WorldWideScience

Sample records for fe isotope analysis

  1. The importance of a Ni correction with ion counter in the double spike analysis of Fe isotope compositions using a 57Fe/58Fe double spike

    Science.gov (United States)

    Finlayson, V. A.; Konter, J. G.; Ma, L.

    2015-12-01

    We present a new method capable of measuring iron isotope ratios of igneous materials to high precision by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) using a 57Fe-58Fe double spike. After sample purification, near-baseline signal levels of nickel are still present in the sample solution, acting as an isobaric interference on 58 amu. To correct for the interference, the minor 60Ni isotope is monitored and used to subtract a proportional 58Ni signal from the total 58 amu beam. The 60Ni signal is difficult to precisely measure on the Faraday detector due to Johnson noise occurring at similar magnitude. This noise-dominated signal is subtracted from the total 58 amu beam, and its error amplified during the double spike correction. Placing the 60Ni beam on an ion counter produces a more precise measurement, resulting in a near-threefold improvement in δ56Fe reproducibility, from ±0.145‰ when measured on Faraday to 0.052‰. Faraday detectors quantify the 60Ni signal poorly, and fail to discern the transient 20Ne40Ar interference visible on the ion counter, which is likely responsible for poor reproducibility. Another consideration is instrumental stability (defined herein as drift in peak center mass), which affects high-resolution analyses. Analyses experiencing large drift relative to bracketing standards often yield nonreplicating data. Based on this, we present a quantitative outlier detection method capable of detecting drift-affected data. After outlier rejection, long-term precision on individual runs of our secondary standard improves to ±0.046‰. Averaging 3-4 analyses further improves precision to 0.019‰, allowing distinction between ultramafic minerals.

  2. Modeling Equilibrium Fe Isotope Fractionation in Fe-Organic Complexes: Implications for the use of Fe Isotopes as a Biomarker and Trends Based on the Properties of Bound Ligands

    Science.gov (United States)

    Domagal-Goldman, S.; Kubicki, J. D.

    2006-05-01

    future analysis of Fe isotope fractionation. Future directions in the theoretical study of metal isotope fractionations will also be discussed, including the modeling of reactions on mineral surfaces.

  3. Preservation of Fe Isotope Proxies in the Rock Record

    Science.gov (United States)

    Johnson, C.; Beard, B.; Valley, J.; Valaas, E.

    2005-12-01

    Iron isotope variations provide powerful constraints on redox conditions and pathways involved during biogeochemical cycling of Fe in surface and near-surface environments. The relative isotopic homogeneity of igneous rocks and most bulk weathering products contrasts with the significant isotopic variations (4 per mil in 56Fe/54Fe) that accompany oxidation of Fe(II)aq, precipitation of sulfides, and reduction by bacteria. These isotopic variations often reflect intrinsic (equilibrium) Fe isotope fractionations between minerals and aqueous species whose interactions may be directly or indirectly catalyzed by bacteria. In addition, Fe isotope exchange may be limited between reactive Fe pools in low-temperature aqueous-sediment environments, fundamentally reflecting disequilibrium effects. In the absence of significant sulfide, dissimilatory Fe(III) reduction by bacteria produces relatively low 56Fe/54Fe ratios for Fe(II)aq and associated biogenic minerals such as magnetite and siderite. In contrast, Fe(II)aq that exchanges with Fe sulfides (FeS and pyrite) is relatively enriched in 56Fe/54Fe ratios. In modern and ancient environments, anoxic diagenesis tends to produce products that have low 56Fe/54Fe ratios, whereas oxidation of Fe(II)aq from hydrothermal sources tends to produce ferric Fe products that have high 56Fe/54Fe ratios. Redox cycling by bacteria tends to produce reactive ferric Fe reservoirs that have low 56Fe/54Fe ratios. Application of Fe isotopes as a proxy for redox conditions in the ancient rock record depends upon the preservation potential during metamorphism, given the fact that most Archean sedimentary sequences have been subjected to regional greenschist- to granulite-facies metamorphism. The 1.9 Ga banded iron formations (BIFs) of the Lake Superior region that are intruded by large ~1 Ga intrusions (e.g., Duluth gabbro) provide a test of the preservation potential for primary, low-temperature Fe isotope variations in sedimentary rocks. 56Fe/54

  4. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    Science.gov (United States)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  5. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  6. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    Science.gov (United States)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  7. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  8. Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Mi [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Boyle, Edward A., E-mail: eaboyle@mit.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Echegoyen-Sanz, Yolanda; Fitzsimmons, Jessica N. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Zhang Ruifeng [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Kayser, Richard A. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-07

    A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow chelating resin beads (100-2400 beads depending on the element). Metals are released into 0.1-0.5 M HNO{sub 3}, and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH){sub 2} coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample-resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM-nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.

  9. Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lee, Jong-Mi; Boyle, Edward A.; Echegoyen-Sanz, Yolanda; Fitzsimmons, Jessica N.; Zhang Ruifeng; Kayser, Richard A.

    2011-01-01

    A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow chelating resin beads (100-2400 beads depending on the element). Metals are released into 0.1-0.5 M HNO 3 , and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH) 2 coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample-resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM-nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.

  10. Fe and Cu isotope mass balances in the human body

    Science.gov (United States)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  11. Isotope dilution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fudge, A.

    1978-12-15

    The following aspects of isotope dilution analysis are covered in this report: fundamental aspects of the technique; elements of interest in the nuclear field, choice and standardization of spike nuclide; pre-treatment to achieve isotopic exchange and chemical separation; sensitivity; selectivity; and accuracy.

  12. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted......The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...

  13. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains. Copyright © 2012 Wiley Periodicals, Inc.

  14. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  15. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  16. Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code

    International Nuclear Information System (INIS)

    Vo, D.T.; Sampson, T.E.

    1999-01-01

    FRAM is the acronym for Fixed-Energy Response-Function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type

  17. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  18. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Audí-Miró, Carme, E-mail: carmeaudi@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Cretnik, Stefan [Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany); Torrentó, Clara; Rosell, Mònica [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Shouakar-Stash, Orfan [Department of Earth & Environmental Sciences, 200 University Ave. W, N2L 3G1 Waterloo, Ontario (Canada); Otero, Neus [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Palau, Jordi [Université de Neuchâtel, CHYN - Centre d' Hydrogéologie, Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); and others

    2015-12-15

    Highlights: • {sup 13}C to evaluate natural chlorinated ethenes biodegradation. • {sup 13}C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • {sup 13}C-{sup 37}Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • {sup 13}C-{sup 37}Cl-{sup 2}H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using {sup 13}C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element {sup 13}C-{sup 37}Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using {sup 13}C-{sup 37}Cl-{sup 2}H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the {sup 13}C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element {sup 13}C-{sup 37}Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. {sup 2}H combined with {sup 13}C and {sup 37}Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ{sup 2}H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  19. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Torrentó, Clara; Rosell, Mònica; Shouakar-Stash, Orfan; Otero, Neus; Palau, Jordi

    2015-01-01

    Highlights: • 13 C to evaluate natural chlorinated ethenes biodegradation. • 13 C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • 13 C- 37 Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • 13 C- 37 Cl- 2 H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using 13 C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element 13 C- 37 Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using 13 C- 37 Cl- 2 H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the 13 C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element 13 C- 37 Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. 2 H combined with 13 C and 37 Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ 2 H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  20. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  1. Basic methods of isotope analysis

    International Nuclear Information System (INIS)

    Ochkin, A.V.; Rozenkevich, M.B.

    2000-01-01

    The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru

  2. Stochastic Simulation of Isotopic Exchange Mechanisms for Fe(II)-Catalyzed Recrystallization of Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Piotr [Energy; Institute; Rosso, Kevin M. [Pacific Northwest

    2017-06-15

    Understanding Fe(II)-catalyzed transformations of Fe(III)- (oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014, 48, 11302-11311; Joshi and Gorski Environ. Sci. Technol. 2016, 50, 7315-7324), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ~10-5 Fe nm-2 s-1, commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.

  3. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses

    Science.gov (United States)

    Sio, Corliss Kin I.; Dauphas, Nicolas; Teng, Fang-Zhen; Chaussidon, Marc; Helz, Rosalind T.; Roskosz, Mathieu

    2013-01-01

    Mineral zoning is used in diffusion-based geospeedometry to determine magmatic timescales. Progress in this field has been hampered by the challenge to discern mineral zoning produced by diffusion from concentration gradients inherited from crystal growth. A zoned olivine phenocryst from Kilauea Iki lava lake (Hawaii) was selected for this study to evaluate the potential of Mg and Fe isotopes for distinguishing these two processes. Microdrilling of the phenocryst (∼300 μm drill holes) followed by MC-ICPMS analysis of the powders revealed negatively coupled Mg and Fe isotopic fractionations (δ26Mg from +0.1‰ to −0.2‰ and δ56Fe from −1.2‰ to −0.2‰ from core to rim), which can only be explained by Mg–Fe exchange between melt and olivine. The data can be explained with ratios of diffusivities of Mg and Fe isotopes in olivine scaling as D2/D1 = (m1/m2)β with βMg ∼0.16 and βFe ∼0.27. LA-MC-ICPMS and MC-SIMS Fe isotopic measurements are developed and are demonstrated to yield accurate δ56Fe measurements within precisions of ∼0.2‰ (1 SD) at spatial resolutions of ∼50 μm. δ56Fe and δ26Mg stay constant with Fo# in the rim (late-stage overgrowth), whereas in the core (original phenocryst) δ56Fe steeply trends toward lighter compositions and δ26Mg trends toward heavier compositions with higher Fo#. A plot of δ56Fe vs. Fo# immediately distinguishes growth-controlled from diffusion-controlled zoning in these two regions. The results are consistent with the idea that large isotopic fractionation accompanies chemical diffusion in crystals, whereas fractional crystallization induces little or no isotopic fractionation. The cooling timescale inferred from the chemical-isotope zoning profiles is consistent with the documented cooling history of the lava lake. In the absence of geologic context, in situ stable isotopic measurements may now be used to interpret the nature of mineral zoning. Stable isotope measurements by LA-MC-ICPMS and MC

  4. Isotope analysis in petroleum exploration

    International Nuclear Information System (INIS)

    Rodrigues, R.

    1982-01-01

    The study about isotopic analysis in petroleum exploration performed at Petrobras Research Center is showed. The results of the petroleum recuperation in same Brazilian basin and shelves are comented. (L.H.L.L.) [pt

  5. Iron Isotopic Compositions of Troilite (FeS) Inclusions from Iron Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch [Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2017-10-01

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with those in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.

  6. Measurement of beta decay periods for Fe-Ni neutrons rich isotopes

    International Nuclear Information System (INIS)

    Czajkowski, S.

    1992-01-01

    Thermal fission of 239 Pu was used to produce 68,69 Co and 68 Fe isotopes, the lightest ones ever observed in thermal fission, at the ILL high-flux reactor, in Grenoble. Separated with the Lohengrin recoil spectrometer, then identified by means of a Δ E-E ionization chamber, fragments were implanted in a set of Si-detectors, where β-particles were detected too. The fission yields were determined, and the beta-decay half-lives were extracted from delayed coincidence analysis between ion implantation and the subsequent beta detection: They were found to be 0.27±0.05s, 0.18±0.10s, and 0.10±0.06s respectively for 69 Co, 68 Co, and 68 Fe. This method was adapted to a new experimental configuration: 65 Fe isotopes were produced from 86 Kr projectile fragmentation at 500 MeV/u on a Be target. Selected ions were separated with the fragment separator FRS at GSI (Darmstadt), tuned in the monoenergetic mode. Fragments were identified by ΔE-ToF, slowed down, and then implanted in two rows of PIN-diodes that provided an additional range selection. The half-life were determined from the analysis of the decay chain Fe-Co-Ni: it was found 0.4±0.2s. Production rates obtained with the two methods are compared at the end of this work

  7. Application of Fe Isotopes to the Search for Life and Habitable Planets

    Science.gov (United States)

    Johnson, Clark M.; Beard, Brian L.; Nealson, Kenneth L.

    2001-01-01

    The relatively new field of Fe isotope geochemistry can make important contributions to tracing the geochemical cycling of Fe, which bears on issues such as metabolic processing of Fe, surface redox conditions, and development of planetary atmospheres and biospheres. It appears that Fe isotope fractionation in nature and the lab spans about 4 per mil (%) in Fe-56/Fe-54, and although this range is small, our new analytical methods produce a precision of +/- 0.05% on sample sizes as small as 100 ng (10(exp -7) g); this now provides us with a sufficient "signal-to-noise" ratio to make this isotope system useful. We review our work in three areas: 1) the terrestrial and lunar rock record, 2) experiments on inorganic fractionation, and 3) experiments involving biological processing of Fe. Additional information is contained in the original extended abstract.

  8. Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH

    Science.gov (United States)

    Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.

    2017-12-01

    In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in

  9. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    Science.gov (United States)

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  10. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  11. Calcium Isotope Analysis by Mass Spectrometry

    Science.gov (United States)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  12. Application of stable isotopes and isotope pattern deconvolution-ICPMS to speciation of endogenous and exogenous Fe and Se in rats

    International Nuclear Information System (INIS)

    Gonzalez Iglesias, H.; Fernandez-Sanchez, M.L.; Garcia Alonso, J.I.; Lopez Sastre, J.B.; Sanz-Medel, A.

    2009-01-01

    Full text: Enriched stable isotopes are crucial to study essential trace element metabolism (e.g. Se, Fe) in biological systems. Measuring isotope ratios by ICPMS and using appropriate mathematical calculations, based on isotope pattern deconvolution (IPD) may provide quantitative data about endogenous and exogenous essential or toxic elements and their metabolism. In this work, IPD was applied to explore the feasibility of using two Se (or Fe) enriched stable isotopes, one as metabolic tracer and the other as quantitation tracer, to discriminate between the endogenous and supplemented Se (or Fe) species in rat fluids by collision cell ICPMS coupled to HPLC separation. (author)

  13. Searching for signatures of life on Mars: an Fe-isotope perspective.

    Science.gov (United States)

    Anand, M; Russell, S S; Blackhurst, R L; Grady, M M

    2006-10-29

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.

  14. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  15. Geochronology and Hf–Fe isotopic geochemistry of the Phanerozoic ...

    Indian Academy of Sciences (India)

    As the first magmatic phase, the ∼395 Ma intrusions were mainly derived from ..... Fe-mineralized pyroxenite. 0.03. 0.01. GST-3. Fe-mineralized pyroxenite. 0.17 ..... Damiao area record old Hf model ages of ∼1.5 Ga. ... for his help in the field.

  16. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Central Department for Analytical Chemistry, Research Centre Juelich (Germany)

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar{sup +} and the molecular ions of argon ArX{sup +} (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS (''Platform ICP'', Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio {sup 80}Se/ {sup 40}Ar{sub 2}{sup +} was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios {sup 44}Ca/ {sup 40}Ca and {sup 56}Fe/{sup 57}Fe in 10 {mu}g L{sup -1} solution nebulized by means of a USN and for {sup 78}Se/{sup 80}Se in 100 {mu}g L{sup -1} solution nebulized by means of a Meinhard nebulizer. (orig.)

  17. Accelerator mass spectrometry of 59Ni and Fe isotopes at the Argonne superconducting linac

    International Nuclear Information System (INIS)

    Henning, W.; Kutschera, W.; Myslek-Laurikainen, B.; Pardo, R.C.; Smither, R.K.; Yntema, J.L.

    1981-01-01

    We have obtained initial results in an attempt to use the Argonne tandem-linac system for accelerator mass spectrometry of medium-heavy nuclei. Nuclei of the radioisotope 59 Ni (T/sub 1/2 = 7.5 x 10 5 y) and of the stable isotope 58 Fe at low concentrations have been accelerated and clearly identified. The latter experiment is in preparation of a measurement of the half-life of 60 Fe

  18. Hot rotating fp shell Fe isotopes near proton drip line

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2003-01-01

    F p shell 44-58 Fe nuclei have been investigated in highly excited state using the statistical theory of hot rotating nucleus. Effects of thermal and rotational excitation at drip line nuclei are studied

  19. Mg-Fe Isotope Systems of Mantle Xenoliths: Constrains on the Evolution of Siberian Craton

    Science.gov (United States)

    An, Y.; Kiseeva, E. S.; Sobolev, N. V.; Zhang, Z.

    2017-12-01

    Mantle xenoliths bring to the surface a variety of lithologies (dunites, lherzolites, harzburgites, wehrlites, eclogites, pyroxenites, and websterites) and represent snapshots of the geochemical processes that occur deep within the Earth. Recent improvements in the precision of the MC-ICP-MS measurements have allowed us to expand the amount of data on Mg and Fe isotopes for mantle-derived samples. For instance, to constrain the isotopic composition of the Earth based on the study of spinel and garnet peridotites (An et al., 2017; Teng et al., 2010), to trace the origin and to investigate the isotopic fractionation mechanism during metamorphic process using cratonic or orogenic eclogites (Li et al., 2011; Wang et al., 2012) and to reveal the metasomatism-induced mantle heterogeneity by pyroxenites (Hu et al., 2016). Numerous multi-stage modification events and mantle layering are detected in the subcontinental lithospheric mantle under the Siberian craton (Ashchepkov et al., 2008a; Sobolev et al., 1975, etc). Combined analyses of Mg and Fe isotopic systems could provide new constraints on the formation and evolution of the ancient cratonic mantle. In order to better constrain the magnitude and mechanism of inter-mineral Mg and Fe isotopic fractionations at high temperatures, systematic studies of mantle xenoliths are needed. For example, theoretical calculations and natural samples measurements have shown that large equilibrium Mg isotope fractionations controlled by the difference in coordination number of Mg among minerals could exist (Huang et al., 2013; Li et al., 2011). Thus, the Mg isotope geothermometer could help us trace the evolution history of ancient cratons. In this study we present Mg and Fe isotopic data for whole rocks and separated minerals (clinopyroxene (cpx) and garnet (grt)) from different types of mantle xenoliths (garnet pyroxenites, eclogites, grospydites and garnet peridotites) from a number of kimberlite pipes in Siberian craton (Udachnaya

  20. Constraining Thermal Histories by Monte Carlo Simulation of Mg-Fe Isotopic Profiles in Olivine

    Science.gov (United States)

    Sio, C. K. I.; Dauphas, N.

    2016-12-01

    In thermochronology, random time-temperature (t-T) paths are generated and used as inputs to model fission track data. This random search method is used to identify a range of acceptable thermal histories that can describe the data. We have extended this modeling approach to magmatic systems. This approach utilizes both the chemical and stable isotope profiles measured in crystals as model constraints. Specifically, the isotopic profiles are used to determine the relative contribution of crystal growth vs. diffusion in generating chemical profiles, and to detect changes in melt composition. With this information, tighter constraints can be placed on the thermal evolution of magmatic bodies. We use an olivine phenocryst from the Kilauea Iki lava lake, HI, to demonstrate proof of concept. We treat this sample as one with little geologic context, then compare our modeling results to the known thermal history experienced by that sample. To complete forward modeling, we use MELTS to estimate the boundary condition, initial and quench temperatures. We also assume a simple relationship between crystal growth and cooling rate. Another important parameter is the isotopic effect for diffusion (i.e., the relative diffusivity of the light vs. heavy isotope of an element). The isotopic effects for Mg and Fe diffusion in olivine have been estimated based on natural samples; experiments to better constrain these parameters are underway. We find that 40% of the random t-T paths can be used to fit the Mg-Fe chemical profiles. However, only a few can be used to simultaneously fit the Mg-Fe isotopic profiles. These few t-T paths are close to the independently determined t-T history of the sample. This modeling approach can be further extended other igneous and metamorphic systems where data exist for diffusion rates, crystal growth rates, and isotopic effects for diffusion.

  1. Properties of Fe, Ni and Zn isotope chains near the drip-line

    International Nuclear Information System (INIS)

    Tarasov, V.N.; Tarasov, D.V.; Kuprikov, V.I.; Gridnev, K.A.; Gridnev, D.K.; Gridnev, K.A.; Gridnev, D.K.; Kartavenko, V.G.; Greiner, W.; Kartavenko, V.G.

    2007-01-01

    The location of proton and neutron drip-lines and the characteristics of the neutron-deficient and the neutron-rich isotopes Fe, Ni and Zn on the basis of Hartree-Fock method with Skyrme forces (Ska, SkM * , Sly4) taking into account deformation was investigated. The calculations predict a big jump of deformation parameter up to β ∼ 0.4 for Ni isotopes in the neighborhood of N ∼ 62. The manifestation of magic numbers for isotopes 48 Ni, 56 Ni, 78 Ni and also for the stable isotope in the respect to neutron emission 110 Ni which is situated beyond the neutron drip-line is discussed

  2. Erythrokinetics examination using 59Fe and 51Cr isotopes

    International Nuclear Information System (INIS)

    Mistrik, M.; Klinda, F.; Geso, L.; Lipsic, T.

    1987-01-01

    The results are discussed of 55 case studies of various hematological diseases in which 59 Fe was used as a tracer in studying iron kinetics, simultaneously with 51 Cr as a tracer in studying erythrocyte survival and the localization of erythrocyte destruction. The values of iron metabolism are graphically presented, while erythropoiesis data is tabulated. The method was especially beneficial in conditions that could not easily be diagnosed using laboratory techniques. They included osteomyelofibrosis, polycythemia vera, aplastic anemia, and the myelodysplastic syndrome. The method allows quantitative assessment of erythropoiesis, thus facilitating differential diagnosis in clinical practice. (L.O.). 3 figs., 1 tab., 22 refs

  3. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    Science.gov (United States)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a

  4. Study of self-diffusion of Fe in nanocrystalline FeNZr alloys using nuclear resonance reflectivity from isotopic multilayers

    International Nuclear Information System (INIS)

    Gupta, Ajay; Chakravarty, Sajoy; Gupta, Mukul; Horisberger, M.; Rueffer, Rudolf; Wille, Hans-Christian; Leupold, Olaf

    2005-01-01

    It is demonstrated that nuclear resonance reflectivity from isotopic multilayers can be used to do accurate measurements of self diffusion of iron in thin film samples. Diffusion lengths down to ∼ 1A 0 can be measured. The technique has been used to measure the self-diffusion of iron in FeNZr nanocrystalline alloys. The activation energy for self-diffusion of iron is found to be 0.8% ± 0.01 eV while the pre-exponential factor is 3.54 x 10 13 m 2 /s. (author)

  5. Study on bioavailability of dietary iron of women by using activable isotopic tracer and neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Zhang Yangmei; Ni Bangfa; Tian Weizhi; Wang Pingsheng; Cao Lei

    2002-01-01

    The bioavailability of diet iron of 10 healthy young women in Beijing area is studied by using two enriched isotopes 54 Fe and 58 Fe, and neutron activation analysis techniques. The abundance of 54 Fe and 58 Fe is 61.4% and 23.4%, respectively. In additional, the atomic absorption spectrometry is employed to measure total iron in fecal samples. Dysprosium, rarely absorbed by human body, is used to monitor the residence time of tracer isotopes in order to collect the fecal samples completely. The results show that the bioavailability of dietary iron in young women is (14.9 +- 3.9)%

  6. Properties of Fe, Ni and Zn isotopes near the drip-lines

    International Nuclear Information System (INIS)

    Tarasov, V.N.; Tarasaov, D.V.; Gridnev, K.A.; Gridnev, D.K.; Kartavenko, V.G.; Greiner, W.

    2008-01-01

    The position of the neutron and proton drip-lines as well as properties of the isotopes Fe, Ni and Zn with neutron excess and neutron deficit are studied within the Hartree–Fock approach with the Skyrme interaction (Ska, SkM*, Sly4). The pairing is taken into account on the basis of the BCS approach with the pairing constant G = (19.5/A)[1 ± 0.51(N-Z)/A]. Our calculations predict that for Ni isotopes around N = 62 there appears a sudden increase of the deformation parameter up to β = 0.4. The zone with such big deformation, where Ni isotopes are stable against one neutron emission stretches up to N = 78. The magic numbers effects for the isotopes 48 Ni, 56 Ni, 78 Ni, 110 Ni are discussed. The universality of the reasons standing behind the enhancement of stability of the isotopes 40 O and 110 Ni which are beyond the drip-line is demonstrated. Calculated values of the two-neutron separation energy, and proton and neutron root mean square radii for the chain of Ni isotopes show a good agreement with existing Hartree–Fock–Bogoliubov calculations of these values. (author)

  7. Analysis of barium by isotope mass spectrometry

    International Nuclear Information System (INIS)

    Long Kaiming; Jia Baoting; Liu Xuemei

    2004-01-01

    The isotopic abundance ratios for barium at sub-microgram level are analyzed by thermal surface ionization mass spectrometry (TIMS). Rhenium trips used for sample preparation are firstly treated to eliminate possible barium background interference. During the preparation of barium samples phosphoric acid is added as an emitting and stabilizing reagent. The addition of phosphoric acid increases the collection efficiency and ion current strength and stability for barium. A relative standard deviation of 0.02% for the isotopic abundance ratio of 137 Ba to 138 Ba is achieved when the 138 Ba ion current is (1-3) x 10 -12 A. The experimental results also demonstrate that the isotope fractionation effect is negligibly small in the isotopic analysis of barium

  8. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    Science.gov (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  9. Principles of isotopic analysis by mass spectrometry

    International Nuclear Information System (INIS)

    Herrmann, M.

    1980-01-01

    The use of magnetic sector field mass spectrometers in isotopic analysis, especially for nitrogen gas, is outlined. Two measuring methods are pointed out: the scanning mode for significantly enriched samples and the double collector method for samples near the natural abundance of 15 N. The calculation formulas are derived and advice is given for corrections. (author)

  10. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  11. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits

    Science.gov (United States)

    Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Lundstrom, Craig C.; Gajos, Norbert; Bindeman, Ilya; Barra, Fernando; Munizaga, Rodrigo

    2016-03-01

    Iron oxide-apatite (IOA) ore deposits occur globally and can host millions to billions of tons of Fe in addition to economic reserves of other metals such as rare earth elements, which are critical for the expected growth of technology and renewable energy resources. In this study, we pair the stable Fe and O isotope compositions of magnetite samples from several IOA deposits to constrain the source reservoir of these elements in IOAs. Since magnetite constitutes up to 90 modal% of many IOAs, identifying the source of Fe and O within the magnetite may elucidate high-temperature and/or lower-temperature processes responsible for their formation. Here, we focus on the world-class Los Colorados IOA in the Chilean iron belt (CIB), and present data for magnetite from other Fe oxide deposits in the CIB (El Laco, Mariela). We also report Fe and O isotopic values for other IOA deposits, including Mineville, New York (USA) and the type locale, Kiruna (Sweden). The ranges of Fe isotopic composition (δ56Fe, 56Fe/54Fe relative to IRMM-14) of magnetite from the Chilean deposits are: Los Colorados, δ56Fe (±2σ) = 0.08 ± 0.03‰ to 0.24 ± 0.08‰; El Laco, δ56Fe = 0.20 ± 0.03‰ to 0.53 ± 0.03‰; Mariela, δ56Fe = 0.13 ± 0.03‰. The O isotopic composition (δ18O, 18O/16O relative to VSMOW) of the same Chilean magnetite samples are: Los Colorados, δ18O (±2σ) = 1.92 ± 0.08‰ to 3.17 ± 0.03‰; El Laco, δ18O = 4.00 ± 0.10‰ to 4.34 ± 0.10‰; Mariela, δ18O = (1.48 ± 0.04‰). The δ18O and δ56Fe values for Kiruna magnetite yield an average of 1.76 ± 0.25‰ and 0.16 ± 0.07‰, respectively. The Fe and O isotope data from the Chilean IOAs fit unequivocally within the range of magnetite formed by high-temperature magmatic or magmatic-hydrothermal processes (i.e., δ56Fe 0.06-0.49‰ and δ18O = 1.0-4.5‰), consistent with a high-temperature origin for Chilean IOA deposits. Additionally, minimum formation temperatures calculated by using the measured Δ18O

  12. Extreme Hf and light Fe isotopes in Archean komatiites - a remnant of very early mantle depletion?

    Science.gov (United States)

    Nebel, O.; Sossi, P.; Campbell, I. H.; Van Kranendonk, M. J.

    2014-12-01

    Hafnium isotope signatures in some Archean komatiites (ca. 3.5-3.0 billion years old) require a mantle source with a time-integrated Lu/Hf that exceeds average modern depleted mantle. Investigation of the timing and locus of parent-daughter fractionation in their mantle sources potentially constrains differentiation processes in the early Earth and their subsequent distribution and storage. In addition, they may help to constrain the Hf isotope evolution of the greater depleted mantle. In order to shed light on these processes, we discuss radiogenic Hf isotopes in conjunction with stable Fe isotope systematics in Archean komatiites from the Pilbara craton in Western Australia. Our findings indicate that, after careful evaluation of the effects of alteration, pristine samples are characterised by initial 176Hf/177Hf, which lie above the age-corrected depleted mantle, as a consequence of ancient melt extraction. Iron isotope systematics for these samples further point to a mantle source that is isotopically lighter than average modern depleted mantle, which is also consistent with melt-depletion. Taken together, these observations require a component of an old, super-depleted reservoir in the komatiite mantle source(s) that survived in the mantle for possibly hundreds of millions of years. The Lu/Hf of this refractory mantle appears to be complementary to, and therefore contemporaneous with, the first terrestrial crust, as preserved in Hadean (i.e., > 4 Ga) detrital zircon cores, which may indicate a causal relationship between them. We will discuss implications for very early mantle dynamics and the formation of very early mantle reservoirs.

  13. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  14. β-decay half-lives of neutron-rich isotopes of Fe, Co, Ni involved in the beginning of the r-process

    International Nuclear Information System (INIS)

    Czajkowski, S.; Bernas, M.; Brissot, R.

    1992-01-01

    The very neutron-rich Fe- to Ni-isotopes are of interest since they are located at the very beginning of the astrophysical r-process path. The β-decay half-lives of several isotopes, identified in thermal fission of 235 U or 239 Pu, have been measured at the ILL high-flux reactor using the Lohengrin spectrometer. Half-lives have been determined from time-correlations analysis between the fragment implantation and the detection of the subsequent β-particles in the same detector. With the fragment separator FRS , at GSI, the projectile fragments of 86 Kr have been separated. The β-decay half-life of 65 Fe has been measured. Received: (from VMMAIL[FRSAC11 for XIN[IAEA1 via NJE)

  15. Isotope dilution analysis of environmental samples

    International Nuclear Information System (INIS)

    Tolgyessy, J.; Lesny, J.; Korenova, Z.; Klas, J.; Klehr, E.H.

    1986-01-01

    Isotope dilution analysis has been used for the determination of several trace elements - especially metals - in a variety of environmental samples, including aerosols, water, soils, biological materials and geological materials. Variations of the basic concept include classical IDA, substoichiometric IDA, and more recently, sub-superequivalence IDA. Each variation has its advantages and limitations. A periodic chart has been used to identify those elements which have been measured in environmental samples using one or more of these methods. (author)

  16. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  17. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    Science.gov (United States)

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a

  18. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    Science.gov (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  19. Impact analysis of a hydrogen isotopes container

    International Nuclear Information System (INIS)

    Lee, M. S.; Hwang, C. S.; Jeong, H. S.

    2003-01-01

    The container used for the radioactive materials, containing hydrogen isotopes is evaluated in a view of hypothetical accident. The computational analysis is a cost effective tool to minimize testing and streamline the regulatory procedures, and supports experimental programs to qualify the container for the safe transport of radioactive materials. The numerical analysis of 9m free-drop onto a flat unyielding, horizontal surface has been performed using the explicit finite element computer program ABAQUS. Especially free-drop simulations for 30 .deg. C tilted condition are precisely estimated

  20. Mass measurement and structure studies of neutron-rich isotopes of Zn, Ni, Fe

    International Nuclear Information System (INIS)

    Dessagne, P.

    1982-01-01

    With the Orsay MP Tandem, the reaction ( 14 C, 16 O) on 58 - 60 - 62 - 64 Ni, 64 - 66 - 68 - 70 Zn, 74 - 76 Ge and 82 Se targets, and the reaction ( 14 C, 15 O) on 60 - 62 - 64 Ni, 68 - 70 Zn, 76 Ge targets, have been investigated at 72 MeV bombarding energy. The mass excess of neutron rich nuclei: 63 Fe (-55.19+-.06MeV), 69 Ni(-60.14+-.06 MeV), 75 Zn(.62.7+-08 MeV) have been measured for the first time, and those of 62 Fe, 68 Ni, 74 Zn, 80 Ge have been remeasured. A new equipment has been designed in order to perform measurements at zero degree. From the angular distribution around 0 0 for the 70 Zn( 14 C, 16 O) reaction, the first state of 68 Ni observed for the first time (1.77 MeV +- .04 MeV) has been shown to be a 0 + . This result establishes a new case of 2 1+ - 0 2+ inversion. The systematics of the ( 14 C, 16 O) measurements on the even Ni and Zn isotopes have shown a different behaviour with two series. For the Ni → Fe (g.s.) transitions, the ratio σsub(exp)/σsub(DWBA) increases by a factor of four when the neutron number varies from 30 to 36. Whereas for the Zn → Ni (gs) transitions this ratio remains constant for the first three isotopes and decrease by a factor of two when N=40. For the Ni → Fe transitions, axial and spherical symmetries have been used. In agreement with the shell model no change are found with the spherical symmetry. For the axial symmetry a variation is observed but strongly dapendant of the sub-shell. Hence no clear conclusion can be deduced for the cross section estimate. For the Zn → Ni transitions, the spherical symmetry has been used. One configuration prevails, leading to a qualitative agreement with the experimental results [fr

  1. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  2. Generation of covariance files for the isotopes of Cr, Fe, Ni, Cu, and Pb in ENDF/B-VI

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Larson, D.C.; Fu, C.Y.

    1991-02-01

    The considerations that governed the development of the uncertainty files for the isotopes of Cr, Fe, Ni, Cu, and Pb in ENDF/B-VI are summarized. Four different approaches were used in providing the covariance information. Some examples are given which show the standard deviations as a function of incident energy and the corresponding correlation matrices. 11 refs., 5 tabs

  3. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  4. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO{sub 4} rich waters

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, Romy, E-mail: rmatthies@uwaterloo.ca [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Aplin, Andrew C., E-mail: andrew.aplin@ncl.ac.uk [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Boyce, Adrian J., E-mail: a.boyce@suerc.gla.ac.uk [Scottish Universities Environment Research Centre, East Kilbride, G75 0QF (United Kingdom); Jarvis, Adam P., E-mail: a.p.jarvis@ncl.ac.uk [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2012-03-15

    Reducing and Alkalinity Producing Systems (RAPS) remediate net-acidic metalliferous mine drainage by creating anoxic conditions in which bacterial sulfate reduction (BSR) raises alkalinity and drives the precipitation of iron and other chalcophilic elements as sulfides. We report chemical and stable isotopic data from a study monitoring the biogeochemical processes involved in the generation of mine waters and their remediation by two RAPS. Sulfur isotopes show that sulfate in all mine waters has a common source (pyrite oxidation), whilst oxygen isotopes show that oxidation of pyritic sulfur is mediated by Fe(III){sub aq}. The isotopic composition of dissolved sulfide, combined with the sulfur and oxygen isotopic composition of sulfate in RAPS effluents, proves BSR and details its dual isotope systematics. The occurrence and isotopic composition of solid phase iron sulfides indicate the removal of reduced sulfur within the RAPS, with significant amounts of elemental sulfur indicating reoxidation steps. However, only 0 to 9% of solid phase iron occurs as Fe sulfides, with approximately 70% of the removed iron occurs as Fe(III) (hydr)oxides. Some of the (hydr)oxide is supplied to the wetland as solids and is simply filtered by the wetland substrate, playing no role in alkalinity generation or proton removal. However, the majority of iron is supplied as dissolved Fe(II), indicating that acid generating oxidation and hydrolysis reactions dominate iron removal. The overall contribution of BSR to the sulfur geochemistry in the RAPS is limited and sulfate retention is dominated by sulfate precipitation, comparable to aerobic treatment systems, and show that the proton acidity resulting from iron oxidation and hydrolysis must be subsequently neutralised by calcite dissolution and/or BSR deeper in the RAPS sediments. BSR is not as important as previously thought for metal removal in RAPS. The results have practical consequences for the design, treatment performance and long

  5. Redox history of the Three Gorges region during the Ediacaran and Early Cambrian as indicated by the Fe isotope

    Directory of Open Access Journals (Sweden)

    Yusuke Sawaki

    2018-01-01

    To circumvent this deficiency, we drilled a fossiliferous Ediacaran to Early Cambrian sedimentary succession in the Three Gorges region, South China. We analyzed the iron isotope ratios (δ56/54Fe of pyrite grains in the drill cores using laser ablation multi collector inductively coupled plasma mass spectrometry. The results demonstrate large variations in δ56/54Fe, from −1.6 to 1.6‰, and positive iron isotope ratios are observed in many successions. The presence of positive δ56/54Fe in pyrite indicates that the ferrous iron in the seawater was partially oxidized, suggesting that seawater at Three Gorges was ferruginous during the Ediacaran and Early Cambrian periods. However, aggregated pyrite grains in organic carbon-rich black shales at Member 4 of the Doushantuo Formation and the base of the Shuijingtuo Formation yield near-zero δ56/54Fe values; this suggests that the ocean was transiently dominated by sulfidic conditions during these periods. Notably negative δ56/54Fe values, lower than −1‰, can be interpreted as a signature of DIR. The DIR also might contribute in part to the re-mineralization of organic matter during the largest negative carbon isotope anomaly in the Ediacaran.

