarti, P.K., E-mail: pabitra_c@hotmail.com

    2017-08-01

    Highlights: • Nanoparticles of LaFeO{sub 3} are successfully incorporated in MWCNTs. • Interestingly, phase transitions of LaFeO{sub 3}-MWCNTs are observed in magnetic data. • Superparamagnetic relaxations of LFO in MWCNTs are found at and above ∼298 K. • Microwave absorption of LFO is highly enhanced in the composite of LFO-MWCNTs. - Abstract: Multiferroic nanoparticles of LaFeO{sub 3} (LFO) are prepared by a combination of sono-chemical and sol-gel auto combustion method. The as prepared sample is calcined at 500 °C for 5 h to get the desired crystallographic phase. To enhance the microwave absorption, nanoparticles of LFO are incorporated in the matrix of multi-walled carbon nanotubes (MWCNTs). Crystallographic phases of LFO and LFO-MWCNTs are confirmed by analyzing the X-ray diffractograms (XRD) using Rietveld method. The average size of nanoparticles, crystallographic phase, morphology, and incorporation of LFO nanoparticles in MWCNTs are also obtained by high-resolution transmission electron microscope (HRTEM). Micrographs, nanocrystalline fringe pattern and selected area electron diffraction pattern recorded during HRTEM observations confirmed the formation of the desired nanocomposite phase of LFO-MWCNTs. FTIR and Raman spectroscopy of LFO and LFO-MWCNTs are also recorded at room temperature (RT) which confirm the presence of the individual component in the nanocomposite sample. Hysteresis loops at different temperatures from 300 K down to 5 K, zero field cooled (ZFC) and field cooled (FC) magnetizations (M) as a function of temperature (T) of LFO-MWCNTs are recorded in SQUID magnetometer. Analysis of the observed magnetic data of LFO-MWCNTs suggests the presence of superparamagnetism above ∼298 K and a spin-glass like behavior is found below ∼50 K. The electromagnetic wave absorbing properties in X and K{sub u} bands of microwave regions (8–12 GHz and 12–18 GHz) measured by a vector network analyzer (VNA) confirm the significant

  1. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, including...

  2. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, includi...

  3. A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C

    Science.gov (United States)

    A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...

  4. Role of N-methyl-2-pyrrolidone for preparation of Fe{sub 3}O{sub 4}@SiO{sub 2} controlled the shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung-Bok [Hanyang University, Division of Materials Science and Engineering (Korea, Republic of); Oh, Hyeon-Cheol [Korea Nano Plus, Inc. (Korea, Republic of); Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl, E-mail: choi0505@hanyang.ac.kr [Hanyang University, Division of Materials Science and Engineering (Korea, Republic of)

    2017-04-15

    We developed a simple and novel approach for the synthesis of Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe{sub 3}O{sub 4}@SiO{sub 2} controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  5. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres

    International Nuclear Information System (INIS)

    Wilson, A.; Mishra, S.R.; Gupta, R.; Ghosh, K.

    2012-01-01

    Magnetically separable and reusable core–shell CoFe 2 O 4 –ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core–shell hybrid structure of CoFe 2 O 4 –ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: ► Synthesis of novel hybrid magnetic-ZnO core–shell composite nanospheres. ► High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. ► The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. ► Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. ► The photocatalysis rate was observed to be ZnO shell thickness dependent.

  6. Inner-shell photoionization in weak and strong radiation fields

    International Nuclear Information System (INIS)

    Southworth, S.H.; Dunford, R.W.; Ederer, D.L.; Kanter, E.P.; Kraessig, B.; Young, L.

    2004-01-01

    The X-ray beams presently produced at synchrotron-radiation facilities interact weakly with matter, and the observation of double photoionization is due to electron-electron interactions. The intensities of future X-ray free-electron lasers are expected to produce double photoionization by absorption of two photons. The example of double K-shell photoionization of neon is discussed in the one- and two-photon cases. We also describe an experiment in which X rays photoionize the K shell of krypton in the presence of a strong AC field imposed by an optical laser

  7. Pr2Fe14B/α-Fe nanocomposites for thermal applications

    International Nuclear Information System (INIS)

    Silva, Suelanny Carvalho da

    2012-01-01

    In this work, Pr x Fe 94 - x B 6 (x = 6, 8, 10 and 12) nanostructured powders were prepared by a combination of hydrogenation, disproportionation, desorption and recombination (HDDR) process with high energy milling applied to the mixture of an as-cast alloy (Pr 14 Fe 80 B 6 ) and α-Fe. The produced nanoparticles showed magnetic properties comparable to those reported in hyperthermia studies. The optimal time to obtain the magnetic nanoparticles is 5 hours (at 900 rpm). It was verified that longer milling times cause an increase in carbon percentage on the particles. The carbon is derived from oleic acid added as a surfactant in the milling step. The nanocomposites exhibit coercive force ranging from 80 Oe (6.5 kAm -1 ) to 170 Oe (13.5 kAm -1 ) and magnetic moments in the range of 81 129 Am2kg -1 . From the X-ray diffraction analyses, only two phases were found in all samples: α-Fe and the magnetic phase Pr 2 Fe 14 B. Individual nanoparticles with diameter of about 20 nm were verified. The samples studied presented heating when exposed to an alternating magnetic field (f = 222 kHz e H max ∼3.7 kAm -1 ) comparable to reported in literature. Temperature variations (ΔT) of the powders were: 51 K for Pr 6 Fe 88 B 6 , 41 K for Pr 8 Fe 86 B 6 , 38 K for Pr 10 Fe 8 4 B 6 and T = 34 K for Pr 12 Fe 82 B 6 . The specific absorption rates (SARs) of the powders were 201 Wkg -1 for Pr 6 Fe 88 B 6 composition, 158 Wkg -1 on the composition Pr 8 Fe 86 B 6 , and 114 Wkg -1 for Pr 10 Fe 84 B 6 and Pr 12 Fe 82 B 6 compositions. (author)

  8. Wire array K-shell sources on the SPHINX generator

    Science.gov (United States)

    D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).

  9. A novel magnetic core-shell nanocomposite Fe3O4@chitosan@ZnO for the green synthesis of 2-benzimidazoles

    Science.gov (United States)

    Tian, Fei; Niu, Libo; Chen, Bo; Gao, Xuejia; Lan, Xingwang; Huo, Li; Bai, Guoyi

    2017-10-01

    A novel magnetic core-shell nanocomposite Fe3O4@Chitosan@ZnO was successfully prepared by in situ chemical precipitation method. It has a clear core-shell structure with magnetic Fe3O4 (about 160 nm in diameter) as core, chitosan as the inner shell, and ZnO as the outer shell, as demonstrated by the transmission electron microscopy and the related elemental mapping. Moreover, this nanocomposite has high magnetization (43.6 emu g-1) so that it can be easily separated from the reaction mixture within 4 s by an external magnetic field. The introduction of the natural chitosan shell, instead of the conventional SiO2 shell, and its combination with the active ZnO ensures this novel nanocomposite green character and good catalytic performance in the synthesis of 2-benzimidazoles with moderate to excellent isolated yields at room temperature. Notably, it can be recycled seven times without appreciable loss of its initial catalytic activity, demonstrating its good stability and making it an attractive candidate for the green synthesis of 2-benzimidazoles. [Figure not available: see fulltext.

  10. Normal iron absorption determined by means of whole body counting and red cell incorporation of 59Fe

    International Nuclear Information System (INIS)

    Larsen, L.; Milman, N.

    1977-01-01

    Gastrointestinal iron absorption was measured in 27 normal subjects (19 females and 8 males) by means of whole body counting. Whole body retention 14 days after oral administration of 10μCi 59 Fe together with a carrier dose of 9.9 mg Fe 2+ (as sulphate), was used as an expression of absorption. The percentage incorporation in the total erythrocyte mass of administered 59 Fe (erythrocyte incorporation) and of absorbed 59 Fe (red cell utilization) was also estimated. Geometric mean iron absorption was 8.3+-2.1 (SD% in females, 9.1+-2.2 % in males and 8.5+-2.1 % in the entire series. The difference between males and females was not significant. Erythrocyte incorporation was 7.7+-2.2 (SD) % (geometric mean) in the entire series and the correlation between iron absorption and erythrocyte incorporation was highly significant (r = 0.96,P < 0.001). Red cell utilization averaged 92.9 +- 4.0 (SEM)% (arithmetic mean) in the entire series. (author)

  11. Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo; Sheng, Leimei, E-mail: slmss@shu.edu.cn; Yu, Liming; An, Kang; Ren, Wei; Zhao, Xinluo, E-mail: xlzhao@shu.edu.cn

    2015-03-15

    Highlights: • LPA-SWCNTs have been abundantly fabricated by a facile, time-saving, economical and non-hazardous method using DC arc discharge technique in low-pressure air. • The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites were investigated and the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites exhibited excellent microwave absorption properties. • The Debye theory and impedance matching were used to analyze the electromagnetic parameters and microwave absorption properties. - Abstract: Single-walled carbon nanotubes were facilely and abundantly synthesized by low-pressure air arc discharge method (LPA-SWCNTs), and CoFe{sub 2}O{sub 4} nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and their nanocomposites were investigated. The LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites showed excellent microwave absorption properties. The minimum efficient reflection loss is −30.7 dB at 12.9 GHz for 10 wt% of LPA-SWCNTs in the nanocomposites, and an effective absorption bandwidth with a reflection loss below −10 dB is 7.2 GHz. The Debye equation and impedance matching were introduced to explain the microwave absorption properties. Compared with the single-component materials, the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites are an excellent candidate for microwave absorbers.

  12. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    Science.gov (United States)

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  13. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    Science.gov (United States)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  14. Thermal infrared and microwave absorbing properties of SrTiO3/SrFe12O19/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Hosseini, Seyed Hossein; Zamani, Parisa; Mousavi, S.Y.

    2015-01-01

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO 3 /SrFe 12 O 19 /PANI exhibited electric and electromagnetic properties. • The SrTiO 3 /SrFe 12 O 19 /PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO 3 was synthesized as IR absorbent and core and then SrFe 12 O 19 as microwave absorbent was prepared on SrTiO 3 via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO 3 /SrFe 12 O 19 nanoparticles via in situ polymerization by multi core–shell structures (SrTiO 3 /SrFe 12 O 19 /PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the SrTiO 3 /SrFe 12 O 19 /PANI nanocomposites have good compatible

  15. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    Science.gov (United States)

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  16. Phase equilibrium of the Gd-Fe-Co system at 873 K

    International Nuclear Information System (INIS)

    Huang Jinli; Zhong Haichang; Xia Xiuwen; He Wei; Zhu Jinming; Deng Jianqiu; Zhuang Yinghong

    2009-01-01

    Phase equilibrium of the ternary Gd-Fe-Co system at 873 K was investigated by using X-ray diffraction technique, electron probe microanalysis, metallographic analysis and differential thermal analysis. The 873 K isothermal section of the phase diagram of the Gd-Fe-Co ternary system consists of 11 single-phase regions, 16 two-phase regions and 6 three-phase regions. Three pairs of corresponding compounds of Gd-Co and Gd-Fe, i.e., Gd 2 Co 17 and Gd 2 Fe 17 , GdCo 3 and GdFe 3 , GdCo 2 and GdFe 2 , form a continuous series of solid solution. The compound Gd 2 Co 7-x Fe x was found to have a broad solubility range from 0 to 31 at.% Fe. The maximum solubility of Co in Gd 6 Fe 23 is about 7 at.% Co. At 873 K, the maximum solubilities of Fe in Gd 3 Co and Gd 4 Co 3 are about 3 and 1 at.% Fe, respectively. No ternary compound was found in all ternary alloy samples

  17. Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

    International Nuclear Information System (INIS)

    Binns, Chris; Prieto, Pilar; Baker, Stephen; Howes, Paul; Dondi, Ruggero; Burley, Glenn; Lari, Leonardo; Kröger, Roland; Pratt, Andrew; Aktas, Sitki; Mellon, John K.

    2012-01-01

    We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe-Au and Fe-Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe-Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

  18. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    Science.gov (United States)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  19. Microwave absorption properties of NiCoFe2O4-graphite embedded poly(o-phenetidine nanocomposites

    Directory of Open Access Journals (Sweden)

    Anil Ohlan

    2011-09-01

    Full Text Available Poly(o-phenetidine nanocomposites (PNG with NiCoFe2O4 and exfoliated graphite have been synthesized via in-situ emulsion polymerization. Systematic investigations reveal that the NiCoFe2O4 nanoparticles (30-40 nm in the poly(o-phenetidine matrix have phenomenal effect in determining the electrical, magnetic, and the microwave absorption properties of the nanocomposites. Shielding effectiveness due to absorption (SEA value of 32 dB (>99.9% has been achieved for PNG composite for its use as broadband microwave absorbing material. The microwave absorption of these composites can be attributed to dielectric loss from graphite and poly(o-phenetidine matrix, and magnetic loss from NiCoFe2O4 nanoparticles.

  20. Mechanism of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4}: A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Virender K., E-mail: vsharma@sph.tamhsc.edu [Texas A& M University, Department of Environmental and Occupational Health, School of Public Health (United States); Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science (Czech Republic)

    2016-12-15

    This paper presents thermal decomposition of potassium ferrate(VI) (K{sub 2}FeO{sub 4}) and barium ferrate(VI) (BaFeO{sub 4}) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe {sup V} and Fe {sup IV} as intermediate iron species using the applied techniques are given. Thermal decomposition of K{sub 2}FeO{sub 4} involved Fe {sup V}, Fe {sup IV}, and K{sub 3}FeO{sub 3} as intermediate species while BaFeO{sub 3} (i.e. Fe {sup IV}) was the only intermediate species during the decomposition of BaFeO{sub 4}. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4} under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  1. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    Science.gov (United States)

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  2. K-Shell Photoabsorption Cross Sections for the Magnesium Isonuclear Sequence

    Science.gov (United States)

    Abdel-Naby, Shahin; Hasoglu, Fatih; Gorczyca, Thomas

    2011-05-01

    With the improved spectral resolution of launched X-ray telescopes, there is a demand for highly-accurate K-shell photoabsorption cross sections. Such data are needed for modeling astrophysical plasmas, interpreting the observed spectra from distant cosmic emitters, and determining the elemental abundances of the interstellar medium (ISM). Here we present new calculations for photoabsorption of the entire Mg isonuclear sequence using state-of-the-art R-matrix methods, including important spectator Auger broadening and inner-shell relaxation effects. Unlike our earlier work on carbon, oxygen, and neon ions, and the present work on multiply-ionized magnesium, the calculations for neutral Mg and singly-ionized Mg+ are complicated by additional M-shell occupancy, which leads to a larger R-matrix box and difficulties in implementing the quantum defect theoretical spectator Auger decay method for low-lying resonances. With the improved spectral resolution of launched X-ray telescopes, there is a demand for highly-accurate K-shell photoabsorption cross sections. Such data are needed for modeling astrophysical plasmas, interpreting the observed spectra from distant cosmic emitters, and determining the elemental abundances of the interstellar medium (ISM). Here we present new calculations for photoabsorption of the entire Mg isonuclear sequence using state-of-the-art R-matrix methods, including important spectator Auger broadening and inner-shell relaxation effects. Unlike our earlier work on carbon, oxygen, and neon ions, and the present work on multiply-ionized magnesium, the calculations for neutral Mg and singly-ionized Mg+ are complicated by additional M-shell occupancy, which leads to a larger R-matrix box and difficulties in implementing the quantum defect theoretical spectator Auger decay method for low-lying resonances. This work was funded in part by NASA's Astronomy Physics Research and Analysis (APRA) program.

  3. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    Science.gov (United States)

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  4. Preparation and photocatalytic properties of hybrid core-shell reusable CoFe{sub 2}O{sub 4}-ZnO nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A. [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Gupta, R.; Ghosh, K. [Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO (United States)

    2012-08-15

    Magnetically separable and reusable core-shell CoFe{sub 2}O{sub 4}-ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core-shell hybrid structure of CoFe{sub 2}O{sub 4}-ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: Black-Right-Pointing-Pointer Synthesis of novel hybrid magnetic-ZnO core-shell composite nanospheres. Black-Right-Pointing-Pointer High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. Black-Right-Pointing-Pointer The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. Black-Right-Pointing-Pointer Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. Black-Right-Pointing-Pointer The photocatalysis rate was observed to be ZnO shell thickness dependent.

  5. Impact parameter dependence of K-shell ionization in Cu-Cu collisions

    International Nuclear Information System (INIS)

    Frank, W.; Jaracz, P.; Kaun, K.-H.; Lenk, M.; Rudiger, J.; Stachura, Z.

    1980-01-01

    The impact parameter dependence of the yield of K-shell vacancy production in 1 MeV/ a.m.u. Cu-Cu collisions has been studied in an X-ray-scattered ion coincidence experiment. The results are compared with existing models for K-vacancy production

  6. Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell

    Science.gov (United States)

    Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.

    2017-07-01

    Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.

  7. Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell

    Directory of Open Access Journals (Sweden)

    K. P. Shinde

    2017-07-01

    Full Text Available Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.

  8. Fe distribution and speciation in human nails

    Energy Technology Data Exchange (ETDEWEB)

    Katsikini, M., E-mail: katsiki@auth.g [Aristotle University of Thessaloniki, School of Physics, 54124 Thessaloniki (Greece); Pinakidou, F.; Mavromati, E.; Paloura, E.C. [Aristotle University of Thessaloniki, School of Physics, 54124 Thessaloniki (Greece); Gioulekas, D. [Aristotle University of Thessaloniki, Medical School, 54124 Thessaloniki (Greece); Grolimund, D. [Swiss Light Source, Paul Scherer Institut, 5232 Villigen (Switzerland)

    2010-02-15

    Micro-X-ray Fluorescence (mu-XRF) and Fe-K edge micro-X-ray Absorption Near Edge Structure (mu-XANES) spectroscopies are applied for the study of the distribution and the spatially-resolved bonding environment of Fe in human nails. The mu-XRF maps reveal that Fe forms islands where its concentration is up to six times higher than in the rest of the sample. Comparison of the map characteristics of two nails that belong to healthy and ill donors (affected by lung cancer), reveals that there is no significant variation in the size distribution of the Fe-rich inclusions contrary to their spatial density which is found higher in the nail of the ill donor. However, a relation between the variations of the spatial density and the illness can not be established due to the small number of the studied samples. The analysis of the Fe-K mu-XANES spectra reveals that the bonding environment of Fe varies between the samples and between different spots of the same sample with different Fe concentration. The characteristics of the pre-edge peak in the Fe-K XANES spectra indicate the presence of both Fe{sup +3} and Fe{sup +2} that participate in the formation of distorted octahedra. Finally, the area under the pre-edge peak depends linearly on the position of the absorption edge indicating variation of the Fe ligation between the samples and/or between different spots in the same sample.

  9. Nanosized yolk–shell Fe{sub 3}O{sub 4}@Zr(OH){sub x} spheres for efficient removal of Pb(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shunlong [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wan, Gaojie; Liu, Chao [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Fan, Wenhong, E-mail: fanwh@buaa.edu.cn [Department of Environmental Science and Engineering, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-05-15

    Highlights: • Well dispersed and easy separated nanoadsorbents with stable chemical property are highly desired. • Fe{sub 3}O{sub 4}@Zr(OH){sub x} yolk–shell nanospheres (YSNs) nanoadsorbents were prepared. • Enhanced Pb(II) adsorption capacity of 310.8 mg/g was achieved on Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs based on Zr weight. • The cavities in Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs is responsible for the improved performance. - Abstract: In this work, Fe{sub 3}O{sub 4}@Zr(OH){sub x} yolk–shell nanospheres (YSNs) were synthesized via a two-step process and further examined as adsorbents for the removal of Pb(II). To understand the hollow structure on the adsorption properties of Pb(II), another adsorbent without hollow cavities, i.e., Fe{sub 3}O{sub 4}@SiO{sub 2}@Zr(OH){sub x} core–shell nanospheres (CSNs), was also prepared for comparison. The adsorption results showed that Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs exhibited 41.6% higher Pb(II) adsorption capacity as compared to that of Fe{sub 3}O{sub 4}@SiO{sub 2}@Zr(OH){sub x} CSNs. The isotherm was well fitted to Langmuir adsorption model with q{sub max} value of 310.8 mg/g after normalized by the weight of Zr in Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs. Scanning transmission electron microscopy (STEM) mapping results revealed that the existence of cavities between Fe{sub 3}O{sub 4} cores and Zr(OH){sub x} shells is responsible for the improved adsorption performance. XPS analysis indicated the surface hydroxyl groups played a key role in the Pb(II) adsorption. The removal efficiency of Pb(II) was maintained above 90% in five consecutive adsorption–desorption cycles.

  10. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    Science.gov (United States)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  11. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Directory of Open Access Journals (Sweden)

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  12. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    Science.gov (United States)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  13. New-generation Monte Carlo shell model for the K computer era

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Yoshida, Tooru; Otsuka, Takaharu; Tsunoda, Yusuke; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio

    2012-01-01

    We present a newly enhanced version of the Monte Carlo shell-model (MCSM) method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new-generation framework of the MCSM provides us with a powerful tool to perform very advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. (author)

  14. Bacterial Electrocatalysis of K4[Fe(CN)6] Oxidation

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Xiao, Yong; Wu, Ranran

    Shewanella oneidensis MR-1 (MR-1), a model strain of electrochemically active bacteria, can transfer electrons from cell to extracellular electron acceptors including Fe(III) (hydro)oxides. It has been reported that several redox species such as cytochromes in membranes and flavins assist...... in the electron transport (ET) processes. However, the oxidization of metal compounds was barely described. Here we report electrocatalysis of K4[Fe(CN)6] oxidation by MR-1. K4[Fe(CN)6] is a redox inorganic compound and shows a reversible redox process on bare glassy carbon (GCE). This is reflected by a pair...

  15. Spectroscopic properties of Fe2+ ions at tetragonal sites-Crystal field effects and microscopic modeling of spin Hamiltonian parameters for Fe2+ (S=2) ions in K2FeF4 and K2ZnF4

    International Nuclear Information System (INIS)

    Rudowicz, C.; Piwowarska, D.