  6. Applications of stable isotope analysis in mammalian ecology.

    Science.gov (United States)

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  7. Thermal analysis of compositionally modulated Fe/Y films

    International Nuclear Information System (INIS)

    Kajiura, M.; Morishita, T.; Togami, Y.; Tsushima, K.

    1987-01-01

    Structures of compositionally modulated Fe/Y films were studied by thermal analysis. The exothermic peak found in the DSC curve of (Fe 12 A/Y 12 A) most probably corresponds to crystallization of an amorphous material. SEM analysis suggested that the composition of crystallized (Fe 12 A/Y 12 A) was YFe2. It is concluded that a compositionally modulated (Fe 12 A/Y 12 A) is amorphous in structure as well as in magnetic properties

  8. Carbon isotope analysis in apple nectar beverages

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2013-03-01

    Full Text Available The aims of this study were to use the isotope analysis method to quantify the carbon of C3 photosynthetic cycle in commercial apple nectars and to determine the legal limit to identify the beverages that do not conform to the safety standards established by the Brazilian Ministry of Agriculture, Livestock and Food Supply. These beverages (apple nectars were produced in the laboratory according to the Brazilian legislation. Adulterated nectars were also produced with an amount of pulp juice below the permitted threshold limit value. The δ13C values of the apple nectars and their fractions (pulp and purified sugar were measured to quantify the C3 source percentage. In order to demonstrate the existence of adulteration, the values found were compared to the limit values established by the Brazilian Law. All commercial apple nectars analyzed were within the legal limits, which enabled to identify the nectars that were in conformity with the Brazilian Law. The isotopic methodology developed proved efficient to quantify the carbon of C3 origin in commercial apple nectars.

  9. Basic methods of isotope analysis; Osnovnye metody analiza izotopov

    Energy Technology Data Exchange (ETDEWEB)

    Ochkin, A V; Rozenkevich, M B

    2000-07-01

    The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered.

  10. Effects of different water storage procedures on the dissolved Fe concentration and isotopic composition of chemically contrasted waters from the Amazon River Basin.

    Science.gov (United States)

    Mulholland, Daniel S; Poitrasson, Franck; Boaventura, Geraldo R

    2015-11-15

    Although recent studies have investigated the Fe isotopic composition of dissolved, colloidal and particulate phases from continental and oceanic natural waters, few efforts have been made to evaluate whether water sample storage and the separation of different pore-size fractions through filtration can cause any change to the Fe isotopic compositions. The present study investigates the possible biases introduced by different water storage conditions on the dissolved Fe concentration and isotopic composition of chemically different waters. Water samples were collected from an organic-rich river and from mineral particulate-rich rivers. Filtered and unfiltered water samples were stored either at room temperature or frozen at -18°C in order to assess possible biases due to (i) different water storage temperature, and (ii) storage of bulk (unfiltered) vs filtered water. Iron isotope measurements were performed by Multicollector Inductively Coupled Plasma Mass Spectrometry with a Thermo Electron Neptune instrument, after Fe purification using anion-exchange resins. Our data reveal that bulk water storage at room temperature without filtration produces minor changes in the dissolved Fe isotopic composition of mineral particulate-rich waters, but significant isotopic composition changes in organic-rich waters. In both cases, however, the impact of the different procedures on the Fe concentrations was strong. On the other hand, the bulk water stored frozen without filtration produced more limited changes in the dissolved Fe concentrations, and also on isotopic compositions, relative to the samples filtered in the field. The largest effect was again observed for the organic-rich waters. These findings suggest that a time lag between water collection and filtration may cause isotopic exchanges between the dissolved and particulate Fe fractions. When it is not possible to filter the samples in the field immediately after collection, the less detrimental approach is to

  11. Decay properties of 68,69,70Mn: Probing collectivity up to N=44 in Fe isotopic chain

    Directory of Open Access Journals (Sweden)

    G. Benzoni

    2015-12-01

    Full Text Available The β decays Mn68→Fe68, Mn69→Fe69 and Mn70→Fe70 have been measured at the RIBF facility at RIKEN using the EURICA γ spectrometer combined with an active stopper consisting of a stack of Si detectors. The nuclei were produced as fission fragments from a beam of 238U at a bombarding energy of 345 MeV/nucleon impinging on a Be target and selected using the BigRIPS separator. Half-lives and β-delayed neutron emission probabilities have been extracted for these decays, together with first experimental information on excited states populated in 69,70Fe. The data indicate a continuously increasing deformation for Fe isotopes up to A=70. This is interpreted, as for Cr isotopes, in terms of the interplay between the quadrupole correlations of the ν1d5/2 and ν0g9/2 orbitals and the monopole component of the π0f7/2–ν0f5/2 interaction.

  12. Isotope analysis of closely adjacent minerals

    International Nuclear Information System (INIS)

    Smith, M.P.

    1990-01-01

    This patent describes a method of determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development. It comprises: searching for a class of minerals in a mineral specimen comprising more than one class of minerals; identifying in the mineral specimen a target sample of the thus searched for class; directing thermally pyrolyzing laser beam radiation onto surface mineral substance of the target sample in the mineral specimen releasing surface mineral substance pyrolysate gases therefrom; and determining isotope composition essentially of the surface mineral substance from analyzing the pyrolysate gases released from the thus pyrolyzed target sample, the isotope composition including isotope(s) selected from the group consisting of carbon, hydrogen, and oxygen isotopes; determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development of the target mineral from thus determined isotope composition of surface mineral substance pyrolysate

  13. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  14. Unit of stable isotopic N15 analysis

    International Nuclear Information System (INIS)

    Cabrera de Bisbal, Evelin; Paredes U, Maria

    1997-01-01

    The continuous and growing demand of crops and cattle for the domestic inhabitants, forces the search of technical solutions in agriculture. One of the solutions able to be covered in a near future it is the escalation of agricultural production in lands already being cultivated, either by means of an intensification of cultivation and / or increasing the unitary yields. In the intensive cropping systems, the crops extract substantial quantities of nutriments that is recovered by means of the application of fertilizers. Due to the lack of resources and to the increase of commercial inputs prices, it has been necessary to pay attention to the analysis and improvement of low inputs cropping systems and to the effective use of resources. Everything has made to establish a concept of plant nutrition focused system, which integrate the sources of nutriments for plants and the production factors of crops in a productive cropping system, to improve the fertility of soils, the agricultural productivity and profitability. This system includes the biggest efficiency of chemical fertilizers as the maximum profit of alternative sources of nutriments, such as organic fertilizers, citrate-phosphate rocks and biological nitrogen fixation. By means of field experiments under different environmental conditions (soils and climate) it can be determined the best combination of fertilizers practice (dose, placement, opportunity and source) for selected cropping systems. The experimentation with fertilizer, marked with stable and radioactive isotopes, provides a direct and express method to obtain conclusive answers to the questions: where, when and how should be applied. The fertilizers marked with N 1 5 have been used to understand the application of marked fertilizer to the cultivations, and the determination of the proportion of crops nutritious element derived from fertilizer. The isotopic techniques offer a fast and reliable mean to obtain information about the distribution of

  15. ATTA - A new method of ultrasensitive isotope trace analysis

    International Nuclear Information System (INIS)

    Bailey, K.; Chen, C.Y.; Du, X.; Li, Y.M.; Lu, Z.-T.; O'Connor, T.P.; Young, L.

    2000-01-01

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. This method is free of contamination from other isotopes and elements and can be applied to various different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1x10 -7 . System improvements could increase the efficiency by many orders of magnitude

  16. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  17. Isotopic analysis of plutonium by computer controlled mass spectrometry

    International Nuclear Information System (INIS)

    1974-01-01

    Isotopic analysis of plutonium chemically purified by ion exchange is achieved using a thermal ionization mass spectrometer. Data acquisition from and control of the instrument is done automatically with a dedicated system computer in real time with subsequent automatic data reduction and reporting. Separation of isotopes is achieved by varying the ion accelerating high voltage with accurate computer control

  18. Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity

    Science.gov (United States)

    Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus

    2018-05-01

    Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.

  19. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    Science.gov (United States)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  20. A method of uranium isotopes concentration analysis

    International Nuclear Information System (INIS)

    Lin Yuangen; Jiang Meng; Wu Changli; Duan Zhanyuan; Guo Chunying

    2010-01-01

    A basic method of uranium isotopes concentration is described in this paper. The iteration method is used to calculate the relative efficiency curve, by analyzing the characteristic γ energy spectrum of 235 U, 232 U and the daughter nuclide of 238 U, then the relative activity can be calculated, at last the uranium isotopes concentration can be worked out, and the result is validated by the experimentation. (authors)

  1. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  2. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  3. Chemically modified glasses for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Stanciu, Vasile; Stefanescu, Doina

    1999-01-01

    Hydrogen isotope separation process by such methods as cryogenic distillation or thermal diffusion method is one of the key technologies of the tritium separation from heavy water of CANDU reactors and in the tritium fuel cycle for a thermonuclear fusion reactor. In each process, the analytical techniques for measuring contents of hydrogen isotope mixture are necessary. An extensive experimental research has been carried out in order to produce the most suitable absorbent and define the best operating conditions for selective separation and analysis of hydrogen isotope by gas-chromatography. This paper describes the preparation of adsorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermo-resisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O and Cr 2 O 3 , respectively, have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are also reported and discussed. The gas-chromatographic apparatus used is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector (TCD). The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes H 2 , HD, D 2 and their mixture have been obtained in our laboratories. The best operating conditions of the adsorbent column Fe (III)/glass and Cr 2 O 3 /glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  4. Metal/glass composites for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Nicolae, Constantin Adrian; Sisu, Claudia; Stefanescu, Doina; Stanciu, Vasile

    1999-01-01

    The separation process of hydrogen isotopes by cryogenic distillation or thermal diffusion is a key technology for tritium separation from heavy water in CANDU reactor and for tritium fuel cycle in thermonuclear fusion reactor. In each process, analytical techniques for analyzing the hydrogen isotope mixture are required. An extensive experimental research has been carried out in order to produce the most suitable adsorbents and to establish the best operating conditions for selective separation and analysis of hydrogen isotopes by gas-chromatography. This paper describes the preparation of adsorbent materials used as stationary phases in the gas-chromatographic column for hydrogen isotope separation and the treatment (activation) of stationary phases. Modified thermoresisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and Cr 2 O 3 respectively have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are reported and discussed. The gas-chromatographic apparatus used in this study is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector. The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes, H 2 , HD, D 2 , and their mixture have been obtained in our laboratories. The best operating conditions and parameters of the Fe 3+ /glass adsorbent column , i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate and sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  5. Selective laser ionization for mass-spectral isotopic analysis

    International Nuclear Information System (INIS)

    Miller, C.M.; Nogar, N.S.; Downey, S.W.

    1983-01-01

    Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios

  6. ENDF/B-VI evaluations for isotopes of Cr, Fe, Ni, Cu, and Pb

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1989-01-01

    Evaluations have been done for each of the stable isotopes of chromium, iron, nickel, copper, and lead. They are based on analysis of experimental data and results of nuclear model calculations which reproduce the experimental data. Evaluated data are given for neutron induced reaction cross sections, angular and energy distributions, and gamma-ray production cross sections associated with the reactions. The new file 6 formats are used to represent energy-angle correlated data and recoil spectra for the first time in ENDF. This paper reviews the structure of the evaluations, notes the major pieces of experimental data utilized, gives a summary of the model codes used, and compares calculations to measured data

  7. Isotopic analysis using optical spectroscopy (1963)

    International Nuclear Information System (INIS)

    Gerstenkorn, S.

    1963-01-01

    The isotopic displacement in the atomic lines of certain elements (H, He, Li, Ne, Sr, Hg, Pb, U, Pu) is used for dosing these elements isotopically. The use of the Fabry-Perot photo-electric interference spectrometer is shown to be particularly adapted for this sort of problem: in each case we give on the one hand the essential results obtained with this apparatus, and on the other hand the results previously obtained with a conventional apparatus (grating, photographic plate). These results together give an idea of the possibilities of optical spectroscopy: in the best case, the precision which may be expected is of the order of 1 to 2 per cent for isotopes whose concentration is about 1 per cent. (author) [fr

  8. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  9. Isotopic analysis of bullet lead samples

    International Nuclear Information System (INIS)

    Sankar Das, M.; Venkatasubramanian, V.S.; Sreenivas, K.

    1976-01-01

    The possibility of using the isotopic composition of lead for the identification of bullet lead is investigated. Lead from several spent bullets were converted to lead sulphide and analysed for the isotopic abundances using an MS-7 mass spectrometer. The abundances are measured relative to that for Pb 204 was too small to permit differentiation, while the range of variation of Pb 206 and Pb 207 and the better precision in their analyses permitted differentiating samples from one another. The correlation among the samples examined has been pointed out. The method is complementary to characterisation of bullet leads by the trace element composition. The possibility of using isotopically enriched lead for tagging bullet lead is pointed out. (author)

  10. Isotope analysis of lithium by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.

    1991-04-01

    An analytical mass spectrometric method for the isotope analysis of lithium has been studied. The analysis were carried out by using a single focusing thermoionic mass spectrometer Varian Mat TH5 with 90 sup(0) magnetic sector field and 21.4 cm deflection radius, equipped with a dual Re-filament thermal ionization ion source. The effect of different lithium chemical forms, such as, carbonate, chloride, nitrate and sulfate upon the isotopic ratios sup(6)Li/ sup(7)Li has been studied. Isotopic fractionation of lithium was studied in terms of the time of analysis. The results obtained with lithium carbonate yielded a precision of ±0.1% and an accuracy of ± 0.6%, whereas with other chemical forms yielded precisions of ±0.5% and accuracies of ±2%. A fractionation correction factor, K=1.005, was obtained for different samples of lithium carbonate isotopic standard CBNM IRM 016, which has been considered constant. (author)

  11. Isotopic abundance in atom trap trace analysis

    Science.gov (United States)

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  12. Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Otero, Neus; Palau, Jordi; Shouakar-Stash, Orfan; Soler, Albert

    2013-01-01

    Highlights: ► TCE and cis-DCE Cl isotope fractionation was investigated for the first time with ZVI. ► A C–Cl bond is broken in the rate-limiting step during ethylene ZVI dechlorination. ► Dual C/Cl isotope plot is a promising tool to discriminate abiotic degradation. ► Product-related carbon isotopic fractionation gives evidence of abiotic degradation. ► Hydrogenolysis and β-dichloroelimination pathways occur simultaneously. - Abstract: This study investigated C and, for the first time, Cl isotope fractionation of trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by cast zero-valent iron (ZVI). Hydrogenolysis and β-dichloroelimination pathways occurred as parallel reactions, with ethene and ethane deriving from the β-dichloroelimination pathway. Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of Fe studied. Transformation of TCE and cis-DCE showed Cl isotopic enrichment factors (ε Cl ) of −2.6‰ ± 0.1‰ (TCE) and −6.2‰ ± 0.8‰ (cis-DCE), with Apparent Kinetic Isotope Effects (AKIE Cl ) for Cl of 1.008 ± 0.001 (TCE) and 1.013 ± 0.002 (cis-DCE). This indicates that a C–Cl bond breakage is rate-determining in TCE and cis-DCE transformation by ZVI. Two approaches were investigated to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. This study reports the first dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for cis-DCE differs markedly from that reported for biodegradation of the same compound by KB-1, a commercially available Dehalococcoides-containing culture. The different trends suggest an expedient approach to distinguish abiotic and biotic transformation, but this needs to be confirmed in future studies. (ii) Product-related isotope fractionation. Carbon isotope ratios of the hydrogenolysis product cis

  13. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  14. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  15. Determination of marble provenance: limits of isotopic analysis

    International Nuclear Information System (INIS)

    Germann, K.; Holzmann, G.; Winkler, F.J.

    1980-01-01

    Provenance determination of Thessalian stelae marbles using the C/O isotopic analysis proved to be misleading, as the isotopic composition even in very small quarrying areas is heterogeneous and isotopic coincidence of marbles from very distant sources occurs. Therefore additional geological features must be taken into consideration and preference should be given to combinations of both petrographical and geochemical properties. Geological field work to establish the range of possible marble sources and the variability within these sources is one of the prerequisites of provenance studies. (author)

  16. Ion sources for solids isotopic analysis

    International Nuclear Information System (INIS)

    Tyrrell, A.C.

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material. (Auth.)

  17. Ion sources for solids isotopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, A. C. [Ministry of Defence, Foulness (UK). Atomic Weapons Research Establishment

    1978-12-15

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material.

  18. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  19. Development of a code for the isotopic analysis of Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Kang, M. Y.; Kim, Jinhyeong; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    To strengthen the national nuclear nonproliferation regime by an establishment of nuclear forensic system, the techniques for nuclear material analysis and the categorization of important domestic nuclear materials are being developed. MGAU and FRAM are commercial software for the isotopic analysis of Uranium by using γ-spectroscopy, but the diversity of detection geometry and some effects - self attenuation, coincidence summing, etc. - suggest an analysis tool under continual improvement and modification. Hence, developing another code for HPGe γ- and x-ray spectrum analysis is started in this study. The analysis of the 87-101 keV region of Uranium spectrum is attempted based on the isotopic responses similar to those developed in MGAU. The code for isotopic analysis of Uranium is started from a fitting.

  20. The Prestudy for Studying Inorganic Nutrient Metabolism in Humans : the Aplication of ICP-MS for Determination of Stable Isotope Ratio of Fe and Zn

    International Nuclear Information System (INIS)

    Rukihati; Sumadjo

    2001-01-01

    A method is described for the determination of isotope ratio of Fe and Zn by means of inductively coupled plasma-mass spectrometry (ICP-MS). The mass spectrometer was operated in low resolution mode to provide maximal sensitivity. Typical conditions for operations were: plasma power 0.85 k W, reflected power 56 Fe/ 54 Fe, 57 Fe/ 54 Fe, 58 Fe/ 54 Fe, dan 64 Zn/ 67 Zn, 66 Zn/ 67 Zn, 68 Zn/ 67 Zn, 70 Zn/ 67 Zn measured by ICP-MS showed a good level of agreement with TIMS (thermal ionization mass spectrometry). This method was prepared for studying the absorption and/or metabolism of inorganic nutrients in humans. (author)

  1. Oxygen isotope analysis of plant water without extraction procedure

    International Nuclear Information System (INIS)

    Gan, K.S.; Wong, S.C.; Farquhar, G.D.; Yong, J.W.H.

    2001-01-01

    Isotopic analyses of plant water (mainly xylem, phloem and leaf water) are gaming importance as the isotopic signals reflect plant-environment interactions, affect the oxygen isotopic composition of atmospheric O 2 and CO 2 and are eventually incorporated into plant organic matter. Conventionally, such isotopic measurements require a time-consuming process of isolating the plant water by azeotropic distillation or vacuum extraction, which would not complement the speed of isotope analysis provided by continuous-flow IRMS (Isotope-Ratio Mass Spectrometry), especially when large data sets are needed for statistical calculations in biological studies. Further, a substantial amount of plant material is needed for water extraction and leaf samples would invariably include unenriched water from the fine veins. To measure sub-microlitre amount of leaf mesophyll water, a new approach is undertaken where a small disc of fresh leaf is cut using a specially designed leaf punch, and pyrolysed directly in an IRMS. By comparing with results from pyrolysis of the dry matter of the same leaf, the 18 O content of leaf water can be determined without extraction from fresh leaves. This method is validated using a range of cellulose-water mixtures to simulate the constituents of fresh leaf. Cotton leaf water δ 18 O obtained from both methods of fresh leaf pyrolysis and azeotropic distillation will be compared. The pyrolysis technique provides a robust approach to measure the isotopic content of water or any volatile present in a homogeneous solution or solid hydrous substance

  2. Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

    Science.gov (United States)

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  3. Analysis of the width correlation in 54Fe(nγ)55Fe reaction

    International Nuclear Information System (INIS)

    Knat'ko, V.A.; Shimanovich, E.A.

    1982-01-01

    To find out structural effects manifesting themselves in the form of correlation between widths of different channels of γ decay of levels and violation of Porter-Thomas distribution, calculated are partial widths of levels for 20 high-energy γ transitions in the 54 Fe(nγ) 55 Fe reaction. Calculations are carried out for widths in relation to γ transitions on 8 low p levels of 55 Fe, for 100 sets of partial γ widths (20 widths in a set). Results of analysis of theoretical values of partial γ widths of s resonances are presented in the form of the table. Results, obtained, show that consideration of contributions into γ decay of one-particle-vibrational configurations improve the accordance with experimental data, in comparison with calculations according to the model of valent capture. It is concluded that properties of γ widths of 55 Fe resonances, calculated in studied model, agree satisfactorily with properties of experimental γ widths [ru

  4. Water-hydrogen isotope exchange process analysis

    International Nuclear Information System (INIS)

    Fedorchenko, O.; Alekseev, I.; Uborsky, V.

    2008-01-01

    The use of a numerical method is needed to find a solution to the equation system describing a general case of heterogeneous isotope exchange between gaseous hydrogen and liquid water in a column. A computer model of the column merely outputting the isotope compositions in the flows leaving the column, like the experimental column itself, is a 'black box' to a certain extent: the solution is not transparent and occasionally not fully comprehended. The approximate analytical solution was derived from the ZXY-diagram (McCabe-Thiele diagram), which illustrates the solution of the renewed computer model called 'EVIO-4.2' Several 'unusual' results and dependences have been analyzed and explained. (authors)

  5. NAC, Neutron Activation Analysis and Isotope Inventory

    International Nuclear Information System (INIS)

    1995-01-01

    1 - Description of program or function: NAC was designed to predict the neutron-induced gamma-ray radioactivity for a wide variety of composite materials. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. NAC also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma-ray source strength and the absorbed dose rate at 1 meter from an unshielded point source. The induced activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated. 2 - Method of solution: The standard neutron activation and decay equations are programmed. A data library is supplied which contains target element names, atomic densities, reaction indices, individual reactions and reaction parameters, and product isotopes and gamma energy yields. 3 - Restrictions on the complexity of the problem: Each composite material may consist of up to 20 different elements and up to 20 different decay times may be included. Both limits may be increased by the user by increasing the appropriate items in the dimension statement

  6. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  7. Isotopic analysis of uranium by thermoionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de.

    1979-01-01

    Uranium isotopic ratio measurements by thermoionic spectrometry are presented. Emphasis is given upon the investigation of the parameters that directly affect the precision and accuracy of the results. Optimized procedures, namely, chemical processing, sample loading on the filaments, vaporization, ionization and measurements of ionic currents, are established. Adequate statistical analysis of the data for the calculation of the internal and external variances and mean standard deviation are presented. These procedures are applied to natural and NBS isotopic standard uranium samples. The results obtained agree with the certified values within specified limits. 235 U/ 238 U isotopic ratios values determined for NBS-U500, and a series of standard samples with variable isotopic compositon, are used to calculate mass discrimination factor [pt

  8. Pre-equilibrium emission and nuclear level densities in neutron induced reactions on Fe, Cr and Ni isotopes

    International Nuclear Information System (INIS)

    Ivascu, M.; Avrigeanu, M.; Ivascu, I.; Avrigeanu, V.

    1989-01-01

    The experimentally well known (n,p), (n,α) and (n,2n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron, proton and alpha-particle emission spectra at 14.8 MeV from Fe, Cr and Ni isotopes are calculated in the frame of a generalized Geometry-Dependent-Hybrid pre-equilibrium emission model, including angular momentum and parity conservation and alpha-particle emission, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incident orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of this process are suggested by calculations of the residual nuclei level populations. Finally, the unitary account of the (n, p) and (n, 2n) reaction excitation functions for Fe, Cr and Ni isotopes has allowed the proper establishment of the limits of the transition excitation range between the two different nuclear level density models used at medium and higher excitation energies, respectively. (author). 83 refs, 15 figs

  9. Romanian wines characterization with CF-IRMS (Continuous Flow Isotope Ratio Mass Spectrometry) isotopic analysis

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stanciu, Vasile

    2007-01-01

    Wine growing has been known for centuries long in Romania. The country has been favored by its geographical position in south-eastern Europe, by its proximity to the Black Sea, as well as by the specificity of the local soil and climate. Alongside France, Italy, Spain, Germany, countries in this area like Romania could also be called 'a vine homeland' in Europe. High quality wines produced in this region were object of trade ever since ancient times. Under current EU research projects, it is necessary to develop new methods of evidencing wine adulteration and safety. The use of mass spectrometry (MS) to determine the ratios of stable isotopes in bio-molecules now provides the means to prove the botanical and geographical origin of a wide variety of foodstuffs - and therefore, to authenticate and eliminate fraud. Isotope analysis has been officially adopted by the EU as a means of controlling adulteration of wine. Adulteration of wine can happen in many ways, e.g. addition of non-grape ethanol, addition of non-grape sugar, water or other unauthorized substances, undeclared mixing of wines from different wards, geographical areas or countries, mislabelling of variety and age. The present paper emphasize the isotopic analysis for D/H, 18 O/ 16 O, 13 C/ 12 C from wines, using a new generation Isotope Ratio MS, Finnigan Delta V Plus, coupling with a three flexible continuous flow preparation device (GasBench II, TC Elemental Analyser and GC-C/TC). Therefore authentication of wines is an important problem to which isotopic analysis has made a significant contribution. (authors)

  10. SIMS analysis of isotopic impurities in ion implants

    International Nuclear Information System (INIS)

    Sykes, D.E.; Blunt, R.T.

    1986-01-01

    The n-type dopant species Si and Se used for ion implantation in GaAs are multi-isotopic with the most abundant isotope not chosen because of potential interferences with residual gases. SIMS analysis of a range of 29 Si implants produced by several designs of ion implanter all showed significant 28 Si impurity with a different depth distribution from that of the deliberately implanted 29 Si isotope. This effect was observed to varying degrees with all fifteen implanters examined and in every 29 Si implant analysed to date 29 Si + , 29 Si ++ and 30 Si implants all show the same effect. In the case of Se implantation, poor mass resolution results in the implantation of all isotopes with the same implant distribution (i.e. energy), whilst implants carried out with good mass resolution show the implantation of all isotopes with the characteristic lower depth distribution of the impurity isotopes as found in the Si implants. This effect has also been observed in p-type implants into GaAs (Mg) and for Ga implanted in Si. A tentative explanation of the effect is proposed. (author)

  11. Potential of isotope analysis (C, Cl) to identify dechlorination mechanisms

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-04-01

    Chloroethenes are commonly used in industrial applications, and detected as carcinogenic contaminants in the environment. Their dehalogenation is of environmental importance in remediation processes. However, a detailed understanding frequently accounted problem is the accumulation of toxic degradation products such as cis-dichloroethylene (cis-DCE) at contaminated sites. Several studies have addressed the reductive dehalogenation reactions using biotic and abiotic model systems, but a crucial question in this context has remained open: Do environmental transformations occur by the same mechanism as in their corresponding in vitro model systems? The presented study shows the potential to close this research gap using the latest developments in compound specific chlorine isotope analysis, which make it possible to routinely measure chlorine isotope fractionation of chloroethenes in environmental samples and complex reaction mixtures.1,2 In particular, such chlorine isotope analysis enables the measurement of isotope fractionation for two elements (i.e., C and Cl) in chloroethenes. When isotope values of both elements are plotted against each other, different slopes reflect different underlying mechanisms and are remarkably insensitive towards masking. Our results suggest that different microbial strains (G. lovleyi strain SZ, D. hafniense Y51) and the isolated cofactor cobalamin employ similar mechanisms of reductive dechlorination of TCE. In contrast, evidence for a different mechanism was obtained with cobaloxime cautioning its use as a model for biodegradation. The study shows the potential of the dual isotope approach as a tool to directly compare transformation mechanisms of environmental scenarios, biotic transformations, and their putative chemical lab scale systems. Furthermore, it serves as an essential reference when using the dual isotope approach to assess the fate of chlorinated compounds in the environment.

  12. Advanced concepts for gamma-ray isotopic analysis and instrumentation

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.

    1994-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory is developing actinide isotopic analysis technologies in response to needs that address issues of flexibility of analysis, robustness of analysis, ease-of-use, automation and portability. Recent developments such as the Intelligent Actinide Analysis System (IAAS), begin to address these issues. We are continuing to develop enhancements on this and other instruments that improve ease-of-use, automation and portability. Requests to analyze samples with unusual isotopics, contamination, or containers have made us aware of the need for more flexible and robust analysis. We have modified the MGA program to extend its plutonium isotopic analysis capability to samples with greater 241 Am content or U isotopics. We are looking at methods for dealing with tantalum or lead contamination and contamination with high-energy gamma emitters, such as 233 U. We are looking at ways to allow the program to use additional information about the sample to further extend the domain of analyzable samples. These unusual analyses will come from the domain of samples that need to be measured because of complex reconfiguration or environmental cleanup

  13. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases

    OpenAIRE

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-01-01

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the c...

  14. Advances in isotopic analysis for food authenticity testing

    DEFF Research Database (Denmark)

    Laursen, Kristian Holst; Bontempo, L.; Camin, Federica

    2016-01-01

    Abstract Stable isotope analysis has been used for food authenticity testing for more than 30 years and is today being utilized on a routine basis for a wide variety of food commodities. During the past decade, major analytical method developments have been made and the fundamental understanding...... authenticity testing is currently developing even further. In this chapter, we aim to provide an overview of the latest developments in stable isotope analysis for food authenticity testing. As several review articles and book chapters have recently addressed this topic, we will primarily focus on relevant...... literature from the past 5 years. We will focus on well-established methods for food authenticity testing using stable isotopes but will also include recent methodological developments, new applications, and current and future challenges....

  15. Multicomponent isotopic separation and recirculation analysis

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1976-01-01

    A digital computer program for design of multicomponent distillation columns has been developed based on an exact method of solution of the governing equations. Although this computer program was developed for enrichment of the spent fuels from presently conceived tokamak-type fusion power reactors by cryogenic distillation, the program can be used for the design of any multicomponent distillation column, provided, of course, the necessary thermodynamic and phase equilibrium data are available. To prove the versatility of the computer program, parametric investigations to study the effect of design and operating variables on the composition of the product streams was carried out for the case of separating hydrogen isotopes. The computer program is very efficient; hence, a number of parametric investigations can be carried out with limited resources. The program does, however, require a fairly large computer storage space

  16. Results of Am isotopic ratio analysis in irradiated MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shin-ichi; Osaka, Masahiko; Mitsugashira, Toshiaki; Konno, Koichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kajitani, Mikio

    1997-04-01

    For analysis of a small quantity of americium, it is necessary to separate from curium which has similar chemical property. As a chemical separation method for americium and curium, the oxidation of americium with pentavalent bismuth and subsequent co-precipitation of trivalent curium with BIP O{sub 4} were applied to analyze americium in irradiated MOX fuels which contained about 30wt% plutonium and 0.9wt% {sup 241}Am before irradiation and were irradiated up to 26.2GWd/t in the experimental fast reactor Joyo. The purpose of this study is to measure isotopic ratio of americium and to evaluate the change of isotopic ratio with irradiation. Following results are obtained in this study. (1) The isotopic ratio of americium ({sup 241}Am, {sup 242m}Am and {sup 243}Am) can be analyzed in the MOX fuels by isolating americium. The isotopic ratio of {sup 242m}Am and {sup 243}Am increases up to 0.62at% and 0.82at% at maximum burnup, respectively, (2) The results of isotopic analysis indicates that the contents of {sup 241}Am decreases, whereas {sup 242m}Am, {sup 243}Am increase linearly with increasing burnup. (author)

  17. Hg stable isotope analysis by the double-spike method.

    Science.gov (United States)

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  18. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    Science.gov (United States)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon

  19. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.

    Science.gov (United States)

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-09-21

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.

  20. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    International Nuclear Information System (INIS)

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1994-12-01

    A method for measuring low relative abundances of 85 Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10 -10 or less of 85 Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace 85 Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s 5 metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p 6 energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s 4 level with the bulk of the 85 Kr population being preserved. Finally, the remaining metastable population is probed to determine 85 Kr concentration. The experimental requirements for each of these steps are outlined below

  1. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  2. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  3. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  4. ISODEP, A Fuel Depletion Analysis Code for Predicting Isotopic ...

    African Journals Online (AJOL)

    The trend of results was found to be consistent with those obtained by analytical and other numerical methods. Discovery and Innovation Vol. 13 no. 3/4 December (2001) pp. 184-195. KEY WORDS: depletion analysis, code, research reactor, simultaneous equations, decay of nuclides, radionuclitides, isotope. Résumé

  5. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Science.gov (United States)

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  6. Discrimination of ginseng cultivation regions using light stable isotope analysis.

    Science.gov (United States)

    Kim, Kiwook; Song, Joo-Hyun; Heo, Sang-Cheol; Lee, Jin-Hee; Jung, In-Woo; Min, Ji-Sook

    2015-10-01

    Korean ginseng is considered to be a precious health food in Asia. Today, thieves frequently compromise ginseng farms by pervasive theft. Thus, studies regarding the characteristics of ginseng according to growth region are required in order to deter ginseng thieves and prevent theft. In this study, 6 regions were selected on the basis of Korea regional criteria (si, gun, gu), and two ginseng-farms were randomly selected from each of the 6 regions. Then 4-6 samples of ginseng were acquired from each ginseng farm. The stable isotopic compositions of H, O, C, and N of the collected ginseng samples were analyzed. As a result, differences in the hydrogen isotope ratios could be used to distinguish regional differences, and differences in the nitrogen isotope ratios yielded characteristic information regarding the farms from which the samples were obtained. Thus, stable isotope values could be used to differentiate samples according to regional differences. Therefore, stable isotope analysis serves as a powerful tool to discriminate the regional origin of Korean ginseng samples from across Korea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    International Nuclear Information System (INIS)

    Manard, Manuel J.; Weeks, Stephan; Kyle, Kevin

    2010-01-01

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  8. Neutron-proton ratios of collective quadrupole matrix elements in even Fe and Cr isotopes

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    M n /M p ratios are investigated within the QRPA framework for the low-lying quadrupole states and for isoscalar giant quadrupole resonances in 54,56,58 Fe and 50,52,54 Cr. Theoretical results for 2 l ? + states are in good agreement with empirical ones obtained from recent proton and pion inelastic scattering studies. 16 refs.; 3 tabs

  9. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    Directory of Open Access Journals (Sweden)

    Stéphane Caut

    Full Text Available BACKGROUND: The leatherback turtle (Dermochelys coriacea has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI. Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. METHODOLOGY/PRINCIPAL FINDINGS: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal and foraging latitude (North Atlantic vs. West African coasts, respectively. Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. CONCLUSIONS/SIGNIFICANCE: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by

  10. Decay of neutron-rich Mn nuclides and deformation of heavy Fe isotopes

    CERN Document Server

    Hannawald, M; Wöhr, A; Walters, W B; Kratz, K L; Fedosseev, V; Mishin, V I; Böhmer, W; Pfeiffer, B; Sebastian, V; Jading, Y; Köster, U; Lettry, Jacques; Ravn, H L

    1999-01-01

    The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

  11. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Lederer, C., E-mail: claudia.lederer@ed.ac.uk [University of Vienna, Faculty of Physics, 1090 Vienna (Austria); Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Giubrone, G. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Massimi, C. [Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, 40100 Bologna (Italy); Žugec, P. [Department of Physics, Faculty of Science, University of Zagreb, 10002 Zagreb (Croatia); Barbagallo, M.; Colonna, N. [Istituto Nazionale di Fisica Nucleare, 70125 Bari (Italy); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Guerrero, C. [European Organization for Nuclear Research (CERN), CH-1211 Geneva (Switzerland); Gunsing, F. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, 91191 Gif-sur-Yvette (France); Käppeler, F. [Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, 76021 Karlsruhe (Germany); Tain, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, 90131 Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, 91406 Orsay (France); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid (Spain); Bečvář, F. [Faculty of Mathematics and Physics, Charles University, CZ-180 00 Prague (Czech Republic); and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  12. Isotope analysis (δ13C of pulpy whole apple juice

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2011-09-01

    Full Text Available The objectives of this study were to develop the method of isotope analysis to quantify the carbon of C3 photosynthetic cycle in pulpy whole apple juice and to measure the legal limits based on Brazilian legislation in order to identify the beverages that do not conform to the Ministry of Agriculture, Livestock and Food Supply (MAPA. This beverage was produced in a laboratory according to the Brazilian law. Pulpy juices adulterated by the addition of sugarcane were also produced. The isotope analyses measured the relative isotope enrichment of the juices, their pulpy fractions (internal standard and purified sugar. From those results, the quantity of C3 source was estimated by means of the isotope dilution equation. To determine the existence of adulteration in commercial juices, it was necessary to create a legal limit according to the Brazilian law. Three brands of commercial juices were analyzed. One was classified as adulterated. The legal limit enabled to clearly identify the juice that was not in conformity with the Brazilian law. The methodology developed proved efficient for quantifying the carbon of C3 origin in commercial pulpy apple juices.

  13. Cerenkov-ΔE-Cerenkov detector for high-energy cosmic-ray isotopes and an accelerator study of 40Ar and 56Fe fragmentation

    International Nuclear Information System (INIS)

    Lau, K.H.