    2011-01-01

    Magnetic and spectroscopic properties of the planar antiferromagnet K 2 FeF 4 are determined by the Fe 2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K 2 FeF 4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe 2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K 2 FeF 4 , the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe 2+ ions in K 2 FeF 4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5 D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe 2+ ions in K 2 FeF 4 and Fe 2+ :K 2 ZnF 4 . Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe 2+ ions at axial symmetry sites in related systems, i.e. Fe:K 2 MnF 4 , Rb 2 Co 1-x Fe x F 4 , Fe 2+ :Rb 2 CrCl 4 , and Fe 2+ :Rb 2 ZnCl 4 . - Highlights: → Truncated zero field splitting (ZFS) terms for Fe 2+ in K

  16. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  17. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  18. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential at 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.

  19. Synthesis of Core/Shell MnFe2O4/Au Nanoparticles for Advanced Proton Treatment

    International Nuclear Information System (INIS)

    Park, Jeong Chan

    2014-01-01

    Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodIspersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. The core/shell structured MnFe 2 O 4 /Au nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated nanocrystals may be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging. The phase transferred core/shell nanoparticles can be decorated with targeting moiety, such as antibodies, peptides, aptamers, small molecules and ligands for biological applications. The proton treatment with the resulting Au-MnFe 2 O 4 nanoparticles is undergoing.

  20. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    Science.gov (United States)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  1. Reverse-Engineering Laboratory Astrophysics: Oxygen Inner-shell Absorption in the ISM

    Science.gov (United States)

    Garcia, J.; Gatuzz, E.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2017-01-01

    The modeling of X-ray spectra from photoionized astrophysical plasmas has been significantly improved due to recent advancements in the theoretical and numerical frameworks, as well as a consolidated and reliable atomic database of inner-shell transitions for all the relevant ions. We discuss these developments and the current state of X-ray spectral modeling in the context of oxygen cold absorption in the interstellar medium (ISM). Unconventionally, we use high-resolution astrophysical observations to accurately determine line positions, and adjust the theoretical models for a comprehensive interpretation of the observed X-ray spectra. This approach has brought to light standing discrepancies in the neutral oxygen absorption-line positions determined from observations and laboratory measurements. We give an overview of our current efforts to devise a definitive model of oxygen photoabsorption that can help to resolve the existing controversy regarding ISM atomic and molecular fractions.

  2. What is the correct Fe L{sub 23} X-ray absorption spectrum of magnetite?

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaohui; Kalirai, Samanbir S. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Bazylinski, Dennis A. [School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004 (United States)

    2015-02-15

    Highlights: • Fe L{sub 3} X-ray absorption spectra of biological (MV-1 magnetotactic bacteria) and abiotic (Sigma–Aldrich) nano-magnetite are reported. • An inconsistency in the literature for this spectrum is documented. • Powder diffraction shows the abiotic sample is partly oxidized, toward maghemite. • H{sub 2} thermal reduction converts the Fe L{sub 3} spectrum of the abiotic sample to that of the biotic. • Strong oxidation (air, 600 °C) is needed to convert the spectrum of the biotic magnetite to that of maghemite; magnetosome chains are protected by an air-impervious membrane. - Abstract: Various groups have reported Fe L{sub 23} X-ray absorption spectra (XAS) of magnetite (Fe{sub 3}O{sub 4}), each claiming to be that of magnetite, but which contradict each other. Here we report an XAS study of two kinds of magnetite: one is biogenic magnetite nanocrystals extracted from the magnetotactic bacterium Magnetovibrio blakemorei strain MV-1; the other is synthetic, abiogenically produced nano-magnetite. We see significantly different XAS spectra of these two materials. Only when the abiogenic magnetite was reduced under H{sub 2} did it give the same spectrum as the biogenic sample. Extensive heating of the biogenic magnetite in air produced spectra similar to that of the abiogenic magnetite. These two spectra are typical of the range of published Fe L{sub 23} spectra of magnetite. X-ray diffraction confirmed that the biogenic material is stoichiometric Fe{sub 3}O{sub 4}, and showed that the as-received or partly reduced abiogenic material is a non-stoichiometric oxide, intermediate between magnetite and maghemite (γ-Fe{sub 2}O{sub 3}). When the membrane which surrounds magnetosome chains was intact, the biotic magnetite single crystals were surprisingly resistant to oxidation. This study clarifies a significant confusion existing in the literature as to the correct Fe L{sub 23} X-ray absorption spectra of magnetite and maghemite.

  3. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Lee, D.H.; Johnson, B.M.; Jones, K.W.; Guardala, N.A.; Price, J.L.; Stumborg, M.F.; Glass, G.A.

    1992-01-01

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of ∼ 3 %. The electrons were detected at both 90 degree and 0 degree with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs

  4. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  5. Identifying the most influential spreaders in complex networks by an Extended Local K-Shell Sum

    Science.gov (United States)

    Yang, Fan; Zhang, Ruisheng; Yang, Zhao; Hu, Rongjing; Li, Mengtian; Yuan, Yongna; Li, Keqin

    Identifying influential spreaders is crucial for developing strategies to control the spreading process on complex networks. Following the well-known K-Shell (KS) decomposition, several improved measures are proposed. However, these measures cannot identify the most influential spreaders accurately. In this paper, we define a Local K-Shell Sum (LKSS) by calculating the sum of the K-Shell indices of the neighbors within 2-hops of a given node. Based on the LKSS, we propose an Extended Local K-Shell Sum (ELKSS) centrality to rank spreaders. The ELKSS is defined as the sum of the LKSS of the nearest neighbors of a given node. By assuming that the spreading process on networks follows the Susceptible-Infectious-Recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performance between the ELKSS centrality and other six measures. The results show that the ELKSS centrality has a better performance than the six measures to distinguish the spreading ability of nodes and to identify the most influential spreaders accurately.

  6. X-Ray Magnetic Dichroism of Antiferromagnet Fe2O3 : The Orientation of Magnetic Moments Observed by Fe 2p X-Ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Kuiper, Pieter; Searle, Barry G.; Rudolf, Petra; Tjeng, L.H.; Chen, C.T.

    1993-01-01

    We report strong magnetic linear dichroism at the Fe L2,3 edge of the antiferromagnet Fe2O3 (hematite). The relative difference in absorption for light polarized parallel and perpendicular to the magnetic moment is as high as 40% at the Fe L2 edge. The spectra are in excellent agreement with

  7. Enthalpy of mixing of liquid Cu-Fe-Hf alloys at 1873 K

    Energy Technology Data Exchange (ETDEWEB)

    Agraval, Pavel; Turchanin, Mikhail [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Dreval, Liya [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Materials Science International Services GmbH (MSI), Stuttgart (Germany)

    2016-12-15

    In the ternary Cu-Fe-Hf system, the mixing enthalpies of liquid alloys were investigated at 1873 K using a high-temperature isoperibolic calorimeter. The experiments were performed along the sections x{sub Cu}/x{sub Fe} = 3/1, 1/1 at x{sub Hf} = 0-0.47 and along the section x{sub Cu}/x{sub Fe} = 1/3 at x{sub Hf} = 0-0.13. The limiting partial enthalpies of mixing of undercooled liquid hafnium in liquid Cu-Fe alloys, Δ{sub mix} anti H{sub Hf}{sup ∞}, are (-122 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 3/1), (-106 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/1), and (-105 ± 2) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/3). In the investigated composition range, the integral mixing enthalpies are sign-changing. For the integral mixing enthalpy, an analytical expression was obtained by the least squares fit of the experimental results using the Redlich-Kister-Muggianu polynomial.

  8. The effect of hydrogen absorption on the structural, electronic and magnetic properties of the C15 Friauf-Laves phase compounds CeFe2, CeRu2 and LaRu2 : an x-ray absorption spectroscopy (XAS) study

    International Nuclear Information System (INIS)

    Chaboy, J.; Garcia, J.; Marcelli, A.

    1995-08-01

    An x-ray absorption spectroscopy (XAS) investigation of the structural changes occurred upon hydriding in the Friauf-Laves phase compounds CeFe 2 , CeRu 2 and LaRu 2 compounds is presented. The analysis of the extended x-ray absorption spectroscopy (EXAFS) spectra at the L-edges of the rare-earth and at the Fe K-edge indicates that the hydrogenation process leads to the suppression of the long-range crystalline order in all the hydride derivates investigated, as well as the different influence of H 2 in both the rare earth and transition metal sublattices. The correlation between the structural and magnetic changes induced by the hydrogen in the lost matrix is discussed in terms of the modification of the electronic properties, i.e., intermediate-valence of Ce, and of the hybridization between the transition metal and rare-earth

  9. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lu, C. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Lu, Z. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Shao, L. [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2016-07-18

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover from a disordered nano-cluster to a core-shell structure.

  10. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Science.gov (United States)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  11. Excitation Potentials and Shell Corrections for the Elements Z2=20 to Z2=30

    DEFF Research Database (Denmark)

    Andersen, H.H.; Sørensen, H.; Vadja, P.

    1969-01-01

    Excitation potentials and shell corrections for the elements Z 2=20 to Z2=30 are evaluated from experimental stopping-power data for 5-12-MeV protons and deuterons. Use is made of Walske's K- and L-shell corrections and shell corrections calculated by Bonderup (1967) on the basis of the Thomas-Fe...... are found by means of Bonderup's shell corrections. Within the Z2 interval treated here, it is found that I/Z2 increases with increasing Z2, contrary to the general trend through the periodic system of elements......Excitation potentials and shell corrections for the elements Z 2=20 to Z2=30 are evaluated from experimental stopping-power data for 5-12-MeV protons and deuterons. Use is made of Walske's K- and L-shell corrections and shell corrections calculated by Bonderup (1967) on the basis of the Thomas...

  12. Resonant Electron capture for be-like ions with K- and L- shell excitations

    International Nuclear Information System (INIS)

    Hanafy, H.

    2005-01-01

    Resonant electron capture in electron-ion collisions is known as dielectronic recombination (DR). It was proved that, DR dominants usually over radiative recombination (RR) at high energy. Since 1980's, DR is considered a very important process in thermal plasma. The DR is an effective process in self-cooling and ionization balance as well as plasma modeling. Experimental works are still carried out to understand the trends of DR process. In the present work, DR cross sections are calculated for Be-like ions with K- and L- shell excitations. It is found that, DR cross sections increase as the effective charge (Zeff) increases for both types of excitations. DR rates coefficient in case of L-shell excitation is found to be five times larger than that of K-shell excitation

  13. New method of measuring the K-shell fluorescence yield of As

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K; Sahota, H S

    1984-02-01

    A new method for the determination of the K-shell fluorescence yield from the analysis of sum peaks observed with a high-resolution intrinsic Ge semiconductor detector in the decay of /sup 75/Se is described. The value found is ..omega..sub(K)(As)=0.574(18), which is in agreement with the fitted value of previous authors.

  14. Studies on iron absorption and retention in malnourished Indian subjects, using Fe-59 and whole-body counting

    International Nuclear Information System (INIS)

    Gopalan, C.; Srikantia, S.G.

    1975-12-01

    The gastrointestinal absorption of iron under various conditions in representatives of the Indian population, and several related matters, have been investigated. Percentage absorption was determined by whole-body counting of 59Fe, or by measuring the concentration of 55Fe in the blood, at about two weeks after administration of the respective tracer. It was confirmed or established that: (1) food or supplemental iron, if available at all, tends to be absorbed from the intestines as if present there in one of two alternative pools: heme and non heme; (2) 30%-50% of iron measured chemically in Indian foods appears to be in an unavailable form, for example as a contaminant in adventitiously present dust; (3) fortification of the diet with iron may be feasible by adding FePO 4 + 2 molar NaHSO 4 to common salt under suitable conditions; (4) monkeys appear to be sufficiently similar to humans in their iron absorption characteristics that they may be the best available non-human model for preliminary experimental investigations of iron absorption; and (5) a promising preparative method for liquid scintillation counting of 55Fe present in blood is to extract it into toluene in the presence of di (2-ethyl-hexyl) phosphate (HDEHP)

  15. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  16. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    International Nuclear Information System (INIS)

    Devi, Jutika; Datta, Pranayee; Saikia, Rashmi

    2016-01-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications. (paper)

  17. Gamma ray attenuation studies in concrete reinforced with coconut shells

    International Nuclear Information System (INIS)

    Vishnu, C.V.; Joseph, Antony

    2017-01-01

    Gamma ray absorption studies on wood in general is an area of interest. In Kerala, though coconut tree is a common plantation, a systematic study of gamma ray attenuation in coconut shell has not been reported. In the present study, we have made an attempt to carry out such measurements on coconut shells collected from Trichur district. Coconut shells in to the size of 4cm × 4cm was used in these studies and 662 KeV gamma ray counts were measured using 8K channel NaI(Tl) detector. Subsequently we extended these studies by reinforcing concrete with crushed coconut shells, arranged in a layer by layer fashion. Concrete is usually a choice for shielding nuclear radiations. The effect of reinforcing them with coconut shell is also an area of interest. We have carried out absorption studies by using two types of sand also in the concrete mixture. Common sand is not amply available and people use M-sand (Manufactured sand) instead. In the concrete blocks we selectively used common sand and m-sand and its effects on gamma absorption were also investigated. We have estimated both linear and mass attenuation coefficients and the half value layer (HVL) parameter was determined from them. We have noticed an increase in µ/ρ with increase in density of concrete, achieved through the reinforcement. (author)

  18. Magnetic and microwave absorption properties of La-Nd-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Ziqiang [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Shunkang, E-mail: skpan88@163.com [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Xiong, Jilei [Chinalco Guangxi Non Ferrous Jinyuan Rare Earth CO., LTD, Hezhou 542603 (China); Cheng, Lichun; Yao, Qingrong [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials and Engineering, Central South University, Changsha 410083 (China); Lin, Peihao [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-02-01

    Through arc smelting and high energy ball milling method to synthesized the powders of La{sub x}Nd{sub 2-x}Fe{sub 17} (x=0.0, 0.2, 0.4, 0.6). By x-ray diffraction (XRD), scanning electron microscopy (SEM) and laser particle analyzer (LPS) to study the structural, morphology, particle size distribution of the powders, respectively. The electromagnetic parameters and saturation magnetization of the powers were measured by a vector network analyzer (VNA) and vibrating sample magnetometer (VSM), respectively. The saturation magnetization decreases with the La increasing. The minimum absorption peak frequency shifts towards a lower frequency region with an increase of La concentration. The microwave absorbing properties of the composite with different ratios of La{sub 0.2}Nd{sub 1.8}Fe{sub 17}/Ni were studied. The microwave absorbing peaks of the composite shift to higher frequencies, and the microwave absorbing properties improved with the Ni content increase to 20%. The minimum reflection loss is −32.5 dB at 9.8 GHz and the bandwidth less than −10 dB (Microwave absorption rate 90%) reaches 3 GHz with a thickness of 1.8 mm.

  19. Enhanced rate capability and cycling stability of core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Wu, Niandu; Cui, Caiyun; Zhou, Pingping [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan 243032 (China)

    2015-09-25

    Highlights: • Core/shell-structured CoFe{sub 2}O{sub 4}/onion-like carbon nanocapsules have been prepared. • CoFe{sub 2}O{sub 4}/C nanocapsules possess good reversibility even when the current density is up to 4C. • CoFe{sub 2}O{sub 4}/C nanocapsules obtain a discharge capacity of 914.2 mA h g{sup −1} after 500 cycles at 0.1C. - Abstract: In this work, core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules have been successfully fabricated by the arc discharge method and air-annealing process and confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The core/shell structure effectively withstands the volume change of CoFe{sub 2}O{sub 4} nanoparticles during the cycling process. Moreover, the onion-like C shells reduce the charge transfer resistance and facilitate electron and ion transport throughout the electrode. As a result, CoFe{sub 2}O{sub 4}/onion-like C nanocapsules exhibit excellent performance as a potential anode material for lithium ion batteries and deliver a reversible capacity of 914.2 mA h g{sup −1} at 0.1C, even after 500 cycles and recover its original capacity when the rate returns from 4C to the initial 0.1C after 120 cycles.

  20. Core-shelled mesoporous CoFe2O4-SiO2 material with good adsorption and high-temperature magnetic recycling capabilities

    Science.gov (United States)

    Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2018-04-01

    Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.

  1. K-shell ionisation cross sections for W, Au and U by low velocity protons

    International Nuclear Information System (INIS)

    Castro Faria, N.V. de; Freire Junior, F.L.; Montenegro, E.C.; Pinho, A.G. de; Silveira, E.F. da.

    1984-01-01

    Proton-induced K-shell ionisation cross section for W, Au and U by low velocity protons were obtained from thick target measurements. For the first time the lowest incident energy reached a value less than 10 times the binding energy of the K-shell electron (less than 9 times in the case of Au). Possible errors are thoroughly examined and a comparison with other available experimental results and theoretical values is presented and discussed. (Author) [pt

  2. K-edge x-ray dichroism investigation of Fe1−xCoxSi: Experimental evidence for spin polarization crossover

    International Nuclear Information System (INIS)

    Hearne, G.R.; Diguet, G.; Baudelet, F.; Itié, J.-P.; Manyala, N.

    2015-01-01

    Both Fe and Co K-edge x-ray magnetic circular dichroism (XMCD) have been employed as element-specific probes of the magnetic moments in the composition series of the disordered ferromagnet Fe 1−x Co x Si (for x=0.2, 0.3, 0.4, 0.5). A definitive single peaked XMCD profile occurs for all compositions at both Fe and Co K-edges. The Fe 4p orbital moment, deduced from the integral of the XMCD signal, has a steep dependence on x at low doping levels and evolves to a different (weaker) dependence at x≥0.3, similar to the behavior of the magnetization in the Co composition range studied here. It is systematically higher, by at least a factor of two, than the corresponding Co orbital moment for most of the composition series. Fine structure beyond the K-edge absorption (limited range EXAFS) suggests that the local order (atomic environment) is very similar across the series, from the perspective of both the Fe and Co absorbing atom. The variation in the XMCD integral across the Co composition range has two regimes, that which occurs below x=0.3 and then evolves to different behavior at higher doping levels. This is more conspicuously present in the Fe contribution. This is rationalized as the evolution from a half-metallic ferromagnet at low Co doping to that of a strong ferromagnet at x>0.3 and as such, spin polarization crossover occurs. The Fermi level is tuned from the majority spin band for x<0.3 where a strongly polarized majority spin electron gas prevails, to a regime where minority spin carriers dominate at higher doping. The evolution of the Fe-derived spin polarized (3d) bands, indirectly probed here via the 4p states, is the primary determinant of the doping dependence of the magnetism in this alloy series. - Highlights: • Element-specific probing of the electronic structure of the Fe 1−x Co x Si series. • XMCD at the level of 10 −4 at the K-edge in such low-moment systems. • Element-specific probing of magnetic contributions from both Fe and Co

  3. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  4. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  5. Sn-L3 EDGE and Fe K edge XANES spectra of the surface layer of ancient Chinese black mirror Heiqigu

    International Nuclear Information System (INIS)

    Gaowei Mengjia; Liu Yuzhen; Chu Wangsheng; Wu Ziyu; Wang Changsui

    2009-01-01

    The Chinese ancient black mirror known as Heiqigu was studied by x-ray-absorption near-edge structure spectroscopy and results were reported. The Sn-L 3 edge and Fe K edge spectra further confirmed the Schottky-type defect model in the Heiqigu surface system. And it was suggested that the surface layer of the mirror was a combined structure of oxidation of Sn(IV) and Sn(II). (authors)

  6. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  7. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method.

    Science.gov (United States)

    Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen

    2010-01-01

    A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.

  8. Synthesis of green Fe3+/glucose/rGO electrode for supercapacitor application assisted by chemical exfoliation process from burning coconut shell

    Science.gov (United States)

    Putra, Gilang B. A.; Pradana, Herdy Y.; Soenaryo, Dimas E. T.; Baqiya, Malik A.; Darminto

    2018-04-01

    For the goal of large, environmental - friendly, renewable, and inexpensive energy storage, the development of supercapacitor electrodes is needed, by anchoring transition metal oxide (Fe3+ ion) as pseudo capacitor electrode material with reduced graphene oxide (rGO) from an old coconut shell as electrochemical double layer capacitor (EDLC). This porous electrode composite is prepared by sonication and chemical exfoliation assisted by acid. Synthesis of supercapacitor is also added by glucose, which acts as a spacer between layers of rGO to increase the capacitance, also as binder between the materials used. Combining Fe3+ with old coconut shell rGO give high specific capacitance of up to 99 F/g at a potential window of -1 V to 1 V. The Fe3+/glucose/rGO electrode has thickness of up to 57 nm (from PSA result) and give a uniform distribution from EDX mapping with disperse Fe domains and not bonding with rGO.

  9. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  10. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  11. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization.

    Science.gov (United States)

    Ulu, Ahmet; Ozcan, Imren; Koytepe, Suleyman; Ates, Burhan

    2018-05-01

    The scope of our research was to prepare the organosilane-modified Fe 3 O 4 @MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe 3 O 4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe 3 O 4 @MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media. Copyright © 2018. Published by Elsevier B.V.

  13. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    Science.gov (United States)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  14. Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3-K4, CcmO, and CcmL.

    Directory of Open Access Journals (Sweden)

    Benjamin D Rae

    Full Text Available Cyanobacterial CO(2-fixation is supported by a CO(2-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO, with its preferred substrate CO(2. The site of CO(2-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes. Here, four genes (ccmK2-4, ccmO, whose products were predicted to function in the outer shell layer of β-carboxysomes from Synechococcus elongatus PCC 7942, were investigated by analysis of defined genetic mutants. Deletion of the ccmK2 and ccmO genes resulted in severe high-CO(2-requiring mutants with aberrant carboxysomes, whilst deletion of ccmK3 or ccmK4 resulted in cells with wild-type physiology and normal ultrastructure. However, a tandem deletion of ccmK3-4 resulted in cells with wild-type carboxysome structure, but physiologically deficient at low CO(2 conditions. These results revealed the minimum structural determinants of the outer shell of β-carboxysomes from this strain: CcmK2, CcmO and CcmL. An accessory set of proteins was required to refine the function of the pre-existing shell: CcmK3 and CcmK4. These data suggested a model for the facet structure of β-carboxysomes with CcmL forming the vertices, CcmK2 forming the bulk facet, and CcmO, a "zipper protein," interfacing the edges of carboxysome facets.

  15. Thermal infrared and microwave absorbing properties of SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Hossein, E-mail: shhosseini@iiau.ac.ir [Department of Chemistry, Faculty of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zamani, Parisa [Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Mousavi, S.Y. [Faculty of Passive Defense, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2015-09-25

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI exhibited electric and electromagnetic properties. • The SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO{sub 3} was synthesized as IR absorbent and core and then SrFe{sub 12}O{sub 19} as microwave absorbent was prepared on SrTiO{sub 3} via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO{sub 3}/SrFe{sub 12}O{sub 19} nanoparticles via in situ polymerization by multi core–shell structures (SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the Sr

  16. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  17. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  18. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  19. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  20. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  1. 1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method

    Science.gov (United States)

    Han, Rui; Li, Wei; Pan, Weiwei; Zhu, Minggang; Zhou, Dong; Li, Fa-shen

    2014-01-01

    Fe3O4 and Fe nanowires are successfully fabricated by electrospinning method and reduction process. Wiry microstructures were achieved with the phase transformation from α-Fe2O3 to Fe3O4 and Fe by partial and full reduction, while still preserving the wire morphology. The diameters of the Fe3O4 and Fe nanowires are approximately 50–60 nm and 30–40 nm, respectively. The investigation of microwave absorption reveals that the Fe3O4 nanowires exhibit excellent microwave absorbing properties. For paraffin-based composite containing 50% weight concentration of Fe3O4 nanowires, the minimum reflection loss reaches −17.2 dB at 6.2 GHz with the matching thickness of 5.5 mm. Furthermore, the calculation shows that the modulus of the ratio between the complex permittivity and permeability |ε/μ| is far away from unity at the minimum reflection loss point, which is quite different from the traditional opinions. PMID:25510415

  2. Desulfurization of organic sulfur from a subbituminous coal by electron-transfer process with K{sub 4}(Fe(CN){sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Dipu Borah [Pragjyotika J College, Titabar (India). Department of Chemistry

    2006-02-01

    The desulfurization reaction involving direct electron transfer from potassium ferrocyanide, K{sub 4}(Fe(CN){sub 6}), successfully removed organic sulfur from a subbituminous coal. The temperature variation of desulfurization revealed that increase of temperature enhanced the level of sulfur removal. Moreover, the desulfurization reaction was found to be dependent on the concentration of K{sub 4}(Fe(CN){sub 6}). Gradual increase in the concentration of K{sub 4}(Fe(CN){sub 6}) raised the magnitude of desulfurization, but at higher concentration the variation was not significant. The removal of organic sulfur from unoxidized coal slightly increased with reduced particle size. Desulfurization from oxidized coals (prepared by aerial oxidation) revealed a higher level of sulfur removal in comparison to unoxidized coal. Highest desulfurization of 36.4 wt % was obtained at 90{sup o}C and 0.1 M concentration of K{sub 4}(Fe(CN){sub 6}) in the 100-mesh size oxidized coal prepared at 200{sup o}C. Model sulfur compound study revealed that aliphatic types of sulfur compounds are primarily responsible for desulfurization. Because of higher stability, thiophene and condensed thiophene-type of compounds perhaps remained unaffected by the electron-transfer agent. Infrared study revealed the formation of oxidized sulfur compounds (sulfoxide, sulfone, sulfonic acid, etc.) in the oxidized coals. The desulfurization reaction in different systems is well-represented by the pseudo-first-order kinetic model. Application of the transition state theory indicated that the desulfurization reaction proceeds with the absorption of heat (endothermic reaction) and is nonspontaneous in nature. 53 refs., 6 figs., 3 tabs.

  3. Mussel shell evaluation as bioindicator for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir Casanova; Lopes, Fabio; Galvao, Tiago D. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada

    2009-07-01

    Full text: Recently, in Brazil, it has been appearing a new and unusual 'plague' in leisure and commercial fishing, caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as 'Naiades'. Such situation involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation, such bivalve mollusks belonging to the Ordem Unionoida and the Familia Mycetopodidae. The present work objectified to analyze the shells of such mollusks to verify the possibility of such mollusks as bioindicators of heavy metals in fresh water. The mollusks shells were collected in a commercial fishing at Londrina-PR, and analyzed qualitatively to determine the chemical composition and possible correlation with existent heavy metals in the aquatic environment. Studies of the literature have been showing that those mollusks are susceptible the existent chemical alterations in the aquatic environment due to anthropogenic action. Three different shells were analyzed, with the measures done on the external and internal side, using a portable Energy Dispersive X-Ray Fluorescence system (PXRF-LFNA-02). The measures were realized in the applied nuclear physics laboratory of State University of Londrina, and the PXRF-LFNA-02 is composed by a X-Ray tube (with Ag target and filter) with potency of 4W, and a detector Si-PIN model XR-100CR of Ampetc Inc. with resolution of 221eV for the line of 5.9 keV of the {sup 55}Fe (with a 25{mu}m Be window thickness and Ag collimator), Current 10 mA and High Voltage 28 kV. In the internal part of shells were identified the elements Ca, P, Fe, Mn and Sr and in the external part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio among the external and internal sides of the analyzed shells is around of 1, and it was expected because Ca is the main composed of mollusks shells. The ratio of P, Fe, Mn, and Sr for Ca stayed constant in all analyzed shells

  4. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    International Nuclear Information System (INIS)

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K −2 and core ionization-core excitation K −2 V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K −2 V spectrum is assigned to a K −2 π ∗ state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K −1 V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K −2 threshold Rydberg resonances have been also identified, and among them a K −2 σ ∗ resonance characterized by a large amount of 2s/2p hybridization, and double K −2 (2σ ∗ /1π/3σ) −1 1π ∗2 shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ ∗ shape resonance and double excitation K −1 (2σ ∗ /1π/3σ) −1 1π ∗2 resonances, all being positioned above the threshold

  5. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    Science.gov (United States)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  6. Oxidation states of Fe and Ti in blue sapphire

    International Nuclear Information System (INIS)

    Wongrawang, P; Wongkokua, W; Monarumit, N; Thammajak, N; Wathanakul, P

    2016-01-01

    X-ray absorption near-edge spectroscopy (XANES) can be used to study the oxidation state of a dilute system such as transition metal defects in solid-state samples. In blue sapphire, Fe and Ti are defects that cause the blue color. Inter-valence charge transfer (IVCT) between Fe 2+ and Ti 4+ has been proposed to describe the optical color’s origin. However, the existence of divalent iron cations has not been thoroughly investigated. Fluorescent XANES is therefore employed to study K-edge absorptions of Fe and Ti cations in various blue sapphire samples including natural, synthetic, diffused and heat-treated sapphires. All the samples showed an Fe absorption edge at 7124 eV, corresponding to the Fe 3+ state; and Ti at 4984 eV, corresponding to Ti 4+ . From these results, we propose Fe 3+ -Ti 4+ mixed acceptor states located at 1.75 eV and 2.14 eV above the valence band of corundum, that correspond to 710 nm and 580 nm bands of UV–vis absorption spectra, to describe the cause of the color of blue sapphire. (paper)

  7. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    Science.gov (United States)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  8. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    Science.gov (United States)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  9. Core–shell structure carbon coated ferric oxide (Fe{sub 2}O{sub 3}@C) nanoparticles for supercapacitors with superior electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yipeng [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Haiyan [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Chen, Yiming, E-mail: chenym@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Deng, Peng; Huang, Zhikun [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Liying; Qian, Yannan; Li, Yunyong [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Li, Qingyu [School of Chemistry and Chemistry Engineering, Guangxi Normal University, Guilin 541004 (China)

    2015-08-05

    Highlights: • Fe{sub 2}O{sub 3}@C was prepared by using arc discharge method followed by heat treatment. • KOH activation made the core–shell structure Fe{sub 2}O{sub 3}@C porous. • The activated-Fe{sub 2}O{sub 3}@C supercapacitor exhibited superior electrochemical performance. - Abstract: Core–shell structure carbon coated ferric oxide nanoparticles (Fe{sub 2}O{sub 3}@C) were fabricated by the oxidation of carbon coated iron nanoparticles (Fe@C) prepared by a direct current carbon arc discharge method. Porous activated-Fe{sub 2}O{sub 3}@C was prepared by KOH activation of Fe{sub 2}O{sub 3}@C at the temperature of 750 °C. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the structure and morphology of the Fe{sub 2}O{sub 3}@C and activated-Fe{sub 2}O{sub 3}@C. The specific surface area and pore size distribution of the samples were also tested. The activated-Fe{sub 2}O{sub 3}@C electrodes exhibited good electrochemical performance with a maximum specific capacitance of 612 F g{sup −1} at the charge/discharge current density of 0.5 A g{sup −1} with 5 M NaOH electrolyte. After 10,000 cycling DC tests at the charge/discharge current density of 4 A g{sup −1}, a high level specific capacitance of 518 F g{sup −1} was obtained (90.6% retention of the initial capacity), suggesting excellent long-term cycling stability.

  10. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K., E-mail: takahashi.yukiko@nims.go.jp; Wang, J.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T. [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  11. Radiobiological investigations of soft X-rays near carbon, nitrogen, oxygen K-shell edges on Aspergillus oryzae spores

    International Nuclear Information System (INIS)

    Chen, L.; Jiang, S. P.; Wan, L. B.; Ma, X. D.; Li, M. F.

    2008-01-01

    Soft X-rays at carbon, nitrogen, oxygen K-shell edges have special radiobiological effects. Using Aspergillus oryzae spores as sample, the radiation effects of soft X-rays near the K-shell edges of C, N and O elements from synchrotron radiation were investigated. Also the dose depositions of different X-ray energies in spore were discussed. At the same time, the spores were irradiated by gamma rays from 60 Co and relative biological effects were compared with those produced by soft X-rays. The results showed that soft X-rays near K-shell edges of O element had higher ability of radiation damage than that of X-rays near K-shell edges of C and N elements as compared with one another. But they all had higher killing abilities per unit dose than that of gamma rays from 60 Co. The relative biological effects (RBEs), the comparison of dose to gamma rays at 10% survival level, of the three soft X-rays were 1.65, 1.73 and 1.91, respectively. (authors)

  12. X-ray absorption and resonant photoelectron spectroscopy of epitaxial Fe-doped SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Annemarie; Lenser, Christian; Xu, Chencheng; Wicklein, Sebastian; Dittmann, Regina [Peter Gruenberg Institut 7, Forschungszentrum Juelich GmbH (Germany); Kajewski, Dariusz; Kubacki, Jurek; Szade, Jacek [A.Chelkowski Institute of Physics, University of Silesia, Katowic (Poland)

    2012-07-01

    In recent years resistive switching in transition metal oxides received a lot of research interest due to the proposed application as non-volatile data memory. SrTiO{sub 3} serves as a model system for the investigation of resistive switching due to the valency change mechanism. Frequently, slightly Fe doping is used, as it has shown to improve the switching properties. The focus of this study is the effect of Fe-doping of SrTiO{sub 3} in thin epitaxial films. Thin film samples with Fe concentration of 2 at.% and 5 at.% were prepared by pulsed laser deposition at varying substrate temperatures. The surface morphology of the films is studied with AFM. X-ray absorption spectroscopy is performed in total-electron and auger-electron yield offering different probing depths. Significant variations of the Fe-L edge between bulk and interface as well as after annealing are observed and discussed in terms of integration into the lattice and evolution of secondary phases. Resonant photoelectron spectroscopy at the absorption edge of Ti, O and Fe was used to determine the spectral contributions to the valence band. Most noteworthy we find significant spectral weight above the valence band, which can be attributed to Fe-states.

  13. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-06-02

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  14. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo; Wang, Chaojun; Yu, Yuanlie; Xia, Long; Wen, Guangwu

    2017-01-01

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  15. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  16. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe_2O_4 particles

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Xinming; Zhang, Wenzhi; Huang, Shuo

    2016-01-01

    A ternary composite of Ag/MnFe_2O_4/reduced graphene oxide (RGO) was synthesized by a facile hydrothermal method. The morphology, microstructure, magnetic and electromagnetic properties of as-prepared Ag/MnFe_2O_4/RGO composite were characterized by means of XRD, TEM, XPS, VSM and vector network analyzer. The maximum reflection loss (R_L) of Ag/ MnFe_2O_4/RGO composite shows maximum absorption of −38 dB at 6 GHz with the thickness of 3.5 mm, and the absorption bandwidth with the R_L below −10 dB is up to 3.5 GHz (from 3.7 to 7.2 GHz). The result demonstrates that the introduction of Ag significantly leads to the multiple absorbing mechanisms. It is believed that such composite could serve as a powerful candidate for microwave absorber. - Highlights: • A ternary composite of Ag/MnFe_2O_4/reduced graphene oxide (RGO) was synthesized by a facile method. • The morphology, microstructure, magnetic and electromagnetic properties were characterized. • The maximum reflection loss of Ag/MnFe_2O_4/RGO is −38 dB at 6 GHz with a thickness of 3.5 mm. • The composite shows a wide absorption band.

  17. Three-dimensional (3D α-Fe2O3/polypyrrole (PPy nanocomposite for effective electromagnetic absorption

    Directory of Open Access Journals (Sweden)

    Wanchun Jiang

    2016-06-01

    Full Text Available The lightweight and 3-dimensional reticulated α-Fe2O3/PPy hybrids were successfully fabricated via a facile one-pot polyreaction. The measured complex permittivity and microwave attenuation performance suggest that the dielectric properties of PPy can be regulated by the mass ratio of added α-Fe2O3. The two dielectric resonance peaks of complex permittivity can be ascribed to the interface capacitor-like structure. An equivalent circuit model was established to explain the nonlinear resonance behavior of the α-Fe2O3/PPy wax composites. The addition of α-Fe2O3 properly tuned the dielectric constant to endow the composites with highly efficient microwave absorption. The minimum reflection loss of α-Fe2O3/PPy wax composites were enhanced to nearly −29dB with an effective bandwidth (RL≤ − 10dB up to 5.0GHz. The numerical method was proposed to calculate the optimum thickness for minimum RL at expected frequency by detailed investigation on the transmission formula. Moreover, the required thickness for optimum absorption efficiency at expected frequency can be obtained directly.

  18. 76 FR 35934 - In the Matter of: SHC Corp. (f/k/a Victormaxx Technologies, Inc.), Shells Seafood Restaurants...

    Science.gov (United States)

    2011-06-20

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of: SHC Corp. (f/k/a Victormaxx Technologies, Inc.), Shells Seafood Restaurants, Inc., SI Restructuring, Inc. (f/k/a Schlotzsky's, Inc.), SLS... a lack of current and accurate information concerning the securities of Shells Seafood Restaurants...

  19. XANES and XMCD studies of FeRh and CoRh nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Smekhova, A; Wilhelm, F; Rogalev, A [European Synchrotron Radiation Facility, Grenoble Cedex 9, 38043 (France); Atamena, N; Ciuculescu, D; Amiens, C [Laboratoire de Chimie de Coordination, UPR 8241-CNRS, Toulouse Cedex 04, 31077 (France); Lecante, P, E-mail: smeal@esrf.f [Centre d' Elaboration de Materiaux et d' Etudes Structurales, UPR 8011-CNRS, Toulouse Cedex 04, 31055 (France)

    2010-01-01

    Element-selective magnetic properties of new core-shell bimetallic MRh (M=Fe or Co) nanoparticles (NP{sub S}) of 50/50 composition with either M-Rh or Rh-M core/shell order and an average diameter of {approx}2 nm have been investigated by X-ray Absorption Spectroscopy (XANES) and X-Ray Magnetic Circular Dichroism (XMCD) technique. XANES spectra at the Rh L{sub 2,3} edges exhibit the same characteristic features for all systems having the Rh metal enriched shell. XMCD experiments at the same edges have shown that 4d states of Rh atoms acquire a magnetic moment as a result of hybridization with iron or cobalt 3d states. As expected the value of this induced moment depends on the 3d transition metal and on the core/shell chemical order in the nanoparticle.

  20. 5 K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structure studies of photolyzed carboxymyoglobin

    International Nuclear Information System (INIS)

    Teng, T.Y.; Huang, H.W.; Olah, G.A.

    1987-01-01

    A previous extended X-ray absorption fine structure (EXAFS) study of photolyzed carboxymyoglobin (MbCO) has provoked much discussion on the heme structure of the photoproduct (Mb*CO). The EXAFS interpretation that the Fe-Co distance increases by no more than 0.05 A following photodissociation has been regarded as inconsistent with optical, infrared, and magnetic susceptibility studies. The present experiment was performed with well-characterized dry film samples in which MbCO molecules were embedded in a poly(vinyl alcohol) matrix. The sample had a high protein concentration (12 mM) to yield adequate EXAFS signals but was very thin (40 μm) so that complete photolysis could be easily achieved by a single flash from a xenon lamp. Although the electronic state of Mb*CO resembles that of deoxymyoglobin (deoxy-Mb), direct comparison of EXAFS spectra indicates that structurally Mb*CO is much closer to MbCO than to deoxy-Mb. Our EXAFS analysis shows that photolysis of MbCO at 5 K leads to a stable intermediate state in which CO has moved away from iron by a distance of 0.27-0.45 A, but the 5-coordinate heme structure is strained in a form similar to that of MbCO; the resolution of the CO position depends on the structure parameters of MbCO which we use as a reference for the analysis of Mb*CO. At 40 K, from 1 to 10 s after photolysis, 42% of the photoproduct has relaxed to the ground state, and the EXAFS spectrum of the remaining photoproduct is indistinguishable from that of the 5 K photoproduct

  1. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K.

    Science.gov (United States)

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-04-03

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.

  2. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  3. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Science.gov (United States)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  4. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Marcelli, A.; Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Mottana, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Paris, E.; Giuli, G [INFM, Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra

    1999-07-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg end members F o and F a, and for three other olivines. Two are the Ca end members of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or {alpha}) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system.

  5. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    International Nuclear Information System (INIS)

    Wu, Z.; Marcelli, A.; Cibin, G.; Mottana, A.; Rome Univ. Roma Tre, Rome; Paris, E.; Giuli, G.

    1999-01-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg endmembers F o and F a, and for three other olivines. Two are the Ca endmembers of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or α) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system

  6. Modification of MWCNT@TiO{sub 2} core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Meei Mei [Low Carbon Economy (LCE) Group, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor (Malaysia); Chai, Siang-Piao, E-mail: chai.siang.piao@monash.edu [Low Carbon Economy (LCE) Group, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor (Malaysia); Mohamed, Abdul Rahman [Low Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2014-11-15

    Graphical abstract: - Highlights: • Metal oxide-doped MWCNT@TiO{sub 2} core–shell nanocomposites were prepared. • Red-shift of absorption band positions was observed in CuO- and Fe{sub 2}O{sub 3}-MWCNT@TiO{sub 2}. • Total methane formation of 0.93 μmol/g-catalyst was achieved using CuO-MWCNT@TiO{sub 2}. - Abstract: Titanium dioxide (TiO{sub 2}) doped with visible-light-responsive metal oxides has been widely reported for improving the visible light absorption performance of TiO{sub 2} and its photocatalytic activity. The metal oxides could function as ‘charge-carrier traps’ that transport electrons from TiO{sub 2} through the heterojunction of the TiO{sub 2}-metal oxides. In this work, the common transition metal oxides, i.e. FeO{sub x}, CuO{sub x}, NiO, CoO{sub x} and ZnO, were doped onto MWCNT@TiO{sub 2} core–shell nanocomposites. The effects of the metal oxide dopants on the photoactivity of the core–shell nanocomposites on CO{sub 2} reduction were studied. Characterization with diffuse-reflectance UV–vis showed significant improvement on visible light absorption after doping MWCNT@TiO{sub 2} with CuO{sub x}, FeO{sub x} and CoO{sub x} with the adsorption band-edge position red-shifted into the wavelength range of 480–630 nm. CuO-MWCNT@TiO{sub 2} appeared to be the most active one among all the studied photocatalysts, achieving a total methane formation of 0.93 μmol/g-catalyst.

  7. EXAFS study of Mn1.28Fe0.67P0.46Si0.54 compound with first-order phase transition

    International Nuclear Information System (INIS)

    L, Yingjie; Huliyageqi, B; Haschaolu, W; Song, Zhiqiang; Tegus, O; Nakai, Ikuo

    2014-01-01

    Highlights: • We have investigated the Fe and Mn K edge XAFS spectra of the Mn 1.28 Fe 0.67 P 0.46 Si 0.54 compound at 25 K and 295 K. • The site occupation of the Fe and Mn atoms and local structure of Mn 1.28 Fe 0.67 P 0.46 Si 0.54 are determined. • The atomic distances between Fe–Fe in c-plane for the ferromagnetic state are larger than those in the paramagnetic state. - Abstract: The Fe 2 P-type MnFe(P,Si) compounds are investigated by means of magnetic measurements and X-ray absorption fine structure spectroscopy. Magnetic measurements show that the Mn 1.28 Fe 0.67 P 0.46 Si 0.54 compound undergoes a first-order phase transition at the Curie temperature of 254 K. The Fe K-edge and Mn K-edge X-ray absorption fine structure spectra show that Mn atom mainly located at the 3g sites, while the 3f sites are occupied by Fe atoms and Mn atom randomly. The distances between the Fe atom and its nearest neighbor atoms in a triangle Fe–Mn–Fe change from 2.80 Å at 25 K to 2.74 Å at 300 K. On the other hand, the distances between Fe atom and its second neighbor atoms change from 4.06 Å at 25 K to 4.02 Å at 300 K

  8. Compton scattering of 145 keV gamma rays by K-shell electrons of silver

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, V B; Singh, B; Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-01-01

    Differential cross-sections for the incoherent scattering of 145 keV photons from K-shell electrons of silver are measured at scattering angles ranging from 30/sup 0/ to 150/sup 0/ to investigate the effect of electron binding on the scattering process in the low energy region. Measurements are made employing two NaI (Tl) scintillation spectrometers and a slow-fast coincidence circuit of resolving time 30 ns. The experimental results are compared with the available theoretical data. The total K-shell scattering cross-section is also estimated and is about 45% of the free electron cross-section.

  9. Pressure-induced magnetic transition in Fe sub 4 N probed by Fe K-edge XMCD measurement

    CERN Document Server

    Ishimatsu, N; Maruyama, H; Kawamura, N; Suzuki, M; Ohishi, Y; Ito, M; Nasu, S; Kawakami, T

    2003-01-01

    X-ray magnetic circular dichroism (XMCD) of gamma'-iron nitride (Fe sub 4 N) was recorded at Fe K-edge under high pressure up to 27 GPa. The XMCD intensity decreased remarkably with pressure, and vanished at 24 GPa. Compressibility was measured by the X-ray diffraction method. These results indicate that Fe sub 4 N undergoes a second-order phase transition from the ferromagnetic state to a paramagnetic state without any structural change. The pressure-induced demagnetizing process is discussed in terms of the Fe magnetic states in the local environment.