    1985-01-01

    This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector - the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m 2 sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 less than or equal to Z less than or equal to 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintillators, two Cerenkov counters, and two plastic scintillators. The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40 Ar and 56 Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40 Ar and 56 Fe are compared with calculated yields based on semi-empirical cross-section formulae

  14. Quantitative mass-spectrometric analysis of hydrogen helium isotope mixtures

    International Nuclear Information System (INIS)

    Langer, U.

    1998-12-01

    This work deals with the mass-spectrometric method for the quantitative analysis of hydrogen-helium-isotope mixtures, with special attention to fusion plasma diagnostics. The aim was to use the low-resolution mass spectrometry, a standard measuring method which is well established in science and industry. This task is solved by means of the vector mass spectrometry, where a mass spectrum is repeatedly measured, but with stepwise variation of the parameter settings of a quadruple mass spectrometer. In this way, interfering mass spectra can be decomposed and, moreover, it is possible to analyze underestimated mass spectra of complex hydrogen-helium-isotope mixtures. In this work experimental investigations are presented which show that there are different parameters which are suitable for the UMS-method. With an optimal choice of the parameter settings hydrogen-helium-isotope mixtures can be analyzed with an accuracy of 1-3 %. In practice, a low sensitivity for small helium concentration has to be noted. To cope with this task, a method for selective hydrogen pressure reduction has been developed. Experimental investigations and calculations show that small helium amounts (about 1 %) in a hydrogen atmosphere can be analyzed with an accuracy of 3 - 10 %. Finally, this work deals with the effects of the measuring and calibration error on the resulting error in spectrum decomposition. This aspect has been investigated both in general mass-spectrometric gas analysis and in the analysis of hydrogen-helium-mixtures by means of the vector mass spectrometry. (author)

  15. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    Science.gov (United States)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  16. Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2 μm Diode Laser

    International Nuclear Information System (INIS)

    Hiromoto, K.; Tomita, H.; Watanabe, K.; Kawarabayashi, J.; Iguchi, T.

    2009-01-01

    We have made a prototype based on CRDS with 2 μm diode laser for carbon isotope analysis of CO 2 in air. The carbon isotope ratio was obtained to be (1.085±0.012)x10 -2 which shows good agreement with the isotope ratio measured by the magnetic sector-type mass spectrometer within uncertainty. Hence, we demonstrated the carbon isotope analysis based on CRDS with 2 μm tunable diode laser.

  17. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  18. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    International Nuclear Information System (INIS)

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department's mission as stated in that document. ''The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.''

  19. Isotopic analysis of uranium hexafluoride highly enriched in U-235

    International Nuclear Information System (INIS)

    Chaussy, L.; Boyer, R.

    1968-01-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment (≅2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [fr

  20. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  1. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover

    Science.gov (United States)

    Leshin, L. A.; Mahaffy, P. R.; Webster, C. R.; Cabane, M.; Coll, P.; Conrad, P. G.; Archer, P. D.; Atreya, S. K.; Brunner, A. E.; Buch, A.; Eigenbrode, J. L.; Flesch, G. J.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; McAdam, A. C.; Miller, K. E.; Ming, D. W.; Morris, R. V.; Navarro-González, R.; Niles, P. B.; Owen, T.; Pepin, R. O.; Squyres, S.; Steele, A.; Stern, J. C.; Summons, R. E.; Sumner, D. Y.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Wray, J. J.; Grotzinger, J. P.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Coscia, David; Israël, Guy; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Stalport, Fabien; François, Pascaline; Raulin, François; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Floyd, Melissa; Garvin, James; Harpold, Daniel; Jones, Andrea; Martin, David K.; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Yen, Albert; Cucinotta, Francis; Jones, John H.; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-09-01

    Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

  2. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  3. Optimization and Validation of the Developed Uranium Isotopic Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Kang, M. Y.; Kim, Jinhyeong; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    γ-ray spectroscopy is a representative non-destructive assay for nuclear material, and less time-consuming and less expensive than the destructive analysis method. The destructive technique is more precise than NDA technique, however, there is some correction algorithm which can improve the performance of γ-spectroscopy. For this reason, an analysis code for uranium isotopic analysis is developed by Applied Nuclear Physics Group in Seoul National University. Overlapped γ- and x-ray peaks in the 89-101 keV X{sub α}-region are fitted with Gaussian and Lorentzian distribution peak functions, tail and background functions. In this study, optimizations for the full-energy peak efficiency calibration and fitting parameters of peak tail and background are performed, and validated with 24 hour acquisition of CRM uranium samples. The optimization of peak tail and background parameters are performed with the validation by using CRM uranium samples. The analysis performance is improved in HEU samples, but more optimization of fitting parameters is required in LEU sample analysis. In the future, the optimization research about the fitting parameters with various type of uranium samples will be performed. {sup 234}U isotopic analysis algorithms and correction algorithms (coincidence effect, self-attenuation effect) will be developed.

  4. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach

    Science.gov (United States)

    Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu

    2013-01-01

    High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically

  5. Phase analysis of Fe-nanowires encapsulated into multi-walled carbon nanotubes via 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ruskov, T.; Spirov, I.; Ritschel, M.; Mueller, C.; Leonhardt, A.; Ruskov, R.

    2007-01-01

    We have performed morphological analysis of samples of Fe-nanowires encapsulated into aligned multi-walled carbon nanotubes (Fe-MWCNT) via 57 Fe Moessbauer spectroscopy. The aligned Fe-MWCNTs were obtained by pyrolysis of ferrocene onto an oxidized Si substrate. Transmission Moessbauer spectroscopy (TMS) and back scattered conversion electron Moessbauer spectroscopy (CEMS) were applied in order to distinguish different Fe-phases and their spatial distribution within the whole sample and along the tubes' height. A characterization (on a large spatial scale) of the aligned CNT samples were performed by obtaining TMS spectra for selected spots positioned at different locations of the sample. While the total Fe content changes considerably from one location to another, the γ-Fe/α-Fe phase ratio is constant onto a relatively large area. Using TMS and CEMS for all aligned Fe-MWCNTs samples it is also shown that along the CNT axes, going to the top of the nanotube the relative content of the γ-Fe phase increases. Going to the opposite direction, i.e. towards the silicon substrate, the relative content of the Fe 3 C phase increases, that is in agreement with our previous works. The results of an additional Moessbauer spectroscopy experiment in TMS and CEMS modes performed on a non-aligned sample support the conclusion that in our case the iron phases in the channels of carbon nanotubes are spatially separated as individual nanoparticles. The relative intensity ratio of the α-Fe phase Moessbauer sextets show good magnetic texture along nanotubes axis for one of the aligned samples and the lack of such orientation for the others. (authors)

  6. Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry

    Science.gov (United States)

    Zhu, H.; Zhang, Z.; Liu, F.; Li, X.

    2017-12-01

    To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would

  7. 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater

    International Nuclear Information System (INIS)

    Chabaux, F.; Cohen, A.S.; O'Nions, R.K.; Hein, J.R.

    1995-01-01

    Comparison of ( 234 U) excess /( 238 U) and ( 230 Th)/( 232 Th) activity ratios in oceanic Fe-Mn deposits provides a method for assessing the closed-system behaviour of 238 U- 234 U- 230 Th, as well as variations in the initial uranium and thorium isotopic ratios of the precipitated metal oxides. This approach is illustrated using a Fe-Mn crust from Lotab seamount (Marshall Islands, west equatorial Pacific). Here we report uranium and thorium isotopic compositions in five subsamples from the surface of one large 5 cm diameter botyroid of this crust, and from two depth profiles of the outermost rim of the same botyroid. The decrease of ( 234 U) excess /( 238 U) and ( 230 Th/ 232 Th) activity ratio with depth in the two profiles gives mean growth rates, for the last 150 ka, of 7.8 ± 2 mm/Ma and 6.6 ± 1 mm/Ma, respectively. All data points (surface and core samples) but one, define a linear correlation in the Ln ( 230 Th/ 232 Th) - Ln [( 234 U) excess ( 238 U)] diagram. This correlation indicates that for all points the U-Th system remained closed after the Fe-Mn layer precipitated, and that the different samples possessed the same initial Uranium and thorium isotope ratios. Furthermore, these results show that the preserved surface of this Fe-Mn crust may not be the present-day growth surface, and that the thorium and uranium isotopic ratios of seawater in west equatorial Pacific have not changed during the past 150 ka. The initial thorium activity ratio is estimated from the correlation obtained between Ln( 230 Th/ 232 Th) and Ln [( 234 U) excess /( 238 U)

  8. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    -cresol degradation and 2.2±0.3‰ for m-cresol degradation, respectively. The carbon isotope fractionation patterns of phenol degradation differed more profoundly. Oxygen-dependent monooxygenation of phenol by A.calcoaceticus as the initial reaction yielded ƐC values of -1.5±0.02‰. In contrast, the anaerobic degradation initiated by ATP-dependent carboxylation performed by Thauera aromatia DSM 6984, produced no detectable fractionation (ƐC 0±0.1‰). D. cetonica showed a slight inverse carbon isotope fractionation (ƐC 0.4±0.1‰). In conclusion, a validated method for compound specific stable isotope analysis was developed for phenolic compounds, and the first data set of carbon enrichment factors upon the biodegradation of phenol and cresols with different activation mechanisms has been obtained in the present study. Carbon isotope fractionation analysis is a potentially powerful tool to monitor phenolic compounds degradation in the environment.

  9. Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis

    Science.gov (United States)

    Rahimi, K. E.; Bursik, M. I.

    2016-12-01

    Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.

  10. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis

    Science.gov (United States)

    VanStone, Nancy; Przepiora, Andrzej; Vogan, John; Lacrampe-Couloume, Georges; Powers, Brian; Perez, Ernesto; Mabury, Scott; Sherwood Lollar, Barbara

    2005-08-01

    Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. > 9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and δ13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched δ13C values compared to the upgradient mean. In addition, δ13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.

  11. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.

    Science.gov (United States)

    VanStone, Nancy; Przepiora, Andrzej; Vogan, John; Lacrampe-Couloume, Georges; Powers, Brian; Perez, Ernesto; Mabury, Scott; Sherwood Lollar, Barbara

    2005-08-01

    Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. >9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and delta13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched delta13C values compared to the upgradient mean. In addition, delta13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.

  12. Analysis and separation of boron isotopes; Analyse et separation des isotopes du bore

    Energy Technology Data Exchange (ETDEWEB)

    Perie, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    The nuclear applications of boron-10 justify the study of a method of measurement of its isotopic abundance as well as of very small traces of boron in different materials. A systematic study of thermionic emission of BO{sub 2}Na{sub 2}{sup +} has been carried out. In the presence of a slight excess of alkalis, the thermionic emission is considerably reduced. On the other hand, the addition of a mixture of sodium hydroxide-glycerol (or mannitol) to borax permits to obtain an intense and stable beam. These results have permitted to establish an operative method for the analysis of traces of boron by isotopic dilution. In other respects, the needs of boron-10 in nuclear industry Justify the study of procedures of separation of isotopes of boron. A considerable isotopic effect has been exhibited in the chemical exchange reaction between methyl borate and borate salt in solution. In the case of exchange between methyl borate and sodium borate, the elementary separation factor {alpha} is: {alpha}=(({sup 11}B/{sup 10}B)vap.)/(({sup 11}B/{sup 10}B)liq.)=1.03{sub 3}. The high value of this elementary effect has been multiplied in a distillation column in which the problem of regeneration of the reactive has been resolved. An alternative procedure replacing the alkali borate by a borate of volatile base, for example diethylamine, has also been studied ({alpha}=1,02{sub 5} in medium hydro-methanolic with 2,2 per cent water). (author) [French] Les applications nucleaires du bore 10 justifient l'etude d'une methode de mesure de son abondance isotopique dans divers materiaux ainsi que le dosage de tres faibles traces de bore. Une etude systematique de l'emission thermoionique de BO{sub 2} Na{sub 2}{sup +} a ete effectuee. En presence d'un leger exces d'alcalins, l'emission thermoionique est considerablement reduite. Par contre l'addition au borax d'un melange soude-glycerol (ou mannitol) permet d'obtenir un faisceau stable et intense. Ces resultats ont permis d'etablir un mode

  13. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  14. Binary and tertiary reaction cross-sections of V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1982-01-01

    Neutron induced binary and tertiary reaction cross-sections have been evaluated for V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes in the 'energy range 0.5 MeV to 20 MeV using the nuclear statistical empirical model. The reactions considered are (n,n'), (n,2n), (n,3n), (n,p), (n,d), (n,t), (n, 3 He), (n,α), (n,np), (n,nd), (n,nt), (n,n 3 He), (n,nα), (n,pn), (n,2p), (n,ν), (n,αp), (n,dn) and (n,pα). Most of the above mentioned elements are used as structural materials in nuclear reactors and the measured cross-section data for the above listed reactions are seldom available for the radiation damage and safety analysis. With a view to providing these data, this nuclear model based evaluation has been undertaken. The associated uncertainties in the cross-sections and their fission averages have also been evaluated. (author)

  15. Redox substoichiometry in isotope dilution analysis Pt. 4

    International Nuclear Information System (INIS)

    Kambara, T.; Yoshioka, H.; Ugai, Y.

    1980-01-01

    The oxidation reaction of antimony(III) with potassium dichromate has been investigated radiometrically. The quantitative oxidation of antimony(III) was found to be not disturbed even in large amounts of tin(IV). On the basis of these results the redox substoichiometric isotope dilution analysis using potassium dichromate as the oxidizing agent was proposed for the determination of antimony in metallic tin. An antimony content of 1.22+-0.05 μg in metallic tin (10 mg) was determined without separation of the matrix element. (author)

  16. Redox substoichiometry in isotope dilution analysis Pt. 2

    International Nuclear Information System (INIS)

    Kambara, T.; Suzuki, J.; Yoshioka, H.; Nakajima, N.

    1978-01-01

    Isotope dilution analysis using the redox substoichiometric principle has been applied to the determination of antimony content in metallic zinc. As the substoichiometric reaction, the oxidation of trivalent to pentavalent antimony with potassium permanganate was used, followed by separation of these species by the BHPA extraction of trivalent antimony. Determination of antimony contents less than 0.5 μg was found to be possible with good accuracy, without separation of zinc ions. The antimony content in a metallic zinc sample was determined to be 19.7+-0.8 ppm, in good agreement with the results obtained by the other analytical methods. (author)

  17. Gamma-ray isotopic analysis development at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Sampson

    1999-11-01

    This report describes the development history and characteristics of software developed in the Safeguards Science and Technology group at Los Alamos for gamma-ray isotopic analysis. This software analyzes the gamma-ray spectrum from measurements performed on actinide samples (principally plutonium and uranium) of arbitrary size, geometry, and physical and chemical composition. The results are obtained without calibration using only fundamental tabulated nuclear constants. Characteristics of the current software versions are discussed in some detail and many examples of implemented measurement systems are shown.

  18. Applications of stable isotope analysis to atmospheric trace gas budgets

    Directory of Open Access Journals (Sweden)

    Brenninkmeijer C. A.M.

    2009-02-01

    Full Text Available Stable isotope analysis has become established as a useful method for tracing the budgets of atmospheric trace gases and even atmospheric oxygen. Several new developments are briefly discussed in a systematic way to give a practical guide to the scope of recent work. Emphasis is on applications and not on instrumental developments. Processes and reactions are less considered than applications to resolve trace gas budgets. Several new developments are promising and applications hitherto not considered to be possible may allow new uses.

  19. Sample preparation techniques of biological material for isotope analysis

    International Nuclear Information System (INIS)

    Axmann, H.; Sebastianelli, A.; Arrillaga, J.L.

    1990-01-01

    Sample preparation is an essential step in all isotope-aided experiments but often it is not given enough attention. The methods of sample preparation are very important to obtain reliable and precise analytical data and for further interpretation of results. The size of a sample required for chemical analysis is usually very small (10mg-1500mg). On the other hand the amount of harvested plant material from plots in a field experiment is often bulky (several kilograms) and the entire sample is too large for processing. In addition, while approaching maturity many crops show not only differences in physical consistency but also a non-uniformity in 15 N content among plant parts, requiring a plant fractionation or separation into parts (vegetative and reproductive) e.g. shoots and spikes, in case of small grain cereals, shoots and pods in case of grain legumes and tops and roots or beets (including crown) in case of sugar beet, etc. In any case the ultimate goal of these procedures is to obtain representative subsample harvested from greenhouse or field experiments for chemical analysis. Before harvesting an isotopic-aided experiment the method of sampling has to be selected. It should be based on the type of information required in relation to the objectives of the research and the availability of resources (staff, sample preparation equipment, analytical facilities, chemicals and supplies, etc.). 10 refs, 3 figs, 3 tabs

  20. Ion-microprobe measurements of Mg, Ca, Ti and Fe isotopic ratios and trace element abundance in hibonite-bearing inclusions in primitive meteorites

    International Nuclear Information System (INIS)

    Fahey, A.J.

    1988-01-01

    This thesis reports the isotopic abundances of Mg, Ca, and Ti and rare earth element (REE) abundances in 19 hibonite-bearing inclusions from primative meteorites. The isotopic ratios of Fe were measured in one of the samples, Lance HH-1. These measurements were made by means of secondary ion mass spectrometry (CAMECA IMS-3f). The novel hardware and software developments that made this work possible are described in detail. The samples were studied in thin section in order to investigate the relationship between the inclusions and their mineralogical environments. Inclusions from a number of different meteorites, specifically, Mighei, Murray, Murchison, Lance, Efremovka, Vigarano, Qingzhen, Dhajala, and Semarkona, were studied. The isotopes of Ca and Ti show large and correlated abundance anomalies in their most neutron-rich isotopes, 48 Ca and 50 Ti. The largest anomalies among the samples studied here are in the Murray inclusion MY-F6, with a 4.6% deficit in 48 Ca and a 5.2% deficit in 50 Ti, and Lance HH-1, with 3.3% and 6.0% deficits in 48 Ca and 50 Ti respectively. Correlated excesses of 48 Ca and 50 Ti, up to 2.4% and 1.4% respectively, are found in some other samples studied here. The fact that there is a correlation of isotopic anomalies in two different elements is clear evidence for a nucleosynthetic origin of these effects. Various possibilities for the origin of these isotopic anomalies are discussed and it is shown that a Cosmic Chemical Memory-like model of the incomplete mixing of dust grains from one or several supernovae is sufficient to explain the data. Magnesium isotopes show excesses of 26 Mg, attributable to the in-situ decay of 26 Al, in 7 of these inclusions

  1. The Behaviour of Fe Stable Isotopes Accompanying Fluid Migration in Subducted Serpentinite from the Zermatt-Saas Ophiolite of the Swiss Alps

    Science.gov (United States)

    Inglis, E.; Bouilhol, P.; Burton, K. W.; Debret, B.; Millet, M. A.; Williams, H. M.

    2016-12-01

    During subduction the destabilisation of hydrous serpentine group phases can generate significant fluid fluxes between the subducting slab and the overlying mantle wedge. Despite our knowledge of this, the exact process and nature of the fluids released during serpentinite devolatilisation remain poorly understood. This study presents new field observations alongside petrographic and geochemical data for metamorphic veins and host serpentinite from the Zermatt-Saas ophiolite from the Swiss Alps, which underwent high-pressure metamorphism during the Alpine orogeny. Samples were collected from the serpentinised ultramafic section of the Zermatt-Saas ophiolite, which is mainly comprised of variably foliated and sheared antigorite serpentine. High-pressure metamorphic veins hosted within the antigorite serpentinite, are observed within the least deformed part of the massif, occurring as cm scale laterally continuous channels or mm scale interconnected anastomosing networks. Preliminary high-precision Fe isotope data for the host antigorite serpentine yield a mean δ56Fe value of -0.09‰ ± 0.04‰ (n=3), notably lighter than previously measured Alpine and abyssal serpentinites (Debret et al., 2016). In contrast, samples of cm scale olivine-bearing veins display a mean δ56Fe value of 0.07 ± 0.05‰ (n=3), resolvably heavier than that of the host serpentinite. These preliminary results suggest preferential mobility of isotopically heavy Fe within the vein forming fluids, but at this stage it is unclear if this fluid is related to local devolatilisation of the host serpentinite or input from an external source. Debret et al., 2016. Isotopic evidence for iron mobility during subduction. Geology, v. 44, no. 3, pp. 215 -218.

  2. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    Science.gov (United States)

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  3. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2013-08-01

    Full Text Available Atmospheric iron (Fe can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively. However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003 to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS spectroscopy was performed in order to identify the Fe species in aerosols. Fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (μ-XRF showed the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III concentration in the atmosphere, which was high in spring due to the high

  4. Joint Ne/O and Fe/O Analysis to Diagnose Large Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C.; Shao, Xi [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Malandraki, Olga E., E-mail: ltan@umd.edu [IAASARS, National Observatory of Athens, GR-15236, Penteli (Greece)

    2017-02-01

    We have examined 29 large solar energetic particle (SEP) events with the peak proton intensity J {sub pp}(>60 MeV) > 1 pfu during solar cycle 23. The emphasis of our examination is put on a joint analysis of Ne/O and Fe/O data in the energy range (3–40 MeV nucleon{sup −1}) covered by Wind /Low-Energy Matrix Telescope and ACE /Solar Isotope Spectrometer sensors in order to differentiate between the Fe-poor and Fe-rich events that emerged from the coronal mass ejection driven shock acceleration process. An improved ion ratio calculation is carried out by rebinning ion intensity data into the form of equal bin widths in the logarithmic energy scale. Through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties. In particular, the high-energy Ne/O ratio is well correlated with the source plasma temperature of SEPs.

  5. Automatic measurement system for light element isotope analysis

    International Nuclear Information System (INIS)

    Satake, Hiroshi; Ikegami, Kouichi.

    1990-01-01

    The automatic measurement system for the light element isotope analysis was developed by installing the specially designed inlet system which was controlled by a computer. The microcomputer system contains specific interface boards for the inlet system and the mass spectrometer, Micromass 602 E. All the components of the inlet and the computer system installed are easily available in Japan. Ten samples can be automatically measured as a maximum of. About 160 minutes are required for 10 measurements of δ 18 O values of CO 2 . Thus four samples can be measured per an hour using this system, while usually three samples for an hour using the manual operation. The automatized analysis system clearly has an advantage over the conventional method. This paper describes the details of this automated system, such as apparatuses used, the control procedure and the correction for reliable measurement. (author)

  6. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  7. The precise measurement of TL isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites.

    Science.gov (United States)

    Rehkämper, Mark; Halliday, Alex N.

    1999-07-01

    The precision of Tl isotopic measurements by thermal ionization mass spectrometry (TIMS) is severely limited by the fact that Tl possesses only two naturally occurring isotopes, such that there is no invariant isotope ratio that can be used to correct for instrumental mass discrimination. In this paper we describe new chemical and mass spectrometric techniques for the determination of Tl isotopic compositions at a level of precision hitherto unattained. Thallium is first separated from the geological matrix using a two-stage anion-exchange procedure. Thallium isotopic compositions are then determined by multiple-collector inductively coupled plasma-mass spectrometry with correction for mass discrimination using the known isotopic composition of Pb that is admixed to the sample solutions. With these procedures we achieve a precision of 0.01-0.02% for Tl isotope ratio measurements in geological samples and this is a factor of ≥3-4 better than the best published results by TIMS. However, without adequate precautions, experimental artifacts can be generated that result in apparent Tl isotopic fractionations of up to one per mil. Analysis of five terrestrial samples indicate the existence of Tl isotopic variations related to natural fractionation processes on the Earth. Two of the three igneous rocks analyzed in this study display Tl isotopic compositions indistinguishable from our laboratory standard, the reference material NIST-997 Tl. A third sample, however, is characterized by ɛ Tl ≈ 2.5 ± 1.5, where ɛ Tl represents the deviation of the 205Tl/ 203Tl ratio of the sample relative to NIST-997 Tl in parts per 10 4. Even larger deviations were identified for two ferromanganese crusts from the Pacific Ocean, which display ɛ Tl-values of +5.0 ± 1.5 and +11.7 ± 1.3. We suggest that the large variability of Tl isotopic compositions in the latter samples are caused by low-temperature processes related to the formation of the Fe-Mn crusts by precipitation and

  8. Magnetic resonance studies of isotopically labeled paramagnetic proteins: (2FE-2S) ferredoxins

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.; Xia, B.; Chae, Y.K.; Westler, W.M.; Markley, J.L. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    Recent developments in NMR spectroscopy, especially multidimensional, multinuclear NMR techniques, have made NMR the most versatile tool available for studying protein structure and function in solution. Unlike diamagnetic proteins, paramagnetic proteins contain centers with unpaired electrons. These unpaired electrons interact with magnetic nuclei either through chemical bonds by a contact mechanism or through space by a pseudocontact mechanism. Such interactions make the acquisition and analysis of NMR spectra of paramagnetic proteins more challenging than those of diamagnetic proteins. Some NMR signals from paramagnetic proteins are shifted outside the chemical shift region characteristic of diamagnetic proteins; these {open_quotes}hyperfine-shifted{close_quotes} resonances originate from nuclei that interact with unpaired electrons from the paramagnetic center. The large chemical shift dispersion in spectra of paramagnetic proteins makes it difficult to excite the entire spectral window and leads to distortions in the baseline. Interactions with paramagnetic centers shorten T{sub 1} and T{sub 2} relaxation times of nuclei; the consequences are line broadening and lower spectral sensitivity. Scalar (through bond) and dipolar (through space) interactions between pairs of nuclei are what give rise to crosspeak signals in multi-dimensional NMR spectra of small diamagnetic proteins. When such interactions involve a nucleus that is strongly relaxed by interaction with a paramagnetic center, specialized methods may be needed for its detection or it may be completely undetectable by present nD NMR methods.

  9. Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn-W deposit, Tasmania

    Science.gov (United States)

    Wawryk, Christine M.; Foden, John D.

    2015-02-01

    We present 50 new iron isotopic analyses of source granite and mineral separates from the Renison tin deposit in western Tasmania. The aim of the study is to characterise the composition of minerals within a tin deposit associated with a reduced, S-type magma. We have analysed bulk samples of granite, and separates of pyrrhotite, pyrite, arsenopyrite, magnetite, chalcopyrite and siderite by multi-collector inductively coupled mass spectrometry. The isotopic compositions of mineral separates are consistent with theoretical predictions of equilibrium fractionation based on Mössbauer spectroscopy and other parametric calculations. Mineral-mineral pairs yield temperatures of formation that are in agreement with prior detailed fluid inclusion studies, but are spatially inconsistent with declining fluid temperatures with distance from the causative intrusion, limiting the use of Fe isotopes as a potential geothermometer, at least in this case. Comparison of our data with published data from other deposits clearly demonstrates that pyrite, magnetite and chalcopyrite from the hottest ore fluids (>300-400 °C) at Renison are isotopically heavier than minerals sampled from a deposit formed at similar temperatures, but associated with a more oxidised and less differentiated intrusion.

  10. Effect of Silicon on the Activity Coefficient of Rhenium in Fe-Si Liquids: Implications for HSE and Os Isotopes in Planetary Mantles

    Science.gov (United States)

    Righter, K.; Pando, K.; Yang, S.; Humayun, M.

    2018-01-01

    Metallic cores contain light alloying elements that can be a combination of S, C, Si, and O, all of which have important chemical and physical influences. For Earth, Si may be the most abundant light element in the core. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE), and thus the partitioning behavior of those elements between core and mantle. The effect of Si on the highly siderophile elements is only beginning to be studied and the effects on Au, Pd and Pt are significant. Here we report new experiments designed to quantify the effect of Si on the partitioning of Re between metal and silicate melt. A solid understanding of Re partitioning is required for a complete understanding of the Re-Os isotopic systems. The results will be applied to understanding the HSEs and Os isotopic data for planetary mantles, and especially Earth.

  11. Isotopic tailoring with 59Ni to study the effect of helium on microstructural evolution and mechanical properties of neutron-irradiated Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Greenwood, L.R.; Stubbins, J.F.; Oliver, B.M.

    1992-03-01

    Tensile testing on three model Fe-Cr-Ni alloys removed from four discharges of the 59 Ni isotopic doping experiment in FFTF-MOTA indicates that helium/dpa ratios typical of fusion reactors do not produce changes in the yield strength or elongation that are significantly different from those at much lower helium generation rates. It also appears that tensile properties approach a saturation level that is dependent only on the final irradiation temperature, but not prior temperature history or thermomechanical starting condition. The saturation in mechanical properties reflects a similar saturation in microstructure that is independent of starting condition. The successful conduct of an isotopic doping experiment was found to require post-irradiation measurement of the helium levels in order to compensate for uncertainties in the cross sections for burn-out and burn-in of 59 Ni and for uncertainties in neutron flux and spectra in the vicinity of the edge of the core

  12. Redox substoichiometric isotope dilution analysis of metallic arsenic for antimony

    International Nuclear Information System (INIS)

    Kambara, Tomihisa; Yoshioka, Hiroe; Suzuki, Junsuke; Shibata, Yasue.

    1979-01-01

    In 1 M HCl solution Sb(III) reacts with N-benzoyl-N-phenylhydroxylamine (BPHA) to form a complex extractable into chloroform while the extraction of Sb(V) is negligible. The redox substoichiometric isotope dilution analysis based on this reaction was applied to the determination of antimony in metallic arsenic. After the dissolution of metallic arsenic, Sb(V) was separated from As(V) by a tribenzylamine extraction from 8 M HCl solution and the extracted Sb(V) was stripped into 0.5 M NaOH solution. Thereafter, all the Sb(V) were completely reduced to Sb(III) by bubbling SO 2 gas through 3 M HCl solution. As the substoichiometric reaction, the oxidation of Sb(III) to Sb(V) by a substoichiometric amount of potassium dichromate was used, followed by separation of these species by the BPHA extraction of Sb(III). The substoichiometric oxidation of Sb(III) was found to be quantitative over HCl concentration range from 0.8 to 1.2 M. The amount of antimony was determined by isotope dilution analysis using the method of carrier amount variation. By the present method the determination of as small as 0.36 μg antimony was accomplished with a good accuracy (relative error; 5.6%) and also the method was successfully applied to the determination of antimony in arsenic samples containing known amounts of Sb(III) and in metallic arsenic. The present method gives reliable results with the good accuracy and precision. (author)

  13. Transformation of chlorpyrifos in integrated recirculating constructed wetlands (IRCWs) as revealed by compound-specific stable isotope (CSIA) and microbial community structure analysis.

    Science.gov (United States)

    Tang, Xiaoyan; Yang, Yang; Huang, Wenda; McBride, Murray B; Guo, Jingjing; Tao, Ran; Dai, Yunv

    2017-06-01

    Carbon isotope analysis and 454 pyrosequencing methods were used to investigate in situ biodegradation of chlorpyrifos during its transport through three model integrated recirculating constructed wetlands (IRCWs). Results show that plant and Fe-impregnated biochar promoted degradation of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol (TCP). Carbon isotope ratios in the IRCWs shifted to -31.24±0.58‰ (IRCW1, plant free), -26.82±0.60‰ (IRCW2, with plant) and -24.76±0.94‰ (IRCW3, with plant and Fe-biochar). The enrichment factors (Ɛ bulk,c ) were determined as -0.69±0.06‰ (IRCW1), -0.91±0.07‰ (IRCW2) and -1.03±0.09‰ (IRCW3). Microbial community analysis showed that IRCW3 was dominated by members of Bacillus, which can utilize and degrade chlorpyrifos. These results reveal that plant and Fe-biochar can induce carbon isotope fractionation and have a positive impact on the chlorpyrifos degradation efficiency by influencing the development of beneficial microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  14. First local electrode atom probe analysis of magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Kuhlman, K.R.; Kelly, T.F.; Miller, M.K.

    2004-01-01

    Full text: We have successfully fabricated atom probe samples of a metamorphic magnetite and performed an analysis of one of these samples using a local electrode atom probe (LEAP). This particular magnetite, previously designated LP204-1, was extracted from a polymetamorphosed, granulite-facies marble and contains grain scale heterogeneity in its oxygen isotope ratios. Crystals of LP204-1 contain a high number density of nanometer-scale, disk-shaped Al-Mn-Fe-spinel precipitates making this magnetite particularly attractive for demonstrating the capabilities of the LEAP with regard to geological materials. Field ion microscope images of these magnetite crystals show precipitate size and morphology that agrees with previous results. A sample of LP-204-1 was analyzed in the LEAP, resulting in a cylindrical analyzed volume approx. 26 nm in diameter and 21 nm high. The mass spectrum contained nearly 106,000 atoms, 97.1 % of which were identified. Peaks for singly, doubly and triply ionized species were fully resolved. The analysis volume appeared to be purely magnetite, i.e. no precipitates were observed. If it is assumed that 77 % of the ions in the peak at 16 are O 2 ++ rather than O+, the stoichiometry measured for this sample using electron probe microanalysis is achieved. The high fraction of O 2 ++ can be explained by lack of a peak for O ++ and significant peaks for FeO x indicating a relatively low field strength, which in turn favors molecular ions. This work is an encouraging beginning for analysis of geological materials in atom probes. Refs. 4 (author)

  15. X-ray fluorescence analysis of Fe - Ni - Mo systems

    International Nuclear Information System (INIS)

    Belyaev, E.E.; Ershov, A.V.; Mashin, A.I.; Mashin, N.I.; Rudnevskij, N.K.

    1998-01-01

    Procedures for the X-ray fluorescence determination of the composition and thickness of Fe - Ni - Mo thin films and the concentration of elements in thick films of the Fe - Ni - Mo alloy are developed [ru

  16. Multivariate Stable Isotope Analysis to Determine Linkages between Benzocaine Seizures

    Science.gov (United States)

    Kemp, H. F.; Meier-Augenstein, W.; Collins, M.; Salouros, H.; Cunningham, A.; Harrison, M.

    2012-04-01

    In July 2010, a woman was jailed for nine years in the UK after the prosecution successfully argued that attempting to import a cutting agent was proof of involvement in a conspiracy to supply Cocaine. That landmark ruling provided law enforcement agencies with much greater scope to tackle those involved in this aspect of the drug trade, specifically targeting those importing the likes of benzocaine or lidocaine. Huge quantities of these compounds are imported into the UK and between May and August 2010, four shipments of Benzocaine amounting to more then 4 tons had been seized as part of Operation Kitley, a joint initiative between the UK Border Agency and the Serious Organised Crime Agency (SOCA). By diluting cocaine, traffickers can make it go a lot further for very little cost, leading to huge profits. In recent years, dealers have moved away from inert substances, like sugar and baby milk powder, in favour of active pharmaceutical ingredients (APIs), including anaesthetics like Benzocaine and Lidocaine. Both these mimic the numbing effect of cocaine, and resemble it closely in colour, texture and some chemical behaviours, making it easier to conceal the fact that the drug has been diluted. API cutting agents have helped traffickers to maintain steady supplies in the face of successful interdiction and even expand the market in the UK, particularly to young people aged from their mid teens to early twenties. From importation to street-level, the purity of the drug can be reduced up to a factor of 80 and street level cocaine can have a cocaine content as low as 1%. In view of the increasing use of Benzocaine as cutting agent for Cocaine, a study was carried out to investigate if 2H, 13C, 15N and 18O stable isotope signatures could be used in conjunction with multivariate chemometric data analysis to determine potential linkage between benzocaine exhibits seized from different locations or individuals to assist with investigation and prosecution of drug

  17. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    Directory of Open Access Journals (Sweden)

    Stephen P Good

    Full Text Available Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18O, > 160‰ for δ(2H and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰ were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  18. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    Science.gov (United States)

    Good, Stephen P; Mallia, Derek V; Lin, John C; Bowen, Gabriel J

    2014-01-01

    Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18)O, > 160‰ for δ(2)H) and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰) were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  19. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  20. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    International Nuclear Information System (INIS)

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ''milked'' from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country

  1. Multi-element determination in environmental samples by mass spectrometric isotope dilution analysis using thermal ionization. Pt. 2

    International Nuclear Information System (INIS)

    Hilpert, K.; Waidmann, E.

    1988-01-01

    An analytical procedure for the multi-element analysis of the elements Fe, Ni, Cu, Zn, Ga, Rb, Sr, Cd, Ba, Tl, and Pb in pine needles by mass spectrometric isotope dilution analysis using thermal ionization has been reported in Part I of this paper. This procedure is now transferred to the non-vegetable material 'Oyster Tissue' (Standard Reference Material 1566, National Bureau of Standards, USA). By a modification of the analytical procedure, it was possible to determine Cr in this material in addition to the aforementioned elements. No concentrations are certified for the elements Ga, Ba and Tl analyzed in this work. The concentrations of the remaining elements obtained by the multi-element analysis agree well with those certified. (orig.)

  2. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    Science.gov (United States)

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Optical spectroscopy versus mass spectrometry: The race for fieldable isotopic analysis

    International Nuclear Information System (INIS)

    Barshick, C.M.; Young, J.P.; Shaw, R.W.

    1995-01-01

    Several techniques have been developed to provide on-site isotopic analyses, including decay-counting and mass spectrometry, as well as methods that rely on the accessibility of optical transitions for isotopic selectivity (e.g., laser-induced fluorescence and optogalvanic spectroscopy). The authors have been investigating both mass spectrometry and optogalvanic spectroscopy for several years. Although others have considered these techniques for isotopic analysis, the authors have focussed on the use of a dc glow discharge for atomization and ionization, and a demountable discharge cell for rapid sample exchange. The authors' goal is a fieldable instrument that provides useful uranium isotope ratio information

  4. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.; Hartig, Kyle C.; Phillips, Mark C.