  10. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun

    2017-01-01

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can

  11. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wang Aijun; Li Yongfang; Li Zhonghua; Feng Jiuju; Sun Yanli; Chen Jianrong

    2012-01-01

    Monodisperse Fe 3 O 4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe 3 O 4 -silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10 −9 mol·cm −2 , and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s −1 . The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM −1 cm −2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe 3 O 4 -silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe 3 O 4 nanoparticles. ► Fabrication of core/shell Fe 3 O 4 -silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  12. Evaluation of Toxicological Effects of an Aqueous Extract of Shells from the Pecan Nut Carya illinoinensis (Wangenh.) K. Koch and the Possible Association with Its Inorganic Constituents and Major Phenolic Compounds.

    Science.gov (United States)

    Porto, Luiz Carlos S; da Silva, Juliana; Sousa, Karen; Ambrozio, Mariana L; de Almeida, Aline; Dos Santos, Carla Eliete I; Dias, Johnny F; Allgayer, Mariangela C; Dos Santos, Marcela S; Pereira, Patrícia; Ferraz, Alexandre B F; Picada, Jaqueline N

    2016-01-01

    Background. Industrial processing of the pecan nut Carya illinoinensis K. Koch generated a large amount of shells, which have been used to prepare nutritional supplements and medicinal products; however, the safe use of shells requires assessment. This study evaluated the toxic, genotoxic, and mutagenic effects of pecan shell aqueous extract (PSAE) and the possible contribution of phenolic compounds, ellagic and gallic acids, and inorganic elements present in PSAE to induce toxicity. Results. Levels of inorganic elements like K, P, Cl, and Rb quantified using the Particle-Induced X-Ray Emission method were higher in PSAE than in pecan shells, while Mg and Mn levels were higher in shells. Mice showed neurobehavioral toxicity when given high PSAE doses (200-2,000 mg kg(-1)). The LD50 was 1,166.3 mg kg(-1). However, PSAE (50-200 mg·kg(-1)) and the phenolic compounds (10-100 mg·kg(-1)) did not induce DNA damage or mutagenicity evaluated using the comet assay and micronucleus test. Treatment with ellagic acid (10-100 mg·kg(-1)) decreased triglyceride and glucose levels, while treatments with PSAE and gallic acid had no effect. Conclusion. Pecan shell toxicity might be associated with high concentrations of inorganic elements such as Mn, Al, Cu, and Fe acting on the central nervous system, besides phytochemical components, suggesting that the definition of the safe dose should take into account the consumption of micronutrients.

  13. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.

    Science.gov (United States)

    Li, Yue; Zhao, Junwei; You, Wenlong; Cheng, Danhong; Ni, Weihai

    2017-03-17

    Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe 2 O 3 , AuNR@Fe 3 O 4 , and AuNR@Fe 2 O 3 @Fe 3 O 4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe 2 O 3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe 3 O 4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g -1 due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe 2 O 3 shell transforms from amorphous to γ-Fe 2 O 3 and α-Fe 2 O 3 phases, while the Fe 3 O 4 phase disappears because of the oxidation of Fe 2+ . A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe 3 O 4 is about 1.7-fold higher than Fe 2 O 3 as more surface defects are present on the Fe 3 O 4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.

  14. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  15. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  16. Highly efficient enrichment of low-abundance intact proteins by core-shell structured Fe3O4-chitosan@graphene composites.

    Science.gov (United States)

    Zhang, Peng; Fang, Xiaoni; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2017-11-01

    In proteomics research, the screening and monitoring of disease biomarkers is still a major challenge, mainly due to their low concentration in biological samples. However, the universal enrichment of intact proteins has not been further studied. In this work, we developed a Fe 3 O 4 -chitosan@graphene (Fe 3 O 4 -CS@G) core-shell composite to enrich low-abundance proteins from biological samples. Fe 3 O 4 -CS@G composite holds chitosan layer decorated Fe 3 O 4 core, which improves the hydrophilicity of materials greatly. Meanwhile, the graphene nanosheets shell formed via electrostatic assembly endows the composite with huge surface area (178m 2 /g). The good water dispersibility ensures the sufficient contact opportunities between graphene composites and proteins, and the large surface area provides enough adsorption sites for the enrichment of proteins. Using Fe 3 O 4 -CS@G, four standard proteins Cyt-c, BSA, Myo and OVA were enriched with better adsorption capacity and recovery rate, compared with previously reported magnetic graphene composites. Additionally, the mechanism of compared to" is corrected into "compared with". proteins adsorption on Fe 3 O 4 -CS@G was further studied, which indicates that hydrophobic and electrostatic interaction work together to facilitate the universal and efficient enrichment of proteins. Human plasma sample was employed to further evaluate the enrichment performance of Fe 3 O 4 -CS@G. Eventually, 123 proteins were identified from one of SAX fractions of human plasma, which is much better than commercial Sep-pak C18 enrichment column (39 proteins). All these outstanding performances suggest that Fe 3 O 4 -CS@G is an ideal platform for the enrichment of low-abundance intact proteins and thus holds great potential to facilitate the identification of biomarkers from biological samples in proteomics research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Steam reforming of bio-oil from coconut shell pyrolysis over Fe/olivine catalyst

    International Nuclear Information System (INIS)

    Quan, Cui; Xu, Shaoping; Zhou, Congcong

    2017-01-01

    Highlights: • Steam reforming of the actual bio-oil was investigated with Fe/olivine catalyst. • Most of phenols in bio-oil were converted into gas products. • A carbon conversion of 97.2% was obtained under optimized conditions. - Abstract: Catalytic steam reforming of coconut shell pyrolysis bio-oil over Fe/olivine catalyst was conducted in a fixed-bed quartz reactor. The effects of calcination temperature, iron loading, reaction temperature, steam to carbon ratio (S/C), bio-oil weight hourly space velocity (W b HSV) on gas composition and carbon conversion were investigated. The results indicate that Fe/olivine has good activity for steam reforming of bio-oil, the couple Fe 2+/3+ /Fe 2+ may be sufficiently efficient for C–C, C–O and C–H breaking. After steam reforming, most of the phenolics in pyrolysis oil are converted into light molecular compounds such as H 2 , CO, CO 2 , and CH 4 . The H 2 concentration and carbon conversion were enhanced by increasing reaction temperature from 750 to 800 °C and the S/C from 1.5 to 2, but decreased with increasing calcination temperature. In the W b HSV range of 0.5–0.6, the hydrogen concentration decreased obviously, whereas it decreased slightly by further increasing W b HSV. The highest hydrogen concentration of 47.6 vol% was obtained among the catalysts tested, and the best carbon conversion was 97.2% over 10% Fe/olivine catalyst under the reforming conditions of temperature = 800 °C, W b HSV = 0.5, S/C = 2.

  18. Visible and IR photoluminescence of c-FeSi@a-Si core-shell nano-fibres produced by vapour transport

    CSIR Research Space (South Africa)

    Thabethe, S

    2013-11-01

    Full Text Available The procedures for the synthesis of amorphous e-FeSi/Si core–shell nanofibres by vapour transport in a CVD configuration are reported. Crystallite studies by the Williamson-Hall method show the sizes to be typically about 8.0 nm which agrees...

  19. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    Science.gov (United States)

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®

  20. Solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K

    International Nuclear Information System (INIS)

    Ren Jing; Gu Zhengfei; Cheng Gang; Zhou Huaiying

    2005-01-01

    The solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K (Pr ≤ 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α-Fe is below 1.5 at.% and the solid solution region of Pt in γ-Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt 5 , PrPt 3 , PrPt 2 , Pr 3 Pt 4 , PrPt, Pr 3 Pt 2 and Pr 7 Pt 3 is below 1 at.%. The maximum solubility of Pr in α-(Fe, Pt), γ-(Fe, Pt), FePt, FePt 3 and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr 3 Pt 4 does not exist in the ternary system. The binary compounds Fe 7 Pr and Fe 2 Pr and any new ternary compounds were not observed

  1. Simultaneous absorption of NO and SO{sub 2} into Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.S.; Mao, Y.P.; Yang, X.J.; Chen, Y.; Long, X.L.; Yuan, W.K. [East China University of Science & Technology, Shanghai (China)

    2010-07-30

    The simultaneous removal of NO and SO{sub 2} from flue gases can be realized with Fe(II)-ethylenediamineteraacetate (EDTA) solution. Activated carbon is used to catalyze the reduction of Fe-III-EDTA to Fe-II-EDTA to maintain the capability of removing NO of the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO{sub 2} dissolving into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, Fe-II-EDTA concentration, Fe/EDTA molar ratio, SO{sub 2} partial pressure, NO partial pressure and SO{sub 4}{sup 2-} concentration on the combined elimination of NO and SO{sub 2} with Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon. According to the experimental results, activated carbon not only catalyzes the reduction of Fe-III-EDTA by sulfite/bisulfite greatly but also avoids the release of N{sub 2}O. The NO removal efficiency increases with the initial Fe-II-EDTA concentration and SO{sub 2} partial pressure. The ratio of Fe/EDTA and the SO{sub 4}{sup 2-} concentration has little effect on the catalytic reduction of Fe-III-EDTA. The optimal initial NO concentration range is from 600 ppm to 900 ppm. The experimental results manifest that the Fe-II-EDTA solution coupled with catalytic regeneration of Fe-II-EDTA can maintain high nitric oxide removal efficiency for a long period of time.

  2. Measurement of K-shell jump ratios and jump factors for some elements in 76≤Z≤92 using EDXRF spectrometer

    International Nuclear Information System (INIS)

    Kaya, N.; Apaydin, G.; Tirasoglu, E.

    2011-01-01

    This article presents experimental values of the K-shell jump factor and jump ratio (ratio of the K-shell photoionization cross section to the photoionization cross section of the rest of the atom at the K edge) for some elements in 76≤Z≤92 using an energy dispersive X-ray fluorescence (EDXRF) spectrometer and compares those values with the theoretical ones giving reasonable agreement. The experimental values have been determined using the fluorescence parameters: K α production cross sections, K β /K α X-rays intensity ratios, total atomic attenuation cross sections, etc. To the best of our knowledge, K-shell jump ratios and jump factors have been measured without having any data on K edge for the first time in these elements. The results have been plotted versus atomic number.

  3. Effects of aluminum on root growth and absorption of nutrients by ...

    African Journals Online (AJOL)

    Aluminum (Al) is a biotoxic which often influences the absorption of nutrients by plants in strongly acidic soils. In this experiment, the effect of Al on root growth, absorption of macronutrients; phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and micronutrients; iron (Fe), manganese (Mn), copper (Cu) and zinc ...

  4. K-SHELL PHOTOABSORPTION OF MAGNESIUM IONS

    Energy Technology Data Exchange (ETDEWEB)

    Hasoğlu, M. F. [Department of Computer Engineering, Hasan Kalyoncu University, 27100 Sahinbey, Gaziantep (Turkey); Abdel-Naby, Sh. A. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas, Caracas 1020 (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, MS-6, 60 Garden Street, Cambridge, MA 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gorczyca, T. W. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States)

    2014-09-01

    X-ray photoabsorption cross sections have been computed for all magnesium ions with three or more electrons using the R-matrix method. A comparison with other available data for Mg II-Mg X shows good qualitative agreement in the resultant resonance shapes. However, for the lower ionization stages, and for singly ionized Mg II in particular, the previous R-matrix results overestimate the K-edge position due to the neglect of important orbital relaxation effects, and a global shift downward in photon energy of those cross sections is therefore warranted. We have found that the cross sections for Mg I and Mg II are further complicated by the M-shell (n = 3) occupancy. As a result, the treatment of spectator Auger decay of 1s → np resonances using a method based on multichannel quantum defect theory and an optical potential becomes problematic, making it necessary to implement an alternative, approximate treatment of Auger decay for neutral Mg I. The new cross sections are used to fit the Mg K edge in XMM-Newton spectra of the low-mass X-ray binary GS 1826-238, where most of the interstellar Mg is found to be in ionized form.

  5. Core–shell structured FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite cores with tunable insulating layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang, E-mail: ligq-wust@mail.wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Graphical abstract: - Highlights: • FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores were prepared. • SiO{sub 2} surrounding FeSiAl were replaced by Al{sub 2}O{sub 3} during sintering process. • Fe{sub 3}Si particles were separated by Al{sub 2}O{sub 3} with tunable thickness in composite cores. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than FeSiAl core. • The insulating layer between ferromagnetic particles can reduce core loss. - Abstract: FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses have been synthesized via a modified Stöber method combined with following high temperature sintering process. Most of the conductive FeSiAl particles could be coated by insulating SiO{sub 2} using the modified Stöber method. During the sintering process, the reaction 4Al + 3SiO{sub 2} ≣ 2α-Al{sub 2}O{sub 3} + 3Si took place and the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher resistivity and lower core loss than the raw FeSiAl core. Based on this, several types of FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses were selectively prepared by simply varying TEOS contents. The thickness of Al{sub 2}O{sub 3} insulating layer and resistivity of Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores increased with increasing the TEOS contents, while the permeability and core loss changed in the opposite direction.

  6. Potential use of SERS-assisted theranostic strategy based on Fe{sub 3}O{sub 4}/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu; Lei, Sheng-lan [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Lu, Jian-hua [Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361005 (China); He, Yuan [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Zhi-wei, E-mail: chenzhiwei@xmu.edu.cn [Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361005 (China); Ren, Lei, E-mail: renlei@xmu.edu.cn [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005 (China); Zhou, Xi [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005 (China)

    2016-07-01

    A surface-enhanced Raman scattering (SERS)-assisted theranostic strategy was designed based on a synthesized multifunctional Fe{sub 3}O{sub 4}/Au cluster/shell nanocomposite. This theranostic strategy was used for free prostate specific antigen (free-PSA) detection, magnetic resonance imaging (MRI), and magnetic hyperthermia. The lowest protein concentration detected was 1 ng mL{sup −1}, and the limit of detection (LOD) of the calculated PSA was 0.75 ng mL{sup −1}. Then, MRI was carried out to visualize the tumor cell. Lastly, magnetic hyperthermia was employed and revealed a favorable killing effect for the tumor cells. Thus, this SERS-assisted strategy based on a Fe{sub 3}O{sub 4}/Au cluster/shell nanocomposite showed great advantages in theranostic treatment. - Graphical abstract: Fe{sub 3}O{sub 4}/Au cluster/shell composite can be used for specific protein detection, magnetic resonance imaging and magnetic hyperthermia therapy. - Highlights: • We designed a SERS-assisted theranostic strategy based on the mutifunctional nanocomposites using gold shelled Fe{sub 3}O{sub 4} clusters. • Fe{sub 3}O{sub 4}/Au nanoparticles with theranostics and SERS for early diagnosis of PSA were reported for the first time. • The LOD of detection for PSA was lowed as 0.75 ng mL{sup −1}, and the total detection time was shorten to less than 1 h. • Fe{sub 3}O{sub 4} clusters had spin-spin (T{sub 2}) contrast enhancement and increased magnetic response. • Gold nanoshells supplied excellent chemical stability, biocompatibility, better heating property for magnetic hyperthermia.

  7. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    International Nuclear Information System (INIS)

    Pustovalov, V.K.; Astafyeva, L.G.; Zharov, V.P.

    2013-01-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core–shell NPs in the ranges of core radii r 00 =5–40 nm and of relative NP radii r 1 /r 00 =1–8 were calculated (r 1 —radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n 1 =0.2–1.5 and absorption k 1 =0–3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r 00 and relative NP r 1 /r 00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs. -- Highlights: • Absorption, scattering and extinction of two-layered nanoparticles are studied. • Shell materials change in wide regions of materials (metals, dielectrics, vapor). • Effect of sharp decrease and increase of optical characteristics is established. • Explanation of sharp decreasing and increasing optical characteristics is presented

  8. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  9. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  10. Determination of integral K-shell Compton scattering cross-sections in elements 41>=Z>=51 for 1250 keV photons

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-04-01

    Integral K-shell Compton scattering cross-sections in elements Nb, Mo, Ag, Cd, In, Sn and Sb have been determined for 1250 keV photons. The results when compared with theory suggest that K-shell electrons in the elements under investigation behave as free electrons.

  11. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  12. EXAFS study of short range order in Fe-Zr amorphous alloys

    International Nuclear Information System (INIS)

    Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.

    1995-01-01

    Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)

  13. Metastable Innershell Molecular State (MIMS II: K-shell X-ray satellites in heavy ion impact on solids

    Directory of Open Access Journals (Sweden)

    Young K. Bae

    2014-01-01

    Full Text Available Metastable Innershell Molecular State (MIMS, an innershell-bound ultra-high-energy molecule, was previously proposed to explain a ∼40% efficiency of soft-X-ray generation in ∼0.05 keV/amu nanoparticle impact on solids. Here, the MIMS model has been extended and applied to interpreting the experimental K-shell X-ray satellite spectra for more than 40 years in keV-MeV/amu heavy-ion impact on solids. The binding energies of the K-shell MIMS of elements from Al to Ti were determined to be 80–200 eV. The successful extension of the model to the K-shell MIMS confirms that all elements in the periodic table and their combinations are subjected to the MIMS formation.

  14. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  15. K4 Fe(CN)6 as a spectrophotometric agent for uranium analysis

    International Nuclear Information System (INIS)

    Soedyartomo; Tarwita.

    1976-01-01

    The properties of K 4 Fe(CN) 6 as a spectrophotometric agent for Uranium analysis was observed by putting some experiment into practice. The experiment covers the observation of expanding colour stability, the optimization of operating condition (p,H. and wavelength), the effect of K 4 Fe(CN) 6 concentration and the preparation of its standard curves (transmitansion vs uranium concentration) and the observation of the interfering metal spectra s (Cu ++ , Fe ++ ) either of its mixtures or themselves alone, has been carried out. The result and discussion on it are given. (author)

  16. High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites

    Science.gov (United States)

    Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong

    2018-04-01

    The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.

  17. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    Science.gov (United States)

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  18. Preparation and dual microwave-absorption properties of carboxylic poly(arylene ether nitrile)/Fe3O4 hybrid microspheres

    International Nuclear Information System (INIS)

    Ma Zhen; Meng Fanbin; Zhao Rui; Zhan Yingqing; Zhong Jiachun; Liu Xiaobo

    2012-01-01

    The carboxylic poly(arylene ether nitrile)/Fe 3 O 4 hybrid microspheres were prepared via solvothermal method. The carboxylic poly(arylene ether nitrile) (PEN-COOH) was introduced into the Fe 3 O 4 microspheres by chemisorption with mass content up to 15% as defined by infrared spectra and thermal gravimetric analysis. The hybrid sphere is of hierarchical polymer–inorganic microstructure as observed by transmission electron microscopy. The microwave-absorption of the sample owns a shifting peak and a special immobilized peak with the variation of absorber thickness from 3 to 5 mm. Maximum microwave-absorption of the product is capable of over −30 dB in the range of 10–12 GHz. By proposed equivalent filter circuit model, the immobilized peak was attributed to the ordered nanostructure where the Fe 3 O 4 nanocrystals were isolated by PEN-COOH. The product has the potential to be applied as microwave absorber with high microwave-absorption, good dispersibility and robust polymer–inorganic interfacial adherence. - Highlights: ► We prepared poly(arylene ether nitrile)/Fe 3 O 4 hybrid microspheres with hierarchical polymer–inorganic nanostructure. ► A shifting and an immobilized microwave absorbing peaks were observed on the sample. ► Possible mechanism was proposed on the basis of electromagnetic data.

  19. 'Mathematical model of K Capture and its implications'

    International Nuclear Information System (INIS)

    Angus, Andrew C.

    2000-01-01

    The mechanism of K Capture, the nuclear absorption of electron in the K shell, as induced by electricity, is explained in this article. Furthermore, a mathematical model of K Capture is formulated. Then, K Capture is applied to explain the negative results obtained by Steven Jones and the positive results obtained by Pons-Fleischmann in Deuterium Oxide Electrolysis Experiments. The most important implication of K Capture is the possibility of obtaining nuclear energy by fusion at low temperature from heavy water

  20. In situ XANES studies of TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, T.-F.; Hsiung, T.-L. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, James [Department of Biomedical Engineering, University of Southern California, Los Angeles 90007 (United States); Huang, C.-H. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environmental Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2010-07-21

    Mainly anatase and Fe{sub 3}O{sub 4} in the magnetic photocatalysts (TiO{sub 2} on Fe{sub 3}O{sub 4}-C core-shell nanoparticles (TiO{sub 2}/Fe{sub 3}O{sub 4}-C)) are observed by X-ray powder diffraction (XRD) spectroscopy. The Ti K-edge least-square fitted XANES spectra of the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalyst indicate that the main titanium species are nanosize TiO{sub 2} (9 nm) (77%) and bulky TiO{sub 2} (23%). Speciation of titanium in the TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of 100 ppm of trichloroethylene (TCE) has also been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. TiO{sub 2} is not perturbed during the course of photocatalysis. However, it is worth to note that during photocatalytic degradation of TCE, about 33% of FeO and 67% of Fe{sub 3}O{sub 4} are observed in the photocatalyst. It seems that the carbon layer on the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalysts can reduce the possibility for photoexcited electron-hole recombination as usually found on the relatively narrow bandgap of ferric oxide during photocatalysis.

  1. Evaluation of Toxicological Effects of an Aqueous Extract of Shells from the Pecan Nut Carya illinoinensis (Wangenh. K. Koch and the Possible Association with Its Inorganic Constituents and Major Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Luiz Carlos S. Porto

    2016-01-01

    Full Text Available Background. Industrial processing of the pecan nut Carya illinoinensis K. Koch generated a large amount of shells, which have been used to prepare nutritional supplements and medicinal products; however, the safe use of shells requires assessment. This study evaluated the toxic, genotoxic, and mutagenic effects of pecan shell aqueous extract (PSAE and the possible contribution of phenolic compounds, ellagic and gallic acids, and inorganic elements present in PSAE to induce toxicity. Results. Levels of inorganic elements like K, P, Cl, and Rb quantified using the Particle-Induced X-Ray Emission method were higher in PSAE than in pecan shells, while Mg and Mn levels were higher in shells. Mice showed neurobehavioral toxicity when given high PSAE doses (200–2,000 mg kg−1. The LD50 was 1,166.3 mg kg−1. However, PSAE (50–200 mg·kg−1 and the phenolic compounds (10–100 mg·kg−1 did not induce DNA damage or mutagenicity evaluated using the comet assay and micronucleus test. Treatment with ellagic acid (10–100 mg·kg−1 decreased triglyceride and glucose levels, while treatments with PSAE and gallic acid had no effect. Conclusion. Pecan shell toxicity might be associated with high concentrations of inorganic elements such as Mn, Al, Cu, and Fe acting on the central nervous system, besides phytochemical components, suggesting that the definition of the safe dose should take into account the consumption of micronutrients.