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  5. High burn-up plutonium isotopic compositions recommended for use in shielding analysis

    International Nuclear Information System (INIS)

    Zimmerman, M.G.

    1977-06-01

    Isotopic compositions for plutonium generated and recycled in LWR's were estimated for use in shielding calculations. The values were obtained by averaging isotopic values from many sources in the literature. These isotopic values should provide the basis for a reasonable prediction of exposure rates from the range of LWR fuel expected in the future. The isotopic compositions given are meant to be used for shielding calculations, and the values are not necessarily applicable to other forms of analysis, such as inventory assessment or criticality safety. 11 tables, 2 figs

  6. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    Science.gov (United States)

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  7. Lead isotopic compositions of environmental certified reference materials for an inter-laboratory comparison of lead isotope analysis

    International Nuclear Information System (INIS)

    Aung, Nyein Nyein; Uryu, Tsutomu; Yoshinaga, Jun

    2004-01-01

    Lead isotope ratios, viz. 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, of the commercially available certified reference materials (CRMs) issued in Japan are presented with an objective to provide a data set, which will be useful for the quality assurance of analytical procedures, instrumental performance and method validation of the laboratories involved in environmental lead isotope ratio analysis. The analytical method used in the present study was inductively coupled plasma quadrupole mass spectrometry (ICPQMS) presented by acid digestion and with/without chemical separation of lead from the matrix. The precision of the measurements in terms of the relative standard deviation (RSD) of triplicated analyses was 0.19% and 0.14%, for 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, respectively. The trueness of lead isotope ratio measurements of the present study was tested with a few CRMs, which have been analyzed by other analytical methods and reported in various literature. The lead isotopic ratios of 18 environmental matrix CRMs (including 6 CRMs analyzed for our method validation) are presented and the distribution of their ratios is briefly discussed. (author)

  8. Potential application of gas chromatography to the analysis of hydrogen isotopes

    International Nuclear Information System (INIS)

    Warner, D.K.; Sprague, R.E.; Bohl, D.R.

    1976-01-01

    Gas chromatography is used at Mound Laboratory for the analysis of hydrogen isotopic impurities in gas mixtures. This instrumentation was used to study the applicability of the gas chromatography technique to the determination of the major components of hydrogen isotopic gas mixtures. The results of this study, including chromatograms and precision data, are presented

  9. Mobility and diet in Neolithic, Bronze Age and Iron Age Germany : evidence from multiple isotope analysis

    NARCIS (Netherlands)

    Oelze, Viktoria Martha

    2012-01-01

    Prehistoric human diet can be reconstructed by the analysis of carbon (C), nitrogen (N) and sulphur (S) stable isotopes in bone, whereas ancient mobility and provenance can be studied using the isotopes of strontium (Sr) and oxygen (O) in tooth enamel, and of sulphur in bone. Although thirty years

  10. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Daniel A., E-mail: dfrick@gfz-potsdam.de [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Schuessler, Jan A. [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Blanckenburg, Friedhelm von [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Institute of Geological Science, Freie Universität Berlin, 12249 Berlin (Germany)

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ{sup 30}Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ{sup 30}Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g{sup −1}-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ

  11. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Frick, Daniel A.; Schuessler, Jan A.; Blanckenburg, Friedhelm von

    2016-01-01

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ 30 Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ 30 Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g −1 -range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ

  12. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    Science.gov (United States)

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  13. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  14. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis

    International Nuclear Information System (INIS)

    Meija, Juris; Mester, Zoltan

    2008-01-01

    Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method

  15. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan). Faculty of Pharmacy and Pharmaceutical Sciences; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-07-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT-{sup 2}H{sub 19}), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT-{sup 2}H{sub 10}). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  16. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    International Nuclear Information System (INIS)

    Sera, Shoji; Goromaru, Tsuyoshi; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-01-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT- 2 H 19 ), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT- 2 H 10 ). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  17. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.; Prokopiou, M.; Sowers, T.; Röckmann, T.; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a

  18. First stable isotope analysis of Asiatic wild ass tail hair from the Mongolian Gobi.

    Science.gov (United States)

    Horacek, Micha; Sturm, Martina Burnik; Kaczensky, Petra

    Stable isotope analysis has become a powerful tool to study feeding ecology, water use or movement pattern in contemporary, historic and ancient species. Certain hair and teeth grow continuously, and when sampled longitudinally can provide temporally explicit information on dietary regime and movement pattern. In an initial trial, we analysed a tail sample of an Asiatic wild ass ( Equus hemionus ) from the Mongolian Gobi. We found seasonal variations in H, C and N isotope patterns, likely being the result of temporal variations in available feeds, water supply and possibly physiological status. Thus stable isotope analysis shows promise to study the comparative ecology of the three autochthonous equid species in the Mongolian Gobi.

  19. A phase analysis of mild steel corrosion using 57Fe Moessbauer technique

    International Nuclear Information System (INIS)

    Lal, Roshan; Sharma, N.D.; Suman

    2005-01-01

    A phase analysis of corrosion of mild steel was studied by 57 Fe Moessbauer spectroscopy, when the fumes of aqueous hydrochloric acid in the environment of thermal power plant react with various equipment's and machinery parts made from mild steel. The formation of ΥFeOOH was observed. But the presence of some amount of αFeOOH in the super paramagnetic form cannot be ruled out. (author)

  20. Growth history of cultured pearl oysters based on stable oxygen isotope analysis

    Science.gov (United States)

    Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.

    2007-12-01

    We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.

  1. Development of isotope dilution gamma-ray spectrometry for plutonium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.K.; Parker, J.L. (Los Alamos National Lab., NM (United States)); Kuno, Y.; Sato, S.; Kurosawa, A.; Akiyama, T. (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan))

    1991-01-01

    We are studying the feasibility of determining the plutonium concentration and isotopic distribution of highly radioactive, spent-fuel dissolver solutions by employing high-resolution gamma-ray spectrometry. The study involves gamma-ray plutonium isotopic analysis for both dissolver and spiked dissolver solution samples, after plutonium is eluted through an ion-exchange column and absorbed in a small resin bead bag. The spike is well characterized, dry plutonium containing {approximately}98% of {sup 239}Pu. By using measured isotopic information, the concentration of elemental plutonium in the dissolver solution can be determined. Both the plutonium concentration and the isotopic composition of the dissolver solution obtained from this study agree well with values obtained by traditional isotope dilution mass spectrometry (IDMS). Because it is rapid, easy to operate and maintain, and costs less, this new technique could be an alternative method to IDMS for input accountability and verification measurements in reprocessing plants. 7 refs., 4 figs., 4 tabs.

  2. High precision analysis of trace lithium isotope by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Tang Lei; Liu Xuemei; Long Kaiming; Liu Zhao; Yang Tianli

    2010-01-01

    High precision analysis method of ng lithium by thermal ionization mass spectrometry is developed. By double-filament measurement,phosphine acid ion enhancer and sample pre-baking technique,the precision of trace lithium analysis is improved. For 100 ng lithium isotope standard sample, relative standard deviation is better than 0.086%; for 10 ng lithium isotope standard sample, relative standard deviation is better than 0.90%. (authors)

  3. High Resolution Gamma Ray Analysis of Medical Isotopes

    Science.gov (United States)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  4. Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements

    Science.gov (United States)

    Huang, Xiao-Wen; Zhou, Mei-Fu; Beaudoin, Georges; Gao, Jian-Feng; Qi, Liang; Lyu, Chuan

    2018-01-01

    The Yamansu Fe deposit (32 Mt at 51% Fe) in the Eastern Tianshan Orogenic Belt of NW China is hosted in early Carboniferous volcano-sedimentary rocks and spatially associated with skarn. The paragenetic sequence includes garnet-diopside (I), magnetite (II), hydrous silicate-sulfide (III), and calcite-quartz (IV) stages. Pyrite associated with magnetite has a Re-Os isochron age of 322 ± 7 Ma, which represents the timing of pyrite and, by inference, magnetite mineralization. Pyrite has δ 34SVCDT values of - 2.2 to + 2.9‰, yielding δ 34SH2S values of - 3.1 to 2‰, indicating the derivation of sulfur from a magmatic source. Calcite from stages II and IV has δ 13CVPDB values from - 2.5 to - 1.2‰, and - 1.1 to 1.1‰, and δ 18OVSMOW values from 11.8 to 12.0‰ and - 7.7 to - 5.2‰, respectively. Calculated δ 13C values of fluid CO2 and water δ 18O values indicate that stage II hydrothermal fluids were derived from magmatic rocks and that meteoric water mixed with the hydrothermal fluids in stage IV. Some ores contain magnetite with obvious chemical zoning composed of dark and light domains in BSE images. Dark domains have higher Mg, Al, Ca, Mn, and Ti but lower Fe and Cr contents than light domains. The chemical zoning resulted from a fluctuating fluid composition and/or physicochemical conditions (oscillatory zoning), or dissolution-precipitation (irregular zoning) via infiltration of magmatic-hydrothermal fluids diluted by late meteoric water. Iron was mainly derived from fluids similar to that in skarn deposits.

  5. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  6. Greek marbles: determination of provenance by isotopic analysis.

    Science.gov (United States)

    Craig, H; Craig, V

    1972-04-28

    A study has been made of carbon-13 and oxygen-18 variations in Greek marbles from the ancient quarry localities of Naxos, Paros, Mount Hymettus, and Mount Pentelikon. Parian, Hymettian, and Pentelic marbles can be clearly distinguished by the isotopic relationships; Naxian marbles fall into two groups characterized by different oxygen-18/oxygen-16 ratios. Ten archeological samples were also analyzed; the isotopic data indicate that the "Theseion" is made of Pentelic marble and a block in the Treasury of Siphnos at Delphi is probably Parian marble.

  7. Rietveld analysis, dielectric and impedance behaviour of Mn /Fe ion ...

    Indian Academy of Sciences (India)

    Figure 1 compares X-ray diffraction patterns of pow- ders calcined at temperature .... ground, absorption coefficient, atomic positions, two theta zero error, thermal ... attributed to segregation of Mn and Fe at grain boundaries. (Dai et al 1995).

  8. U and Pb isotope analysis of uraninite and galena by ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Evins, L.Z.; Sunde, T.; Schoeberg, H. [Swedish Museum of Natural History, Stockholm (Sweden). Laboratory for Isotope Geology; Fayek, M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences

    2001-10-01

    Accurate isotopic analysis of minerals by ion microprobe, or SIMS (Secondary Ion Mass Spectrometry) usually requires a standard to correct for instrumental mass bias effects that occur during analysis. We have calibrated two uraninite crystals and one galena crystal to be used as ion probe standards. As part of this study we describe the analytical procedures and problems encountered while trying to establish fractionation factors for U and Pb isotopes measured in galena and uraninite. Only the intra-element isotopic mass fractionation is considered and not the interelement fractionation. Galena and uraninite were analysed with TIMS (Thermal Ionisation Mass Spectrometry) prior to SIMS. One uraninite crystal (P88) comes from Sweden and is ca 900 Ma old, the other from Maine, USA (LAMNH-30222) and is ca 350 Ma old. The galena sample comes from the Paleoproterozoic ore district Bergslagen in Sweden. SIMS analyses were performed at two different laboratories: the NORDSM facility in Stockholm, which has a high resolution Cameca IMS 1270 ion microprobe, and the Oak Ridge National Laboratory (ORNL) in Tennessee, which has a Cameca IMS 4f ion microprobe. The results show that during the analysis of galena, Pb isotopes fractionate in favour of the lighter isotope by as much as 0.5%/amu. A Pb isotope fractionation factor for uraninite was more difficult to calculate, probably due to the formation of hydride interferences encountered during analysis with the Cameca IMS 1270 ion microprobe. However, drying the sample in vacuum prior to analysis, and using high-energy filtering and a cold trap during analysis can minimise these hydride interferences. A large fractionation of U isotopes of ca 1.4%/amu in favour of the lighter isotope was calculated for uraninite.

  9. U and Pb isotope analysis of uraninite and galena by ion microprobe

    International Nuclear Information System (INIS)

    Evins, L.Z.; Sunde, T.; Schoeberg, H.; Fayek, M.

    2001-10-01

    Accurate isotopic analysis of minerals by ion microprobe, or SIMS (Secondary Ion Mass Spectrometry) usually requires a standard to correct for instrumental mass bias effects that occur during analysis. We have calibrated two uraninite crystals and one galena crystal to be used as ion probe standards. As part of this study we describe the analytical procedures and problems encountered while trying to establish fractionation factors for U and Pb isotopes measured in galena and uraninite. Only the intra-element isotopic mass fractionation is considered and not the interelement fractionation. Galena and uraninite were analysed with TIMS (Thermal Ionisation Mass Spectrometry) prior to SIMS. One uraninite crystal (P88) comes from Sweden and is ca 900 Ma old, the other from Maine, USA (LAMNH-30222) and is ca 350 Ma old. The galena sample comes from the Paleoproterozoic ore district Bergslagen in Sweden. SIMS analyses were performed at two different laboratories: the NORDSM facility in Stockholm, which has a high resolution Cameca IMS 1270 ion microprobe, and the Oak Ridge National Laboratory (ORNL) in Tennessee, which has a Cameca IMS 4f ion microprobe. The results show that during the analysis of galena, Pb isotopes fractionate in favour of the lighter isotope by as much as 0.5%/amu. A Pb isotope fractionation factor for uraninite was more difficult to calculate, probably due to the formation of hydride interferences encountered during analysis with the Cameca IMS 1270 ion microprobe. However, drying the sample in vacuum prior to analysis, and using high-energy filtering and a cold trap during analysis can minimise these hydride interferences. A large fractionation of U isotopes of ca 1.4%/amu in favour of the lighter isotope was calculated for uraninite

  10. Direct U isotope analysis in μm-sized particles by LA-MC-ICPMS

    International Nuclear Information System (INIS)

    Kappel, S.; Boulyga, S.F.; Prohaska, T.

    2009-01-01

    Full text: The knowledge of the isotopic composition of individual μm-sized hot particles is of great interest especially for strengthened nuclear safeguards in order to identify undeclared nuclear activities. We present the potential of a 'Nu Plasma HR' MC-ICPMS coupled to a New Wave 'UP 193' laser ablation (LA) system for the direct analysis of U isotope abundance ratios in individual μm-sized particles. The ability to determine 234 U/ 238 U and 235 U/ 238 U isotope ratios was successfully demonstrated in the NUSIMEP-6 interlaboratory comparison, which was organized by the IRMM (Geel, Belgium). (author)

  11. Isotope ratio analysis by a combination of element analyzer and mass spectrometer

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1987-06-01

    The use of stable isotope ratios of carbon, nitrogen and sulfur as analytical tool in many fields of research is of growing interest. A method has therefore been developed, consisting in essential of coupling an Elemental Analyzer with an Isotope Mass Spectrometer, which enables the gas preparation of carbon dioxide, nitrogen and sulfur dioxide from any solid or liquid sample in a fast and easy way. Results of carbon isotope measurements in food analysis are presented, whereat it is possible to check origin and treatment of sugar, oils, fats, mineral waters, spirituous liquors etc. and to detect adulterations as well. Also applications in the field of environmental research are given. (Author)

  12. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  13. Analysis of Stable Isotope Contents of Surface and Underground ...

    African Journals Online (AJOL)

    Sam Eshun

    (2H/1H) ratios relative to a standard called Standard Mean Ocean Water (SMOW) ..... Hence, higher forest cover has greater influence on heavy isotope ... Accra Plains is influenced by the Atlantic Ocean where the relative humidity is higher ...

  14. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    Science.gov (United States)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  15. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Science.gov (United States)

    Muhammad, Syahidah; Frew, Russell; Hayman, Alan

    2015-02-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  16. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Directory of Open Access Journals (Sweden)

    Syahidah Akmal Muhammad

    2015-02-01

    Full Text Available Compound-specific isotope analysis (CSIA offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  17. Compound-specific isotope analysis of diesel fuels in a forensic investigation.

    Science.gov (United States)

    Muhammad, Syahidah A; Frew, Russell D; Hayman, Alan R

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ(13)C and δ(2)H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples.

  18. Applications of stable isotope analysis in foodstuffs surveillance and environmental research

    International Nuclear Information System (INIS)

    Pichlmayer, F.; Blochberger, F.

    1991-12-01

    The instrumental coupling of Elemental Analysis and Mass Spectrometry, constituting a convenient tool for isotope ratio measurements of the bioelements in solid or liquid samples is now well established. Advantages of this technique compared with the so far usual wet chemistry sample preparation are: speed of analysis, easy operation and minor sample consumption. The performance of the system is described and some applications are given. Detection of foodstuffs adulterations is mainly based on the natural carbon isotope differences between C 3 - and C 4 -plants. In the field of environmental research the existing small isotopic variations of carbon, nitrogen and sulfur in nature, which depend on substance origin and history, are used as intrinsic signature of the considered sample. Examples of source appointment or exclusion by help of this natural isotopic tracer method are dealt with. (authors)

  19. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David [Harvard Univ., Cambridge, MA (United States); Wankel, Scott David [Woods Hole Oceanographic Inst., MA (United States); Buchwald, Carolyn [Woods Hole Oceanographic Inst., MA (United States); Hansel, Colleen [Woods Hole Oceanographic Inst., MA (United States)

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  20. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  1. Chloride corrosion in biomass-fired boilers – Fe-O-Cl system thermodynamic analysis

    Directory of Open Access Journals (Sweden)

    Kaczmarczyk Robert

    2016-01-01

    The paper presents a thermodynamic analysis of chloride-induced corrosion in the Fe-O-Cl system. The ranges of the metallic, oxide and chloride phase stability are determined within the temperature range T = 750-1000 K. Based on the parametric equations the equilibrium concentration of gaseous phase determined by Deacon reaction are presented. The effect of H2O concentration in the gaseous phase on high-temperature corrosion process and gaseous NaCl influence on NaFeO2 formation in the passive oxide scale layer (FeO/Fe3O4/Fe2O3 are discussed as well. The results are correlated with available in the literature laboratory experimental data and industrial corrosion process observations. Presented thermodynamic analysis is compared with assumptions of “active oxidation” model. The results may be used for experimental research prediction and a corrosion prevention in the industry.

  2. An isotopic analysis process with optical emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Mauchien, P.; Pietsch, W.; Petit, A.; Briand, A.

    1994-01-01

    The sample that is to be analyzed is irradiated with a laser beam to produce a plasma at the sample surface; the spectrum of the light emitted by the plasma is analyzed and the isotope composition of the sample is derived from the spectrometry. The process is preferentially applied to uranium and plutonium; it is rapid, simpler and cheaper than previous methods, and may be applied to 'in-situ' isotopic analysis in nuclear industry. 2 figs

  3. Individual economical value of plutonium isotopes and analysis of the reprocessing of irradiated fuel

    International Nuclear Information System (INIS)

    Gomes, I.C.; Rubini, L.A.; Barroso, D.E.G.

    1983-01-01

    An economical analysis of plutonium recycle in a PWR reactor, without any modification, is done, supposing an open market for the plutonium. The individual value of the plutonium isotopes is determined solving a system with four equations, which the unknow factors are the Pu-239, Pu-240, pu-241 and Pu-242 values. The equations are obtained equalizing the cost of plutonium fuel cycle of four different isotope mixture to the cost of the uranium fuel cycle. (E.G.) [pt

  4. Coil winding pack FE-analysis for a HELIAS reactor

    International Nuclear Information System (INIS)

    Schauer, F.; Egorov, K.; Bykov, V.

    2011-01-01

    At the Max-Planck-Institut fuer Plasmaphysik (IPP) a reference design is being created of an upgraded five-periodic HELIAS type stellarator reactor which evolves from Wendelstein 7-X (W7-X) by scaling of the coil centre line geometries by a factor of four. This reactor type was extensively investigated at IPP with regard to physical characteristics and to some extent also to engineering issues. The upgrade concerns an increase of the induction at the plasma axis and correspondingly at the superconductor. The aim is to develop the reactor concept to a stage and such detail that major engineering problems are unveiled, and relevant comparisons with other concepts, including tokamaks, can be drawn in view of upcoming decisions concerning a DEMO reactor. Even though progress in plasma physics, and in particular future results of W7-X and other machines - particularly of ITER - will probably lead to somewhat different coil shapes, no principal changes of the reference design are expected. In this paper the option of a roll-formed square coil cable jacket is investigated. Detailed structural FE analysis of the coil winding pack demonstrates the feasibility of such a conductor which appears to be the most economical option. It also allows sufficient space for a cable current density very similar to that of the ITER TF coil with a similar overall winding pack cross section of ∼0.5 m 2 . Already existing Nb 3 Sn conductors could thus be safely applied in such a HELIAS reactor. Obvious progress of superconductor technology, particularly concerning Nb 3 Al, will be beneficial concerning savings of conductor material, ease of manufacture, higher operation temperature, etc.

  5. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  6. Utility of stable isotope analysis in studying foraging ecology of herbivores: Examples from moose and caribou

    Science.gov (United States)

    Ben-David, Merav; Shochat, Einav; Adams, Layne G.

    2001-01-01

    Recently, researchers emphasized that patterns of stable isotope ratios observed at the individual level are a result of an interaction between ecological, physiological, and biochemical processes. Isotopic models for herbivores provide additional complications because those mammals consume foods that have high variability in nitrogen concentrations. In addition, distribution of amino acids in plants may differ greatly from that required by a herbivore. At northern latitudes, where the growing season of vegetation is short, isotope ratios in herbivore tissues are expected to differ between seasons. Summer ratios likely reflect diet composition, whereas winter ratios would reflect diet and nutrient recycling by the animals. We tested this hypothesis using data collected from blood samples of caribou (Rangifer tarandus) and moose (Alces alces) in Denali National Park and Preserve, Alaska, USA. Stable isotope ratios of moose and caribou were significantly different from each other in late summer-autumn and winter. Also, late summer-autumn and winter ratios differed significantly between seasons in both species. Nonetheless, we were unable to evaluate whether differences in seasonal isotopic ratios were a result of diet selection or a response to nutrient recycling. We believe that additional studies on plant isotopic ratios as related to ecological factors in conjunction with investigations of diet selection by the herbivores will enhance our understanding of those interactions. Also, controlled studies investigating the relation between diet and physiological responses in herbivores will increase the utility of isotopic analysis in studying foraging ecology of herbivores.

  7. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    Science.gov (United States)

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  8. Food certification based on isotopic analysis, according to the European standards

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stanciu, Vasile; Iordache, Andreea

    2007-01-01

    Full text: Under current EU research projects, several public research institutions, universities and private companies are collaborating to develop new methods of evidencing food adulteration and consequently assessing food safety. The use of mass spectrometry (MS) to determine the ratio of stable isotopes in bio-molecules now provides the means to prove the natural origin of a wide variety of foodstuffs - and therefore, to identify the fraud and consequently to reject the improper products or certify the food quality. Isotope analysis has been officially adopted by the EU as a means of controlling adulteration of some food stuffs. A network of research organizations developed the use of isotopic analysis to support training and technology transfer to encourage uptake of the technique. There were also developed proficiency-testing schemes to ensure the correct use of isotopic techniques in national testing laboratories. In addition, ensuring the food quality and safety is a requirement, which must be fulfilled for the integration in EU. The present paper emphasizes the isotopic analysis for D/H, 18 O/ 16 O, 13 C/ 12 C from food (honey, juice, wines) using a new generation Isotope Ratio MS, Finnigan Delta V Plus, coupled to a three flexible continuous flow preparation device (GasBench II, TC Elemental Analyser and GC-C/TC). (authors)

  9. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  10. Shell-model-based deformation analysis of light cadmium isotopes

    Science.gov (United States)

    Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.

    2017-07-01

    Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].

  11. Analysis and application of heavy isotopes in the environment

    Science.gov (United States)

    Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria

    2010-04-01

    A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ˜150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236U, 239,240,241,242,244Pu), astrophysics ( 182Hf, 236U, 244Pu, 247Cm), nuclear physics, and a search for long-lived super-heavy elements ( Z > 100). We are pursuing the environmental distribution of 236U, as a basis for geological applications of natural 236U.

  12. Analysis and application of heavy isotopes in the environment

    International Nuclear Information System (INIS)

    Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria

    2010-01-01

    A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ∼150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236 U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236 U, 239,240,241,242,244 Pu), astrophysics ( 182 Hf, 236 U, 244 Pu, 247 Cm), nuclear physics, and a search for long-lived super-heavy elements (Z > 100). We are pursuing the environmental distribution of 236 U, as a basis for geological applications of natural 236 U.

  13. Thermal analysis of a LiFePo4 Battery

    OpenAIRE

    Balanguer Escolano, David

    2014-01-01

    The objective of this final thesis project was to study and test a 3,3V LiFePo4 battery in outer space conditions to be able to determine its working range, its limitations and its problems. To do so a measuring set-up to read and estimate the capacity of a battery was built and programmed. Then the LiFePo4 battery was tested at different temperatures between -20°C and 40°C in a vacuum chamber at a pressure under 100 microbars. The results showed that the battery can still operate prope...

  14. Isotopic analysis of Bothrops atrox in Amazonian forest

    Science.gov (United States)

    Martinez, M. G.; Silva, A. M.; Chalkidis, H.; de Oliveira Júnior, R. C.; Camargo, P. B.

    2012-12-01

    The poisoning of snakes is considered a public health problem, especially in populations from rural areas of tropical and subtropical countries. In Brazil, the 26,000 snakebites, 90% are of the genus Bothrops, and Bothrops atrox species predominant in the Amazon region including all the Brazilian Amazon. Research shows that using stable isotopes, we can verify the isotopic composition of tissues of animals that depend mainly on food, water ingested and inhaled gases. For this study, samples taken from Bothrops atrox (B. atrox), in forest using pitfall traps and fall ("Pitt-fall traps with drift fence"). The analyzes were performed by mass spectrometry, where the analytical error is 0.3‰ for carbon and 0.5‰ to nitrogen. The results of the forest animals are significantly different from results of animal vivarium. The average values of the tissues and venoms of snakes of the forest for carbon-13 and nitrogen-15 are: δ13C = -24.68‰ and δ15N = 14.22‰ and mean values of tissue and poisons snakes vivarium (Instituto Butantan) to carbon-13 and nitrogen-15 are δ13C = -20.47‰ and δ15N = 8.36‰, with a significantly different due to different sources of food animals. Based on all results isotopic δ13C and δ15N, we can suggest that changes as the power of the serpent, (nature and captivity), changes occur in relation to diet and environment as the means of the isotopic data are quite distinct, showing that these changes can also cause metabolic changes in the body of the animal itself and the different periods of turnover of each tissue analyzed.

  15. Computer automated mass spectrometer for isotope analysis on gas samples

    International Nuclear Information System (INIS)

    Pamula, A.; Kaucsar, M.; Fatu, C.; Ursu, D.; Vonica, D.; Bendea, D.; Muntean, F.

    1998-01-01

    A low resolution, high precision instrument was designed and realized in the mass spectrometry laboratory of the Institute of Isotopic and Molecular Technology, Cluj-Napoca. The paper presents the vacuum system, the sample inlet system, the ion source, the magnetic analyzer and the ion collector. The instrument is almost completely automated. There are described the analog-to-digital conversion circuits, the local control microcomputer, the automation systems and the performance checking. (authors)

  16. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    Science.gov (United States)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  17. The conflict between cheetahs and humans on Namibian farmland elucidated by stable isotope diet analysis.

    Directory of Open Access Journals (Sweden)

    Christian C Voigt

    Full Text Available Large areas of Namibia are covered by farmland, which is also used by game and predator species. Because it can cause conflicts with farmers when predators, such as cheetahs (Acinonyx jubatus, hunt livestock, we assessed whether livestock constitutes a significant part of the cheetah diet by analysing the stable isotope composition of blood and tissue samples of cheetahs and their potential prey species. According to isotopic similarities, we defined three isotopic categories of potential prey: members of a C4 food web with high δ15N values (gemsbok, cattle, springhare and guinea fowl and those with low δ15N values (hartebeest, warthog, and members of a C3 food web, namely browsers (eland, kudu, springbok, steenbok and scrub hare. We quantified the trophic discrimination of heavy isotopes in cheetah muscle in 9 captive individuals and measured an enrichment for 15N (3.2‰ but not for 13C in relation to food. We captured 53 free-ranging cheetahs of which 23 were members of groups. Cheetahs of the same group were isotopically distinct from members of other groups, indicating that group members shared their prey. Solitary males (n = 21 and males in a bachelor groups (n = 11 fed mostly on hartebeest and warthogs, followed by browsers in case of solitary males, and by grazers with high δ15N values in case of bachelor groups. Female cheetahs (n = 9 predominantly fed on browsers and used also hartebeest and warthogs. Mixing models suggested that the isotopic prey category that included cattle was only important, if at all, for males living in bachelor groups. Stable isotope analysis of fur, muscle, red blood cells and blood plasma in 9 free-ranging cheetahs identified most individuals as isotopic specialists, focussing on isotopically distinct prey categories as their food.

  18. The Conflict between Cheetahs and Humans on Namibian Farmland Elucidated by Stable Isotope Diet Analysis

    Science.gov (United States)

    Voigt, Christian C.; Thalwitzer, Susanne; Melzheimer, Jörg; Blanc, Anne-Sophie; Jago, Mark; Wachter, Bettina

    2014-01-01

    Large areas of Namibia are covered by farmland, which is also used by game and predator species. Because it can cause conflicts with farmers when predators, such as cheetahs (Acinonyx jubatus), hunt livestock, we assessed whether livestock constitutes a significant part of the cheetah diet by analysing the stable isotope composition of blood and tissue samples of cheetahs and their potential prey species. According to isotopic similarities, we defined three isotopic categories of potential prey: members of a C4 food web with high δ15N values (gemsbok, cattle, springhare and guinea fowl) and those with low δ15N values (hartebeest, warthog), and members of a C3 food web, namely browsers (eland, kudu, springbok, steenbok and scrub hare). We quantified the trophic discrimination of heavy isotopes in cheetah muscle in 9 captive individuals and measured an enrichment for 15N (3.2‰) but not for 13C in relation to food. We captured 53 free-ranging cheetahs of which 23 were members of groups. Cheetahs of the same group were isotopically distinct from members of other groups, indicating that group members shared their prey. Solitary males (n = 21) and males in a bachelor groups (n = 11) fed mostly on hartebeest and warthogs, followed by browsers in case of solitary males, and by grazers with high δ15N values in case of bachelor groups. Female cheetahs (n = 9) predominantly fed on browsers and used also hartebeest and warthogs. Mixing models suggested that the isotopic prey category that included cattle was only important, if at all, for males living in bachelor groups. Stable isotope analysis of fur, muscle, red blood cells and blood plasma in 9 free-ranging cheetahs identified most individuals as isotopic specialists, focussing on isotopically distinct prey categories as their food. PMID:25162403

  19. Storm runoff analysis using environmental isotopes and major ions

    International Nuclear Information System (INIS)

    Fritz, P.; Cherry, J.A.; Sklash, M.; Weyer, K.U.

    1976-01-01

    At a given locality the oxygen-18 content of rainwater varies from storm to storm but within broad seasonal trends. Very frequently, especially during heavy summer storms, the stable isotope composition of rainwater differs from that of the groundwater in the area. This isotopic difference can be used to differentiate between 'prestorm' and 'rain' components in storm runoff. This approach to the use of natural 18 O was applied in four hydrogeologically very different basins in Canada. Their surface areas range from less than 2km 2 to more than 700km 2 . Before, during and after the storm events samples of stream water, groundwater and rain were analysed for 18 O and in some cases for deuterium, major ions and electrical conductance. The 18 O hydrograph separations show that groundwater was a major component of the runoff in each of the basins, and usually exceeded 50% of the total water discharged. Even at peak stream flow most of discharge was subsurface water. The identification of geographic sources rather than time sources appears possible if isotope techniques are used in conjunction with chemical analyses, hydrological data - such as flow measurements - and visual observations. (author)

  20. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Tracking transformation processes of organic micropollutants in aquatic environments using multi-element isotope fractionation analysis

    International Nuclear Information System (INIS)

    Hofstetter, Thomas B.; Bolotin, Jakov; Skarpeli-Liati, Marita; Wijker, Reto; Kurt, Zohre; Nishino, Shirley F.; Spain, Jim C.

    2011-01-01

    The quantitative description of enzymatic or abiotic transformations of man-made organic micropollutants in rivers, lakes, and groundwaters is one of the major challenges associated with the risk assessment of water resource contamination. Compound-specific isotope analysis enables one to identify (bio)degradation pathways based on changes in the contaminants' stable isotope ratios even if multiple reactive and non-reactive processes cause concentrations to decrease. Here, we investigated how the magnitude and variability of isotope fractionation in some priority pollutants is determined by the kinetics and mechanisms of important enzymatic and abiotic redox reactions. For nitroaromatic compounds and substituted anilines, we illustrate that competing transformation pathways can be assessed via trends of N and C isotope signatures.

  2. Diode laser based resonance ionization mass spectrometry for spectroscopy and trace analysis of uranium isotopes

    International Nuclear Information System (INIS)

    Hakimi, Amin

    2013-01-01

    In this doctoral thesis, the upgrade and optimization of a diode laser system for high-resolution resonance ionization mass spectrometry is described. A frequency-control system, based on a double-interferometric approach, allowing for absolute stabilization down to 1 MHz as well as frequency detunings of several GHz within a second for up to three lasers in parallel was optimized. This laser system was used for spectroscopic studies on uranium isotopes, yielding precise and unambiguous level energies, total angular momenta, hyperfine constants and isotope shifts. Furthermore, an efficient excitation scheme which can be operated with commercial diode lasers was developed. The performance of the complete laser mass spectrometer was optimized and characterized for the ultra-trace analysis of the uranium isotope 236 U, which serves as a neutron flux dosimeter and tracer for radioactive anthropogenic contaminations in the environment. Using synthetic samples, an isotope selectivity of ( 236 U)/( 238 U) = 4.5(1.5) . 10 -9 was demonstrated.

  3. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Science.gov (United States)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower

  4. Phase analysis of Fe-B-V system

    Czech Academy of Sciences Publication Activity Database

    Homolová, V.; Výrostková, A.; Čiripová, L.; Kroupa, Aleš

    2013-01-01

    Roč. 51, č. 2 (2013), s. 135-139 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP108/10/1908 Institutional support: RVO:68081723 Keywords : CALPHAD method * Fe-B-V system * phase diagram Subject RIV: BJ - Thermodynamics Impact factor: 0.546, year: 2013

  5. Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling

    Science.gov (United States)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.

    2018-05-01

    The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.

  6. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  7. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    Science.gov (United States)

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  8. Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Myra E., E-mail: myraf@ucsc.edu [Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, CA 95064 (United States); Kuspa, Zeka E. [Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, CA 95064 (United States); Welch, Alacia [National Park Service, Pinnacles National Park, 5000 Highway 146, Paicines, CA 95043 (United States); Eng, Curtis; Clark, Michael [Los Angeles Zoo and Botanical Gardens, 5333 Zoo Drive, Los Angeles, CA 90027 (United States); Burnett, Joseph [Ventana Wildlife Society, 19045 Portola Dr. Ste. F-1, Salinas, CA 93908 (United States); Smith, Donald R. [Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, CA 95064 (United States)

    2014-10-15

    Lead poisoning is preventing the recovery of the critically endangered California condor (Gymnogyps californianus) and lead isotope analyses have demonstrated that ingestion of spent lead ammunition is the principal source of lead poisoning in condors. Over an 8 month period in 2009, three lead-poisoned condors were independently presented with birdshot embedded in their tissues, evidencing they had been shot. No information connecting these illegal shooting events existed and the timing of the shooting(s) was unknown. Using lead concentration and stable lead isotope analyses of feathers, blood, and recovered birdshot, we observed that: i) lead isotope ratios of embedded shot from all three birds were measurably indistinguishable from each other, suggesting a common source; ii) lead exposure histories re-constructed from feather analysis suggested that the shooting(s) occurred within the same timeframe; and iii) two of the three condors were lead poisoned from a lead source isotopically indistinguishable from the embedded birdshot, implicating ingestion of this type of birdshot as the source of poisoning. One of the condors was subsequently lead poisoned the following year from ingestion of a lead buckshot (blood lead 556 µg/dL), illustrating that ingested shot possess a substantially greater lead poisoning risk compared to embedded shot retained in tissue (blood lead ∼20 µg/dL). To our knowledge, this is the first study to use lead isotopes as a tool to retrospectively link wildlife shooting events. - Highlights: • We conducted a case-based analysis of illegal shootings of California condors. • Blood and feather Pb isotopes were used to reconstruct the illegal shooting events. • Embedded birdshot from the three condors had the same Pb isotope ratios. • Feather and blood Pb isotopes indicated that the condors were shot in a common event. • Ingested shot causes substantially greater lead exposure compared to embedded shot.

  9. Analysis of carbon stable isotope to determine the origin and migration of gaseous hydrocarbon in the Brazilian sedimentary basins

    International Nuclear Information System (INIS)

    Takaki, T.; Rodrigues, R.

    1986-01-01

    The carbon isotopic composition of natural gases to determine the origin and gaseous hydrocarbon migration of Brazilian sedimentar basins is analysed. The carbon isotopic ratio of methane from natural gases depends on the process of gas formation and stage of organic matter maturation. In the geochemical surface exploration the biogenic gases are differentiated from thermogenic gases, because the last one is isotopically heavier. As the isotopic composition of methane has not changed during migration, the migrated gases from deeper and more mature source rocks are identified by its relative 13 C enrichment. The methane was separated from chromatography and and the isotopic analysis was done with mass spectrometer. (M.C.K.) [pt

  10. Diet of spotted bats (Euderma maculatum) in Arizona as indicated by fecal analysis and stable isotopes

    Science.gov (United States)

    We assessed diet of spotted bats (Euderma maculatum (J.A. Allen, 1891)) by visual analysis of bat feces and stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of bat feces, wing, hair, and insect prey. We collected 33 fecal samples from spotted bats and trapped 3755 insect...

  11. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  12. comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis

    International Nuclear Information System (INIS)

    Sun Yingxue; Zheng Bin; Zhang Fenggang

    2009-01-01

    This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)

  13. Minimal Influence of [NiFe] Hydrogenase on Hydrogen Isotope Fractionation in H2-Oxidizing Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Brian J. Campbell

    2017-10-01

    Full Text Available Fatty acids produced by H2-metabolizing bacteria are sometimes observed to be more D-depleted than those of photoautotrophic organisms, a trait that has been suggested as diagnostic for chemoautotrophic bacteria. The biochemical reasons for such a depletion are not known, but are often assumed to involve the strong D-depletion of H2. Here, we cultivated the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha H16 under aerobic, H2-consuming, chemoautotrophic conditions and measured the isotopic compositions of its fatty acids. In parallel with the wild type, two mutants of this strain, each lacking one of two key hydrogenase enzymes, were also grown and measured. In all three strains, fractionations between fatty acids and water ranged from -173‰ to -235‰, and averaged -217‰, -196‰, and -226‰, respectively, for the wild type, SH- mutant, and MBH- mutant. There was a modest increase in δD as a result of loss of the soluble hydrogenase enzyme. Fractionation curves for all three strains were constructed by growing parallel cultures in waters with δDwater values of approximately -25‰, 520‰, and 1100‰. These curves indicate that at least 90% of the hydrogen in fatty acids is derived from water, not H2. Published details of the biochemistry of the soluble and membrane-bound hydrogenases confirm that these enzymes transfer electrons rather than intact hydride (H- ions, providing no direct mechanism to connect the isotopic composition of H2 to that of lipids. Multiple lines of evidence thus agree that in this organism, and presumably others like it, environmental H2 plays little or no direct role in controlling lipid δD values. The observed fractionations must instead result from isotope effects in the reduction of NAD(PH by reductases with flavin prosthetic groups, which transfer two electrons and acquire H+ (or D+ from solution. Parallels to NADPH reduction in photosynthesis may explain why D/H fractionations in C. necator

  14. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    International Nuclear Information System (INIS)

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236 U/ 238 U isotope ratios (i.e. 10 −5 ). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234 U/ 238 U and 235 U/ 238 U ratios. Experimental results obtained for 236 U/ 238 U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties U c (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U, respectively. - Highlights: ► LA-MC-ICP-MS was fully validated for the direct analysis of individual particles. ► Traceability was established by using an IRMM glass particle reference material. ► Measured U isotope ratios were in agreement with the certified range. ► A comprehensive total combined uncertainty evaluation was performed. ► The analysis of 236 U/ 238 U isotope ratios was improved by using a deceleration filter.

  15. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  16. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Zhang, Xi-Chang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Liu, Weiping [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Center for Environmental Research – UFZ, Leipzig 04318 (Germany)

    2015-09-15

    Highlights: • Alpha-cypermethrin (α-CP) can be degraded by microorganisms in soil. • Biodegradation of α-CP resulted in carbon isotope fractionation. • A relationship was found between carbon isotope ratios and concentrations of α-CP. • An enrichment factor ϵ of α-CP was determined as −1.87‰. • CSIA is applicable to assess biodegradation of α-CP. - Abstract: To assess microbial degradation of alpha-cypermethrin in soil, attenuation of alpha-cypermethrin was investigated by compound-specific stable isotope analysis. The variations of the residual concentrations and stable carbon isotope ratios of alpha-cypermethrin were detected in unsterilized and sterilized soils spiked with alpha-cypermethrin. After an 80 days’ incubation, the concentrations of alpha-cypermethrin decreased to 0.47 and 3.41 mg/kg in the unsterilized soils spiked with 2 and 10 mg/kg, while those decreased to 1.43 and 6.61 mg/kg in the sterilized soils. Meanwhile, the carbon isotope ratios shifted to −29.14 ± 0.22‰ and −29.86 ± 0.33‰ in the unsterilized soils spiked with 2 and 10 mg/kg, respectively. The results revealed that microbial degradation contributed to the attenuation of alpha-cypermethrin and induced the carbon isotope fractionation. In order to quantitatively assess microbial degradation, a relationship between carbon isotope ratios and residual concentrations of alpha-cypermethrin was established according to Rayleigh equation. An enrichment factor, ϵ = −1.87‰ was obtained, which can be employed to assess microbial degradation of alpha-cypermethrin. The significant carbon isotope fractionation during microbial degradation suggests that CSIA is a proper approach to qualitatively detect and quantitatively assess the biodegradation during attenuation process of alpha-cypermethrin in the field.

  17. K4 Fe(CN)6 as a spectrophotometric agent for uranium analysis

    International Nuclear Information System (INIS)

    Soedyartomo; Tarwita.

    1976-01-01

    The properties of K 4 Fe(CN) 6 as a spectrophotometric agent for Uranium analysis was observed by putting some experiment into practice. The experiment covers the observation of expanding colour stability, the optimization of operating condition (p,H. and wavelength), the effect of K 4 Fe(CN) 6 concentration and the preparation of its standard curves (transmitansion vs uranium concentration) and the observation of the interfering metal spectra s (Cu ++ , Fe ++ ) either of its mixtures or themselves alone, has been carried out. The result and discussion on it are given. (author)

  18. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    Science.gov (United States)

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    Science.gov (United States)

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  20. Ar39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    Science.gov (United States)

    Jiang, W.; Williams, W.; Bailey, K.; Davis, A. M.; Hu, S.-M.; Lu, Z.-T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-03-01

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  1. Field ionization mass spectrometry (FIMS) applied to tracer studies and isotope dilution analysis

    International Nuclear Information System (INIS)

    Anbar, M.; Heck, H.d'A.; McReynolds, J.H.; St John, G.A.

    1975-01-01

    The nonfragmenting nature of field ionization mass spectrometry makes it a preferred technique for the isotopic analysis of multilabeled organic compounds. The possibility of field ionization of nonvolatile thermolabile materials significantly extends the potential uses of this technique beyond those of conventional ionization methods. Multilabeled tracers may be studied in biological systems with a sensitivity comparable to that of radioactive tracers. Isotope dilution analysis may be performed reliably by this technique down to picogram levels. These techniques will be illustrated by a number of current studies using multilabeled metabolites and drugs. The scope and limitations of the methodology are discussed

  2. Microcalorimeter Q-spectroscopy for rapid isotopic analysis of trace actinide samples

    Energy Technology Data Exchange (ETDEWEB)

    Croce, M.P., E-mail: mpcroce@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Bond, E.M.; Hoover, A.S.; Kunde, G.J.; Mocko, V.; Rabin, M.W.; Weisse-Bernstein, N.R.; Wolfsberg, L.E. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bennett, D.A.; Hays-Wehle, J.; Schmidt, D.R.; Ullom, J.N. [National Institute of Standards and Technology, Boulder, CO (United States)

    2015-06-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeters that are optimized for rapid isotopic analysis of trace actinide samples by Q-spectroscopy. By designing mechanically robust TESs and simplified detector assembly methods, we have developed a detector for Q-spectroscopy of actinides that can be assembled in minutes. We have characterized the effects of each simplification and present the results. Finally, we show results of isotopic analysis of plutonium samples with Q-spectroscopy detectors and compare the results to mass spectrometry.

  3. Microcalorimeter Q-spectroscopy for rapid isotopic analysis of trace actinide samples

    International Nuclear Information System (INIS)

    Croce, M.P.; Bond, E.M.; Hoover, A.S.; Kunde, G.J.; Mocko, V.; Rabin, M.W.; Weisse-Bernstein, N.R.; Wolfsberg, L.E.; Bennett, D.A.; Hays-Wehle, J.; Schmidt, D.R.; Ullom, J.N.

    2015-01-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeters that are optimized for rapid isotopic analysis of trace actinide samples by Q-spectroscopy. By designing mechanically robust TESs and simplified detector assembly methods, we have developed a detector for Q-spectroscopy of actinides that can be assembled in minutes. We have characterized the effects of each simplification and present the results. Finally, we show results of isotopic analysis of plutonium samples with Q-spectroscopy detectors and compare the results to mass spectrometry

  4. Isotope pattern deconvolution as a tool to study iron metabolism in plants.

    Science.gov (United States)

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes

    2008-01-01

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.

  5. Isotope pattern deconvolution as a tool to study iron metabolism in plants

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Castrillon, Jose A.; Moldovan, Mariella; Garcia Alonso, J.I. [University of Oviedo, Department of Physical and Analytical Chemistry, Oviedo (Spain); Lucena, Juan J.; Garcia-Tome, Maria L.; Hernandez-Apaolaza, Lourdes [Autonoma University of Madrid, Department of Agricultural Chemistry, Madrid (Spain)

    2008-01-15

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using {sup 57}Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned {sup 57}Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low {sup 57}Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of {sup 57}Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample. (orig.)

  6. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China: Evidence from stable isotopes

    Directory of Open Access Journals (Sweden)

    Clément Ganino

    2013-09-01

    Full Text Available The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit. During emplacement of the main intrusion, multiple generations of mafic dykes invaded carbonate wall rocks, producing a large contact aureole. We measured the oxygen-isotope composition of the intrusions, their constituent minerals, and samples of the country rock. Magnetite and plagioclase from Panzhihua intrusion have δ18O values that are consistent with magmatic equilibrium, and formed from magmas with δ18O values that were 1–2‰ higher than expected in a mantle-derived magma. The unmetamorphosed country rock has high δ18O values, ranging from 13.2‰ (sandstone to 24.6–28.6‰ (dolomite. The skarns and marbles from the aureole have lower δ18O and δ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole. This would explain the alteration of δ18O of the dykes which have significantly higher values than expected for a mantle-derived magma. Depending on the exact δ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevated δ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%, assuming simple mixing. The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock, mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites. These mechanisms, particularly the latter, were probably involved in the formation of the Fe-Ti-V ores.

  7. Testing sequential extraction methods for the analysis of multiple stable isotope systems from a bone sample

    Science.gov (United States)

    Sahlstedt, Elina; Arppe, Laura

    2017-04-01

    Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.

  8. Maintaining high precision of isotope ratio analysis over extended periods of time.

    Science.gov (United States)

    Brand, Willi A

    2009-06-01

    Stable isotope ratios are reliable and long lasting process tracers. In order to compare data from different locations or different sampling times at a high level of precision, a measurement strategy must include reliable traceability to an international stable isotope scale via a reference material (RM). Since these international RMs are available in low quantities only, we have developed our own analysis schemes involving laboratory working RM. In addition, quality assurance RMs are used to control the long-term performance of the delta-value assignments. The analysis schemes allow the construction of quality assurance performance charts over years of operation. In this contribution, the performance of three typical techniques established in IsoLab at the MPI-BGC in Jena is discussed. The techniques are (1) isotope ratio mass spectrometry with an elemental analyser for delta(15)N and delta(13)C analysis of bulk (organic) material, (2) high precision delta(13)C and delta(18)O analysis of CO(2) in clean-air samples, and (3) stable isotope analysis of water samples using a high-temperature reaction with carbon. In addition, reference strategies on a laser ablation system for high spatial resolution delta(13)C analysis in tree rings is exemplified briefly.

  9. Isotope analysis by emission spectroscopy; Analyse isotopique par spectroscopie d'emission

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Gerstenkorn, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Blaise, J [Centre National de la Recherche Scientifique (CNRS), Lab. Aime Cotton, 92 - Meudon-Bellevue (France)

    1959-07-01

    Quantitative analysis of isotope mixtures by emission spectroscopy is resulting from the phenomenon called 'isotope shift', say from the fact that spectral lines produced by a mixture of isotopes of a same element are complex. Every spectral line is, indeed, resulting from several lines respectively corresponding to each isotope. Then isotopic components are near one to others, and their separation is effected by means of Fabry-Perot calibration standard: the apparatus allowing to measure abundances is the Fabry-Perot photo-electric spectrometer, designed in 1948 by MM. JACQUINOT and DUFOUR. This method has been used to make abundance determination in the case of helium, lithium, lead and uranium. In the case of lithium, the utilised analysis line depends on the composition of examined isotopic mixture. For mixtures containing 7 to 93 pour cent of one of isotopes of lithium, this line is the lithium blue line: {lambda} = 4603 angstrom. In other cases the red line {lambda} = 6707 angstrom is preferable, though it allows to do easily nothing but relative determinations. Helium shows no particular difficulty and the analysis line selected was {lambda} = 6678 angstrom. For lead the line {lambda} = 5201 angstrom gives the possibility to determine the isotope abundance for the four isotopes of lead notwithstanding the presence of hyperfine structure of {sup 207}Pb. For uranium, line {lambda} 5027 angstrom is used, and this method allows to determine the composition of isotope mixtures, the content of which in {sup 235}U may shorten to 0,1 per cent. Relative precision is about 2 per cent for contents in {sup 235}U over 1 per cent. For lower contents, this line {lambda} = 5027 angstrom will allow relative measures when using previously dosed mixtures. (author) [French] L'analyse quantitative des melanges isotopiques par spectroscopie d'emission doit son existence au phenomene appele 'deplacement isotopique', c'est-a-dire au fait que les raies spectrales emises par un

  10. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    2006-01-01

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide ( 12 C 16 O 2 , 13 C 16 O 2 ) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm -1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10 -2 , in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10 -8 cm -1 . (author)

  11. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 μg of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for 238 Pu/ 239 Pu, 0.996 +- 0.018 for 240 Pu/ 239 Pu, and 0.980 +- 0.038 for 241 Pu/ 239 Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs

  12. Analytical developments in thermal ionization mass spectrometry for the isotopic analysis of very small amounts

    International Nuclear Information System (INIS)

    Mialle, S.

    2011-01-01

    In the framework of the French transmutation project of nuclear wastes, experiments consisted in the irradiation in a fast neutron reactor of few milligrams of isotopically enriched powders. Hence, the isotopic analysis of very small amount of irradiation products is one of the main issues. The aim of this study was to achieve analytical developments in thermal ionization mass spectrometry in order to accurately analyze these samples. Several axes were studied including the new total evaporation method, deposition techniques, electron multiplier potentialities and comparison between different isotope measurement techniques. Results showed that it was possible to drastically decrease the amounts needed for analysis, especially with Eu and Nd, while maintaining an uncertainty level in agreement with the project requirements. (author) [fr

  13. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; O'Dowd, C. D.

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80% organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of fossil-fuel origin. By contrast, for polluted air advecting out from Europe into the NE Atlantic, the source apportionment is 30% marine biogenic, 40% fossil fuel, and 30% continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  14. Stable-isotope analysis: a neglected tool for placing parasites in food webs.

    Science.gov (United States)

    Sabadel, A J M; Stumbo, A D; MacLeod, C D

    2018-02-28

    Parasites are often overlooked in the construction of food webs, despite their ubiquitous presence in almost every type of ecosystem. Researchers who do recognize their importance often struggle to include parasites using classical food-web theory, mainly due to the parasites' multiple hosts and life stages. A novel approach using compound-specific stable-isotope analysis promises to provide considerable insight into the energetic exchanges of parasite and host, which may solve some of the issues inherent in incorporating parasites using a classical approach. Understanding the role of parasites within food webs, and tracing the associated biomass transfers, are crucial to constructing new models that will expand our knowledge of food webs. This mini-review focuses on stable-isotope studies published in the past decade, and introduces compound-specific stable-isotope analysis as a powerful, but underutilized, newly developed tool that may answer many unresolved questions regarding the role of parasites in food webs.

  15. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  16. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  17. Nutritional assessment by isotope dilution analysis of body composition

    International Nuclear Information System (INIS)

    Szeluga, D.J.; Stuart, R.K.; Utermohlen, V.; Santos, G.W.

    1984-01-01

    The three components of body mass, body cell mass (BCM), extracellular fluid (ECF), and fat + extracellular solids (ECS: bone, tendon, etc) can be quantified using established isotope dilution techniques. With these techniques, total body water (TBW) and ECF are measured using 3H 2 O and 82 Bromine, respectively, as tracers. BCM is calculated from intracellular fluid (ICF) where ICF . TBW - ECF. Fat + ECS is estimated as: body weight - (BCM + ECF). TBW and ECF can be determined by either of two calculation methods, one requiring several timed plasma samples (extrapolation method) and one requiring a single plasma sample and a 4-h urine collection (urine-corrected method). The comparability of the two calculation methods was evaluated in 20 studies in 12 bone marrow transplant recipients. We found that for determination of TBW and ECF there was a very strong linear relationship (r2 greater than 0.98) between the calculation methods. Further comparisons (by t test, 2-sided) indicated that for the determination of ECF, the methods were not significantly (p greater than 0.90) different; however, TBW determined by the urine-corrected method was slightly (0.1 to 6%), but significantly (p less than 0.01) greater than that determined by the extrapolation method. Therefore, relative to the extrapolation method, the urine-corrected method ''over-estimates'' BCM and ''under-estimates'' fat + ECS since determination of these compartment sizes depends on measurement of TBW. We currently use serial isotope dilution studies to monitor the body composition changes of patients receiving therapeutic nutritional support

  18. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  19. Analysis of transuranic isotopes in irradiated U3Si2-Al fuel by alpha spectrometry

    International Nuclear Information System (INIS)

    Dian Anggraini; Aslina B Ginting; Arif Nugroho

    2011-01-01

    Separation and analysis of transuranic isotopes (uranium and plutonium) in irradiated U 3 Si 2 -Al plate has been done. The analysis experiment includes sample preparation (i.e. cutting, dissolving, filtering, dilution), fission products separation from heavy elements, and analysis of transuranic isotopes content with alpha spectrometer. The separation of transuranic isotopes (U, Pu) was done by two methods, i.e. direct method and ion exchanger method with zeolite. Measurement of standard transuranic isotope (AMR 43) and standard U 3 O 8 was done in advance in order to determine percentage of 235 U recovery and detector efficiency. Recovery of 235 U isotope was obtained as much as 92,58%, which fulfills validation requirement, and the detector efficiency was 0.314. Based on the measured recovery and detector efficiency, the separation was done by direct electrodeposition method of 250 µL irradiated U 3 Si 2 -Al solution. The deposited sample was subsequently analyzed with alpha spectrometer. The separation with ion exchanger was done by mixing and shaking of 300 µL irradiated U 3 Si 2 -Al solution and 0.5 gram zeolite to separate the liquid phase from the solid phase. The liquid phase was electrodeposited and analyzed with alpha spectrometer. The analysis of transuranic isotopes (U, Pu) by both methods shows different results. Heavy element ( 238 U, 236 U, 234 U, 239 Pu) content obtained by direct method was 0.0525 g/g and 235 U= 0.0076 g/g, while the separation using zeolite ion exchanger resulted in Heavy element = 0.0253 g/g and 235 U = 0.0092 g/g. (author)

  20. Isotope analysis of micro metal particles by adopting laser-ablation mass spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Ha, Young Kyung; Han, Sun Ho; Park, Yong Joon; Kim, Won Ho

    2005-01-01

    The isotope analysis of microparticles in environmental samples as well as laboratory samples is an important task. A special concern is necessary in particle analysis of swipe samples. Micro particles are normally analyzed either by dissolving particles in the solvents and adopting conventional analytical methods or direct analysis method such as a laser-ablation ICP mass spectrometry (LA-ICP-MS), SIMS, and SNMS (sputtered neutral mass spectrometry). But the LA-ICPMS uses large amount of samples because normally laser beam is tightly focused on the target particle for the complete ablation. The SIMS and SNMS utilize ion beams for the generation of sample ions from the particle. But the number of ions generated by an ion beam is less than 5% of the total generated particles in SIMS. The SNMS is also an excellent analytical technique for particle analysis, however, ion beam and frequency tunable laser system are required for the analysis. Recently a direct analysis of elements as well as isotopes by using laser-ablation is recognized one of the most efficient detection technology for particle samples. The laser-ablation mass spectrometry requires only one laser source without frequency tuneability with no sample pretreatment. Therefore this technique is one of the simplest analysis techniques for solid samples as well as particles. In this study as a part of the development of the new isotope analysis techniques for particles samples, a direct laser-ablation is adopted with mass spectrometry. Zinc and gadolinium were chosen as target samples, since these elements have isotopes with minor abundance (0.62% for Zn, and 0.2% for Gd). The preliminary result indicates that isotopes of these two elements are analyzed within 10% of natural abundance with good mass resolution by using direct laser-ablation mass spectrometry

  1. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    International Nuclear Information System (INIS)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A.M.; Beard, Mary; Brown, Edward; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A.M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nuclides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  2. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  3. Progress in the analysis and interpretation of N2O isotopes: Potential and future challenges

    Science.gov (United States)

    Mohn, Joachim; Tuzson, Béla; Zellweger, Christoph; Harris, Eliza; Ibraim, Erkan; Yu, Longfei; Emmenegger, Lukas

    2017-04-01

    In recent years, research on nitrous oxide (N2O) stable isotopes has significantly advanced, addressing an increasing number of research questions in biogeochemical and atmospheric sciences [1]. An important milestone was the development of quantum cascade laser based spectroscopic devices [2], which are inherently specific for structural isomers (15N14N16O vs. 14N15N16O) and capable to collect real-time data with high temporal resolution, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. In combination with automated preconcentration, optical isotope ratio spectroscopy (OIRS) has been applied to disentangle source processes in suburban, rural and pristine environments [e.g. 3, 4]. Within the European Metrology Research Programme (EMRP) ENV52 project "Metrology for high-impact greenhouse gases (HIGHGAS)", the quality of N2O stable isotope analysis by OIRS, the comparability between laboratories, and the traceability to the international isotope ratio scales have been addressed. An inter-laboratory comparison between eleven IRMS and OIRS laboratories, organised within HIGHGAS, indicated limited comparability for 15N site preference, i.e. the difference between 15N abundance in central (N*NO) and end (*NNO) position [5]. In addition, the accuracy of the NH4NO3 decomposition reaction, which provides the link between 15N site preference and the international 15N/14N scale, was found to be limited by non-quantitative NH4NO3 decomposition in combination with substantially different isotope enrichment factors for both nitrogen atoms [6]. Results of the HIGHGAS project indicate that the following research tasks have to be completed to foster research on N2O isotopes: 1) develop improved techniques to link the 15N and 18O abundance and the 15N site preference in N2O to the international stable isotope ratio scales; 2) provide N2O reference materials, pure and diluted in an air matrix, to improve inter-laboratory compatibility. These tasks

  4. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  5. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    Directory of Open Access Journals (Sweden)

    Amanda W.J. Demopoulos

    2015-04-01

    Full Text Available Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi and permanently parasitic cymothoids (Anilocra. To further track the transfer of fish-derived carbon (energy from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  6. Mass spectrometric analysis of stable carbon isotopes in abiogenic and biogenic natural compounds

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Ahmed, M.; Tasneem, M.A.; Khan, I.A.; Latif, Z.

    1989-07-01

    This report describes the general methodology of sup/13/ carbon analysis on mass spectrometer and various preparation systems developed for conversion of samples into isotopically non-fractionated and purified carbon dioxide. Laboratory standards required for sup/13/ C analysis have been calibrated against international standards. The reproducibility/accuracy of sample preparation and analysis on mass spectrometer for sup/13/ C or sup/12/ C measurement is well within the internationally acceptable limits. (author)

  7. Determination of traces of iridium with thiodibenzoylmethane by substoichiometric isotope dilution analysis

    International Nuclear Information System (INIS)

    Roebisch, G.; Bansse, W.; Ludwig, E.

    1980-01-01

    Iridium(III or IV) reacts with thiodibenzoylmethane on heating at pH 6 to form a 1:3 complex, which can be concentrated by extraction into chloroform. Based on this reaction, a reproducible, selective determination of iridium is achieved by means of substoichiometric isotope dilution analysis, based on 192 Ir. The linear range is 1-11 nmol of iridium. (Auth.)

  8. Isotopically nonstationary metabolic flux analysis (INST-MFA) of photosynthesis and photorespiration in plants

    Science.gov (United States)

    Photorespiration is a central component of photosynthesis; however to better understand its role it should be viewed in the context of an integrated metabolic network rather than a series of individual reactions that operate independently. Isotopically nonstationary 13C metabolic flux analysis (INST...

  9. Satellite tracking and stable isotope analysis link wintering and feeding grounds of North Atlantic baleen whales

    NARCIS (Netherlands)

    e Silva, Monica Almeida; Prieto, Rui; Gauffier, Pauline; Palsboll, Per; Bérubé, Martine; Colaco, Ana

    2017-01-01

    Knowledge of the distribution of baleen whales throughout their annual cycle is critical for understanding their ecology, life history and behavior, and for their effective conservation. We combined analysis of stable isotopes (δ15N and δ13C) and satellite tracking data of blue (Balaenoptera

  10. Tracing diffuse anthropogenic Pb sources in rural soils by means of Pb isotope analysis

    NARCIS (Netherlands)

    Walraven, N.; Gaans, P.F.M. van; Veer, G. van der; Os, B.J.H. van; Klaver, G.T.; Vriend, S.P.; Middelburg, J.J.; Davies, G.R.

    2013-01-01

    Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of

  11. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    OpenAIRE

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abu...

  12. Ar-39 Detection at the 10^-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    OpenAIRE

    Jiang, W.; Williams, W. D.; Bailey, K.; Davis, A. M.; Hu, S. -M.; Lu, Z. -T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-01-01

    Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, has been applied to analyze atmospheric Ar-39 (half-life = 269 yr), a cosmogenic isotope with an isotopic abundance of 8x10^-16. In addition to the superior selectivity demonstrated in this work, counting rate and efficiency of ATTA have been improved by two orders of magnitude over prior results. Significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the develop...

  13. Error analysis of isotope dilution mass spectrometry method with internal standard

    International Nuclear Information System (INIS)

    Rizhinskii, M.W.; Vitinskii, M.Y.

    1989-02-01

    The computation algorithms of the normalized isotopic ratios and element concentration by isotope dilution mass spectrometry with internal standard are presented. A procedure based on the Monte-Carlo calculation is proposed for predicting the magnitude of the errors to be expected. The estimation of systematic and random errors is carried out in the case of the certification of uranium and plutonium reference materials as well as for the use of those reference materials in the analysis of irradiated nuclear fuels. 4 refs, 11 figs, 2 tabs

  14. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    Science.gov (United States)

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hyperfine structure and isotope shift analysis of singly ionized titanium

    Science.gov (United States)

    Bouazza, Safa

    2013-04-01

    The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.

  16. Influences of plasticity on a sheet pile phased stochastic FE analysis

    NARCIS (Netherlands)

    Boer, A. de; Waarts, P.H.

    2000-01-01

    The paper deals with the stochastic analysis of the stability of a sheet pile soil structure. Most areas in the Netherlands have layered soil conditions. The decisive parameter in the nonlinear FE analysis is the behaviour of the soil. For layered soil conditions, the correct modelling of the

  17. Analysis of 'ADI' welding, with Fe-Ni electrodes

    International Nuclear Information System (INIS)

    Aguera, Francisco R; Ansaldi, Andrea; Reynoso, Alejandro; Fierro, Victor; Alvarez Villar, Nelson; Aquino, Daniel; Ayllon, Eduardo S

    2008-01-01

    This work analyzes the results of ADI, welded with consumable electrodes that deposit an alloy of 50%Fe and 50%Ni. The iron and nickel properties and the microstructures resulting from the alloying used in the support material are studied, and the current phase diagrams and their predecessors are reviewed for this purpose. The mechanical properties of the base materials and the support material were determined. The microhardness of specially prepared test pieces was measured in the base material, the mixed zone and the zone affected by heat. The results of these determinations were linked to the previously identified microstructural components. The base materials and the support material were characterized, for which Charpy, HRB, and metallography traction tests were prepared. The tests show the possibilities of welding the ADI, with 50% nickel electrodes, as well as the difficulties with the technique used and the limitations in the results obtained to date

  18. Is it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants

    DEFF Research Database (Denmark)

    Laursen, K.H.; Mihailova, A.; Kelly, S.D.

    2013-01-01

    for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between......Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate...... plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional...

  19. A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.

    Science.gov (United States)

    Sakai, Saburo; Matsuda, Shinichi

    2017-04-18

    Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.

  20. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    Science.gov (United States)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  1. Determination of geographic provenance of cotton fibres using multi-isotope profiles and multivariate statistical analysis

    Science.gov (United States)

    Daeid, N. Nic; Meier-Augenstein, W.; Kemp, H. F.

    2012-04-01

    The analysis of cotton fibres can be particularly challenging within a forensic science context where discrimination of one fibre from another is of importance. Normally cotton fibre analysis examines the morphological structure of the recovered material and compares this with that of a known fibre from a particular source of interest. However, the conventional microscopic and chemical analysis of fibres and any associated dyes is generally unsuccessful because of the similar morphology of the fibres. Analysis of the dyes which may have been applied to the cotton fibre can also be undertaken though this can be difficult and unproductive in terms of discriminating one fibre from another. In the study presented here we have explored the potential for Isotope Ratio Mass Spectrometry (IRMS) to be utilised as an additional tool for cotton fibre analysis in an attempt to reveal further discriminatory information. This work has concentrated on un-dyed cotton fibres of known origin in order to expose the potential of the analytical technique. We report the results of a pilot study aimed at testing the hypothesis that multi-element stable isotope analysis of cotton fibres in conjunction with multivariate statistical analysis of the resulting isotopic abundance data using well established chemometric techniques permits sample provenancing based on the determination of where the cotton was grown and as such will facilitate sample discrimination. To date there is no recorded literature of this type of application of IRMS to cotton samples, which may be of forensic science relevance.

  2. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Characterization of wines according the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values.

    Science.gov (United States)

    Dutra, S V; Adami, L; Marcon, A R; Carnieli, G J; Roani, C A; Spinelli, F R; Leonardelli, S; Vanderlinde, R

    2013-12-01

    We studied Brazilian wines produced by microvinification from Cabernet Sauvignon and Merlot grapes, vintages 2007 and 2008, from the Serra Gaúcha, Campanha and Serra do Sudeste regions, in order to differentiate them according to geographical origin by using isotope and mineral element analyses. In addition, the influence of vintage production in isotope values was verified. Isotope analysis was performed by isotope ratio mass spectrometry (IRMS), and the determination of minerals was by flame atomic absorption (FAA). The best parameters to classify the wines in the 2008 vintage were Rb and Li. The results of the δ(13)C of wine ethanol, Rb and Li showed a significant difference between the varieties regardless of the region studied. The δ(18)O values of water and δ(13)C of ethanol showed significant differences, regardless of the variety. Discriminant analysis of isotope and minerals values allowed to classify approximately 80% of the wines from the three regions studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Study on the depth profile analysis of Fe/Co intermixing in [SmCo{sub 5}/Fe]{sub 11} magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P., E-mail: psdrdo@gmail.com [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Perumal, A.; Gayen, Anabil [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Reddy, G.L.N.; Kumar, Sanjiv [National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad 500062 (India); Kamat, S.V. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2014-09-01

    Multilayer films were sputtered on Si (1 0 0) substrate by following a layer sequence of Cr (10 nm)/[Fe (4 nm)/SmCo{sub 5} (20 nm)]{sub 11}/Cr (90 nm) at room temperature and subsequently, subjected to two-stage annealing. The phase composition, the extent of inter-diffusion at the SmCo{sub 5}/Fe interfaces and the magnetic properties of multilayered samples were investigated by X-ray diffraction (XRD), RBS and super-conducting quantum interference device (SQUID), respectively. The XRD studies showed the crystallization of SmCo{sub 5}-phase in the hard layer along with a bcc-Fe (Co)-phase in the soft layer, while the RBS depth profile analysis revealed the changes that occur in the effective Fe-layer thickness and diffused Co-content as minimal for the Fe-layer index, n{sub Fe}≤5. A single-phase behavior associated with strong in-plane anisotropy was evidenced with the SQUID measurements. The observed remanence enhancement (1020 kA/m) and energy product value (286 kJ/m{sup 3}) in these multilayers are discussed in the context of Fe-layer thickness and diffused Co-content.

  5. A thermodynamic analysis of chloride corrosion in biomass-fired boilers for Fe-O-Cl-S system

    OpenAIRE

    Kaczmarczyk Robert; Mlonka-Mędrala Agata; Gurgul Sebastian

    2017-01-01

    The paper presents a thermodynamic analysis of chlorideinduced corrosion in the Fe-O-Cl-S system. The influence of steam concentration in the gas phase on chloride-induced corrosion process was presented. Based on the parametric equations the equilibrium concentration of the gas phase was determined. The effect of alkali metals chlorides in gas phase (Na,K)Cl on formation of (Na,K)FeO2 in the passive oxide scale layer (FeO/Fe3O4/Fe2O3) was analysed. Condensation of (Na,K)Cl vapors, formation ...

  6. Penguin Proxies: Deciphering Millennial-Scale Antarctic Ecosystem Change using Amino Acid Stable Isotope Analysis.

    Science.gov (United States)

    Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.

    2017-12-01

    The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach

  7. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    Science.gov (United States)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  8. Analysis of growth and tissue replacement rates by stable sulfur isotope turnover.

    Science.gov (United States)

    Arneson, L. S.; Macko, S. A.; Macavoy, S. E.

    2003-12-01

    Stable isotope analysis has become a powerful tool to study animal ecology. Analysis of stable isotope ratios of elements such as carbon, nitrogen, sulfur, hydrogen, oxygen and others have been used to trace migratory routes, reconstruct dietary sources and determine the physiological condition of individual animals. The isotopes most commonly used are carbon, due to differential carbon fractionation in C3 and C4 plants, and nitrogen, due to the approximately 3% enrichment in 15N per trophic level. Although all cells express sulfur-containing compounds, such as cysteine, methionine, and coenzyme A, the turnover rate of sulfur in tissues has not been examined in most studies, owing to the difficulty in determining the δ 34S signature. In this study, we have assessed the rate of sulfur isotopic turnover in mouse tissues following a diet change from terrestrial (7%) to marine (19%) source. Turnover models reflecting both growth rate and metabolic tissue replacement will be developed for blood, liver, fat and muscle tissues.

  9. Spectrum analysis in lead spectrometer for isotopic fissile assay in used fuel

    International Nuclear Information System (INIS)

    Lee, Y.D.; Park, C.J.; Kim, H.D.; Song, K.C.

    2014-01-01

    The LSDS system is under development for analyzing isotopic fissile content applicable in a hot cell for the pyro process. The fuel assay area and nuclear material composition were selected for simulation. The source mechanism for efficient neutron generation was also determined. A neutron is produced at the Ta target by hitting it from accelerated electron. The parameters for an electron accelerator are being researched for cost effectiveness, easy maintenance, and compact size. The basic principle of LSDS is that isotopic fissile has its own fission structure below the unresolved resonance region. The source neutron interacts with a lead medium and produces continuous neutron energy, which generates dominant fission at each fissile. Therefore, a spectrum analysis is very important at a lead medium and fuel area for system working. The energy spectrum with respect to slowing down energy and the energy resolution were investigated in lead. A spectrum analysis was done by the existence of surrounding detectors. In particular, high resonance energy was considered. The spectrum was well organized at each slowing down energy and the energy resolution was acceptable to distinguish isotopic fissile fissions. Additionally, LSDS is applicable for the optimum design of spent fuel storage and management.The isotopic fissile content assay will increase the transparency and credibility for spent fuel storage and its re-utilization, as demanded internationally. (author)

  10. Conditional CO2 flux analysis of a managed grassland with the aid of stable isotopes

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Emmenegger, L.; Knohl, A.; Buchmann, N.; Eugster, W.

    2009-04-01

    Short statured managed ecosystems, such as agricultural grasslands, exhibit high temporal changes in carbon dioxide assimilation and respiration fluxes for which measurements of the net CO2 flux, e.g. by using the eddy covariance (EC) method, give only limited insight. We have therefore adopted a recently proposed concept for conditional EC flux analysis of forest to grasslands, in order to identify and quantify daytime sub-canopy respiration fluxes. To validate the concept, high frequency (≈5 Hz) stable carbon isotope analyis of CO2 was used. We made eddy covariance measurements of CO2 and its isotopologues during four days in August 2007, using a novel quantum cascade laser absorption spectrometer, capable of high time resolution stable isotope analysis. The effects of a grass cut during the measurement period could be detected and resulted in a sub-canopy source conditional flux classification, for which the isotope composition of the CO2 could be confirmed to be of a respiration source. However, the conditional flux method did not work for an undisturbed grassland canopy. We attribute this to the flux measurement height that was chosen well above the roughness sublayer, where the natural isotopic tracer (δ13C) of respiration was too well mixed with background air.

  11. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    Science.gov (United States)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  12. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    Science.gov (United States)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  13. Study on SOC wavelet analysis for LiFePO4 battery

    Science.gov (United States)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.