  2. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  3. Nafion covered core–shell structured Fe{sub 3}O{sub 4}@graphene nanospheres modified electrode for highly selective detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Chen, Jianhua [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000 (China); Hu, Shirong, E-mail: Hushirong6666@163.com [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000 (China); School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Hao, Aiyou [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-01

    Graphical abstract: Schematic illustration of the reaction mechanism of Fe{sub 3}O{sub 4}@GNs/Nafion with DA. - Highlights: • The sensor based on Fe{sub 3}O{sub 4}@graphene nanospheres was prepared for the first time. • The biosensor shows a wide linear range and a lower detection limit of 0.007 μM. • This method was successfully applied to detection of DA in real samples. - Abstract: Nafion covered core–shell structured Fe{sub 3}O{sub 4}@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe{sub 3}O{sub 4}@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe{sub 3}O{sub 4}@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N = 3) of 0.007 μM. Furthermore, the core–shell structured Fe{sub 3}O{sub 4}@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA.

  4. Electron spectroscopy studies of argon K-shell excitation and vacancy cascades

    International Nuclear Information System (INIS)

    Southworth, S.H.; MacDonald, M.A.; LeBrun, T.; Azuma, Y.; Cooper, J.W.

    1995-01-01

    Electron spectroscopy combined with tunable synchrotron radiation has been used for studies of Ar K-shell excitation and vacancy decay processes. In addition, electrons and fluorescent X-rays have been recorded in coincidence to select subsets of the ejected electron spectra. Examples are presented for Ar 1s photoelectrons and KLL and LMM Auger spectra

  5. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chalkidou, A. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Molecular Oncology Laboratory, Theagenio Cancer Hospital, Alexandrou Simeonidi Street 2, 54 007 Thessaloniki (Greece); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Angelakeris, M., E-mail: agelaker@auth.g [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Samaras, T. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Martinez-Boubeta, C. [Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, Barcelona 08028 (Spain); Balcells, Ll. [ICMAB-CSIC, Campus UAB, Bellaterra 08193 (Spain); Papazisis, K. [Molecular Oncology Laboratory, Theagenio Cancer Hospital, Alexandrou Simeonidi Street 2, 54 007 Thessaloniki (Greece); Dendrinou-Samara, C. [Department of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Kalogirou, O. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece)

    2011-03-15

    In this work we study the heating efficiency of Fe/MgO magnetic core/biocompatible shell nanoparticles and their in vitro application in magnetic hyperthermia on cancer cells. Different human breast cancer cell lines were used to assess the suitability of nanoparticles for in vivo application. The experiments revealed a very good cytotoxicity profile and significant uptake efficiency together with relatively high specific absorption rates and fast thermal response, features that are crucial for adequate thermal efficiency and minimum duration of treatment. - Research highlights: > Fe/MgO magnetic core/shell nanoparticles and their in vitro application for magnetic hyperthermia. > Very good cytotoxicity profile and significant uptake efficiency in three human breast cancer cell lines. > SAR values and fast thermal response guarantee adequate thermal efficiency and minimum treatment duration.

  6. Excellent improvement in the static and dynamic magnetic properties of carbon coated iron nanoparticles for microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Khani, Omid, E-mail: omidkhani@mut-es.ac.ir; Shoushtari, Morteza Zargar; Farbod, Mansoor

    2015-11-15

    Carbon coated iron nanoparticles were synthesized, using a simple arc-discharge method. The morphology and the internal structure of the core/shell nanoparticles were studied, using field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction analysis showed that both magnetic α-Fe and nonmagnetic γ-Fe phases existed in the as-prepared particles. In order to improve the static and dynamic magnetic properties of the core/shell nanoparticles, the produced nanocapsules were annealed in argon atmosphere at two different temperatures. Hysteresis loops revealed that the value of the saturation magnetization (M{sub S}) increased more than 4.1 times of its original value by annealing and this led to 70% increase in the imaginary part of the permeability. Phase analysis showed that heat treatment eliminated the nonmagnetic γ-Fe phase completely. The reflection loss plots were studied for composite layers containing 20 vol% of the annealed and not annealed nanocapsules. One of the absorber layers which contained annealed nanocapsules showed at least −10 dB loss in the whole G, C, X and Ku frequency bands and the optimal absorption exceeded −37 dB at 5.8 GHz for the as-prepared sample with a thickness of 3.2 mm. The results revealed that the magnetic properties of the arc-made Fe/C core/shell nanoparticle can be improved significantly by annealing in argon.

  7. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  8. Fe-N and (Fe, Ni)-N Fine Powders for Magnetic Recording

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Fashen

    1998-01-01

    Combining Moessbauer spectroscopy with magnetic property measurement, we have studied Fe-N and (Fe, Ni)-N powders for magnetic recording. The typical particles of the core (α-Fe)/shell (γ'-Fe 4 N) structure have been successfully prepared. All the products are stabilized in a multi-organic solution. It has been found that the coercivity can be changed from 300 to 800 Oe by adjusting the shape of the particles. The special saturation magnetization of the particles can be adjusted from 120 to 180emu/g and their chemical stability is improved by substituting nickel for iron in γ'-Fe 4 N. Following experiments for corrosion resistance, it is expected that (Fe, Ni)-N and the core/shell particles will be applied as recording media in the near future

  9. Fe-N and (Fe, Ni)-N Fine Powders for Magnetic Recording

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Fashen [Lanzhou University, Department of Physics (China)

    1998-12-15

    Combining Moessbauer spectroscopy with magnetic property measurement, we have studied Fe-N and (Fe, Ni)-N powders for magnetic recording. The typical particles of the core ({alpha}-Fe)/shell ({gamma}'-Fe{sub 4}N) structure have been successfully prepared. All the products are stabilized in a multi-organic solution. It has been found that the coercivity can be changed from 300 to 800 Oe by adjusting the shape of the particles. The special saturation magnetization of the particles can be adjusted from 120 to 180emu/g and their chemical stability is improved by substituting nickel for iron in {gamma}'-Fe{sub 4}N. Following experiments for corrosion resistance, it is expected that (Fe, Ni)-N and the core/shell particles will be applied as recording media in the near future.

  10. Stress-induced Curie temperature increase in the Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro; Martinez-Blanco, David; Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo (Spain); Boada, Roberto; Chaboy, Jesus [ICMA and Departamento de Fisica de la Materia Condensada, CSIC - Universidad de Zaragoza (Spain); Fernandez-Martinez, Alejandro [LGIT, University of Grenoble and CNRS, Maison des Geosciences, Grenoble (France); Institut Laue-Langevin, Grenoble (France); Garbarino, Gaston; Castro, German R.; Mezouar, Mohamed [European Synchrotron Radiation Facility (ESRF), Grenoble (France); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon (United Kingdom); Alonso, J.I.G. [Department of Physical and Analytical Chemistry, University of Oviedo (Spain); Hernando, Antonio [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Madrid (Spain)

    2009-05-15

    Structural and magnetic changes on invar Fe{sub 64}Ni{sub 36} alloy (T{sub C}=500 K) produced by mechanical milling followed by heating up to 1073 K, were investigated by neutron diffraction, magnetization measurements, X-ray diffraction under high pressures and X-ray absorption at both Fe and Ni K-edges. We argue that the strain induced in the Fe{sub 64}Ni{sub 36} material after this treatment mainly affects the Fe sites due to the magnetovolume coupling, the most notorious feature being the increase of the Curie temperature ({delta}T{sub C}=70 K). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  12. Abundance Survey of M and K Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  13. Spectral analysis of K-shell X-ray emission of magnesium plasma

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the ...

  14. Optical absorption, TL and IRSL of basic plagioclase megacrysts from the Pinacate (Sonora (Mexico)) quaternary alkalic volcanics

    International Nuclear Information System (INIS)

    Chernov, V.; Paz-Moreno, F.; Piters, T. M.; Barboza-Flores, M.

    2006-01-01

    The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe 3+ and Fe 2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour. (authors)

  15. Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics.

    Science.gov (United States)

    Chernov, V; Paz-Moreno, F; Piters, T M; Barboza-Flores, M

    2006-01-01

    The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe3+ and Fe2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour.

  16. Crystallographic and magnetic property changes upon hydrogen absorption in Hf2Fe

    International Nuclear Information System (INIS)

    Vulliet, P.; Teisseron, G.; Jeandey, C.; Oddou, J.L.; Yaouanc, A.

    1984-04-01

    We have found that the cubic intermetallic compound Hf 2 Fe can absorb almost up to five hydrogen atoms per formula at a pressure of one atmosphere. Hf 2 Fe is a Pauli magnet. Upon hydrogen absorption a magnetic moment definitively appears on iron, starting at approximately 1.5 hydrogen concentration. A maximum in the saturation magnetic moment is observed in Hf 2 FeH 3 . The static low field susceptibility presents a maximum value and a non reversible behaviour. These properties are characteristic of a disordered magnetic system (spin-glass like). The γ-γ perturbed angular correlation spectra indicate that at low concentration, the hydrogen is localized only near one type of Hf. From our Moessbauer data we measure a shift in the isomer-shift which is consistent with what is already known. When decreasing the temperature and increasing the hydrogen concentration the spectra get less resolved. This is linked to the fact that the samples are in a disordered magnetic phase

  17. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  18. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  19. Determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Lorenzo, Magdalena; Reyes, Arlyn; Blanco, Idania; Vasallo, Maria C

    2010-01-01

    The determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry was carried out. For 20 μL injected sample, calibration within the 0,5-25,0 mg. L -1 Ca; 0,25-5,0 mg. L -1 Cu, Pb and Cu intervals were established using the ratios Cu, Ca, Fe and Pb absorbance versus analyte concentration, respectively. Typical linear correlations of r = 0,999 were obtained. The proposed method was applied for the direct determination of Ca, Cu, Fe and Pb in sugar cane spirits, and in samples. The results obtained were in accordance to those obtained at 95% confidence level

  20. Electrochemical studies on Li /K ion exchange behaviour in K4Fe(CN)

    Indian Academy of Sciences (India)

    based,24 sol-gel,17–21 and solid-state16 meth- ods. There are a .... Double potential step chronoamper- ometry was ... removal of moisture as well as water of crystallisa- tion and the .... active material, K4Fe(CN)6, carbon black and graphite.

  1. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    Science.gov (United States)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  2. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2014-05-01

    Full Text Available ) were explored, and compared with those of the Pd/C alone. FeCo@Fe@Pd/C exhibited a remarkable performance in all three alcohols but its best electrocatalytic activity was found in the oxidation of EG where the electrocatalytic rate constant (K...

  3. The atomic structure of Fe100-xCux nanoalloys: X-ray absorption analysis

    International Nuclear Information System (INIS)

    Kravtsova, A.N.; Yalovega, G.E.; Soldatov, A.V.; Yan, W.S.; Wei, S.Q.

    2009-01-01

    The local atomic structure of Fe 100-x Cu x nanoalloys (x = 0, 10, 20, 40, 60, 70, 80 and 100%) has been investigated by X-ray absorption near edge structure (XANES) analysis. Local environment around copper and iron atoms in Fe 100-x Cu x has been studied by comparing the experimental XANES with corresponding theoretical spectra calculated for several structural models. It has been established that the most probable structure of the Fe 100-x Cu x nanoalloys for a low concentration of copper (x = 10-20%) is a homogenous bcc structure, for a high copper concentration (x = 60-80%)-a homogenous fcc structure, while at an intermediate copper concentration (about 40%) the nanoalloys have an inhomogeneous structure consisting of clusters of fcc solid solution (90%) and of clusters of bcc solid solution (10%)

  4. Magnetism and Microwave Absorption Properties of Fe3O4 Microflake-Paraffin Composites Without and With Magnetic Orientation

    Science.gov (United States)

    Wang, Peng; Zhang, Junming; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Wang, Tao; Li, Fashen

    2018-01-01

    We have synthesized thin Fe3O4 microflakes by a simple hydrothermal method and prepared Fe3O4 microflake-paraffin composites without and with magnetic orientation using the method of simple ultrasonic mixing and rotating samples in a magnetic field. X-ray diffractometer, Mössbauer spectrum, scanning electron microscope and vibrating sample magnetometer were used to characterize the samples. The complex permittivity and permeability of Fe3O4 microflake-paraffin composites without and with magnetic orientation were measured in the frequency range of 0.1-18 GHz by a vector network analyzer using a coaxial method. The reflection loss (RL) was calculated by the measured electromagnetic parameters using transmission line theory. The measurement of electromagnetic parameters shows that magnetic orientation makes the complex permittivity and permeability increase. The calculated RL shows that the Fe3O4 microflake-paraffin composite with magnetic orientation has enhanced microwave absorption properties in the frequency range of 1-3 GHz and the thickness range of 2.9-3.5 mm, indicating that the Fe3O4 microflake-paraffin composite with magnetic orientation is a promising thin microwave absorption material in the L-S band.

  5. Molybdenum x-ray absorption studies of the mutant Kp nifV of nitrogenase MO-FE protein

    International Nuclear Information System (INIS)

    Eidsness, M.K.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer, S.P.

    1985-01-01

    The nifV mutant nitrogenase enzyme of Klebsiella pheumoniae exhibits altered substrate reducing activity. This nitrogenase mutant cannot fix N 2 in vivo but can reduce C 2 H 2 to C 2 H 4 . The nifV mutant enzyme differs further from the wild-type enzyme by CO inhibition of its H 2 evolution activity, up to 80%. The NifV - phenotype (NifV - Kp1) has been shown to be associated with the iron-molybdenum cofactor (FeMoco) in the Mo Fe protein which is generally accepted as the site for substrate reduction. An X-Ray absorption study of the Mo site in this mutant may reveal a difference in its FeMoco structure. The authors report here a comparison of Mo X-Ray absorption data from the nitrogenase enzymes of the wild-type and NifV - strains in three different forms: (1) as isolated, (2) dye-oxidized, and (3) fixing enzyme systems. Mo edge structure of NifV - Kp1 and wild-type enzymes are nearly identical. Small shifts to higher energies are observed in the oxidized and fixing states. Mo EXAFS of NifV - Kp1 and wild-type in the ''as isolated'' state appear indistinguishable. Curve fitting results best describe the molybdenum in FeMoco as bound by 4-5 S atoms at 2.36 A ,3 Fe atoms at 2.69 A, and 0-2 O(N) atoms at 2.19 A. The spectral similarity of these results concerning the nifV mutant FeMoco structure is discussed

  6. Fast synthesis, formation mechanism, and control of shell thickness of CuS–polystyrene core–shell microspheres

    International Nuclear Information System (INIS)

    Zhao, Li-min; Shao, Xin; Yin, Yi-bin; Li, Wen-zhi

    2012-01-01

    Graphical abstract: Core–shell structure PSt/CuS were prepared using polystyrene which were modified by 3-methacryloxypropyltrimethoxysilane as template. The coating thickness of CuS can be controlled by the amount of 3-methacryloxypropyltrimethoxysilane and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. Highlights: ► Core–shell structure PSt/CuS were prepared using silanol-modified polystyrene microspheres as template. ► The coating thickness of core–shell structure PSt/CuS can be controlled by a simple method. ► The UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. -- Abstract: The silanol-modified polystyrene microspheres were prepared through dispersion polymerization. Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.

  7. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  8. Improved electrochemical performance of porous Fe{sub 3}O{sub 4}/carbon core/shell nanorods as an anode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Q.Q.; Lu, Y. [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.L., E-mail: wangxl@zju.edu.cn [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Gu, C.D.; Qiao, Y.Q. [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Tu, J.P., E-mail: tujp@zju.edu.cn [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We prepared porous Fe{sub 3}O{sub 4}/C core/shell nanorods by a facile hydrothermal method using porous Fe{sub 2}O{sub 3} nanorods as the precursor. Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4}/C nanorods are homogenously coated by an amorphous carbon layer. Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4}/C nanorod electrode shows high capacity and good cycle stability, as well as enhanced rate performance. - Abstract: Porous Fe{sub 3}O{sub 4}/C core/shell nanorods have been prepared by a facile hydrothermal method using porous Fe{sub 2}O{sub 3} nanorods as the precursor and glucose as the carbon source. The Fe{sub 3}O{sub 4}/C nanorods possess a uniform size with 50-80 nm in diameter and 300-500 nm in length, and are homogenously coated by amorphous carbon layer. The porous nanorods greatly increase the electrical contact, thus facilitating the Li-ion and electron transportation, and enhancing the reactivity of the electrode. Also, the carbon layer can effectively limit the volume expansion and detachment of Fe{sub 3}O{sub 4}, and thus increase its structure stability during cycling. In the context of lithium storage behavior, the Fe{sub 3}O{sub 4}/C nanorod electrode shows high capacity and good cycle stability, as well as enhanced rate performance. After 50 cycles, the reversible capacity of the porous Fe{sub 3}O{sub 4}/C nanorods is 762.1 mAh g{sup -1} at 0.1 C and 597.2 mAh g{sup -1} at 0.5 C, much higher than that of {alpha}-Fe{sub 2}O{sub 3} nanorods (276.4 mAh g{sup -1}) and Fe{sub 3}O{sub 4} nanoparticles (307.9 mAh g{sup -1}). At a high rate of 1 C, the specific capacity of Fe{sub 3}O{sub 4}/C nanorods is still as high as 630.1 mAh g{sup -1}.

  9. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics ...

    Indian Academy of Sciences (India)

    Administrator

    Fourier transform infrared spectroscopy (FTIR), and magnetic and optical property ... Among many perovskite ceramics, LaFeO3 is of cur- ... example, in anode-supported SOFCs, doped LaFeO3 used ... doped with K+, synthesized by a simple combustion ... single phase formation was limited to ... magnetic field of 1000 Oe.

  10. EXAFS study of Mn{sub 1.28}Fe{sub 0.67}P{sub 0.46}Si{sub 0.54} compound with first-order phase transition

    Energy Technology Data Exchange (ETDEWEB)

    L, Yingjie; Huliyageqi, B; Haschaolu, W; Song, Zhiqiang [Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Physics and Electronic Information College, Inner Mongolia Normal University, Hohhot 010022 (China); Tegus, O, E-mail: tegusph@imnu.edu.cn [Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Physics and Electronic Information College, Inner Mongolia Normal University, Hohhot 010022 (China); Nakai, Ikuo [Department of Electrical and Electronic Engineering, Tottori University, Tottori 680-8552 (Japan)

    2014-10-15

    Highlights: • We have investigated the Fe and Mn K edge XAFS spectra of the Mn{sub 1.28}Fe{sub 0.67}P{sub 0.46}Si{sub 0.54} compound at 25 K and 295 K. • The site occupation of the Fe and Mn atoms and local structure of Mn{sub 1.28}Fe{sub 0.67}P{sub 0.46}Si{sub 0.54} are determined. • The atomic distances between Fe–Fe in c-plane for the ferromagnetic state are larger than those in the paramagnetic state. - Abstract: The Fe{sub 2}P-type MnFe(P,Si) compounds are investigated by means of magnetic measurements and X-ray absorption fine structure spectroscopy. Magnetic measurements show that the Mn{sub 1.28}Fe{sub 0.67}P{sub 0.46}Si{sub 0.54} compound undergoes a first-order phase transition at the Curie temperature of 254 K. The Fe K-edge and Mn K-edge X-ray absorption fine structure spectra show that Mn atom mainly located at the 3g sites, while the 3f sites are occupied by Fe atoms and Mn atom randomly. The distances between the Fe atom and its nearest neighbor atoms in a triangle Fe–Mn–Fe change from 2.80 Å at 25 K to 2.74 Å at 300 K. On the other hand, the distances between Fe atom and its second neighbor atoms change from 4.06 Å at 25 K to 4.02 Å at 300 K.

  11. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe{sub 3}O{sub 4}-silica-Au magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijun [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003 (China); Li Zhonghua [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Feng Jiuju, E-mail: jjfengnju@gmail.com [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Sun Yanli [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Chen Jianrong [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China)

    2012-08-01

    Monodisperse Fe{sub 3}O{sub 4} magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe{sub 3}O{sub 4}-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 Multiplication-Sign 10{sup -9} mol{center_dot}cm{sup -2}, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 {+-} 0.6 s{sup -1}. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 {mu}A{center_dot}mM{sup -1} cm{sup -2} and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe{sub 3}O{sub 4}-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: Black-Right-Pointing-Pointer Synthesis of monodispersed Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Fabrication of core/shell Fe{sub 3}O{sub 4}-silica-Au nanoparticles. Black-Right-Pointing-Pointer Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  12. Radiative electron capture into the K-, L-, and M-shell of decelerated, hydrogenic Ge projectiles

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Livingston, A.E.; Mokler, P.H.; Stachura, Z.; Warczak, A.

    1991-12-01

    Radiative Electron Capture (REC) in 4 to 12 MeV/u Ge 31+ →H 2 collisions has been studied using an X-ray/particle coincidence technique. This technique allowed a systematic investigation of K-shell REC as well as a separation of REC into the projectile L- and M-shells. The cross sections are discussed within a general scaling picture based on the reduced projectile velocity. (orig.)

  13. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe{sub 2}O{sub 4} particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan, E-mail: wangyan287580632@126.com; Wu, Xinming; Zhang, Wenzhi; Huang, Shuo

    2016-04-15

    A ternary composite of Ag/MnFe{sub 2}O{sub 4}/reduced graphene oxide (RGO) was synthesized by a facile hydrothermal method. The morphology, microstructure, magnetic and electromagnetic properties of as-prepared Ag/MnFe{sub 2}O{sub 4}/RGO composite were characterized by means of XRD, TEM, XPS, VSM and vector network analyzer. The maximum reflection loss (R{sub L}) of Ag/ MnFe{sub 2}O{sub 4}/RGO composite shows maximum absorption of −38 dB at 6 GHz with the thickness of 3.5 mm, and the absorption bandwidth with the R{sub L} below −10 dB is up to 3.5 GHz (from 3.7 to 7.2 GHz). The result demonstrates that the introduction of Ag significantly leads to the multiple absorbing mechanisms. It is believed that such composite could serve as a powerful candidate for microwave absorber. - Highlights: • A ternary composite of Ag/MnFe{sub 2}O{sub 4}/reduced graphene oxide (RGO) was synthesized by a facile method. • The morphology, microstructure, magnetic and electromagnetic properties were characterized. • The maximum reflection loss of Ag/MnFe{sub 2}O{sub 4}/RGO is −38 dB at 6 GHz with a thickness of 3.5 mm. • The composite shows a wide absorption band.