  14. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the conceptual Brayton Isotope Power System (BIPS) Flight System

    International Nuclear Information System (INIS)

    Miller, L.G.

    1976-01-01

    A failure modes, effects and criticality analysis (FMECA) was made of the Brayton Isotope Power System Flight System (BIPS-FS) as presently conceived. The components analyzed include: Mini-BRU; Heat Source Assembly (HSA); Mini-Brayton Recuperator (MBR); Space Radiator; Ducts and Bellows, Insulation System; Controls; and Isotope Heat Source (IHS)

  15. Ancient bronze coins from Mediterranean basin: LAMQS potentiality for lead isotopes comparative analysis with former mineral

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it [Department of Physics Science - MIFT, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy); Italiano, A. [INFN, Sezione di Catania, Gruppo collegato di Messina (Italy); Torrisi, A. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland)

    2016-11-30

    Highlights: • Surface and bulk compositional elements in ancient bronze coins were investigated using XRF analysis. • Lead stable isotope {sup 204}Pb, {sup 206}Pb, {sup 207}Pb and {sup 208}Pb were measured in ancient coins with LAMQS analysis. • Lead ratios {sup 208}Pb/{sup 206}Pb and {sup 207}Pb/{sup 206}Pb, measured by LAMQS, were compared with Brettscaife.net geological database relative to the minerals in different mines of Mediterranean basin. • Bronze coins were correlated to possible ancient mining sites of minerals from which lead was extracted. - Abstract: Bronze coins coming from the area of the Mediterranean basin, dated back the II–X Cent. A.D., were analyzed using different physical analytical techniques. Characteristic X-ray fluorescence was used with electrons and photons, in order to investigate the elemental composition of both the surface layers and bulk. Moreover, the quadrupole mass spectrometry coupled to laser ablation (LAMQS technique) in high vacuum was used to analyse typical material compounds from surface contamination. Mass spectrometry, at high resolution and sensitivity, extended up to 300 amu, allowed measuring the {sup 208}Pb/{sup 206}Pb and {sup 207}Pb/{sup 206}Pb isotopic ratios into the coins. Quantitative relative analyses of these isotopic ratios identify the coin composition such as a “fingerprint” depending on the mineral used to extract the lead. Isotopic ratios in coins can be compared to those of the possible minerals used to produce the bronze alloy. A comparison between the measured isotope ratios in the analyzed coins and the literature database, related to the mineral containing Pb as a function of its geological and geophysical extraction mine, is presented. The analysis, restricted to old coins and the mines of the Mediterranean basin, indicates a possible correlation between the coin compositions and the possible geological sites of the extracted mineral.

  16. Calcium isotope effects in ion exchange electromigration and calcium isotope analysis by thermo-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fujii, Y.; Hoshi, J.; Iwamoto, H.; Okamoto, M.; Kakihana, H.

    1985-01-01

    Calcium ions were made to electromigrate along a cation exchange membrane. The abundance ratios of the calcium isotopes (Ca-40, 42, 43, 44, 48) in the migrated bands were measured by thermo-ionization mass spectrometry. The lighter isotopes were enriched in the front part of the migrated band. The increments in the isotope abundance ratios were found to be proportional to the mass difference of the isotopes. The observed epsilon-values per unit mass difference (epsilon/ΔM) were 1.26 x 10 -4 (at 20 0 C), 1.85 x 10 -4 (at 25 0 C) and 2.4 x 10 -4 (at 40 0 C). The mass spectrometry was improved by using a low temperature for the evaporation of CaI 2 . (orig.)

  17. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in

  18. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of ...

  19. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    Science.gov (United States)

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  20. Preservation of terrestrial plant biomarkers from Nachukui Formation sediments and their viability for stable isotope analysis

    Science.gov (United States)

    Kahle, E.; Uno, K. T.; Polissar, P. J.; Lepre, C. J.; deMenocal, P. B.

    2013-12-01

    Plio-Pleistocene sedimentary records from the Turkana Basin in eastern Africa provide a unique opportunity to compare a high-resolution record of climate and terrestrial vegetation with important changes in the record of human evolution. Molecular biomarkers from terrestrial vegetation can yield stable isotope ratios of hydrogen and carbon that reflect ancient climate and vegetation. However, the preservation of long-chain plant wax biomarkers in these paleosol, fluvial, and lacustrine sediments is not known, and this preservation must be studied to establish their utility for molecular stable isotope studies. We investigated leaf wax biomarkers in Nachukui Formation sediments deposited between 2.3 and 1.7 Ma to assess biomarker preservation. We analyzed n alkane and n alkanoic acid concentrations and, where suitable, molecular carbon and hydrogen isotope ratios. Molecular abundance distributions show a great deal of variance in biomarker preservation and plant-type source as indicated by the carbon preference index and average chain length. This variation suggests that some samples are suitable for isotopic analysis, while other samples lack primary terrestrial plant biomarker signatures. The biomarker signal in many samples contains significant additional material from unidentified sources. For example, the n-alkane distributions contain an unresolved complex mixture underlying the short and mid-chain n-alkanes. Samples from lacustrine intervals include long-chain diacids, hydroxy acids and (ω-1) ketoacids that suggest degradation of the original acids. Degradation of poorly preserved samples and the addition of non-terrestrial plant biomarkers may originate from a number of processes including forest fire or microbial alteration. Isotopic analysis of well-preserved terrestrial plant biomarkers will be presented along with examples where the original biomarker distribution has been altered.

  1. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    Directory of Open Access Journals (Sweden)

    William J Pestle

    Full Text Available Over the past forty years, stable isotope analysis of bone (and tooth collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond, the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a sample preparation, and b analysis (instrumentation, working standards, and data calibration. Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration. These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite

  2. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    Science.gov (United States)

    Pestle, William J; Crowley, Brooke E; Weirauch, Matthew T

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values

  3. [Trophic niche partitioning of pelagic sharks in Central Eastern Pacific inferred from stable isotope analysis.

    Science.gov (United States)

    Li, Yun Kai; Gao, Xiao di; Wang, Lin Yu; Fang, Lin

    2018-01-01

    As the apex predators of the open ocean ecosystems, pelagic sharks play important roles in stabilizing the marine food web through top-down control. Stable isotope analysis is a powerful tool to investigate the feeding ecology. The carbon and nitrogen isotope ratios can be used to trace food source and evaluate the trophic position of marine organisms. In this study, the isotope values of 130 pelagic sharks from 8 species in Central Eastern Pacific were analyzed and their trophic position and niche were calculated to compare the intra/inter-specific resource partitioning in the Central Eastern Pacific ecosystem. The results exhibited significant differences in both carbon and nitrogen isotope values among the shark species. The trophic levels ranged from 4.3 to 5.4 in the Central Eastern Pacific shark community. The trophic niche of blue sharks and shortfin mako sharks showed no overlap with the other shark species, exhibiting unique ecological roles in the open ocean food web. These data highlighted the diverse roles among pelagic sharks, supporting previous findings that this species is not trophically redundant and the trophic niche of pelagic sharks can not be simply replaced by those of other top predator species.

  4. Quantification of the 2-deoxyribonolactone and nucleoside 5'-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA.

    Science.gov (United States)

    Chan, Wan; Chen, Bingzi; Wang, Lianrong; Taghizadeh, Koli; Demott, Michael S; Dedon, Peter C

    2010-05-05

    The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC-MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1'-oxidation and the nucleoside 5'-aldehyde of 5'-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC-MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5'-aldehyde lesions. Further, the well-defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin gamma(1)(I), was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5'-aldehyde per 10(6) nt per microM in accord with its established minor 1'- and major 5'-oxidation chemistry. Calicheamicin unexpectedly caused 1'-oxidation at a low level of 10 2-deoxyribonolactone per 10(6) nt per microM in addition to the expected predominance of 5'-oxidation at 560 nucleoside 5'-aldehyde per 10(6) nt per microM. The two hydroxyl radical-mediated DNA oxidants, gamma-radiation and Fe(2+)-EDTA, produced nucleoside 5'-aldehyde at a frequency of 57 per 10(6) nt per Gy (G-value 74 nmol/J) and 3.5 per 10(6) nt per microM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, gamma-radiation and Fe(2+)-EDTA produced different proportions of 2

  5. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  6. Xe-135 and Sm-149 Isotopic Evolution Analysis Xesamo code

    International Nuclear Information System (INIS)

    Caro, R.; Gallego, J.; Martinez Fanegas, R.

    1977-01-01

    In this report the time evolution analysis of the nuclides concentration Xe-135 and Sm-149 as a function of the neutron flux is carried out. The neutron flux may be any function of time. It is analyzed as well the reactivity changes associated with the xenon and samarium concentration variations. (Author) 5 refs

  7. The atomic structure of Fe100-xCux nanoalloys: X-ray absorption analysis

    International Nuclear Information System (INIS)

    Kravtsova, A.N.; Yalovega, G.E.; Soldatov, A.V.; Yan, W.S.; Wei, S.Q.

    2009-01-01

    The local atomic structure of Fe 100-x Cu x nanoalloys (x = 0, 10, 20, 40, 60, 70, 80 and 100%) has been investigated by X-ray absorption near edge structure (XANES) analysis. Local environment around copper and iron atoms in Fe 100-x Cu x has been studied by comparing the experimental XANES with corresponding theoretical spectra calculated for several structural models. It has been established that the most probable structure of the Fe 100-x Cu x nanoalloys for a low concentration of copper (x = 10-20%) is a homogenous bcc structure, for a high copper concentration (x = 60-80%)-a homogenous fcc structure, while at an intermediate copper concentration (about 40%) the nanoalloys have an inhomogeneous structure consisting of clusters of fcc solid solution (90%) and of clusters of bcc solid solution (10%)

  8. Development of a FE Model for the Stress Analysis of HTGR TRISO-coated particle fuel

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.; Chang, J. H.

    2005-12-01

    Finite element modelling of the stresses in TRISO-coated fuel particle under normal operating conditions was carried out with use of the structural analysis computer code ABAQUS. The FE model took into account the irradiation induced swelling and the creep of the PyC layers, the internal fission gas pressure that builds up during irradiation and the constant external ambient pressure. All of the inputs such as particle dimensions, swelling rates and creep rates of PyC layers and other mechanical properties used in these calculations were adopted from Miller's publication published in 1993. The FE model was verified against Miller's solution. Results of this model were found to be in good agreement with Miller's results. With use of the FE model, the static behavior of the TRISO-coated fuel particle, such as load shares, stress contours, stress variations as a function of fluence and shape changes of the TRISO -coated layers were investigated

  9. Extermination Of Uranium Isotopes Composition Using A Micro Computer With An IEEE-488 Interface For Mass Spectrometer Analysis

    International Nuclear Information System (INIS)

    Prajitno; Taftazani, Agus; Yusuf

    1996-01-01

    A mass spectrometry method can be used to make qualitative or quantitative analysis. For qualitative analysis, identification of unknown materials by a Mass Spectrometer requires definite assignment of mass number to peak on chart. In quantitative analysis, a mass spectrometer is used to determine isotope composition material in the sample. Analysis system of a Mass Spectrometer possession of PPNY-BATAN based on comparison ion current intensity which enter the collector, and have been used to analyse isotope composition. Calculation of isotope composition have been manually done. To increase the performance and to avoid manual data processing, a micro computer and IEEE-488 interface have been installed, also software packaged has been made. So that the determination of the isotope composition of material in the sample will be faster and more efficient. Tile accuracy of analysis using this program on sample standard U 3 O 8 NBS 010 is between 93,87% - 99,98%

  10. Determination of the Geographical Origin of All Commercial Hake Species by Stable Isotope Ratio (SIR) Analysis.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M

    2017-02-08

    The determination of the geographical origin of food products is relevant to comply with the legal regulations of traceability, to avoid food fraud, and to guarantee food quality and safety to the consumers. For these reasons, stable isotope ratio (SIR) analysis using an isotope ratio mass spectrometry (IRMS) instrument is one of the most useful techniques for evaluating food traceability and authenticity. The present study was aimed to determine, for the first time, the geographical origin for all commercial fish species belonging to the Merlucciidae family using SIR analysis of carbon (δ 13 C) and nitrogen (δ 15 N). The specific results enabled their clear classification according to the FAO (Food and Agriculture Organization of the United Nations) fishing areas, latitude, and geographical origin in the following six different clusters: European, North African, South African, North American, South American, and Australian hake species.

  11. Parasites in Myodes glareolus and their association with diet assessed by stable isotope analysis

    DEFF Research Database (Denmark)

    Lynggaard, Christina; Woolsey, Ian David; Al-Sabi, Mohammad Nafi Solaiman

    2018-01-01

    Vertebrates are hosts to numerous parasites, belonging to many different taxa. These parasites differ in transmission, being through either direct contact, a faecal-oral route, ingestion of particular food items, vertical or sexual transmission, or by a vector. Assessing the impact of diet...... on parasitism can be difficult because analysis of faecal and stomach content are uncertain and labourious; and as with molecular methods, do not provide diet information over a longer period of time. We here explored whether the analysis of stable isotopes in hair provides insight into the impact of diet...... and the presence of parasites in the rodent Myodes glareolus. Twenty-one animals were examined for parasites and their hair analysed for stable isotopes (C and N). A positive correlation between δ15N and one species of intestinal parasite was observed in females. Furthermore, several ectoparasites were negatively...

  12. Bulk - Samples gamma-rays activation analysis (PGNAA) with Isotopic Neutron Sources

    International Nuclear Information System (INIS)

    HASSAN, A.M.

    2009-01-01

    An overview is given on research towards the Prompt Gamma-ray Neutron Activation Analysis (PGNAA) of bulk-samples. Some aspects in bulk-sample PGNAA are discussed, where irradiation by isotopic neutron sources is used mostly for in-situ or on-line analysis. The research was carried out in a comparative and/or qualitative way or by using a prior knowledge about the sample material. Sometimes we need to use the assumption that the mass fractions of all determined elements add up to 1. The sensitivity curves are also used for some elements in such complex samples, just to estimate the exact percentage concentration values. The uses of 252 Cf, 241 Arn/Be and 239 Pu/Be isotopic neutron sources for elemental investigation of: hematite, ilmenite, coal, petroleum, edible oils, phosphates and pollutant lake water samples have been mentioned.

  13. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  14. Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.

    Science.gov (United States)

    Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

    2014-12-15

    Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brenna, Elisabetta [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: elisabetta.brenna@polimi.it; Fronza, Giovanni [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Instituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: giovanni.fronza@polimi.it; Fuganti, Claudio [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)

    2007-10-10

    Samples of fluoxetine of different origin were submitted to natural abundance {sup 2}H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting.

  16. Trophic relationships in a tropical stream food web assessed by stable isotope analysis

    OpenAIRE

    Coat, Sophie; Monti, Dominique; Bouchon, Claude; Lepoint, Gilles

    2009-01-01

    1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies). 2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct delta C-13 signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (C-13-enriched signatures) and allochthonous (C-13-depleted signatures) resources enter the food ...

  17. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    International Nuclear Information System (INIS)

    Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio

    2007-01-01

    Samples of fluoxetine of different origin were submitted to natural abundance 2 H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting

  18. Analysis of stable isotope assisted metabolomics data acquired by GC-MS

    International Nuclear Information System (INIS)

    Wei, Xiaoli; Shi, Biyun; Koo, Imhoi; Yin, Xinmin; Lorkiewicz, Pawel; Suhail, Hamid; Rattan, Ramandeep; Giri, Shailendra; McClain, Craig J.

    2017-01-01

    Stable isotope assisted metabolomics (SIAM) measures the abundance levels of metabolites in a particular pathway using stable isotope tracers (e.g., 13 C, 18 O and/or 15 N). We report a method termed signature ion approach for analysis of SIAM data acquired on a GC-MS system equipped with an electron ionization (EI) ion source. The signature ion is a fragment ion in EI mass spectrum of a derivatized metabolite that contains all atoms of the underivatized metabolite, except the hydrogen atoms lost during derivatization. In this approach, GC-MS data of metabolite standards were used to recognize the signature ion from the EI mass spectra acquired from stable isotope labeled samples, and a linear regression model was used to deconvolute the intensity of overlapping isotopologues. A mixture score function was also employed for cross-sample chromatographic peak list alignment to recognize the chromatographic peaks generated by the same metabolite in different samples, by simultaneously evaluating the similarity of retention time and EI mass spectrum of two chromatographic peaks. Analysis of a mixture of 16 13 C-labeled and 16 unlabeled amino acids showed that the signature ion approach accurately identified and quantified all isotopologues. Analysis of polar metabolite extracts from cells respectively fed with uniform 13 C-glucose and 13 C-glutamine further demonstrated that this method can also be used to analyze the complex data acquired from biological samples. - Highlights: • A signature ion approach is developed for analysis of stable isotope GC-MS data. • GC-MS data of compound standards are used for selection of the signature ion. • Linear regression model is used to deconvolute the overlapping isotopologue peaks. • The developed method was tested by known compounds and biological samples.

  19. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  20. Iron isotope analysis of red and black pigments on pottery in Nasca, Peru

    OpenAIRE

    Eerkens, JW; Barfod, GH; Vaughn, KJ; Williams, PR; Lesher, CE

    2014-01-01

    The Nasca culture of the south coast of Peru developed during the first millennium ad and is known internationally for its elaborately decorated polychrome pots. Despite decades of iconographic analysis, little is known about the more technological aspects of Nasca pigment production and application. We present results from a pilot study on iron isotopes as a potential line of inquiry into the differences between red and black pigments in Nasca pigments. As well, we conduct a small firing exp...

  1. Isotope Dilution - Thermal Ionisation Mass Spectrometric Analysis for Tin in a Fly Ash Material

    International Nuclear Information System (INIS)

    Hernandez, C.; Fernandez, M.; Quejido, A. L.

    2006-01-01

    Isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) analysis has been applied to the determination of tin in a fly ash sample supplied by the EC Joint Research Centre (Ispra, Italy). The proposed procedure includes the silica gel/phosphoric acid technique for tin thermal ionisation activation and a strict heating protocol for isotope ratio measurements. Instrumental mass discrimination factor has been previously determined measuring a natural tin standard solution. Spike solutions has been prepared from 112Sn-enriched metal and quantified by reverse isotope dilution analysis. Two sample aliquots were spiked and tin was extracted with 4,5 M HCI during 25 min ultrasound esposure time. Due to the complex matrix of this fly ash material, a two-steps purification stage using ion-exchange chromatography was required prior TIMS analysis. Obtained results for the two sample-spike blends (10,10 + - 0,55 y 10,50 + - 0,64 imolg-1) are comprarable, both value and uncertainty. Also a good reproducibility is observed between measurements. The proposed ID-TIMS procedure, as a primary method and due to the lack of fly ash reference material certified for tin content, can be used to validate more routine methodologies applied to tin determination in this kind of materials. (Author) 75 refs

  2. Validation of multi-element isotope dilution ICPMS for the analysis of basalts

    Energy Technology Data Exchange (ETDEWEB)

    Willbold, M.; Jochum, K.P.; Raczek, I.; Amini, M.A.; Stoll, B.; Hofmann, A.W. [Max-Planck-Institut fuer Chemie, Mainz (Germany)

    2003-09-01

    In this study we have validated a newly developed multi-element isotope dilution (ID) ICPMS method for the simultaneous analysis of up to 12 trace elements in geological samples. By evaluating the analytical uncertainty of individual components using certified reference materials we have quantified the overall analytical uncertainty of the multi-element ID ICPMS method at 1-2%. Individual components include sampling/weighing, purity of reagents, purity of spike solutions, calibration of spikes, determination of isotopic ratios, instrumental sources of error, correction of mass discrimination effect, values of constants, and operator bias. We have used the ID-determined trace elements for internal standardization to improve indirectly the analysis of 14 other (mainly mono-isotopic trace elements) by external calibration. The overall analytical uncertainty for those data is about 2-3%. In addition, we have analyzed USGS and MPI-DING geological reference materials (BHVO-1, BHVO-2, KL2-G, ML3B-G) to quantify the overall bias of the measurement procedure. Trace element analysis of geological reference materials yielded results that agree mostly within about 2-3% relative to the reference values. Since these results match the conclusions obtained by the investigation of the overall analytical uncertainty, we take this as a measure for the validity of multi-element ID ICPMS. (orig.)

  3. Lead isotope ratio analysis of bullet samples by using quadrupole ICP-MS

    International Nuclear Information System (INIS)

    Tamura, Shu-ichi; Hokura, Akiko; Nakai, Izumi; Oishi, Masahiro

    2006-01-01

    The measurement conditions for the precise analysis of the lead stable isotope ratio by using an ICP-MS equipped with a quadrupole mass spectrometer were studied in order to apply the technique to the forensic identification of bullet samples. The values of the relative standard deviation obtained for the ratio of 208 Pb/ 206 Pb, 207 Pb/ 206 Pb and 204 Pb/ 206 Pb were lower than 0.2% after optimization of the analytical conditions, including the optimum lead concentration of the sample solution to be about 70 ppb and an integration time for 1 m/s of 15 s. This method was applied to an analysis of lead in bullets for rifles and handguns; a stable isotope ratio of lead was found to be suitable for the identification of bullets. This study has demonstrated that the lead isotope ratio measured by using a quadrupole ICP-MS was useful for a practical analysis of bullet samples in forensic science. (author)

  4. Use of alpha spectrometry for analysis of U-isotopes in some granite samples

    International Nuclear Information System (INIS)

    El-Galy, M.M.; Desouky, O.A.; Khattab, M.R.; Issa, F.A.

    2011-01-01

    The present study aims to use the α-spectrometry, at NMA. A radiochemical technique for analysis of U-isotopes was carried out for some granite samples from Gabal Gattar and El Missikat localities and also for some reference soil samples of IAEA. Several steps of sample preparation, radiochemical separation, and source preparation were performed before analysis. The concerned sample was leached by HNO 3 , HF and H 2 O 2 acids after ashing. The ashed sample was spiked with uranium tracer ( 232 U) for chemical yield and activity calculation. Then uranium was extracted from the matrix elements with trioctylphosphine oxide (TOPO) and stripped with 1 M NH 4 F/0.1 M HCl solution. The uranium fraction was purified by co-precipitation with LaF 3 to ensure complete removal of thorium and traces of resolution degrading elements. This was followed by a final clean-up step using an anion exchange. The pure uranium fraction was electrodeposited on a stainless steel disc from HCl/oxalate solution. The obtained results from the soil reference samples indicate general similarities between the techniques of α-spectrometers of NMA, EAEA and IAEA for analysis of U-isotopes. The U-isotopes in the granite samples of high radioactivity levels need more attempts after dilution process to be in the limit detection of α-spectrometry. (author)

  5. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  6. Trace, isotopic analysis of micron-sized grains -- Mo, Zr analysis of stardust (SiC and graphite grains).

    Energy Technology Data Exchange (ETDEWEB)

    Pellin, M. J.; Nicolussi, G. K.

    1998-02-19

    Secondary Neutral Mass Spectrometry using resonant laser ionization can provide for both high useful yields and high discrimination while maintaining high lateral and depth resolutions. An example of the power of the method is measurement of the isotopic composition of Mo and Zr in 1-5 {micro}m presolar SiC and graphite grains isolated from the Murchison CM2 meteorite for the first time. These grains have survived the formation of the Solar System and isotopic analysis reveals a record of the stellar nucleosynthesis present during their formation. Mo and Zr, though present at less than 10 ppm in some grains, are particularly useful in that among their isotopes are members that can only be formed by distinct nucleosynthetic processes known as s-, p-, and r-process. Successful isotopic analysis of these elements requires both high selectivity (since these are trace elements) and high efficiency (since the total number of atoms available are limited). Resonant Ionization Spectroscopy is particularly useful and flexible in this application. While the sensitivity of this t.edmique has often been reported in the past, we focus hereon the very low noise properties of the technique. We further demonstrate the efficacy of noise removal by two complimentary methods. First we use the resonant nature of the signal to subtract background signal. Second we demonstrate that by choosing the appropriate resonance scheme background can often be dramatically reduced.

  7. The analysis of uranium in environmental sample by mass spectrometer combined with isotopic dilution

    International Nuclear Information System (INIS)

    Fu Zhonghua; Jia Baoting; Han Jun

    2003-01-01

    Uranium in the environmental sample was analyzed by mass spectrometer combined with isotopic dilution. Before mass spectrometer analysis, samples were dissolved in a concentrated acidic solution containing HNO 3 , HF and HClO 4 and chemically processed to suit the analysis requirement. Analysis results indicated that the uranium content was 0.08 μg/g in river water, 0.1 μg/g in evergreen foliage, and 5-11 μg/g in surface soil respectively. (authors)

  8. Nonlinear FE Analysis for PCCV 1/4 Model using NUCAS Code

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Song, Young-Chul; Choun, Young Sun

    2007-01-01

    During the several years, ultimate pressure analysis as well as failure mode evaluations of containment building in nuclear power plant have been carried out in KAERI. In this point of view, the program NUCAS (NUclear Containment Analysis System) code, which is FE (Finite Element) program with the sole purpose of evaluating ultimate pressure capacity of PSC containment building, was developed to predict nonlinear behavior. The main objective of this paper is to verify the performance of the program's solid element

  9. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4

    International Nuclear Information System (INIS)

    Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; Lierse von Gostomski, Ch.; Kardinal, Ch.; Loi, E.; Keegan, E.; Kristo, M.J.

    2018-01-01

    Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted. (author)

  10. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    Science.gov (United States)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  11. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    Science.gov (United States)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to

  12. The application of isotope techniques to the analysis of gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.; Thuemmel, H.W.

    1978-01-01

    The development of devices for the detection of nuclear radiation has also led to systems permitting concentrations of gaseous components in gases or mixtures of gases to be determined with the aid of ionizing radiation. Such systems, which use either the ionization of gases in connection with recombination processes or the multiplication of charged particles, or the excitation of gases by means of α,β,γ or X-rays, are described. The most frequently used ionization detectors (electron capture detectors, aerosol ionization analysers, cross-section detectors, noble gas detectors and electron mobility detectors) are characterized with reference to their properties and main fields of application. It is shown that as a result of the development of sensitive energy-resolving detectors the possibilities for the utilization of excitation processes for gas analysis are increasing. The prospects for ionization detectors and systems based on the excitation of characteristic X-rays are discussed. (author)

  13. INAA analysis of rocks: A routine method using Fe as an internal flux monitor

    International Nuclear Information System (INIS)

    Kay, R.W.; Kay, S. Mahlburg

    1992-01-01

    Over the past decade at Cornell, trace elements in over 2500 rocks have been analyzed by INAA. The samples, mainly volcanic rocks, have known concentrations of major elements (e.g. Si, Ti, Al, Mg, Ca, K, Fe, Na) and the last two of these (Fe and Na) are also determined by activation, using rock standards (e.g. USGS standards BCRl, BHVO, etc.). Differences between Fe determined by INAA and that determined as a part of the major element analysis are mainly attributed to volatile (H 2 O, CO 2 ) loss (especially when major element analyses were done by electron microprobe on fused powders, whereas the INAA analyses were done on the powders), and to flux variability during irradiation. Instead of reporting two values for Fe we use Fe as an internal flux monitor, with Na and the trace elements being reported relative to the given Fe value. The ratio Na/Fe is used as a sensitive check on the identity of the sample and as a monitor of alkali loss affecting the major element analysis. Other than this modification (Kay et aL 1987, also reported in Chappell and Hergt, 1989) we use an INAA method similar to mat practiced by many labs. Powdered samples (about 0.5 g) are sealed in high-purity silica tubes and irradiated in the Cornell Triga reactor. Samples are counted for a minimum of 2 hours (up to 10 hours) 7 and 40 days after irradiation. Data are reduced using a program written at Cornell, with peak and background regions that have been checked for interferences. Corrections are routinely applied for Ce (Fe), Nd (Br), Tb (Th), Eu (Ba), Lu (U), and Yb (Th) (interference is from element in parentheses). A U fission yield correction is applied to La, Ce, Nd, and Ba. A correction for Ta introduced by grinding in WC containers can be made using known Ta/W ratios in the grinding containers. The correction amounted to 10-20% of the Ta gross peak. Recently, samples have been prepared in a ceramic grinding containers; for these, no Ta correction is needed. Trace elements determined

  14. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  15. Kinetic Model of LiFePO4 Formation Using Non-Isothermal Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Abdul Halim

    2014-03-01

    Full Text Available The formation reaction of LiFePO4 from decomposition of precursors LiOH, FeSO4.7H2O and (NH42HPO4 with mol ratio of Li:Fe:P=1:1:1 was investigated. The experiment was carried out by thermogravimetric differential thermal analysis (TG-DTA method using nitrogen as atmosfer at a constant heating rate to obtain kinetic constant parameters. Several heating rates were selected, there are 5, 7, 10, 15, 17.5, 22.5 and 25 °C/min. Activation energy, pre-exponential factor and reaction order were taken using Kissinger method and obtained respectively 56.086 kJ/mol, 6.95×108 min-1, and 1.058. Based on fitting result between reaction model and experiment were obtained that reaction obeyed the three dimension diffusion model. © 2014 BCREC UNDIP. All rights reservedReceived: 19th September 2013; Revised: 9th December 2013; Accepted: 23rd January 2014 [How to Cite: Halim, A., Widiyastuti, W., Setyawan, H., Winardi, S. (2014. Kinetic of LiFePO4 For-mation Using Non-isothermal Thermogravimetric Analysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 60-65. (doi:10.9767/bcrec.9.1.5508.60-65][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5508.60-65] 

  16. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  17. Automated CO2 extraction from air for clumped isotope analysis in the atmo- and biosphere

    Science.gov (United States)

    Hofmann, Magdalena; Ziegler, Martin; Pons, Thijs; Lourens, Lucas; Röckmann, Thomas

    2015-04-01

    The conventional stable isotope ratios 13C/12C and 18O/16O in atmospheric CO2 are a powerful tool for unraveling the global carbon cycle. In recent years, it has been suggested that the abundance of the very rare isotopologue 13C18O16O on m/z 47 might be a promising tracer to complement conventional stable isotope analysis of atmospheric CO2 [Affek and Eiler, 2006; Affek et al. 2007; Eiler and Schauble, 2004; Yeung et al., 2009]. Here we present an automated analytical system that is designed for clumped isotope analysis of atmo- and biospheric CO2. The carbon dioxide gas is quantitatively extracted from about 1.5L of air (ATP). The automated stainless steel extraction and purification line consists of three main components: (i) a drying unit (a magnesium perchlorate unit and a cryogenic water trap), (ii) two CO2 traps cooled with liquid nitrogen [Werner et al., 2001] and (iii) a GC column packed with Porapak Q that can be cooled with liquid nitrogen to -30°C during purification and heated up to 230°C in-between two extraction runs. After CO2 extraction and purification, the CO2 is automatically transferred to the mass spectrometer. Mass spectrometric analysis of the 13C18O16O abundance is carried out in dual inlet mode on a MAT 253 mass spectrometer. Each analysis generally consists of 80 change-over-cycles. Three additional Faraday cups were added to the mass spectrometer for simultaneous analysis of the mass-to-charge ratios 44, 45, 46, 47, 48 and 49. The reproducibility for δ13C, δ18O and Δ47 for repeated CO2 extractions from air is in the range of 0.11o (SD), 0.18o (SD) and 0.02 (SD)o respectively. This automated CO2 extraction and purification system will be used to analyse the clumped isotopic signature in atmospheric CO2 (tall tower, Cabauw, Netherlands) and to study the clumped isotopic fractionation during photosynthesis (leaf chamber experiments) and soil respiration. References Affek, H. P., Xu, X. & Eiler, J. M., Geochim. Cosmochim. Acta 71, 5033

  18. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  19. Using stable isotope analysis to discriminate gasoline on the basis of its origin.

    Science.gov (United States)

    Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik

    2012-03-15

    Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies

    International Nuclear Information System (INIS)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-01-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  1. Mass spectrometic isotope dilution analysis of Am and Cm in spent fuels

    International Nuclear Information System (INIS)

    Wantschik, M.; Koch, L.; Commission of the European Communities, Karlsruhe; Ganser, B.

    1983-01-01

    Spent nuclear fuels contain Am and Cm in the 10 ppb to 100 ppm range. Because of this low abundance and the necessity of handling small samples of the highly toxic fuel material only a mass-spectrometric isotope dilution analysis can give sufficiently accurate results. Since suitable spikes and/or standards have been lacking, this method has not been applied. Using known masses (+- 0.1%) of Am-241 and Cm-244 metal, Am-243 and Cm-248 spikes were calibrated to an accuracy of better than 0.2%. The standards were reanalysed by chemical titration and several radiometric techniques. The chemical conditioning is based on ionexchange chromatography with alpha-hydroxyisobutyric acid. A sample size of 10 -7 g is sufficient. For the mass-spectrometric measurement 10 -9 g of the elements are required. The accuracy for the determination of the main isotope is 0.5%. (orig./BRB)

  2. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  3. Elemental and isotopic characterization of Japanese and Philippine polished rice samples using instrumental neutron activation analysis and isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.; Mendoza, Norman dS.; Ebihara, Mitsuru

    2011-01-01

    Rice is a staple food for most Asian countries such as the Philippines and Japan and as such its elemental and isotopic content are of interest to the consumers. Its elemental content may reflect the macro nutrient reduction during milling or probable toxic elements uptake. Three Japanese and four Philippine polished rice samples in his study mostly came from rice bought from supermarkets.These rice samples were washed, dried and ground to fine powder. Instrumental neutron activation analysis (INAA), a very sensitive non-destructive multi-element analytical technique, was used for the elemental analysis of the samples and isotope-ratio mass spectrometry (IRMS) was used to obtain the isotopic signatures of the samples. Results show that compared with the unpolished rice standard NIES CRM10b, the polished Japanese and Philippine rice sampled show reduced concentrations of elements by as much as 1/3 to 1/10 of Mg, Mn, K and Na. Levels of Ca and Zn are not greatly affected. Arsenic is found in all the Japanese rice tested at an average concentration of 0.103 μg/g and three out of four of the Philippine rice at an average concentration of 0.070 μg/g. Arsenic contamination may have been introduced from the fertilizer used in rice fields. Higher levels of Br are seen in two of the Philippine rice at 14 and 34 μg/g with the most probable source being the pesticide methyl bromide. Isotopic ratio of ae 13 C show signature of a C3 plant with possible narrow distinguishable signature of Japanese rice within -27.5 to -28.5 while Philippine rice within -29 to -30. More rice samples will be analyzed to gain better understanding of isotopic signatures to distinguish inter-varietal and/or geographical differences. Elemental composition of soil samples of rice samples sources will be determined for better understanding of uptake mechanisms. (author)

  4. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, Material Flow Analysis (MFA) has been carried out to perform the detailed mapping...

  5. Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples.

    Science.gov (United States)

    Piper, Thomas; Thevis, Mario

    2017-01-01

    The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail. © 2017 Elsevier Inc. All rights reserved.

  6. Considerations related to the deuterium-depleted water isotopic analysis for an industrial production pilot plant

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru; Irimescu, Rodica

    2000-01-01

    In the last few years, there is a major interest related to the use of Deuterium Depleted Water (DDW) for biological and medical purposes. Therefore, a production installation for DDW was developed and now, it is working in our Institute. The deuterium isotopic concentration for the final product is in the 10 - 40 ppm D / (D + H) range depending on customers' requirements. In order to control and manage the production process and also to validate the final product, a special procedure for deuterium content measurement for DDW by Isotopic Ratio Mass Spectrometry was developed. The main instrumentation is a MAT 250 IRMS with a hydrogen preparation line based on the zinc reduction process. The first concern regarding the analysis procedure for these water samples with very low deuterium concentration has been related to the preparation of an internal standard with a D / (D + H) isotopic value in the measurement range. For this raison, a distinct procedure was developed and applied, so that starting to the well-known VSMOW standard and so, a sequence of 12 samples with decreasing deuterium content was obtained. These samples were measured and 3 / 2 ratio mass signals versus 2 mass signal were plotted and statistically analyzed. Obviously, for each measurement, a H 3+ correction factor was calculated and applied, as a results of an entire statistically elimination procedure and by extrapolation of the linear curve plotted, a value for the primary DDW was determined. Other important problem related to deuterium content determination was to minimize the H 3+ factor correction. As the deuterium content is very low the contribution of this factor to the 3 mass signal becomes very important. Therefore, special operations were developed, considering the behaviour of linear dependence between 3 / 2 mass signal versus 2 mass signal in the lower part. Finally, special attention was given to estimate the lower isotopic concentration analysis limit. (authors)

  7. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    Science.gov (United States)

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  8. Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology.

    Science.gov (United States)

    Balliana, Eleonora; Aramendía, Maite; Resano, Martin; Barbante, Carlo; Vanhaecke, Frank

    2013-03-01

    Although in many cases Pb isotopic analysis can be relied on for provenance determination of ancient bronzes, sometimes the use of "non-traditional" isotopic systems, such as those of Cu and Sn, is required. The work reported on in this paper aimed at revising the methodology for Cu and Sn isotope ratio measurements in archaeological bronzes via optimization of the analytical procedures in terms of sample pre-treatment, measurement protocol, precision, and analytical uncertainty. For Cu isotopic analysis, both Zn and Ni were investigated for their merit as internal standard (IS) relied on for mass bias correction. The use of Ni as IS seems to be the most robust approach as Ni is less prone to contamination, has a lower abundance in bronzes and an ionization potential similar to that of Cu, and provides slightly better reproducibility values when applied to NIST SRM 976 Cu isotopic reference material. The possibility of carrying out direct isotopic analysis without prior Cu isolation (with AG-MP-1 anion exchange resin) was investigated by analysis of CRM IARM 91D bronze reference material, synthetic solutions, and archaeological bronzes. Both procedures (Cu isolation/no Cu isolation) provide similar δ (65)Cu results with similar uncertainty budgets in all cases (±0.02-0.04 per mil in delta units, k = 2, n = 4). Direct isotopic analysis of Cu therefore seems feasible, without evidence of spectral interference or matrix-induced effect on the extent of mass bias. For Sn, a separation protocol relying on TRU-Spec anion exchange resin was optimized, providing a recovery close to 100 % without on-column fractionation. Cu was recovered quantitatively together with the bronze matrix with this isolation protocol. Isotopic analysis of this Cu fraction provides δ (65)Cu results similar to those obtained upon isolation using AG-MP-1 resin. This means that Cu and Sn isotopic analysis of bronze alloys can therefore be carried out after a single chromatographic

  9. Free-drop analysis of the transport container for hydrogen isotopes

    International Nuclear Information System (INIS)

    Lee, M. S.; Hong, C. S.; Baek, S. W.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Lim, S. P.; Jung, H. S.

    2002-01-01

    The vessel used for the transport of radioactive materials, containing hydrogen isotopes is evaluated for hypothetical accident conditions according to national regulations. The computational analysis is a cost effective tool to minimize testing and streamline the regulatory procedures, and supports experimental programs to qualify the container for the safe transport of radioactive materials. The numerical analysis of 9m free-drop onto a flat unyielding, horizontal surface has been performed using the explicit finite element computer program ABAQUS. Especially free-drop simulations for 30.deg. C tilted condition is precisely estimated

  10. The use of lead isotopic abundances in trace uranium samples for nuclear forensics analysis

    International Nuclear Information System (INIS)

    Fahey, A.J.; Ritchie, N.W.M.; Newbury, D.E.; Small, J.A.

    2010-01-01

    Secondary ion mass spectrometry (SIMS), secondary electron microscopy (SEM) and X-ray analysis have been applied to the measurement of U-bearing particles with the intent of gleaning information concerning their history and/or origin. The lead isotopic abundances are definitive indicators that U-bearing particles have come from an ore-body, even if they have undergone chemical processing. SEM images and X-ray analysis can add further information to the study that may allude to the extent of chemical processing. The presence of 'common' lead that does not exhibit a radiogenic signature is clear evidence of anthropogenic origin. (author)

  11. The isotope X-ray fluorescence analysis and its application in geochemical investigations in Greenland

    International Nuclear Information System (INIS)

    Kunzendorf, H.

    1973-01-01

    The applicability of the isotope X-ray fluorescence analysis (IRFA) in the geochemical exploration was investigated. Detection limits of about 0.1% for the elements Ti, Zr, Nb, Mo and La+Ce were achieved in terrain measurements. Detection limits of 0.05% were found in the analysis of Cr, Ni, Cu, Zn, Zr, Nb, Mo, La+Ce and Pb in finely grinded rock samples. Geochemical investigations were carried out in the Ilimaussag-Intrusion in south Greenland as well as on the Mo deposits Malmbjerg and the heavy mineral occurence 'kote 800' in East Greenland. The use of portable IRFA equipment proved to be particularly suitable in the analysis of bed rocks, loose rock samples such as moraine material, in the semi-quantitative analysis of heavy mineral concentrates, the analysis of bored cores during the boring programme, as well as the analysis of finely grinded rock samples. (ORU) [de

  12. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  13. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  14. A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. : I development and validation

    NARCIS (Netherlands)

    Federherr, E.; Cerli, C.; Kirkels, F. M. S. A.; Kalbitz, K.; Kupka, H. J.; Dunsbach, R.; Lange, L.; Schmidt, T. C.

    2014-01-01

    RATIONALE: Traditionally, dissolved organic carbon (DOC) stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analyzer/isotope ratiomass spectrometry (EA/IRMS) or a wet chemical oxidation (WCO)-based device coupled to an isotope ratio mass

  15. Deuterium, carbon and nitrogen isotopic analysis of natural and synthetic caffeines. Authentication of coffees and coffee extracts

    International Nuclear Information System (INIS)

    Danho, D.; Naulet, N.; Martin, G.J.

    1992-01-01

    Isotope ratio mass spectrometry (IRMS) was used to determine the δ( 13 C) and δ( 15 N) values of a series of caffeine samples extracted from coffee beans or obtained by synthesis, 2 H NMR spectra were recorded in order to compute the site-specific isotope ratios of caffeine. The set of the five isotope ratios measured for the 26 different samples was studied by multi-variate analysis (principal component and discriminant analyse) and it is shown that the synthetic samples are clearly distinguishable from the natural caffeines which in turn can be classified with complete accuracy as of either American or African origin

  16. A combined experimental and FE analysis procedure to evaluate tensile behavior of zircaloy pressure tubes

    International Nuclear Information System (INIS)

    Samal, M.K.; Vaze, K.K.; Balakrishnan, K.S.; Anantharaman, S.

    2012-01-01

    Determination of transverse mechanical properties from the ring type of specimens directly machined from the nuclear reactor pressure tubes is not straightforward because of the presence of combined membrane as well as bending stresses arising in the loaded condition. In this work, we have performed ring-tensile tests on the un-irradiated ring tensile specimen using two split semi-cylindrical mandrels as the loading device. A 3-D finite element (FE) analysis was performed in order to determine the material true stress-strain curve by comparing experimental load-displacement data with those predicted by FE analysis. In order to validate the methodology, miniaturized tensile specimens were machined from these tubes and tested. It was observed that the stress-strain data as obtained from ring tensile specimen could describe the load displacement curve of the miniaturized flat tensile specimen very well. (author)

  17. Line shape and thermal Kinetics analysis of the Fe2+ -band in Brazilian Green beryl

    International Nuclear Information System (INIS)

    Isotani, S.; Furtado, W.; Antonini, R.; Dias, O.L.

    1988-03-01

    The optical absorption spectra study through isothermal treatments of the σ- and Π-polarized bands of Fe 2+ -band is reported. It was shown a linear correlation between these bands through thermal treatments. Irradiation with γ-rays from 60 Co, showed the decrease of this band. The line shape analysis and the discussions lend us to assign the Π- and σ-polarized bands to Fe 2+ ions in the structural channels with and without neighbour water molecules, respectively. The kinetics analysis through a ''bimolecular-like'' model gives untrapping parameter with Arrhenius behavior. The retrapping and recombination parameters showed a behavior proportional to T 1/2 - T 1/2 o which were explained from free electron distribution of velocities and minimum untrapped electron energy due to a potential barrier of the trap. The kinetics cut-off temperature, T 0 , agrees with the previous experimental observation. (author) [pt

  18. Quantitative analysis of hydrogen and of its isotopes at the surface of the solids

    International Nuclear Information System (INIS)

    Trocellier, P.

    2007-01-01

    For analyzing the hydrogen isotopes, the nature of the probe which allows to excite the considered material and to give the hydrogen answer is multiple and is supported by various physical principles. The different available techniques are presented and several examples are given. To conclude, it is possible to determine the superficial or volume distribution of hydrogen or of one of its two heavy isotopes in choosing the most physico-chemical method. The choice of the technique to use depends of the wanted performance. In order to simplify, we can associate: 1)the sensitivity with mass spectrometry; 2)the depth resolution with the glow discharge, the SIMS and the resonant nuclear reaction; 3)the studied depth with the accelerated ions beams and the AMS; 4)the distribution image with the electrons stimulated desorption, the beta autoradiography and the ERDA; 5)the quantitative profile with the accelerated ions beams techniques; 6)the isotopic analysis with mass spectrometry and the accelerated ions beams. In order to be sure of the relevance of the measurements result, it is indicated to combine the advantages and the performances of several techniques as SIMS and NRA or FTIR and ERDA for instance. (O.M.)

  19. Optimization of the isotopic analysis of UF6 by quadrupole mass spectrometry technique

    International Nuclear Information System (INIS)

    Porto, Peterson

    2006-01-01

    In the present work a procedure for determination of the isotopic ratio 238 U/ 235 U in UF 6 samples was established using a quadrupole mass spectrometer with ionization by electron impact and ion detection by Faraday cup or electron multiplier. For this, the following items were optimized in the spectrometer: the parameters in the ion source that provided the most intense peak, with good shape, for the corresponding mass of the most abundant isotope; the resolution that reduced the non linear effects and the number of analytic cycles that reduced the uncertainty in the results. The measurement process was characterized with respect to the effects of mass discrimination, linearity and memory effect. The mass discrimination showed to be linearly dependent of the sample pressure in the batch volume, for the pressure ranges from 0.15 to 0.30 mbar and from 0.30 to 0.40 mbar. The spectrometer was shown linear in the measurement of isotopic ratios between 0.005 and 0.045. The memory factor for the ion source and for the introduction system were, respectively, 1.000 ± 0.001 and 1.003 ± 0.003; the first one can be ignored, the second one can be eliminated by washing the batch volume with the new sample. A methodology for routine analysis of UF 6 samples and the determination of the uncertainties were set up in details as well. (author)

  20. Automatic isotope gas analysis of tritium labelled organic materials Pt. 1

    International Nuclear Information System (INIS)

    Gacs, I.; Mlinko, S.

    1978-01-01

    A new automatic procedure developed to convert tritium in HTO hydrogen for subsequent on-line gas counting is described. The water containing tritium is introduced into a column prepared from molecular sieve-5A and heated to 550 deg C. The tritium is transferred by isotopic exchange into hydrogen flowing through the column. The radioactive gas is led into an internal detector for radioactivity measurement. The procedure is free of memory effects, provides quantitative recovery with analytical reproducibility better than 0.5% rel. at a preset number of counts. The experimental and analytical results indicate that isotopic exchange between HTO and hydrogen over a column prepared from alumina or molecular sieve-5A can be successfully applied for the quantitative transfer of tritium from HTO into hydrogen for on-line gas countinq. This provides an analytical procedure for the automatic determination of tritium in water with an analytical reproducibility better than 0.5% rel. The exchange process will also be suitable for rapid tritium transfer from water formed during the decomposition of tritium-labelled organic compounds or biological materials. The application of the procedure in automatic isotope gas analysis of organic materials labelled with tritium will be described in subsequent papers (Parts II and III). (T.G.)

  1. Thermodynamical properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J. A.; Bernstein, L. A.; Garrett, P. E.; Younes, W.; Guttormsen, M.; Rekstad, J.; Siem, S.; Mitchell, G. E.; Schiller, A.; Voinov, A.

    2003-01-01

    Average nuclear level densities close to the nuclear binding energy in 56Fe and 57Fe are extracted from primary γ-ray spectra. A step structure is observed in the level density for both isotopes, and is interpreted as breaking of Cooper pairs. Thermal properties of 56Fe are studied within the statistical canonical ensemble. The experimental heat capacity in 56Fe is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  2. Isotopic Analysis

    CERN Document Server

    Vanhaecke, Frank

    2012-01-01

    Edited by a very well-known and respected scientist in the field, this excellent practical guide is the first to cover the fundamentals and a wide range of applications, as well as showing readers how to efficiently use this increasingly important technique. A must-have guide for newcomers as well as established scientists seeking an overview of ICP-MS.

  3. Position-specific isotope analysis by on-line pyrolysis coupled to IRMS

    Science.gov (United States)

    Gilbert, A.; Suda, K.; Yamada, K.; Ueno, Y.; Yoshida, N.

    2016-12-01

    Position-specific isotopic analyses (PSIA) provide unique information regarding the sources, sinks and processes related to natural molecules. For instance, PSIA of short-chain hydrocarbons could lead to temperature of formation and maturity of natural gas reservoirs [1][2]. In the last decade, quantitative Nuclear Magnetic Resonance (NMR) specrometry has been used for PSIA of organic molecules such as glucose or n-alkanes [3][4]. However, due to its low sensitivity, application to low amount geochemical samples remains challenging. In 1997, Corso & Brenna proposed to adapt a pyrolysis furnace to an isotope ratio mass spectrometer, making it possible the thermal degradation of the target molecule and the subsequent analysis of the d13C values of the fragments formed [5]. Starting from fatty acid methyl esters they demonstrated the absence of rearrangement during pyrolytic degradation and could determine the d13C value of carboxyl C-atom position. We adapted the system for the full characterization of position-specific isotope composition of small molecules (ethanol, acetic acid, alanine, propane). Nanomole amount of sample can be analyzed with a precision on intramolecular d13C values of 1‰ or lower [2]. We recently analyzed abiotic and thermogenic propane samples both from the field and from lab simulations. PSIA of propane shows systematic differences of position-specific isotope composition between thermogenic and abiotic samples. While the former show 13C-depletion on the terminal C-atom position - consistent with thermal cracking kinetic models [6] - abiotic samples show little or no preference for terminal or central 13C-isotopomer. These results emphasize the potential of PSIA to trace the the processes associated with organic molecules production. [1] Piasecki et al. 2016 GCA 188, 58 [2] Gilbert et al. 2016 GCA 177, 205 [3] Gilbert et al. 2012 PNAS, 109, 18204 [4] Gilbert et al. 2013 Org. Geochem, 62, 56 [5] Corso & Brenna 1997 PNAS, 94, 1049 [6] Tang et

  4. Tracing fetal and childhood exposure to lead using isotope analysis of deciduous teeth

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Dirks, Wendy; Roberts, Nick M.W.; Patel, Jaiminkumar G.; Hodgson, Susan; Pless-Mulloli, Tanja; Walton, Pamela; Parrish, Randall R.

    2016-01-01

    We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5–8 years, living in NE England. By integrating the isotope data with histological analysis of the teeth, using the daily incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 2–3 years for molars, first 1–2 years for incisors+pre-natal growth). Significant differences were observed in the isotope composition and concentration of Pb between children, reflecting differences in the timing and sources of exposure during early childhood. Those born in 2000, after the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (<0.2 µg Pb/g) with 208 Pb/ 206 Pb (mean ±2σ: 2.126–2.079) 208 Pb/ 206 Pb (mean ±2σ: 0.879–0.856) ratios that correlate very closely with modern day Western European industrial aerosols (PM 10 , PM 2.5 ) suggesting that diffuse airborne pollution was probably the primary source and exposure pathway. Legacy lead, if present, is insignificant. For those born in 1997, dentine lead levels are typically higher (>0.4 µgPb/g) with 208 Pb/ 206 Pb (mean ±2σ: 2.145–2.117) 208 Pb/ 206 Pb (mean ±2σ: 0.898–0.882) ratios that can be modelled as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high intensity exposure events (1–2 months) were readily identified, together with evidence that dentine provides a good proxy for childhood changes in the isotope composition of blood Pb. Our pilot

  5. Tracing fetal and childhood exposure to lead using isotope analysis of deciduous teeth

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Thomas J. [Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne (United Kingdom); British Geological Survey, Keyworth, Nottingham (United Kingdom); Dirks, Wendy [Department of Anthropology, Durham University, Durham (United Kingdom); Roberts, Nick M.W. [NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham (United Kingdom); Patel, Jaiminkumar G. [Leeds Dental Institute, University Leeds, Leeds (United Kingdom); Hodgson, Susan [MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London (United Kingdom); Pless-Mulloli, Tanja [Institute of Health and Society, Newcastle University, Newcastle upon Tyne (United Kingdom); Walton, Pamela [Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne (United Kingdom); Parrish, Randall R. [British Geological Survey, Keyworth, Nottingham (United Kingdom)

    2016-04-15

    We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and {sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5–8 years, living in NE England. By integrating the isotope data with histological analysis of the teeth, using the daily incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 2–3 years for molars, first 1–2 years for incisors+pre-natal growth). Significant differences were observed in the isotope composition and concentration of Pb between children, reflecting differences in the timing and sources of exposure during early childhood. Those born in 2000, after the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (<0.2 µg Pb/g) with {sup 208}Pb/{sup 206}Pb (mean ±2σ: 2.126–2.079) {sup 208}Pb/{sup 206}Pb (mean ±2σ: 0.879–0.856) ratios that correlate very closely with modern day Western European industrial aerosols (PM{sub 10}, PM{sub 2.5}) suggesting that diffuse airborne pollution was probably the primary source and exposure pathway. Legacy lead, if present, is insignificant. For those born in 1997, dentine lead levels are typically higher (>0.4 µgPb/g) with {sup 208}Pb/{sup 206}Pb (mean ±2σ: 2.145–2.117) {sup 208}Pb/{sup 206}Pb (mean ±2σ: 0.898–0.882) ratios that can be modelled as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high intensity exposure events (1–2 months) were readily identified, together with evidence that dentine provides a good proxy for childhood

  6. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  7. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina

    2011-01-01

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (q...... reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient......DCE. The significant enrichment of 13C in VC indicates that VC was transformed further, although the mechanismcould not be determined. The transformation of cDCEwas the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combinedwith...

  8. Isotopic analysis of a single Pb particle by using laser ablation TOF-MS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I. H.; Yoo, H. S. [Chungbuk National Univ., Cheongju (Korea, Republic of); Song, K. S. [KAERI, Daejeon (Korea, Republic of)

    2008-11-15

    A laser ablation can be applied to a direct isotopic analysis of solid samples due to the following advantages. Because a laser ablation is a very powerful ionization source, an additional ionization source is not required and an one step vaporization and ionization of samples is possible. Due to the small size of a laser beam, an analysis of a local trace can be applied. Also, the contamination or loss of samples is reduced because there is no need for a sample preparation process. In this study, Pb particles with a size of∼150μm were analyzed by LA TOF MS and a second harmonic of the Nd:YAG laser, 532nm, was used for the laser ablation. First, the ion signal of Pb was measured depending on the matrices. For loading a Pb particle, a silicon wafer, cotton textile, and Ta metal plate were used as a basic plate. As a result, the silicon wafer plate was identified to be the best matrix for the analysis of Pb with a good resolution and its measured isotopic ratios reasonably agree with the natural abundance within 5%. The figure shows a mass spectrum of Pb onto a silicon wafer. In applying the resonance laser ablation, the detection sensitivity was increased by more than 10 times. In the experiment regarding the cotton textile, the mass resolution of Pb was more than 500 which was enough to measure the isotopes, and it is applicable to real swipe samples in various fields such as environmental analysis, industry, and nuclear forensic.

  9. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry

    International Nuclear Information System (INIS)

    Hirata, Takafumi; Tanoshima, Mina; Suga, Akinobu; Tanaka, Yu-ki; Nagata, Yuichi; Shinohara, Atsuko; Chiba, Momoko

    2008-01-01

    The biological processing of Ca produces significant stable isotope fractionation. The level of isotopic fractionation can provide key information about the variation in dietary consumption or Ca metabolism. To investigate this, we measured the 43 Ca/ 42 Ca and 44 Ca/ 42 Ca ratios for bone and blood plasma samples collected from mice of various ages using multiple collector-ICP-mass spectrometry (MC-ICP-MS). The 44 Ca/ 42 Ca ratio in bones was significantly (0.44 - 0.84 per mille) lower than the corresponding ratios in the diet, suggesting that Ca was isotopically fractionated during Ca metabolism for bone formation. The resulting 44 Ca/ 42 Ca ratios for blood plasma showed almost identical, or slightly higher, values (0.03 - 0.2 per mille) than found in a corresponding diet. This indicates that a significant amount of Ca in the blood plasma was from dietary sources. Unlike that discovered for Fe, there were not significant differences in the measured 44 Ca/ 42 Ca ratios between female and male specimens (for either bone or blood plasma samples). Similarity, the 44 Ca/ 42 Ca ratios suggests that there were no significant differences in Ca dietary consumption or Ca metabolism between female and male specimens. In contrast, the 44 Ca/ 42 Ca ratios of blood plasma from mother mice during the lactation period were significantly higher than those for all other adult specimens. This suggests that Ca supplied to infants through lactation was isotopically lighter, and the preferential supply of isotropically lighter Ca resulted in isotopically heavier Ca in blood plasma of mother mice during the lactation period. The data obtained here clearly demonstrate that the Ca isotopic ratio has a potential to become a new tool for evaluating changes in dietary consumption, or Ca metabolism of animals. (author)

  10. Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS.

    Science.gov (United States)

    LaPorte, D F; Holmden, C; Patterson, W P; Prokopiuk, T; Eglington, B M

    2009-06-01

    Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of delta18O(PO4) measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO4(-3) and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of delta44Ca and 87Sr/86Sr in modern biogenic apatite and 143Nd/144Nd in fossil apatite. Our methodology yields an external precision of +/- 0.15 per thousand (1sigma) for delta18O(PO4). The uncertainty is related to the preparation of the Ag3PO4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw delta18O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the

  11. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    Science.gov (United States)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of

  12. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Schmitt

    2013-05-01

    Full Text Available Stable carbon isotope analysis of methane (δ13C of CH4 on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC isotope ratio mass spectrometry (IRMS coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr can severely interfere during the mass spectrometric measurement, leading to significant biases in δ13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in δ13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.

  13. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  14. Stable isotope dilution analysis by thermal ionization mass spectrometry. Pt. 2

    International Nuclear Information System (INIS)

    Broekman, A.; Raaphorst, J.G. van

    1984-01-01

    The combination of stable isotope dilution analysis (SIDA) and thermal ionization mass spectrometry (TIMS) is in use for lead and uranium determination at milligram per kilogram levels for over 20 years. However, several other elements can also be determined accurately by SIDA/TIMS. In this study the determinations of cadmium and copper are described. Details of the digestion, electrochemical and ion-exchange separations and the loading of the elements on a filament are given. The advantages of the SIDA/TIMS technique are shown and illustrated with results for several certified reference materials. (orig.) [de

  15. 2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study

    Science.gov (United States)

    Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan

    2010-05-01

    Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice

  16. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1981-03-01

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given

  17. Seismic analysis procedures for the plutonium processing building of the Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Chen, C.P.; Tajirian, F.F.; Todeschini, R.A.A.; Dahlke, H.J.

    1989-01-01

    This paper describes the methodology for the seismic soil-structure interaction (SSI) analysis of the Plutonium Processing Building (PPB) which is part of the Special Isotope Separation (SIS) Production Plant. The PPB consists of two structures, the enclosure building and the optics/separator area. These are founded on two independent foundations which are supported on the surface of a soil medium consisting of gravel overlying basalt. The PPB is classified as a safety related structure and is required to withstand the effects of a Design Basis Earthquake (DBE)

  18. [Applications of stable isotope analysis in the trophic ecology studies of cephalopods].

    Science.gov (United States)

    Li, Yun-Kai; Gong, Yi; Chen, Xin-Jun

    2014-05-01

    Cephalopods play an important role in marine food webs, however, knowledge about their complex life history, especially their feeding ecology, remains limited. With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement of traditional methods for investigating the trophic ecology and migration patterns of invertebrates. Here, after summarizing the current methods for trophic ecology investigation of cephalopods, applications of SIA in studying the trophic ecology of cephalopods were reviewed, including the key issues such as standardization of available tissues for SIA analyzing, diet shift and migration patterns of cephalopods, with the aim of advancing its application in the biology of cephalopods in the future.

  19. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    Science.gov (United States)

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  20. Analysis of stable isotope data to estimate vitamin A body stores

    International Nuclear Information System (INIS)

    2008-06-01

    Methods to Assess Status and Evaluate Intervention Programmes' and was published in 2005 by HarvestPlus. The publication was endorsed by the IAEA and USAID. This is the third publication of this series that focuses on the use of model-based compartmental analysis of stable isotope data to estimate vitamin A body stores in humans

  1. Identification of different magnetic modes in CsFeCl{sub 3} by polarisation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Toperverg, B [St. Petersburg Nuclear Physics Inst., St. Petersburg (Russian Federation); Baehr, M [Hahn-Meitner-Institut Berlin GmbH (Germany); Petitgrand, D [Laboratoire Leon Brillouin (LLB) - Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-11-01

    CsFeCl{sub 3} is a quasi 1D magnetic system with a singlet groundstate. The Fe{sup 2+} ion has an effective spin S=1. Experimental results in a magnetic field applied perpendicular to the anisotropy axis show that the excited states (doubly degenerate in zero field) split and shift to higher frequencies with increasing field. The split of the high frequency modes is very small compared to the instrumental resolution. Only polarisation analysis of inelastic neutron scattering made it possible to observe the splitting everywhere in reciprocal space. The frequency shift of the two modes with field is different such that a mode crossing appears for fields below about 4 Tesla. (author) 9 figs., 1 tab., 7 refs.

  2. Coupled DQ-FE methods for two dimensional transient heat transfer analysis of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Golbahar Haghighi, M.R.; Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75169-13798 (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir

    2008-05-15

    In this paper, a mixed finite element (FE) and differential quadrature (DQ) method as a simple, accurate and computationally efficient numerical tool for two dimensional transient heat transfer analysis of functionally graded materials (FGMs) is developed. The method benefits from the high accuracy, fast convergence behavior and low computational efforts of the DQ in conjunction with the advantages of the FE method in general geometry, loading and systematic boundary treatment. Also, the boundary conditions at the top and bottom surfaces of the domain can be implemented more precisely and in strong form. The temporal derivatives are discretized using an incremental DQ method (IDQM), whose numerical stability is not sensitive to time step size. The effects of non-uniform convective-radiative conditions on the boundaries are investigated. The accuracy of the proposed method is demonstrated by comparing its results with those available in the literature. It is shown that using few grid points, highly accurate results can be obtained.

  3. Identification of different magnetic modes in CsFeCl3 by polarisation analysis

    International Nuclear Information System (INIS)

    Dorner, B.; Toperverg, B.; Baehr, M.; Petitgrand, D.

    1996-01-01

    CsFeCl 3 is a quasi 1D magnetic system with a singlet groundstate. The Fe 2+ ion has an effective spin S=1. Experimental results in a magnetic field applied perpendicular to the anisotropy axis show that the excited states (doubly degenerate in zero field) split and shift to higher frequencies with increasing field. The split of the high frequency modes is very small compared to the instrumental resolution. Only polarisation analysis of inelastic neutron scattering made it possible to observe the splitting everywhere in reciprocal space. The frequency shift of the two modes with field is different such that a mode crossing appears for fields below about 4 Tesla. (author) 9 figs., 1 tab., 7 refs

  4. Viral Determinants of FeLV Infection and Pathogenesis: Lessons Learned from Analysis of a Natural Cohort

    Directory of Open Access Journals (Sweden)

    Laura S. Levy

    2011-09-01

    Full Text Available Detailed analysis has been performed over many years of a geographic and temporal cohort of cats naturally infected with feline leukemia virus (FeLV. Molecular analysis of FeLV present in the diseased tissues and application of those viruses to experimental systems has revealed unique isolates with distinctive disease potential, previously uncharacterized virus-receptor interactions, information about the role of recombinant viruses in disease induction, and novel viral and cellular oncogenes implicated in pathogenesis, among other findings. The studies have contributed to an understanding of the selective forces that lead to predominance of distinctive FeLV isolates and disease outcomes in a natural population.

  5. Flux analysis of central metabolic pathways in Geobactermetallireducens during reduction of solubleFe(III)-NTA

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Chakraborty, Romy; Garcia-Martin, Hector; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-01-01

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The tracer experiments showed that G. metallireducens containedcomplete biosynthesis pathways for essential metabolism, and this strainmight also have an unusual isoleucine biosynthesis route (usingacetyl-CoA and pyruvate as the precursors). The model indicated that over90 percent of the acetate was completely oxidized to CO2 via a completetricarboxylic acid (TCA) cycle while reducing iron. Pyruvate carboxylaseand phosphoenolpyruvate carboxykinase were present under theseconditions, but enzymes in the glyoxylate shunt and malic enzyme wereabsent. Gluconeogenesis and the pentose phosphate pathway were mainlyemployed for biosynthesis and accounted for less than 3 percent of totalcarbon consumption. The model also indicated surprisingly highreversibility in the reaction between oxoglutarate and succinate. Thisstep operates close to the thermodynamic equilibrium possibly becausesuccinate is synthesized via a transferase reaction, and the conversionof oxoglutarate to succinate is a rate limiting step for carbonmetabolism. These findings enable a better understanding of therelationship between genome annotation and extant metabolic pathways inG. metallireducens.

  6. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  7. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  8. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  9. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  10. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    Science.gov (United States)

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  11. Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges

    Directory of Open Access Journals (Sweden)

    Oliver Heiri

    2012-10-01

    Full Text Available Remains of chironomid larvae, especially their strongly sclerotized head capsules, can be found abundantly and well preserved in most lake sediment records. These remains mainly consist of chitin and proteins and, since their chemical composition does not seem to be strongly affected by decompositional processes, they can be used to develop palaeoenvironmental reconstructions based on their stable isotopic composition. Here we review available stable isotope studies based on fossil chironomids and indicate future research necessary to further develop this still relatively new research approach. Efforts to produce stable isotope records based on fossil chironomids have mainly examined the elements H, N, C, and O. They have focussed on (1 developing the methodology for preparing samples for isotopic analysis, (2 laboratory studies cultivating chironomid larvae under controlled conditions to determine the factors affecting their stable isotopic composition, (3 ecosystem-scale studies relating stable isotopic measurements of fossil chironomid assemblages to environmental conditions, and (4 developing first down-core records describing past changes in the stable isotopic composition of chironomid assemblages. These studies have shown that chemical sample pretreatment may affect the isotopic composition for some elements. Laboratory runs suggest that the diet of the larvae influences their stable isotopic composition for H, N, C and O, whereas stable isotopes in the ambient water also strongly influence their oxygen and to a lesser extent hydrogen isotopic composition. These experiments also indicate only minor offsets between the nitrogen and carbon isotopic composition of chironomid soft tissue and the fossilizing head capsules, whereas for hydrogen and oxygen this offset remains to be explored. Though few datasets have been published, the available ecosystem studies and developed down-core sediment records indicate that stable isotopes in

  12. Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C(4) -C(3) semi-arid vegetation transitions.

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer A J; Bol, Roland; Dixon, Elizabeth R; Macleod, Christopher J A; Brazier, Richard E

    2012-10-30

    Globally, many drylands are experiencing the encroachment of woody vegetation into grasslands. These changes in ecosystem structure and processes can result in increased sediment and nutrient fluxes due to fluvial erosion. As these changes are often accompanied by a shift from C(4) to C(3) vegetation with characteristic δ(13) C values, stable isotope analysis provides a promising mechanism for tracing these fluxes. Input vegetation, surface sediment and fluvially eroded sediment samples were collected across two contrasting C(4) -C(3) dryland vegetation transitions in New Mexico, USA. Isotope ratio mass spectrometric analyses were performed using a Carlo Erba NA2000 analyser interfaced to a SerCon 20-22 isotope ratio mass spectrometer to determine bulk δ(13) C values. Stable isotope analyses of contemporary input vegetation and surface sediments over the monitored transitions showed significant differences (p fluvially eroded sediment from each of the sites, with no significant variation between surface sediment and eroded sediment values. The significant differences in bulk δ(13) C values between sites were dependent on vegetation input. Importantly, these values were robustly expressed in fluvially eroded sediments, suggesting that stable isotope analysis is suitable for tracing sediment fluxes. Due to the prevalent nature of these dryland vegetation transitions in the USA and globally, further development of stable isotope ratio mass spectrometry has provided a valuable tool for enhanced understanding of functional changes in these ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Isotope dilution and sampling factors of the quality assurance and TQM of environmental analysis

    International Nuclear Information System (INIS)

    Macasek, F.

    1999-01-01

    Sampling and preparatory treatment of environmental objects is discussed from the view of their information content, functional speciation of the pollutant, statistical distribution treatment and uncertainty assessment. During homogenization of large samples, a substantial information may be lost and validity of environmental information becomes vague. Isotope dilution analysis is discussed as the most valuable tool for both validity of analysis and evaluation of samples variance. Data collection for a non-parametric statistical treatment of series of 'non-representative' sub-samples, and physico-chemical speciation of analyte may actually better fulfill criteria of similarity and representativeness. Large samples are often required due to detection limits of analysis, but the representativeness of environmental samples should by understood not only by the mean analyte concentration, but also by its spatial and time variance. Hence, heuristic analytical scenarios and interpretation of results must be designed by cooperation of environmentalists and analytical chemists. (author)

  14. Application of stable isotope analysis to study temporal changes in foraging ecology in a highly endangered amphibian.

    Directory of Open Access Journals (Sweden)

    J Hayley Gillespie

    Full Text Available Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians.I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of (13/12C and (15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss' dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation.Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable

  15. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--part 1: instrument validation of the DELTAplusXP IRMS for bulk nitrogen isotope ratio measurements.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Hill, David M; Maynard, Philip; Roux, Claude

    2010-01-01

    A significant amount of research has been conducted into the use of stable isotopes to assist in determining the origin of various materials. The research conducted in the forensic field shows the potential of isotope ratio mass spectrometry (IRMS) to provide a level of discrimination not achievable utilizing traditional forensic techniques. Despite the research there have been few, if any, publications addressing the validation and measurement uncertainty of the technique for forensic applications. This study, the first in a planned series, presents validation data for the measurement of bulk nitrogen isotope ratios in ammonium nitrate (AN) using the DELTA(plus)XP (Thermo Finnigan) IRMS instrument equipped with a ConFlo III interface and FlashEA 1112 elemental analyzer (EA). Appropriate laboratory standards, analytical methods and correction calculations were developed and evaluated. A validation protocol was developed in line with the guidelines provided by the National Association of Testing Authorities, Australia (NATA). Performance characteristics including: accuracy, precision/repeatability, reproducibility/ruggedness, robustness, linear range, and measurement uncertainty were evaluated for the measurement of nitrogen isotope ratios in AN. AN (99.5%) and ammonium thiocyanate (99.99+%) were determined to be the most suitable laboratory standards and were calibrated against international standards (certified reference materials). All performance characteristics were within an acceptable range when potential uncertainties, including the manufacturer's uncertainty of the technique and standards, were taken into account. The experiments described in this article could be used as a model for validation of other instruments for similar purposes. Later studies in this series will address the more general issue of demonstrating that the IRMS technique is scientifically sound and fit-for-purpose in the forensic explosives analysis field.

  16. Quantitative analysis of 39 polybrominated diphenyl ethers by isotope dilution GC/low-resolution MS.

    Science.gov (United States)

    Ackerman, Luke K; Wilson, Glenn R; Simonich, Staci L

    2005-04-01

    A GC/low-resolution MS method for the quantitative isotope dilution analysis of 39 mono- to heptabrominated diphenyl ethers was developed. The effects of two different ionization sources, electron impact (EI) and electron capture negative ionization (ECNI), and the effects of their parameters on production of high-mass fragment ions [M - xH - yBr](-) specific to PBDEs were investigated. Electron energy, emission current, source temperature, ECNI system pressure, and choice of ECNI reagent gases were optimized. Previously unidentified enhancement of PBDE high-mass fragment ion [M - xH - yBr](-) abundance was achieved. Electron energy had the largest impact on PBDE high-mass fragment ion abundance for both the ECNI and EI sources. By monitoring high-mass fragment ions of PBDEs under optimized ECNI source conditions, quantitative isotope dilution analysis of 39 PBDEs was conducted using nine (13)C(12) labeled PBDEs on a low-resolution MS with low picogram to femtogram instrument detection limits.

  17. Quantification of fentanyl in serum by isotope dilution analysis using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan); Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-06-01

    The quantitative determination of fentanyl (FT) in serum was examined by isotope dilution analysis using a capillary gas chromatograph equipped with a surface ionization detector. The separation of FT and its deuterated analogue, FT-{sup 2}H{sub 19}, was achieved within 15 min a column temperature of 260degC by using a 25 m column. Measurement of the samples prepared by the addition of a known amount of FT in the range of 0.2 to 40 ng/ml with 20 ng/ml of FT-{sup 2}H{sub 19} to human control serum allowed observation of a linear relationship between the peak area ratio and the added amount ratio. The correlation coefficient obtained by regression analysis was 0.999. The advantage of the present isotope dilution method was demonstrated by comparison with other FT analogues which substituted a propionyl group with an acetyl group or a phenethyl group with a benzyl group as the internal standard. The present method was used to determine the serum level of FT in surgical patients after i.v. administration. No endogenous compounds and concomitant drugs interfered with the detection of FT or FT-{sup 2}H{sub 19}. This method was considered to be useful for the pharmacokinetic study of FT in patients. (author)

  18. Measurement of mercury isotopic ratio in stone meteorites by neutron activation analysis

    International Nuclear Information System (INIS)

    Thakur, A.N.

    1997-01-01

    196 Hg and 202 Hg isotopes have been measured by neutron activation analysis in samples of twelve stone meteorites. Hg is extracted from an irradiated sample by stepwise heating. The mercury concentrations vary from 0.07 to 33 ppm. While most of the samples give 196 Hg/ 202 Hg ratios similar to terrestrial value within error limits, in some cases large anomalies are observed. A number of control experiments have been devised, that show the absence of experimental artifacts, during sample preparation, neutron irradiation, chemical separation and counting stages. Several anomalous and normal Hg distillate have been re-irradiated as Hg-diethyl-dithio-carbamate complex to eliminate the influence of neutron self shielding and interfering reactions from matrix elements. The isotopic ratio patterns persist in the distillates too proving that any artifacts during meteorite irradiation and measurement are essentially absent. Both positive and negative anomalies are observed: however, the negative anomalies are much more frequent and abundant. In an extreme case of fine grained magnetic particles of Ambapur Nagla the 196 Hg is apparently absent in the Hg released at 100 deg C. A 2σ 196 Hg/ 202 Hg value is only 6% relative to the monitor. This experiment shows the robustness of neutron activation analysis and suggest some constrains on the formation history of stone meteorites. (author)

  19. Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates.