  14. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  15. Synthesis, microstructure and magnetic properties of Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.

  16. 1s2p resonant inelastic x-ray scattering in a-Fe2O3

    NARCIS (Netherlands)

    Caliebe, W.A.; Kao, C.-C.; Hastings, J.B.; Taguchi, M.; Kotani, A.; Uozumi, T.; Groot, F.M.F. de

    1998-01-01

    We report experimental and theoretical results on the Fe K edge x-ray absorption spectrum and 1s2p resonant inelastic x-ray scattering (RIXS) spectra in a-Fe2O3 . The results are interpreted using an FeO6^9- cluster model with intra-atomic multiplet coupling and interatomic covalency

  17. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    Science.gov (United States)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  18. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    Science.gov (United States)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  19. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    International Nuclear Information System (INIS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-01-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu 2+ -modified magnetic Fe 3 O 4 @SiO 2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe 3 O 4 @SiO 2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol–gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu 2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu 2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu 2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost

  20. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption.

    Science.gov (United States)

    Zhang, Yanan; Liu, Wei; Quan, Bin; Ji, Guangbin; Ma, Jianna; Li, Daoran; Meng, Wei

    2017-12-15

    Design of dielectric/magnetic heterostructure and multiple interfaces is a challenge for the microwave absorption. Thus, in this study, a novel C/Fe 3 C nanocomposites have been fabricated by annealing the precursors obtained by the facile chemical blowing of polyvinyl pyrrolidone (PVP) and Fe(NO 3 ) 3 ·9H 2 O. By changing the content of Fe(NO 3 ) 3 ·9H 2 O, the honeycomb-like structure with scads of pores and electromagnetic parameters could be successfully tailored. When the addition of Fe(NO 3 ) 3 ·9H 2 O is ranging from 1 to 2g, honeycomb-structured nanocomposites possess high performance microwave absorption when mixed with 90wt% paraffin. The minimal reflection loss is -37.4dB at 13.6GHz and effective bandwidth can reach to 5.6GHz when the thickness is 2.0mm, indicating its great potential in microwave absorbing field. Its outstanding microwave performance is tightly related to the porous structure and substantial interface such as carbon/air and carbon/Fe 3 C, which are in favor of the impedance matching and interfacial polarization. Thus, our study may provide a good reference for the facile synthesis of light-weight carbon-based nanocomposites with effective interfacial polarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Science.gov (United States)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  2. Preliminary evaluation of physical and chemical characterization of waste palm oil shell as cool material replaced in asphaltic concrete as fine aggregate

    Science.gov (United States)

    Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.

    2017-11-01

    Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.

  3. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    International Nuclear Information System (INIS)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-01-01

    Highlights: • The bio-absorbent coated Fe-CoNiP was fabricated by electroless and CVD. • The EM parameters were enlarged as Fe coated on the diatomite. • The coating CIPs play a key role in the enhancement mechanism. • The Fe-CoNiP diatomite had a better absorbing and shielding properties. - Abstract: A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2–18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL −11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density

  4. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang, E-mail: xuyonggang221@163.com; Zhang, Deyuan

    2015-08-15

    Highlights: • The bio-absorbent coated Fe-CoNiP was fabricated by electroless and CVD. • The EM parameters were enlarged as Fe coated on the diatomite. • The coating CIPs play a key role in the enhancement mechanism. • The Fe-CoNiP diatomite had a better absorbing and shielding properties. - Abstract: A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2–18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL −11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  5. Ferrous and hemoglobin-59Fe absorption from supplemented cow milk in infants with normal and depleted iron stores

    International Nuclear Information System (INIS)

    Heinrich, H.C.; Gabbe, E.E.; Whang, D.H.; Bender-Goetze, C.; Schaefer, K.H.; Hamburg Univ.

    1975-01-01

    Small amounts of milk do inhibit ferrous iron absorption from a 5 mg 59 Fe 2+ dose in 1- to 18-month-old infants. Only 50 ml of 2/3 cow milk reduced the absorption from 18 to 3.8% in infants with normal iron stores (inhibition index 0.21) and from 26 to 8.5% in [de

  6. K-, L- and M-shell X-ray productions induced by argon ions in the 0.8–1.6 MeV/amu range

    Energy Technology Data Exchange (ETDEWEB)

    Gluchshenko, N.; Gorlachev, I. [Institute of Nuclear Physics, Ibragimov 1, 050032, Almaty (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, Ibragimov 1, 050032, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Kireyev, A. [Institute of Nuclear Physics, Ibragimov 1, 050032, Almaty (Kazakhstan); Kozin, S.; Kurakhmedov, A. [Institute of Nuclear Physics, Ibragimov 1, 050032, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Platov, A. [Institute of Nuclear Physics, Ibragimov 1, 050032, Almaty (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, Ibragimov 1, 050032, Almaty (Kazakhstan); Ural Federal University, 620002, Yekaterinburg (Russian Federation)

    2016-04-01

    The X-ray emissions induced by argon ions for the elements from Mg to Bi were measured on mono-elemental thin films. K-, L- and M-shells X-ray production cross section were obtained for the {sup 40}Ar projectile energies of 32, 40, 48, 56 and 64 MeV, considering absorption corrections. For the most of target elements the approach used is based on the calculation of X-ray production cross sections through the cross section of Rutherford backscattering. The efficiency of the X-ray detector was determined using standard calibrated radioactive sources. The experimental results are compared to the predictions of the ECPSSR and PWBA theories calculated with the ISICS code.

  7. A pulse synthesis of beta-FeSi sub 2 layers on silicon implanted with Fe sup + ions

    CERN Document Server

    Batalov, R I; Terukov, E I; Kudoyarova, V K; Weiser, G; Kuehne, H

    2001-01-01

    The synthesis of thin beta-FeSi sub 2 films was performed by means of the Fe sup + ion implantation into Si (100) and the following nanosecond pulsed ion treatment of implanted layer. Using the beta-FeSi sub 2 beta-FeSi sub 2 e X-ray diffraction it is shown that the pulsed ion treatment results in the generation of the mixture of two phases: FeSi and beta-FeSi sub 2 with stressed crystal lattices. The following short-time annealing leads to the total transformation of the FeSi phase into the beta-FeSi sub 2 one. The Raman scattering data prove the generation of the beta-FeSi sub 2 at the high degree of the silicon crystallinity. The experimental results of the optical absorption testify to the formation of beta-FeSi sub 2 layers and precipitates with the straight-band structure. The photoluminescence signal at lambda approx = 1.56 mu m observes up to 210 K

  8. Elemental characterisation of strawberry grown in Islamabad by k0-instrumental neutron activation analysis and atomic absorption spectrophotometry and its dietary assessment

    International Nuclear Information System (INIS)

    Mohammad Wasim; Nasir Khalid; Mohammad Arif; Jamshed Hussain Zaidi

    2012-01-01

    Mineral contents of strawberry, collected from different farms of Islamabad were analysed by semi-absolute k 0-instrumental neutron activation analysis and atomic absorption spectrophotometry. The samples were irradiated at two research reactors located in Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad. The analytical methodologies were validated by analysing reference materials, IAEA-336 (lichen) and IAEA-V-10 (hay powder). In all the samples, a total of 26 elements were quantified, among them 16 elements (Ca, Cd, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Pb, Ru, Sc, Sr and Zn) were found in all the samples. The determined elemental concentrations in strawberry were compared with the reported values from other countries. In comparison with the mineral contents of other fruits, strawberry stands best source of Mn and the second most important source of K after banana. Intake of trace metals through this source was calculated and it was found that strawberry provides Mn (1.95-3.68 mg/kg), Cr (19.2-46.3 x 10 -3 mg/kg), Fe (3.45-8.72 mg/kg), K (1,520-1,670 mg/kg) and Mg (100-220 mg/kg), which forms 26, 19, 14, 7 and 7% of the recommended dietary allowances for the respective metals. The daily intake of Cd and Pb were compared with the provisional tolerable weekly intake defined by FAO/WHO. (author)

  9. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy modification

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Jin, Jiaying; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2014-04-15

    To improve coercivity without sacrificing other magnetic performance of NdFeB sintered magnets, a low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced as an intergranular additive. Magnetic properties and microstructure of the magnets with different Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} contents were studied. At the optimum addition of 3 wt%, coercivity H{sub cj} was enhanced from 12.7 to 15.2 kOe, the maximum magnetic energy product (BH){sub max} was simultaneously increased from 46.6 to 47.8 MG Oe, accompanied by a slight reduction in remanence B{sub r}. Further investigation on microstructure and grain boundary composition indicated that the enhanced H{sub cj} and (BH){sub max} could be attributed to the refined and uniform 2:14:1 phase grains, continuous grain boundaries and a (Nd,Dy){sub 2}Fe{sub 14}B hardening shell surrounding the 2:14:1 phase grains. - Highlights: • Low melting-point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced to NdFeB magnets. • The doped magnet exhibits enhanced coercivity and maximum energy product. • (Nd,Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • The continuous grain boundary layer formed between neighboring Nd{sub 2}Fe{sub 14}B grains.

  10. First principles simulation on the K0.8Fe2Se2 high-temperature structural superconductor

    International Nuclear Information System (INIS)

    Guo, Rui; Yang, Shizhong; Khosravi, Ebrahim; Zhao, Guang-Lin; Bagayoko, Diola

    2013-01-01

    Highlights: • The superconductor K 0.8 Fe 2 Se 2 super cell size, shape, and atomic positions are fully optimized using first principles density functional theory method. • Each K atom donates 0.8 |e| with K vacancies in the supercell, each Fe atom donates 0.4 |e|, while each Se atom gains 0.7 |e| ∼ 0.8 |e|. • Fe atoms show magnetic moment fluctuation and possible strong spin-orbital coupling. -- Abstract: Since the synthesis of the first ones in 2008, iron-based high temperature superconductors have been the subject of many studies. This great interest is partly due to their higher, upper magnetic field, smaller Fermi surface around the Γ point, and a larger coherence length. This work is focused on A x Fe 2 Se 2 structural superconductor (FeSe, 11 hierarchy; A = K, Cs) as recently observed. ARPES data show novel, electronic structure and a hole-free Fermi surface which is different from previously observed Fermi surface images. We use ab initio density functional theory method to simulate the electronic structure of the novel superconductor A x Fe 2 Se 2 . We compare this electronic structure with those of other Fe-based superconductors

  11. Synthesis and electrochemical properties of Fe_3O_4@MOF core-shell microspheres as an anode for lithium ion battery application

    International Nuclear Information System (INIS)

    Sun, Xuemin; Gao, Ge; Yan, Dongwei; Feng, Chuanqi

    2017-01-01

    Highlights: • Fe_3O_4 particles are encapsulated by HKUST-1 to form core-shell microspheres composite. • The composite exhibits outstanding electrochemical performances as a novel anode. • The typical approach can be used to prepare some novel electrode materials. - Abstract: The Fe_3O_4@MOF composite with a microspheric core and a porous metal-organic framework (MOF HKUST-1) shell has been successfully synthesized utilizing a versatile Layer-by-Layer (LBL) assembly method. The structure was identified by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The Fe_3O_4@MOF composite exhibited outstanding electrochemical properties when it was used as an anode material for lithium ion batteries (LIBs). After 100 discharge-charge cycles at a current density of 100 mA g"−"1, the reversible capacity of Fe_3O_4@MOF could maintain ∼1002 mAh g"−"1, which was much higher than that of the bare Fe_3O_4 counterpart (696 mAh g"−"1). Moreover, load the current density as high as 2 A g"−"1 (after 70 cycles at the current density step increased from 0.1 to 2 A g"−"1), it still delivered a reversible capacity of ∼429 mAh g"−"1. The results demonstrate that the cycling stability of Fe_3O_4 as an anode could be significantly improved by coating Cu_3(1,3,5-benzenetricarboxylate)_2 (HKUST-1). This strategy may offer new route to prepare other composite materials using different particles and suitable Metal-organic frameworks (MOFs) for LIBs application.

  12. Microstructure and Magnetic Properties of NdFeB Sintered Magnets Diffusion-Treated with Cu/Al Mixed Dyco Alloy-Powder

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2017-06-01

    Full Text Available We investigated the microstructural and magnetic property changes of DyCo, Cu + DyCo, and Al + DyCo diffusion-treated NdFeB sintered magnets. The coercivity of all diffusion treated magnet was increased at 880ºC of 1st post annealing(PA, by 6.1 kOe in Cu and 7.0 kOe in Al mixed DyCo coated magnets, whereas this increment was found to be relatively low (3.9 kOe in the magnet coated with DyCo only. The diffusivity and diffusion depth of Dy were increased in those magnets which were treated with Cu or Al mixed DyCo, mainly due to comparatively easy diffusion path provided by Cu and Al because of their solubility with Ndrich grain boundary phase. The formation of Cu/Al-rich grain boundary phase might have enhanced the diffusivity of Dy-atoms. Moreover, relatively a large number of Dy atoms reached into the magnet and mostly segregated at the interface of Nd2Fe14B and grain boundary phases covering Nd2Fe14B grains so that the core-shell type structures were developed. The formation of highly anisotropic (Nd, Dy2Fe14B phase layer, which acted as the shell in the core-shell type structure so as to prevent the reverse domain movement, was the cause of enhancing the coercivity of diffusion treated NdFeB magnets. Segregation of cobalt in Nd-rich TJP followed by the formation of Co-rich phase was beneficial for the coercivity enhancement, resulting in the stabilization of the metastable c-Nd2O3 phase.

  13. Krypton K-shell X-ray spectra recorded by the HENEX spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J.F. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)]. E-mail: john.seely@nrl.navy.mil; Back, C.A. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Constantin, C. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Hudson, L.T. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Szabo, C.I. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Henins, A. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Holland, G.E. [SFA Inc., 9315 Largo Drive West Suite 200, Largo MD 20774 (United States); Atkin, R. [Tiger Innovations, L.L.C., 3610 Vacation Lane, Arlington VA 22207 (United States); Marlin, L. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)

    2006-05-15

    High-resolution X-ray spectra were recorded by the High-Energy Electronic X-ray (HENEX) spectrometer from a variety of targets irradiated by the Omega laser at the Laboratory for Laser Energetics. The HENEX spectrometer utilizes four reflection crystals covering the 1-20keV energy range and one quartz(10-11) transmission crystal (Laue geometry) covering the 11-40keV range. The time-integrated spectral images were recorded on five CMOS X-ray detectors. In the spectra recorded from krypton-filled gasbag and hohlraum targets, the helium-like K-shell transitions n=1-2, 1-3, and 1-4 appeared in the 13-17keV energy range. A number of additional spectral features were observed at energies lower than the helium-like n=1-3 and n=1-4 transitions. Based on computational simulations of the spectra using the FLYCHK/FLYSPEC codes, which included opacity effects, these additional features are identified to be inner-shell transitions from the Li-like through N-like krypton charge states. The comparisons of the calculated and observed spectra indicate that these transitions are characteristic of the plasma conditions immediately after the laser pulse when the krypton density is 2x10{sup 18}cm{sup -3} and the electron temperature is in the range 2.8-3.2keV. These spectral features represent a new diagnostic for the charge state distribution, the density and electron temperature, and the plasma opacity. Laboratory experiments indicate that it is feasible to record K-shell spectra from gold and higher Z targets in the >60keV energy range using a Ge(220) transmission crystal.

  14. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  15. Reactions of laser-ablated iron atoms and cations with carbon monoxide: Infrared spectra of FeCO+, Fe(CO)2+, Fe(CO)x, and Fe(CO)x- (x=1-4) in solid neon

    Science.gov (United States)

    Zhou, Mingfei; Andrews, Lester

    1999-06-01

    Laser-ablated iron atoms, cations, and electrons have been reacted with CO molecules during condensation in excess neon. The FeCO molecule is observed at 1933.7 cm-1 in solid neon. Based on isotopic shifts and density functional calculations, the FeCO molecule has the same 3Σ- ground state in solid neon that has been observed at 1946.5 cm-1 in a recent high resolution gas phase investigation [Tanaka et al., J. Chem. Phys. 106, 2118 (1997)]. The C-O stretching vibration of the Fe(CO)2 molecule is observed at 1917.1 cm-1 in solid neon, which is in excellent agreement with the 1928.2 cm-1 gas phase value for the linear molecule. Anions and cations are also produced and trapped, absorptions at 1782.0, 1732.9, 1794.5, and 1859.7 cm-1 are assigned to the linear FeCO-, Fe(CO)2-, trigonal planar Fe(CO)3-, and C3v Fe(CO)4- anions, respectively, and 2123.0, 2134.0 cm-1 absorptions to the linear FeCO+ and Fe(CO)2+ cations. Doping these experiments with CCl4 virtually eliminates the anion absorptions and markedly increases the cation absorptions, which confirms the charge identifications. Higher iron carbonyl Fe(CO)3, Fe(CO)4, and Fe(CO)5 absorptions are produced on photolysis.

  16. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Dai, Qilin; Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Bowden, Mark; Engelhard, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, Idaho 83401 (United States)

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  17. Difference between Cr and Ni K-edge XANES spectra of rust layers formed on Fe-based binary alloys exposed to Cl-rich environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    The rust layer formed on weathering steel possesses a strong protective ability against corrosives in an atmospheres. This ability is related to the structure of the rust layer. The difference in the protective ability of a rust layer. The difference in the protective ability of a rust layer in a Cl-rich environment between conventional weathering steel containing Cr and advanced weathering steel containing Ni is believed to be caused by the differences in local structural and chemical properties between alloying elements. Cr and Ni, in the rust layer. In order to examine the effect of these alloying elements on the structure of the rust layer formed on steel in a Cl-rich environment, we have performed Cr and Ni K-edge X-ray absorption near-edge structure (XANES) measurements for the rust layer of Fe-Cr and Fe-Ni binary alloys exposed to a Cl-rich atmosphere using synchrotron radiation. The results of the Cr K-edge XANES measurements for the rust layer of Fe-Cr binary alloys show that the atomic geometry around Cr depends on the concentration of Cr. Therefore, it is expected that the local structure around Cr in the rust layer is unstable. On the other hand, from the results of the Ni K-edge XANES measurements for the rust layer of Fe-Ni binary alloys. Ni is considered to be positioned at a specific site in the crystal structure of a constituent of the rust layer, such as akaganeite or magnetite. As a consequence, Ni negligibly interacts with Cl - ions in the rust layer. (author)

  18. Magnetization-induced enhancement of photoluminescence in core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Zhou, Zhihua; Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Chen, Jianrong [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Zhang, Yihe [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2013-12-07

    After the core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite synthesized through a facile sol-gel method was magnetized under an external magnetic field of 0.25 T for 4 h, an enhancement of ∼56% in photoluminescence intensity was observed. The remanent magnetization of the CoFe{sub 2}O{sub 4} core increases the intensity of the excited charge transfer transition of VO{sub 4}{sup 3−} group in YVO{sub 4}:Eu{sup 3+} shell, which may enhance the probability related to the Eu{sup 3+} radiative transition {sup 5}D{sub 0}-{sup 7}F{sub 2}, yielding to a high photoluminescence. The obvious remanent-magnetization-induced enhancement in photoluminescence is helpful in developing excellent magnetic/luminescent material for the practical display devices.

  19. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  20. Enhanced capacity and stability of K_2FeO_4 cathode with poly(3-hexylthiophene) coating for alkaline super-iron battery

    International Nuclear Information System (INIS)

    Wang, Suqin; Wang, Yaoyao; Chen, Shuiliang; Hou, Haoqing; Li, Hongbo

    2016-01-01

    Highlights: • Conductive polymer coating allows improving capacity and stability of K_2FeO_4. • P3HT-coated K_2FeO_4 is prepared. • High capacity is recorded after storing 6 h (314 mAh g"−"1) for P3HT-coated K_2FeO_4. • Partly oxidized P3HT coating is formed due to the reaction between P3HT and K_2FeO_4. • The mechanism of improving capacity and stability of K_2FeO_4 is proposed. - Abstract: Poly(3-hexylthiophene)-coated K_2FeO_4 (K_2FeO_4@P3HT) was prepared to enhance capacity and stability of K_2FeO_4. Scanning electron microscopy (SEM), Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectra (XPS) were performed to characterize K_2FeO_4@P3HT. Discharge performance results showed that the Poly(3-hexylthiophene) (P3HT) coating layer enhanced the capacity of the K_2FeO_4 in 10 mol L"−"1 KOH electrolyte. K_2FeO_4@P3HT-1% electrode showed a high discharge capacity of 351 mAh g"−"1, about 13% increase comparing to the K_2FeO_4 electrode. Moreover, the stability of K_2FeO_4 electrode was obviously enhanced by P3HT coating, and the discharge capacity of the electrode which was stored in electrolyte for 6 h was improved to 314 mAh g"−"1, increasing about 22.6% compared to that of 314 mAh g"−"1. These desirable properties can be attributed to the in-situ formation of two-layer film on the surface of K_2FeO_4 crystal, which keep electrolyte from directly contacting with K_2FeO_4 and reduce the resistance of charge transfer.

  1. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  2. X-ray absorption investigation of the valence state and electronic structure of La1−xCaxCoO3−δ in comparison with La1−xSrxCoO3−δ and La1−xSrxFeO3−δ

    International Nuclear Information System (INIS)

    Haas, O.; Ludwig, Chr.; Bergmann, U.; Singh, R.N.; Braun, A.; Graule, T.

    2011-01-01

    3d metal K-shell X-ray absorption spectra of perovskites with the composition La 1−x Ca x CoO 3−δ (x=0, 0.2, 0.4, 0.5, 0.6, 0.8), La 1−x Sr x CoO 3−δ (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) and La 1−x Sr x FeO 3−δ (x=0, 0.2, 0.4, 0.5, 0.6, 0.8) are compared on the basis of pre-edges, white line features and extended fine structures. The measurements were performed at 300 K and for La 1−x Ca x CoO 3−δ also at temperatures as low as 10–20 K. Going to low-temperature the measurements indicate an increase in t 2g ⁎ and a decrease in e g ⁎ orbital occupancy, which is most accentuated in the LaCoO 3 sample. Virtually no Co K-edge shift was observed for the La 1−x Ca x CoO 3−δ and La 1−x Sr x CoO 3−δ compounds and the Co–O distances are also not significantly reduced when La 3+ is partially substituted by Ca 2+ or Sr 2+ . From the pre-edge features of these perovskites we are tended to conclude that the t 2g ⁎ orbitals are less, and the e g ⁎ orbitals are more occupied with increasing x in the Ca and Sr substituted compounds, whereas the total d-electron density is not changing. These results indicate that cobalt prefers a valence state of 3 + in these Co perovskites. This could also be confirmed with iodometric titrations. The Fe perovskites behave differently. In contrast to the Co perovskites, for La 1−x Sr x FeO 3−δ perovskites the Fe K-edge is shifted, the pre-edge features intensity is increasing and the Fe–O bond length is decreasing with increasing x. The valence states of the iron in the La 1−x Sr x FeO 3−δ perovskites in fact increase as much as x increases. - Graphical abstract: Co K and Fe K pre-edge of La 1−x Ca x CoO 3−δ and La 1−x Sr x FeO 3−δ perovskites one of the evidences in favor of δ=x/2 for the Co-perovskites and δ=0 for the Fe-perovskites. Highlights: ► XAS a valuable tool to evaluate the valence states of Co and Fe perovskites. ► For La 1−x Ca x CoO 3−δ and La 1−x Sr x CoO 3

  3. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-z target atoms

    International Nuclear Information System (INIS)

    Stoehlker, T.; Bosch, F.; Geissel, H.; Kozhuharov, C.; Ludziejewski, T.; Mokler, P.H.; Scheidenberger, C.; Stachura, Z.; Warczak, A.

    1997-09-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogen- and helium-like bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine structure splitting of Bi, the excitation cross-sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave-functions and the magnetic interaction are of considerable importance for the K-shell excitation process in high-Z ions like Bi. The experimental data confirm the result of the complete relativistic calculations, namely that the magnetic part of the Lienard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross-section. (orig.)

  4. Fe3O4@ZnO core-shell nanocomposites for efficient and repetitive removal of low density lipoprotein in plasma and on blood vessel

    International Nuclear Information System (INIS)

    Huang, Xiao; Lu, Juan; Yue, Danyang; Fan, Yijuan; Yi, Caixia; Wang, Xiaoying; Zhang, Mengxue; Pan, Jun

    2015-01-01

    Low density lipoprotein (LDL)-apheresis therapy, which directly removes LDL from plasma by LDL-adsorbents in vitro is found to be clinically effective and safe to lower the LDL content in blood to prevent cardiovascular disease. Thus, developing excellent LDL adsorbents are becoming more and more attractive. Herein, functional Fe 3 O 4 @ZnO core–shell nanocomposites have been synthesized by a facile and eco-friendly two-step method. Not only do they possess high LDL adsorption (in PBS/plasma as well as on blood vessels) and favorable magnetic targeting ability but they can also be reused conveniently, which offer the Fe 3 O 4 @ZnO core–shell nanocomposites significant potential in the removal of LDL in vitro and in vivo. (paper)

  5. Influence of substrate treatment on the growth of advanced core–shell alloys and compounds of FeSi@SiO2 and SiO2 nanowires

    CSIR Research Space (South Africa)

    Thabethe, S

    2014-12-01

    Full Text Available Advanced core–shell FeSi@SiO(subx) nanowires are observed when FeCl(sub3) vapour is made to flow over a SiO(sub2)/Si substrate at 1100 degress C. The thickness of the SiO(subx) sheath (d0) is found to depend inversely as the period of time of HF...

  6. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    Science.gov (United States)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  7. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K

    OpenAIRE

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-01-01

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using ge...

  8. Use of Aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles for removal of Pb (II from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Samira Namavari

    2016-03-01

    Full Text Available Background: Lead (Pb is a heavy metal that is widely utilized in industries. It contaminates soil and groundwater. Its non-biodegradability, severe toxicity, carcinogenicity, ability to accumulate in nature and contaminate groundwater and surface water make this toxic heavy metal extremely dangerous to living beings and the environment. Therefore, technical and economic methods of removing Pb are of great importance. This study evaluated the efficiency of Ni0.5Zn0.5Fe2O4 magnetic nanoparticles supported by Aloe vera shell ash in removing Pb from aqueous environments. Methods: The adsorbent was characterized by several methods, including x-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FT-IR. Then, the potential of Aloe vera shell ash-supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles to adsorb Pb (II was investigated. To determine the amount of lead absorbed by this adsorbent, different pHs (2, 4, 5, and 6, adsorbent doses (0.01-0.40 g, Pb concentrations (5, 10, 20, 30, 40, 50, 60, 80, 100, 200, 300, and 600 mg/L, and exposure times (0, 5, 10, 15, 20, 30, 40, 50, and 60 minutes until reaching equilibrium were tested using an atomic absorption spectrometer (Varian-AA240FS. Residual concentrations of Pb were read. Results: The results show that a time of 15 minutes, pH value of 9, and adsorbent dose of 0.2 g are the optimum conditions for Pb (II removal by this adsorption process. Increasing the initial concentration of Pb (II from 5 to 600 mg/L decreased removal efficiency from 98.8% to 73%. The experimental data fit well into the Freundlich isotherm model (R2 = 0.989. Conclusion: Ni0.5Zn0.5Fe2O4 magnetic nanoparticles supported by Aloe vera shell ash comprise a low-cost, simple, and environmentally benign procedure. The maximum monolayer adsorption capacity based on the Langmuir isotherm (R2 = 0.884 is 47.2 mg g-1. The prepared magnetic adsorbent can be well dispersed in aqueous solutions and

  9. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    Science.gov (United States)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  10. A novel green synthesis of Fe{sub 3}O{sub 4}-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B. [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India); Anitha, K. [Department of Chemistry, S.K. University, Anantapur-515003, Andhra Pradesh (India); Jyothi, N.V.V., E-mail: nvvjyothi01@gmail.com [Analytical and inorganic Division of Chemistry, S.V. University, Tirupati-517502, Andhra Pradesh (India)

    2015-01-15

    We described a novel and eco-friendly method for preparing Fe{sub 3}O{sub 4}-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe{sub 3}O{sub 4}-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV–vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe{sub 3}O{sub 4}-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe{sub 3}O{sub 4}-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe{sub 3}O{sub 4}-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe{sub 3}O{sub 4}-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  11. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    International Nuclear Information System (INIS)

    Cai, Yun; Ling, Li; Li, Xiaofang; Chen, Meng; Su, Likai

    2015-01-01

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe 3 O 4 nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N 2 adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe 3 O 4 core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s

  12. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yun; Ling, Li; Li, Xiaofang [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Chen, Meng [Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Su, Likai, E-mail: zhangdong19992003@163.com [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China)

    2015-03-15

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.

  13. The silicon neighborhood across the a-Si:H to {mu}c-Si transition by X-ray absorption spectroscopy (XAS)

    Energy Technology Data Exchange (ETDEWEB)

    Tessler, Leandro R.; Wang Qi; Branz, Howard M

    2003-04-22

    We report a synchrotron X-ray absorption spectroscopy study of the average neighborhood of Si near the transition from a-Si:H to {mu}c-Si on wedge-shaped samples prepared by hot-wire CVD in a chamber using a movable shutter. The thickness of the wedge varies from 30 to 160 nm. Nucleation of {mu}c-Si occurs at a critical thickness of approximately 100 nm. X-Ray absorption was measured at the Si K-edge (1.84 keV) by total electron photoemission yield. The absorption oscillations in the EXAFS region are very similar to all along the wedge. Analysis indicates an average tetrahedral first neighbor shell with radial disorder decreasing with crystallization. In the near-edge (XANES) region multiple scattering effects appear at the onset of crystallinity. Unlike single crystal silicon, these effects involve only double scattering within the first neighbor shell, indicating an ill-formed second shell in {mu}c-Si.

  14. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  15. Simulations of the Fe K α Energy Spectra from Gravitationally Microlensed Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H. [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States); Chartas, G., E-mail: krawcz@wustl.edu [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

    2017-07-10

    The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131−1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K α emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K α line emission. In this paper, we combine detailed simulations of the emission of Fe K α photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. The simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131−1231 can only be reproduced for black hole inclinations exceeding 70° and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K α quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.

  16. Control of electrolytic refinement of silver by atomic absorption method

    International Nuclear Information System (INIS)

    Kulish, N.G.; Burylev, B.P.

    1983-01-01

    Results of atomic absorption determination of 18 elements: Fe, Cu, Zn, Cd, Bi, Ga, In, Ca, Mg, K, Na, Sb, Te, Ni, Co, Cr, Mn, Pb in silver and electrolytes are presented. When determining impurities in silver the basis has been separated by the extraction of O-isopropyl-N-ethyl thiocarbamate in the 1M HN0 3 medium. Optimum measuring conditions and the range of linear dependence between concentration and atomic absorption value are given

  17. Sensitive measurement of nonlinear absorption and optical limiting in undoped and Fe-doped ZnO quantum dots using pulsed laser

    Science.gov (United States)

    Sharma, D.; Malik, B. P.; Gaur, A.

    2016-11-01

    Zinc oxide quantum dots (QDs) with Fe-doping at different concentrations were prepared by chemical co-precipitation method. The prepared QDs were characterized by UV-Vis spectroscopy, X-ray diffraction and Z-scan technique. The sizes of QDs were found to be within 4.6-6.6 nm range. The nonlinear parameters viz. two-photon absorption coefficient (βTPA) and two-photon absorption cross-section (σTPA) were extracted with the help of open aperture Z-scan technique using nanosecond Nd:YAG laser operating at wavelength 532 nm. Higher values of βTPA and σTPA for Fe doped ZnO implied that they were potential materials for development of photonics devices and sensor protection applications. Fe doped sample (3 % by wt) was found to be the best optical limiter with limiting threshold intensity of 0.64 TW/cm2.

  18. Modeling thermodynamics of Fe-N phases; characterisation of e-Fe2N1-z

    DEFF Research Database (Denmark)

    Pekelharing, M.I.; Böttger, A.; Somers, Marcel A.J.

    1999-01-01

    In order to arrive at modeling the thermodynamics of Fe-N phases, including long-range (LRO) and short-range ordering (SRO) of the N atoms, it is important to understand the role of N interstitially dissolved in an Fe-host lattice. The crystal structure of -Fe2N1-z consists of an h.c.p. iron...... sublattice and a hexagonal nitrogen sublattice formed by octahedral interstices of the Fe sublattice [1]. Two ground-state structures have been proposed for the ordered arrangement of the N atoms on their own sublattice [1], which were shown to be thermodynamically favourable [2]: configuration A for Fe2N1...... investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two configurations of LRO of the N atoms [2,3] was fitted to the N-absorption isotherm at 723 K and resulted in the occupancies of the sites of the nitrogen sublattice. A miscibility gap between...

  19. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    Science.gov (United States)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  20. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough

    Science.gov (United States)

    Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei

    2018-04-01

    To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.

  1. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-06-01

    It is widely recognized that constructing multiple interface structures to enhance interface polarization is very good for the attenuation of electromagnetic (EM) wave. Here, a novel "203" type of heterostructured nanohybrid consisting of two-dimensional (2D) MoS2 nanosheets, zero-dimensional (0D) Fe3O4 nanoparticles and three-dimensional (3D) carbon layers was elaborately designed and successfully synthesized by a two-step method: Fe3O4 nanoparticles were deposited onto the surface of few-layer MoS2 nanosheets by a hydrothermal method, followed by the carbonation process by a chemical vapor deposition method. Compared to that of "20" type MoS2-Fe3O4, the as-prepared heterostructured "203" type MoS2-Fe3O4-C ternary nanohybrid exhibited remarkably enhanced EM and microwave absorption properties. And the minimum reflection loss (RL) value of the obtained MoS2-Fe3O4-C ternary nanohybrid could reach -53.03 dB at 14.4 GHz with a matching thickness of 7.86 mm. Moreover, the excellent EM wave absorption property of the as-prepared ternary nanohybrid was proved to be attributed to the quarter-wavelength matching model. Therefore, a simple and effective route was proposed to produce MoS2-based mixed-dimensional van der Waals heterostructure, which provided a new platform for the designing and production of high performance microwave absorption materials.

  2. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesú s G.; Bran, Cristina; Vidal, Enrique Vilanova; Kosel, Jü rgen; Morales, Marí a P.; Vazquez, Manuel

    2015-01-01

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential

  3. The Density Matrix for Single-mode Light after k-Photon Absorption

    Science.gov (United States)

    Voigt, H.; Bandilla, A.

    In order to continue and generalize the studies of the density matrix of a light field undergoing k-photon absorption, in this paper we put the emphasis on the off-diagonal elements. The solution obtained earlier for the diagonal elements describing the photon statistics can be found as a special case but will not be discussed again. The general solution calculated by recursion shows an asymptotic behaviour if the initial photon number is sufficiently high. Only the initial phase information survives. Illustrating the solution we start with coherent light and a generalized coherent state.Translated AbstractDie Dichtematrix eines Lichtstrahls nach k-Photonen-Absorption aus einer ModeWir führen die Betrachtungen über das Verhalten der Dichtematrix eines Lichtfeldes nach k-Photonen-Absorption aus einer Mode verallgemeinernd weiter und konzentrieren uns auf die Nichtdiagonalelemente. Die im folgenden angegebene allgemeine Lösung, die durch Rekursion gefunden wurde, enthält die schon früher erhaltene, jedoch hier nicht weiter diskutierte Lösung für die Diagonalelemente als Spezialfall. Sie zeigt ferner, daß es einen asymptotischen Zustand gibt, der eine von der Ausgangsintensität unabhängige Information über die Ausgangsphase enthält. Zur Diskussion der Lösung werden verschiedene Anfangsbedingungen betrachtet, so z. B. kohärentes Licht und kohärentes Licht, das ein Medium mit nichtlinearem Brechungsindex durchlaufen hat (Kerr-Effekt).

  4. Fluorescent Fe K Emission from High Density Accretion Disks

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  5. Traditional utilization and biochemical composition of six mollusc shells in Nigeria

    Directory of Open Access Journals (Sweden)

    Ademolu Kehinde O.

    2015-06-01

    Full Text Available The shells of molluscs protect them from physical damage, predators and dehydration. We studied various local uses of shells and their biochemical properties in Abeokuta, Nigeria. A standard structured questionnaire about use was applied to 100 snail and herb sellers and shells from 120 adult individuals of Archachatina marginata, Achatina achatina, Achatina fulica, Littorina littorea, Meretrix lusoria and Merceneria mercenaria were evaluated for their mineral components (Ca2+, Fe2+, Mg2+, Na+, Zn+, P+, K+ and proximate composition (crude protein, ash, fibre, crude fat and carbohydrate using standard methods. Properties against fungi and bacteria isolates were also tested. These shells are used for bleaching, brushing, abrasion and others. The weight of the shells varied from 0.5g (L. littorea to 25.00g (A. marginata and thickness from 0.46mm in M .lusoria to 5.35mm in M. mercenaria. We found no inhibitory effect against fungi and bacterial isolates. The molluscs are high in carbohydrates (83.54-92.76g/100g and low in protein (0.16-0.38g/100g. The fat content ranged between 0.42g/100g and 0.82g/100g, and ash between 2.14g/100g and 9.45g/100g. Ca2+ was the most abundant (10.25-96.35mg/g while K+ was the least abundant (0.3-0.7mg/g (p<0.05. Active ingredients of these shells can be used in the feed and construction industries.

  6. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  7. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    International Nuclear Information System (INIS)

    Goya, G.F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M.R.

    2007-01-01

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ ' '(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3 O 4 nanoparticles, whereas a second Fe 3 O 4 -based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles

  8. PRODUCTION, DIELECTRIC PROPERTY AND MICROWAVE ABSORPTION PROPERTY OF SiC(Fe SOLID SOLUTION POWDER BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    XIAOLEI SU

    2014-03-01

    Full Text Available SiC(Fe solid solution powders were synthesized by sol–gel method under different reaction time, using methyltriethoxysilane as the silicon and carbon source and analytic ferric chloride as the dopant, respectively. The synthesized powders have been characterized by XRD, SEM and Raman spectra. Results show that the lattice constant decreases with increasing reaction time. The electric permittivities of SiC samples were determined in the frequency range of 8.2 ~ 12.4 GHz. Results show that the permittivity of SiC decreases with increasing reaction time. The SiC(Fe solid solution powder with reaction time of 4 h with 2 mm thickness exhibit the best microwave absorption property in X-band range (8.2 - 12.4 GHz. The microwave absorption mechanism has been discussed.

  9. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  10. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper)

    KAUST Repository

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan

    2016-01-01

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300 °C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300 °C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents.

  11. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper)

    KAUST Repository

    Chubar, Natalia

    2016-12-07

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300 °C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300 °C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents.

  12. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination

    International Nuclear Information System (INIS)

    Pourreza, Nahid; Hoveizavi, Reza

    2005-01-01

    A simultaneous preconcentration method was developed for determination of trace amounts of Cu, Fe and Pb by atomic absorption spectrometry. The method is based on the retention of their methylthymol blue complexes by naphthalene methyltrioctyl ammonium chloride adsorbent in a column. The adsorbed metal complexes were eluted from the column with nitric acid and Cu, Fe and Pb were determined by flame atomic absorption spectrometry. Several parameters such as pH of the sample solution, ligand concentration, volume of the sample and the amount of methyltrioctyl ammonium chloride loaded on naphthalene were evaluated. The effect of diverse ions on the preconcentration was also investigated. A preconcentration factor of up to 100 or more can easily be achieved depending on the volume of the sample taken. The calibration graphs were obtained in the range of 5-40, 10-100 and 10-200 ng ml -1 for Cu, Fe and Pb in the initial solution, respectively, when using 500 ml of the solution. The detection limit based on three standard deviations of the blank was 0.54, 3.1, and 4.5 ng ml -1 for Cu, Fe and Pb, respectively. The relative standard deviations (R.S.D.) of 0.62-1.4% for Cu, 1.9-3.4% for Fe and 1.0-2.2% for Pb were obtained. The method was applied to the determination of Cu, Fe and Pb in river and wastewater samples

  13. The methane absorption spectrum near 1.73 μm (5695-5850 cm-1): Empirical line lists at 80 K and 296 K and rovibrational assignments

    Science.gov (United States)

    Ghysels, M.; Mondelain, D.; Kassi, S.; Nikitin, A. V.; Rey, M.; Campargue, A.

    2018-07-01

    The methane absorption spectrum is studied at 297 K and 80 K in the center of the Tetradecad between 5695 and 5850 cm-1. The spectra are recorded by differential absorption spectroscopy (DAS) with a noise equivalent absorption of about αmin≈ 1.5 × 10-7 cm-1. Two empirical line lists are constructed including about 4000 and 2300 lines at 297 K and 80 K, respectively. Lines due to 13CH4 present in natural abundance were identified by comparison with a spectrum of pure 13CH4 recorded in the same temperature conditions. About 1700 empirical values of the lower state energy level, Eemp, were derived from the ratios of the line intensities at 80 K and 296 K. They provide accurate temperature dependence for most of the absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values is illustrated by the clear propensity of the corresponding lower state rotational quantum number, Jemp, to be close to integer values. Using an effective Hamiltonian model derived from a previously published ab initio potential energy surface, about 2060 lines are rovibrationnally assigned, adding about 1660 new assignments to those provided in the HITRAN database for 12CH4 in the region.

  14. History and future perspectives of the Monte Carlo shell model -from Alphleet to K computer-

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Otsuka, Takaharu; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio; Abe, Takashi

    2013-01-01

    We report a history of the developments of the Monte Carlo shell model (MCSM). The MCSM was proposed in order to perform large-scale shell-model calculations which direct diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel computation of the MCSM. Since 2011 we participated the High Performance Computing Infrastructure Strategic Program and developed a new MCSM code for current massively parallel computers such as K computer. We discuss future perspectives concerning a new framework and parallel computation of the MCSM by incorporating conjugate gradient method and energy-variance extrapolation

  15. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    Science.gov (United States)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  16. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Itai, Takaaki; Takahashi, Yoshio; Uruga, Tomoya; Tanida, Hajime; Iida, Atsuo

    2008-01-01

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO 2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 μm 2 ) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction

  17. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uruga, Tomoya; Tanida, Hajime [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Iida, Atsuo [Photon Factory, National Laboratory for High Energy Physics, O-ho, Tsukuba, Ibaraki 305 (Japan)

    2008-09-15

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-{mu}m scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO{sub 2} and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 {mu}m{sup 2}) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-{mu}m scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.

  18. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    Science.gov (United States)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  19. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  20. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang, E-mail: polymerzf@swun.cn; Luo, Jianbin; Liu, Dong

    2016-08-15

    Graphical abstract: An efficient hydrothermal method was used to fabricate the superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2(*)+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures through a seed-growth procedure. Then using PEG phosphate ligand to displace oleate from the as-synthesized NPs, hydrophilic Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs with good water solubility are obtained. - Highlights: • Homogeneous size distribution of magnetic-upconversion core@shell structured nanoparticles (NPs) were synthesized. • The core@shell nanostructures were obtained by seed-growth method. • The oleic acid coated Fe{sub 3}O{sub 4} NPs were used as seeds and cores. • The magnetic-upconversion NPs emitted red luminescence under a 980 nm laser. • Synthesized magnetic-upconversion NPs were phase transferred using ligand exchange process. - Abstract: We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe{sub 3}O{sub 4} (OA-Fe{sub 3}O{sub 4}) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe{sub 3}O{sub 4} NPs were then used as seeds, on which the red upconversion luminescent shell (Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe{sub 3}O{sub 4} cores were uniformly coated with a Mn{sup 2+}-doped NaYF{sub 4}:Yb

  1. Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study.

    Science.gov (United States)

    Pinakidou, F; Katsikini, M; Paloura, E C; Simeonidis, K; Mitraka, E; Mitrakas, M

    2016-09-01

    The implementation of amorphous tetravalent manganese feroxyhyte (TMFx) nanoparticles, prepared via co-precipitation synthesis, as an efficient As(V)-removal material is investigated using X-ray absorption fine structure (XAFS) spectroscopy at the Fe-, Mn- and As-K-edges. The optimum synthesis conditions and chemical composition of the TMFx adsorbent were determined by the degree of polymerization in the adsorbents' microstructure. Under synthesis into mildly acidic conditions, the change in the polymerization of the metal-oxyhydroxyl chains (metal=Fe, Mn) provides more adsorption sites at edges and corner sites in the bonding environment of Fe and Mn, respectively, thereby enhancing As uptake. After exposure to As-polluted water, similar microstructural changes related to As-bidentate and monodentate geometries are generated: As(V) preferentially occupies the high energy adsorption sites ((2)C complexes) available in the Mn-oxyhydroxyl groups and the low energy edge sites offered by Fe ((2)E complexes). It is revealed that optimum arsenic-removal by TMFx occurs into mildly acidic synthesis pH and for iron to manganese molar ratio equal to 3. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Core–shell Fe3O4–Au magnetic nanoparticles based nonenzymatic ultrasensitive electrochemiluminescence immunosensor using quantum dots functionalized graphene sheet as labels

    International Nuclear Information System (INIS)

    Liu, Weiyan; Zhang, Yan; Ge, Shenguang; Song, Xianrang; Huang, Jiadong; Yan, Mei; Yu, Jinghua

    2013-01-01

    Graphical abstract: Core–shell Fe 3 O 4 –Au magnetic nanoparticles and P-GS@QDs were prepared to immobilize Ab 1 and Ab 2 respectively and combined to fabricate a novel sandwich-type ECL immunosensor for detecting CA125 at low concentration. Highlights: ► ECL immunosensor for CA125 based on a microfluidic strategy with a homemade ECL cell was proposed. ► Core–shell Fe 3 O 4 –Au magnetic nanoparticles were employed as the carriers of the primary antibodies. ► CdTe quantum dots functionalized graphene sheet were used for signal amplification. -- Abstract: In this paper, a novel, low-cost electrochemiluminescence (ECL) immunosensor using core–shell Fe 3 O 4 –Au magnetic nanoparticles (AuMNPs) as the carriers of the primary antibody of carbohydrate antigen 125 (CA125) was designed. Graphene sheet (GS) with property of good conductivity and large surface area was a captivating candidate to amplify ECL signal. We successively synthesized functionalized GS by loading large amounts of quantum dots (QDs) onto the poly (diallyldimethyl-ammonium chloride) (PDDA) coated graphene sheet (P-GS@QDs) via self-assembly electrostatic reactions, which were used to label secondary antibodies. The ECL immunosensors coupled with a microfluidic strategy exhibited a wide detection range (0.005–50 U mL −1 ) and a low detection limit (1.2 mU mL −1 ) with the help of an external magnetic field to gather immunosensors. The method was evaluated with clinical serum sample, receiving good correlation with results from commercially available analytical procedure

  3. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Neutron transfer reactions in the fp-shell region

    International Nuclear Information System (INIS)

    Mahgoub, Mahmoud

    2008-01-01

    Neutron transfer reactions were used to study the stability of the magic number N=28 near 56 Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in 55 Fe. On the other hand we investigated the two-neutron transfer mechanism into 56 Ni using the pickup reaction 58 Ni(vectorp,t) 56 Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t( 40 Ar,p) 42 Ar and d( 54 Fe,p) 55 Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction (vectord,p) on 54 Fe the 1f 7/2 shell in the ground state configuration was found to be partly broken. The instability of the 1f 7/2 shell and the magic number N=28 was confirmed once by observing a number of levels with J π = 7/2 - at low excitation energies, which should not be populated if 54 Fe has a closed 1f 7/2 shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f 7/2 shell show better agreement with the experiment. The instability of the 1f 7/2 shell was confirmed also by performing the two-neutron pick-up reaction (vectorp,t) on 58 Ni to study 56 Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f 7/2 as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies (∝ 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of 54 Fe ions and a deuteron target. From this inverse kinematics experiment we were able to reproduce the absolute cross-section and angular

  5. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Myhre, Rolf H.; Cryan, J. P.

    2017-01-01

    -edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ...

  6. Microwave absorption measurements in the complex perovskite Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}: Detection of short-range orderly regions

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G., E-mail: memodin@yahoo.com [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico); Montiel, H. [Departamento de Tecnociencias, Centro de Ciencias Aplicadas y Desarrollo Tecnologico de la Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Mexico DF 04510 (Mexico); Castellanos, M.A. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Mexico DF 04510 (Mexico); Heiras, J. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km. 107, Carretera Tijuana Ensenada, Ensenada, Baja California 22860 (Mexico); Zamorano, R. [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico)

    2011-10-17

    Highlights: {yields} LFMA spectra showed straight lines with positive slope and non-hysteretic traces. {yields} The spectral changes for the plot of the slope vs. temperature give evidence of the formation of iron clusters. {yields} These small orderly regions of iron ions generate short-range magnetic correlations, and that they produce changes in dynamics of microwave absorption. - Abstract: An electron paramagnetic resonance (EPR) study of the complex perovskite Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3} (PFT) at X-band (8.8-9.8 GHz) is presented. The EPR spectra show a single broad line in the 300-480 K temperature range, attributable to Fe{sup 3+} (S = 5/2) ions. The temperature dependence of the EPR parameters: the peak-to-peak linewidth ({Delta}H{sub pp}), the resonance field (H{sub res}) and the integrated intensity (I{sub EPR}), suggests the existence of short-range magnetic correlations; which are associated with the presence of small orderly regions of iron ions in B-sites of the perovskites-type structure, and that they give origin to formation of iron clusters. Low-field microwave absorption (LFMA) is used to give further knowledge on this material; where this technique also gives evidence of these short-range orderly regions.

  7. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    Science.gov (United States)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  8. Chemical shift of Mn and Cr K-edges in X-ray absorption

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation. D Joseph A K Yadav S N Jha D Bhattacharyya. Volume 36 Issue 6 November 2013 pp ...

  9. Measurement of integral cross-sections of incoherent interactions of photons with K-shell electrons

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics. Nuclear Science Labs.

    1981-06-01

    Integral cross-sections of incoherent interactions of 145, 279, 662 and 1250 keV gamma-rays with K-shell electrons of thirty-one different elements with 26 <= Z <= 92 have been measured. The results are interpreted in terms of the photoelectric and Compton interactions and are found to agree with theory.

  10. Fe-K LINE PROBING OF MATERIAL AROUND THE ACTIVE GALACTIC NUCLEUS CENTRAL ENGINE WITH SUZAKU

    International Nuclear Information System (INIS)

    Fukazawa, Yasushi; Hiragi, Kazuyoshi; Mizuno, Motohiro; Nishino, Sho; Hayashi, Katsuhiro; Yamasaki, Tomonori; Shirai, Hirohisa; Takahashi, Hiromitsu; Ohno, Masanori

    2011-01-01

    We systematically analyzed the high-quality Suzaku data of 88 Seyfert galaxies, about 31% of which are Compton-thick active galactic nuclei (AGNs). We obtained a clear relation between the absorption column density and the equivalent width (EW) of the 6.4 keV line above 10 23 cm -2 , suggesting a wide-ranging column density of 10 23 -10 24.5 cm -2 with a similar solid and an Fe abundance of 0.7-1.3 solar for Seyfert 2 galaxies. The EWs of the 6.4 keV line for Seyfert 1 galaxies are typically 40-120 eV, suggesting the existence of Compton-thick matter like the torus with a column density of >10 23 cm -2 and a solid angle of (0.15-0.4) x 4π, and no difference of neutral matter is visible between Seyfert 1 and 2 galaxies. An absorber with a lower column density of 10 21 -10 23 cm -2 for Compton-thin Seyfert 2 galaxies is suggested to be not a torus but an interstellar medium. These constraints can be understood by the fact that the 6.4 keV line intensity ratio against the 10-50 keV flux is almost identical within a range of 2-3 in many Seyfert galaxies. Interestingly, objects exist with a low EW, 10-30 eV, of the 6.4 keV line, suggesting that those torus subtends only a small solid angle of H >10 23 cm -2 indicates that the column density of the ionized material also increases together with that of the cold material. It is found that these features seem to change for brighter objects with more than several 10 44 erg s -1 such that the Fe-K line features become weak. This extends the previously known X-ray Baldwin effect on the neutral Fe-Kα line to ionized emission or absorption lines. The luminosity dependence of these properties, regardless of the scatter of black hole mass by two orders of magnitudes, indicates that the ionized material is associated with the structure of the parent galaxy rather than the outflow from the nucleus.

  11. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  12. Coupled channel calculations of K-shell ionization in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Greiner, W.; Soff, G.

    1986-07-01

    We report theoretical results on K-shell ionization for a variety of asymmetric collision systems. The calculated ionization rates are compared with experimental data. The coupled channel formalism underlying these calculations is presented. It is based on a set of relativistic target centred states, taking a screened potential of Dirac-Fock-Slater type into account. We discuss the effects of different matrix elements, e.g. continuum-continuum couplings. The binding effect is inherently contained in our approach and described in a dynamical way. (orig.)

  13. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  14. Growth, structure and magnetic properties of single crystalline Fe/CoO/Ag(001) bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Abrudan, R.M.

    2007-07-16

    The structural and magnetic properties of epitaxially deposited single-crystalline CoO layers and Fe/CoO bilayers on Ag(001) were investigated. CoO films on Ag(001) exhibit (1 x 1) Low Energy Electron Diffraction (LEED) patterns similar to the clean Ag(001) substrate. The vertical interlayer spacing of the CoO films, deduced from a kinematic analysis of LEED I(E) curves, is a {sub perpendicular} {sub to} /2=2.17 Aa, slightly expanded along the film normal. Scanning Tunneling Microscopy (STM) show a big improvement in the surface roughness after annealing the CoO films at 750 K in oxygen atmosphere. Magnetic measurements using the magneto-optical Kerr effect (MOKE) show a characteristic increase of the coercive field when the Fe/CoO bilayer system is cooled down from room temperature to 150 K. The ordering temperature for the antiferromagnetic layer is in the same range as the Neel temperature for bulk CoO (T{sub N}=290 K). X-ray absorption spectroscopy was employed to probe magnetic and electronic properties with elemental selectivity. Absorption spectra taken from bilayers with different amounts of deposited Fe show only a weak indication for the formation of Fe oxide at the Fe/CoO interface (0.3 ML Fe). From the spectral shape it is concluded that an FeO type of oxide is formed. X-ray Magnetic Circular Dichroism (XMCD) measurements exhibit a sizeable induced ferromagnetic signal at the Co L{sub 2,3} absorption edge, corresponding to an interface layer of 1.1 ML in which the magnetic spins couple with the Fe layer. The angular dependence of the X-ray Magnetic Linear Dichroism (XMLD) and X-ray Magnetic Circular Dichroism XMCD at both the Co and Fe L{sub 2,3} edges shows the orientation of the Co and Fe moments in the bilayers with respect to the crystallographic direction. PhotoElectron Emission Microscope (PEEM) is used to image each ferromagnetic and antiferromagnetic layer separately. Magnetic contrast due to the induced magnetic spins at the interface is also

  15. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    Science.gov (United States)

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The role of the final state interaction in the ionization of the K- shell during the β-decay of nuclei

    International Nuclear Information System (INIS)

    Drukarev, E.G.; Trzhaskovskaya, M.B.

    1989-01-01

    We have calculated the contribution of the final state interaction to the ionization of the K-shell during the β - and β + decays. The contributions to the spectra of the β particles and to the total probability of the K shell ionization are obtained. The disagreement between the calculated values and the experimental data for the latter is shown to diminish strongly. The influence of the secondary electrons on the distribution is also determined. 27 refs.; 2 figs.; 2 tabs

  17. Absorption of nutrients in the MNF-80 potato crop

    International Nuclear Information System (INIS)

    Cabalceta, Gilberto; Alvarado, Alfredo; Saldias, Miren

    2005-01-01

    Absorption curves of nutrients of MNF-80 potato variety cycle were determined at the Irazu (3000 masl) and Juan Vinas (1500 masl) sites, planted on Andisols of medium fertility status. Tissue samples were taken every 15 days after planting; separated into aerial biomass, tuber and root, to estimate dry weight and nutrient contents. At Juan Vinas the crop matured after 80-90 days, contrasting with 135 days at Irazu, due to temperature, total radiation, and growth rate reductions at the higher elevation. Higher amounts of absorbed K and N in both farms (>100 kg ha -1 ) were followed by smaller amounts of P, Ca, Mg y S (8-20 kg ha -1 ). At the Irazu site, the potato yielded 36 t ha -1 , and absorbed 110, 15, 166, 12, 10 and 11 kg ha -1 on N, P, K, Ca, Mg and S, respectively. Also, 904, 68, 162, 317 and 42 g ha -1 of Fe, Cu, Zn, Mn and B, respectively. At the Juan Vinas site, the potato yielded 28 t ha -1 , and absorbed 133, 8, 173, 22, 10 and 10 Kg ha -1 of N, P, K, Ca, Mg and S, respectively. Also, 1097, 68, 181, 651 and 84 g ha -1 of Fe, Cu, Zn, Mn and B, respectively. At the Irazu site most of N, P, K, Ca, Mg and S were absorbed up to 60 days after planting, and except for Ca, the other elements showed a second peak of absorption at the end of the crop cycle. At the Juan Vinas site only one peak of absorption was observed up to 45 days after planting. (author) [es

  18. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  19. Studies of fluorescence and Auger decay following inner-shell photoionization

    International Nuclear Information System (INIS)

    Levin, J.C.; Armen, G.B.

    2004-01-01

    Near inner-shell absorption edges, Auger and fluorescence spectra which characterize the first step of a complex cascade process exhibit properties which are well described by radiationless and radiative resonant Raman scattering theory. We present comparisons of our recent data and theory for Auger decay of argon K vacancies, xenon L vacancies, and of fluorescence decay of xenon L vacancies. A theoretical unification of Auger decay and fluorescence decay is presented which clarifies the similarities and differences between the two processes

  20. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  1. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  2. Hydrogen kinetics studies of MgH2-FeTi composites

    Science.gov (United States)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  3. Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory

    International Nuclear Information System (INIS)

    Bolognesi, P.; O'Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K. C.; Zhang, W.; Carravetta, V.

    2010-01-01

    The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.

  4. Isomeric island in the vicinity of 66Fe

    International Nuclear Information System (INIS)

    Daugas, J. M.; Belier, G.; Girod, M.; Goutte, H.; Meot, V.; Perru, O.; Roig, O.; Sauvestre, J. E.; Sawicka, M.; Pfuetzner, M.; Zylicz, J.; Matea, I.; Giovinazzo, J.; Grawe, H.; Becker, F.; Mayet, P.; Grzywacz, R.; Achouri, N. L.; Angelique, J. C.; Baiborodin, D.

    2006-01-01

    An island of isomers have recently been observed on both sides of the N=40 shell below the Ni isotopes. Isomeric states in the 65Fe and 67Fe allow the knowledge of the single particle structure around the νg9/2 shell. Moreover, the excitation energy of the first 2+ and 4+ states in the 68Fe have been established by β-γ correlation. The evolution of the structure of the Fe isotopes going far away from the valley of stability is, for the first time, given for N>40

  5. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications

    International Nuclear Information System (INIS)

    Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Phadatare, M.R.; Pawar, S.H.

    2013-01-01

    The structural, magnetic and ac magnetically induced heating characteristics of combustion synthesized MgFe 2 O 4 nanoparticles have been investigated for application in magnetic particle hyperthermia. As prepared nanoparticles showed ferrimagnetic behavior at room temperature with magnetization of about 33.83 emu/g at ±15 kOe. The solid state MgFe 2 O 4 nanoparticles exhibited specific absorption rate (SAR) of about 297 W/g at physiological safe range of frequency and amplitude. The increase in SAR and heating temperature in ac magnetic field was thought to be due to enhancement in magnetic hysteresis loss caused by dipole–dipole interactions in combustion synthesized MgFe 2 O 4 nanoparticles. - Highlights: ► Highly crystalline pure MgFe 2 O 4 nanoparticles were synthesized by low temperature combustion. ► Effect of ac magnetic field and nanoparticles concentration on heating characteristics of MgFe 2 O 4 nanoparticles was studied. ► Combustion synthesized MgFe 2 O 4 nanoparticles show highest specific absorption rate of 297 Wg −1 . ► The reported high value of specific absorption rate is advantageous for its use in magnetic particle hyperthermia

  6. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    Science.gov (United States)

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  7. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  8. Synthesis and electrochemical properties of Fe{sub 3}O{sub 4}@MOF core-shell microspheres as an anode for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuemin; Gao, Ge [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yan, Dongwei, E-mail: dwyan@iccas.ac.cn [Advance Technology & Materials Co. Ltd., China Iron & Steel Research Institute Group, No. 76 Xueyuan Nanlu, Haidian District, Beijing 100081 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2017-05-31

    Highlights: • Fe{sub 3}O{sub 4} particles are encapsulated by HKUST-1 to form core-shell microspheres composite. • The composite exhibits outstanding electrochemical performances as a novel anode. • The typical approach can be used to prepare some novel electrode materials. - Abstract: The Fe{sub 3}O{sub 4}@MOF composite with a microspheric core and a porous metal-organic framework (MOF HKUST-1) shell has been successfully synthesized utilizing a versatile Layer-by-Layer (LBL) assembly method. The structure was identified by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The Fe{sub 3}O{sub 4}@MOF composite exhibited outstanding electrochemical properties when it was used as an anode material for lithium ion batteries (LIBs). After 100 discharge-charge cycles at a current density of 100 mA g{sup −1}, the reversible capacity of Fe{sub 3}O{sub 4}@MOF could maintain ∼1002 mAh g{sup −1}, which was much higher than that of the bare Fe{sub 3}O{sub 4} counterpart (696 mAh g{sup −1}). Moreover, load the current density as high as 2 A g{sup −1} (after 70 cycles at the current density step increased from 0.1 to 2 A g{sup −1}), it still delivered a reversible capacity of ∼429 mAh g{sup −1}. The results demonstrate that the cycling stability of Fe{sub 3}O{sub 4} as an anode could be significantly improved by coating Cu{sub 3}(1,3,5-benzenetricarboxylate){sub 2} (HKUST-1). This strategy may offer new route to prepare other composite materials using different particles and suitable Metal-organic frameworks (MOFs) for LIBs application.

  9. Ligand-field symmetry effects in Fe(ii) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Gullikson, Eric M.; Kim, Tae Kyu; de Groot, Frank M. F.; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-01-01

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  10. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  11. Facile Preparation, Characterization, and Highly Effective Microwave Absorption Performance of CNTs/Fe3O4/PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deqing Zhang

    2013-01-01

    Full Text Available A facile method has been developed to synthesize light-weight CNTs/Fe3O4/PANI nanocomposites. The formation route was proposed as the coprecipitation of Fe2+ and Fe3+ and an additional process of in situ polymerization of aniline monomer. The structure and morphology of CNTs/Fe3O4/PANI were characterized by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared (FTIR spectroscopy. The TEM investigation shows that the CNTs/Fe3O4/PANI nanocomposites exhibit less intertwined structure and that many more Fe3O4 particles are attached homogeneously on the surface of CNTs, indicating that PANI can indeed help CNTs to disperse in isolated form. The wave-absorbing properties were investigated in a frequency of 2–18 GHz. The results show that the CNTs/Fe3O4/PANI nanocomposites exhibit a super absorbing behavior and possess a maximum reflection loss of −48 dB at 12.9 GHz, and the bandwidth below −20 dB is more than 5 GHz. More importantly, the absorption peak frequency ranges of the CNTs/Fe3O4/PANI composites can be tuned easily by changing the wax weight ratio and thickness of CNTs/Fe3O4/PANI paraffin wax matrix.

  12. Electrochemical and spectroscopie behaviour of iron in the molten NaCl-K2SO4 mixture

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petruchina, Irina; Volkov, S.V.

    1996-01-01

    The chemical and electrochemical dissolving of Armco iron in the NaCl-K2SO4 melt has been studied. In the case of the chemical dissolution, a sample becomes coated, as time goes on, with a dense film consisting of FeO, FeS and Fe3O4; precipitation in the melt is observed, the precipitate consisting...... not detect Fe(III) by electronic absorption spectra, possibly due to the superimposition of the charge transfer bands edge on low-intensity Fe(III) bands of the 5d electronic configuration. The solubility of Fe2O3 in the NaCl-K2SO4 melt is low and was determined to 2 x 10(-3) wt%....

  13. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...... of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core–shell structured Au–Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core......–shell Au–Pd promoters containing one ML equivalent Pd provide the optimum reactivity....

  14. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    Science.gov (United States)

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  15. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    International Nuclear Information System (INIS)

    Kaur, Maninder; Qiang, You; Dai, Qilin; Tang, Jinke; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr ( 2 O 3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs

  16. Superconductivity at 43K in SmFeAsO1-xFx

    Science.gov (United States)

    Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.

    2008-06-01

    Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26K in the iron-based LaO1-xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43K. This provides a new material base for studying the origin of high-temperature superconductivity.

  17. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  18. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    1999-01-01

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined

  19. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang

    2018-02-13

    Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.

  20. A Highly Stable and Magnetically Recyclable Nanocatalyst System: Mesoporous Silica Spheres Embedded with FeCo/Graphitic Shell Magnetic Nanoparticles and Pt Nanocatalysts.

    Science.gov (United States)

    Kim, Da Jeong; Li, Yan; Kim, Yun Jin; Hur, Nam Hwi; Seo, Won Seok

    2015-12-01

    We have developed a highly stable and magnetically recyclable nanocatalyst system for alkene hydrogenation. The materials are composed of mesoporous silica spheres (MSS) embedded with FeCo/graphitic shell (FeCo/GC) magnetic nanoparticles and Pt nanocatalysts (Pt-FeCo/GC@MSS). The Pt-FeCo/GC@MSS have superparamagnetism at room temperature and show type IV isotherm typical for mesoporous silica, thereby ensuring a large enough inner space (surface area of 235.3 m(2)  g(-1), pore volume of 0.165 cm(3)  g(-1), and pore diameter of 2.8 nm) to undergo catalytic reactions. We have shown that the Pt-FeCo/GC@MSS system readily converts cyclohexene into cyclohexane, which is the only product isolated and Pt-FeCo/GC@MSS can be seperated very quickly by an external magnetic field after the catalytic reaction is finished. We have demonstrated that the recycled Pt-FeCo/GC@MSS can be reused further for the same hydrogenation reaction at least four times without loss in the initial catalytic activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.