    Science.gov (United States)

    McKelvie, Jennifer R; Lindstrom, Jon E; Beller, Harry R; Richmond, Sharon A; Sherwood Lollar, Barbara

    2005-12-01

    In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.

  20. Quantification of fentanyl in serum by isotope dilution analysis using capillary gas chromatography

    International Nuclear Information System (INIS)

    Sera, Shoji; Goromaru, Tsuyoshi; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-01-01

    The quantitative determination of fentanyl (FT) in serum was examined by isotope dilution analysis using a capillary gas chromatograph equipped with a surface ionization detector. The separation of FT and its deuterated analogue, FT- 2 H 19 , was achieved within 15 min a column temperature of 260degC by using a 25 m column. Measurement of the samples prepared by the addition of a known amount of FT in the range of 0.2 to 40 ng/ml with 20 ng/ml of FT- 2 H 19 to human control serum allowed observation of a linear relationship between the peak area ratio and the added amount ratio. The correlation coefficient obtained by regression analysis was 0.999. The advantage of the present isotope dilution method was demonstrated by comparison with other FT analogues which substituted a propionyl group with an acetyl group or a phenethyl group with a benzyl group as the internal standard. The present method was used to determine the serum level of FT in surgical patients after i.v. administration. No endogenous compounds and concomitant drugs interfered with the detection of FT or FT- 2 H 19 . This method was considered to be useful for the pharmacokinetic study of FT in patients. (author)

  1. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-13

    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  2. Performance of alpha spectrometry in the analysis of uranium isotopes in environmental and nuclear materials

    International Nuclear Information System (INIS)

    Carvalho, F.P.; Oliveira, J.M.

    2009-01-01

    The accuracy of alpha spectrometry in the determination of uranium isotopes at various concentrations levels and with various isotope ratios was tested in a round robin international intercomparison exercise. Results of isotope activity/mass and isotope mass ratios obtained by alpha spectrometry were accurate in a wide range of uranium masses and in isotopic ratios typical of depleted, natural, and low enriched uranium samples. Determinations by alpha spectrometry compared very satisfactorily in accuracy with those by mass spectrometry. For example, determination of U isotopes in natural uranium by alpha spectrometry agreed with mass spectrometry determinations at within ±1%. However, the 236 U isotope, particularly if present in activities much lower than 235 U, might not be determined accurately due to overlap in the alpha particle energies of these two uranium isotopes. (author)

  3. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

    Science.gov (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

    2017-12-01

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  4. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  5. 3D FE Analysis of RC Beams Externally Strengthened with SRG/SRP Systems

    Directory of Open Access Journals (Sweden)

    Francesco Bencardino

    2016-05-01

    Full Text Available The purpose of this study is to evaluate, through a nonlinear Finite Element (FE analysis, the structural behavior of Reinforced Concrete (RC beams externally strengthened by using Steel Reinforced Grout (SRG and Steel Reinforced Polymer (SRP systems. The parameters taken into account were the external strengthening configuration, with or without U-wrap end anchorages, as well as the strengthening materials. The numerical simulations were carried out by using a three-dimensional (3D FE model. The linear and nonlinear behavior of all materials was modeled by appropriate constitutive laws and the connection between concrete substrate and external reinforcing layer was simulated by means of cohesive surfaces with appropriate bond-slip laws. In order to overcome convergence difficulties, to simulate the quasi-static response of the strengthened RC beams, a dynamic approach was adopted. The numerical results in terms of load-displacement curves, failure modes, and load and strain values at critical stages were validated against some experimental data. As a result, the proposed 3D FE model can be used to predict the structural behavior up to ultimate stage of similar strengthened beams without carrying out experimental tests.

  6. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2.

    Science.gov (United States)

    He, Bangxiang; Hou, Lulu; Dong, Manman; Shi, Jiawei; Huang, Xiaoyun; Ding, Yating; Cong, Xiaomei; Zhang, Feng; Zhang, Xuecheng; Zang, Xiaonan

    2018-01-07

    Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe 2+ are reported to be important for astaxanthin accumulation in H. pluvialis . In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL), addition of 25 mM acetate under high light (HA), addition of 20 μM Fe 2+ under high light (HF) and normal green growing cells (HG). Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO). The statistics for DEGs (differentially expressed genes) showed that there were more than 10 thousand DEGs caused by high light and 1800-1900 DEGs caused by acetate or Fe 2+ . The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe 2+ , the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  7. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2+

    Directory of Open Access Journals (Sweden)

    Bangxiang He

    2018-01-01

    Full Text Available Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe2+ are reported to be important for astaxanthin accumulation in H. pluvialis. In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL, addition of 25 mM acetate under high light (HA, addition of 20 μM Fe2+ under high light (HF and normal green growing cells (HG. Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO. The statistics for DEGs (differentially expressed genes showed that there were more than 10 thousand DEGs caused by high light and 1800–1900 DEGs caused by acetate or Fe2+. The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe2+, the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  8. Investigation of Jc-Suppressing Factors in Flat-Rolled Sr0.6K0.4Fe2As2Fe Tapes Via Microstructure Analysis

    KAUST Repository

    Zhang, Xianping

    2015-01-13

    Pnictide superconductors will be very promising for applications if wires with high critical current density Jc can allow reel-to-reel large-scale fabrication at low costs. To understand the mechanism(s) that limited Jc in flat-rolled Sr0.6K0.4Fe2As2(Sr122) tapes, microstructure analysis has been considered the most direct and efficient way. Here, we report on high-resolution microstructure imaging and analysis on Fe-sheathed flat-rolled Sr122 tapes, which have a Jc as high as 2.3 × 104 A/cm2 at 10 T and 4.2 K. The overlapping nature of the Sr122 plates was clearly observed. Transmission electron microscopy/scanning transmission electron microscopy analysis showed that, besides the cracks formed during the fabrication process, the SrO2 phase and cavities caused by the inhomogeneously dispersed Sr and K are the other important factors suppressing Jc. The wetting phase FeAs at the grain boundaries can be partially substituted by Sn in Sn-added samples. Our findings provide insights that pave the way to further enhance the critical current of the rolled 122 tapes up to the practical level.

  9. Stable Isotope Analysis Reveals That Agricultural Habitat Provides an Important Dietary Component for Nonbreeding Dunlin

    Directory of Open Access Journals (Sweden)

    Lesley Joan Evans Ogden

    2005-12-01

    Full Text Available Although shorebirds spending the winter in temperate areas frequently use estuarine and supratidal (upland feeding habitats, the relative contribution of each habitat to individual diets has not been directly quantified. We quantified the proportional use that Calidris alpina pacifica (Dunlin made of estuarine vs. terrestrial farmland resources on the Fraser River Delta, British Columbia, using stable isotope analysis (δ13C, δ15N of blood from 268 Dunlin over four winters, 1997 through 2000. We tested for individual, age, sex, morphological, seasonal, and weather-related differences in dietary sources. Based on single- (δ13C and dual-isotope mixing models, the agricultural habitat contributed approximately 38% of Dunlin diet averaged over four winters, with the balance from intertidal flats. However, there was a wide variation among individuals in the extent of agricultural feeding, ranging from about 1% to 95% of diet. Younger birds had a significantly higher terrestrial contribution to diet (43% than did adults (35%. We estimated that 6% of adults and 13% of juveniles were obtaining at least 75% of their diet from terrestrial sources. The isotope data provided no evidence for sex or overall body size effects on the proportion of diet that is terrestrial in origin. The use of agricultural habitat by Dunlin peaked in early January. Adult Dunlin obtained a greater proportion of their diet terrestrially during periods of lower temperatures and high precipitation, whereas no such relationship existed for juveniles. Seasonal variation in the use of agricultural habitat suggests that it is used more during energetically stressful periods. The terrestrial farmland zone appears to be consistently important as a habitat for juveniles, but for adults it may provide an alternative feeding site used as a buffer against starvation during periods of extreme weather. Loss or reduction of agricultural habitat adjacent to estuaries may negatively impact

  10. Identification of the geographical place of origin of an unidentified individual by multi-isotope analysis

    NARCIS (Netherlands)

    Font Morales, L.; van der Peijl, G.J.Q.; van Leeuwen, C.; van Wetten, I.A.; Davies, G.R.

    2015-01-01

    A multi-isotope investigation (Sr and Pb isotopes and δ18O, δ13C and δ15N) was applied to bone and teeth from an unidentified male found drowned in the"IJ" Ruyterkade in Amsterdam, The Netherlands in March of 1999. The individual remained unidentified until mid 2013, after the isotope study was

  11. High-precision mass spectrometric analysis using stable isotopes in studies of children

    NARCIS (Netherlands)

    Schierbeek, Henk; van den Akker, Chris H. P.; Fay, Laurent B.; van Goudoever, Johannes B.

    2012-01-01

    The use of stable isotopes combined with mass spectrometry (MS) provides insight into metabolic processes within the body. Herein, an overview on the relevance of stable isotope methodology in pediatric research is presented. Applications for the use of stable isotopes with MS cover carbohydrate,

  12. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  13. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  14. Carbon-13 conundrums: limitations and cautions in the use of stable isotope analysis in stream ecotonal research

    International Nuclear Information System (INIS)

    France, R.L.

    1996-01-01

    A secondary analysis of literature was compiled and performed on the δ 13 C values for allochthonous litter, attached algae and consumers in stream ecosystems, finding that 'existing data conflict as to the capability of stable isotope analysis (SIA) for distinguishing carbon pathways'. The paper is in defence of the work previously performed and suggests caution when using stream SIA research. 48 refs

  15. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    Science.gov (United States)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  16. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    International Nuclear Information System (INIS)

    Gemma, R.; Al-Kassab, T.; Kirchheim, R.; Pundt, A.

    2011-01-01

    Research highlights: → Deuterium distribution in V-Fe thin film was investigated by atom probe tomography. → Correct analysis was possible at analysis temperatures below 30 K. → Inhomogeneous distribution of D atoms was nevertheless observed. → This was interpreted by trapping effect at misfit dislocation. → Atom probe analysis provides detailed information on local chemistry of M-D system. - Abstract: V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations.

  17. A simple cleanup method for the isolation of nitrate from natural water samples for O isotopes analysis

    International Nuclear Information System (INIS)

    Haberhauer, G.; Blochberger, K.

    1999-09-01

    The analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. O-isotope nitrate analysis require sample free of other oxygen-containing compounds. More than 100 % of non-NO 3 - oxygen relative to NO 3 - oxygen can still be found in forest soil water samples after cleanup if improper cleanup strategies, e.g., adsorption onto activated carbon, are used. Such non-NO 3 - oxygen compounds will bias O-isotropic data. Therefore, an efficient cleanup method was developed to isolate nitrate from natural water samples. In a multistep cleanup procedure using adsorption onto water-insoluble poly(vinylpyrrolidone), removal of almost all other oxygen-containing compounds, such as fulvic acids, and isolation of nitrate was achieved. The method supplied samples free of non-NO 3 - oxygen which can be directly combusted to CO 2 for subsequent O-isotope analysis. (author)

  18. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one

  19. Analysis of the low-frequency magnetoelectric performance in three-phase laminate composites with Fe-based nanocrystalline ribbon

    International Nuclear Information System (INIS)

    Chen, Lei; Li, Ping; Wen, Yumei; Zhu, Yong

    2013-01-01

    The theoretical analysis of magnetoelectric (ME) performance in three-phase Terfenol-D/PZT/FeCuNbSiB (MPF) laminate composite is presented in this paper. The ME couplings at low frequency for ideal and less than ideal interface couplings are studied, respectively, and our analysis predicts that (i) the ME voltage coefficient for ideal interface coupling increases with the increasing layers (n) of Fe-based nanocrystalline ribbon FeCuNbSiB (Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 ) while the sizes of PZT (Pb(Zr 1−x Ti x )O 3 ) and Terfenol-D (Tb 1−x Dy x Fe 2−y ) are kept constant, and then it tends to be a constant when the layers of FeCuNbSiB are >100; (ii) by introducing the interface coupling factor k and considering the degradation of d 33m,f with n, the ME voltage coefficient for a less than ideal interface condition is predicted. As the FeCuNbSiB layer increases, it first increases and reaches to a maximum value, and then slowly decreases. Various MPF laminates are fabricated and tested. It is found that the theoretical predictions for the consideration of actual boundary conditions at the interface are in agreement with the experimental observations. This study plays a guiding role for the design of MPF composite in real applications. (paper)

  20. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  1. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  2. 57Fe Moessbauer analysis of chrysotile asbestos from various mining regions

    International Nuclear Information System (INIS)

    Nagy-Czako, I.; Vertes, A.; Dravcevic, Z.; Lahodny-Sarc, O.

    1981-01-01

    57 Fe Moessbauer spectroscopy has been used for studying the oxidation and coordination state of iron in chrysotile asbestos from various mining regions in Canada, Rhodesia, USSR and Yugoslavia. It has been found that both the Fe 2+ and Fe 3+ ions occupy only the octahedral positions in the chrysotile crystal structure and that the Fe 2+ /Fe 3+ ratio depends strongly on the mining region. Moessbauer spectra have shown that the samples contain also magnetite. (author)

  3. Reconstructing diet by stable isotope analysis: Two case studies from Bronze Age and Early Medieval Lower Austria

    International Nuclear Information System (INIS)

    Rumpelmayr, K.

    2012-01-01

    Carbon and nitrogen stable isotope analysis is nowadays a method frequently applied for the reconstruction of past human diets. The principles of this technique were developed in the late 1970s and 1980s, when it was shown that the isotopic composition of an animal's body reflected that of its diet. Given that the investigated material (often bone collagen) is well enough preserved, several aspects of diet can be investigated by carbon and nitrogen isotopic signatures - expressed as δ13C- und δ15N-values - as e.g. whether nutrition was based on C3 or C4 plants. Furthermore, these signatures can be used for the detection of a marine component in the diet and they contain information about the trophic level of an individual. The goal of the work presented in this talk was to investigate certain aspects of diet using carbon and nitrogen stable isotope analysis of human and animal skeletal remains from Austrian archaeological sites. Two sites (both in Lower Austria) were selected for this study, the Bronze Age Cemetery of Gemeinlebarn and the Early Medieval settlement of Thunau/Gars am Kamp. Previous archaeological and anthropological examinations suggested that both sites were inhabited by socially differentiated populations. Hence, during the stable isotope analysis special attention was paid to the detection of variation in nutritional habits due to sociogenic or gender-related differences. δ13C- und δ15N-values were measured in collagen, extracted from bone samples, by means of elemental analyzer-isotope ratio mass spectrometry (EA-IRMS). The obtained stable isotope data were examined for significant differences between social groups and the sexes using statistical hypothesis testing (MANOVA and ANOVA). (author)

  4. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  5. The interlaboratory experiment IDA-72 on mass spectrometric isotope dilution analysis. Vol. 2

    International Nuclear Information System (INIS)

    Beyrich, W.; Drosselmeyer, E.

    1975-07-01

    Volume II of the report on the IDA-72 experiment contains papers written by different authors on a number of special topics connected with the preparation, performance and evaluation of the interlaboratory test. In detail the sampling procedures for active samples of the reprocessing plant and the preparation of inactive reference and spike solution from standard material are described as well as new methods of sample conditioning by evaporation. An extra chapter is devoted to the chemical sample treatment as a preparation for mass spectrometric analysis of the U and Pu content of the solutions. Special topics are also methods for mass discrimination corrections, α-spectrometer measurements as a supplement for the determination of Pu-238 and the comparison of concentration determinations by mass spectrometric isotope dilution analysis with those performed by X-ray fluorescence spectrometry. The last part of this volume contains papers connected with the computerized statistical evaluation of the high number of data. (orig.) [de

  6. Compound-specific isotope analysis of light elements using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) and its application to geochemistry

    International Nuclear Information System (INIS)

    Naraoka, Hiroshi; Yamada, Keita; Matsumoto, Kohei; Ishiwatari, Ryoshi

    1997-01-01

    Compound-specific isotope analysis has been developed recently using gas chromatography/combustion/mass spectrometry (GC/C/IRMS). This paper summarizes principles and progress of GC/C/IRMS, and reviews recent some important works using this new method. GC/C/IRMS is a novel tool for (1) biomarker analysis in sediments and living matter, (2) paleoenvironment analysis including reconstruction of ancient biogeochemical processes, (3) geochemical cycle study of organic compounds in a terrestrial-marine system, (4) evaluation of maturity and diagenesis of organic matter including petroleum formation, (5) ecological analysis, (6) evaluation of anthropologenic pollution in environment, (7) detection of extraterrestrial organic compounds and the formation mechanism study, (8) tracer studies in environment. (author)

  7. Experimental and FE Analysis of Exterior Plastic Components of Cars under Static and Dynamic Loading Conditions

    OpenAIRE

    Faghihi, Hassan

    2011-01-01

    This thesis is composed by an experimental part and numerical part, aimed at contributing to a better knowledge of the behavior of plastic parts under different loading conditions. The study is intended to validate a FE model for simulating exterior plastic components of car especially the A-decor and plastic clips in the context of thermal and static load analysis. From the comparison of numerical and experimental results in the terms of thermal and static deformation of the A-decor, it is c...

  8. FE-analysis and comparison with the experimental results of the reinforced LCT-coil

    International Nuclear Information System (INIS)

    Gruenhagen, A.; Kneifel, B.

    1997-04-01

    The reinforced LCT-coil was loaded up to a current of I=19.6 kA corresponding to a magnetic field of 11 Tesla. The experiment was to demonstrate that large superconducting NbTi coils are capable for reliable operation at levels up to 11 Tesla. All the measured values like strains and displacements are in very good agreement with the FE-analysis. The prediction of the maximum stresses at the coil case and at the winding could be confirmed. (orig.) [de

  9. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Andrew J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Capo, Rosemary C. [Univ. of Pittsburgh, PA (United States); Stewart, Brian W. [Univ. of Pittsburgh, PA (United States); Phan, Thai T. [Univ. of Pittsburgh, PA (United States); Jain, Jinesh C. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hakala, Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Guthrie, George D. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-09-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  10. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, Jacqueline Alexandra [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-11-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  11. Stable isotope ratio analysis: A potential analytical tool for the authentication of South African lamb meat.

    Science.gov (United States)

    Erasmus, Sara Wilhelmina; Muller, Magdalena; van der Rijst, Marieta; Hoffman, Louwrens Christiaan

    2016-02-01

    Stable isotope ratios ((13)C/(12)C and (15)N/(14)N) of South African Dorper lambs from farms with different vegetation types were measured by isotope ratio mass spectrometry (IRMS), to evaluate it as a tool for the authentication of origin and feeding regime. Homogenised and defatted meat of the Longissimus lumborum (LL) muscle of lambs from seven different farms was assessed. The δ(13)C values were affected by the origin of the meat, mainly reflecting the diet. The Rûens and Free State farms had the lowest (p ⩽ 0.05) δ(15)N values, followed by the Northern Cape farms, with Hantam Karoo/Calvinia having the highest δ(15)N values. Discriminant analysis showed δ(13)C and δ(15)N differences as promising results for the use of IRMS as a reliable analytical tool for lamb meat authentication. The results suggest that diet, linked to origin, is an important factor to consider regarding region of origin classification for South African lamb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain.

    Science.gov (United States)

    Lacombe, R J Scott; Giuliano, Vanessa; Colombo, Stefanie M; Arts, Michael T; Bazinet, Richard P

    2017-10-01

    DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13 C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13 C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13 C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13 C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13 C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Stepwise fluorination - a useful approach for the isotopic analysis of hydrous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Haimson, M; Knauth, L P [Arizona State Univ., Tempe (USA). Dept. of Geology

    1983-09-01

    Analytical uncertainties in oxygen isotopic studies of hydrous silica have been investigated using a partial fluorination procedure in which fractional oxygen yields are achieved by reducing the amount of fluorine. Stepwise reaction of opaline silica results in a set of sequential oxygen fractions which show a wide range of delta/sup 18/O values due to variable amounts of water, organic matter, and other impurities. Delta-values for successive fractions in non-biogenic opal systematically increase as water is reacted away and then remain constant to within +- 0.2 per thousand as the remaining silica reacts. Delta-values in biogenic silica increase similarly but then decrease when low /sup 18/O oxide impurities begin to react. The troublesome water component in opal is readily removed by stepwise fluorination. This technique allows more precise oxygen isotope analysis of non-biogenic opal-A, and may improve the analytical precision for biogenic silica and any silicate mineral containing a significant water component.

  14. Stable Isotope Analysis of Extant Lamnoid Shark Centra: A New Tool in Age Determination?

    Science.gov (United States)

    Labs, J.

    2003-12-01

    The oxygen isotopes of fourteen vertebral centra from ten extant lamnoid sharks (including Carcharodon carcharias [great white], Isurus paucus [longfin mako], and Isurus oxyrinchus [shortfin mako]) were sampled and measured along the growth axis to determine the periodicity of incremental growth represented in the centra. As part of the internal (endochondral) skeleton, shark centra are composed initially of hyaline cartilage, which then secondarily ossifies during ontogeny forming calcified hydroxyapatite bone. The incremental growth of shark centra forms definite growth rings, with darker denser portions being deposited during slower growth times (i.e., winter) and lighter portions being deposited during more rapid growth (i.e., summer). Thus, shark centra, whether they are extant or extinct, are characterized by clearly delineated incremental growth couplets. The problem with this general rule is that there are several factors in which the growth of these couplets can vary depending upon physical environment (including temperature and water depth), food availability, and stress. The challenge for paleobiological interpretations is how to interpret the periodicity of this growth. It can generally be assumed that these bands are annual, but it is uncertain the extent to which exceptions to the rule occur. Stable isotopic analysis provides the potential to independently determine the periodicity of the growth increments and ultimately the ontogenetic age of an individual.

  15. Isotope analysis of uranium by optical spectroscopy; Analyse isotopique de I'uranium par spectroscopie optique

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenkorn, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Isotope analysis of uranium is made by means of hollow cathode lamp and Fabry-Perot photoelectric spectrometer. When using the line U I 5027 A, this method allows to determine isotopic concentrations in {sup 235}U down to 0,1 per cent. The relative precision is about 2 per cent for amounts of {sup 235}U over 1 per cent. For weaker amounts this line would allow relative measurements of better precision when using standard mixtures. (author) [French] L'analyse isotopique de l'uranium est effectuee a l'aide d'une lampe a cathode creuse et du spectrometre Fabry-Perot photo-electrique. On utilise la raie U I 5027 A. Cette methode permet de doser des melanges isotopiques dont la teneur en {sup 235}U, peut descendre jusqu'a 0,1 pour cent. La precision relative est de l'ordre de 2 pour cent pour des teneurs en {sup 235}U superieures a 1 pour cent. Pour des teneurs plus faibles cette raie {lambda} = 5027 A permettrait des mesures relatives de meilleure precision, en utilisant des melanges prealablement doses. (auteur)

  16. FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2016-01-01

    Full Text Available A numerical finite element (FE analysis technology is presented for efficient and reliable solutions of rock with hydraulic-mechanical (HM coupling, researching the seepage characteristics and simulating the damage evolution of rock. To be in accord with the actual situation, the rock is naturally viewed as heterogeneous material, in which Young’s modulus, permeability, and strength property obey the typical Weibull distribution function. The classic Biot constitutive relation for rock as porous medium is introduced to establish a set of equations coupling with elastic solid deformation and seepage flow. The rock is subsequently developed into a novel conceptual and practical model considering the damage evolution of Young’s modulus and permeability, in which comprehensive utilization of several other auxiliary technologies, for example, the Drucker-Prager strength criterion, the statistical strength theory, and the continuum damage evolution, yields the damage variable calculating technology. To this end, an effective and reliable numerical FE analysis strategy is established. Numerical examples are given to show that the proposed method can establish heterogeneous rock model and be suitable for different load conditions and furthermore to demonstrate the effectiveness and reliability in the seepage and damage characteristics analysis for rock.

  17. Isotopic provenance analysis and terrane tectonics: a warning about sediment transport distances

    International Nuclear Information System (INIS)

    Bassett, K.N.

    1999-01-01

    Full text: In the last 10 years the field of provenance analysis has undergone a revolution with the development of single-crystal isotopic dating techniques, the most common being U/Pb zircon and 40Ar/39Ar techniques. These have allowed age determination of single crystals thus providing more detail about probable provenance of each individual grain rather than an averaged population of grains. The usefulness for resolving complex terrane accretion and translation histories was immediately obvious and there have been many studies in many different regions aimed at tracking terrane motions by provenance of individual grains upward through the stratigraphy of a basin. Recent research in the North American Cordilleran terranes and in the New Zealand Torlesse Superterrane show how widely used and powerful these provenance analysis techniques are. However, isotopic provenance analysis has often been presented as key information to resolve controversies around terrane translation histories with very little discussion of the context of sedimentary facies and sediment transport mechanisms. An example is the recent use of U/Pb detrital zircon ages as the supposedly controversy-ending evidence for the amount of lateral translation of the Insular Superterrane in British Columbia (Baja BC) (Mahoney et al., 1999). The zircon grains were separated from fine-grained turbidite deposits and could easily have been transported over very large distances by a variety of mechanisms; yet they were presented as definitively resolving the Baja BC controversy. Modern examples illustrate the problem of using the provenance of fine grained sediment to constrain terrane tectonics. Sediment in the tip of the Bengal submarine fan was transported ∼3000 km from source, first by fluvial processes then by sediment gravity flow in the submarine fan. The detrital isotopic ages of single grains are the same as the depositional ages indicating a very rapid unroofing and transport rate with minimal

  18. Isotopic abundance analysis of carbon, nitrogen and sulfur with a combined elemental analyzer-mass spectrometer system

    International Nuclear Information System (INIS)

    Pichlmayer, F.; Blochberger, K.

    1988-01-01

    Stable isotope ratio measurements of carbon, nitrogen and sulfur are of growing interest as analytical tool in many fields of research, but applications were somewhat hindered in the past by the fact that cumbersome sample preparation was necessary. A method has therefore been developed, consisting in essential of coupling an elemental analyzer with an isotope mass spectrometer, enabling fast and reliable conversion of C-, N- and S-compounds in any solid or liquid sample into the measuring gases carbon dioxide, nitrogen and sulfur dioxide for on-line isotopic analysis. The experimental set-up and the main characteristics are described in short and examples of application in environmental research, food analysis and clinical diagnosis are given. (orig.)

  19. An application of nitrogen microwave-induced plasma mass spectrometry to isotope dilution analysis of selenium in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaki, Toshihiro [Hitachi Instruments Engineering Co. Ltd., Hitachinaka, Ibaraki (Japan); Yoshinaga, Jun; Morita, Masatoshi; Okumoto, Toyoharu; Oishi, Konosuke

    1996-01-01

    Nitrogen microwave-induced plasma mass spectrometry was studied for its applicability to the isotope dilution analysis of selenium in biological samples. Spectroscopic interference by calcium, which is present in high concentrations in biological samples, was investigated. No detectable background spectrum was observed for the major selenium isotopes of {sup 78}Se and {sup 80}Se. No detectable interferences by sodium, potassium, calcium and phosphorus on the isotope ratio {sup 80}Se/{sup 78}Se were observed up to concentration of 200 mg/ml. The method was applied to the analysis of selenium in biological reference materials of marine organisms. The results showed good agreement between the certified and found values. (author).

  20. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis

    Directory of Open Access Journals (Sweden)

    M. Ramonet

    2011-08-01

    Full Text Available Dual carbon isotope analysis of marine aerosol samples has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80 % organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of terrestrial origin. By contrast, for polluted air advected out from Europe into the NE Atlantic, the source apportionment is 30 % marine biogenic, 40 % fossil fuel, and 30 % continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  1. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; Ramonet, M.; O'Dowd, C. D.

    2011-08-01

    Dual carbon isotope analysis of marine aerosol samples has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80 % organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of terrestrial origin. By contrast, for polluted air advected out from Europe into the NE Atlantic, the source apportionment is 30 % marine biogenic, 40 % fossil fuel, and 30 % continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  2. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  3. Carbon isotope analysis of carbonaceous compounds in Puget Sound and Lake Washington

    International Nuclear Information System (INIS)

    Swanson, J.R.

    1980-01-01

    A new method has been developed and tested for determining chronological profiles of organic pollutants. This method, Carbon Isotope Analysis (CIA), involves measurements of 12 C, 13 C and 14 C in carbonaceous compounds found in layers of sediment. Lipids, total aliphatic hydrocarbons (TAHs) and polycyclic aromatic hydrocarbons (PAHs) are separated from kg quantities of sediment. Large Soxhlet extractors are used to remove the extractable organics, using ultra-pure benzene-methanol solution and having an extraction efficiency of about 86% for compounds with boiling points higher than n-tetradecane (n-C 14 ). The basic steps in compound separation include freeze-drying, extraction, fractionation, column chromatography and evaporation. Isolating the TAH and PAH fractions is accomplished by eluting samples from Sephadex and alumina/silica-gel columns. The amount of each fraction recovered is determined by converting the hydrocarbons to carbon dioxide and measuring this gas manometrically. Variations in 12 C and 13 C abundances for carbonaceous compounds are primarily due to thermodynamic, photosynthetic and metabolic fractionation processes. Thus, the source of a particular organic compound can often be determined by measuring its 13 C/ 12 C ratio. Combining the information from both the 13 C analysis and 14 C analysis makes source identification more certain. In addition, this investigation reviews carbon isotopic data and carbon cycling and analyzes organic pollution in two limited ecosystems (Puget Sound and Lake Washington). Specifically, distinct carbonaceous species are analyzed for pollution in sediments of Lake Washington, Elliott Bay, Commencement Bay, central Puget Sound and northern Puget Sound near the Cherry Point oil refineries

  4. Assessment for ion beam analysis methods about hydrogen isotope in hydrogen storaged metal

    International Nuclear Information System (INIS)

    Ding Wei; Long Xinggui; Shi Liqun

    2006-01-01

    In this paper, experimental arrangements of measuring hydrogen isotope concentration and distribution in metal hydride with ion beam analysis methods were reported, and the advantage and disadvantage of different methods were analyzed too. Experiment results show that it can get abundant information and accurate value by these ways. It can get an accurate value since it's the Rutherford cross-section, and the Mylar film used in the experiment is thin enough for H, D and T distinguishing each other while using ERD analysis method with 6.0 MeV O ion beam to proceed this work, but the disadvantage of this method is that the sample preparing is more difficult, and the analysis depth is lower. It could get the distribution information of H, D and T and the analysis depth is about 3.0 μm while using ERD analysis method with 7.4 MeV 4 He ion beam, but the disadvantage is that the spectra of H, D and T overlap each other, which makes a big error in simulated calculation. If using PBS method with 3.0 MeV proton, the analysis depth is deeper, but it couldn't get the H distribution information. (authors)

  5. Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation.

    Science.gov (United States)

    Penning, Holger; Elsner, Martin

    2007-11-01

    Potentially, compound-specific isotope analysis may provide unique information on source and fate of pesticides in natural systems. Yet for isotope analysis, LC-based methods that are based on the use of organic solvents often cannot be used and GC-based analysis is frequently not possible due to thermolability of the analyte. A typical example of a compound with such properties is isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea), belonging to the worldwide extensively used phenylurea herbicides. To make isoproturon accessible to carbon and nitrogen isotope analysis, we developed a GC-based method during which isoproturon was quantitatively fragmented to dimethylamine and 4-isopropylphenylisocyanate. Fragmentation occurred only partially in the injector but was mainly achieved on a heated capillary column. The fragments were then chromatographically separated and individually measured by isotope ratio mass spectrometry. The reliability of the method was tested in hydrolysis experiments with three isotopically different batches of isoproturon. For all three products, the same isotope fractionation factors were observed during conversion and the difference in isotope composition between the batches was preserved. This study demonstrates that fragmentation of phenylurea herbicides does not only make them accessible to isotope analysis but even enables determination of intramolecular isotope fractionation.

  6. Trace analysis of U, Th and other heavy metals in high purity aluminium with isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Beer, B.; Heumann, K.G.

    1992-01-01

    A method for the determination of very low concentrations of U, Th, Fe, Zn, Tl, Cd, Cu and Ag in high purity aluminium with isotope dilution mass spectrometry (IDMS) is developed using a compact and cost-efficient thermal ionization quadrupole mass spectrometer. The detection limits obtained are (in ng/g):U=0.018, Th=0.06, Fe=82, Zn=86, Tl=0.2, Cd=4, Cu=1, Ag=2.6. By this method it is possible to determine the α-emitters U and Th in aluminium down to the sub-ng/g level with good precision of 0.4-10% and 0.5-5%, respectively. The results should also be accurate because IDMS is a reliable analytical method. The dissolution of aluminium is carried out by aqua regia followed by the trace/matrix separation and the isolation of the trace elements by anion exchange chromatography (U, Th, Zn, Tl, Cd), electrodeposition (Cu, Ag) and extraction (Fe). Different aluminium samples are analysed by IDMS and the results are compared with those of other methods. (orig.)

  7. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  8. Development of Stable Isotope Analysis Technology for Epidemiological Study of Migratory Birds in Connection with Avian Influenza

    International Nuclear Information System (INIS)

    Kim, Jongyun; Park, Jongho; Han, Sunho; Song, Kyuseok; Ko, Yongkwon; Bae, Inae; Cho, Mihyun; Jung, Gahee; Yeom, Ina

    2012-03-01

    In order to clarify correlations between the spread of avian influenza and migratory routes of birds, various conventional methods including a ring method, gene analysis, geolocator and a satellite tracking method are being used together. We first report on the estimation of origin of migratory bird in the Korea based on the statistical method of stable isotope ratio analysis of feathers. It is expected that migratory birds in Junam reservoir were from the two different regions according to the stable isotope ration analysis. However, it is not easy to conclude the breeding ground of northern pintails based on the current data because the degree of precision or accuracy can be influenced by many factors. For this reason, this statistical analysis accuracy can be influenced by many factors. For this reason, this statistical analysis can have a scientific significance if the reliability of the whole measurement system is improved. Furthermore, databases are not enough to prepare base map of regional isotope ratios because database of stable isotope ratio in oxygen and hydrogen of rainwater in Korea should be constructed. Though the research has focused on the hydrogen and oxygen until now, investigation of other elements, such as carbon, sulfur, nitrogen and others that can describe metabolic process or regional characteristics, is also worthwhile subject. And it is believed that this research will improve a resolution of detection for the migratory pathway and habitat of birds

  9. Development of Stable Isotope Analysis Technology for Epidemiological Study of Migratory Birds in Connection with Avian Influenza

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyun; Park, Jongho; Han, Sunho; Song, Kyuseok; Ko, Yongkwon; Bae, Inae; Cho, Mihyun; Jung, Gahee; Yeom, Ina

    2012-03-15

    In order to clarify correlations between the spread of avian influenza and migratory routes of birds, various conventional methods including a ring method, gene analysis, geolocator and a satellite tracking method are being used together. We first report on the estimation of origin of migratory bird in the Korea based on the statistical method of stable isotope ratio analysis of feathers. It is expected that migratory birds in Junam reservoir were from the two different regions according to the stable isotope ration analysis. However, it is not easy to conclude the breeding ground of northern pintails based on the current data because the degree of precision or accuracy can be influenced by many factors. For this reason, this statistical analysis accuracy can be influenced by many factors. For this reason, this statistical analysis can have a scientific significance if the reliability of the whole measurement system is improved. Furthermore, databases are not enough to prepare base map of regional isotope ratios because database of stable isotope ratio in oxygen and hydrogen of rainwater in Korea should be constructed. Though the research has focused on the hydrogen and oxygen until now, investigation of other elements, such as carbon, sulfur, nitrogen and others that can describe metabolic process or regional characteristics, is also worthwhile subject. And it is believed that this research will improve a resolution of detection for the migratory pathway and habitat of birds.

  10. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  11. A computer program for automatic gamma-ray spectra analysis with isotope identification for the purpose of activation analysis

    International Nuclear Information System (INIS)

    Weigel, H.; Dauk, J.

    1974-01-01

    A FORTRAN IV program for a PDP-9 computer, with 16K storage capacity, is developed performing automatic analysis of complex gamma-spectra, taken with Ge/Li/ detectors. It searches for full energy peaks and evaluates the peak areas. The program features and automatically performed isotope identifiaction. It is written in such a flexible manner that after reactor irradiation, spectra from samples of any composition can be evaluated for activation analysis. The peak search rutin is based on the following criteria: the counting rate has to increase for two succesive channels; and the amplitude of the corresponding maximum has to be greater than/or equal to F 1 times the statistical error of the counting rate in the valley just before the maximum. In order to detect superimposed peaks, it is assumed that the dependence of FWHM on channel number is roughly approximated by a linear function, and the actual and''theoretical''FWHM values are compared. To determine the net peak area a Gaussian based function is fitted to each peak. The isotope identification is based on the procedure developed by ADAMS and DAMS. (T.G.)

  12. Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Panetta, Robert J; Jahren, A Hope

    2011-05-30

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly