WorldWideScience

Sample records for fe floc part

  1. Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-07-26

    Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made for a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.

  2. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Sequestration of phosphorus by acid mine drainage floc

    Science.gov (United States)

    Adler, P.R.; Sibrell, P.L.

    2003-01-01

    Solubilization and transport of phosphorus (P) to the water environment is a critical environmental issue. Flocs resulting from neutralizing acid mine drainage (AMD) were tested as a possible lowcost amendment to reduce the loss of soluble P from agricultural fields and animal wastewater. Flocs were prepared by neutralizing natural and synthetic solutions of AMD with limestone, lime, ammonium hydroxide, and sodium hydroxide. Phosphorus sequestration was tested in three distinct environments: water, soil, and manure storage basins. In water, flocs prepared from AMD adsorbed 10 to 20 g P kg-1 dry floc in equilibrium with 1 mg L-1 soluble P. Similar results were observed for both Fe-based and A1-based synthetic flocs. A local soil sample adsorbed about 0.1 g P kg-1, about two orders of magnitude less. The AMD-derived flocs were mixed with a highP soil at 5 to 80 g floc kg-1 soil, followed by water and acid (Mehlich1) extractions. All flocs performed similarly. About 70% of the waterextractable P was sequestered by the floc when applied at a rate of 20 g floc kg-1 soil, whereas plant-available P only decreased by about 30%. Under anaerobic conditions simulating manure storage basins, all AMD flocs reduced soluble P by greater than 95% at a rate of 0.2 g floc g-1 rainbow trout (Oncorhynchus mykiss) manure. These findings indicate that AMD flocs could be an effective agent for preventing soluble P losses from soil and manure to the water environment, while at the same time decreasing the costs associated with AMD treatment.

  4. Sulfidization of Organic Freshwater Flocs from a Minerotrophic Peatland: Speciation Changes of Iron, Sulfur, and Arsenic.

    Science.gov (United States)

    ThomasArrigo, Laurel K; Mikutta, Christian; Lohmayer, Regina; Planer-Friedrich, Britta; Kretzschmar, Ruben

    2016-04-05

    Iron-rich organic flocs are frequently observed in surface waters of wetlands and show a high affinity for trace metal(loid)s. Under low-flow stream conditions, flocs may settle, become buried, and eventually be subjected to reducing conditions facilitating trace metal(loid) release. In this study, we reacted freshwater flocs (704-1280 mg As/kg) from a minerotrophic peatland (Gola di Lago, Switzerland) with sulfide (5.2 mM, S(-II)spike/Fe = 0.75-1.62 mol/mol) at neutral pH and studied the speciation changes of Fe, S, and As at 25 ± 1 °C over 1 week through a combination of synchrotron X-ray techniques and wet-chemical analyses. Sulfidization of floc ferrihydrite and nanocrystalline lepidocrocite caused the rapid formation of mackinawite (52-81% of Fesolid at day 7) as well as solid-phase associated S(0) and polysulfides. Ferrihydrite was preferentially reduced over lepidocrocite, although neoformation of lepidocrocite from ferrihydrite could not be excluded. Sulfide-reacted flocs contained primarily arsenate (47-72%) which preferentially adsorbed to Fe(III)-(oxyhydr)oxides, despite abundant mackinawite precipitation. At higher S(-II)spike/Fe molar ratios (≥1.0), the formation of an orpiment-like phase accounted for up to 35% of solid-phase As. Despite Fe and As sulfide precipitation and the presence of residual Fe(III)-(oxyhydr)oxides, mobilization of As was recorded in all samples (Asaq = 0.45-7.0 μM at 7 days). Aqueous As speciation analyses documented the formation of thioarsenates contributing up to 33% of Asaq. Our findings show that freshwater flocs from the Gola di Lago peatland may become a source of As under sulfate-reducing conditions and emphasize the pivotal role Fe-rich organic freshwater flocs play in trace metal(loid) cycling in S-rich wetlands characterized by oscillating redox conditions.

  5. Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation.

    Science.gov (United States)

    Ma, Baiwen; Wang, Xing; Liu, Ruiping; Qi, Zenglu; Jefferson, William A; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2017-09-15

    The integration of adsorbents with ultrafiltration (UF) membranes is a promising method for alleviating membrane fouling and reducing land use. However, a number of problems have become apparent concerning the granular adsorbents used currently, such as high running cost, high chance of causing membrane surface damage, low in situ chemical cleaning efficiency, etc. Herein, to overcome these disadvantages, loose in situ hydrolyzed flocs were directly injected into the membrane tank, providing strong adsorption ability at low cost. To test the feasibility of this method, the heavy metal pollutant antimony (Sb (V)) in a water plant was chosen at a test case, which is similar to arsenic and difficult to remove. We found that Fe-based flocs integrated with an UF membrane showed a large potential advantage in removing Sb(V), even after running for 110 days. We demonstrated that the observed slow transmembrane pressure development could be ascribed to the loose floc cake layer formed, even though some extracellular polymeric substances were induced during operation. We also found that the floc cake layer was easily removed by washing with feed water or dissolved by in situ chemical cleaning under strongly acidic conditions, and many primary membrane pores were clearly observed. In addition, a relative long sludge discharge interval was feasible for this technology and the effluent quality was good, including the turbidity, chromaticity and iron concentration. Based on the excellent performance, these flocs integrated with UF membranes indeed show potential for application in water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

    Science.gov (United States)

    ThomasArrigo, Laurel K; Mikutta, Christian; Byrne, James; Kappler, Andreas; Kretzschmar, Ruben

    2017-06-20

    In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched 57 Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), 57 Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short

  7. Influence of microbial acitivity on the stability of activated sludge flocs

    DEFF Research Database (Denmark)

    Wilén, Britt-Marie; Nielsen, Jeppe Lund; Keiding, Kristian

    2000-01-01

    . These results strongly suggested that microorganisms using oxygen and/or nitrate as electron acceptors were important for maintaining the floc strength. The increase in turbidity under deflocculation was well correlated with the number of bacteria and concentration of protein, humic substances and carbohydrates...... sludge. Furthermore, the importance of Fe(III) for the floc strength was illustrated by removal of Fe(III) from the sludge matrix by adding sulphide, which resulted in strong deflocculation. Thus, the deflocculation observed could be either directly due to lack of aerobic microbial activity or indirectly...

  8. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water

    KAUST Repository

    Chekli, L.; Eripret, C.; Park, S.H.; Tabatabai, S. Assiyeh Alizadeh; Vronska, O.; Tamburic, B.; Kim, J.H.; Shon, H.K.

    2016-01-01

    Seasonal green algae blooms in freshwaters have raised attention on the need to develop novel effective treatment processes for the removal of algae in water. In the present study, the performance of newly developed polytitanium tetrachloride (PTC) coagulant for the removal of freshwater microalga Chlorella vulgaris has been investigated and compared with titanium tetrachloride (TiCl4) coagulant and the conventional ferric chloride (FeCl3) coagulant. The main benefit of using titanium-based coagulants is that the sludge produced after flocculation may be recycled into a valuable product: titanium dioxide photocatalyst. Both titanium-based coagulants achieved good flocculation over a broader pH range and coagulant dose compared to conventional FeCl3 coagulant. All three coagulants achieved comparable performance in terms of turbidity removal (i.e. turbidity removal efficiency >97%); although TiCl4 performed slightly better at the lower tested dose (i.e. <9 mg/L). Zeta potential measurements indicated that charge neutralisation may not be the sole mechanism involved in the coagulation of algae for all three coagulants. Analysis of the dynamic floc size variation during floc breakage showed no regrowth after floc breakage for the three coagulants. The flocs formed by both Ti-based coagulants were larger than those formed by FeCl3 and also grew at a faster rate. This study indicates that Ti-based coagulants are effective and promising coagulants for algae removal in water.

  9. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water

    KAUST Repository

    Chekli, L.

    2016-11-11

    Seasonal green algae blooms in freshwaters have raised attention on the need to develop novel effective treatment processes for the removal of algae in water. In the present study, the performance of newly developed polytitanium tetrachloride (PTC) coagulant for the removal of freshwater microalga Chlorella vulgaris has been investigated and compared with titanium tetrachloride (TiCl4) coagulant and the conventional ferric chloride (FeCl3) coagulant. The main benefit of using titanium-based coagulants is that the sludge produced after flocculation may be recycled into a valuable product: titanium dioxide photocatalyst. Both titanium-based coagulants achieved good flocculation over a broader pH range and coagulant dose compared to conventional FeCl3 coagulant. All three coagulants achieved comparable performance in terms of turbidity removal (i.e. turbidity removal efficiency >97%); although TiCl4 performed slightly better at the lower tested dose (i.e. <9 mg/L). Zeta potential measurements indicated that charge neutralisation may not be the sole mechanism involved in the coagulation of algae for all three coagulants. Analysis of the dynamic floc size variation during floc breakage showed no regrowth after floc breakage for the three coagulants. The flocs formed by both Ti-based coagulants were larger than those formed by FeCl3 and also grew at a faster rate. This study indicates that Ti-based coagulants are effective and promising coagulants for algae removal in water.

  10. Ferrihydrite flocs, native copper nanocrystals and spontaneous remediation in the Fosso dei Noni stream, Tuscany, Italy

    International Nuclear Information System (INIS)

    Genovese, Alessandro; Mellini, Marcello

    2007-01-01

    The Fosso dei Noni stream drains the abandoned mixed-sulfide mining area of Fenice Capanne in Italy. Water pollution mostly derives from two tributaries, one of which adds Cu and the other Zn. Downstream, water pollution is progressively remediated through the spontaneous precipitation of abundant, deeply-colored flocs. Within 1 km, flocs change from yellow-red to whitish and green, as the pH increases from 4.59 to 7.70 and the Eh decreases from +311 to +165 mV. Flocs are initially amorphous; with a near-neutral pH, their X-ray diffraction properties suggest the presence of two-line ferrihydrite. Transmission electron microscopy reveals major nanotextural modifications in flocs along the entire stream. Upstream, flocs consist of globular particles with a radius of 25-50 nm. Downstream, they change to globular particles with elongated features. Lastly, further downstream, flocs consist of elongated features interconnected by continuous films. Nanochemical data are consistent with Al and Fe hydroxides (largely contaminated by S, Si, Ca, Cu and Zn); the Cu content increases progressively downstream to a maximum of 18 at. %. The increasing Cu content is paralleled by the appearance of isolated Cu nanocrystals adsorbed on floc surfaces. Spontaneous processes in the Fosso dei Noni stream (water neutralization, formation of ferrihydrite-like flocs and crystallization of native Cu) allow the temporary storage of Cu, providing hints on how to optimize remediation processes and Cu recovery

  11. Influence of Compositional Variations on Floc Size and Strength

    Science.gov (United States)

    Yin, H.; Tan, X.; Reed, A. H.; Furukawa, Y.; Zhang, G.

    2010-12-01

    Clay-biopolymer micro aggregates or flocs are abundant in waters, including rivers, lakes, and oceans. Owing to their small size and charged surfaces, fine-grained inorganic sediment particles, mainly clays, interact actively with organic substances, such as organic matter and biogenic polymers, to form aggregates or flocs, typically in the size of 10-1000 μm. The flocs in ocean waters are also termed “marine snow”. These flocs are typically porous, tenuous, and soft in nature. During transport in suspension, they may breakdown and decrease in size if the turbulent shear stress exceeds their strength. They may also collide and form larger ones if the shear stress is relatively small. Since flocs of different size and structure settle at different velocities, understanding their strength is also of essential importance for sediment hydrodynamics, transport, and management. Our study focuses on investigating the influence of compositional variations on floc size and strength so that a better understanding of floc dynamics can be achieved. A laser diffraction-based Cilas® particle size and shape analyzer with controllable fluid circulation velocity was employed to conduct floc size measurements and shape imaging, the latter achieved by a high resolution inverted optical microscope, which is also installed with the size analyzer. Totally two clay minerals, kaolinite and illite, were tested as the model inorganic solid skeleton minerals for floc formation, and two biopolymers, anionic xanthan gum and neutral guar gum, were chosen as analogs of naturally occurring organic matter or biopolymers to simulate clay-biopolymer floc formation. Moreover, the concentration of both organic and inorganic phases was varied. The floc breakage or tensile strength was indirectly estimated by the varied fluid flow velocity in the particle size analyzer’s circulation system. For each individual composition, stable flocs were formed by three different fluid circulating velocities

  12. Investigation of the shape change of bio-flocs and its influence on mass transport using particle image velocimetry.

    Science.gov (United States)

    Ren, T T; Xiao, F; Sun, W J; Sun, F Y; Lam, K M; Li, X Y

    2014-01-01

    In this laboratory study, an advanced flow visualization technique - particle image velocimetry (PIV) - was employed to investigate the change of shape of activated sludge flocs in water and its influence on the material transport characteristics of the flocs. The continuous shape change of the bio-flocs that occurred within a very short period of time could be captured by the PIV system. The results demonstrate that the fluid turbulence caused the shift of parts of a floc from one side to the other in less than 200 ms. During the continuous shape change, the liquid within the floc was forced out of the floc, which was then refilled with the liquid from the surrounding flow. For the bio-flocs saturated with a tracer dye, it was shown that the dye could be released from the flocs at a faster rate when the flocs were swayed around in water. The experimental results indicate that frequent shape change of bio-flocs facilitates the exchange of fluid and materials between the floc interior and the surrounding water. This mass transfer mechanism can be more important than molecular diffusion and internal permeation to the function and behavior of particle aggregates, including bio-flocs, in natural waters and treatment systems.

  13. Temporal variation of floc size and settling velocity in the Dollard estuary

    Science.gov (United States)

    Van der Lee, Willem T. B.

    2000-09-01

    Temporal changes in floc size and settling velocity were measured in the Dollard estuary with an under water video camera. The results show that the flocs in the Dollard are very heterogeneous and that larger flocs have much lower effective densities than smaller flocs. Due to this density decrease, floc settling velocities show only a minor increase with increasing floc size. Floc sizes and settling velocities correlate with the suspended sediment concentration (SSC) on a tidal time scale, but not on a seasonal time scale. On a seasonal time scale floc sizes depend on the binding properties of the sediment, while floc settling velocities show hardly any variation, as an increase in floc size is mainly counterbalanced by a decrease in floc density. Tidal variations in settling velocity occur but cannot be modeled solely as a function of SSC, as the relation between floc size/settling velocity and SSC constantly changes in time and space. Settling velocity variations throughout the tide can however be expressed as a function of tidal phase.

  14. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe2+ catalyzed Fenton process.

    Science.gov (United States)

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe 2+ catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O 2 - ) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Factors controlling floc settling velocity along a longitudinal estuarine transect

    Science.gov (United States)

    Manning, A.J.; Schoellhamer, D.H.

    2013-01-01

    A 147 km longitudinal transect of flocculated cohesive sediment properties in San Francisco Bay (SFB) was conducted on June 17th, 2008. Our aim was to determine the factors that control floc settling velocity along the longitudinal axis of the estuary. The INSSEV-LF video system was used to measure floc diameters and settling velocities at 30 stations at a distance of 0.7 m above the estuary bed. Floc sizes (D) ranged from 22 μm to 639 μm and settling velocities (Ws) ranged between 0.04 mm·s− 1 and 15.8 mm·s− 1 during the longitudinal transect. Nearbed turbulent shear stresses throughout the transect duration were within the 0.2–0.5 Pa range which typically stimulates flocculation growth. The individual D–Ws–floc density plots suggest the suspended sediments encountered throughout SFB were composed of both muddy cohesive sediment and mixed sediments flocs. Mass-weighted population mean settling velocity (Wsmass) ranged from 0.5 mm·s− 1 to 10 mm·s− 1. The macrofloc and microfloc (demarcation at 160 μm) sub-populations demonstrated parameterised settling velocities which spanned nearly double the range of the sample mean settling velocities (Wsmean). The macroflocs tended to dominate the suspended mass (up to 77% of the ambient suspended solid concentration; SSC) from San Pablo Bay to Carquinez Strait (the vicinity of the turbidity maximum zone). Microfloc mass was particularly significant (typically 60–100% of the SSC) in the northern section of South Bay and most of Central Bay. The transect took eleven hours to complete and was not fully synoptic. During slack tide, larger and faster settling flocs deposited, accounting for most of the longitudinal variability. The best single predictor of settling velocity was water velocity 39 min prior to sampling, not suspended-sediment concentration or salinity. Resuspension and settling lags are likely responsible for the lagged response of settling velocity to water velocity. The distribution of

  16. Modeling of Activated Sludge Floc Characteristics

    OpenAIRE

    Ibrahim H. Mustafa; G. Ibrahim; Ali Elkamel; A. H. Elahwany

    2009-01-01

    Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i) Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii) Study the effect of bulk...

  17. Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest

    2014-01-01

    flocculation and floc break-up dynamics in the lower part of the water column in the period around slack water. These dynamics were confirmed in the Eulerian deployments and were reoccurring in every tidal cycle. The dynamics were mostly governed by changes in turbulent shear. Strong microflocs with a lower...... mean threshold diameter of 50–60 μm present at high turbulent shear flocculated to form fragile macroflocs with sizes of several hundred microns and mean diameters above 80 μm around slack water periods. A hysteresis in floc break-up and flocculation was found at high water slack (HWS), as flocs formed...

  18. Properties of sediment-algae flocs as function of shear and environmental conditions : a laboratory study

    Science.gov (United States)

    Deng, Z.; He, Q.; Chassagne, C.; Manning, A. J.

    2017-12-01

    It has been observed that flocculation in-situ is greatly influenced by biochemical parameters[De Lucas Pardo, 2014]. In our previous work [Deng, 2017], we have found that flocs observed in the Yangtze Estuary are composed of mixtures of sediment and algae. In particular we have shown that flocs can be composed solely of algae aggregates. Depending on their position in the water column, the composition of flocs changes, as more or less sediment can be part of the floc. The presence of algae (phytoplankton biomass) in a floc is linked to the measured chlorophyll α concentration [Uncles et al., 1998]. The Particle Size Distribution (PSD) found in-situ depends on parameters such as position in the water column and shear rate, and also seasons. We showed that the PSD found in-situ is similar to the one measured in the lab, for the same floc composition and environmental conditions. In the present work we extend the laboratory investigations by analysing the impact of the floc history on its PSD. The PSD can be bimodal after a grow-break-up-regrow phase, indicating that flocs growth process depend on a timescale that is larger than the timescale associated to the change in shear rate. We will discuss the behaviour of the parameters needed in the flocculation model we propose upon the relevant variables. The ultimate goal is to propose a model that can be implemented in large scale sediment transport models. ReferencesDe Lucas Pardo, M. (2014), Effect of biota on fine sediment transport processes: A study of Lake Markermeer, TU Delft, Delft University of Technology. Deng, Z. (2017), Algae effects on cohesive sediment flocculation: a case study based on field observation in Yangtze Estuary, China (submitted)Uncles, R., A. Easton, M. Griffiths, C. Harris, R. Howland, I. Joint, R. King, A. Morris, and D. Plummer (1998), Concentrations of suspended chlorophyll in the tidal Yorkshire Ouse and Humber Estuary, Science of The Total Environment, 210-211, 367-375, doi:10.1016/s

  19. Bacterial composition of activated sludge - importance for floc and sludge properties

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Thomsen, Trine R.; Nielsen, Jeppe L.

    2003-07-01

    Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. in our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest. (author)

  20. In situ determination of flocculated suspended material settling velocities and characteristics using a floc camera

    Science.gov (United States)

    Schoellhamer, David H.; Haught, Dan; Manning, Andrew

    2012-01-01

    Estimates of suspended sediment settling are necessary for numerical sediment models, water quality studies, and rehabilitation of coastal ecosystems. Settling of cohesive sediment, which is common in estuaries, is more difficult to quantify than noncohesive sediment because of flocculation. Flocs are composed of an aggregation of finer silts, clays, and organic material. Floc characteristics, such as the diameter, density, porosity, and water content determine floc settling velocities. A floc camera provides the ability to capture the settling velocities and other desired characteristics of individual flocs in situ. Water samples taken using a Van Dorn sampler are immediately subsampled using a pipette and transferred to the floc camera. The Perspex settling column is outfitted with a LED backlighting to distinguish flocs. The floc camera’s high pixel and temporal resolution allows image analysis software to detect individual flocs and process floc statistics per image. Observed changes in floc location with respect to time presents a way of calculating settling velocities. This work presents results of validation tests with known sediment size distributions and of deployment of the camera during a field study.

  1. A radioisotope study of the dispersion of ferric hydroxide floc in Bass Strait

    International Nuclear Information System (INIS)

    Davison, A.

    1983-01-01

    The dispersion of ferric hydroxide floc in Bass Strait waters adjacent to Burnie, Tasmania, has been investigated using radioisotope tracer techniques. Gold-198 labelled floc was employed to follow the movement of floc produced by dilution of the iron-rich effluent from a titanium dioxide plant. Dispersion was determined under calm and storm conditions. Tidal and wind-driven currents were measured, oscillating wave generated currents were calculated, and lateral and vertical dispersion coefficients were determined. It is concluded that floc disperses episodically during storms. The agglomerated floc remains trapped in a stable seabed layer which spreads slowly at seabed level when wind velocities are less than 15 m s -1 . When wind velocities exceed this level, the wave generated oscillating currents at seabed level, 30 m below the surface, are strong enough to raise the floc into suspension where advective dispersion occurs. Since tidal currents in the area are negligible, the direction of floc movement depends on the direction of the wind-driven current during each storm

  2. Bilevel thresholding of sliced image of sludge floc.

    Science.gov (United States)

    Chu, C P; Lee, D J

    2004-02-15

    This work examined the feasibility of employing various thresholding algorithms to determining the optimal bilevel thresholding value for estimating the geometric parameters of sludge flocs from the microtome sliced images and from the confocal laser scanning microscope images. Morphological information extracted from images depends on the bilevel thresholding value. According to the evaluation on the luminescence-inverted images and fractal curves (quadric Koch curve and Sierpinski carpet), Otsu's method yields more stable performance than other histogram-based algorithms and is chosen to obtain the porosity. The maximum convex perimeter method, however, can probe the shapes and spatial distribution of the pores among the biomass granules in real sludge flocs. A combined algorithm is recommended for probing the sludge floc structure.

  3. Performance of titanium salts compared to conventional FeCl 3 for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics

    KAUST Repository

    Chekli, L.; Corjon, E.; Tabatabai, S. Assiyeh Alizadeh; Naidu, G.; Tamburic, B.; Park, S.H.; Shon, H.K.

    2017-01-01

    During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography – organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM.

  4. Performance of titanium salts compared to conventional FeCl3 for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics.

    Science.gov (United States)

    Chekli, L; Corjon, E; Tabatabai, S A A; Naidu, G; Tamburic, B; Park, S H; Shon, H K

    2017-10-01

    During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl 4 ) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl 3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl 4 and PTC achieved better performance than FeCl 3 in terms of turbidity, UV 254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography - organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl 4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl 3 indicated that sweep flocculation is also a contributing mechanism for the coagulation

  5. Performance of titanium salts compared to conventional FeCl 3 for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics

    KAUST Repository

    Chekli, L.

    2017-06-20

    During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography – organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM.

  6. The tail of two models: Impact of circularity and biomass non-homogeneity on UV disinfection of wastewater flocs.

    Science.gov (United States)

    Azimi, Y; Liu, Y; Tan, T C; Allen, D G; Farnood, R R

    2017-12-01

    The effects of floc structural characteristics, i.e. shape and dense biomass distribution, were evaluated on ultraviolet (UV) disinfection resistance, represented by the tailing level of the UV dose response curve (DRC). Ellipsoid-shaped flocs of similar volume and different projected circularities were constructed in-silico and a mathematical model was developed to compare their UV DRC tailing levels (indicative of UV-resistance). It was found that floc shape can significantly influence tailing level, and rounder flocs (i.e. flocs with higher circularity) were more UV-resistant. This result was confirmed experimentally by obtaining UV DRCs of two 75-90 μm floc populations with different percentages (20% vs. 30%) of flocs with circularities higher than 0.5. The population enriched in less circular flocs (i.e. 20% flocs with circularities >0.5) had a lower tailing level (at least by 1-log) compared to the other population. The second model was developed to describe variations in UV disinfection kinetics observed in flocs with transverse vs. radial biomass non-homogeneity, indicative of biofilm-originated vs. suspended flocs. The varied-density hemispheres model and shell-core model were developed to simulate transverse and radial non-homogeneity, respectively. The UV DRCs were mathematically constructed and biofilm-originated flocs showed higher UV resistance compared to suspended flocs. The calculated UV DRCs agreed well with the experimental data collected from activated sludge and trickling filter flocs (no fitting parameters were used). These findings provide useful information in terms of designing/modifying upstream processes for reducing UV disinfection energy demand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Impact of dynamic distribution of floc particles on flocculation effect

    Institute of Scientific and Technical Information of China (English)

    NAN Jun; HE Weipeng; Song Xinin; LI Guibai

    2009-01-01

    Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrement of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.

  9. Impact of dynamic distribution of floc particles on flocculation effect.

    Science.gov (United States)

    Nan, Jun; He, Weipeng; Song, Xinin; Li, Guibai

    2009-01-01

    Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrease of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.

  10. Advances in the measurement of mud flocs within turbulent suspensions in both the laboratory and field

    Science.gov (United States)

    Strom, K.; Tran, D. A.; Dillon, B.

    2017-12-01

    Predicting the size and settling velocity of mud suspensions under the influence of flocculation is crucial for the accurate prediction of mud movement and deposition in sediment transport modeling of environments such as agricultural streams, large coastal rivers, estuaries, river plumes, boundary currents, and turbidity currents. Yet, collecting accurate and high resolution data on mud flocs is difficult. For example, measurement of flocs with camera systems generally provide the best avenue for preserving floc structure and obtaining accurate information about true floc sizes. However, capturing images of flocs in swirling turbulent flows can be difficult and often limited to suspensions where concentrations are low (automated image processing. The combination of these elements allows for high-resolution times series of floc size populations to be measured in turbulent suspensions over a much broader range of suspended sediment concentration than has previously been possible — all without the need to transfer samples to a separate imaging container. We show applications and results from these developments in laboratory experiments and highlight their use in a newly-developed, low-cost, and field-deployable floc camera system.

  11. Variations of floc morphology and extracellular organic matters (EOM) in relation to floc filterability under algae flocculation harvesting using polymeric titanium coagulants (PTCs).

    Science.gov (United States)

    Zhang, Weijun; Song, Rongna; Cao, Bingdi; Yang, Xiaofang; Wang, Dongsheng; Fu, Xingmin; Song, Yao

    2018-05-01

    The work evaluated the algae cells removal efficiency using titanium salt coagulants with different degree of polymerization (PTCs), and the algae cells aggregates and extracellular organic matter (EOM) under chemical flocculation were investigated. The results indicated that PTCs performed well in algae cells flocculation and separation. The main mechanism using PTCs of low alkalisation degree for algae flocculation was associated with charge neutralization, while adsorption bridging and sweep flocculation was mainly responsible for algae removal by PTCs of high alkalisation degree treatment. In addition, the flocs formed by PTC 1.0 showed the best filtration property, and EOM reached the minimum at this time, indicating the flocs formed by PTC 1.0 were more compact than other PTCs, which can be confirmed by SEM analysis. Three-dimensional excitation emission matrix fluorescence (3D-EEM) and high performance size exclusion chromatography (HPSEC) revealed that the EOMs were removed under PTCs flocculation, which improved floc filterability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Formation of Polyphenol-Denatured Protein Flocs in Alcohol Beverages Sweetened with Refined Cane Sugars.

    Science.gov (United States)

    Eggleston, Gillian; Triplett, Alexa

    2017-11-08

    The sporadic appearance of floc from refined, white cane sugars in alcohol beverages remains a technical problem for both beverage manufacturers and sugar refiners. Cane invert sugars mixed with 60% pure alcohol and water increased light scattering by up to ∼1000-fold. Insoluble and soluble starch, fat, inorganic ash, oligosaccharides, Brix, and pH were not involved in the prevailing floc-formation mechanism. Strong polynomial correlations existed between the haze floc and indicator values (IVs) (color at 420 nm pH 9.0/color at pH 4.0-an indirect measure of polyphenolic and flavonoid colorants) (R 2 = 0.815) and protein (R 2 = 0.819) content of the invert sugars. Ethanol-induced denaturation of the protein exposed hydrophobic polyphenol-binding sites that were further exposed when heated to 80 °C. A tentative mechanism for floc formation was advanced by molecular probing with a haze (floc) active protein and polyphenol as well as polar, nonpolar, and ionic solvents.

  13. Investigating the characteristic strength of flocs formed from crude and purified Hibiscus extracts in water treatment.

    Science.gov (United States)

    Jones, Alfred Ndahi; Bridgeman, John

    2016-10-15

    The growth, breakage and re-growth of flocs formed using crude and purified seed extracts of Okra (OK), Sabdariffa (SB) and Kenaf (KE) as coagulants and coagulant aids was assessed. The results showed floc size increased from 300 μm when aluminium sulphate (AS) was used as a coagulant to between 696 μm and 722 μm with the addition of 50 mg/l of OK, KE and SB crude samples as coagulant aids. Similarly, an increase in floc size was observed when each of the purified proteins was used as coagulant aid at doses of between 0.123 and 0.74 mg/l. The largest floc sizes of 741 μm, 460 μm and 571 μm were obtained with a 0.123 mg/l dose of purified Okra protein (POP), purified Sabdariffa (PSP) and purified Kenaf (PKP) respectively. Further coagulant aid addition from 0.123 to 0.74 mg/l resulted in a decrease in floc size and strength in POP and PSP. However, an increase in floc strength and reduced d50 size was observed in PKP at a dose of 0.74 mg/l. Flocs produced when using purified and crude extract samples as coagulant aids exhibited high recovery factors and strength. However, flocs exhibited greater recovery post-breakage when the extracts were used as a primary coagulant. It was observed that the combination of purified proteins and AS improved floc size, strength and recovery factors. Therefore, the applications of Hibiscus seeds in either crude or purified form increases floc growth, strength, recoverability and can also reduce the cost associated with the import of AS in developing countries. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Science.gov (United States)

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  15. Influential factors of formation kinetics of flocs produced by water treatment coagulants.

    Science.gov (United States)

    Wu, Chunde; Wang, Lin; Hu, Bing; Ye, Jian

    2013-05-01

    The growth rate and size of floc formation is of great importance in water treatment especially in coagulation process. The floc formation kinetics and the coagulation efficiency of synthetic water were investigated by using an on-line continuous optical photometric dispersion analyze and the analysis of water quality. Experimental conditions such as alum dosage, pH value for coagulation, stirring intensity and initial turbidity were extensively examined. The photometric dispersion analyze results showed that coagulation of kaolin suspensions with two coagulants (alum and polyaluminium chloride) could be taken as a two-phase process: slow and rapid growth periods. Operating conditions with higher coagulant doses, appropriate pH and average shear rate might be particularly advantageous. The rate of overall floc growth was mainly determined by a combination of hydraulic and water quality conditions such as pH and turbidity. The measurement of zeta potential indicates that polyaluminium chloride exhibited higher charge-neutralizing ability than alum and achieved lower turbidities than alum for equivalent Al dosages. Under the same operating conditions, the alum showed a higher grow rate, but with smaller floc size.

  16. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Observations of the Variability of Floc Sizes on the Louisiana Shelf

    Science.gov (United States)

    Sahin, Cihan; Sheremet, Alexandru

    2014-05-01

    The general principles of floc formation under variable turbulent stresses and sediment availability are well known, but the details of the dynamics are still unclear. Flocculation of primary particles occurs when these particles get close enough to collide, and a significant number of these collisions result in adhesion. Particle concentration, the intensity and number of collisions (turbulent shear) control the size of the flocs. However, aggregation transitions into fragmentation if the intensity of collisions or turbulent shear exceeds a certain threshold. In this case, a limiting maximum size might exist (Berhane et al., 1997; Dyer and Manning, 1999; Uncles et al., 2010). This study investigates the relation between SSC (suspended sediment concentration), turbulent stresses, and floc size using the high-resolution observations of suspended sediment concentration, flow and acoustic backscatter made for 2 weeks in Spring 2008 on the muddy Atchafalaya Shelf. During the experiment, pressure, near-bed current velocities, and acoustic backscatter profiles were sampled using a downward-pointing 1500-kHz PC-ADP (Pulse-Coherent Acoustic Doppler Profiler, Sontek/YSI). In addition, a downward-pointing single frequency ABS (Acoustic Backscatter Sensor, 700-kHz, Marine Electronics, Isle of Guernsey) measured the intensity of acoustic return in the first meter above bed. Thus, acoustic backscatter profiles were observed by two different frequencies (700 kHz for the ABS and 1500 kHz for the PC-ADP). Direct SSC observations were provided by two OBS-3s at 15 and 40-cm above the bed, which sampled synchronously with the PC-ADP. Simultaneous profiles of SSC and the mean floc size at cm-scale vertical resolution were obtained using acoustic backscatter intensity at the different acoustic frequencies. For the calibration of the instruments, which involves estimation of the instruments system constants, the algorithm described in Sahin et al. (2013) was followed. The mean floc size

  18. Floc Size and Settling Velocity Observations From Three Contrastingly Different Natural Environments in the USA

    Science.gov (United States)

    Manning, Andrew; Schoellhamer, David; Mehta, Ashish; Nover, Daniel; Schladow, Geoffrey

    2010-05-01

    Environmentally, monitoring the movement of suspended cohesive sediments is highly desirable in both estuaries and lakes. When modelling cohesive sediment transport and mass settling fluxes, the settling speed of the suspended matter is a key parameter. In contrast to purely non-cohesive sandy sediments, mud can flocculate and this poses a serious complication to the modelling of sediment pathways. As flocs grow in size they become more porous and significantly less dense, but their settling speeds continue to rise due to a Stokes' Law relationship. Much research has been conducted on the flocculation characteristics of suspended muddy sediments in saline/brackish tidal conditions, where electrostatic particle bonding can occur. However very little is known about freshwater floc dynamics. This is primarily due to flocs being extremely delicate entities and are thus very difficult to observe in situ. This paper primarily describes a recently developed, portable, low intrusive instrument INSSEV_LF, which permits the direct, in situ measurement of both floc size (D) and settling velocity (Ws), simultaneously. Examples of floc spectra observed from three different environments within the USA are presented and compared. The first site was the turbidity maximum zone in San Francisco Bay, where the suspended solids concentration (SSC) was 170 mg.l-1 and many low density macroflocs up to 400 μm in diameter, settling at speeds of 4-8 mm.s-1 were observed. The second location was the shallow (1.7 m mean depth), freshwater environment of Lake Apopka in Florida. It is highly eutrophic, and demonstrates a turbid SSC of 750 mg.l-1 within a benthic suspension layer. These conditions resulted in D from 45 μm up to 1,875 μm; 80% of the floc were > 160 μm (i.e. macroflocs). Present theories for the settling of flocs rely on fractal theory of self-similarity, but this does not appear to be applicable to the Lake Apopka flocs because they do not possess any basic geometric unit

  19. Structure of Colloidal Flocs in relation to the Dynamic Properties of Unstable Suspension

    Directory of Open Access Journals (Sweden)

    Yasuhisa Adachi

    2012-01-01

    Full Text Available Dynamic behaviors of unstable colloidal dispersions are reviewed in terms of floc formation. Geometrical structure of flocs in terms of chemical conditions and formation mechanics is a key to predict macroscopic transportation properties. The rate of sedimentation and rheological properties can be described with the help of fractal dimension (D that is the function of the number of contacts between clusters (Nc. It is also well known that the application of water soluble polymers and polyelectrolytes, which are usually used as a conditioner or flocculants in colloidal dispersions, critically affects the process of flocculation. The resulted floc structure is also influenced by the application of polymer. In order to reveal the roles of the polymers, the elementary rate process of polymer reaching to colloidal interface and subsequent reconformation process into more stable adsorption state are needed to be analyzed. The properties of permeable flocs and adsorbed polymer (polyelectrolyte layers formed on the colloidal surfaces remain to be worked out in relation to inhomogeneous porous structure and electrokinetics in the future.

  20. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  1. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  2. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.

    Science.gov (United States)

    Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan

    2011-11-15

    The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  4. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  5. Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity

    Directory of Open Access Journals (Sweden)

    JULIE EKASARI

    2010-09-01

    Full Text Available Application of bio-flocs technology (BFT in aquaculture offers a solution to avoid environmental impact of high nutrient discharges and to reduce the use of artificial feed. In BFT, excess of nutrients in aquaculture systems are converted into microbial biomass, which can be consumed by the cultured animals as a food source. In this experiment, upconcentrated pond water obtained from the drum filter of a freshwater tilapia farm was used for bio-flocs reactors. Two carbon sources, sugar and glycerol, were used as the first variable, and two different levels of salinity, 0 and 30 ppt, were used as the second variable. Bio-flocs with glycerol as a carbon source had higher total n-6 PUFAs (19.1 ± 2.1 and 22.3 ± 8.6 mg/g DW at 0 and 30 ppt, respectively than that of glucose (4.0 ± 0.1 and 12.6 ± 2.5 mg/g DW at 0 and 30 ppt. However, there was no effect of carbon source or salinity on crude protein, lipid, and total n-3 PUFAs contents of the bio-flocs.

  6. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    Science.gov (United States)

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-10-25

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. How do changes in suspended sediment concentration alone influence the size of mud flocs under steady turbulent shearing?

    Science.gov (United States)

    Tran, Duc; Kuprenas, Rachel; Strom, Kyle

    2018-04-01

    Modeling the size and settling velocity of sediment under the influence of flocculation is crucial for the accurate prediction of mud movement and deposition in sediment transport modeling of environments such as agricultural streams, large coastal rivers, estuaries, river plumes, and turbidity currents. Yet, collecting accurate and high resolution data on mud flocs is difficult. As a result, models that account for the influence of flocculation on mud settling velocity are based on sparse data that often present non-congruent relationship in floc properties with basic influencers of flocculations such as suspended sediment concentration. This study examines the influence of suspended sediment concentration on floc size populations within a turbulent suspension. Specifically, the work investigates: (1) the relationship between the equilibrium floc size and suspended sediment concentration under conditions of steady concentration and turbulent shearing; and (2) the speed at which mature flocs adapt to an unsteady drop in the concentration when turbulent shear is constant. Two sets of experiments were used to investigate the target processes. All work was conducted in laboratory mixing tanks using a floc camera and a newly developed image acquisition method. The new method allows for direct imaging and sizing of flocs within turbulent suspensions of clay in concentrations ranging from 15 to 400 mg/L, so that no transfer of the sample to another settling column or imaging tank is needed. The primary conclusions from the two sets of experiments are: (1) that the equilibrium floc size in an energetic turbulent suspension is linearly and positively related to concentration over the range of C = 50 to 400 mg/L, yet with a smaller-than-expected slope based on previous data and models from low-energy environments; and (2) that floc sizes decrease quickly (with a time lag on the order of 1-15 min) to time-varying decreases in concentration at turbulent shearing of G = 50s-1

  8. Effects of C/N ratio on nitrate removal and floc morphology of autohydrogenotrophic bacteria in a nitrate-containing wastewater treatment process.

    Science.gov (United States)

    Nguyen, Tran Ngoc Phu; Chao, Shu-Ju; Chen, Pei-Chung; Huang, Chihpin

    2018-07-01

    The effects of C/N ratio of a nitrate-containing wastewater on nitrate removal performed by autohydrogenotrophic bacteria as well as on the morphological parameters of floc such as floc morphology, floc number distribution, mean particle size (MPS), aspect ratio and transparency were examined in this study. The results showed that the nitrate reduction rate increased with increasing C/N ratio from 0.5 to 10 and that the nitrogen removal of up to 95% was found at the C/N ratios of higher than 5 (between 0.5-10). Besides, high C/N ratio values reflected a corresponding high nitrite accumulation after 12-hr operation, and a fast decreasing rate of nitrite in the rest of operational time. The final pH values increased with the C/N ratio increasing from 0.5 to 2.5, but decreased with the C/N ratio increasing from 2.5 to 10. There were no significant changes in floc morphology with the MPSs ranging from 35 to 40μm. Small and medium-sized flocs were dominant in the sludge suspension, and the number of flocs increased with the increasing C/N ratios. Furthermore, the highest apparent frequency of 10% was observed at aspect ratios of 0.5 and 0.6, while the transparency of flocs changed from 0.1 to 0.7. Copyright © 2017. Published by Elsevier B.V.

  9. Gravity settling of precipitated magnetite and ferric floc

    International Nuclear Information System (INIS)

    Holt, N.S.; Loft, P.R.

    1983-06-01

    A comparison is presented of the gravity settling performance of ferric floc and magnetite, both in batch settling tests, and on a continuous gravity settler. The precipitation of magnetite from solution on a continuous basis was also demonstrated, and the process was shown not to be significantly affected by the presence of a wide range of chemical species. (U.K.)

  10. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  11. Effect of the Cationic Block Structure on the Characteristics of Sludge Flocs Formed by Charge Neutralization and Patching

    Directory of Open Access Journals (Sweden)

    Huaili Zheng

    2017-05-01

    Full Text Available In this study, a template copolymer (TPAA of (3-Acrylamidopropyl trimethylammonium chloride (AATPAC and acrylamide (AM was successfully synthesized though ultrasonic-initiated template copolymerization (UTP, using sodium polyacrylate (PAAS as a template. TPAA was characterized by an evident cationic microblock structure which was observed through the analyses of the reactivity ratio, Fourier transform infrared spectroscopy (FTIR, 1H (13C nuclear magnetic resonance spectroscopy (1H (13C NMR, and thermogravimetry/differential scanning calorimetry (TG/DSC. The introduction of the template could improve the monomer (AATPAC reactivity ratio and increase the length and amount of AATPAC segments. This novel cationic microblock structure extremely enhanced the ability of charge neutralization, patching, and bridging, thus improving the activated sludge flocculation performance. The experiments of floc formation, breakage, and regrowth revealed that the cationic microblock structure in the copolymer resulted in large and compact flocs, and these flocs had a rapid regrowth when broken. Finally, the larger and more compact flocs contributed to the formation of more channels and voids, and therefore the specific resistance to filtration (SRF reached a minimum.

  12. Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties

    International Nuclear Information System (INIS)

    Laurent, Julien; Casellas, Magali; Dagot, Christophe

    2009-01-01

    The effects of sonication of activated sludge on heavy metal uptake were in a first time investigated in respect with potential modifications of floc surface properties. The treatment led to the simultaneous increase of specific surface area and of the availability of negative and/or hydrophilic sites. In parallel, organic matter was released in the soluble fraction. Sorption isotherms of cadmium and copper showed that uptake characteristics and mechanisms were highly dependent on both heavy metal species and specific energy supplied. The increase of both specific surface area and fixation sites availability led to the increase of Cd(II) uptake. For Cu(II), organic matter released in soluble phase during the treatment seemed to act as a ligand and to limit adsorption on flocs surface. Three different heavy metals uptake mechanisms have been identified: proton exchange, ion exchange and (co)precipitation

  13. Influence of floc size and structure on membrane fouling in coagulation-ultrafiltration hybrid process-The role of Al{sub 13} species

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiying [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China); Gao, Baoyu, E-mail: baoyugao_sdu@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China); Mao, Ranran; Yue, Qinyan [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China)

    2011-10-15

    Highlights: {yields} The optimum dose of Al{sub 13} for improving the membrane permeability was 5 mg/L and for PACl was 7 mg/L. {yields} Effluent coagulated by Al{sub 13} species presented lower proportion of R{sub a} in the total resistance due to the high strength of Al{sub 13}-HA flocs. {yields} The high D{sub f} of flocs formed by Al{sub 13} was not favorable for the reduction of cake layer resistance. - Abstract: Coagulation application prior to ultrafiltration process was carried out to increase humic acid (HA) removal and membrane permeability. The [Al{sub 13}O{sub 4}(OH){sub 24}(H{sub 2}O){sub 12}]{sup 7+} polycation (Al{sub 13} species) was used in the coagulant process and polyaluminum chloride (PACl) was also used for comparison. Characteristics of aggregates pre-coagulated by Al{sub 13} species and PACl were investigated using a laser diffraction particle sizing device. Additionally, membrane fouling was investigated under different coagulation conditions. The various resistances caused by Al{sub 13} and PACl treatment effluents were determined using the membrane fouling index equation. The results indicated that at dose of 1 and 3 mg/L, Al{sub 13} produced larger flocs than PACl; while when dosage further increased, the PACl-HA flocs were much larger. The flocs formed by Al{sub 13} were strong and compact, and those formed by PACl were weak and loosely structured with the exception of the flocs generated at 1 mg/L. The investigation of membrane fouling demonstrated that Al{sub 13} contributed to the best effluent permeating at 5 mg/L and the corresponding dose for PACl was 7 mg/L. The adsorption resistance of effluent pre-treated by Al{sub 13} accounted for a smaller percentage of the total resistances compared with that by PACl.

  14. Phase diagrams of the Fe-rich part of the Fe-W system under high pressure

    International Nuclear Information System (INIS)

    Yamane, T.; Kang, Y.S.; Minamino, Y.; Araki, H.; Hiraki, A.; Miyamoto, Y.

    1995-01-01

    Phase diagrams of the Fe-rich part of the Fe-W system under high pressure (1.2 and 2.2 GPa) were established by a reaction-diffusion method and calculated with thermodynamic and volumetric data. When high pressure is applied, the γ region extends and the α region contracts. As a result of increasing pressure, eutectoid and peritectoid reactions appear. (orig.)

  15. Granular activated carbon as nucleating agent for aerobic sludge granulation: Effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior.

    Science.gov (United States)

    Zhou, Jia-Heng; Zhao, Hang; Hu, Miao; Yu, Hai-Tian; Xu, Xiang-Yang; Vidonish, Julia; Alvarez, Pedro J J; Zhu, Liang

    2015-12-01

    Initial cell aggregation plays an important role in the formation of aerobic granules. In this study, three parallel aerobic granular sludge reactors treating low-strength wastewater were established using granular activated carbon (GAC) of different sizes as the nucleating agent. A novel visual quantitative evaluation method was used to discern how GAC size affects velocity field differences (GAC versus flocs) and aggregation behavior during sludge granulation. Results showed that sludge granulation was significantly enhanced by addition of 0.2mm GAC. However, there was no obvious improvement in granulation in reactor amended with 0.6mm GAC. Hydraulic analysis revealed that increase of GAC size enhanced the velocity field difference between flocs and GAC, which decreased the lifecycle and fraction of flocs-GAC aggregates. Overall, based on analysis of aggregation behavior, GAC of suitable sizes (0.2mm) can serve as the nucleating agent to accelerate flocs-GAC coaggregation and formation of aerobic granules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Formation and filtration of flocs from coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B K

    1977-06-01

    The size and size distribution of flocs are greatly influenced by the type and concentration of the flocculant coal and dirt particles behave differently in this respect. The pH and the concentration of electrolytes also influence flocculation, by changing both the surface properties of the solid material and the effectiveness of the flocculant. The relationship between the sedimentation time and the filtration rate depends on the concentration and type of flocculant. Optimum pH values for various conditions are tabulated. When an anion-active flocculant is added to a coal-dirt mixture in an alkaline medium, selective flocculation occurs; this can be used to improve the separation of slurries.

  17. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    Science.gov (United States)

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  18. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Revisiting Coiled Flocculator Performance for Particle Aggregation.

    Science.gov (United States)

    2017-09-08

    This work summarizes recent studies evaluating the torsion and curvature parameters in the flocculation efficiency using a hydraulic plug-flow flocculator named as Flocs Generator Reactor (FGR). Colloidal Fe(OH)3 and coal particles were used as suspension models and a cationic polyacrylamide was used for the flocculation. The effectiveness of the aggregation process (in the distinct curvature and torsion parameters and hydrodynamic conditions) was evaluated by the settling rate of the Fe(OH)3 flocs and flocs size by photographic analysis. Due to curvature, a secondary flow is induced and the profiles of the flow quantities differ from those for a straight pipe. Results showed that the difference in the flocculator design influences the Fe(OH)3 flocs size and settling rates, reaching values about 13 and 4 mh-1, for the coiled and straight pipes respectively. Coal flocs generation also showed to be dependent on the flocculator design and shear rate. Results showed that turbulent kinetic energy increases due to curvature when the torsion parameter is kept constant (pitch close to zero) enhancing the flocs formation.

  20. Effects of waterborne nitrite on hematological parameters and stress indicators in olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater.

    Science.gov (United States)

    Kim, Jun-Hwan; Kim, Jin-Young; Lim, Lok-Ji; Kim, Su Kyoung; Choi, Hye Sung; Hur, Young Baek

    2018-06-11

    Juvenile olive flounders, Paralichthys olivaceus (mean weight 2.69 ± 0.31 g), were raised in bio-floc and seawater for six months, these P. olivaceus (mean weight 280.1 ± 10.5 g, mean length 28.37 ± 2.3 cm) were exposed to different concentrations of waterborne nitrite (0, 25, 50, 100, and 200 mg NO 2 - /L) for 7 days. None of the P. olivaceus individuals exposed to bio-floc and seawater containing waterborne nitrite concentrations of 200 mg/L for 7 days survived. Hematological parameters (hemoglobin and hematocrit) were significantly reduced by nitrite exposure. Regarding plasma components, the concentrations of glucose, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) increased significantly in response to nitrite exposure, whereas cholesterol concentrations significantly decreased. Stress indicators, including concentrations of plasma glucose, cortisol, and liver and gill concentrations of heat shock protein 70 (HSP70) were significantly increased by nitrite exposure. The results of the study indicate that nitrite exposure affected the hematological parameters and stress indicators of P. olivaceus raised in bio-floc and seawater, and these changes were more prominent in the P. olivaceus raised in seawater than those raised in bio-floc. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparison of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  2. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparisons of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  3. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    International Nuclear Information System (INIS)

    Mollah, M. Yousuf A.; Gomes, Jewel A.G.; Das, Kamol K.; Cocke, David L.

    2010-01-01

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m 2 , initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  4. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, M. Yousuf A. [Department of Chemistry, University of Dhaka, Dhaka-1000 (Bangladesh); Gomes, Jewel A.G., E-mail: jewel.gomes@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States); Das, Kamol K.; Cocke, David L. [Gill Chair of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States)

    2010-02-15

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m{sup 2}, initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  5. An investigation of magnox sludge and alumino-ferric floc waste simulate, immobilised by a cementitious matrix

    International Nuclear Information System (INIS)

    Halley, D.G.

    1983-09-01

    Magnox sludge and alumino ferric floc simulates, prepared using non-radioactive tracers were immobilised by a cementitious system. Formulation design aimed at optimising pollutant leaching with permeability and compressive strength as secondary considerations. The behaviour of the products under accelerated weathering conditions was investigated. The study was divided into two parts: Formulation design in Phase I and the systematic testing of the optimum formulations under freeze-thaw, and hydration -dehydration conditions in Phase 2. Analytical method development for leachate analysis continued through both Phases. The Barnwood method of leach testing was used. The immobilised waste had good physical properties (i.e. high strength and low permeability) and a significant improvement was achieved during the course of the work in the leach rates of the tracers, particularly of caesium and strontium. (author)

  6. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    Science.gov (United States)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  7. Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production.

    Science.gov (United States)

    Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system

    International Nuclear Information System (INIS)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-01-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs

  9. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  10. The effects of Fe-oxidizing microorganisms on post-biostimulation permeability reduction and oxidative processes at the Rifle IFRC site

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara Sze-Yue [Univ. of Delaware, Newark, DE (United States)

    2015-07-02

    Fe oxidation and biomineral formation is important in aquifers because the highly-reactive oxides can control the mobility of nutrients (e.g. phosphate, C) and metals (e.g. arsenic, uranium). Mineral formation also has the potential to affect hydrology, depending on the volume and distribution in pore spaces. In this exploratory study, we sought to understand how microbial Fe-oxidizers and their biominerals affect, and are affected by groundwater flow. As part of work at the Rifle aquifer in Colorado, we initially hypothesized that Fe-oxidizers were contributing to aquifer clogging problems associated with enhanced bioremediation. To demonstrate the presence of Fe-oxidizers in the Rifle aquifer, we enriched FeOM from groundwater samples, and isolated two novel chemolithotrophic, microaerophilic Fe-oxidizing Betaproteobacteria, Hydrogenophaga sp. P101 and Curvibacter sp. CD03. To image cells and biominerals in the context of pores, we developed a “micro-aquifer,” a sand-filled flow-through culture chamber that allows for imaging of sediment pore space with multiphoton confocal microscopy. Fe oxide biofilms formed on sand grains, demonstrating that FeOM produce Fe oxide sand coatings. Fe coatings are common on aquifer sands, and tend to sequester contaminants; however, it has never previously been shown that microbes are responsible for their formation. In contrast to our original hypothesis, the biominerals did not clog the mini-aquifer. Instead, Fe biofilm distribution was dynamic: they grew as coatings, then periodically sloughed off sand grains, with some flocs later caught in pore throats. This has implications for physical hydrology, including pore scale architecture, and element transport. The sloughing of coatings likely prevents the biominerals from clogging wells and aquifers, at least initially. Although attached biomineral coatings sequester Fe-associated elements (e.g. P, As, C, U), when biominerals detach, these elements are transported as particles

  11. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.

    Science.gov (United States)

    Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H

    2007-01-01

    Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.

  12. Comparison of the Performance of Poly Aluminum Chloride (PACl, Ferric Chloride (FeCl3, in Turbidity and Organic Matter Removal; from Water Source, Case-Study: Karaj River, in Tehran Water Treatment Plant No. 2

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolah zadeh

    2009-06-01

    Full Text Available Coagulation and flocculation are the principal units in water treatment processes. In this study, the Jar test was used to investigate the effects of the pH and TOC on FeCl3 and PACl coagulants for further removal of turbidity, organic matter, aluminum, total organic carbon (TOC, dissolved organic carbon (DOC, organic Aadsorption at a wavelength of 254 nm (UV254 nm , alkalinity, residual aluminum and ferric, total trihalomethans (TTHMs in the Karaj River in the year 2007- 2008. These experiments were conducted through a bench scale study using conventional coagulation in the influent to Tehran Water Treatment Plant No. 2 (TWTP2.With normal pH levels, PACl demonstrated more efficiency than FeCl3 in removing turbidity, TOC, UV254 nm, and TTHMs. The lower coagulant consumption, high floc size, lower floc detention time, lower sludge production, lack of the need for pH adjustment in turbidity of 25 NTU and the lower alum consumption were the advantages of PACl application instead of FeCl3 as a coagulant. Also, PACl application was efficient at low turbidity (2 NTU, average turbidity (6 NTU, and high turbidity (100 NTU in TOC, turbidity, UV254 nm , and DOC removal. Thus, PACl is an economical alternative as a coagulant in TWTP2.

  13. Floc size distributions of suspended kaolinite in an advection transport dominated tank: measurements and modeling

    Science.gov (United States)

    Shen, Xiaoteng; Maa, Jerome P.-Y.

    2017-11-01

    In estuaries and coastal waters, floc size and its statistical distributions of cohesive sediments are of primary importance, due to their effects on the settling velocity and thus deposition rates of cohesive aggregates. The development of a robust flocculation model that includes the predictions of floc size distributions (FSDs), however, is still in a research stage. In this study, a one-dimensional longitudinal (1-DL) flocculation model along a streamtube is developed. This model is based on solving the population balance equation to find the FSDs by using the quadrature method of moments. To validate this model, a laboratory experiment is carried out to produce an advection transport-dominant environment in a cylindrical tank. The flow field is generated by a marine pump mounted at the bottom center, with its outlet facing upward. This setup generates an axially symmetric flow which is measured by an acoustic Doppler velocimeter (ADV). The measurement results provide the hydrodynamic input data required for this 1-DL model. The other measurement results, the FSDs, are acquired by using an automatic underwater camera system and the resulting images are analyzed to validate the predicted FSDs. This study shows that the FSDs as well as their representative sizes can be efficiently and reasonably simulated by this 1-DL model.

  14. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al- and Fe-based coagulants.

    Science.gov (United States)

    Xu, Jie; Zhao, Yanxia; Gao, Baoyu; Zhao, Qian

    2018-05-01

    The water eutrophication caused by cyanobacteria seasonally proliferates, which is a hot potato to be resolved for water treatment plants. This study firstly investigated coagulation performance of titanium tetrachloride (TiCl 4 ) for Microcystis aeruginosa synthetic water treatment. Results show complete algal cell removal by TiCl 4 coagulation without damage to cell membrane integrity even under harsh conditions; 60 mg/L TiCl 4 was effective in removing the microcystins up to 85%. Furthermore, besides having stronger UV 254 removal capability and the higher removal of fluorescent substances over Al- and Fe-based coagulants, TiCl 4 coagulant required more compact coagulation and sedimentation tanks due to its significantly improved floc growth and sedimentation speed. Meanwhile, its' short hydraulic retention time avoided algal cell breakage and subsequent algal organic matter release. Microcystin concentrations were kept at a low level during sludge storage period, indicating that the TiCl 4 flocs could prevent algal cells from natural lysis. To facilitate water recycling without secondary contamination, the algae-containing sludge after TiCl 4 coagulation ought to be disposed within 12 days at 20 °C and 8 days at 35 °C.

  15. A method for evaluation of suspension quality easy applicable to practice. The effect of mixing on floc properties

    Czech Academy of Sciences Publication Activity Database

    Bubáková, Petra; Pivokonský, Martin; Pivokonská, Lenka

    2011-01-01

    Roč. 59, č. 3 (2011), s. 184-195 ISSN 0042-790X R&D Pro jects: GA ČR GAP105/11/0247 Institutional research plan: CEZ:AV0Z20600510 Keywords : aggregation * drinking water treatment * floc pro perties * flocculation * test of aggregation Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  16. The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model.

    Science.gov (United States)

    Moruzzi, R B; Reali, M A P

    2014-12-01

    The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit was investigated in the light of a known mathematical model. The following design and operational parameters were considered: the hydraulic detention time (tdcz) and hydraulic loading rate in the contact zone, the down-flow loading rate in the clarification zone, the particle size distribution (d F), and the recirculation rate (p). As a reference for DAF performance analysis, the proposed β.td parameter from the above mentioned mathematical model was employed. The results indicated that tdcz is an important factor in DAF performance and that d F and floc size are also determinants of DAF efficiency. Further, β.td was sensitive to both design and operational parameters, which were varied in the DAF pilot plant. The performance of the DAF unit decreases with increasing β.td values because a higher td (considering a fixed β) or a higher β (e.g., higher hydrophobicity of the flocs for a fixed td) would be necessary in the reaction zone to reach desired flotation efficiency.

  17. Using quartz sand to enhance the removal efficiency of M. aeruginosa by inorganic coagulant and achieve satisfactory settling efficiency.

    Science.gov (United States)

    Pei, Haiyan; Jin, Yan; Xu, Hangzhou; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-10-19

    In this study, low-cost and non-polluting quartz sand was respectively mixed with AlCl 3 , FeCl 3 and PAFC to synergistically remove Microcystis aeruginosa. Results showed that quartz sand could markedly increase the algae removal efficiency and decrease the coagulant doses. The increase of removal efficiency with AlCl 3 and FeCl 3 was only due to the enhancement of floc density by the quartz sand. However, the removal efficiency with PAFC was increased not only by the enhanced floc density, but also by the enlarged floc size. Flocs from 50 mg/L sand addition were larger than that with other sand doses, which was on account of the appropriate enhancement of collision efficiency at this dose. After coagulation, the extracellular organic matter (EOM) and microcystins (MCs) in system with quartz sand was remarkably reduced. That's because quartz sand can enhance the coagulation so as to improve capping the EOM and MCs in flocs during coagulation process. Owing to 200 mg/L quartz sand could damage the cell's membrane during coagulation proces, algal cells in the system lysed two days earlier than with 50 mg/L sand during flocs storage. In addition, cells with PAFC incurred relatively moderate cellular oxidative damage and could remain intact for longer time.

  18. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    Science.gov (United States)

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.

  19. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    Science.gov (United States)

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  20. Thermodynamic Description Of Ternary Fe-B-X Systems. Part 2: Fe-B-Ni

    Directory of Open Access Journals (Sweden)

    Miettinen J.

    2014-06-01

    Full Text Available Przedstawiono termodynamiczny opis trójskładnikowego układu Fe-B-Ni w kontekście nowej bazy danych dla układów Fe-B-X (X = Cr, Ni, Mn, Si, Ti, V, C. Parametry termodynamiczne dwuskładnikowych stopów Fe-B. Fe-Ni i B-Ni zostały są zaczerpnięte z wcześniejszych opracowań, przy tym opis B-Ni został nieznacznie zmodyfikowany. Parametry dla układu Fe-B-Ni zostały zoptymalizowane w tej pracy w oparciu o eksperymentalne równowagi fazowe i dane termodynamiczne zaczerpnięte z literatury. Roztwory stałe w układzie Fe-B-Ni opisano przy użyciu modelu roztworu substytucyjnego, a borki traktowane są jako fazy stechiometryczne lub półstechiometryczne typu (A.BpCq opisane przy użyciu modelu dwu podsieci.

  1. Magnetic Properties and Microstructure of FeOx/Fe/FePt and FeOx/FePt Films

    Directory of Open Access Journals (Sweden)

    Jai-Lin Tsai

    2013-01-01

    Full Text Available The Fe(6 nm/FePt film with perpendicular magnetization was deposited on the glass substrate. To study the oxygen diffusion effect on the coupling of Fe/FePt bilayer, the plasma oxidation with 0.5~7% oxygen flow ratio was performed during sputtered part of Fe layer and formed the FeOx(3 nm/Fe(3 nm/FePt trilayer. Two-step magnetic hysteresis loops were found in trilayer with oxygen flow ratio above 1%. The magnetization in FeOx and Fe/FePt layers was decoupled. The moments in FeOx layer were first reversed and followed by coupled Fe/FePt bilayer. The trilayer was annealed again at 500°C and 800°C for 3 minutes. When the FeOx(3 nm/Fe(3 nm/FePt trilayer was annealed at 500°C, the layers structure was changed to FeOx(6 nm/FePt bilayer due to oxygen diffusion. The hard-magnetic FeOx(6 nm/FePt film was coupled with single switching field. The FeOx/(disordered FePt layer structure was observed with further annealing at 800°C and presented soft-magnetic loop. In summary, the coupling between soft-magnetic Fe, FeOx layer, and hard-magnetic L10 FePt layer can be controlled by the oxygen diffusion behavior, and the oxidation of Fe layer was tuned by the annealing temperature. The ordered L10 FePt layer was deteriorated by oxygen and became disordered FePt when the annealed temperature was up to 800°C.

  2. Plastic deformation of Fe-Al polycrystals strengthened with Zr-containing Laves phases Part II. Mechanical properties

    International Nuclear Information System (INIS)

    Wasilkowska, A.; Bartsch, M.; Stein, F.; Palm, M.; Sauthoff, G.; Messerschmidt, U.

    2004-01-01

    Fe-10 at.% Al-2.5 at.% Zr and Fe-20 at.% Al-2.5 at.% Zr alloys were deformed between room temperature and 700 deg. C. The materials show a flow stress plateau at about 300 MPa up to 600 deg. C for the material with 10 at.% Al and above 600 MPa up to 400 deg. C for the alloy with 20% Al. The high flow stresses compared to Fe-Al reference materials are partly due to the addition of Zr. The strain rate sensitivity of the flow stress was measured by stress relaxation and strain rate cycling tests. It is low up to 400 deg. C and high between 450 and 600 deg. C, i.e. in the range of the flow stress decrease. The microstructures of the undeformed materials are described in Part I of this paper. Micrographs of the deformed specimens taken in a high-voltage electron microscope reveal that the deformation occurs mainly within the soft Fe-Al grains and in the Fe-Al component of the grain boundary eutectic. The deformation data are interpreted in terms of solution hardening from the Al solute, dynamic strain ageing due to the Cottrell effect of the same defects, the athermal stress component of elastic dislocation interactions, the Hall-Petch contribution from the grain size, and the strengthening effect of the grain boundary layers

  3. [Continuous ethanol fermentation coupled with recycling of yeast flocs].

    Science.gov (United States)

    Wang, Bo; Ge, Xu-Meng; Li, Ning; Bai, Feng-Wu

    2006-09-01

    A continuous ethanol fermentation system composed of three-stage tanks in series coupled with two sedimentation tanks was established. A self-flocculating yeast strain developed by protoplast fusion from Saccharomyces cerevisiae and Schizosaccharomyces pombe was applied. Two-stage enzymatic hydrolysate of corn powder containing 220g/L of reducing sugar, supplemented with 1.5g/L (NH4)2HPO4 and 2.5g/L KH2PO4, was used as the ethanol fermentation substrate and fed into the first fermentor at the dilution rate of 0.057h(-1). The yeast flocs separated by sedimentation were recycled into the first fermentor as two different models: activation-recycle and direct recycle. The quasi-steady states were obtained for both operation models after the fermentation systems experienced short periods of transitions. Activation process helped enhance the performance of ethanol fermentation at the high dilution rates. The broth containing more than 101g/L ethanol, 3.2g/L residual reducing sugar and 7.7g/L residual total sugar was produced. The ethanol productivity was calculated to be 5.77g/(L x h), which increased by more than 70% compared with that achieved in the same tank in series system without recycling of yeast cells.

  4. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn{sub 2}, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe); Moessbauerspektroskopische Untersuchung von Struktur und Magnetismus der austauschgekoppelten Schichtsysteme Fe/FeSn{sub 2} und Fe/FeSi/Si und des ionenimplantierten verduennten magnetischen Halbleiters SiC(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Frank

    2009-07-07

    In line with this work the structural and magnetic properties of the exchange coupled layered systems Fe/FeSn{sub 2} and Fe/FeSi/Si and of the Fe ion implanted diluted magnetic semiconductor (DMS) SiC(Fe) were investigated. The main measuring method was the isotope selective {sup 57}Fe conversion electron Moessbauer spectroscopy (CEMS), mostly in connection with the {sup 57}Fe tracer layer technique, in a temperature range from 4.2 K to 340 K. Further measurement techniques were X-ray diffraction (XRD), electron diffraction (LEED, RHEED), SQUID magnetometry and FMR (Ferromagnetic Resonance). In the first part of this work the properties of thin AF FeSn{sub 2}(001) films and of the exchange-bias system Fe/FeSn{sub 2}(001) on InSb(001) were investigated. With the application of {sup 57}Fe-tracer layers and CEMS both the Fe-spin structure and the temperature dependence of the magnetic hyperfine field (B{sub hf}) of FeSn{sub 2} could be examined. The evaporation of Fe films on the FeSn{sub 2} films produced in the latter ones a high perpendicular spin component at the Fe/FeSn{sub 2} interface. In some distance from the interface the Fe spins rotate back into the sample plane. Furthermore {sup 57}Fe-CEMS provided a correlation between the absolute value of the exchange field vertical stroke He vertical stroke and the amount of magnetic defects within the FeSn{sub 2}. Temperature dependent CEMS-measurements yielded informations about the spin dynamics within the AF. The transition temperatures T{sub B}{sup *}, which were interpreted as superparamagnetic blocking temperatures, obtain higher values compared to the temperatures T{sub B} of the exchange-bias effect, obtained with magnetometry measurements. The second part of this work deals with the indirect exchange coupling within Fe/FeSi/Si/FeSi/Fe multilayers and FeSi diffusion barriers. The goal was to achieve Fe free Si interlayers. The CEMS results show that starting from a thickness of t{sub FeSi}=10-12 A of the

  5. Action of a clay suspension on an Fe(0) surface under anoxic conditions: Characterization of neoformed minerals at the Fe(0)/solution and Fe(0)/atmosphere interfaces

    International Nuclear Information System (INIS)

    Le Pape, Pierre; Rivard, Camille; Pelletier, Manuel; Bihannic, Isabelle; Gley, Renaud; Mathieu, Sandrine; Salsi, Lise; Migot, Sylvie; Barres, Odile; Villiéras, Frédéric; Michau, Nicolas

    2015-01-01

    Highlights: • Immersion of an Fe(0) foil in a clay suspension at 90 °C and in anoxic conditions. • Magnetite was observed on the atmospheric part. • Iron-rich 7 Å serpentines were observed on the clay suspension part. • A gradient in serpentine cristallochemistry was observed. • A pure Fe–Si phyllosilicate was identified at the Fe(0)/clay suspension contact. - Abstract: To better understand the reaction mechanisms involved at the Fe(0)/clay minerals interface, we investigate in the present study the reaction between an Fe(0) surface and a clay suspension extracted from the Callovo-Oxfordian claystone (COx). Batch experiments were carried out under anoxic conditions in sealed autoclave, at 90 °C to mimic predicted radioactive waste disposal conditions. An Fe(0) foil was introduced into the autoclave so that the lower part of the foil was immersed in the clay suspension while the upper part was contacted with the atmosphere of the experimental setup. After two months, the mineralogical deposits that precipitated at the surface of the Fe(0) foil were analyzed using multiple techniques, namely X-ray diffraction (XRD), scanning/transmission electron microscopy associated to microanalysis (SEM/TEM–EDXS), and micro-spectroscopic measurements (μ-FTIR and μ-Raman). Both parts of the Fe(0) foil were then shown to react: magnetite was the main resulting mineral formed at the Fe(0) surface in the atmospheric conditions whereas serpentine 1:1 phyllosilicates were the main end-products in the clay suspension. The analyses performed on the immersed part of the foil revealed a spatial heterogeneity in both serpentine cristallochemistry and morphology, with a gradient from the Fe(0) contact point toward the clay suspension. A pure Fe–Si phyllosilicate ring was observed at the direct contact point with the Fe(0) foil and a progressive incorporation of Al instead of Fe into the clay phases was identified as deposit thickness increased from the Fe(0) surface to

  6. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    Science.gov (United States)

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Experimental phases diagram Zr-Fe and Zr-Sn-Fe of the Fe rich zone at a temperature of 1100oC

    International Nuclear Information System (INIS)

    Nieva, N.; Jimenez, J.; Gomez, A; Granovsky, M.S

    2010-01-01

    Zr-based alloys are frequently used in the nuclear energy industry; among these are the Zr-based Zircaloys whose main alloys are Sn and Fe. In order to experimentally evaluate part of the diagram of the binary Zr-Fe phases and the ternary Zr-Sn-Fe in the Fe-rich zone, different binary alloys in the area closest to the composition of the ZrFe 2 and Zr 6 Fe 23 compounds were designed as well as a ternary alloy of Zr-Sn-Fe in the Fe-rich region of the ternary system. All the alloys underwent a two month heat treatment at a temperature of 1100 o C. Later the phases that were present were identified using different complementary techniques (mainly X-ray diffraction and microanalysis). The clear presence of the Zr 6 Fe 23 phase was not observed in any of the alloys. A new ternary phase consisting approximately of Zr 2 0Sn 14 Fe 66 was verified in the ternary alloy

  8. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  9. High efficient removal of molybdenum from water by Fe{sub 2}(SO{sub 4}){sub 3}: Effects of pH and affecting factors in the presence of co-existing background constituents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ma, Jun, E-mail: majunhit@126.com; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing

    2015-12-30

    Highlights: • Proposed high efficient Mo (VI) removal with Fe{sub 2}(SO{sub 4}){sub 3} coagulation-filtration. • Studied different effects of Fe{sub 2}(SO{sub 4}){sub 3} and FeCl{sub 3} due to different anionic portions. • Reported the adverse effect of calcium on the removal of Mo (VI). • Proposed factors affecting Mo (VI) removal: intercepted Fe and adsorption affinity. - Abstract: Comparatively investigated the different effects of Fe{sub 2}(SO{sub 4}){sub 3} coagulation-filtration and FeCl{sub 3} coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl{sub 3}, Fe{sub 2}(SO{sub 4}){sub 3} showed a higher Mo (VI) removal efficiency at pH 4.00–5.00, but an equal removal efficiency at pH 6.00–9.00. (2) The optimum Mo (VI) removal by Fe{sub 2}(SO{sub 4}){sub 3} was achieved at pH 5.00–6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs.

  10. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  11. Lattice locations and properties of Fe in Co/Fe co-implanted ZnO

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Johnston, K.; Mølholt, T.E.

    2012-01-01

    The lattice locations and electronic configurations of Fe in 57Co/57Fe implanted ZnO (to (5‐6) × 1014 Fe/cm−2) have been studied by 57Fe Mössbauer emission spectroscopy. The spectra acquired upon room temperature implantation show ∼20% of the probe atoms as Fe2+ on perturbed Zn sites and the rema......The lattice locations and electronic configurations of Fe in 57Co/57Fe implanted ZnO (to (5‐6) × 1014 Fe/cm−2) have been studied by 57Fe Mössbauer emission spectroscopy. The spectra acquired upon room temperature implantation show ∼20% of the probe atoms as Fe2+ on perturbed Zn sites...... and the remaining fraction as Fe2+ in damage sites of interstitial character. After annealing at 773 K, ∼20% remain on crystalline sites, while the damage fraction has partly disappeared and instead a ∼30% fraction occurs as high‐spin Fe3+, presumably in precipitates. This suggests that precipitation of Co/Fe in ZnO...... likely takes place at relatively low temperatures, thus explaining some of the discrepancies in the literature regarding magnetic properties of 3d metal‐doped ZnO....

  12. Bromate Reduction by Iron(II during Managed Aquifer Recharge: A Laboratory-Scale Study

    Directory of Open Access Journals (Sweden)

    Feifei Wang

    2018-03-01

    Full Text Available The removal of bromate (BrO3− as a byproduct of ozonation in subsequent managed aquifer recharge (MAR systems has so far gained little attention. This preliminary study with anoxic batch experiments was executed to explore the feasibility of chemical BrO3− reduction in Fe-reducing zones of MAR systems and to estimate potential inhibition by NO3−. Results show that the reaction rate was affected by initial Fe2+/BrO3− ratios and by pH. The pH dropped significantly due to the hydrolysis of Fe3+ to hydrous ferric oxide (HFO flocs. These HFO flocs were found to adsorb Fe2+, especially at high Fe2+/BrO3− ratios, whereas at low Fe2+/BrO3− ratios, the mass sum loss of BrO3− and Br− indicated intermediate species formation. Under MAR conditions with relatively low BrO3− and Fe2+ concentrations, BrO3− can be reduced by naturally occurring Fe2+, as the extensive retention time in MAR systems will compensate for the slow reaction kinetics of low BrO3− and Fe2+ concentrations. Under specific flow conditions, Fe2+ and NO3− may co-occur during MAR, but NO3− hardly competes with BrO3−, since Fe2+ prefers BrO3− over NO3−. However, it was found that when NO3− concentration exceeds BrO3− concentration by multiple orders of magnitude, NO3− may slightly inhibit BrO3− reduction by Fe2+.

  13. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system; Eliminacion de arsenico mediante flotacion por adsorcion coloidal utilizando floculos de Fe(OH){sub 3} en un sistema de flotacion por aire disuelto

    Energy Technology Data Exchange (ETDEWEB)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-07-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs.

  14. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    Science.gov (United States)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  15. Study of the central region of the ternary diagram Zr-Nb-Fe, Part II

    International Nuclear Information System (INIS)

    Ramos, C; Saragovi, C; Arias, D; Granovsky, M

    2004-01-01

    This work continues with the identification and characterization of the intermetallic phases and of the two-phase and three-phase fields associated with the central region of the Zr-Nb-Fe phase diagram. In order to more precisely define the two-phase field βZr + λ 2 and to specify the range of existence in the zone with the highest Fe content for the λ2 phase, new alloys were smelted with the following nominal compositions: Zr 55 Nb 35 Fe 10 and Zr 35 Nb 5 Fe 60 . These alloys were submitted to a thermal treatment at 900 o C for 4 months. The techniques used to identify and characterize the phases in the samples were: optic metallography and electronic sweep, x-ray diffraction and Mossbauer spectroscopy. An isothermic cut of the central region for the Zr-Nb-Fe diagram is proposed considering previous results and those obtained in this work (Cw)

  16. Measurement of 54Fe(n,2n)53Fe cross section near threshold

    International Nuclear Information System (INIS)

    Smither, R.K.; Greenwood, L.R.

    1984-01-01

    A series of experiments were performed at the Princeton Plasma Physics Laboratory to measure the cross section of the 54 Fe(n,2n) 53 Fe reaction near threshold. Measurements were made at 6 different neutron energies and cover the 1 MeV energy range from threshold (13.64 MeV) to 14.64 MeV. The 54 Fe(n,2n) cross section was measured relative to the 27 Al(n,p) 27 Mg cross section to an accuracy of a few percent. These accurate cross-section measurements will be useful in calculating damage caused by 14 MeV D-T plasma neutrons in Fe and calculating the production of the long-lived 53 Mn nuclei that account for much of the buildup of long-lived radioactivity in steel structures and other ferrous materials used in the construction of fusion reactors. They will also play an important part in a new method for measuring the plasma ion temperature of a D-T plasma

  17. Thermodynamic study of sodium-iron oxides. Part 2. Ternary phase diagram of the Na-Fe-O system

    International Nuclear Information System (INIS)

    Huang, Jintao; Furukawa, Tomohiro; Aoto, Kazumi

    2003-01-01

    Studies on ternary phase diagrams of the Na-Fe-O system have been carried out from the thermodynamic point of view. Thermodynamic data of main ternary Na-Fe oxides Na 4 FeO 3 (s), Na 3 FeO 3 (s), Na 5 FeO 4 (s) and Na 8 Fe 2 O 7 (s) have been assessed. A user database has been created by reviewing literature data together with recent DSC and vapor pressure measurements by the present authors. New ternary phase diagrams of the Na-Fe-O system have been constructed from room temperature to 1000K. Stable conditions of the ternary oxides at 800K were presented in predominance diagram as functions of oxygen pressure and sodium pressure

  18. Optimization of Sintering Time and Holding Time for 3D Printing of Fe-Based Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Wenzheng Wu

    2018-06-01

    Full Text Available Fe-based metallic glasses are amorphous alloys with high strength, high hardness, and excellent corrosion resistance; however, the immaturity of processing methods has prevented their wide application in industrial production. Fe-based metallic glass parts were manufactured employing pneumatic injection additive manufacturing in this study. An evenly dispersed and stable Fe-based metallic glass powder slurry with a solids content of 50% was prepared firstly. Then the Fe-based metallic glass parts were printed. The printed parts were dried, debinded, and sintered for strengthening. The deformations of the printed parts and sintered parts relative to the original model were then analyzed by a 3D scanning reconstruction method. The slightly average bulging and sunken deformation of the printed parts and sintered parts confirmed the good printing accuracy of the pneumatic injection manufacture system. The effects of the sintering temperature and holding time on the properties of the sintered parts were studied. For a sintering temperature of 580 °C and holding time of 1 h, the surface quality of the sintered parts was better. The sintering of 3D-printed Fe-based metallic glass parts was preliminarily realized in this study, and the feasibility of preparing Fe-based metallic glass using pneumatic injection additive manufacture was verified.

  19. Study of the reaction of astrophysical interest 60Fe(n,γ)61Fe via (d,pγ) transfer reaction

    International Nuclear Information System (INIS)

    Giron, S.

    2011-12-01

    60 Fe is of special interest in nuclear astrophysics. Indeed the recent observations of 60 Fe characteristic gamma-ray lines by the RHESSI and INTEGRAL spacecrafts allowed to measure the total flux of 60 Fe over the Galaxy. Moreover the observation in presolar grains of an excess of the daughter-nuclei of 60 Fe, 60 Ni, gives constraints on the conditions of formation of the early solar system. However, the cross-sections of some reactions involved in 60 Fe nucleosynthesis and included to stellar models are still uncertain. The destruction reaction of 60 Fe, 60 Fe(n, γ) 61 Fe, is one of them. The total cross-section can be separate into two contributions: the direct one, involving states below the neutron separation threshold of 61 Fe, and the resonant one.We improved 61 Fe spectroscopy in order to evaluate the direct capture part of the 60 Fe(n, γ) 61 Fe reaction cross-section. 60 Fe(n, γ) 61 Fe was thus studied via d( 60 Fe, pγ) 61 Fe transfer reaction with the CATS/MUST2/EXOGAM setup at LISE-GANIL. DWBA analysis of experimental proton differential cross-sections allowed to extract orbital angular momentum and spectroscopic factors of different populated states identified below the neutron threshold. A comparison of experimental results for 61 Fe with experimental results for similar nuclei and with shell-model calculations was also performed. (author) [fr

  20. Determination of localized Fe2+/Fe3+ ratios in inks of historic documents by means of μ-XANES

    International Nuclear Information System (INIS)

    Proost, K.; Janssens, K.; Wagner, B.; Bulska, E.; Schreiner, M.

    2004-01-01

    An important part of the European cultural heritage is composed of hand-written documents. Many of these documents were drawn up with iron-gall ink. This type of ink present a serious conservation problem, as it slowly oxidizes ('burns') the paper it is written on, thereby gradually disintegrating the historic document. Acid hydrolysis of the cellulose and/or the oxidation of organic compounds promoted by radical intermediates that are formed due to the presence of Fe 2+ ions are considered to be the cause of the disintegration. μ-XANES measurements were performed with a lateral resolution of 30-50 μm in order to determine the local Fe 2+ /Fe 3+ ratio in 19th C. documents from the Austrian National Archives and fragments of 16th C documents from the Polish National Library. In the 19th C documents, no significant amount of Fe 2+ was detected. On the other hand, in the 16th C fragments, significant amounts of Fe 2+ and appreciable differences in distribution of Fe 2+ and Fe 3+ within individual letters/ink stains were observed

  1. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    Science.gov (United States)

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  3. Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study

    Science.gov (United States)

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.

    57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.

  4. Enhancing the dewatering properties of sludge through aimed building-up of floc structures on the basis of detailed morphological analyses; Verbesserung der Entwaesserungseigenschaften von Schlaemmen durch den gezielten Aufbau von Flockenstrukturen auf der Basis detaillierter morphologischer Analysen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, M.; Ay, P. [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl Aufbereitungstechnik

    1999-07-01

    Aimed building-up of aggregates as they originate in flocculation processes, for instance in sewage and sludge treatment, have especially lately been meeting with increasing resonance: they permit to influence, inter alia, important properties (e.g., the dewatering properties) of such systems. As conventional mathematical methods for the characterization of flocs - as a basis for process optimization - are inadequate or flawed, a concept for the effective characterization of the inner getup of such structures needs to be sought. One approach is cluster analysis, which is demonstrated and discussed in the present paper by means of the evaluation of sectional views of floc structures. (orig.) [German] Der gezielte Aufbau von Aggregaten, wie sie bei Flockungsprozessen z.B. in der Abwasser- und Schlammbehandlung entstehen, findet besonders in juengerer Zeit zunehmend Beachtung, da sich damit unter anderem wichtige Eigenschaften (z.B. die Entwaesserungseigenschaften) dieser Systeme beeinflussen lassen. Da herkoemmliche mathematische Methoden zur Charakterisierung von Flocken - als Basis fuer eine Prozessoptimierung - nur unzureichend bzw. fehlerbehaftet sind, ergibt sich daraus die Notwendigkeit, nach einem Konzept zur effektiven Charakterisierung des inneren Aufbaus solcher Strukturen zu suchen. Ein Ansatz ist die Clusteranalyse, die im Beitrag durch die Auswertung von Schnittbildern von Flockenstrukturen vorgestellt und diskutiert wird. (orig.)

  5. Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys

    International Nuclear Information System (INIS)

    Kumar, G.

    2005-01-01

    The aim of the present work is to characterize a metastable hard magnetic phase referred to as ''A1'' in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd 100-x Fe x (x=20,25,40) alloys are cooled at about 150 K/s. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd 80 Fe 20 alloys cooled at different rates. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd 56 Fe 44 . HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy

  6. Fe speciation and Fe/Al ratio in the sediments of southeastern Arabian Sea as an indicator of climate change

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; Gupta, S.M.; Mir, I.A.

    the delivery of dissolved Fe into the Arabian Sea. Some part of the dissolved iron in the continental shelf has been 8 used in the formation of authigenic verdine and glaucony mineral grains (Rao et al., 1993; Thamban and Rao, 2000). The remaining part...

  7. Moessbauer spectroscopic study of Fe{sup II}-doped sulphonated poly(ether-urethane)-styrene-acrylate copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A. A. [Russian Academy of Sciences, Institute of Biochemistry and Physiology of Plants and Microorganisms (Russian Federation); Grigoryeva, O. P.; Fainleib, A. M. [National Academy of Sciences of Ukraine, Institute of Macromolecular Chemistry (Ukraine); Kuzmann, E., E-mail: kuzmann@ludens.elte.hu [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2013-04-15

    Thermoplastic linear ionomer based on sulphonated poly(ether-urethane)-styrene-acrylate copolymer, doped with natural Fe{sup 2 + }, was studied by Moessbauer spectroscopy at T = 78 and 290 K to monitor the chemical state of Fe species. The Fe{sup 2 + } added to aqueous suspension of the system was only partly oxidised in the course of polymer film preparation and drying in air. The oxidised part comprised a magnetic phase ({approx}19 % of total Fe both at T = 78 and 298 K) and a quadrupole doublet ({approx}40 %), while Fe{sup II} (over 40 %) stabilised in two types of microenvironments.

  8. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    Science.gov (United States)

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  10. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    International Nuclear Information System (INIS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-01-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe 2 O 4 (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe 2 O 4 . • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  11. Preparation and Mechanical Properties of TiC-Fe Cermets and TiC-Fe/Fe Bilayer Composites

    Science.gov (United States)

    Zheng, Yong; Zhou, Yang; Li, Runfeng; Wang, Jiaqi; Chen, Lulu; Li, Shibo

    2017-10-01

    TiC-Fe cermets and TiC-Fe/Fe bilayer composites consisting of a pure Fe layer and a TiC-Fe cermets layer were fabricated by hot-pressing sintering. The pure Fe layer contributes to the toughness of composites, and the TiC-Fe cermets layer endows the composites with an improved tensile strength and hardness. The effect of TiC contents (30-60 vol.%) on the mechanical properties of TiC-Fe cermets and TiC-Fe/Fe bilayer composites was investigated. Among the TiC-Fe cermets, the 40 vol.% TiC-Fe cermets possessed the highest tensile strength of 581 MPa and Vickers hardness of 5.1 GPa. The maximum fracture toughness of 17.0 MPa m1/2 was achieved for the TiC-Fe cermets with 30 vol.% TiC. For the TiC-Fe/Fe bilayer composites, the 40 vol.% TiC-Fe/Fe bilayer composite owns the maximum tensile strength of 588 MPa, which is higher than that of 40 vol.% TiC-Fe cermets. In addition, the 33.5% increment of tensile strength of 30 vol.% TiC-Fe/Fe bilayer composite comparing with the 30 vol.% TiC-Fe cermets, which is attributed to the 30 vol.% TiC-Fe/Fe bilayer composite exhibited the largest interlaminar shear strength of 335 MPa. The bilayer composites are expected to be used as wear resistance components in some heavy wear conditions.

  12. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  13. Interactions between 59Fe(14C)EDTA and soils containing calcium carbonate

    International Nuclear Information System (INIS)

    Hargitai-Toth, A.; Konya, J.

    1991-01-01

    Interaction between FeEDTA and calcareous soils was followed over a period of four weeks using a radiotracer technique, and a kinetic evaluation of the results was performed. 59 Fe served to determine the quantity of iron, 14 C to assay for EDTA and 45 Ca to measure calcium. During the experiment, i.e. within four weeks in case of the chernozem soil 61% and in case of the clayey meadow soil 51% of the iron chelate disappeared from the solution. The loss in soluble iron was partly due to a rapid sorption process of about an hour and partly due to the slow decomposition of FeEDTA to Fe(OH) 3 . The two processes could be separated using the Christiansen equation. (author) 9 refs.; 1 figs.; 2 tabs

  14. The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon

    Science.gov (United States)

    Meunier, Alain; Petit, Sabine; Cockell, Charles S.; El Albani, Abderrazzak; Beaufort, Daniel

    2010-06-01

    During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth’s crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called “mesostasis”. The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.

  15. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  16. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  17. The Moessbauer effect in Fe(III) HEDTA, Fe(III) EDTA, and Fe(III) CDTA compounds

    International Nuclear Information System (INIS)

    Prado, F.R.

    1989-01-01

    The dependence of Moessbauer spectra with pH value of Fe(III)HEDTA and Fe(III)CDTA compounds is studied. Informations on formation processes of LFe-O-FeL (L=ligand) type dimers by the relation of titration curves of Fe(III)EDTA, Fe(III)HEDTA and Fe(III)CDTA compounds with the series of Moessbauer spectra, are obtained. Some informations on Fe-O-Fe bond structure are also obtained. Comparing the titration curves with the series of Moessbauer spectra, it is concluded that the dimerization process begins when a specie of the form FeXOH α (X = EDTA, HEDTA, CDTA; α = -1, -2) arises. (M.C.K.) [pt

  18. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.

    Science.gov (United States)

    Bin, Levi M; Weng, Liping; Bugter, Marcel H J

    2016-11-09

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD), plant dry matter yield, and the mass fractions of important mineral elements in the plant were quantified in a greenhouse pot experiment. All three Fe chelates increased SPAD index and dry matter yield compared to the control. The effect of FeHBED on chlorophyll production was visible over a longer time span than that of FeEDDHA and FeEDDHMA. Additionally, FeHBED did not suppress Mn uptake as much as the other Fe chelates. Compared to the other Fe chelates, total Fe content in the young leaves was lower in the FeHBED treatment; however, total Fe content was not directly related to chlorophyll production and biomass yield. For each chelate, the ortho-ortho isomer was found to be more effective than the other isomers evaluated.

  19. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization

  20. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  1. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    Science.gov (United States)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  2. Understanding FE Mergers. Research Report

    Science.gov (United States)

    Calvert, Natasha

    2009-01-01

    This report presents research findings and discussion to help develop an understanding of what gives rise to mergers and, when they do happen, what makes them work. The research has focused on merger activity between further education (FE) colleges since incorporation in 1993. Mergers are highly contextual, and part of ensuring success is…

  3. FE-Simulation Of Hemming In The Automotive Industry

    International Nuclear Information System (INIS)

    Sigvant, Mats; Mattiasson, Kjell

    2005-01-01

    This paper summarizes and presents the most important results from a research project on FE simulation of hemming carried out at Volvo Cars Body Components and Chalmers University of Technology. In the automotive industry, hemming is used to join two sheet metal panels by bending the flange of the outer panel over the inner one. The final goal of the project was to simulate all of the hemming steps of production parts. In order to make three-dimensional simulations of hemming possible within reasonable simulation times, it is necessary to use shell elements and not solid elements. On the other hand, the radius of curvature of the outer part in the folded area is very small, normally of the same order of magnitude as the sheet thickness. This fact raises the question if shell elements are applicable in FE simulation of hemming. One part of the project was therefore a thorough investigation of the order of magnitude of the errors resulting from the use of shell elements in FE simulation of hemming. Another part of the project was devoted to three-dimensional simulations of the hemming of an automotive hood. The influence on the roll-in from several parameters, such as shell element formulation, adhesives, and anisotropy was studied. Finally, results from a forming simulation were also mapped to the flanging and hemming models in order to study the influence from the stamping of the outer panel on the roll-in

  4. Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation.

    Science.gov (United States)

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Xiao, Hongdi; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-03-15

    This is the first study to systematically investigate the characteristics of the water obtained by dewatering cyanobacteria-containing sludge generated in the drinking water treatment plant, including formation of C- and N-disinfection by-products (DBPs). Results showed that this 'dewatering water' (DW) had different properties when the sludge was stored at different times. The content of dissolved organic matter (DOM) and microcystins (MCs) in the DW were low when the sludge was treated or disposed of within 4 days; correspondingly, the C-, N-DBP production was also low. However, due to the damage of algal cells to some extent, the DOM and MC levels increased significantly for storage time longer than 4 days; the production of C-, N-DBPs also increased. There were also obvious differences in the characteristics of the DW from sludges generated with different coagulant species. Due to the better protective effect of FeCl 3 and polymeric aluminium ferric chloride (PAFC) flocs, the DOM and MC levels and the production of C-, N-DBPs in the DW with FeCl 3 and PAFC coagulation were lower than those with AlCl 3 coagulation, even though the sludges were stored for the same amount of time. Furthermore, because of the formation of Al and Fe hydroxides, precipitated onto the surface of flocs, the soluble Al and Fe in the DW decreased with increased storage time, especially in the first four days. Overall, this study revealed the trends in variation of DW quality for cyanobacteria-containing sludges formed with different coagulants, then FeCl 3 and PAFC coagulants are recommended and sludge should be treated or disposed of within 4 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Moessbauer spectroscopy characterization of Zr-Nb-Fe phases

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C.P. [CONICET, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)]. E-mail: ciramos@cnea.gov.ar; Granovsky, M.S. [CAC-CNEA, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina); Saragovi, C. [CAC-CNEA, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2007-02-01

    The aim of this work was the characterization of the ternary phases and of those coming from the corresponding binary systems in the Zr-Nb-Fe diagram by means of Moessbauer spectroscopy. This is part of a complete study involving a tentative isothermal section at 900 deg. C of the center of the Zr-Nb-Fe diagram which will be published elsewhere. Zr-Nb-Fe alloys with Nb contents between 5 and 50 at% and Fe contents between 10 and 60 at% were analyzed after a heat treatment at 900 deg. C for 4 month. Moessbauer characterization of the phases was complemented by optical and scanning electron microscopies, X-ray diffraction and electron microprobe analysis. From the obtained results it can be inferred that Fe in both of the Laves phases present in this system (Zr(FeNb){sub 2} and (ZrNb)Fe{sub 2}) sees different environments, producing quadrupole splitting and hyperfine field distributions, respectively. Two types of body centered cubic {beta} phases (Zr-rich and Nb-rich) were found having noticeable differences in their Moessbauer parameters. Furthermore it was shown that the ternary Fe(NbZr){sub 2} compound would show magnetic character at low temperatures. Concentration dependence of the hyperfine parameters and their relations with the lattice parameters contributed to the structural characterization of the phases.

  6. Moessbauer spectroscopy characterization of Zr-Nb-Fe phases

    International Nuclear Information System (INIS)

    Ramos, C.P.; Granovsky, M.S.; Saragovi, C.

    2007-01-01

    The aim of this work was the characterization of the ternary phases and of those coming from the corresponding binary systems in the Zr-Nb-Fe diagram by means of Moessbauer spectroscopy. This is part of a complete study involving a tentative isothermal section at 900 deg. C of the center of the Zr-Nb-Fe diagram which will be published elsewhere. Zr-Nb-Fe alloys with Nb contents between 5 and 50 at% and Fe contents between 10 and 60 at% were analyzed after a heat treatment at 900 deg. C for 4 month. Moessbauer characterization of the phases was complemented by optical and scanning electron microscopies, X-ray diffraction and electron microprobe analysis. From the obtained results it can be inferred that Fe in both of the Laves phases present in this system (Zr(FeNb) 2 and (ZrNb)Fe 2 ) sees different environments, producing quadrupole splitting and hyperfine field distributions, respectively. Two types of body centered cubic β phases (Zr-rich and Nb-rich) were found having noticeable differences in their Moessbauer parameters. Furthermore it was shown that the ternary Fe(NbZr) 2 compound would show magnetic character at low temperatures. Concentration dependence of the hyperfine parameters and their relations with the lattice parameters contributed to the structural characterization of the phases

  7. Buena fe subjetiva y buena fe objetiva. Equívocos a los que conduce la falta de claridad en la distinción de tales conceptos

    Directory of Open Access Journals (Sweden)

    Martha Lucía Neme Villarreal

    2009-12-01

    Full Text Available El presente escrito tiene por objeto dejar en evidencia la confusión que en cierto sector de la jurisprudencia colombiana existe entre el concepto de buena fe objetiva y el concepto de buena fe subjetiva, que ha trascendido, por demás, a una parte de la doctrina y la legislación (C. Co., art. 863, pero, sobre todo, busca advertir sobre los graves equívocos a los que dicha confusión conduce, entre los que se cuentan: asumir que la buena objetiva comprende tanto una buena fe exenta de culpa como una buena fe en la que la diligencia no resulta exigible; pretender que la regla que prohíbe el ir contra los actos propios está regida por la buena fe subjetiva y que es una manifestación de la teoría de la apariencia; pretender proteger a nombre del principio de buena fe la representación mental del deudor que cree haber cumplido, desconociendo la exigencia de la buena fe objetiva que impone desplegar un comportamiento efectivo; y apreciar de manera errónea los alcances de la presunción de buena fe; equívocos que llevan a plantear la necesidad de retomar los senderos del derecho romano, en el que el concepto originario de buena fe estuvo siempre atado al deber de comportamiento probo y leal frente a la otra parte en el contrato, es decir, a lo que hoy entendemos como buena fe objetiva y donde la exigencia de buena fe en la posesión del comprador (convicción o creencia debió ser una utilización particular de la bona fides contractual adaptada en función de la problemática posesoria, que luego se extendería a otras situaciones que se engloban hoy bajo el nombre de la teoría de la apariencia.

  8. Magnetic properties and loss separation in FeSi/MnZnFe{sub 2}O{sub 4} soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Lauda, M. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Füzer, J., E-mail: jan.fuzer@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, P. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Strečková, M.; Bureš, R. [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia); Kováč, J.; Baťková, M.; Baťko, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2016-08-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe{sub 2}O{sub 4} (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe{sub 2}O{sub 4}. • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  9. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    Science.gov (United States)

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. Copyright © 2016. Published by Elsevier Ltd.

  10. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  11. A phase analysis of mild steel corrosion using 57Fe Moessbauer technique

    International Nuclear Information System (INIS)

    Lal, Roshan; Sharma, N.D.; Suman

    2005-01-01

    A phase analysis of corrosion of mild steel was studied by 57 Fe Moessbauer spectroscopy, when the fumes of aqueous hydrochloric acid in the environment of thermal power plant react with various equipment's and machinery parts made from mild steel. The formation of ΥFeOOH was observed. But the presence of some amount of αFeOOH in the super paramagnetic form cannot be ruled out. (author)

  12. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  13. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    Science.gov (United States)

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  14. Superconducting spin valve effect in Fe/In based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Kataev, Vladislav; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences (Russian Federation)

    2015-07-01

    We report on magnetic and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. The Superconducting Spin Valve Effect (SSVE) assumes the T{sub c} difference between parallel (P) and antiparallel (AP) orientations of the Fe1 and Fe2 layers' magnetizations. The SSVE value oscillates and changes its sign when the Fe2 layer thickness d{sub Fe2} is varied from 0 to 5 nm. The SSVE value is positive, as expected, in the range 0.4 nm ≤ d{sub Fe2} ≤ 0.8 nm. For a rather broad range of thicknesses 1 nm ≤ d{sub Fe2} ≤ 2.6 nm the SSVE has negative sign assuming the inverse SSVE. Moreover, the magnitude of the inverse effect is larger than that of the positive direct effect. We attribute these oscillations to a quantum interference of the cooper pair wave functions in the magnetic part of the system. For most of the spin-valve samples from this set we experimentally realized the full switching between normal and superconducting states due to direct and inverse SSVE. The analysis of the experimental data has enabled the determination of all microscopic parameters of the studied system.

  15. Influence of FeEDDS, FeEDTA, FeDTPA, FeEDDHA, and FeSO4 on Marigold Growth and Nutrition, and Substrate and Runoff Chemistry

    Science.gov (United States)

    Objectives of the study were to determine effects of Fe source on plant growth, plant nutrition, substrate chemistry and runoff chemistry. Iron source (FS) treatments consisted of Fe-aminopolycarboxylic acid (APCA) complexones iron ethylenediaminetetraacetic acid (FeEDTA), iron [S, S']-ethylenediam...

  16. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  17. A comparative study of dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in DCD formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Raghavan, P.S.; Gopalan, R. [Madras Christian Coll. (India). Dept. of Chemistry; Srinivasan, M.P.; Narasimhan, S.V.

    1998-12-31

    The important corrosion products deposited on the surfaces of structural materials such as stainless steel in the primary coolant system of BWRs are haematite in the outer layers and ferrites such as magnetite, nickel ferrite, cobalt ferrite, etc., in the inner layers. Magnetite dissolution by 2, 6 Pyridinedicarboxylic acid (PDCA), Ethylenediaminetetraacetic acid (EDTA) and Nitrolotriacetic acid (NTA) showed that there is an optimum pH of dissolution for each ligand. The leaching of the metal ions from the oxides is controlled in part by reductive dissolution; this is due to the presence of Fe(II)-L complexes generated from the released Fe{sup 2+} ions. The addition of Fe(II)-L with the formulation greatly increases the rate of dissolution. In order to understand the role of Fe{sup 2+} arising from the spinel lattice of Fe{sub 3}O{sub 4} in aiding the dissolution of magnetite, it is appropriate to study the dissolution behaviour of the system like Fe{sub 2}O{sub 3} which is not containing any Fe{sup 2+} in the crystal lattice. The present study has been carried out with {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in DCD formulation in the presence of ascorbic acid and with the addition of Fe(II)-L as a reductant. (author)

  18. Synthesis, characterization and magnetic properties of Fe-Al nanopins

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Zhang, Z.D.

    2005-01-01

    We report the synthesis of Fe-Al nanopins using arc discharge. The morphology and chemical composition of the Fe-Al nanopins were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). The nanopins are composed of a spherical base of about 20-100 nm and a needle-like tip of about several hundred nanometers. EDX and HRTEM studies indicate that the spherical base is mainly composed of α-Fe and FeAl core coated with a thin Al 2 O 3 layer, while the needle-like part contains only Al and O and corresponds to Al 2 O 3 . The formation mechanism of the nanopins is suggestive of a vapor-liquid-solid (VLS) growth process. The as-prepared Fe-Al nanopins show ferromagnetic properties. The temperature dependence of the magnetization at high temperatures indicates the existence of some phase transformations

  19. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    Science.gov (United States)

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  20. Magnetocapacidad en nanopartículas de Fe3O4 y NiFe2O4

    Directory of Open Access Journals (Sweden)

    Mira, J.

    2010-02-01

    Full Text Available We have synthesized NiFe2O4 (φ∼ 6 nm and Fe3O4 (φ∼ 30 nm magnetic nanoparticles by solvothermal synthesis; furthermore the Fe3O4 nanoparticles have been coated with a SiO2 shell of approximately 5 nm of thickness by the Stöber method. In the study of the dielectric properties as a function of the frequency, temperature and applied magnetic field, we observe a magnetocapacitive behavior (MC at room temperature and under a moderate magnetic field (H=0.5T, that is specially important in the case of the Fe3O4, nanoparticles (MC≈ 6%. On the other hand, the NiFe2O4 and Fe3O4@SiO2 samples present smaller magnetocapacitive effects: MC≈ 2% y MC≈ 1%, respectively. These MC values, that are higher than those reported in the literature for other related magnetic nanoparticles, corroborate the theoretical model proposed by Catalán in which the combination of Maxwell-Wagner effects and magnetoresistance promote the appearance of stronger magnetocapacitive effects.Hemos preparado nanopartículas magnéticas de NiFe2O4 (φ∼ 6 nm y Fe3O4 (φ∼ 30 nm mediante el método de síntesis solvotermal; además estas últimas han sido recubiertas con una capa de SiO2 de unos 5 nm de espesor mediante el método de Stöber. Al estudiar el comportamiento dieléctrico en función de la frecuencia, temperatura y campo magnético aplicado, observamos un comportamiento magnetocapacitivo (MC a temperatura ambiente y bajo un campo magnético moderado (H= 0.5 T que es especialmente importante en el caso de las nanopartículas de Fe3O4 (MC≈ 6%. Por su parte las muestras de NiFe2O4 y Fe3O4@SiO2 presentan efectos magnetocapacitivos menores: MC≈ 2% y MC≈ 1%, respectivamente. Estos valores de MC, que son considerablemente superiores a los descritos hasta el momento para otras nanopartículas magnéticas, corroboran la predicción teórica de Catalán de que la combinación de efecto Maxwell-Wagner con efectos magnetorresitivos potencian la aparición de fen

  1. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  2. Corrosion Resistance of Steels and Armco-Fe in Lead Melt Saturated by Oxygen at 550 degree C

    International Nuclear Information System (INIS)

    Tsisar, V.P.; Fedirko, V.N.; Eliseeva, O.I.

    2007-01-01

    Corrosion resistance of stainless steels and Armco-Fe in static lead melt saturated by oxygen at 550 degree C for 2000 h was investigated. It was determined that double oxide layer was formed on the surface of investigated materials. Outer part of double oxide growths from the initial interface 'solid metal/liquid lead' towards the melt and consists of Fe 3 O 4 . Inner part of double oxide based on the matrix is composed of Fe 3 O 4 for Armco-Fe, Fe 1+x Cr 2-x O 4 for martensitic 0.2 C-13 Cr and ferritic-martensitic EP823 steels and Fe 1+x Cr 2- xO 4 +Ni for austenitic 18Cr-10Ni-1Ti. Lead did not penetrate into the matrix of tested materials and was detected only in the scale formed on austenitic steel

  3. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction

    Science.gov (United States)

    Guo, Dakai; Han, Sancan; Wang, Jiacheng; Zhu, Yufang

    2018-03-01

    N-doped porous Fe/Fe3C@C electrocatalysts were prepared by the pyrolysis of the hexamethylenetetramine (HMT)-incorporated MIL-100-Fe at different temperatures (700-1000 °C) under N2 atmosphere. Rotary evaporation of MIL-100-Fe and HMT solution could make more N-enriched HMT molecules enter into the pores of MIL-100-Fe, thus improving nitrogen contents of the final pyrolyzed samples. All pyrolyzed samples show porous textures with middle specific surface areas. The X-ray photoelectron spectroscopy (XPS) results demonstrate the successful introduction of N atoms into carbon framework. Sample Fe-N2-800 prepared by annealing the precursors with the HMT/MIL-100-Fe weight ratio of 2 at 800 °C exhibits the best electrocatalytic activity towards the oxygen reduction reaction (ORR) in terms of onset potential and current density because of high graphitic N and pyridinic N content. The enwrapped Fe/Fe3C nanoparticles and Fe-Nx active sites in these samples could also boost the ORR activity synergistically. Moreover, sample Fe-N2-800 demonstrates a dominant four electron reduction process, as well as excellent long-term operation stability and methanol crossover resistance. Thus, the N-doped Fe/Fe3C@C composites derived from the HMT-incorporated MIL-100-Fe are promising electrocatalysts to replace Pt/C for ORR in practical applications.

  4. The 54Fe(d,t)53Fe reaction and the neutron configuration in 54Fe

    International Nuclear Information System (INIS)

    England, J.B.A.; Ophel, T.R.; Johnston, A.; Zeller, A.F.

    1980-07-01

    The 54 Fe(d,t) 53 Fe reaction has been used to study the levels populated in 54 Fe in an attempt to establish the neutron configuration in 54 Fe. The states observed show clear evidence for a 2p-4h admixture in 54 Fe. In particular, the strength of the first 3/2 - level relative to the 7/2 - ground state transition is 3-4 times that in neighbouring N = 28 nuclei

  5. Metamagnetic behaviour of La1-xGdxFe12B6 compounds

    International Nuclear Information System (INIS)

    Li, Q.A.; Groot, C.H. de; Boer, F.R. de; Buschow, K.H.J.

    1997-01-01

    The magnetic properties of compounds of the type La 1-x Gd x Fe 12 B 6 have been studied in high magnetic fields at 4.2 K. LaFe 12 B 6 is a compound with Fe moments close to magnetic instability and values not larger than about 0.5 μ B . Substitution of Gd for part of the La and application of high magnetic fields enhance the Fe moments to values in excess of 2 μ B . The high-moment state in LaFe 12 B 6 is reached via a metamagnetic transition. This first-order transition is associated with an extremely large hysteresis of nearly 7 T at 4.2 K. (orig.)

  6. Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.

    Science.gov (United States)

    Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A

    2015-08-14

    The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.

  7. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 1. Structural, Hydrogen Storage, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-11-01

    Full Text Available The effects of Fe partially replacing Ni in a misch metal-based superlattice hydrogen absorbing alloy (HAA were studied. Addition of Fe increases the lattice constants and abundance of the main Ce2Ni7 phase, decreases the NdNi3 phase abundance, and increases the CaCu5 phase when the Fe content is above 2.3 at%. For the gaseous phase hydrogen storage (H-storage, Fe incorporation does not change the storage capacity or equilibrium pressure, but it does decrease the change in both entropy and enthalpy. With regard to electrochemistry, >2.3 at% Fe decreases both the full and high-rate discharge capacities due to the deterioration in both bulk transport (caused by decreased secondary phase abundance and consequent lower synergetic effect and surface electrochemical reaction (caused by the lower volume of the surface metallic Ni inclusions. In a low-temperature environment (−40 °C, although Fe increases the reactive surface area, it also severely hinders the ability of the surface catalytic, leading to a net increase in surface charge-transfer resistance. Even though Fe increases the abundance of the beneficial Ce2Ni7 phase with a trade-off for the relatively unfavorable NdNi3 phase, it also deteriorates the electrochemical performance due to a less active surface. Therefore, further surface treatment methods that are able to increase the surface catalytic ability in Fe-containing superlattice alloys and potentially reveal the positive contributions that Fe provides structurally are worth investigating in the future.

  8. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  9. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 2. Ni/MH Battery Performance and Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-09-01

    Full Text Available The electrochemical performance and failure mechanisms of Ni/MH batteries made with a series of the Fe-substituted A2B7 superlattice alloys as the negative electrodes were investigated. The incorporation of Fe does not lead to improved cell capacity or cycle life at either room or low temperature, although Fe promotes the formation of a favorable Ce2Ni7 phase. Fe-substitution was found to inhibit leaching of Al from the metal hydride negative electrode and promote leaching of Co, which could potentially extend the cycle life of the positive electrode. The failure mechanisms of the cycled cells with the Fe-substituted superlattice hydrogen absorbing alloys were analyzed by scanning electron microscopy, energy dispersive spectroscopy and inductively coupled plasma analysis. The failure of cells with Fe-free and low Fe-content alloys is mainly attributed to the pulverization of the metal hydride alloy. Meanwhile, severe oxidation/corrosion of the negative electrode is observed for cells with high Fe-content alloys, resulting in increased internal cell resistance, formation of micro-shortages in the separator and eventual cell failure.

  10. Development of Aircraft Sandwich Parts

    Directory of Open Access Journals (Sweden)

    J. Křena

    2000-01-01

    Full Text Available The presented paper shows the design and development process of sandwich parts. A spoiler plate and a main landing gear door are developed. Sandwich parts are made of C/E composite facings and a foam core. FE models have been used for optimization of structures. Emphasis has been placed on deformations of parts under a few load cases. Experimental tests have been used for a verification of structure parts loaded by concentrated forces.

  11. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  12. Fe-vacancy and superconductivity in FeSe-based superconductors

    Science.gov (United States)

    Wang, C. H.; Chen, T. K.; Chang, C. C.; Lee, Y. C.; Wang, M. J.; Huang, K. C.; Wu, P. M.; Wu, M. K.

    2018-06-01

    This review summarizes recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high Tcs observed and for many similar features to the high Tc cuprate superconductors. These similarities suggest that understanding the FeSe based compounds could potentially help our understanding of the cuprates. We shall first review the common features observed in the FeSe-based system. It was found that with a careful control of material synthesizing processes, numerous rich phases have been observed in the FeSe-based system. Detailed studies show that the Fe-vacancy ordered phases found in the FeSe based compounds, which are non-superconducting Mott insulators, are the parent compounds of the superconductors. Superconductivity emerges from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Recent high temperature X-ray diffraction experiments show that the degree of structural distortion associated with the disorder of Fe-vacancy is closely related to volume fraction of the superconductivity observed. These results suggest the strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe based superconductors.

  13. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.

    Science.gov (United States)

    Bellinger, Brent J; Hagerthey, Scot E; Newman, Susan; Cook, Mark I

    2012-11-01

    Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.

  14. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  15. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  16. Kinetics of dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in EDTA and NTA-based formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [Dept. of Chemical Engineering, Univ. of New Brunswick, Fredericton, N.B. (Canada); Srinivasan, M.P. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India); Narasimhan, S.V. [Bhabha Atomic Research Centre (India); Raghavan, P.S. [Madras Christian Coll., Chennai (India); Gopalan, R. [Dept. of Chemistry, Madras Christian Coll., Chennai (India)

    2004-06-01

    The dissolution studies were carried out on haematite ({alpha}-Fe{sub 2}O{sub 3}) and maghemite ({gamma}-Fe{sub 2}O{sub 3}) in two different formulations of ethylenediaminetetraacetic acid (EDTA) and nitrilotriaceticacid (NTA). The rate constants were calculated using the ''inverse cubic rate law.'' The leaching of the metal ions from the oxide is controlled partly by the Fe(II)-L{sub n} (L is a complexing ligand and n is the number of ligands attached to Fe{sup 2+}), a dissolution product arising from the oxides having Fe{sup 2+} in the lattice. The addition of Fe(II)-L{sub n} along with the formulation greatly increased the initial rate of dissolution. The effect of the addition of Fe(II)-L as a reductant on the dissolution of {alpha}-Fe{sub 2}O{sub 3} was not the same as in the case of {gamma}-Fe{sub 2}O{sub 3}. The rate constants (k{sub obs}) for the dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in the presence of ascorbic acid were less in the EDTA formulation than in the NTA formulation. The studies using Fe(II)-NTA and Fe(II)-EDTA with varying compositions of citric acid and ascorbic acid revealed that a minimum quantity of the chelant is sufficient to initiate the dissolution process, which can be further controlled by the reductants and weaker chelants such as citric acid. (orig.)

  17. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  18. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  19. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  20. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes

    DEFF Research Database (Denmark)

    He, Maoshuai; Jin, Hua; Zhang, Lili

    2016-01-01

    electron microscopy, restructuring of the acorn-like Pt-Fe2O3 nanoparticles at reaction conditions is investigated. Upon heating to reaction temperature, ε-Fe2O3 is converted to β-Fe2O3, which can be subsequently reduced to metallic Fe once introducing CO. As Pt promotes the carburization of Fe, part...... of the metallic Fe reacts with active carbon atoms to form Fe2.5C instead of Fe3C, catalyzing the nucleation of carbon nanotubes. Nanobeam electron diffraction characterizations on SWCNTs grown under ambient pressure at 800 °C demonstrate that their chiral angle and diameter distributions are similar to those...

  1. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Ibrahim, H. I.; EI-Ahwany, A.H.; Ibrahim, G.

    2004-01-01

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  2. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  3. The combined effects of Fe and H2 on the nitridation of silicon

    Science.gov (United States)

    Shaw, N. J.

    1982-01-01

    In view of the support offered by previous work for the suggestion that Fe may affect alpha-Si3N4 formation and microstructural development, a two-part study was conducted to differentiate the effects of H2 and Fe in, first, the nitridation of pure and of Fe-containing powder in N2 and N2-4% H2, and then the nitridation of (1 1 1) Si single crystal wafers with and without Fe powder on the surface. The degree of nitridation is most strongly affected by H2 at 1200 C, but by Fe at 1375 C, where Fe-containing samples in either atmosphere were almost completely nitrided. While neither H2 nor Fe alone changed the ratio of alpha-Si3N4 to beta-Si3N4, the combination of H2 and Fe increased it at both temperatures.

  4. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  5. Thermodynamic modeling of the Co-Fe-O system

    DEFF Research Database (Denmark)

    Zhang, Weiwei; Chen, Ming

    2013-01-01

    As a part of the research project aimed at developing a thermodynamic database of the La-Sr-Co-Fe-O system for applications in Solid Oxide Fuel Cells (SOFCs), the Co-Fe-O subsystem was thermodynamically re-modeled in the present work using the CALPHAD methodology. The solid phases were described...... using the Compound Energy Formalism (CEF) and the ionized liquid was modeled with the ionic two-sublattice model based on CEF. A set of self-consistent thermodynamic parameters was obtained eventually. Calculated phase diagrams and thermodynamic properties are presented and compared with experimental...

  6. Microstructure and properties of multiphase sintered cermets Fe-Fe{sub 2}B; Mikrostruktura i wlasnosci spiekanych reakcyjnie cermetali Fe-Fe{sub 2}B

    Energy Technology Data Exchange (ETDEWEB)

    Nowacki, J. [Wydzial Inzynierii Materialowej, Politechnika Szczecinska, Szczecin (Poland); Klimek, L. [Instytut Inzynierii Materialowej i Technik Bezwiorowych, Politechnika Lodzka, Lodz (Poland)

    1998-12-31

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe{sub 2}B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe{sub 2}B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe{sub 2}B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe{sub 2}B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe{sub 2}B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe{sub 2}B cermets are a composite material in which iron boride, Fe{sub 2}B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe{sub 2}B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe{sub 2}B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above

  7. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  8. The effects of local correlations on the electronic structure of FeSe

    Science.gov (United States)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  9. Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes.

    Science.gov (United States)

    Wu, Zhilin; Yuste-Córdoba, Francisco J; Cintas, Pedro; Wu, Zhansheng; Boffa, Luisa; Mantegna, Stefano; Cravotto, Giancarlo

    2018-01-01

    This paper reports that ultrasonic (US) and hydrodynamic cavitation (HC) are efficient strategies for the environmental remediation of cork wastewater (CW). It is necessary to remove toxic, inhibitory or refractory organic matter from CW using physical and chemical techniques (pre-treatment) prior to performing conventional biological treatment. After this biological treatment, it is also critical to further decontaminate (post-treatment) in order to meet the discharge limitation. The pre-treatment of diluted CW using Fenton oxidation (FE) alone led to COD and polyphenol (PP) removal values of 30% and 61%, respectively, while HC and US resulted in 83-90% increases in COD reduction and 26-33% increases in PP reduction. Whereas 55% and 91% COD and PP removal were achieved using flocculation (Floc) alone, COD elimination was increased by a further 7-18% under HC and US. No noticeable improvement in PP elimination was observed. US did not enhance the Floc decontamination of the original concentrated CW, however, considerable quantities of white biofilm were surprisingly generated on the CW surface after the pre-treatment, thus indicating the improvement of biodegradability of the resulting liquid. In fact, the post-treatment stage, using FE alone after having filtered the biofilms, led to reductions of 53% in COD and 90% in PP. The HC and US protocols resulted in 26-34% increases in COD elimination. HC further enhanced PP elimination caused by FE, while US resulted in lower levels of PP elimination. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean

    NARCIS (Netherlands)

    Bin, Levi M.; Weng, Liping; Bugter, Marcel H.J.

    2016-01-01

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD),

  11. Raman-spectroscopic (Fe/Fe+Mg, CO2) and Structural studies of Mg-Fe cordierites

    International Nuclear Information System (INIS)

    Haefeker, U.

    2013-01-01

    In the course of this dissertation synthetic hexagonal and orthorhombic Mg-Fe-cordierites have been investigated with Raman-spectroscopy and XRD methods. Cordierite´s Mg- and Fe-end-members as well as their Mg-Fe solid solutions with the chemical formula (Mg, Fe 2+ ) 2 Al 4 Si 5 O 18 *nH 2 O have been synthesized. Raman-data of synthetic hydrous Mg- and Fe-cordierites have been obtained in the wavenumber-region 100-1250 cm-1 and the experimental data were then compared with the results of quantum-mechanical calculations. 86 theoretical bands could be related to specific vibrational modes of the tetrahedral and octahedral sites of the cordierite structure. Maximum and mean deviation between experimentally-derived bands and calculated modes were ±7 cm -1 for Mg-cordierite and ±19 cm -1 for Fe-cordierite. Spectra comparison revealed a trend of peak downshifting as a consequence of Fe-incorporation. The calculations now allow more accurate interpretation of the Raman spectra with respect to structural changes of cordierite, resulting from Al-Si ordering and Mg-Fe exchange. Atomic motions in cordierite have been compared with those of the structurally similar mineral beryl. Investigations of 16 H 2 O-bearing synthetic well-ordered Mg-Fe-cordierites (XFe =0-1) with micro-Raman spectroscopy revealed a linear correlation between the Fe/Mg ratio and the position of certain Raman peaks. The peaks (wave-number Mg-/Fe-cordierite) at 122/111, 262/257, 430/418, 579/571, 974/967, and 1012/1007 cm -1 were selected for a detailed deconvolution analysis . The shifts of these peaks were then plotted vs. XFe and regression of the data lead to the formulation of a set of linear equations. In addition, the effect of different H 2 O contents and the degree of Al-Si ordering on the Fe/Mg determination were also investigated. Testing the calibration against data from six well-characterized natural cordierite samples yielded excellent agreement. Existing calibration diagrams for CO 2

  12. Electrical studies of Fe-related defect complexes in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chi Kwong

    2012-09-15

    and thermal stability, measurements were performed around the projected range of Fe-implantations after rapid thermal annealing. A shallow acceptor is uncovered with an energy level position of EV +0.06 eV and a defect concentration closely following the calculated concentration of the Fe-implantation dose. However, chemical analysis with secondary ion-mass spectrometry shows out-diffusion of Fe from the region around the projected range after annealing. This suggests that the formation of the shallow acceptor is only assisted/promoted by Fe without Fe being a part of the final complex.(Author)

  13. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  14. Sustained magnetization oscillations in polyaniline-Fe{sub 3}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, A. C. V. de [Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Recife, Pernambuco (Brazil); Rodrigues, A. R., E-mail: ricalde@df.ufpe.br; Machado, F. L. A.; Rezende, S. M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Azevedo, W. M. de [Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil)

    2015-09-28

    We report experiments with polyaniline-Fe{sub 3}O{sub 4} (PANI-Fe{sub 3}O{sub 4}) nanocomposites synthesized under several different conditions. With a reaction carried out at room temperature and assisted by intense ultra-violet (UV) irradiation, we observe sustained oscillations in the magnetization with a period of about 25 min. The oscillations are interpreted as the result of an oscillatory chemical reaction in which part of the Fe{sup +2} ions of magnetite, Fe{sub 3}O{sub 4}, are oxidized by the UV irradiation to form Fe{sup +3} so that a fraction of the magnetite content transforms into maghemite, γ-Fe{sub 2}O{sub 3}. Then, Fe{sup +3} ions at the nanoparticle surfaces are reduced and transformed back into Fe{sup +2}, when acting as an oxidizing agent for polyaniline in the polymerization process. Since maghemite has smaller magnetization than magnetite, the oscillating chemical reaction results in the oscillatory magnetization. The observations are interpreted with the Lotka-Volterra nonlinear coupled equations with parameters that can be adjusted to fit very well the experimental data.

  15. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    Science.gov (United States)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-07-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  16. Fe (III) complex of mefloquine hydrochloride: Synthesis ...

    African Journals Online (AJOL)

    As part of the ongoing research for more effective antimalarial drug, Fe (III) complex of mefloquine hydrochloride (antimalarial drug) was synthesized using template method. Mefloquine was tentatively found to have coordinated through the hydroxyl and the two nitrogen atoms in the quinoline and piperidine in the structure, ...

  17. Molecular [(Fe3)–(Fe3)] and [(Fe4)–(Fe4)] coordination cluster pairs as single or composite arrays.

    Science.gov (United States)

    Sañudo, E Carolina; Uber, Jorge Salinas; Pons Balagué, Alba; Roubeau, Olivier; Aromí, Guillem

    2012-08-06

    The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates.

  18. FE Modeling of Human Vocal Tract Acoustics. Part I: Production of Czech Vowels

    Czech Academy of Sciences Publication Activity Database

    Vampola, T.; Horáček, Jaromír; Švec, J. G.

    2008-01-01

    Roč. 94, č. 3 (2008), s. 433-447 ISSN 1610-1928 R&D Projects: GA ČR GA106/04/1025 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100502 Keywords : biomechanics of voice * FE models of human vocaltract * acoustic modal analysis Subject RIV: BI - Acoustics Impact factor: 0.538, year: 2008

  19. A [4Fe-4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly

    Science.gov (United States)

    Rao, Guodong; Tao, Lizhi; Suess, Daniel L. M.; Britt, R. David

    2018-05-01

    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate—the first organometallic precursor to the H-cluster—validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster.

  20. Study on adsorption of 99Tc on Fe, Fe2O3 and Fe3O4

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The absorption behavior of 99 Tc on Fe, Fe 2 O 3 and Fe 3 O 4 powders from aqueous 99 TcO 4 - solutions is studied by batch method in atmospheric conditions. After the adsorption reaches equilibrium, the valence state of 99 Tc in the aqueous solution is examined by extraction with tetraphenylarsonium chloride. The experimental results show that the adsorption ratio of 99 Tc on iron powders decreases with the increase of pH (in the range of 5-8) and of CO 3 2- concentration (in the range of 1 x 10 -8 -1 x 10 -2 mol/L). In opposite, the two factors have no significant influence on the absorption of 99 Tc on both Fe 2 O 3 and Fe 3 O 4 powders. The adsorption isotherms of 99 TcO 4 - on Fe, Fe 2 O 3 and Fe 3 O 4 powders can be well described by the Freundlich's equation. The major valence state of 99 Tc is deduced to be Tc(IV) when iron powders is used as the absorbent. In the case of Fe 2 O 3 or Fe 3 O 4 as an absorbent, the 99 Tc remains as the TcO 4 - form

  1. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar

    2005-01-01

    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  2. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    Science.gov (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  3. Computer Simulation Elucidates Yeast Flocculation and Sedimentation for Efficient Industrial Fermentation.

    Science.gov (United States)

    Liu, Chen-Guang; Li, Zhi-Yang; Hao, Yue; Xia, Juan; Bai, Feng-Wu; Mehmood, Muhammad Aamer

    2018-05-01

    Flocculation plays an important role in the immobilized fermentation of biofuels and biochemicals. It is essential to understand the flocculation phenomenon at physical and molecular scale; however, flocs cannot be studied directly due to fragile nature. Hence, the present study is focused on the morphological specificities of yeast flocs formation and sedimentation via the computer simulation by a single floc growth model, based on Diffusion-Limited Aggregation (DLA) model. The impact of shear force, adsorption, and cell propagation on porosity and floc size is systematically illustrated. Strong shear force and weak adsorption reduced floc size but have little impact on porosity. Besides, cell propagation concreted the compactness of flocs enabling them to gain a larger size. Later, a multiple flocs growth model is developed to explain sedimentation at various initial floc sizes. Both models exhibited qualitative agreements with available experimental data. By regulating the operation constraints during fermentation, the present study will lead to finding optimal conditions to control the floc size distribution for efficient fermentation and harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  5. Photoelectron spectroscopy study of Fe-diluted Au-Fe alloys

    CERN Document Server

    Nahm, T U; Choi, B; Park, J S; Oh, S J; Cho, E J

    2003-01-01

    The electronic structure of Fe-diluted Au-Fe alloys has been studied by taking core-level and valence-band spectra using x-ray photoemission spectroscopy and synchrotron radiation. From the core-level spectroscopy, we found that the Fe 2p spectrum is composed of d sup 6 and d sup 7 multiplets from Fe impurity atoms. This behaviour is qualitatively discussed within the context of electron-electron interaction. In order to explore the electron-correlation effects in the valence band, we obtained Fe 3d partial spectral weights by taking advantage of the Cooper-minimum phenomenon of an Au 5d photoionization cross section. It was found that the spin-down states have an appreciable amount of spectral weights throughout the host Au 5d band, contrary to previous one-electron calculations predicting two-peak structure of the Fe 3d states. We suggest that this discrepancy results from the correlation effect of the Fe 3d electrons.

  6. Effect of Chlorine precursor in surface and cataytic properties of Fe/TiO2 Catalysts

    OpenAIRE

    López, Tessi; Pecchi, Gina; Moreno, Abel; García Fierro, José Luis; Gómez, R.; Reyes, P.

    2002-01-01

    Titania-supported iron (1wt%) catalysts were prepared by the sol-gel method using different gelation pH (3 and 9), metal precursors (FeCl2 and FeCl3) and calcination temperatures (873 and 1073K). Characterization data of calcined catalysts revealed that in all samples the dominant iron species is Fe3+ and the crystalline phase of the TiO2 substrate depends on the gelation pH and the metal precursor used. It was found that in the Fe/TiO2 ex-FeCl3 samples an important part of the iron ions beca...

  7. Metal Injection Molding (MIM) of NdFeB Magnets

    OpenAIRE

    Hartwig T.; Lopes L.; Wendhausen P.; Ünal N.

    2014-01-01

    Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM) is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of ...

  8. Colorimeter determination of Fe(II)/Fe(III) ratio in glass

    International Nuclear Information System (INIS)

    Baumann, E.W.; Coleman, C.J.; Karraker, D.G.; Scott, W.H.

    1987-01-01

    A colorimetric method has been developed to determine the Fe(II)/Fe(III) ratio in glass containing nuclear waste. Fe(II) is stabilized with pentavalent vanadium during dissolution in sulfuric and hydrofluoric acids. The chromogen is FerroZine (Hach Chemical Company), which forms a magenta complex with Fe(II). The two-step color development consists of determining the Fe(II) by adding FerroZine, followed by determining total Fe after the Fe(III) present is reduced with ascorbic acid. The method was validated by analyzing mixtures of ferrous/ferric solutions and nonferrous glass frit, and by comparison with Moessbauer spectroscopy. The effect of gamma radiation was established. The procedure is generally applicable to nonradioactive materials such as minerals and other glasses

  9. Aluminium base amorphous and crystalline alloys with Fe impurity

    International Nuclear Information System (INIS)

    Sitek, J.; Degmova, J.

    2006-01-01

    Aluminium base alloys show remarkable mechanical properties, however their low thermal stability still limits the technological applications. Further improvement of mechanical properties can be reached by partial crystallization of amorphous alloys, which gives rise to nanostructured composites. Our work was focused on aluminium based alloys with Fe, Nb and V additions. Samples of nominal composition Al 90 Fe 7 Nb 3 and Al 94 Fe 2 V 4 were studied in amorphous state and after annealing up to 873 K. From Moessbauer spectra taken on the samples in amorphous state the value of f-factor was determined as well as corresponding Debye temperatures were calculated. Annealing at higher temperatures induced nano and microcrystalline crystallization. Moessbauer spectra of samples annealed up to 573 K are fitted only by distribution of quadrupole doublets corresponding to the amorphous state. An increase of annealing temperature leads to the structural transformation, which consists in growth of nanometer sized aluminium nuclei. This is partly reflected in Moessbauer parameters. After annealing at 673 K intermetallic phase Al 3 Fe and other Al-Fe phases are created. In this case Moessbauer spectra are fitted by quadrupole doublets. During annealing up to 873 K large grains of Fe-Al phases are created. (authors)

  10. Nature of impurities in fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+) chelates.

    Science.gov (United States)

    Alvarez-Fernández, Ana; Cremonini, Mauro A; Sierra, Miguel A; Placucci, Giuseppe; Lucena, Juan J

    2002-01-16

    Iron chelates derived from ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA), ethylenediaminedi(o-hydroxy-p-methylphenylacetic) acid (EDDHMA), ethylenediaminedi(2-hydroxy-5-sulfophenylacetic) acid (EDDHSA), and ethylenediaminedi(5-carboxy-2-hydroxyphenylacetic) acid (EDDCHA) are remarkably efficient in correcting iron chlorosis in plants growing in alkaline soils. This work reports the determination of impurities in commercial samples of fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+). The active components (EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+)) were separated easily from other compounds present in the fertilizers by HPLC. Comparison of the retention times and the UV-visible spectra of the peaks obtained from commercial EDDHSA/Fe(3+) and EDDCHA/Fe(3+) samples with those of standard solutions showed that unreacted starting materials (p-hydroxybenzenesulfonic acid and p-hydroxybenzoic acid, respectively) were always present in the commercial products. 1D and 2D NMR experiments showed that commercial fertilizers based on EDDHMA/Fe(3+) contained impurities having structures tentatively assigned to iron chelates of two isomers of EDDHMA. These findings suggest that current production processes of iron chelates used in agriculture need to be improved.

  11. Melting relations in the Fe-rich portion of the system FeFeS at 30 kb pressure

    Science.gov (United States)

    Brett, R.; Bell, P.M.

    1969-01-01

    The melting relations of FeFeS mixtures covering the composition range from Fe to Fe67S33 have been determined at 30 kb pressure. The phase relations are similar to those at low pressure. The eutectic has a composition of Fe72.9S27.1 and a temperature of 990??C. Solubility of S in Fe at elevated temperatures at 30 kb is of the same order of magnitude as at low pressure. Sulfur may have significantly lowered the melting point of iron in the upper mantle during the period of coalescence of metal prior to core formation in the primitive earth. ?? 1969.

  12. Comparison of Ab initio low-energy models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe. Electron correlation and covalency

    International Nuclear Information System (INIS)

    Miyake, Takashi; Nakamura, Kazuma; Arita, Ryotaro; Imada, Masatoshi

    2010-01-01

    Effective low-energy Hamiltonians for several different families of iron-based superconductors are compared after deriving them from the downfolding scheme based on first-principles calculations. Systematic dependences of the derived model parameters on the families are elucidated, many of which are understood from the systematic variation of the covalency between Fe-3d and pnictogen-/chalcogen-p orbitals. First, LaFePO, LaFeAsO (1111), BaFe 2 As 2 (122), LiFeAs (111), FeSe, and FeTe (11) have overall similar band structures near the Fermi level, where the total widths of 10-fold Fe-3d bands are mostly around 4.5 eV. However, the derived effective models of the 10-fold Fe-3d bands (d model) for FeSe and FeTe have substantially larger effective onsite Coulomb interactions U - 4.2 and 3.4 eV, respectively, after the screening by electrons on other bands and after averaging over orbitals, as compared to ∼2.5 eV for LaFeAsO. The difference is similar in the effective models containing p orbitals of As, Se or Te (dp or dpp model), where U ranges from ∼4 eV for the 1111 family to ∼7 eV for the 11 family. The exchange interaction J has a similar tendency. The family dependence of models indicates a wide variation ranging from weak correlation regime (LaFePO) to substantially strong correlation regime (FeSe). The origin of the larger effective interaction in the 11 family is ascribed to smaller spread of the Wannier orbitals generating larger bare interaction, and to fewer screening channels by the other bands. This variation is primarily derived from the distance h between the pnictogen/chalcogen position and the Fe layer: The longer h for the 11 family generates more ionic character of the bonding between iron and anion atoms, while the shorter h for the 1111 family leads to more covalent-bonding character, the larger spread of the Wannier orbitals, and more efficient screening by the anion p orbitals. The screened interaction of the d model is strongly orbital

  13. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Directory of Open Access Journals (Sweden)

    T. Egami

    2010-01-01

    Full Text Available We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  14. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  15. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  16. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  17. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  18. Fe-C-S systematics in Bengal Fan sediments

    Science.gov (United States)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide

  19. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Toth, I. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1993-11-01

    Amorphous ribbons of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 [mu]m and 27 [mu]m were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO[sub 3]-structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO[sub 3]-structure FeSi alloy, paramagnetic FeNbB and presumably Fe[sub 23]B[sub 6] and Fe[sub 3]SiB[sub 2]. (orig.)

  20. Computed oscillator strengths and energy levels for Fe III, Fe IV, Fe V, and Fe VI with calculated wavelengths and wavelengths derived from established data

    International Nuclear Information System (INIS)

    Fawcett, B.C.

    1989-01-01

    Calculated weighted oscillator strengths are tabulated for spectral lines of Fe III, Fe IV, Fe V, and Fe VI. The lines belong to transition arrays 3d 6 -3d 5 4p and 3d 5 4s-3d 5 4p in Fe III, 3d 5 -3d 4 4p and 3d 4 4s-3d 4 4p in Fe IV, 3d 4 -3d 3 4p and 3d 3 4s-3d 3 4p in Fe V, and 3d 3 -3d 2 4p and 3d 2 4s-3d 2 4p in Fe VI. For the calculations, Slater parameters are optimized on the basis of minimizing the discrepancies between observed and computed wavelengths. Configuration interaction was included among the 3d n , 3d n-1 4s, 3d n-2 4s 2 , 3d n-1 4d, and 3d n-1 5s even configurations and among the 3d n-1 4p, 3d n-2 4s4p, and 3d n-1 5p odd configurations, with 3p 5 3d n+1 added for Fe VI. Calculated wavelengths are compared with observational data, and the compositions of energy levels are listed. This completes a series of similar computations for these complex configurations covering Fe I to Fe VI

  1. Clarifying roughness and atomic diffusion contributions to the interface broadening in exchange-biased NiFe/FeMn/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, V.P., E-mail: valberpn@yahoo.com.br [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Merino, I.L.C.; Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Alayo, W. [Departamento de Física, Universidade de Pelotas, 96010-610 Pelotas (Brazil); Tafur, M. [Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia (Brazil); Magalhães-Paniago, R. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Alvarenga, A.D. [Instituto Nacional de Metrologia, 25250-020 Xerém (Brazil); Saitovitch, E.B. [Coordenação de Física Experimental e Baixas Energias, Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro (Brazil)

    2013-09-02

    NiFe(30 nm)/FeMn(13 nm)/NiFe(10 nm) heterostructures prepared by magnetron sputtering at different argon working pressures (0.27, 0.67 and 1.33 Pa) were systematically investigated by using specular and off-specular diffuse X-ray scattering experiments, combined with ferromagnetic resonance technique, in order to distinguish the contribution from roughness and atomic diffusion to the total structural disorder at NiFe/FeMn interfaces. It was shown that an increase in the working gas pressure from 0.27 to 1.33 Pa causes an enhancement of the atomic diffusion at the NiFe/FeMn interfaces, an effect more pronounced at the top FeMn/NiFe interface. In particular, this atomic diffusion provokes a formation of non-uniform magnetic dead-layers at the NiFe/FeMn interfaces (NiFeMn regions with paramagnetic or weak antiferromagnetic properties); that are responsible for the substantial reduction of the exchange bias field in the NiFe/FeMn system. Thus, this work generically helps to understand the discrepancies found in the literature regarding the influence of the interface broadening on the exchange bias properties (e.g., exchange bias field) of the NiFe/FeMn system. - Highlights: • Roughness and atomic diffusion contributions to the interface broadening • Clarification of the exchange bias field dependence on the interface disorder • Ferromagnetic, paramagnetic and antiferromagnetic phases at the magnetic interface • Magnetic dead layers formed by increasing the argon work pressure • Atomic diffusion in heterostructures prepared at higher argon pressure.

  2. Damage formation and recovery in Fe implanted 6H–SiC

    CERN Document Server

    Miranda, Pedro; Catarino, Norberto; Lorenz, Katharina; Correia, João Guilherme; Alves, Eduardo

    2012-01-01

    Silicon carbide doped with magnetic ions such as Fe, Mn, Ni or Co could make this wide band gap semiconductor part of the diluted magnetic semiconductor family. In this study, we report the implantation of 6H-SiC single crystals with magnetic $^{56}$Fe$^{+}$ ions with an energy of 150 keV. The samples were implanted with 5E14 Fe$^+$/cm$^{2}$ and 1E16 Fe$^+$/cm$^{2}$ at different temperatures to study the damage formation and lattice site location. The samples were subsequently annealed up to 1500°C in vacuum in order to remove the implantation damage. The effect of the annealing was followed by Rutherford Backscattering/Channeling (RBS/C) measurements. The results show that samples implanted above the critical amorphization temperature reveal a high fraction of Fe incorporated into regular sites along the [0001] axis. After the annealing at 1000°C, a maximum fraction of 75%, corresponding to a total of 3.8E14 Fe$^{+}$/cm$^{2}$, was measured in regular sites along the [0001] axis. A comparison is made betwee...

  3. Temperature effects on flocculation, using different coagulants.

    Science.gov (United States)

    Fitzpatrick, C S B; Fradin, E; Gregory, J

    2004-01-01

    Temperature is known to affect flocculation and filter performance. Jar tests have been conducted in the laboratory, using a photometric dispersion analyser (PDA) to assess the effects of temperature on floc formation, breakage and reformation. Alum, ferric sulphate and three polyaluminium chloride (PACI) coagulants have been investigated for temperatures ranging between 6 and 29 degrees C for a suspension of kaolin clay in London tap water. Results confirm that floc formation is slower at lower temperatures for all coagulants. A commercial PACl product, PAX XL 19, produces the largest flocs for all temperatures; and alum the smallest. Increasing the shear rate results in floc breakage in all cases and the flocs never reform to their original size. This effect is most notable for temperatures around 15 degrees C. Breakage, in terms of floc size reduction, is greater for higher temperatures, suggesting a weaker floc. Recovery after increased shear is greater at lower temperatures implying that floc break-up is more reversible for lower temperatures.

  4. Postfragmentation density function for bacterial aggregates in laminar flow.

    Science.gov (United States)

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M

    2011-04-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society

  5. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  6. Thermodynamics of the Mo-Fe-C and W-Fe-C systems

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1978-01-01

    A study on the reaction behaviour of the components of the Mo 2 C-Fe and WC-Fe systems is presented. Both systems are stable if the mono-phase carbides are in equilibrium with the Fe-C solid solution within fixed carbon concentrations, the limits of which are calculated in this paper. Gibbs energies of formation at 1273 K of the intermetallic phases, of the binary and of the ternary carbides in the Mo-Fe-C and W-Fe-C systems were determined. The Fe corner in the phase diagrams of both systems and the calculated C boundaries in the two-phase field γ-Fe(Mo,C)-Mo 2 C and the γ-Fe(W,C)-WC, respectively, based on this study, are shown in figures. (GSC) [de

  7. Microstructure and mechanical properties of ion-beam-produced Fe-Ti-(N), Fe-Ti-(C), and Fe-Ti-(C,N) surface films

    Science.gov (United States)

    Hirvonen, J.-P.; Nastasi, M.; Zocco, T. G.; Jervis, T. R.

    1990-06-01

    Ion-mixed films of Fe53 Ti47 were produced by ion irradiating a Fe-Ti multilayer structure on AISI 304 stainless steel. The ion-mixed films were subsequently implanted with nitrogen, carbon, or both carbon and nitrogen. The microstructure following nitrogen implantation consisted of a bcc solid solution of iron and titanium and finely dispersed TiN precipitates. In the cases of carbon or carbon and nitrogen implantation, a two-phase structure consisting of an amorphous matrix with TiC or Ti(C,N) precipitates was found. All these films initially possessed improved tribological properties as revealed by lowered friction and increased wear resistance. However, after an extended test of 1000 wear cycles, a reduced friction was only observed for the carbon or carbon and nitrogen implanted samples. The wear track on the dual implanted surface was extremely smooth, while the surface of the nitrogen-implanted sample was partly worn through, causing the friction to increase to the level of the untreated sample. The improved tribological properties of the implanted films are attributed to an increase in surface hardness. However, the surface hardness is unable to explain differences between different implantations. In the case of the dual carbon and nitrogen implantation, improvements appear to be in part the result from an increased capability to accommodate plastic deformation. These conclusions are supported by transmission electron microscope studies of the wear tracks as well as by nanoindentation measurements.

  8. Al/Fe isomorphic substitution versus Fe{sub 2}O{sub 3} clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    Energy Technology Data Exchange (ETDEWEB)

    Shafia, Ehsan [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Esposito, Serena [Università degli Studi di Cassino e del Lazio Meridionale, Department of Civil and Mechanical Engineering (Italy); Manzoli, Maela; Chiesa, Mario [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Tiberto, Paola [Electromagnetism, I.N.Ri.M. (Italy); Barrera, Gabriele [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Menard, Gabriel [Harvard University, Department of Chemistry and Chemical Biology (United States); Allia, Paolo, E-mail: paolo.allia@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Freyria, Francesca S. [Massachusetts Institute of Technology, Department of Chemistry (United States); Garrone, Edoardo; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy)

    2015-08-15

    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH){sub 3}Al{sub 2−x}Fe{sub x}O{sub 3}SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N{sub 2} adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe{sup 3+}/Al{sup 3+} isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe{sup 3+} sites. Higher loadings give rise, besides IS, to the formation of Fe{sub 2}O{sub 3} clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al{sup 3+} ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

  9. Diffusion of Nb in Fe and in some Fe alloys

    International Nuclear Information System (INIS)

    Kurokawa, S.; Ruzzante, J.E.; Hey, A.M.; Dyment, F.

    1981-01-01

    Diffusion data of microalloying elements such as Nb, V, Ti, are required when analysing the transformation and recrystallization behaviour of HSLA steels in order to optimize grain refinement and precipitation hardening. The diffusion behaviour of Nb in pure Fe, Fe 1.5 Mn, Fe 0.6 Si and Fe 1.5 Mn 0.6 Si has been measured between 1080 and 1200 0 C. Results indicate that Si increases Nb diffusivity while Mn decreases it. The sequence of diffusion coeficients values is: D sup(Nb) sub(Fe 1.5 Mn) [pt

  10. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    Science.gov (United States)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe

  11. Influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers, Fe/Cr/Fe- and Fe/MgO/Fe multilayers; Untersuchung der Morphologie und magnetische Eigenschaften von ionenstrahl-gesputterten Eisen-Einzelschichten, Fe/Cr/Fe- und Fe/MgO/Fe-Schichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, Alexandra

    2007-04-05

    In this PhD Thesis, the influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers on GaAs is examined. To analyze the structure of the produced iron films, low energy electron diffraction and scanning tunneling microscopy is employed. The utilized methods to investigate the magnetic properties are Kerr- and SQUID-magnetometry and ferromagnetic resonance. It is demonstrated that on untreated as well as on presputtered and heated GaAs substrates the sputtered iron films grow epitaxially. The least surface roughness of 1 A exhibit iron films grown on untreated GaAs, while iron films on heated GaAs have the highest roughness of 30 A. The largest crystal anisotropy constant is found for the presputtered GaAs/Fe-System. For this preparation method, two monolayers of iron are determined to be magnetically dead layers. At a film thickness of 100 A, 83% of the value for saturation magnetization of bulk iron are achieved. The small observed FMR-linewidths confirm the good bulk properties of the ion beam sputtered iron. Furthermore, an antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr/Fe-films was achieved. For a thickness of 12 to 17 A of the chrome interlayer, a coupling strength up to 0.2 mJ/m{sup 2} is found. To account for the small coupling strength, a strong intermixing at the interface is assumed. Finally, epitaxial Fe/MgO/Fe/FeMn multilayers are deposited on GaAs. After the structuring, it is possible to detect tunneling processes in the tunneling contacts with current-voltage measurements. The tunnel magneto resistance values of 2% are small, which can be explained by the absence of sharp, well-defined interfaces between the Fe/FeMn and the Fe/MgO interfaces. These results demonstrate, that analog to MBE the ion beam sputtering method realizes good magnetic bulk properties. However, interface sensitive phenomena are weakened because of a strong intermixing at the interfaces. (orig.)

  12. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    Directory of Open Access Journals (Sweden)

    Lukas P. Feilen

    2017-05-01

    Full Text Available Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs. The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  13. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    Science.gov (United States)

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  14. Formation mechanisms of neutral Fe layers in the thermosphere at Antarctica studied with a thermosphere-ionosphere Fe/Fe+ (TIFe) model

    Science.gov (United States)

    Chu, Xinzhao; Yu, Zhibin

    2017-06-01

    With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.Plain Language SummaryThe discoveries of neutral metal layers reaching near 200 km in the thermosphere have significant scientific merit because such discoveries challenge the current understandings of upper atmospheric composition, chemistry, dynamics, electrodynamics, and

  15. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  16. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  17. Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin

    Directory of Open Access Journals (Sweden)

    Micha J. A. Rijkenberg

    2018-03-01

    Full Text Available Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton blooms. During the GEOTRACES cruise PS94 in the summer of 2015 we measured dissolved iron (DFe, nitrate and phosphate throughout the central part of the Eurasian Arctic. In the deeper waters concentrations of DFe were higher, which we relate to resuspension on the continental slope in the Nansen Basin and hydrothermal activity at the Gakkel Ridge. The main source of DFe in the surface was the Trans Polar Drift (TPD, resulting in concentrations up to 4.42 nM. Nevertheless, using nutrient ratios we show that a large under-ice bloom in the Nansen basin was limited by Fe. Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production. In the Barents Sea, Fe is expected to be the first nutrient to be depleted as well. Changes in the Arctic biogeochemical cycle of Fe due to retreating ice may therefore have large consequences for primary production, the Arctic ecosystem and the subsequent drawdown of carbon dioxide.

  18. Pr2Fe14B/α-Fe nanocomposites for thermal applications

    International Nuclear Information System (INIS)

    Silva, Suelanny Carvalho da

    2012-01-01

    In this work, Pr x Fe 94 - x B 6 (x = 6, 8, 10 and 12) nanostructured powders were prepared by a combination of hydrogenation, disproportionation, desorption and recombination (HDDR) process with high energy milling applied to the mixture of an as-cast alloy (Pr 14 Fe 80 B 6 ) and α-Fe. The produced nanoparticles showed magnetic properties comparable to those reported in hyperthermia studies. The optimal time to obtain the magnetic nanoparticles is 5 hours (at 900 rpm). It was verified that longer milling times cause an increase in carbon percentage on the particles. The carbon is derived from oleic acid added as a surfactant in the milling step. The nanocomposites exhibit coercive force ranging from 80 Oe (6.5 kAm -1 ) to 170 Oe (13.5 kAm -1 ) and magnetic moments in the range of 81 129 Am2kg -1 . From the X-ray diffraction analyses, only two phases were found in all samples: α-Fe and the magnetic phase Pr 2 Fe 14 B. Individual nanoparticles with diameter of about 20 nm were verified. The samples studied presented heating when exposed to an alternating magnetic field (f = 222 kHz e H max ∼3.7 kAm -1 ) comparable to reported in literature. Temperature variations (ΔT) of the powders were: 51 K for Pr 6 Fe 88 B 6 , 41 K for Pr 8 Fe 86 B 6 , 38 K for Pr 10 Fe 8 4 B 6 and T = 34 K for Pr 12 Fe 82 B 6 . The specific absorption rates (SARs) of the powders were 201 Wkg -1 for Pr 6 Fe 88 B 6 composition, 158 Wkg -1 on the composition Pr 8 Fe 86 B 6 , and 114 Wkg -1 for Pr 10 Fe 84 B 6 and Pr 12 Fe 82 B 6 compositions. (author)

  19. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  20. Tuning high frequency magnetic properties and damping of FeGa, FeGaN and FeGaB thin films

    Directory of Open Access Journals (Sweden)

    Derang Cao

    2017-11-01

    Full Text Available A series of FeGa, FeGaN and FeGaB films with varied oblique angles were deposited by sputtering method on silicon substrates, respectively. The microstructure, soft magnetism, microwave properties, and damping factor for the films were investigated. The FeGa films showed a poor high frequency magnetic property due to the large stress itself. The grain size of FeGa films was reduced by the additional N element, while the structure of FeGa films was changed from the polycrystalline to amorphous phase by the involved B element. As a result, N content can effectively improve the magnetic softness of FeGa film, but their high frequency magnetic properties were still poor both when the N2/Ar flow rate ratio is 2% and 5% during the deposition. The additional B content significantly led to the excellent magnetic softness and the self-biased ferromagnetic resonance frequency of 1.83 GHz for FeGaB film. The dampings of FeGa films were adjusted by the additional N and B contents from 0.218 to 0.139 and 0.023, respectively. The combination of these properties for FeGa films are helpful for the development of magnetostrictive microwave devices.

  1. Supervalent doping of LiFePO4 for enhanced electrochemical performance

    Directory of Open Access Journals (Sweden)

    N. V. Kosova

    2015-12-01

    Full Text Available The orthophosphates LiFe0.9M0.1PO4 with the structure of olivine doped with vanadium and titanium were obtained by mechanochemically stimulated solidphase synthesis using high-energy planetary mill AGO-2 and subsequent annealing at 750 °C. It is shown that V- and Ti- ions do not completely substitute for Fe2+ ions in the LiFePO4 structure. The remaining part of these ions involve in the formation of second phase with nashiko-like structure: monoclinic Li3V2(PO43 (space group P21/n and rhombohedral LiTi2(PO43 (space group R-3c. According to TEM, the average size of the particle of nanocomposites is about 100-300 nm. EMF of microanalysis showed that the small particles of secondary phases are segregated at the surface of larger particles of LiFePO4. On the charge-discharge curves of LiFe0.9M0.1PO4 there are plateau corresponding to LiFePO4 and the second phase. The doping with vanadium increases the resistance of the cycling of LiFePO4 and improves its cyclability at high speeds to a greater extent than in the case of doping with titanium.

  2. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    Science.gov (United States)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    main mineralized zone is located in the upper part of this unit, about 70 m above this discontinuity. The highly differentiated Fe-Ti-P facies of the Lanjanina series in the Itsindro Gabbro Complex have been interpreted as corresponding to the Fe-Ti-P rich, Si-poor member remaining after an immiscible segregation of an evolved mafic magma. The granite dykes and the overlying granite unit represent the second, Si-rich member of the immiscibility process. The presence of large amounts of sulphide is attributed to sulphur contamination of the Fe-Ti-rich liquid. Fe-Ti oxides will tend to crystallize on the sulphide droplets and the accumulation of dense Fe-sulphides (liquid) and associated Fe-Ti oxides (solid) will result in this complex and unusual association taking the form of a net texture.

  3. Interparticle interactions of FePt core and Fe{sub 3}O{sub 4} shell in FePt/Fe{sub 3}O{sub 4} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hossein, E-mail: Akbari.ph@iauardabil.ac.ir [Department of Physics, Ardabil Branch, Islamic Azad University, Ardabil (Iran, Islamic Republic of); Zeynali, Hossein [Department of Physics, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of); Bakhshayeshi, Ali [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2016-02-22

    Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe{sub 3}O{sub 4} core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner–Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe{sub 3}O{sub 4} core/shell nanoparticles. There is a difference between the results from Stoner–Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe{sub 3}O{sub 4} core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions. - Highlights: • Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. • Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. • A theoretical model presented to calculate the shell thickness dependence of Coercivity. • Magnetic shells increase effective coupling between particles with increasing shell thickness. • Magnetization modes are more localized in the regions with

  4. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  5. Magnetic excitations in Ho2Co17 and Ho2Fe17

    International Nuclear Information System (INIS)

    Clausen, K.N.

    1981-01-01

    The low energy part ( 2 Co 17 and Ho 2 Fe 17 have been measured along the three high symmetry directions at a temperature of 4.2 K, using the inelastic neutron scattering technique. The resulting magnon dispersion relations have been interpreted using linear spin wave theory with a Hamiltonian including single ion crystal field anisotropy and isotropic exchange between spatially well localized spins. The R 2 T 17 structure contains two different Ho sites, with the same point symmetry, and from the spin wave results it was concluded that the crystal field anisotropy of the two Ho sites in both Ho 2 Co 17 and Ho 2 Fe 17 were identical. The deduced crystal field parameters for Ho 2 Fe 17 were slightly larger than for Ho 2 Co 17 , and the parameters were of the same order of magnitude as for pure Ho. For Ho 2 Fe 17 the Fe-Fe exchange was found to be anisotropic, and for both compounds the magnetic ordering temperatures of 1178 K for Ho 2 Co 17 and 335 K for Ho 2 Fe 17 were determined by the strong positive 3d-3d exchange. (Auth.)

  6. Enhanced Coagulation-Flocculation Performance of Iron-Based Coagulants: Effects of PO4(3-) and SiO3(2-) Modifiers.

    Science.gov (United States)

    Chen, Wei; Zheng, Huaili; Teng, Houkai; Wang, Yili; Zhang, Yuxin; Zhao, Chuanliang; Liao, Yong

    2015-01-01

    PO4(3-) and SiO3(2-) are often used as modifier to improve stability and aggregating ability of the iron-base coagulants, however, there are few reports about their detailed comparison between the coagulation performance and mechanisms. In this study, three coagulants--polyferric phosphoric sulfate (PFPS), polysilicon ferric sulfate (PFSS), and polyferric sulfate (PFS) were synthesized; their structure and morphology were characterized by Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and Scanning electron microscope (SEM). Alkali titration and Ferron species analysis were employed to investigate the hydrolysis performance and species distribution. Jar test was conducted to measure their coagulation behaviors at different dosage, pH, and temperatures in which the flocs properties were measured. The results showed that a number of new compounds were formed due to the presence of PO4(3-) and SiO3(2-). Moreover, PFPS and PFSS had similar level in Fea as well as Feb. Among them, PFPS produced more multi-core iron atoms polymer and content of Feb, and the formed flocs were larger and denser. It exhibited superior coagulation performance in terms of turbidity reduction, UV254 removal and residual ferric concentration. Jar test and floc breakage/regrowth experiments indicated other than charge neutrality, the dominated mechanism involved in PFSS was the adsorption between polysilicic acid and solution particle, while PFPS was sweeping, entrapment/adsorption resulting from larger polymer colloid of Fe-P chemistry bond.

  7. Enhanced Coagulation-Flocculation Performance of Iron-Based Coagulants: Effects of PO4(3- and SiO3(2- Modifiers.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available PO4(3- and SiO3(2- are often used as modifier to improve stability and aggregating ability of the iron-base coagulants, however, there are few reports about their detailed comparison between the coagulation performance and mechanisms. In this study, three coagulants--polyferric phosphoric sulfate (PFPS, polysilicon ferric sulfate (PFSS, and polyferric sulfate (PFS were synthesized; their structure and morphology were characterized by Fourier transformed infrared (FT-IR spectroscopy, X-ray diffraction (XRD and Scanning electron microscope (SEM. Alkali titration and Ferron species analysis were employed to investigate the hydrolysis performance and species distribution. Jar test was conducted to measure their coagulation behaviors at different dosage, pH, and temperatures in which the flocs properties were measured. The results showed that a number of new compounds were formed due to the presence of PO4(3- and SiO3(2-. Moreover, PFPS and PFSS had similar level in Fea as well as Feb. Among them, PFPS produced more multi-core iron atoms polymer and content of Feb, and the formed flocs were larger and denser. It exhibited superior coagulation performance in terms of turbidity reduction, UV254 removal and residual ferric concentration. Jar test and floc breakage/regrowth experiments indicated other than charge neutrality, the dominated mechanism involved in PFSS was the adsorption between polysilicic acid and solution particle, while PFPS was sweeping, entrapment/adsorption resulting from larger polymer colloid of Fe-P chemistry bond.

  8. Magnetic properties of co-modified Fe,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Zolnierkiewicz Grzegorz

    2015-01-01

    Full Text Available Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe, were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.

  9. Modification of interlayer exchange coupling in Fe/V/Fe trilayers using hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Skoryna, J., E-mail: jskoryna@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland); Marczyńska, A. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland); Lewandowski, M. [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85 St., 61-614 Poznań (Poland); Smardz, L. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland)

    2015-10-05

    Highlights: • Magnetic films and multilayers. • Thin films. • Hydrogen absorbing materials. • Magnetic measurements. • Exchange coupling. - Abstract: Fe/V/Fe trilayers with constant-thickness Fe and step-like wedged V sublayers were prepared at room temperature using UHV magnetron sputtering. The bottom Fe layer grows onto oxidised Si(1 0 0) substrate and shows relatively high coercivity. The top Fe layer grows on vanadium spacer and shows considerably lower coercivity. The planar growth of the Fe and V sublayers was confirmed in-situ by X-ray photoelectron spectroscopy. Results show that the Fe sublayers are weakly exchange coupled for d{sub V} > 1.4 nm. Results on the coercivity studies as a function of the V interlayer thickness show near d{sub V} ∼ 1.95 nm (∼2.45 nm) weak antiferromagnetic (ferromagnetic) coupling, respectively. The hydrogenation of the Fe/V/Fe trilayers leads to increase of the strength of the ferromagnetic interlayer exchange coupling.

  10. Adhesive and Cohesive Strength in FeB/Fe2B Systems

    Science.gov (United States)

    Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.

    2018-05-01

    In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.

  11. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.

    Science.gov (United States)

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Shulenina, Olga; Laun, Konstantin; Kertess, Leonie; Wittkamp, Florian; Apfel, Ulf-Peter; Happe, Thomas; Winkler, Martin; Haumann, Michael; Stripp, Sven T

    2018-01-31

    The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN - ) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN - vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN - infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.

  12. Moessbauer Study of Electrodeposited Fe/Fe-Oxide Multilayers

    International Nuclear Information System (INIS)

    Kuzmann, E.; Homonnay, Z.; Klencsar, Z.; Vertes, A.; Lakatos-Varsanyi, M.; Miko, A.; Varga, L.K.; Kalman, E.; Nagy, F.

    2005-01-01

    Iron has been deposited electrochemically by short current pulses in Na-saccharin containing FeII-chloride and sulphate solution electrolytes. Combined electrochemical techniques with initial pulse plating of iron nanolayer and its subsequent anodic oxidation under potential control have been used for production of Fe/Fe-oxide multilayers. 57Fe CEM spectra of pulse plated iron revealed the presence of a minor doublet attributed mainly to γ-FeOOH in addition to the dominant sextet of α-iron. In the case of anodically oxidized pulse plated iron and of samples after repeated deposition of anodically oxidized pulse plated iron an additional minor doublet, assigned to ferrous chloride, also appears in the Moessbauer spectra. A significant change in the magnetic anisotropy of α-iron was observed with the anodic oxidation. The thickness of the layers were estimated from the CEM spectrum data by a modified computer program of the Liljequist method. The coercive field and the power loss versus frequency data showed that the pulse plated iron cores are good inductive elements up to several kHz frequencies

  13. Colorimetric determination of Fe2+/Fe3+ ratio in radioactive glasses

    International Nuclear Information System (INIS)

    Coleman, C.J.; Baumann, E.W.; Bibler, N.E.

    1992-01-01

    In the vitrification of nuclear wastes, the Fe 2+ /Fe 3+ ratio in the glass is a measure of the redox properties of the glass melt. It is necessary to measure this ratio to ensure that the melt redox properties are suitable for the glass melter. A colorimetric method for measuring the Fe 2+ /Fe 3+ ratio in highly radioactive glasses was developed and tested remotely in a shielded cell. The tests were performed on glasses similar in composition and radioactivity to those that will be produced in the Savannah River Site Defense Waste Processing Facility. The first step of the method is dissolution of finely crushed glass with a hydrofluoric/sulfuric acid mixture with ammonium vanadate added to preserve the Fe 2+ content of the glass during the dissolution. Boric acid is then added to complex fluoride and to destroy iron-fluoride complexes. After adjusting the solution to pH 5, FerroZine TM (trademark of the Hach Company, Loveland, CO) reagent is added to form a magenta-colored complex with Fe 2+ . The absorbance at 562 nm is measured by using a fiber optic-coupled photodiode array spectrophotometer. Ascorbic acid is then used to reduce all the iron in solution to Fe 2+ and the absorbance is again measured. The difference in absorbance measurements corresponds to the Fe 3+ in the sample and the Fe 2+ /Fe 3+ ratio can be calculated

  14. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    Science.gov (United States)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  15. Application of gel processes in the treatment of actinide-containing liquid wastes

    International Nuclear Information System (INIS)

    Segal, D.L.; Willis, H.; Woodhead, J.; Wisbey, S.

    1987-04-01

    Aqueous sol-gel materials including zirconia and alumina sols together with glass-ionomer cements have been used to immobilise inactive mixed Al/Fe/Cr-hydroxide flocs representative of those produced during fuel reprocessing. Conditions for washing out entrained ammonium nitrate while maintaining gravelly-precipitates have been investigated. Decontamination factors have been determined by α-spectrometry for the effect of zirconia and alumina sols on Pu/ 241 Am nitrate solutions in 2M nitric acid/0.2M ammonium fluoride/0.2M aluminium nitrate. (author)

  16. Application of gel processes in the treatment of actinide-containing liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Segal, D L; Willis, H; Woodhead, J; Wisbey, S

    1987-04-01

    Aqueous sol-gel materials including zirconia and alumina sols together with glass-ionomer cements have been used to immobilise inactive mixed Al/Fe/Cr-hydroxide flocs representative of those produced during fuel reprocessing. Conditions for washing out entrained ammonium nitrate while maintaining gravelly-precipitates have been investigated. Decontamination factors have been determined by ..cap alpha..-spectrometry for the effect of zirconia and alumina sols on Pu//sup 241/Am nitrate solutions in 2M nitric acid/0.2M ammonium fluoride/0.2M aluminium nitrate.

  17. 57Fe Moessbauer and magnetic studies of ErFe12-xNbx

    International Nuclear Information System (INIS)

    Wang, J L; Campbell, S J; Cadogan, J M; Tegus, O; Edge, A V J

    2005-01-01

    The structural and magnetic properties of ErFe 12-x Nb x compounds (x 0.6, 0.7 and 0.8) have been investigated by x-ray diffraction, ac susceptibility and dc magnetization measurements and 57 Fe Moessbauer spectroscopy. Refinements of the x-ray diffraction patterns show that the Nb atoms preferentially occupy the 8i sites; this can be understood in the terms of enthalpy effects and differences in the metallic radii. The average Fe-Fe distance at the different sites is found to behave as d Fe-Fe (8i)> d Fe-Fe (8j)> d Fe-Fe (8f). The unit cell volume increases slightly with increasing Nb content, consistent with the larger radius of Nb compared with Fe. A spin reorientation from easy-axis at room temperature to easy-cone at low temperatures has been detected for all compounds. The spin reorientation temperatures T sr in ErFe 12-x Nb x compounds remain essentially unchanged (T sr ∼42-44 K) with increasing Nb concentration, whereas a significant decrease in T sr (T sr1 ∼236-204 K; T sr2 ∼154-94 K) is obtained in DyFe 12-x Nb x from x = 0.6 to 0.8. This can be understood by taking the different crystal-field terms responsible for the spin reorientation in the two systems into account. We find that the spin-reorientation process is particularly sensitive to the sixth-order term B 60 O 60 of the crystal field acting on the Er 3+ ion, due to its large and positive value of γ J . 57 Fe hyperfine interaction parameters and magnetic moments values have been determined for the 8i, 8j and 8f sites from the Moessbauer spectra. The weighted average 57 Fe hyperfine field values were found to follow a T 2 dependence; this suggests that a single-particle excitation mechanism is responsible for reduction of the 3d-sublattice magnetization with increasing temperature

  18. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  19. Ferromagnetic resonance on oxideless magnetic Fe and FeRh nanoparticles; Ferromagnetische Resonanz an oxidfreien magnetischen Fe und FeRh Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Trunova, Anastasia

    2009-05-25

    This work is dedicated to investigations of structural and magnetic properties of the colloidal Fe/Fe{sub x}O{sub y} nanocubes (13 nm) and the Fe{sub x}Rh{sub 100-x} core/shell nanoparticles (2 nm). As compared with other works, where the measurements on oxidized nanoparticles were carried out, we additionally performed investigations on nanoparticles in an oxide free state. In order to make the measurements on oxide free particles possible, oxygen- and hydrogenplasma was used to remove the ligands and reduce the oxide shell of the Fe nanocubes. The oxide free Fe nanocubes were covered with a Ag/Pt protective coating to prevent them from new oxidation. This method allowed carrying out the magnetic measurements on oxide free Fe nanocubes. Micromagnetic simulations as well as simulations of the high frequency susceptibility were used for the data analysing. It was found that both the g-factor g=2.09{+-}0.01 and the anisotropy constant K{sub 4}=(4.8{+-}0.5).10{sup 4} J/m{sup 3} coincide with that of bulk iron. However, the saturation magnetization M{sub S}(5 K)=(1.2{+-}0.12).10{sup 6} A/m differs from the bulk value by 30%. The reduction by 30% compared to the bulk value in the case of nanoparticles may be caused by the following possible reasons: a) the presence of inner oxide layer (approx. 10 at.%) that cannot be reduced; b) the anti-parallel order between magnetic moments of iron core and magnetic moments of antiferomagnetic iron oxide; c) some structural changes of the surface after plasma treatment. The obtained damping parameter {alpha}=0.03{+-}0.005 is ten times larger than that of the Fe layers as it is known for nanoparticles systems in general. The core/shell Fe{sub x}Rh{sub 100-x} nanoparticles (x=80,50) were produced under Ar-atmosphere and were sealed into a quartz tube to prevent oxidation. The analysis of g-factors shows that the value for the FePh nanoparticles with Fe-rich core is larger (g=2.08{+-}0.01) than that for the nanoparticles with Rh

  20. Kerr microscopy study of exchange-coupled FePt/Fe exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zaineb; Kumar, Dileep [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Noida 201303 (India)

    2017-05-15

    Magnetization reversal and magnetic microstructure of top soft magnetic layer (Fe) in exchange spring coupled L1{sub 0} FePt/Fe is studied using high resolution Kerr microscopy. With remnant state of the hard magnetic layer (L1{sub 0} FePt) as initial condition, magnetization loops along with magnetic domains are recorded for the top soft magnetic layer (Fe) using Kerr microscopy. Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. It is also observed that one can tune the magnitude of hysteresis shift by reaching the remanent state from different saturating fields (H{sub SAT}) and also by varying the angle between measuring field and H{sub SAT}. The hysteresis loops and magnetic domains of top soft Fe layer demonstrate unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of established model of exchange bias phenomena framed for field-cooled ferromagnetic - antiferromagnetic bilayer systems. - Highlights: • Kerr microscopy of top soft magnetic Fe layer in exchange spring coupled L1{sub 0} FePt (30 nm)/Fe (22 nm) is reported. • Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. • Tuneable nature of magnitude of hysteresis shift is shown. • It is unambiguously shown that the top soft Fe magnetic layer at remanent state is having unidirectional anisotropy.

  1. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  2. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability

    International Nuclear Information System (INIS)

    Li Huan; Jin Yiying; Mahar, Rasool Bux; Wang Zhiyu; Nie Yongfeng

    2009-01-01

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl 3 . It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration

  3. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

    Science.gov (United States)

    Huan, Li; Yiying, Jin; Mahar, Rasool Bux; Zhiyu, Wang; Yongfeng, Nie

    2009-01-30

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl(3). It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration.

  4. Effect of Fe-Content on the Mechanical Properties of Recycled Al Alloys during Hot Compression

    Directory of Open Access Journals (Sweden)

    Hongzhou Lu

    2017-07-01

    Full Text Available It is unavoidable that Fe impurities will be mixed into Al alloys during recycling of automotive aluminum parts, and the Fe content has a significant effect on the mechanical properties of the recycled Al alloys. In this work, hot compression tests of two Fe-containing Al alloys were carried out at elevated temperatures within a wide strain rate range from 0.01 s−1 to 10 s−1. The effect of Fe content on the peak stress of the stress vs. strain curves, strain rate sensitivity and activation energy for dynamic recrystallization are analyzed. Results show that the recycled Al alloy containing 0.5 wt % Fe exhibits higher peak stresses and larger activation energy than the recycled Al alloy containing 0.1 wt % Fe, which results from the fact that there are more dispersed AlMgFeSi and/or AlFeSi precipitates in the recycled Al alloy containing 0.5 wt % Fe as confirmed by SEM observation and energy spectrum analysis. It is also shown that the Fe content has little effect on the strain rate sensitivity of the recycled Al alloys.

  5. Fe2O3/Reduced Graphene Oxide/Fe3O4 Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Chongjun; Shao, Xiaoxiao; Zhang, Yuxiao; Qian, Xiuzhen

    2016-11-09

    A Fe 2 O 3 /reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposite in situ grown on Fe foil was synthesized via a simple one-step hydrothermal growth process, where the iron foil served as support, reductant of graphene oxide, Fe source of Fe 3 O 4 , and also the current collector of the electrode. When it directly acted as the electrode of a supercapacitor, as-synthesized Fe 2 O 3 /RGO/Fe 3 O 4 @Fe exhibited excellent electrochemical performance with a high capability of 337.5 mF/cm 2 at 20 mA/cm 2 and a superior cyclability with 2.3% capacity loss from the 600th to the 2000th cycle.

  6. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  7. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films

    International Nuclear Information System (INIS)

    Yong-Feng, Li; Gui-Bin, Liu; Li-Jie, Shi; Bang-Gui, Liu

    2009-01-01

    Motivated by recent experiments, we investigate structural, electronic, and magnetic properties of tetragonal FeSe with Fe vacancies using the state-of-the-art first-principles method. We show that Fe vacancies tend to stay in the same one of the two sublattices and thus induce ferromagnetism in the ground-state phase. Our calculated net moment is in good agreement with the experimental data available. Therefore, the ferromagnetism observed in tetragonal FeSe thin films is explained. It could be made controllable soon for spintronic applications

  8. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass.

    Science.gov (United States)

    Huang, Chunkai; Shi, Yijing; Xue, Jinkai; Zhang, Yanyan; Gamal El-Din, Mohamed; Liu, Yang

    2017-03-15

    This study compared microbial characteristics and oil sands process-affected water (OSPW) treatment performance of five types of microbial biomass (MBBR-biofilm, IFAS-biofilm, IFAS-floc, MBR-aerobic-floc, and MBR-anoxic-floc) cultivated from three types of bioreactors (MBBR, IFAS, and MBR) in batch experiments. Chemical oxygen demand (COD), ammonium, acid extractable fraction (AEF), and naphthenic acids (NAs) removals efficiencies were distinctly different between suspended and attached bacterial aggregates and between aerobic and anoxic suspended flocs. MBR-aerobic-floc and MBR-anoxic-floc demonstrated COD removal efficiencies higher than microbial aggregates obtained from MBBR and IFAS, MBBR and IFAS biofilm had higher AEF removal efficiencies than those obtained using flocs. MBBR-biofilm demonstrated the most efficient NAs removal from OSPW. NAs degradation efficiency was highly dependent on the carbon number and NA cyclization number according to UPLC/HRMS analysis. Mono- and di-oxidized NAs were the dominant oxy-NA species in OSPW samples. Microbial analysis with quantitative polymerase chain reaction (q-PCR) indicated that the bacterial 16S rRNA gene abundance was significantly higher in the batch bioreactors with suspended flocs than in those with biofilm, the NSR gene abundance in the MBR-anoxic bioreactor was significantly lower than that in aerobic batch bioreactors, and denitrifiers were more abundant in the suspended phase of the activated sludge flocs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles

    Science.gov (United States)

    Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.

    2018-02-01

    FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.

  10. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    International Nuclear Information System (INIS)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian; Okuniewski, Maria A.; Maloy, Stuart A.; Stubbins, James F.

    2016-01-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size of irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α′ precipitates. -- Graphical abstract: Addition of Cr in Fe suppressed the mobility of mobile 1/2<111> dislocation loops and increased the proportion of immobile <100> dislocation loops, leading to a transition of loop distribution from highly heterogeneous to uniform. Display Omitted

  11. Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean

    NARCIS (Netherlands)

    Nolting, R.F.; Gerringa, L.J.A.; Swagerman, M.J.W.; Timmermans, K.R.; Baar, H.J.W. de

    1998-01-01

    Fe speciation was measured with competitive ligand equilibration adsorptive cathodic stripping voltammetry in the Pacific part of the Southern Ocean between 58° and 68°30′S along the 90°W meridian. The conditional stability constant (K′ with respect to [Fe3+]) was between 10^20.6 and 10^21.6 when

  12. Fe-N and (Fe, Ni)-N Fine Powders for Magnetic Recording

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Fashen

    1998-01-01

    Combining Moessbauer spectroscopy with magnetic property measurement, we have studied Fe-N and (Fe, Ni)-N powders for magnetic recording. The typical particles of the core (α-Fe)/shell (γ'-Fe 4 N) structure have been successfully prepared. All the products are stabilized in a multi-organic solution. It has been found that the coercivity can be changed from 300 to 800 Oe by adjusting the shape of the particles. The special saturation magnetization of the particles can be adjusted from 120 to 180emu/g and their chemical stability is improved by substituting nickel for iron in γ'-Fe 4 N. Following experiments for corrosion resistance, it is expected that (Fe, Ni)-N and the core/shell particles will be applied as recording media in the near future

  13. Fe-N and (Fe, Ni)-N Fine Powders for Magnetic Recording

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Fashen [Lanzhou University, Department of Physics (China)

    1998-12-15

    Combining Moessbauer spectroscopy with magnetic property measurement, we have studied Fe-N and (Fe, Ni)-N powders for magnetic recording. The typical particles of the core ({alpha}-Fe)/shell ({gamma}'-Fe{sub 4}N) structure have been successfully prepared. All the products are stabilized in a multi-organic solution. It has been found that the coercivity can be changed from 300 to 800 Oe by adjusting the shape of the particles. The special saturation magnetization of the particles can be adjusted from 120 to 180emu/g and their chemical stability is improved by substituting nickel for iron in {gamma}'-Fe{sub 4}N. Following experiments for corrosion resistance, it is expected that (Fe, Ni)-N and the core/shell particles will be applied as recording media in the near future.

  14. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  15. Spin-dependent electronic transport characteristics in Fe4N/BiFeO3/Fe4N perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Yin, Li; Wang, Xiaocha; Mi, Wenbo

    2018-01-01

    Perpendicular magnetic tunnel junctions (MTJs) have attracted increasing attention owing to the low energy consumption and wide application prospects. Herewith, against Julliere's formula, an inverse tunnel magnetoresistance (TMR) appears in tetragonal Fe4N/BiFeO3/Fe4N perpendicular MTJs, which is attributed to the binding between the interface resonant tunneling state and central (bordered) hot spots. Especially, antiferromagnetic BiFeO3 shows an extra spin-polarized resonant state in the barrier, which provides a magnetic-barrier factor to affect the tunneling transport in MTJs. Meanwhile, due to the spin-polarized transport in Fe4N/BiFeO3/Fe4N MTJs, the sign of TMR can be tuned by the applied bias. The tunable TMR and resonant magnetic barrier effect pave the way for clarifying the tunneling transport in other junctions and spintronic devices.

  16. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    Science.gov (United States)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  17. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    Science.gov (United States)

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  18. Asymmetric interfaces in Fe/Ag and Ag/Fe bilayers prepared by molecular beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Tunyogi, A. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)]. E-mail: tunyogi@rmki.kfki.hu; Paszti, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Osvath, Z. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Major, M. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2006-08-15

    Single layers of Fe and Ag, as well as Fe/Ag (iron deposited first) and Ag/Fe bilayers were prepared by molecular beam evaporation onto Si. The samples were investigated with backscattering spectrometry (BS) and atomic force microscopy (AFM). BS spectra of Fe/Ag and Ag/Fe indicate a significant difference at the interface. In the case of Fe/Ag the Ag peak has a long tail at the interface, while for Ag/Fe the interface is abrupt. The tail in the Fe/Ag spectrum is too large to be caused by double or plural scattering. According to AFM, the effect of surface roughness is also negligible. In spite of the fact that Fe and Ag are completely immiscible in equilibrium, this tail, however, suggests that some Ag is located in the Fe layer. After annealing, both samples show mixing between the two layers; this is much larger again for Fe/Ag.

  19. Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The influence of ruthenium ions on the precipitation of goethite (α-FeOOH), α-Fe 2 O 3 and Fe 3 O 4 in highly alkaline media was investigated by 57 Fe Moessbauer and FT-IR spectroscopies, thermal field emission scanning electron microscope (FE SEM) and EDS. The presence of Ru-dopant strongly affected the precipitation of α-FeOOH at highly alkaline pH, i.e. the formation of α-Fe 2 O 3 was also noticed. A decrease of hyperfine magnetic field (HMF) at RT from 35.1 T (undoped α-FeOOH) to 31.3 T for sample with [Ru]/([Ru] + [Fe]) = 0.0196 was assigned to the incorporation of ruthenium ions into the α-FeOOH structure. Moessbauer spectroscopy showed the formation of stoichiometric Fe 3 O 4 for [Ru]/([Ru] + [Fe]) = 0.0291-0.0909. α-Fe 2 O 3 and Fe 3 O 4 did not show a tendency to the formation of solid solutions with ruthenium ions. FE SEM observations of the samples showed that reference α-FeOOH sample contained acicular particles of good uniformity, which increased the length up to ∼5 times with increase of concentration of ruthenium ions. On the other hand, large octahedral Fe 3 O 4 crystals (particles) were associated with small particles of ruthenium (hydrous) oxide with a size in the range ∼100 nm or less. A possible catalytic action of ruthenium that created reduction conditions for Fe 3+ ions and formation of Fe 2+ ions for precipitation of Fe 3 O 4 was discussed

  20. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    Gueneau, C.; Ansara, I.

    1994-01-01

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  1. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  2. FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    OpenAIRE

    Schenkeveld, W.D.C.; Temminghoff, E.J.M.; Reichwein, A.M.; Riemsdijk, van, W.H.

    2010-01-01

    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties, and as a consequence also in effectiveness as Fe fertilizer. In order to efficiently match dose, frequency and moment of FeEDDHA application with the Fe requirements of plants, it is important to un...

  3. Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast

    International Nuclear Information System (INIS)

    Kim, Kyoung-Dong; Chung, Woo-Hyun; Kim, Hyo-Jin; Lee, Kyung-Chang; Roe, Jung-Hye

    2010-01-01

    Mitochondrial monothiol glutaredoxins that bind Fe-S cluster are known to participate in Fe-S cluster assembly. However, their precise role has not been well understood. Among three monothiol glutaredoxins (Grx3, 4, and 5) in Schizosaccharomyces pombe only Grx5 resides in mitochondria. The Δgrx5 mutant requires cysteine on minimal media, and does not grow on non-fermentable carbon source such as glycerol. We found that the mutant is low in the activity of Fe-S enzymes in mitochondria as well as in the cytoplasm. Screening of multi-copy suppressor of growth defects of the mutant identified isa1 + gene encoding a putative A-type Fe-S scaffold, in addition to mas5 + and hsc1 + genes encoding putative chaperones for Fe-S assembly process. Examination of other scaffold and chaperone genes revealed that isa2 + , but not isu1 + and ssc1 + , complemented the growth phenotype of Δgrx5 mutant as isa1 + did, partly through restoration of Fe-S enzyme activities. The mutant also showed a significant decrease in the amount of mitochondrial DNA. We demonstrated that Grx5 interacts in vivo with Isa1 and Isa2 proteins in mitochondria by observing bimolecular fluorescence complementation. These results indicate that Grx5 plays a central role in Fe-S assembly process through interaction with A-type Fe-S scaffold proteins Isa1 and Isa2, each of which is an essential protein in S. pombe, and supports mitochondrial genome integrity as well as Fe-S assembly.

  4. Synthesis and characterization of magnetic Fe/CNTs composites with controllable Fe nanoparticle concentration

    International Nuclear Information System (INIS)

    Zhao Fan; Duan Hongyan; Wang Weigao; Wang Jun

    2012-01-01

    Fe/CNTs composites, with different concentrations of Fe nanoparticles (NPs) on carbon nanotube (CNT) surfaces, were successfully fabricated via a facile solvothermal method. The lengths of CNTs are up to 10 μm and the mean diameter of the Fe nanoparticles is about 25 nm. The structures, composition and magnetic properties of the Fe/CNTs were characterized by XRD, FTIR, FE-SEM, TEM and PPMS. We found that the concentrations of Fe nanoparticles depositing on the CNTs could be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe/CNTs composites display good ferromagnetic properties at room temperature, with a saturation magnetization of 125 emu/g-Fe and a coercivity of 276 Oe. The Curie temperature of the sample is about 1038 K, slightly lower than that (1043 K) of the bulk iron.

  5. The influence of P solutes on an irradiated α-Fe matrix

    International Nuclear Information System (INIS)

    Hurchand, H.; Kenny, S.D.; Sanz-Navarro, C.F.; Smith, R.; Flewitt, P.E.J.

    2005-01-01

    Atomistic simulations of collision cascades in a Fe-0.04at.%P matrix and a pure Fe matrix are compared to investigate the interaction of the phosphorus atoms with the radiation. The simulations were performed for a primary knock-on atom having an energy in the range 1-16 keV. It is observed that the P atom in the Fe matrix does not increase significantly the damage induced to the lattice post irradiation. The density of vacancies and the morphology of the clusters formed in the Fe-0.04at.%P system are indistinguishable from residual defects produced in a pure irradiated Fe matrix. There are two mechanisms by which the Fe interstitials interact with the P atoms. The first occurs when a P atom is dislodged from its substitutional position by a recoil atom and combines with an Fe interstitial to form a mixed dumbbell. The second is one in which the Fe interstitial is attracted to a substitutional P atom due to the lattice strain region in the vicinity of the P atom. In this case the P atom acts as an attractive centre for interstitial Fe atoms and stabilises them into Fe-P nano-clusters. Nearly 35% of the atoms which are ejected from the core region of the cascade during the ballistic phase form such solute-defect clusters which remain pinned over the period of several hundred picoseconds. Finally, the radiation induced mobility of the P atom is reported. Substitutional P atoms whether isolated or as part of the larger defect clusters have a high energy barrier for diffusion but the P atoms displaced from substitutional sites can diffuse through the lattice by hopping between dumbbell and tetrahedral sites

  6. Dielectric properties of layered FeGaInS{sub 4} single crystals in an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mammadov, F. M. [Azerbaijan National Academy of Sciences, Nagiyev Institute of Catalysis and Inorganic Chemistry (Azerbaijan); Niftiyev, N. N., E-mail: namiq7@bk.ru [Azerbaijan State Pedagogical University (Azerbaijan)

    2016-09-15

    The results of investigations of the frequency and temperature dependences of dielectric losses and the imaginary part of the dielectric permittivity in FeGaInS{sub 4} single crystals are presented. Their experimental values are determined. It is established that the loss tangent and the imaginary part of the permittivity of FeGaInS{sub 4} single crystals in a field with frequencies of 10{sup 4}–10{sup 6} Hz decrease inversely proportional to the frequency (tanδ ~ 1/ω), and the conductivity is characterized by the band–hopping mechanism. For FeGaInS{sub 4}, the relaxation time is calculated, and it is established that there is a mechanism of electron polarization caused by thermal motion in this crystal.

  7. The new Fe-based superconductors

    International Nuclear Information System (INIS)

    Mao, Zhiqiang

    2011-01-01

    The discovery of unconventional superconductivity in doped iron pnictides has ushered in a new era of high temperature superconductivity. The superconductivity of these materials occurs in close proximity to magnetic instability; superconductivity is achieved by suppressing a long-range antiferromagnetic (AFM) order through charge carrier doping or pressure. In this talk, I will first give a brief overview of the phase diagrams of iron-based superconductors, and then talk about our recent research on iron chalcogenide Fe 1+y (Te 1-x Se x ) superconductors, which is structurally the simplest of the Fe-based superconductors. Although the Fermi surface of iron chalcogenides is similar to iron pnictides, the parent compound Fe 1+y Te exhibits AFM order with in-plane magnetic wave-vector (π, 0). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave-vector (π, π) that connects hole and electron parts of the Fermi surface. Despite these differences, both the pnictide and chalcogenide Fe-superconductors exhibit superconducting spin resonances around (π, π), suggesting a common symmetry for their superconducting order parameter. A central question in this burgeoning field is therefore how (π, π) superconductivity can emerge from a (π, 0) magnetic instability. I will address this issue in my talk. I will show the phase diagram of electronic and magnetic properties we recently established for this system and discuss the relationship between magnetic coupling and electronic properties. Our results reveal that the magnetic soft mode evolving from the (π, 0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs only as magnetic correlations near (π, 0) are strongly suppressed and the magnetic mode at (π, π) becomes dominant; this suggests a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors. (author)

  8. Formation and stability of Fe-rich precipitates in dilute Zr(Fe) single-crystal alloys

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.; Schultz, R.J.

    1993-02-01

    The formation and stability of Fe-rich precipitates in two α-Zr(Fe) single-crystal alloys with nominal compositions (I, 50 ppma Fe, and II, 650 ppma Fe) have been investigated (the maximum solid solubility of Fe in α-Zr is 180 ppma - 800 C). Optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to examine the characteristics of Fe-rich precipitates. SEM and TEM micrographs show that in as-grown alloy II, Zr 2 Fe precipitates are located at 'stringers'. Precipitates were not observed in as-grown alloy I. During annealing, below the solvus, Fe diffuses to the surfaces to form Zr 3 Fe precipitates in both alloys. The precipitates on the surfaces of alloy I tend to be star-like (0001) or pyramidal (1010), and their distribution is heterogeneous. Dissolution of Zr 3 Fe surface precipitates of alloy I (annealing above the solvus) leaves precipitate-like features on the surfaces. Zr 2 Fe precipitates in as-grown alloy II can be dissolved only by β-phase annealing. (Author) 8 figs., 18 refs

  9. Local smoke-free policy development in Santa Fe, Argentina.

    Science.gov (United States)

    Sebrié, Ernesto M; Glantz, Stanton A

    2010-04-01

    To describe the process of approval and implementation of a comprehensive smoke-free law in the province of Santa Fe, Argentina, between 2005 and 2009. Review of the Santa Fe smoke-free legislation, articles published in local newspapers and documentation on two lawsuits filed against the law, and interviews with key individuals in Santa Fe. Efforts to implement smoke-free policies in Santa Fe began during the 1990s without success, and resumed in 2005 when the provincial Legislature approved the first 100% smoke-free subnational law in Argentina. There was no strong opposition during the discussions within the legislature. As in other parts of the world, pro-tobacco industry interests attempted to block the implementation of the law using well known strategies. These efforts included a controversy media campaign set up, the creation of a hospitality industry association and a virtual smokers' rights group, the introduction of a counterproposal seeking modification of the law, the challenge of the law in the Supreme Court, and the proposal of a weak national bill that would 'conflict' with the subnational law. Tobacco control advocates sought media attention as a strategy to protect the law. Santa Fe is the first subnational jurisdiction in Latin America to have enacted a comprehensive smoke-free policy following the recommendations of the World Health Organization (WHO) Framework Convention on Tobacco Control. After 3 years of implementation, pro-tobacco industry forces failed to undermine the law. Other subnational jurisdictions in Argentina, as well as in Mexico and Brazil are following the Santa Fe example.

  10. FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Temminghoff, E.J.M.; Reichwein, A.M.; Riemsdijk, van W.H.

    2010-01-01

    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties,

  11. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    Science.gov (United States)

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  12. Mössbauer spectroscopic studies in U-Fe and U-Fe-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Alaka; Singh, L. Herojit; Rajagopalan, S.; Govindaraj, R., E-mail: govind@igcar.gov.in; Ramachandran, Renjith; Kalavathi, S.; Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2016-05-23

    {sup 57}Fe Mössbauer studies have been carried out in an alloy of U and Fe with atomic percentage in the ratio of 68%:32% in order to understand the local structure and valence of Fe atoms associated with different phases that may get formed. The effect of changes in the hyperfine parameters such as isomer shift and quadrupole splitting at Fe sites due to additional alloying of Zr has been studied in an alloy of U, Fe and Zr in the ratio of 44%:33%:23% respectively with respect to that of the U-Fe alloy chosen in the present study. Possible effect of solute clustering in these systems has been addressed in an analogous alloy of uranium and zirconium using positron lifetime spectroscopy.

  13. Reactions of laser-ablated iron atoms and cations with carbon monoxide: Infrared spectra of FeCO+, Fe(CO)2+, Fe(CO)x, and Fe(CO)x- (x=1-4) in solid neon

    Science.gov (United States)

    Zhou, Mingfei; Andrews, Lester

    1999-06-01

    Laser-ablated iron atoms, cations, and electrons have been reacted with CO molecules during condensation in excess neon. The FeCO molecule is observed at 1933.7 cm-1 in solid neon. Based on isotopic shifts and density functional calculations, the FeCO molecule has the same 3Σ- ground state in solid neon that has been observed at 1946.5 cm-1 in a recent high resolution gas phase investigation [Tanaka et al., J. Chem. Phys. 106, 2118 (1997)]. The C-O stretching vibration of the Fe(CO)2 molecule is observed at 1917.1 cm-1 in solid neon, which is in excellent agreement with the 1928.2 cm-1 gas phase value for the linear molecule. Anions and cations are also produced and trapped, absorptions at 1782.0, 1732.9, 1794.5, and 1859.7 cm-1 are assigned to the linear FeCO-, Fe(CO)2-, trigonal planar Fe(CO)3-, and C3v Fe(CO)4- anions, respectively, and 2123.0, 2134.0 cm-1 absorptions to the linear FeCO+ and Fe(CO)2+ cations. Doping these experiments with CCl4 virtually eliminates the anion absorptions and markedly increases the cation absorptions, which confirms the charge identifications. Higher iron carbonyl Fe(CO)3, Fe(CO)4, and Fe(CO)5 absorptions are produced on photolysis.

  14. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.

    Science.gov (United States)

    Whittington, P N; George, N

    1992-08-05

    The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.

  15. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    Science.gov (United States)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  16. Investigation of decomposition of solid solution of Ni-Cr-Fe 77/16/7 over-saturated in carbon during tempering at various temperatures

    International Nuclear Information System (INIS)

    Duffaut, Francois

    1966-01-01

    In its first part, this research thesis reports the investigation of the structure of the tempered Ni-Cr-Fe 77/16/7 alloy by using optical and electronic microscopy. The second part addresses the relationship between the structural status of the alloy and its electrochemical behaviour. The third part reports the investigation of the Portevin - Le Chatelier phenomenon in relationship with the decomposition of the solid solution. A last part addresses the investigation of a possible microstructure ordering of the Ni-Cr-Fe 77/16/7 alloy

  17. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  18. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    Science.gov (United States)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  19. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    International Nuclear Information System (INIS)

    Miko, Annamaria; Kuzmann, Erno; Lakatos-Varsanyi, Magda; Kakay, Attila; Nagy, Ferenc; Varga, Lajos Karoly

    2005-01-01

    57 Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and 57 Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t on = 2 ms), with short relaxation time (t off = 9 ms) and low current density (I p = 0.05 Acm -2 ) or at short deposition time (t on = 1 ms) with long relaxation time (t off = 250 ms) and high current density (I p = 1.0 Acm -2 ). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  20. Characterization of rust layer formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich environment by Cl and Fe K-edge XANES measurements

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    Chloride in atmosphere considerably reduces the corrosion resistance of conventional weathering steel containing a small amount of Cr. Ni is an effective anticorrosive element for improving the corrosion resistance of steel in a Cl-rich environment. In order to clarify the structure of the protective rust layer of weathering steel, Cl and Fe K-edge X-ray absorption near edge structure (XANES) spectra of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich atmosphere were measured. The Fe K-XANES measurements enable the characterization of mixture of iron oxides such as rust. The chemical composition of the rust was determined by performing pattern fitting of the measured spectra. All the rust is composed mainly of goethite, akaganeite, lepidocrocite and magnetite. Among these iron oxides, akaganeite in particular is the major component in the rust. Additionally, the amount of akaganeite in the rust of Fe-Ni alloy is much greater than that in rust of Fe-Cr alloy. Akaganeite is generally considered to facilitate the corrosion of steel, but our results indicate that akaganeite in the rust of Fe-Ni alloy is quantitatively different from that in rust of Fe-Cr alloy and does not facilitate the corrosion of steel. The shoulder peak observed in Cl K-XANES spectra reveals that the rust contains a chloride other than akaganeite. The energy of the shoulder peak does not correspond to that of any well-known chlorides. In the measured spectra, there is no proof that Cl, by combining with the alloying element, inhibits the alloying element from acting in corrosion resistance. The shoulder peak appears only when the content of the alloying element is lower than a certain value. This suggests that the generation of the unidentified chloride is related to the corrosion rate of steel. (author)

  1. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Speciative Determination of Dissolved Inorganic Fe(II), Fe(III) and Total Fe in Natural Waters by Coupling CPE with FAAS

    International Nuclear Information System (INIS)

    Gurkan, R.; Altunay, N.

    2013-01-01

    A new cloud point extraction (CPE) method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS) was developed in the present study. In this method, Fe(II) sensitively and selectively reacts with Calcon carboxylic acid (CCA) in presence of cetylpyridinium chloride (CPC) yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III) to Fe(II) with sulfite. The amount of Fe(III) in samples was determined from the difference between total Fe and Fe(II). CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II) with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II) in linear range of 0.2-60 μg L/sup -1/ was 0.06 μg L/sup -1/. The relative standard deviation was 2.7 percentage (20 μg L/sup -1/, N: 5), recoveries for Fe(II) were in range of 99.0-102.0 percentage for all water samples including certified reference materials (CRMs). In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values. (author)

  3. Structural, thermal and photomagnetic properties of spin crossover [Fe(bpp)2]2+ salts bearing [Cr(L)(ox)2]- anions.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Giménez-López, M Carmen; Romero, Francisco M; Asthana, Saket; Desplanches, Cédric; Létard, Jean-François

    2009-10-14

    This paper is divided into two parts: in the first part, the influence of solvate molecules on the magnetic properties of spin crossover salts of [Fe(bpp)(2)][Cr(L)(ox)(2)]ClO(4) x nS (bpp = 2,6-bis(pyrazol-3yl)pyridine; L = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); ox = oxalate dianion; S = solvent) is analyzed. The second part is devoted to the photomagnetic properties of the previously reported [Fe(bpp)(2)][Cr(L)(ox)(2)](2) family of compounds. The study describes the crystal structure, differential scanning calorimetry (DSC) and magnetic properties of [Fe(bpp)(2)][Cr(bpy)(ox)(2)]ClO(4) x EtOH x 4 H(2)O (1) and [Fe(bpp)(2)][Cr(phen)(ox)(2)]ClO(4) x 1.5 EtOH x 4 H(2)O (2). Both salts are high-spin (HS) compounds. Desolvation of 1 yields a material exhibiting a gradual spin crossover that involves 50% of the Fe(2+) cations. Rehydration of this desolvated salt induces a significant increase in the low-spin (LS) population. Desolvation of 2 affords a material showing a more abrupt spin crossover with thermal hysteresis (T(1/2)(increasing) = 286 K and T(1/2)(decreasing) = 273 K). This material is not very sensitive to rehydration. The anhydrous compounds [Fe(bpp)(2)][Cr(bpy)(ox)(2)](2) (3) and [Fe(bpp)(2)][Cr(phen)(ox)(2)](2) (4) display some quantitative photomagnetic conversion with T(LIESST) values of 41 and 51 K, respectively. Kinetic parameters governing the photo-induced HS-LS relaxation process have been determined and used to reproduce the T(LIESST) curves.

  4. Properties of porous FeAlOy/FeAlx ceramic matrix composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 7. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder. V Usoltsev S Tikhov A Salanov V Sadykov G Golubkova O Lomovskii. Volume 36 Issue 7 December 2013 pp 1195-1200 ...

  5. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2016-01-01

    In the Netherlands, groundwater treatment commonly consists of aeration, with subsequent sand filtration without using chemical oxidants like chlorine. With arsenic (As) concentrations well below the actual guidelines of 10 μg As/L, groundwater treatment plants have been exclusively designed for the removal of iron (Fe), manganese and ammonium. The aim of this study was to investigate the As removal capacity at three of these groundwater treatment plants (10-26 μg As/L) in order to identify operational parameters that can contribute to lowering the filtrate As concentration to removal. Results showed that after aeration, As largely remained mobile in the supernatant water; even during extended residence times only 20-48% removal was achieved (with 1.4-4.2 mg/L precipitated Fe(II)). Speciation showed that the mobile As was in the reduced As(III) form, whereas, As(V) was readily adsorbed to the formed HFO flocs. In the filter bed, the remaining As(III) completely oxidized within 2 min of residence time and As removal efficiencies increased to 48-90%. Filter grain coating analysis showed the presence of manganese at all three treatment plants. It is hypothesized that these manganese oxides are responsible for the accelerated As(III) oxidation in the filter bed, leading to an increased removal capacity. In addition, pH adjustment from 7.8 to 7.0 has been found to improve the capacity for As(V) uptake by the HFO flocs in the filter bed. The overall conclusion is, that during groundwater treatment, the filter bed is crucial for rapid As(III) removal, indicating the importance to control the oxidation sequence of Fe and As for improved As removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Obtention of the TiFe compound by high-energy milling of Ti+Fe and TiH{sub 2}+Fe powder mixtures; Obtencao do composto TiFe a partir da moagem de alta energia de misturas Ti+Fe e TiH{sub 2}+Fe

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.B.; Dammann, E.D.C.C.; Rocha, C.J.; Leal Neto, R.M., E-mail: railson.falcao@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais. Lab. de Intermetalicos

    2010-07-01

    In this work TiFe compound was obtained by two process routes involving high-energy ball milling: mechanical alloying from Ti and Fe powders (route 1) and mechanical milling from TiH{sub 2} and Fe powders, both followed by an annealing heat treatment. Shaker and planetary ball mills were utilized for times varying from 1-25 hours. Milled and annealed powders were characterized by SEM and X-ray diffraction analyses. TiFe compound was formed in both routes. A strong powder adherence in the milling vial and balls occurred with route 1 in both mills. Powder adherence was significantly reduced by using TiH{sub 2} (route 2) mainly in the planetary mill, in spite of TiFe formation has only occurred after the annealing treatment. (author)

  7. Spectrophotometric speciation of Fe(II) and Fe(III) using hydrazone-micelle systems and flow injections

    International Nuclear Information System (INIS)

    Khojali, Inas Osman

    1999-04-01

    Two hydrazones were synthesised, namely salicylhyrazone (SH) and trihydroxyacetophenone (THAPH) were synthesised with the objective of developing a method for determining of Fe(II) and Fe(III) in the presence of each other and hence the total iron.those hydrazones were selected so as to combine the ability of phenolic compounds to complex Fe(III) ions and the complexing characteristics of hydrazones. The complexes of Fe(II) S H and Fe(III) S H as well those of Fe(II)-THAPH and Fe(III)-THAPH had shown maximum absorbance at λ=412 nm which was not not modified by presence of micelles i.e. sodium n-dodecyl sulphate (SDS) and n-hexa dodecyl pyridinium bromide. The maximum absorbance for all complexes takes place around a neutral pH. Generally, in addition, of n-hexa dodecylpyridinium bromide to fe(II)-SH and Fe(III)-SH absorbance of the complexes increases with increasing the concentration of the micelle. The effects of the addition of sodium n-dodecyle sulphate (SDS) to Fe(III)-SH is also studied. Generally, increasing the concentration of the micelle decrease the absorbance of the complexes. To study the effect of the presence of Fe(II) and Fe(III) on the determination of each other,mixtures of Fe(II)-SH and Fe(III)-SH are studied. However, the use of ascorbic acid as a reducing reagent for Fe(III) did not produce the needed results but non reducible results, which may be due to the masking effect of ascorbic acid and thus making the metal not available to the ligand. However, conversion of Fe(II) to Fe(III) prior to the determination was avoided as this requires the use of oxidant, which will oxidise the ligand as well. To establish the condition for the maximum absorbance of THAPH complexes, the effect of the base was investigated by using sodium and ammonium hydroxide. Generally, increasing the concentration of the base decreases the abosrbance. as expected, ammonium hydroxide produced positive results than sodium hydroxide. After establishing the optimum Fi

  8. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

    Science.gov (United States)

    Ratzloff, Michael W; Artz, Jacob H; Mulder, David W; Collins, Reuben T; Furtak, Thomas E; King, Paul W

    2018-06-20

    The [FeFe]-hydrogenases ([FeFe] H 2 ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H ) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2 ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox led to formation of H red H + ([4Fe-4S] H 2+ -Fe I -Fe I ) and H red ' ([4Fe-4S] H 1+ -Fe II -Fe I ), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H . Similar μ-CO IR modes were also identified for H red H + of the [FeFe] H 2 ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd . Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H red H + was converted to H hyd . Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of H hyd and appearance of H ox , consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the "H red " states and that H red H + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.

  9. Magnetic and structural characterizations on nanoparticles of FePt, FeRh and their composites

    International Nuclear Information System (INIS)

    Ko, Hnin Yu Yu; Suzuki, Takao; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Hirotsu, Yoshihiko

    2008-01-01

    The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3-5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L1 0 -phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process

  10. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  11. What is the correct Fe L{sub 23} X-ray absorption spectrum of magnetite?

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaohui; Kalirai, Samanbir S. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Bazylinski, Dennis A. [School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004 (United States)

    2015-02-15

    Highlights: • Fe L{sub 3} X-ray absorption spectra of biological (MV-1 magnetotactic bacteria) and abiotic (Sigma–Aldrich) nano-magnetite are reported. • An inconsistency in the literature for this spectrum is documented. • Powder diffraction shows the abiotic sample is partly oxidized, toward maghemite. • H{sub 2} thermal reduction converts the Fe L{sub 3} spectrum of the abiotic sample to that of the biotic. • Strong oxidation (air, 600 °C) is needed to convert the spectrum of the biotic magnetite to that of maghemite; magnetosome chains are protected by an air-impervious membrane. - Abstract: Various groups have reported Fe L{sub 23} X-ray absorption spectra (XAS) of magnetite (Fe{sub 3}O{sub 4}), each claiming to be that of magnetite, but which contradict each other. Here we report an XAS study of two kinds of magnetite: one is biogenic magnetite nanocrystals extracted from the magnetotactic bacterium Magnetovibrio blakemorei strain MV-1; the other is synthetic, abiogenically produced nano-magnetite. We see significantly different XAS spectra of these two materials. Only when the abiogenic magnetite was reduced under H{sub 2} did it give the same spectrum as the biogenic sample. Extensive heating of the biogenic magnetite in air produced spectra similar to that of the abiogenic magnetite. These two spectra are typical of the range of published Fe L{sub 23} spectra of magnetite. X-ray diffraction confirmed that the biogenic material is stoichiometric Fe{sub 3}O{sub 4}, and showed that the as-received or partly reduced abiogenic material is a non-stoichiometric oxide, intermediate between magnetite and maghemite (γ-Fe{sub 2}O{sub 3}). When the membrane which surrounds magnetosome chains was intact, the biotic magnetite single crystals were surprisingly resistant to oxidation. This study clarifies a significant confusion existing in the literature as to the correct Fe L{sub 23} X-ray absorption spectra of magnetite and maghemite.

  12. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  13. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  14. A finite velocity simulation of sedimentation behaviour of flocculating ...

    African Journals Online (AJOL)

    2013-02-19

    Feb 19, 2013 ... ISSN 1816-7950 (On-line) = Water SA Vol. 40 No. 1 January .... because the average density of a floc and surface area properties of the particles are ... port rate depends on floc size, floc density, fractal dimension and gravity ...

  15. Spectral distribution of Fe2+ photoionization cross section in InP:Fe

    International Nuclear Information System (INIS)

    Iikawa, F.

    1985-01-01

    Measurements of Fe 2+ ( 5 E) photoionization cross section in InP at 80 0 K, using constant current photoconductivity technique, were done. The spectrum presents a threshold energy of ∼ 0,65 eV due to the transition from Fe 2+ charge state, in the ground state, to Fe 3+ with an electron emission for the minimum conduction band. In the measurement of photoluminescence at ∼ 2 0 K, a wide emission of Fe complexe with the strong lattice interaction. In order to analyse the experimental data of Fe 2+ cross section in InP, a theoretical model was used. (M.C.K.) [pt

  16. Insights into Resistance to Fe Deficiency Stress from a Comparative Study of In Vitro-Selected Novel Fe-Efficient and Fe-Inefficient Potato Plants

    Directory of Open Access Journals (Sweden)

    Georgina A. Boamponsem

    2017-09-01

    Full Text Available Iron (Fe deficiency induces chlorosis (IDC in plants and can result in reduced plant productivity. Therefore, development of Fe-efficient plants is of great interest. To gain a better understanding of the physiology of Fe-efficient plants, putative novel plant variants were regenerated from potato (Solanum tubersosum L. var. ‘Iwa’ callus cultures selected under Fe deficient or low Fe supply (0–5 μM Fe. Based on visual chlorosis rating (VCR, 23% of callus-derived regenerants were classified as Fe-efficient (EF and 77% as Fe-inefficient (IFN plant lines when they were grown under Fe deficiency conditions. Stem height was found to be highly correlated with internodal distance, leaf and root lengths in the EF plant lines grown under Fe deficiency conditions. In addition, compared to the IFN plant lines and control parental biotype, the EF plants including the lines named A1, B2, and B9, exhibited enhanced formation of lateral roots and root hairs as well as increased expression of ferritin (fer3 in the leaf and iron-regulated transporter (irt1 in the root. These morphological adaptations and changes in expression the fer3 and irt1 genes of the selected EF potato lines suggest that they are associated with resistance to low Fe supply stress.

  17. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  18. Magnetic hardening of Fe{sub 50}Co{sub 50} by rotary swaging

    Energy Technology Data Exchange (ETDEWEB)

    Gröb, T., E-mail: t.groeb@phm.tu-darmstadt.de [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Wießner, L. [Institute for Production Engineering and Forming Machines, Otto-Berndt-Str. 2, 64287 Darmstadt (Germany); Bruder, E. [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Faske, T.; Donner, W. [Divison Structure Research, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Groche, P. [Institute for Production Engineering and Forming Machines, Otto-Berndt-Str. 2, 64287 Darmstadt (Germany); Müller, C. [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany)

    2017-04-15

    Fe{sub 50}Co{sub 50} was subjected to incremental forming by rotary swaging with the aim of tailoring the coercivity by changing the microstructure. The challenging part of a deformation of Fe{sub 50}Co{sub 50} is an ordering phase present at room temperature, leading to low formability. To increase the formability of the alloy the presence of the ordering phase was supressed by two different concepts. The first concept consists of a heat treatment above the phase transition followed by rapid cooling and deformation at room temperature. The second concept was rotary swaging at temperatures above the phase transition temperature. A comparison in terms of resulting microstructure and magnetic properties shows that both concepts have a potential for tailoring the coercivity of Fe{sub 50}Co{sub 50}. - Highlights: • Magnetic hardening of Fe{sub 50}Co{sub 50} was achieved by rotary swaging with two different concepts. • The influences of the microstructural changes during the rotary swaging process have been linked to magnetic hardening. • Increase in coercivity for Fe{sub 50}Co{sub 50} by rotary swaging at elevated temperature is limited by the dynamic restoration. • Coercivity of Fe{sub 50}Co{sub 50} can be tailored by the induced plastic strain.

  19. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  20. Electric-field tunable perpendicular magnetic anisotropy in tetragonal Fe4N/BiFeO3 heterostructures

    Science.gov (United States)

    Yin, Li; Wang, Xiaocha; Mi, Wenbo

    2017-07-01

    Electric field control on perpendicular magnetic anisotropy (PMA) is indispensable for spintronic devices. Herewith, in tetragonal Fe4N/BiFeO3 heterostructures with the FeAFeB/Fe-O2 interface, PMA in each Fe4N layer, not merely interfacial layers, is modulated by the electric field, which is attributed to the broken spin screening of the electric field in highly spin-polarized Fe4N. Moreover, the periodical dx y+dy z+dz2 and dx y+dx2-y2 orbital-PMA oscillation enhances the interactions between adjacent FeAFeB and (FeB)2N atomic layers, which benefits the electric field modulation on PMA in the whole Fe4N atomic layers. The electric-field control on PMA in Fe4N/BiFeO3 heterostructures is favored by the electric-field-lifted potential in Fe4N.

  1. Magnetic nanowires (Fe, Fe-Co, Fe-Ni – magnetic moment reorientation in respect of wires composition

    Directory of Open Access Journals (Sweden)

    Kalska-Szostko Beata

    2015-03-01

    Full Text Available Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered or chemical composition (Co or Ni. The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS.

  2. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  3. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    Science.gov (United States)

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  4. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  5. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    International Nuclear Information System (INIS)

    Rhen, Fernando M.F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    2008-01-01

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4 Fe 27.7 Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux (μ 0 M s ) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μ r ' ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μ r '=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency

  6. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  7. Na7 [Fe2S6 ] , Na2 [FeS2 ] and Na2 [FeSe2 ] : New 'reduced' sodium chalcogenido ferrates

    Science.gov (United States)

    Stüble, Pirmin; Peschke, Simon; Johrendt, Dirk; Röhr, Caroline

    2018-02-01

    Three new 'reduced' FeII containing sodium chalcogenido ferrates were obtained applying a reductive synthetic route. The mixed-valent sulfido ferrate Na7 [Fe2S6 ] , which forms bar-shaped crystals with metallic greenish luster, was synthesized in pure phase from natural pyrite and elemental sodium at a maximum temperature of 800 °C. Its centrosymmetric triclinic structure (SG P 1 bar , a = 764.15(2), b = 1153.70(2), c = 1272.58(3) pm, α = 62.3325 (7) , β = 72.8345 (8) , γ = 84.6394 (8) ° , Z = 3, R1 = 0.0185) exhibits two crystallographically different [Fe2S6 ] 7 - dimers of edge-sharing [FeS4 ] tetrahedra, with somewhat larger Fe-S distances than in the fully oxidized FeIII dimers of e.g. Na6 [Fe2III S6 ] . In contrast to the localized AFM ordered pure di-ferrates(III), the Curie-Weiss behavior of the magnetic susceptibility proves the rarely observed valence-delocalized S = 9/2 state of the mixed-valent FeIII /FeII dimer. The nearly spin-only value of the magnetic moment combined with the chemical bonding not generally differing from that in pure ferrates(II) and (III), provides a striking argument, that the reduction of the local Fe spin moments observed in all condensed sulfido ferrate moieties is connected with the AFM spin ordering. The two isotypic ferrates(II) Na2 [FeS2 ] and Na2 [FeSe2 ] with chain-like structural units (SG Ibam, a = 643.54(8)/ 660.81(1), b = 1140.2(2)/1190.30(2) c = 562.90(6)/585.59(1) pm, Z = 4, R1 = 0.0372/0.0466) crystallize in the K2 [ZnO2 ] -type structure. Although representing merely further members of the common series of chalcogenido metallates(II) Na2 [MIIQ2 ] , these two new phases, together with Na6 [FeS4 ] and Li2 [FeS2 ] , are the only examples of pure FeII alkali chalcogenido ferrates. The new compounds allow for a general comparison of di- and chain ferrates(II) and (III) and mixed-valent analogs concerning the electronic and magnetic properties (including Heisenberg super-exchange and double-exchange interactions

  8. Structural and magnetic properties of Ce/Fe and Ce/FeCoV multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tixier, S; Boeni, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mannix, D; Stirling, W G [Liverpool Univ. (United Kingdom); Lander, G H

    1997-09-01

    Ce/Fe and Ce/FeCoV multilayers have been grown by magnetron sputtering. The interfaces are well defined and the layers are crystalline down to an individual layer thickness of 20 A. Ce/FeCoV multilayers show sharper interfaces than Ce/Fe but some loss of crystallinity is observed. Hysteresis loops obtained by SQUID show different behaviour of the bulk magnetisation as a function of the layer thickness. Fe moments are found by Moessbauer spectroscopy to be perpendicular to the interfaces for multilayers with small periodicity. (author) 2 figs., 2 refs.

  9. Electronic Properties of LiFePO4 and Li doped LiFePO4

    International Nuclear Information System (INIS)

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-01-01

    The potential use of different iron phosphates as cathode materials in lithium-ion batteries has recently been investigated.1 One of the promising candidates is LiFePO4. This compound has several advantages in comparison to the state-of-the-art cathode material in commercial rechargeable lithium batteries. Firstly, it has a high theoretical capacity (170 mAh/g). Secondly, it occurs as mineral triphylite in nature and is inexpensive, thermally stable, non-toxic and non-hygroscopic. However, its low electronic conductivity (∼10-9 S/cm) results in low power capability. There has been intense worldwide research activity to find methods to increase the electronic conductivity of LiFePO4, including supervalent ion doping,2 introducing non-carbonaceous network conduction3 and carbon coating, and the optimization of the carbon coating on LiFePO4 particle surfaces.4 Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL has yield electronic conductivity increase up to 106.5 We studied electronic structure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-ray emission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes the unoccupied partial density of states, while XES the occupied partial density of states. By combining XAS and XES measurements, we obtained information on band gap and orbital character of both LiFePO4 and Li doped LiFePO4. The occupied and unoccupied oxygen partial density of states (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented in Fig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (∼ 4 eV). This value is much larger than what is predicted by DFT calculation. For 5 percent Li doped LiFePO4, a new doping state was created closer to the Fermi level, imparting p-type conductivity, consistent with thermopower measurement. Such observation substantiates the suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 is due to available number of charge carriers in the material

  10. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    Science.gov (United States)

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  11. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prajapat, C. L., E-mail: prajapat@barc.gov.in; Singh, M. R.; Mishra, P. K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Chattaraj, D. [Product Development Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Mishra, R. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Ravikumar, G. [Scientific Information Resources Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India)

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  12. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    This Report addresses the Milestone M2MS-16LA0501032 of NEAMS Program (“Develop hardening model for FeCrAl cladding), with a deadline of 09/30/2016. Here we report a constitutive law for thermal creep of FeCrAl. This Report adds to and complements the one for Milestone M3MS-16LA0501034 (“Interface hardening models with MOOSE-BISON”), where we presented a hardening law for irradiated FeCrAl. The last component of our polycrystal-based constitutive behavior, namely, an irradiation creep model for FeCrAl, will be developed as part of the FY17 Milestones, and the three regimes will be coupled and interfaced with MOOSE-BISON.

  13. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in Fe0/GAC reactor using the acclimated bacteria

    International Nuclear Information System (INIS)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Wang, Juling; Yang, Jinghui; Li, Huiqiang

    2012-01-01

    Highlights: ► Fe 3 (PO 4 ) 2 and FePO 4 crystals would weaken treatment efficiency of Fe 0 /GAC reactor. ► Fe 3 (PO 4 ) 2 and FePO 4 crystals could be removed by the acclimated bacteria. ► FeS and sulfur in the passive film would be removed by the sulfur-oxidizing bacteria. ► Develop a cost-effective bio-regeneration technology for the passive fillers. - Abstract: As past studies presented, there is obvious defect that the fillers in the Fe 0 /GAC reactor begin to be passive after about 60 d continuous running, although the complicated, toxic and refractory ABS resin wastewater can be pretreated efficiently by the Fe 0 /GAC reactor. During the process, the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film are formed by the reaction between PO 4 3− and Fe 2+ /Fe 3+ . Meanwhile, they obstruct the formation of macroscopic galvanic cells between Fe 0 and GAC, which will lower the wastewater treatment efficiency of Fe 0 /GAC reactor. In this study, in order to remove the Fe 3 (PO 4 ) 2 and FePO 4 crystals on the surface of the passive fillers, the bacteria were acclimated in the passive Fe 0 /GAC reactor. According to the results, it can be concluded that the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film could be decomposed or removed by the joint action between the typical propionic acid type fermentation bacteria and sulfate reducing bacteria (SRB), whereas the PO 4 3− ions from the decomposition of the Fe 3 (PO 4 ) 2 and FePO 4 crystals were released into aqueous solution which would be discharged from the passive Fe 0 /GAC reactor. Furthermore, the remained FeS and sulfur (S) in the passive film also can be decomposed or removed easily by the oxidation of the sulfur-oxidizing bacteria. This study provides some theoretical references for the further study of a cost-effective bio-regeneration technology to solve the passive problems of the fillers in the zero-valent iron (ZVI) or Fe 0 /GAC reactor.

  14. Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability.

    Science.gov (United States)

    Cai, Yafan; Zhao, Xiaoling; Zhao, Yubin; Wang, Hongliang; Yuan, Xufeng; Zhu, Wanbin; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    Fe is widely used as an additive in anaerobic digestion, but its bioavailability and the mechanism by which it enhances digestion are unclear. In this study, sequential extraction was used to measure Fe bioavailability, while biochemical parameters, kinetics model and Q-PCR (fluorescence quantitative PCR) were used to explore its mechanism of stimulation. The results showed that sequential extraction is a suitable method to assess the anaerobic system bioavailability of Fe, which is low and fluctuates to a limited extent (1.7 to -3.1wt%), indicating that it would be easy for Fe levels to be insufficient. Methane yield increased when the added Fe 2+ was 10-500mg/L. Appropriate amounts of Fe 2+ accelerated the decomposition of rice straw and facilitated methanogen metabolism, thereby improving reactor performance. The modified Gompertz model better fitted the results than the first-order kinetic model. Feasibility analysis showed that addition of Fe 2+ at ≤50mg/L was suitable. Copyright © 2017. Published by Elsevier Ltd.

  15. Chemical consequences of the nuclear reactions 58Fe(n,γ)59Fe and 57Co(EC)57Fe in soluble Prussian Blue

    DEFF Research Database (Denmark)

    Fenger, Jes; Maddock, A. G.; Siekierska, K. E.

    1970-01-01

    KFe[Fe(CN)6],H2O was prepared with 58Fe in either the cation or the complex, and both samples were neutron-irradiated and analysed for free and complexed 59Fe. Parallel experiments were performed on K4[Fe(CN)6],3H2O. In Prussian Blue the retention in the hexacyano-complex is ca. 5% and can be inc...

  16. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  17. Radioactive 55Fe contamination in the primary circuit of WWER-440

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Dobrevski, I.; Konnova, S.; Zaharieva, N.; Menut, P.

    2001-01-01

    The isotope 55 Fe generation in the steel construction materials of the reactor and the mechanism of internal irradiation and blood affection by the 55 Fe are briefly discussed in this paper. The paper also presents the results from calculation of direct generation of 55 Fe due to neutron irradiation of different iron-contained parts of the reactor system such as the steel shell of the reactor core, the core basket, the steel shaft of the reactor vessels. Calculations are performed with specially developed program code DIRGEN. Another type of contamination, considered in the paper is due to the corrosion of materials and erosion-dissolution processes in the primary circuit of WWER with their subsequent deposition-precipitation on the inner surface of the primary circuit. The real time calculations of the 55 Fe activity are performed, by using of the updated computer code MIGA-RT. The obtained results show that the 55 Fe activity deposition on the inner surfaces of the primary circuits reaches the values of 103 kBq/cm 2 for the reactor core surfaces and 102 kBq/cm 2 for the out-of-core surfaces. The activity values are in one order of magnitude higher than the corresponding activity values due to 60 Co buildup

  18. Evidence of new high-pressure magnetic phases in Fe-Pt Invar alloy

    International Nuclear Information System (INIS)

    Matsushita, M.; Endo, S.; Miura, K.; Ono, F.

    2003-01-01

    To investigate the magnetic properties of disordered Fe 70 Pt 30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2-385 K using a cubic anvil high-pressure apparatus. The Curie temperature (T C ) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe-Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure

  19. Perpendicular exchange coupling effects in ferrimagnetic TbFeCo/GdFeCo hard/soft structures

    Science.gov (United States)

    Wang, Ke; Wang, Yahong; Ling, Fujin; Xu, Zhan

    2018-04-01

    Bilayers consisting of magnetically hard TbFeCo and soft GdFeCo alloy were fabricated. Exchange-spring and sharp switching in a step-by-step fashion were observed in the TbFeCo/GdFeCo hard/soft bilayers with increasing GdFeCo thickness. A perpendicular exchange bias field of several hundred Oersteds is observed from the shift of minor loops pinned by TbFeCo layer. The perpendicular exchange energy is derived to be in the range of 0.18-0.30 erg/cm2. The exchange energy is shown to increase with the thickness of GdFeCo layer in the bilayers, which can be attributed to the enhanced perpendicular anisotropy of GdFeCo layer in our experimental range.

  20. Ab-initio electronic and magnetic properties of Fe-Al alloys

    Directory of Open Access Journals (Sweden)

    Apiñaniz, E.

    2000-06-01

    Full Text Available This work presents ab-initio self-consistent calculations performed with the TB-LMTO code to study the different phases of the Fe-Al phase diagram, corresponding to the ordered structures B2, DO3 and B32 and for Fe50Al50 and Fe3Al compositions. Both, unpolarized and spin-polarized calculations have been performed to deduce the energetic difference between the paramagnetic and ferromagnetic state of the corresponding structure. Calculations for the disordered structures have also been performed for the previously mentioned compositions. These results show that by disordering the alloy magnetism is enhanced and that the equilibrium lattice parameter increases.

    En este trabajo se presentan cálculos autoconsistentes ab-initio realizados con el método TB-LMTO (Tight Binding Linear Muffin Tin Orbital con el fin de estudiar las diferentes estructuras que se presentan en el diagrama de fases de las aleaciones Fe-Al. Se han estudiado las estructuras ordenadas B2, DO3 y B32 para las siguientes concentraciones: Fe50Al50 y Fe3Al. Asimismo, se han realizado cálculos teniendo y sin tener en cuenta la polarización de spin con el fin de poder deducir la diferencia energética entre los estados ferromágneticos y paramágneticos de la misma estructura. Por otra parte se han realizado estos mismos cálculos para estructuras desordenadas y las mismas concentraciones. Los resultados muestran que mediante el desorden aumenta el magnetismo de estas aleaciones y crece el parámetro de red.

  1. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    Science.gov (United States)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  2. [{sup 18}F]FE-SUPPY and [{sup 18}F]FE-SUPPY:2 - metabolic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, Daniela [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Nics, Lukas [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Nutritional Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Mien, Leonhard-Key [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Ungersboeck, Johanna [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Lanzenberger, Rupert R. [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna, A-1090 Vienna (Austria); Shanab, Karem [Dept. of Drug and Natural Product Synthesis, Univ. of Vienna, A-1090 Vienna (Austria); Sindelar, Karoline M. [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Viernstein, Helmut [Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Dept. of Nutritional Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Dudczak, Robert; Kletter, Kurt [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Wadsak, Wolfgang [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria)], E-mail: markus.mitterhauser@meduniwien.ac.at

    2010-05-15

    Introduction: Recently, [{sup 18}F]FE-SUPPY and [{sup 18}F]FE-SUPPY:2 were introduced as the first positron emission tomography (PET) tracers for the adenosine A{sub 3} receptor. Thus, aim of the present study was the metabolic characterization of the two adenosine A{sub 3} receptor PET tracers. Methods: In vitro carboxylesterase (CES) experiments were conducted using incubation mixtures containing different concentrations of the two substrates, porcine CES and phosphate-buffered saline. Enzymatic reactions were stopped by adding acetonitrile/methanol (10:1) after various time points and analyzed by a high-performance liquid chromatography (HPLC) standard protocol. In vivo experiments were conducted in male wild-type rats; tracers were injected through a tail vein. Rats were sacrificed after various time points (n=3), and blood and brain samples were collected. Sample cleanup was performed by an HPLC standard protocol. Results: The rate of enzymatic hydrolysis by CES demonstrated Michaelis-Menten constants in a micromolar range (FE-SUPPY, 20.15 {mu}M, and FE-SUPPY:2, 13.11 {mu}M) and limiting velocities of 0.035 and 0.015 {mu}M/min for FE-SUPPY and FE-SUPPY:2, respectively. Degree of metabolism in blood showed the following: 15 min pi 47.7% of [{sup 18}F]FE-SUPPY was intact compared to 33.1% of [{sup 18}F]FE-SUPPY:2; 30 min pi 30.3% intact [{sup 18}F]FE-SUPPY was found compared to 15.6% [{sup 18}F]FE-SUPPY:2. In brain, [{sup 18}F]FE-SUPPY:2 formed an early hydrophilic metabolite, whereas metabolism of [{sup 18}F]FE-SUPPY was not observed before 30 min pi Conclusion: Knowing that metabolism in rats is several times faster than in human, we conclude that [{sup 18}F]FE-SUPPY should be stable for the typical time span of a clinical investigation. As a consequence, from a metabolic point of view, one would tend to decide in favor of [{sup 18}F]FE-SUPPY.

  3. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II-oxidizer

    Directory of Open Access Journals (Sweden)

    Jennyfer eMIOT

    2015-09-01

    Full Text Available Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is however thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had however never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry (NanoSIMS. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidences of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasm encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a strategy of survival in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern

  4. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster.

    Science.gov (United States)

    Suess, Daniel L M; Bürstel, Ingmar; De La Paz, Liliana; Kuchenreuther, Jon M; Pham, Cindy C; Cramer, Stephen P; Swartz, James R; Britt, R David

    2015-09-15

    Hydrogenases catalyze the redox interconversion of protons and H2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe-4S]H subcluster coupled to a [2Fe]H subcluster bound by CO, CN(-), and azadithiolate ligands. The [2Fe]H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-L-methionine family of enzymes that transforms Fe and L-tyrosine into an [Fe(CO)2(CN)] synthon that is incorporated into the H cluster. Although it is thought that the site of synthon formation in HydG is the "dangler" Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. To address these questions, we herein show that L-cysteine (Cys) binds the auxiliary [4Fe-4S] cluster of HydG and further chelates the dangler Fe. We also demonstrate that a [4Fe-4S]aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO)2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Thus, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe(2+) binding and synthon release.

  5. La fe de Jesús, fundamento de la fe en Cristo

    Directory of Open Access Journals (Sweden)

    Jorge Costadoat

    2007-01-01

    Full Text Available Lo que la Iglesia cree de Cristo, hunde sus raíces en el modo que tuvo Jesús de creer en Dios. Pero, a la vez, la fe de la Iglesia permite inferir cómo ha podido ser la experiencia espiritual de Jesús. Esta referencia recíproca entre Cristo y la Iglesia invita a indagar en los en los fundamentos antropológicos y teológicos de la fe "de" Jesús, en las dificultades y posibilidades que Jesús ha podido tener para creer en su Padre, puesto que así él enseña por qué y cómo han de creer también los hombres. Por esta vía descubrimos que el Padre, al resucitar a Jesús, triunfa sobre el Mysterium iniquitatis y, contra toda sospecha de indiferencia ante el sufrimiento humano que pudiera recaer sobre Él mismo, da pruebas de ser un Dios que merece fe. El Padre merece fe, pero no la merecería si Él no "creyera" también en la humanidad como "creyó" en su Hijo Jesús. Es el amor del Padre que en última instancia produce confianza en Él y entre los hombresWhat the Church believes of Christ finds its roots in Jesus' manner of believing in God. However, at the same time, the faith of the Church allows one to infer how the spiritual experience of Jesus came about. This reciprocal reference between Christ and the Church invites one to investigate the anthropological and theological tenets of the faith "of" Jesus, in the difficulties and possibilities that Jesus could have had in order to believe in his Father, given that he teaches us accordingly why and how to believe as well. In this way we discover that the Father, upon raising up Jesus, triumphs over the Mysterium iniquitatis and, against every suspicion of a possible indifference on the God's part in the face of human suffering, gives proof of being a God who deserves faith. The Father deserves faith, but he wouldn't if He did not also "believe" in humanity, just as He "believed" in his Son, Jesus. It is the love of the Father that, in the final analysis, brings about trust in Him and

  6. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  7. Temperature-induced delocalization of charge carriers and semiconductor to metal-like phase in SrFeO{sub 3-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Venkateswaran, C. [University of Madras, Department of Nuclear Physics, Guindy Campus, Chennai (India); Murugaraj, R. [Anna University, Department of Physics, MIT Campus, Chennai (India)

    2015-04-01

    Perovskite SrFeO{sub 3-δ}, a Ruddlesden-Popper class of system exhibits interesting electronic and magnetic properties. Influence of oxygen vacancies on the electrical response of nanocrystalline SrFeO{sub 2.91} as a function of temperature is investigated using impedance spectroscopy technique. A change observed in the Nyquist plot at 383 K has been analyzed in terms of localized and delocalized e{sub g} electrons. An unusual and interesting temperature-induced semiconductor to metal-like transition is observed in the frequency-dependent real part of dielectric permittivity. Dependence of frequency on the real and imaginary parts of impedance with respect to temperature supports the presence of semiconductor to metal-like transition in SrFeO{sub 2.91}. (orig.)

  8. Role of PO4 tetrahedron in LiFePO4 and FePO4 system.

    Science.gov (United States)

    Zeng, Yuewu

    2015-06-01

    Using high resolution transmission electron microscopy with image simulation and Fourier analysis, the Li1- x FePO4 (x < 0.01), Li1- x FePO4 (x ∼ 0.5), and FePO4 particles, prepared by charging or discharging the 053048 electrochemical cells (thickness: 5 mm, width: 30 mm, height: 48 mm) and dismantled inside an Ar-filled dry box, were investigated. The high resolution images reveal: (1) the solid solution of Li1- x FePO4 (x < 0.01) contains some missing Li ions leading PO4 group distorted around M1 tunnel of the unit cell; (2) the texture of the particles of Li1- x FePO4 (x ∼0.5) has homogeneously distributed compositional domains of LiFePO4 and FePO4 resulting from spinodal decomposition which promote Li ion easily getting into the particle due to uphill diffusion, (3) the particles of FePO4 formed in charging have heavily distorted lattice and contain some isolated LiFePO4 , (4) interface between LiFePO4 and FePO4 and between amorphous and crystal region provides the lattice distortion of small polarons. © 2015 Wiley Periodicals, Inc.

  9. Ageing and memory effects in the weak random anisotropy magnets amorphous NdGdFe and HoGdFe

    International Nuclear Information System (INIS)

    Saito, Toshiaki; Emura, Ai; Hanashima, Koji

    2007-01-01

    We experimentally examined the ageing phenomena in typical weak random anisotropy magnets (weak RAMs), amorphous NdGdFe and HoGdFe, with a small ratio of the random anisotropy (D) to the ferromagnetic exchange (J) (D/J). These weak RAMs have very long average relaxation time, two or three orders longer than that of spin glasses (SGs) around the transition temperature, and also have a very large ac excitation field (h 0 ) dependence of the ac susceptibility. Measuring the imaginary part of the ac susceptibility at frequency of 0.5 Hz and h 0 of 0.3 Oe by using two temperature-change protocols, we observed the memory and rejuvenation effects as reported in SGs, but the effects are weaker in the present weak RAMs, suggesting that the picture of the hierarchical structure of the free energy space is also effective in weak RAMs as in SGs, but it may have smaller barrier heights than those of SGs

  10. Metal Injection Molding (MIM of NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Hartwig T.

    2014-07-01

    Full Text Available Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.

  11. Wear resistance of TiB/sub 2/-Fe cermets

    International Nuclear Information System (INIS)

    Champagne, B.; Dallaire, S.

    1985-01-01

    A material which consists of TiB/sub 2/ dispersed in an iron matrix was synthesized by the exothermic reaction of ferrotitanium and boron. The as-reacted products were hot isostatically pressed to produce TiB/sub 2/-Fe cermets. The influence of HIP variables on the density and total fractional porosity of specimens is presented. Density above 95% is obtained by HIPping at temperatures below 1300 0 C. Increasing the temperature and the time of HIPping enhance the mechanical properties and wear resistance of TiB/sub 2/-Fe cermets by reducing their residual porosity. Relations obtained by regression analysis showed that the porosity strongly affects the properties of parts. Regression analysis point out that the wear loss of a 5% porosity TiB/sub 2/-Fe cermet is 270% higher than a dense HIPped cermet. Low stress and high stress abrasion resistance tests utilizing various abrasive media were carried out on dense HIPped cermets and results were compared with those obtained from WC-Co cermets and 1020 steel

  12. Microstructure, magnetic and Moessbauer studies on spark-plasma sintered Sm-Co-Fe/Fe(Co) nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N V Rama; Saravanan, P; Gopalan, R; Raja, M Manivel; Rao, D V Sreedhara; Chandrasekaran, V [Defence Metallurgical Research Laboratory, Hyderabad-500 058 (India); Sivaprahasam, D [International Advanced Research Centre for Powder Metallurgy and New Materials Hyderabad-500 005 (India); Ranganathan, R [Saha Institute of Nuclear Physics, Kolkata-700 064 (India)], E-mail: rg_gopy@yahoo.com

    2008-03-21

    Nanocomposite powders comprising Sm-Co-Fe intermetallic phases and Fe(Co) were synthesized by high-energy ball milling and were consolidated into bulk magnets by the spark-plasma sintering (SPS) technique. While the microstructure of the SPS samples was characterized by transmission electron microscopy (TEM), the solubility of Fe in different phases was investigated using Moessbauer spectroscopy. TEM studies revealed that the spark-plasma sintered sample has Sm(Co,Fe){sub 5} as a major phase with Sm{sub 2}(Co,Fe){sub 17}, Sm(Co,Fe){sub 2} and Fe(Co) as secondary phases. The size of the nanocrystalline grains of all these phases was found to be in the range 50-100 nm. The Moessbauer spectra of the as-milled powders exhibited two different subspectra: a sextet corresponding to the Fe phase and a broad sextet associated with the Fe(Co) phase; while that of the SPS sample showed four different subspectra: a sextet corresponding to Fe and other three sextets corresponding to the Fe(Co), Sm(Co,Fe){sub 5} and Sm{sub 2}(Co,Fe){sub 17} phases; these results are in accordance with the TEM observation. Recoil magnetization and reversible susceptibility measurements revealed magnetically single phase behaviour of the SPS magnets.

  13. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Peter, E-mail: peter.savin@urfu.ru [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Guzmán, Jorge [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Lepalovskij, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Svalov, Andrey; Kurlyandskaya, Galina [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Vizcaya (Spain); Asenjo, Agustina [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Vas’kovskiy, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Vazquez, Manuel [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain)

    2016-03-15

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer. - Highlights: • FeNi/FeMn bilayers and FeNi/FeMn/FeNi trilayers were prepared by magnetron sputtering. • Post-deposition heat treatments at the temperatures below 200 °C during 5 min were made. • Annealing reduces the exchange field for the first FeNi layer in trilayers. • The exchange field value for the second FeNi layer was not substantially changed. • Exchange field changes are most likely caused by a modification of interface roughness.

  14. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  15. Fe/V and Fe/Co (0 0 1) superlattices: growth, anisotropy, magnetisation and magnetoresistance

    International Nuclear Information System (INIS)

    Nordblad, P.; Broddefalk, A.; Mathieu, R.; Blomqvist, P.; Eriksson, O.; Waeppling, R.

    2003-01-01

    Some physical properties of BCC Fe/V and Fe/Co (0 0 1) superlattices are reviewed. The dependence of the magnetic anisotropy on the in-plane strain introduced by the lattice mismatch between Fe and V is measured and compared to a theoretical derivation. The dependence of the magnetic anisotropy (and saturation magnetisation) on the layer thickness ratio Fe/Co is measured and a value for the anisotropy of BCC Co is derived from extrapolation. The interlayer exchange coupling of Fe/V superlattices is studied as a function of the V layer thickness (constant Fe thickness) and layer thickness of Fe (constant V thickness). A region of antiferromagnetic coupling and GMR is found for V thicknesses 12-14 monolayers. However, surprisingly, a 'cutoff' of the antiferromagnetic coupling and GMR is found when the iron layer thickness exceeds about 10 monolayers

  16. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  17. Ferromagnetic resonance on oxideless magnetic Fe and FeRh nanoparticles

    International Nuclear Information System (INIS)

    Trunova, Anastasia

    2009-01-01

    This work is dedicated to investigations of structural and magnetic properties of the colloidal Fe/Fe x O y nanocubes (13 nm) and the Fe x Rh 100-x core/shell nanoparticles (2 nm). As compared with other works, where the measurements on oxidized nanoparticles were carried out, we additionally performed investigations on nanoparticles in an oxide free state. In order to make the measurements on oxide free particles possible, oxygen- and hydrogenplasma was used to remove the ligands and reduce the oxide shell of the Fe nanocubes. The oxide free Fe nanocubes were covered with a Ag/Pt protective coating to prevent them from new oxidation. This method allowed carrying out the magnetic measurements on oxide free Fe nanocubes. Micromagnetic simulations as well as simulations of the high frequency susceptibility were used for the data analysing. It was found that both the g-factor g=2.09±0.01 and the anisotropy constant K 4 =(4.8±0.5).10 4 J/m 3 coincide with that of bulk iron. However, the saturation magnetization M S (5 K)=(1.2±0.12).10 6 A/m differs from the bulk value by 30%. The reduction by 30% compared to the bulk value in the case of nanoparticles may be caused by the following possible reasons: a) the presence of inner oxide layer (approx. 10 at.%) that cannot be reduced; b) the anti-parallel order between magnetic moments of iron core and magnetic moments of antiferomagnetic iron oxide; c) some structural changes of the surface after plasma treatment. The obtained damping parameter α=0.03±0.005 is ten times larger than that of the Fe layers as it is known for nanoparticles systems in general. The core/shell Fe x Rh 100-x nanoparticles (x=80,50) were produced under Ar-atmosphere and were sealed into a quartz tube to prevent oxidation. The analysis of g-factors shows that the value for the FePh nanoparticles with Fe-rich core is larger (g=2.08±0.01) than that for the nanoparticles with Rh-rich core and coincides within error bars with the g-factor of bulk

  18. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Olsson, P.; Domain, Ch.; Wallenius, J.

    2008-01-01

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  19. Magnetocaloric effect and H gradient in bulk La(Fe,Si)13Hy magnetic refrigerants obtained by HDSH

    DEFF Research Database (Denmark)

    Neves Bez, Henrique; Eggert, Bruno G.F.; Lozano, Jaime

    2015-01-01

    the conventional ingot homogenization heat treatment of 7 days. The samples produced by HDSH showed higher amounts of hydrogen than the parts hydrogenated by the conventional method of thermal homogenization (20 h at 1423 K), milling to fine powder and subsequent hydrogenation. Hydrogenation parameters play...... an important role for the stability of the desired La(Fe,Si)13 phase during the process. Hydrogen desorption was seen to occur at two temperature ranges as a result of internal gradients. Dissimilar amounts of α-Fe were precipitated for different hydrogenation times. As a result, parts produced via HDSH with 2...

  20. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  1. Magnetic structure of molecular magnet Fe[Fe(CN) 6

    Indian Academy of Sciences (India)

    We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase ...

  2. 57Fe Moessbauer and magnetization study of the Th7Fe3 and the hydride Th7Fe3H/sub n/

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.; Dunlap, B.D.; Westlake, D.G.; Malik, S.K.; Wallace, W.E.

    1978-01-01

    Th 7 Fe 3 is known to be a Pauli paramagnet and to undergo a superconducting transition at 1.86K. Its hydride Th 7 Fe 3 H/sub n/ is shown to possess magnetic ordering. The 57 Fe saturated hyperfine field in the hydride is estimated to be aproximately 20kG. A positive isomer shift of 0.30 +- 0.02 mm/s at 300 K relative to Th 7 Fe 3 would be consistent with an increase in d-like electrons on Fe. Preliminary magnetization results indicate a magnetic moment of about 0.5 μ/sub B/ for the hydride and a transition temperature near 300 K

  3. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.

    Science.gov (United States)

    Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng

    2018-06-01

    In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.

  4. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases

    Science.gov (United States)

    Winkler, Martin; Senger, Moritz; Duan, Jifu; Esselborn, Julian; Wittkamp, Florian; Hofmann, Eckhard; Apfel, Ulf-Peter; Stripp, Sven Timo; Happe, Thomas

    2017-07-01

    H2 turnover at the [FeFe]-hydrogenase cofactor (H-cluster) is assumed to follow a reversible heterolytic mechanism, first yielding a proton and a hydrido-species which again is double-oxidized to release another proton. Three of the four presumed catalytic intermediates (Hox, Hred/Hred and Hsred) were characterized, using various spectroscopic techniques. However, in catalytically active enzyme, the state containing the hydrido-species, which is eponymous for the proposed heterolytic mechanism, has yet only been speculated about. We use different strategies to trap and spectroscopically characterize this transient hydride state (Hhyd) for three wild-type [FeFe]-hydrogenases. Applying a novel set-up for real-time attenuated total-reflection Fourier-transform infrared spectroscopy, we monitor compositional changes in the state-specific infrared signatures of [FeFe]-hydrogenases, varying buffer pH and gas composition. We selectively enrich the equilibrium concentration of Hhyd, applying Le Chatelier's principle by simultaneously increasing substrate and product concentrations (H2/H+). Site-directed manipulation, targeting either the proton-transfer pathway or the adt ligand, significantly enhances Hhyd accumulation independent of pH.

  5. Simulation of radiation damage in Fe and Fe-Cr

    International Nuclear Information System (INIS)

    Lagerstedt, Christina

    2005-11-01

    Steel is an important structural material in nuclear reactors used for example in pressure vessels and fast reactor cladding. In reactor environments it has been observed that ferritic steels are more resistant to swelling than the austenitic steels typically used. Much effort has been put into developing basic models of FeCr alloys which can serve as model alloys for describing ferritic steels. As a result, a number of interatomic potentials for Fe and FeCr alloys exist today. For the work in this thesis, basic material properties coming from experiments or ab initio calculations were used to fit interatomic potentials for Fe, Cr and FeCr implementing both the embedded atom method and the Finnis-Sinclair formalisms. The potentials were then validated by molecular dynamic calculations of material properties such as defect formation energies, migration energies and thermal expansion. Further studies of potential performance were carried out in simulations of radiation damage cascades and thermal aging. The influence of the interatomic potential on the primary defect state in materials under irradiation was analyzed in a study comparing results obtained using four different potentials. The objective of the study was to find correlations between potential properties and the primary damage state produced in simulations of displacement cascades. The defect evolution and clustering during different cascade stages were also investigated to try to gain a better understanding of these processes

  6. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides

    International Nuclear Information System (INIS)

    Silva, V.A.J.; Andrade, P.L.; Silva, M.P.C.; Bustamante D, A.; De Los Santos Valladares, Luis; Albino Aguiar, J.

    2013-01-01

    In this work we report the preparation of fucan-coated magnetite (Fe 3 O 4 ) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe 3 O 4 nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe 3 O 4 are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe 3 O 4 nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior

  7. Investigation of Synthesis and Magnetic Properties of Rod-Shaped CoFe2O4 via Precipitation-Topotactic Reaction Employing α-FeOOH and γ-FeOOH As Templates

    Science.gov (United States)

    Cao, Xiaohui; Dong, Hongfei; Tan, Yuzhuo; Meng, Jinhong

    2018-03-01

    Rod-shaped CoFe2O4 was prepared by chemical precipitation-topotactic reaction method, and in this preparation needle-like γ-FeOOH and α-FeOOH were synthesized to use as template materials. The evolution of phase and morphology in the process of calcination exhibits that α-FeOOH and γ-FeOOH experienced different routes to form the α-Fe2O3 middle phase with different crystallinity and morphology. The synthesis process of CoFe2O4 revealed that the crystallinity, purity and morphology of CoFe2O4 depend on the α-Fe2O3 middle phase. The magnetic measurement showed that the CoFe2O4 prepared from α-FeOOH has higher saturation magnetization and coercivity, and the crystallinity and morphology may play important roles in achieving a better magnetic performance.

  8. Fe-Ti/Fe (II)-loading on ceramic filter materials for residual chlorine removal from drinking water.

    Science.gov (United States)

    Man, Kexin; Zhu, Qi; Guo, Zheng; Xing, Zipeng

    2018-06-01

    Ceramic filter material was prepared with silicon dioxide (SiO 2 ), which was recovered from red mud and then modified with Fe (II) and Fe-Ti bimetal oxide. Ceramic filter material can be used to reduce the content of residual chlorine from drinking water. The results showed that after a two-step leaching process with 3 M hydrochloric acid (HCl) and 90% sulfuric acid (H 2 SO 4 ), the recovery of SiO 2 exceeded 80%. Fe (II)/Fe-Ti bimetal oxide, with a high adsorption capacity of residual chlorine, was prepared using a 3:1 M ratio of Fe/Ti and a concentration of 0.4 mol/L Fe 2+ . According to the zeta-potential, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, Fe (II) and Fe-Ti bimetal oxide altered the zeta potential and structural properties of the ceramic filter material. There was a synergistic interaction between Fe and Ti in which FeOTi bonds on the material surface and hydroxyl groups provided the active sites for adsorption. Through a redox reaction, Fe (II) transfers hypochlorite to chloride, and FeOTiCl bonds were formed after adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Determination of the 54Fe(n, 2n)53gFe and 54Fe(n, 2n)53mFe cross sections averaged over a 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Ribeiro Guevara, S.; Arribere, M.; Kestelman, A.J.

    2002-01-01

    The reaction cross sections averaged over a 235 U fission neutron spectrum have been measured for the 54 Fe(n, 2n) 53g Fe and 54 Fe(n, 2n) 53m Fe threshold reactions. The values found are, respectively: (1.14 ± 0.13) μb, and (0.52 ± 0.16) μb. The measured cross sections are referred to the (111± 3) mb standard cross section of the 58 Ni(n, p) 58m+g Co reaction. The (81.7 ± 2.2) mb standard cross section value for the 54 Fe(n, p) 54 Mn reaction, was also used as a monitor to check the results obtained with the Ni standard, leading to an excellent agreement. (author)

  10. Magnetic and hyperfine interactions in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0≤x≤1) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kotnana, Ganesh [Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India); Reddy, V. Raghavendra [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001 (India); Jammalamadaka, S. Narayana, E-mail: surya@iith.ac.in [Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India)

    2017-05-01

    We report on the magnetic and Mössbauer properties of polycrystalline HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. Magnetization data reveals the continuous tailoring of magnetic transition due to weakening of Ho{sup 3+}-Fe{sup 3+} and Fe{sup 3+}-Fe{sup 3+} interactions in the entire temperature range by replacing the Fe{sup 3+} ions with Cr{sup 3+} ions. The observed decrease in Néel temperature (T{sub N}) and increase in spin re-orientation transition temperature (T{sub SR}) with the replacement of Fe{sup 3+} with Cr{sup 3+} is ascribed to the weakening of Fe(Cr)-O-Fe(Cr) antiferromagnetic exchange interaction. In addition, we also attribute such a change in T{sub N} to the enhancement of ferromagnetic interaction of adjacent Cr{sup 3+} moments through t-e hybridization as a result of the structural distortion. The decrease in isomer shift (IS) suggests enhancement of the interaction between nuclear charge with the 3s electrons as a result of decrease in radial part of 3d wave function with Cr addition. In this paper we also discuss about the variation of quadrupole splitting (QS) and hyperfine fields (H{sub hf}) with Cr addition in HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. - Highlights: • Magnetic and Mössbauer properties of HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. • T{sub N} changes due to weakening of Ho{sup 3+}-Fe{sup 3+} and Fe{sup 3+}-Fe{sup 3+} interactions with Cr. • The decrease in isomer shift (IS) is due to decrease in radial part of 3d wavefunction. • Octahedral distortion leads to increase in quadrupole splitting.

  11. Modeling Equilibrium Fe Isotope Fractionation in Fe-Organic Complexes: Implications for the use of Fe Isotopes as a Biomarker and Trends Based on the Properties of Bound Ligands

    Science.gov (United States)

    Domagal-Goldman, S.; Kubicki, J. D.

    2006-05-01

    Fe Isotopes have been proposed as a useful tracer of biological and geochemical processes. Key to understanding the effects these various processes have on Fe isotopes is accurate modeling of the reactions responsible for the isotope fractionations. In this study, we examined the theoretical basis for the claims that Fe isotopes can be used as a biomarker. This was done by using molecular orbital/density functional theory (MO/DFT) calculations to predict the equilibrium fractionation of Fe isotopes due to changes in the redox state and the bonding environment of Fe. Specifically, we predicted vibrational frequencies for iron desferrioxamine (Fe-DFOB), iron triscatechol (Fe(cat)3), iron trisoxalate (Fe(ox)3), and hexaaquo iron (Fe(H2O)6) for complexes containing both ferrous (Fe2+) and ferric (Fe3+) iron. Using these vibrational frequencies, we then predicted fractionation factors between these six complexes. The predicted fractionation factors resulting from changes in the redox state of Fe fell in the range 2.5- 3.5‰. The fractionation factors resulting from changes in the bonding environment of Fe ranged from 0.2 to 1.4‰. These results indicate that changes in the bonding strength of Fe ligands are less important to Fe isotope fractionation processes than are changes to the redox state of Fe. The implications for use of Fe as a tracer of biological processes is clear: abiological redox changes must be ruled out in a sample before Fe isotopes are considered as a potential biomarker. Furthermore, the use of Fe isotopes to measure the redox state of the Earths surface environment through time is supported by this work, since changes in the redox state of Fe appear to be the more important driver of isotopic fractionations. In addition to the large differences between redox-driven fractionations and ligand-driven fractionations, we will also show general trends in the demand for heavy Fe isotopes as a function of properties of the bound ligand. This will help the

  12. Ferromagnetic alloy material CoFeC with high thermal tolerance in MgO/CoFeC/Pt structure and comparable intrinsic damping factor with CoFeB

    Science.gov (United States)

    Chen, Shaohai; Zhou, Jing; Lin, Weinan; Yu, Jihang; Guo, Rui; Poh, Francis; Shum, Danny; Chen, Jingsheng

    2018-02-01

    The thermal tolerance and perpendicular magnetic anisotropy (PMA) of ferromagnetic alloy Co40Fe40C20 in the structure MgO/CoFeC/Pt (or Ta) were investigated and compared with the commonly used CoFeB alloy. It is found that the PMA of CoFeC with {{K}i,CoFeC}=2.21 erg c{{m}-2} , which is 59% higher than that of CoFeB, can be obtained after proper post-annealing treatment. Furthermore, CoFeC alloy provides better thermal tolerance to temperature of 400 °C than CoFeB. The studies on ferromagnetic resonance show that the intrinsic damping constant α in of Co40Fe40C20 alloy is 0.0047, which is similar to the reported value of 0.004 for Co40Fe40B20 alloy. The comprehensive comparisons indicate that CoFeC alloy is a promising candidate for the application of the integration of spin torque transfer magnetic random access memory with complementary metal-oxide semiconductor processes.

  13. High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film

    Directory of Open Access Journals (Sweden)

    Kurlyandskaya, G. V.

    2000-08-01

    Full Text Available A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had μm dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.

    Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å. El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de μm lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.

  14. A route for recycling Nd from Nd-Fe-B magnets using Cu melts

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Martina; Gebert, Annett, E-mail: a.gebert@ifw-dresden.de; Stoica, Mihai; Uhlemann, Margitta; Löser, Wolfgang

    2015-10-25

    Phase evolutions in Nd-Fe-B magnet/Cu systems have been explored with regard to Nd recycling. It was demonstrated that large scale phase separation into a ferromagnetic Fe(B)-rich ingot core with α-Fe main phase and a non-magnetic (Cu,Nd)-rich ingot rim takes place upon arc melting with Cu fractions ≥ 21.5 wt.-%. The re-solidification of the Nd{sub 2}Fe{sub 14}B magnet main phase is suppressed. The rim consists of the Cu{sub 2}Nd main phase and CuNd/Cu{sub 4}Nd minority phases in which Al traces from the magnetic material are gathered. Induction melting of such Nd-Fe-B/Cu mixtures can support the separation of these phase regions with very sharp boundaries. Main features of liquid phase separation and microstructure evolution have been interpreted on the basis of Nd-Fe-Cu phase diagram data. The key advantage with respect to Nd recycling from Nd-Fe-B permanent magnet scrap is the substantial accumulation of Nd in the (Cu,Nd)-rich region of the phase separated solidified specimen, which can be easily detached from the Fe-rich part by mechanical-magnetic treatments. Such portions contained up to ∼44 wt.-% Nd (25 at.-%) in first lab-scale experiments. Nd recovery from the (Cu,Nd)-rich fractions is possible by exploiting the large chemical property differences between the reactive rare earths elements and Cu. - Highlights: • phase evolution analysis in Nd-Fe-B magnet/Cu systems with regard to Nd recycling. • Cu ≥ 21 wt.-%, large scale phase separation- Fe(B)-rich ingot core, (Cu,Nd)-rich rim. • high Nd content (∼44 wt.-%) of (Cu,Nd)-rich region, mechanical-magnetic treatments.

  15. Fe++/Fe+++ concentration relationship and mechanical properties of phosphate glasses useful for wastes immobilization

    International Nuclear Information System (INIS)

    Garcia, D.A.; Prado, Miguel O.

    2007-01-01

    Under different melting conditions, glasses with different Fe(II)/Fe(III) concentration relationship were prepared within each type of glass 43Fe 2 O 3 -57P 2 O 5 and 33,33Fe 2 O 3 - 66,67P 2 O 5 . Using Moessbauer spectroscopy Fe(II)/Fe(III) concentration values were determined. Vickers and Knoop indentations were used for determining their hardness, toughness, Young modulus and brittleness. The same measurements were carried on some silicate and aluminosilicate glasses. Also Weibull statistics was done to determine the characteristics (Weibull modulus and and fracture probability) of glass fracture. We found that silicate glasses (SG) are harder than phosphate glasses (PG). Toughness values for PG, are in the same range than for SG, although for the same density exhibit larger values or smaller brittleness than silicate glasses. For one of the glasses it was found that the mechanical load P 0 needed for a fracture probability of 63% increases with the Fe(II) content. (author)

  16. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Science.gov (United States)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.

  17. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  18. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.

    2011-04-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived from hydrotalcite. The hydrotalcites prepared by co-precipitation were calcined at 550 °C to the mixed oxides with a high surface area of 150-240m2gcat-1; they were composed of Mg(Fe,Me,Al)O periclase and Mg(Me)(Fe,Al)2O4 spinel (Me = Co or Ni). Bimetallic Fe3+-Co2+ system showed a synergy, i.e., an increase in the activity, whereas Fe3+-Ni2+ bimetallic system showed no synergy. The high styrene yield was obtained on Mg 3Fe0.1Co0.4Al0.5; however, a large substitution of Fe3+ with Co2+ caused a decrease in styrene selectivity along with coking on the catalysts, due to an isolation of CoOx on the catalyst surface. The highest yield as well as the highest selectivity for styrene production was obtained at x = 0.25 at time on stream of 30 min. The coprecipitation at pH = 10.0 and the composition of Mg3Fe0.25Co0.25Al0.5 were the best for preparing the active catalyst. This is partly due to the formation of a good hydrotalcite structure. On this catalyst, the active Fe3+ species was reduced at a low temperature by the Fe3+-Co2+ bimetal formation, leading to a high activity. Simultaneously, the amount of reducible Fe3+ was the smallest, resulting in a high stability of the active Fe3+ species. It is likely that the dehydrogenation was catalyzed by the reduction-oxidation between Fe3+ and Fe2+ and that Co2+ assisted the reduction-oxidation by forming Fe 3+-Co2+ (1/1) bimetallic active species. © 2011 Elsevier B.V. All rights reserved.

  19. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    Science.gov (United States)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  20. Magnetic properties of Fe/NiO/Fe(001) trilayers

    International Nuclear Information System (INIS)

    Biagioni, P.; Brambilla, A.; Portalupi, M.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Vavassori, P.; Zani, M.; Finazzi, M.; Duo, L.; Ciccacci, F.

    2005-01-01

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t AFM has a critical value t C for the magnetic coupling between the Fe layers: for t AFM C the magnetization directions align perpendicularly, with zero applied field, while the alignment is collinear for thicker spacers. A phenomenological model has been developed to reproduce and discuss the results. Complementary information has been obtained by means of spin polarized low energy electron microscopy

  1. Magnetic properties of Fe/NiO/Fe(001) trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, P [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Brambilla, A [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Portalupi, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rougemaille, N [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A K [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lanzara, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Vavassori, P [INFM - Dipartimento di Fisica, Universita di Ferrara, Via Paradiso 12, 44100 Ferrara (Italy); Zani, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Duo, L [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2005-04-15

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t{sub AFM} has a critical value t{sub C} for the magnetic coupling between the Fe layers: for t{sub AFM}

  2. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant

    DEFF Research Database (Denmark)

    Kjellerup, B. V.; Keiding, Kristian; Nielsen, Per Halkjær

    2001-01-01

    dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory......A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order...... to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge...

  3. Structure, magnetism, and interface properties of epitactical thin Fe and FePt films on GaAs(001) substrates; Struktur, Magnetismus und Grenzflaecheneigenschaften epitaktischer duenner Fe- und FePt-Filme auf GaAs(001)-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Ellen Ursula

    2007-12-17

    The research in this thesis is focused on the study of the Fe spin structure and interface magnetism of thin epitaxial Fe layers or epitaxial FePt alloy films with chemical L1{sub 0} order on GaAs(001) surfaces. The main method of investigation was isotope-specific conversion electron Moessbauer spectroscopy (CEMS) combined with the {sup 57}Fe probe-layer technique in the temperature range of 4.2-300 K. The film structure was studied using electron diffraction (RHEED) and X-ray diffraction (XRD). The chemical order parameter S determined by XRD was found to increase with rising growth temperature, T{sub S}, to a maximum value of 0.71, until long range order is destroyed at T{sub S}>350 C by alloying with the substrate. As an important result a linear correlation between short-range order (revealed by the relative spectral area of the L1{sub 0} phase) and long-range order S was observed. The observed perpendicular Fe spin texture, characterized by the mean tilting angle left angle {theta} right angle of the Fe spins (relative to the film normal direction), was found to correlate with the L1{sub 0} phase content and with S. Furthermore, epitaxial Fe(001) films on GaAs(001)-(4 x 6) and on GaAs(001)-LED surfaces were grown successfully. In the initial stage of Fe film growth non-monotonous behavior of the in-plane lattice parameter was observed by RHEED. The magnetic hyperfine field distributions P(B{sub hf}) at the Fe/GaAs interface extracted from CEMS spectra for T{sub S}=-140 C or room temperature (RT) were found to be very similar. The observed large mean hyperfine fields of left angle B{sub hf} right angle {approx}25-27 T at the interface indicate the presence of high average Fe moments of 1.7-1.8 {mu}{sub B}. Nonmagnetic interface layers either can be excluded (Fe/GaAs) or are very thin (0.5 ML,Fe/GaAs-LED). Owing to its island structure an ultrathin (1.9 ML thick) uncoated Fe(001) film on GaAs(001)-(4 x 6) shows superparamagnetism with a blocking temperature of

  4. Exchange coupling behavior in bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Leite, G.C.P. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Chagas, E.F., E-mail: efchagas@fisica.ufmt.br [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Pereira, R.; Prado, R.J. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Terezo, A.J. [Departamento de Quimica, Universidade Federal do Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Alzamora, M.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro (Brazil)

    2012-09-15

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe{sub 2}O{sub 4} and ferrimagnetic oxide/ferromagnetic metal CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite: (i) first, preparation of CoFe{sub 2}O{sub 4} nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe{sub 2}O{sub 4} particles is about 16 nm. Mossbauer spectra revealed two sites for Fe{sup 3+}. One site is related to Fe in an octahedral coordination and the other one to the Fe{sup 3+} in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe{sub 2}O{sub 4}. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe{sub 2} on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH){sub max} of 1.22 MGOe was achieved at room temperature for CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposites, which is about 115% higher than the value obtained for CoFe{sub 2}O{sub 4} precursor. The exchange coupling interaction and the enhancement of product (BH){sub max} in nanocomposite CoFe{sub 2}O{sub 4}/CoFe{sub 2} are discussed. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

  5. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  6. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    Science.gov (United States)

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Determination of transition metal ion distribution in cubic spinel Co1.5Fe1.5O4 using anomalous x-ray diffraction

    Directory of Open Access Journals (Sweden)

    M. N. Singh

    2015-08-01

    Full Text Available We report anomalous x-ray diffraction studies on Co ferrite with composition Co1.5Fe1.5O4 to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co1.5Fe1.5O4 through co-precipitation and subsequent annealing route. The imaginary part (absorption of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  8. Ordering phenomena in FeCo-films and Fe/Cr-multilayers: an X-ray and neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, B.

    2001-07-01

    The following topics are covered: critical phenomena in thin films, critical adsorption, finite size scaling, FeCo Ising model, kinematical scattering theory for thin films, FeCo thin films, growth and characterisation of single crystal FeCo thin films, X-ray study of ordering in FeCo films, antiferromagnetic coupling in Fe/Cr multilayers, neutron scattering on Fe/Cr multilayers (WL)

  9. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aryee, Dennis [Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005 (United States); Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251 (United States); Seifu, Dereje, E-mail: dereje.seifu@morgan.edu [Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251 (United States)

    2017-05-01

    Arrays of tunneling magnetoresistance (TMR) nanowires were synthesized for the first time by filling Fe/MgO/Fe inside vertically grown and substrate supported carbon nanotubes. The magnetic properties of nanowires and planar nanoscale thin films of Fe/MgO/Fe showed several similarities, such as two-fold magnetic symmetry and ratio of orbital moment to spin moment. Nanowires of Fe/MgO/Fe showed higher saturation magnetization by a factor of 2.7 compared to planar thin films of Fe/MgO/Fe at 1.5 kOe. The enhanced magnetic properties likely resulted from shape anisotropy of the nanowires and as well as the hybridization that occur between the π- electronic states of carbon and 3d-bands of the Fe-surface.

  10. First principles simulation on the K0.8Fe2Se2 high-temperature structural superconductor

    International Nuclear Information System (INIS)

    Guo, Rui; Yang, Shizhong; Khosravi, Ebrahim; Zhao, Guang-Lin; Bagayoko, Diola

    2013-01-01

    Highlights: • The superconductor K 0.8 Fe 2 Se 2 super cell size, shape, and atomic positions are fully optimized using first principles density functional theory method. • Each K atom donates 0.8 |e| with K vacancies in the supercell, each Fe atom donates 0.4 |e|, while each Se atom gains 0.7 |e| ∼ 0.8 |e|. • Fe atoms show magnetic moment fluctuation and possible strong spin-orbital coupling. -- Abstract: Since the synthesis of the first ones in 2008, iron-based high temperature superconductors have been the subject of many studies. This great interest is partly due to their higher, upper magnetic field, smaller Fermi surface around the Γ point, and a larger coherence length. This work is focused on A x Fe 2 Se 2 structural superconductor (FeSe, 11 hierarchy; A = K, Cs) as recently observed. ARPES data show novel, electronic structure and a hole-free Fermi surface which is different from previously observed Fermi surface images. We use ab initio density functional theory method to simulate the electronic structure of the novel superconductor A x Fe 2 Se 2 . We compare this electronic structure with those of other Fe-based superconductors

  11. Fabrication and magnetic properties of Fe/GaAs/Fe hybrid structures

    OpenAIRE

    Wong, P.K.J.; Zhang, W.; Zhang, W.; Wu, J.; Will, I.G.; Xu, Y.B.; Farrer, I.; Ritchie, D.A.

    2010-01-01

    In this contribution, experimental results on the fabrication and magnetic characterization of a novel type vertical Fe/GaAs(100)/Fe spin-valve (SV) spintronic device are presented. An array of techniques has been developed by combining use of ex-situ chemical and selective etching of GaAs/AlGaAs/n-GaAs epilayers and ultrahigh vacuum deposition of Fe by molecular beam epitaxy (MBE). The thinnest achievable GaAs membrane by these sequences can be as thin as 50 nm.

  12. Investigation of Magnetic Pulse Deformation of Powder Parts

    OpenAIRE

    Kolbe, M.; Mironov, V.; Shishkin, A.; Zemchenkov, V.

    2012-01-01

    Current article covers basics of powder compaction by electromagnetic impulse field and research results of sintered Fe powder part deformation process. This work is a joint research carried out by Riga Technical University (Latvia) and the Westsächsische Hochschule Zwickau (Germany).

  13. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism

    Directory of Open Access Journals (Sweden)

    Grandl Gerald

    2011-05-01

    Full Text Available Abstract Background FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2. Results We have developed a synthetic metabolic pathway in E. coli that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O2 levels eliminate growth. This pathway forms the basis for a genetic selection for O2 tolerance. Genetically selected hydrogenases did not show improved stability in O2 and in many cases had lost H2 production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer. Conclusions Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient in vivo assays to aid in the engineering of synthetic H2 metabolism. Our results also indicate a H2-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H2-activating catalysts.

  14. Molecular magnetism of a linear Fe(III)-Mn(II)-Fe(III) complex. Influence of long-range exchange interaction

    International Nuclear Information System (INIS)

    Lengen, M.; Chaudhuri, P.

    1994-01-01

    The magnetic properties of [L-Fe(III)-dmg 3 Mn(II)-Fe(III)-L] (ClO 4 ) 2 have been characterized by magnetic susceptibility, EPR, and Moessbauer studies. L represents 1,4,7-trimethyl-,1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d Fe-Mn 0.35 nm and d Fe-Fe = 0.7 nm. Magnetic susceptibility measurements (3-295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: H = J Fe-Mn (S Fe1 + S Fe2 )S Mn + J Fe-Fe S Fe1 S Fe2 + gμ B S total B. The spins S Fe1 = S Fe2 = S Mn = 5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S total = 5/2 with exchange coupling constants F Fe-Mn = 13.4 cm -1 and J Fe-Fe = 4.5 cm -1 . Magnetically split Moessbauer spectra were recorded at 1.5 K under various applied fields (20 mT, 170 mT, 4 T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A total /(g N μ N ) = -18.5 T. The corresponding local component A Fe is related to A total via spin-projection: A total = (6/7)A Fe . The resulting A Fe /(g N μ N ) -21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Moessbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies. (orig.)

  15. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.

    Science.gov (United States)

    Zheng, Dehua; Wang, Mei; Chen, Lin; Wang, Ning; Sun, Licheng

    2014-02-03

    A diiron dithiolate complex with a pendant phosphine coordinated to one of the iron centers, [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe2(CO)5}] (1), was prepared and structurally characterized. The pendant phosphine is dissociated together with a CO ligand in the presence of excess PMe3, to afford [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe(CO)2(PMe3)}2] (2). Redox reactions of 2 and related complexes were studied in detail by in situ IR spectroscopy. A series of new Fe(II)Fe(I) ([3](+) and [6](+)), Fe(II)Fe(II) ([4](2+)), and Fe(I)Fe(I) (5) complexes relevant to Hox, Hox(CO), and Hred states of the [FeFe]-hydrogenase active site were detected. Among these complexes, the molecular structures of the diferrous complex [4](2+) with the internal amine and the pendant phosphine co-coordinated to the same iron center and the triphosphine diiron complex 5 were determined by X-ray crystallography. To make a comparison, the redox reactions of an analogous complex, [(μ-SCH2)2N(CH2C6H5){Fe(CO)2(PMe3)}2] (7), were also investigated by in situ IR spectroscopy in the absence or presence of extrinsic PPh3, which has no influence on the oxidation reaction of 7. The pendant phosphine in the second coordination sphere makes the redox reaction of 2 different from that of its analogue 7.

  16. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.

    Science.gov (United States)

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  17. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  18. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  19. Moessbauer spectroscopic investigations of Fe/Mn-Fischer-Tropsch-catalysts

    International Nuclear Information System (INIS)

    Deppe, P.; Papp, H.; Rosenberg, M.

    1986-01-01

    The phase composition of Fe/Mn oxide catalysts of different compositions after 200 h of Fischer-Tropsch synthesis have been investigated by Moessbauer spectroscopy at room temperature, 77 K and 5 K. The final composition of the bulk catalysts depends strongly on the Mn content and the temperature of reduction before the synthesis. Catalytic activity and selectivity are partly correlated to this phase composition. (Auth.)

  20. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  1. Influence of chemical composition of CoFeB on tunneling magnetoresistance and microstructure in polycrystalline CoFeB/MgO/CoFeB magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsunekawa, Koji; Choi, Young-Suk; Nagamine, Yoshinori; Djayaprawira, David D.; Takeuchi, Takashi; Kitamoto, Yoshitaka

    2006-01-01

    We report, for the first time, the correlation between tunneling magnetoresistance (TMR) and the microstructure of polycrystalline CoFeB/MgO/CoFeB magnetic tunnel junctions with various Co/Fe ratios in the (CoFe) 81 B 19 reference and free layers. It is found that the Co/Fe ratio in the (CoFe) 81 B 19 reference layer strongly affects the (001) out-of-plane texture of the MgO tunnel barrier, resulting in the variation in TMR ratio. Further microstructure characterization of the magnetic tunnel junction with a higher TMR ratio and a stronger (001) out-of-plane texture in the MgO tunnel barrier reveals a grain-to-grain lattice match between the crystallized bcc CoFeB reference layer and MgO with a 45deg rotational epitaxial relationship, that is, CoFeB(001)[110]//MgO(001)[100]. (author)

  2. Fabrication and Properties of Iron-based Soft Magnetic Composites Coated with NiZnFe2O4

    Directory of Open Access Journals (Sweden)

    WU Shen

    2017-07-01

    Full Text Available This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing the sol-gel method prepared Ni-Zn ferrite particles as insulating compound to coat iron powder, and the influence of NiZnFe2O4 content and molding pressure on the magnetic properties was studied. The morphology, magnetic properties and density of Ni-Zn ferrite insulated compacts were investigated. Scanning electron microscope,line-scan EDX analysis and distribution maps show that the iron particle surface is covered with a thin layer of uniform Ni-Zn ferrites. The existing of the insulating layer can effectively improve the electrical resistivity of soft magnetic composites. Magnetic measurements show that the real part of permeability decreases with the increase of the Ni-Zn ferrite content, and the sample with 3%(mass fraction, the same below Ni-Zn ferrite has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Results show that the addition of NiZnFe2O4 can dramatically decrease the internal magnetic loss, the magnetic loss of coated samples decreases by 83.8% as compared with that of uncoated samples at 100kHz. The density of the Fe-3%NiZnFe2O4 compacts reaches 7.14g/cm3 and the saturation magnetization is 1.47T when the molding pressure is 1000MPa.

  3. A pulse synthesis of beta-FeSi sub 2 layers on silicon implanted with Fe sup + ions

    CERN Document Server

    Batalov, R I; Terukov, E I; Kudoyarova, V K; Weiser, G; Kuehne, H

    2001-01-01

    The synthesis of thin beta-FeSi sub 2 films was performed by means of the Fe sup + ion implantation into Si (100) and the following nanosecond pulsed ion treatment of implanted layer. Using the beta-FeSi sub 2 beta-FeSi sub 2 e X-ray diffraction it is shown that the pulsed ion treatment results in the generation of the mixture of two phases: FeSi and beta-FeSi sub 2 with stressed crystal lattices. The following short-time annealing leads to the total transformation of the FeSi phase into the beta-FeSi sub 2 one. The Raman scattering data prove the generation of the beta-FeSi sub 2 at the high degree of the silicon crystallinity. The experimental results of the optical absorption testify to the formation of beta-FeSi sub 2 layers and precipitates with the straight-band structure. The photoluminescence signal at lambda approx = 1.56 mu m observes up to 210 K

  4. In situ QXAFS observation of the reduction of Fe2O3 and CaFe2O4

    International Nuclear Information System (INIS)

    Kimura, Masao; Takayama, Toru; Murao, Reiko; Nomura, Masaharu; Uemura, Yohei; Asakura, Kiyotaka

    2013-01-01

    In situ QXAFS studies of the reduction of α-Fe 2 O 3 and CaFe 2 O 4 were conducted to determine their reduction kinetics and mechanisms. The reduction of α-Fe 2 O 3 involved two steps, the first being a very fast process in which Fe 3+ was reduced to Fe 2+ and the second being the reduction of Fe 2+ to Fe metal over a longer period. In contrast, the reduction of Fe in CaFe 2 O 4 was a single first-order reaction, although an induction period was clearly observed at the beginning of the reduction process. The reduction processes were successfully studied using a combination of in situ QXAFS spectra at the Ca and Fe K-edges.

  5. Presence of 60Fe in eucrite Piplia Kalan: A new perspective to the initial 60Fe/ 56Fe in the early solar system

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Sahijpal, S.; Bhandari, N.

    Fe-Ni isotope measurements of ferrous pyroxenes of the Piplia Kalan eucrite using Secondary Ion Mass Spectrometer revealed the presence of sup (60) Ni excess corresponding to the initial 60Fe/56Fe of (5.2 + or - 2.4) × 10 sup(-9). Combining...

  6. Magnetic and dielectric study of Fe-doped CdSe nanoparticles

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad

    2018-01-01

    Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.

  7. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  8. Effect of Soil Parameters on the Kinetics of the Displacement of Fe from FeEDDHA Chelates by Cu

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2012-01-01

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact

  9. A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+

    International Nuclear Information System (INIS)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru; Chan, Wing Hong

    2016-01-01

    A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+ has been designed and investigated. The probe shows an immediate visual color change in response to Fe"3"+ and Cu"2"+, while only Fe"3"+ triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe"3"+. The association constant K_a_s_s of 4.64 × 10"8 M"-"2 (R"2 = 0.994) and 5.38 × 10"8 M"-"2 (R"2 = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe"3"+ complex, respectively

  10. Determination of K shell fluorescence cross-section and Kβ/Kα intensity ratios for Fe, Se, Te, FeSe, FeTe and TeSe

    International Nuclear Information System (INIS)

    Saydam, M.; Aksoy, C.; Cengiz, E.; Alaşalvar, C.; Tıraşoğlu, E.; Apaydın, G.

    2012-01-01

    The fluorescence cross-sections (σ Ki ) and the intensity ratios K β /K α for pure Fe, Se, Te elements and FeSe, FeTe, TeSe complexes have been investigated. The samples were excited by 59.5 keV γ-rays from 241 Am annular radioactive source and emitted X-rays. They were counted by an Ultra-LEGe detector with resolution of 150 eV at 5.9 keV. For pure elements results have been compared with the theoretical calculated values. According to our results band length and mutual interaction of atoms affected the results. We claimed that these effects would help researchers who study on superconductors, especially determining which compound can be show the superconductor properties. - Highlights: ► TeSe, FeSe and FeTe complexes have affected each other in terms of charge transfer. ► Fe excitement and enhancement have been made by Se and Te. ► Attractive interactions between electrons can help to becoming superconductivity.

  11. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D., E-mail: fanxd@seu.edu.cn; Shen, B.L., E-mail: blshen@seu.edu.cn

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe{sub 86}B{sub 7}C{sub 7} alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B–H loop tracer measurements show that the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B–H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy an economical application in industry. - Highlights: • Cu addition inhibits the surface crystallization and improves the GFA. • The competitive formation of Fe{sub 3}C and α-Fe phase impedes the devitrification. • Fe{sub 85.5}B{sub 7}C{sub 6}Si{sub 1}Cu{sub 0.5} nanocrystalline alloy exhibits excellent magnetic properties. • The alloy system has an economical advantage and convenient productivity.

  12. Formation and rupture of Ca(2+) induced pectin biopolymer gels.

    Science.gov (United States)

    Basak, Rajib; Bandyopadhyay, Ranjini

    2014-10-07

    When calcium salts are added to an aqueous solution of polysaccharide pectin, ionic cross-links form between pectin chains, giving rise to a gel network in dilute solution. In this work, dynamic light scattering (DLS) is employed to study the microscopic dynamics of the fractal aggregates (flocs) that constitute the gels, while rheological measurements are carried out to study the process of gel rupture. As the calcium salt concentration is increased, DLS experiments reveal that the polydispersity of the flocs increase simultaneously with the characteristic relaxation times of the gel network. Above a critical salt concentration, the flocs become interlinked to form a reaction-limited fractal gel network. Rheological studies demonstrate that the limits of the linear rheological response and the critical stresses required to rupture these networks both decrease with the increase in salt concentration. These features indicate that the ion-mediated pectin gels studied here lie in a 'strong link' regime that is characterised by inter-floc links that are stronger than intra-floc links. A scaling analysis of the experimental data presented here demonstrates that the elasticities of the individual fractal flocs exhibit power-law dependences on the added salt concentration. We conclude that when both pectin and salt concentrations are increased, the number of fractal flocs of pectin increases simultaneously with the density of crosslinks, giving rise to very large values of the bulk elastic modulus.

  13. First-principles flocculation as the key to low energy algal biofuels processing.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O' Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi; Hu, Qiang; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton

    2012-09-01

    This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

  14. Gas phase synthesis of core-shell Fe@FeO{sub x} magnetic nanoparticles into fluids

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Sitki, E-mail: aksitki61@gmail.com; Thornton, Stuart C.; Binns, Chris [University of Leicester, Department of Physics and Astronomy (United Kingdom); Denby, Phil [Ensol As, Nesttun (Norway)

    2016-12-15

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO{sub x} nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO{sub x} nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 10{sup 4} J/m{sup 3} (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO{sub x} suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM{sup −1} s{sup −1}.

  15. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  16. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  17. Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).

    Science.gov (United States)

    Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2016-04-13

    Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.

  18. Fabrication of FeSi and Fe{sub 3}Si compounds by electron beam induced mixing of [Fe/Si]{sub 2} and [Fe{sub 3}/Si]{sub 2} multilayers grown by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Porrati, F.; Sachser, R.; Huth, M. [Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Gazzadi, G. C. [S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, 41125 Modena (Italy); Frabboni, S. [S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, 41125 Modena (Italy); FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy)

    2016-06-21

    Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO){sub 5}, and neopentasilane, Si{sub 5}H{sub 12} as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way, we are able to fabricate FeSi and Fe{sub 3}Si binary compounds from [Fe/Si]{sub 2} and [Fe{sub 3}/Si]{sub 2} multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously.

  19. Magnetic properties of Fe-oxide and (Fe, Co) oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Rodak, D.; Kroll, E.; Tsoi, G. M.; Vaishnava, P. P.; Naik, R.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Boolchand, P.

    2003-03-01

    Magnetic nanoparticles have potential applications ranging from drug delivery and imaging in the medical field to sensing and memory storage in technology. The preparation, structure, and physical properties of iron oxide-based nanoparticles synthesized by ion exchange in a polystyrene resin matrix have been investigated. Employing a synthesis method developed originally by Ziolo, et. al^1, nanoparticles were prepared in a sulfonated divinyl benzene polystyrene resin matrix using various aqueous solutions of (1) FeCl_2, (2) FeCl_3, (3) FeCl2 : 2FeCl3 , (4) 9FeCl2 : CoCl_2, and (5) 4FeCl2 : CoCl_2. Powder x-ray diffraction measurements were used to identify the phases present while transmission electron microscopy was used for particle size distribution determinations. SQUID magnetization measurements (field-cooled and zero-field-cooled) and Fe^57 Mössbauer effect measurements indicate the presence of ferromagnetic iron oxide phases and a superparamagnetic behavior with blocking temperatures (T_B) varying from 50 K to room temperature. Nanoparticles synthesized using a stoichiometric mixture of FeCl2 and FeCl3 exhibit the lowest TB and smallest particle size distribution. The Mössbauer effect measurements have also been used to identify the iron oxides phases present and their relative amounts in the nanoparticles ^1R.F. Ziolo, et al., Science 207, 219 (1992). *Permanent address: Kettering University, Flint, MI 48504

  20. (FeCo)3Si-SiOx core-shell nanoparticles fabricated in the gas phase

    International Nuclear Information System (INIS)

    Bai Jianmin; Xu Yunhao; Thomas, John; Wang Jianping

    2007-01-01

    A method of fabricating core-shell nanoparticles by using an integrated nanoparticle deposition technique in the gas phase is reported. The principle of the method is based on nanoparticle growth from the vapour phase, during which elements showing lower surface energies prefer to form the shells and elements showing higher surface energies prefer to stay in the cores. This method was applied successfully to the Fe-Co-Si ternary system to fabricate core-shell-type nanoparticles. The nanoparticles were exposed in air after collection to achieve oxidation. The analysis results based on transmission electron microscopy (TEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and a superconducting quantum interference device (SQUID) showed that the core parts are magnetic materials of body-centred cubic (bcc) structured (FeCo) 3 Si of 15 nm in diameter, and the shell parts are amorphous SiO x of 2 nm in thickness. These core-shell-type nanoparticles show a magnetic anisotropy constant of about 7 x 10 5 erg cm -3 and a saturation magnetization of around 1160 emu cm -3 , which is much higher than that of iron oxide. After annealing at 300 deg. C in air (FeCo) 3 Si-SiO x core-shell-type nanoparticles showed a little bit of a drop in magnetic moment, while pure FeCo nanopariticles totally lost their magnetic moment. This means that the shells of SiO x are dense enough to prevent the magnetic cores from oxidation

  1. Defect chemistry and oxygen transport of (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2), Sr: Part II: Oxygen transport

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    This paper is the second part of a two part series, where the effects of varying the A-site dopant on the defect chemistry and transport properties of the materials (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I......, the findings on the defect chemistry were reported, while the oxygen transport properties are reported here in part II. In the investigated material series, the amount of divalent dopant has been kept constant, while Sr ions have been substituted with Ca ions (smaller ionic radius) or Ba ions (larger ionic...... electrolyte probe were used to extract the permeability and surface resistance, rs. The highest permeability was found for (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 − δ. The apparent activation energy of the permeability was 78 kJ/mol. The inverse surface resistance, rs− 1, also had an activated behavior...

  2. Magnetism and metal insulator transition in FeSi and FeGe. Ab Initio investigations of the electronic structure; Magnetismus und Metall-Isolator-Uebergang in FeSi und FeGe. Ab-initio-Untersuchungen der elektronischen Struktur

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Matthias

    2007-03-19

    Aim of this thesis was to reach by a systematic study of different ab initio procedures an improved description of the electronic properties of FeSi and FeGe. Central result is the itinerant description of FeSi as a semiconductor in the neighbourhood of a ferromagnetic instability. The regardment of the nonlocal exchange in the effective one-particle approximation leads to a metastable magnetic state scarcely above the magnetic ground state. The application of the hybrid functional leads to a 1st order metal-isolator transition for large lattice parameters: FeSi transforms at increasement of the lattice parameter from an unmagnetic isolator to a magnetic metal. A similar behavior is found in the isostructural compound FeGe. The two systems FeSi and FeGe were systematically and detailedly analyzed by means of ab initio procedures. Thereby the structural, electronic, and magnetic properties were studied with DFT and HF calculations. Both calculations with spin polarization and without spin polarization were performed.

  3. Timing for a sustainable fertilisation of Glycine max by using HBED/Fe3+ and EDDHA/Fe3+ chelates.

    Science.gov (United States)

    Martín-Fernández, Clara; López-Rayo, Sandra; Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2017-07-01

    Efficient use of Fe chelates is crucial to avoid environmental risks and reduce economic losses. HBED/Fe 3+ has been recently approved by the European Union for soil fertilisation, but studies delving into the best timing for its application are necessary. In this work, a batch incubation experiment and two biological experiments were developed to determine the optimal physiological stage for a sustainable application of HBED/Fe 3+ in soil fertilisation compared with EDDHA/Fe 3+ fertilisers using 57 Fe. HBED/Fe 3+ demonstrated a high durability in soils and soil materials, maintaining more than 80% of Fe chelated after 70 days, and its application at an early physiological stage resulted in a high Fe accumulation in soybean and soil after 36 days. In contrast, the stability of EDDHA/Fe 3+ decreased because of the retention of its lowest stable isomers. The best timing for chelates application was confirmed in a 52 day experiment. The application of HBED/Fe 3+ at the early stage increased the Fe translocation to fruits; while o,o-EDDHA/Fe 3+ accumulated more Fe in fruits when added at the fructification stage. The high HBED/Fe 3+ stability in calcareous soil requires a differentiate application timing, and its addition at early physiological stages leads into the most efficient fertilisation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe species

    NARCIS (Netherlands)

    Zhu, Q.; Hensen, E.J.M.; Mojet, B.L.; Wolput, van J.H.M.C.; Santen, van R.A.

    2002-01-01

    Fe-oxide species in Fe/ZSM-5 (prepared by chemical vapor deposition of FeCl3)-active in N2O decomposition-react with zeolite protons during high temperature calcination to give highly active cationic Fe species, this transformation being reversible upon exposure to water vapor at lower temperature

  5. Magnetic properties of ball-milled TbFe2 and TbFe2B

    Indian Academy of Sciences (India)

    Unknown

    1. Introduction. The RFe2 (R = rare earth) Laves phase compounds are known to possess large cubic anisotropy (Clark et al 1972) and highest Curie temperature (TC) of all RT2 compounds. (T = transition metal). RFe2 ... TbFe2 and TbFe2B were prepared by arc melting the high pure elements (Tb and B, 99⋅9% purity; Fe, ...

  6. μ(4)-Orthothio-carbonato-tetra-kis-[tri-carbonyl-iron(I)](2 Fe-Fe).

    Science.gov (United States)

    Shi, Yao-Cheng; Cheng, Huan-Ren; Yuan, Li-Min; Li, Qian-Kun

    2011-11-01

    The fused bis-butterfly-shaped title compound, [Fe(4)(CS(4))(CO)(12)], possesses an orthothio-carbonate (CS(4) (4-)) ligand that acts as a bridge between two Fe(2)(CO)(6) units. A short intra-molecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S(2)Fe(2)(CO)(6) fragment.

  7. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

    Directory of Open Access Journals (Sweden)

    Laura eCeballos-Laita

    2015-03-01

    Full Text Available The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164 were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5% changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as

  8. Phase analysis of Fe-nanowires encapsulated into multi-walled carbon nanotubes via 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ruskov, T.; Spirov, I.; Ritschel, M.; Mueller, C.; Leonhardt, A.; Ruskov, R.

    2007-01-01

    We have performed morphological analysis of samples of Fe-nanowires encapsulated into aligned multi-walled carbon nanotubes (Fe-MWCNT) via 57 Fe Moessbauer spectroscopy. The aligned Fe-MWCNTs were obtained by pyrolysis of ferrocene onto an oxidized Si substrate. Transmission Moessbauer spectroscopy (TMS) and back scattered conversion electron Moessbauer spectroscopy (CEMS) were applied in order to distinguish different Fe-phases and their spatial distribution within the whole sample and along the tubes' height. A characterization (on a large spatial scale) of the aligned CNT samples were performed by obtaining TMS spectra for selected spots positioned at different locations of the sample. While the total Fe content changes considerably from one location to another, the γ-Fe/α-Fe phase ratio is constant onto a relatively large area. Using TMS and CEMS for all aligned Fe-MWCNTs samples it is also shown that along the CNT axes, going to the top of the nanotube the relative content of the γ-Fe phase increases. Going to the opposite direction, i.e. towards the silicon substrate, the relative content of the Fe 3 C phase increases, that is in agreement with our previous works. The results of an additional Moessbauer spectroscopy experiment in TMS and CEMS modes performed on a non-aligned sample support the conclusion that in our case the iron phases in the channels of carbon nanotubes are spatially separated as individual nanoparticles. The relative intensity ratio of the α-Fe phase Moessbauer sextets show good magnetic texture along nanotubes axis for one of the aligned samples and the lack of such orientation for the others. (authors)

  9. Magnetic properties of {alpha}-Fe and Fe{sub 3}C nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M U; Weissker, U; Wolny, F; Mueller, C; Loeffler, M; Muehl, T; Leonhardt, A; Buechner, B; Klingeler, R, E-mail: m.lutz@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-01-01

    The magnetic properties of single domain {alpha}-Fe and Fe{sub 3}C nanowires encapsulated within Multi Walled Carbon Nanotubes (MWNT) are investigated with a Magnetic Force Microscope (MFM). The wires are formed during the Chemical Vapour Deposition growth process, partially filling the hollow center of the MWNTs. The wires have a diameter variation of 10-60nm and can be several {mu}m long. The phase and crystal orientation of the filling relative to the long tube axis are probed by Transmission Electron Microscopy. The remanent magnetization states of the wires are investigated by MFM imaging. The {alpha}-Fe wires show shape dominated magnetization along the tube axis, whereas the FesC wires show a perpendicular magnetization imposed by magneto-crystalline anisotropy. Switching fields of {alpha}-Fe nanowires are determined by the application of an in-situ magnetic field, revealing a tip triggered magnetization reversal by localized nucleation.

  10. Calculation of exchange constants in manganese ferrite (MnFe2O4)

    International Nuclear Information System (INIS)

    Zuo Xu; Barbiellini, Bernardo; Vittoria, Carmine

    2004-01-01

    The exchange constants and electronic structure of manganese ferrite (MnFe 2 O 4 ) were calculated using Becke's density functional. The total exchange energy consists of Hartree-Fock (HF) and Becke's density functional terms. We introduced one parameter w as the weight of HF's contribution. We also introduced a parameter α to scale the radial part of the 3d wave functions of Fe 3+ ions. By varying w and α the calculated exchange constants were quantitatively fitted to the experimental values of a spinel ferrite for the first time. Direct (d-d) and indirect (d-p-d) hopping are controlled by the parameters w and α

  11. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  12. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  13. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane, E-mail: j.thielsch@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany)

    2010-10-15

    Textured composite samples consisting of Nd{sub 13.6}Fe{sub 73.6}Ga{sub 0.6}Co{sub 6.6}B{sub 5.6} (MQU-F{sup TM}) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  14. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    International Nuclear Information System (INIS)

    Thielsch, Juliane; Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver

    2010-01-01

    Textured composite samples consisting of Nd 13.6 Fe 73.6 Ga 0.6 Co 6.6 B 5.6 (MQU-F TM ) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  15. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  16. Biosorption phenomena of chromium, copper, iron and zink by dispersed bacterial extracellular polymeric substance

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty

    2015-01-01

    percentage of copper (89,44%) is the biggest result than its value for iron (88,67%) and chromium (67,54%). The atoms weight of copper (63,55) is the biggest one than for iron (56) and chromium (52) so the atom weight takes over the loading role for the first of sedimentation and coprecipitation by gravitation even though its selectivity is smallest. The next sedimentation and coprecipitation is carried out by iron and chromium using the selectivity role On the best pH 8, there are the excess of OH- ion, extracting by Cr 3+ and Fe 3+ being already on the position of EPS that creates negative charge of the floc. The cations of Cu 2+ , Fe 2+ and Zn 2+ are then attracted to the negative charge of the floc. The big size of floc is finally sedimented and then settled. (author)

  17. High saturation magnetization FeB(C) nanocapsules

    International Nuclear Information System (INIS)

    Ma, S.; Si, P.Z.; Zhang, Y.; Wu, B.; Li, Y.B.; Liu, J.J.; Feng, W.J.; Ma, X.L.; Zhang, Z.D.

    2007-01-01

    FeB(C) nanocapsules were prepared by arc-discharging Fe 80 B 20 alloy in Ar and CH 4 . X-ray diffraction and transmission electron microscopy analyses showed that the FeB(C) nanocapsules had a core-shell structure with α-Fe and Fe 3 B as cores and graphite as shells. The formation mechanism of the FeB(C) nanocapsules is discussed. The graphite shells display a strong anti-acid effect. The saturation magnetization at room temperature of the FeB(C) nanocapsules is much higher than that of Fe(B) nanocapsules. The blocking temperature of FeB(C) nanocapsules is above 300 K

  18. Enhanced antibacterial performance of Fe3O4–Ag and MnFe2O4 ...

    Indian Academy of Sciences (India)

    sity in our daily life. ... enhances the biological activity of Ag NPs, but many stud- ... against Gram-positive and Gram-negative bacteria in this ..... Antimicrobial effects of Fe3O4@Nico@Ag, Fe3O4@His@Ag and Fe3O4@HA@Ag against Fe3O4 ...

  19. Helium bubbles in bcc Fe and their interactions with irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail: X.Gai@lboro.ac.uk; Lazauskas, Tomas; Smith, Roger; Kenny, Steven D.

    2015-07-15

    The properties of helium bubbles in a body-centred cubic (bcc) Fe lattice have been examined. The atomic configurations and formation energies of different He–vacancy complexes were determined. The 0 K results show that the most energetically favourable He to Fe vacancy ratio increases from about 1:1 for approximately 5 vacancies up to about 4:1 for 36 vacancies. The formation mechanisms for small He clusters have also been considered. Isolated interstitials and small clusters can diffuse quickly through the lattice. MD simulations of randomly placed interstitial He atoms at 500 K showed clustering over the time scale of nanoseconds with He clusters containing up to 4 atoms being mobile over this time scale. He clusters containing 4 or 5 atoms were shown to eject an Fe dumbbell interstitial which could then detach from the He cluster and diffuse with the remaining He–vacancy complex being effectively immobile. Collision cascades initiated near larger bubbles showed that Fe vacancies produced by the cascades readily become part of the He–vacancy complexes. Energy barriers for He to join an existing bubble as a function of the He–vacancy ratio are also calculated. These can be larger than the diffusion barrier in the pristine lattice, but are lower when the bubbles contain excess vacancies, thus indicating that bubble growth may be kinetically constrained.

  20. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    Science.gov (United States)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  1. Efficacy of Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil.

    Science.gov (United States)

    Rojas, Carmen L; Romera, Francisco J; Alcántara, Esteban; Pérez-Vicente, Rafael; Sariego, Cristina; Garcaí-Alonso, J Ignacio; Boned, Javier; Marti, Gabriel

    2008-11-26

    The FeEDDHA [iron(3+) ethylenediamine di(o-hydroxyphenylacetic) acid] is one of the most efficient iron chelates employed in the correction of iron clorosis in calcareous soils. FeEDDHA presents different positional isomers: the ortho-ortho (o,o), the ortho-para (o,p), and the para-para (p,p). Of these isomers, the p,p cannot chelate Fe in soil solution in a wide range of pH values, while both o,o and o,p can. The objective of this work was to compare the efficiency of both isomers (o,o and o,p) to provide Fe to two Strategy I plants (tomato and peach) in nutrient solution (pH approximately 6.0), as well as in calcareous soil (pH approximately 8.4; CALCIXEREPT). For this, chelates of both o,o-EDDHA and o,p-EDDHA with 57Fe (a nonradioactive isotope of Fe) were used, where the 57Fe acts as a tracer. The results obtained showed that the o,o isomer is capable of providing sufficient Fe to plants in both nutrient solution and calcareous soil. However, the o,p isomer is capable of providing sufficient Fe to plants in nutrient solution but not in calcareous soil.

  2. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    International Nuclear Information System (INIS)

    Jiang Yonggang; Fujita, Takayuki; Uehara, Minoru; Iga, Yuki; Hashimoto, Taichi; Hao, Xiuchun; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-μm-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 μm are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: → We demonstrate the fabrication of micro-magnets using silicon molding processes. → NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 μm. → The 12-μm-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. → Magnetic structures as narrow as 20 μm are fabricated using NdFeB magnetic powder. → VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  3. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yonggang, E-mail: yonggangj@gmail.com [School of Mechanical Engineering and Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191 (China); Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Fujita, Takayuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uehara, Minoru [NEOMAX Co. Ltd., 2-15-17, Egawa, Shimamoto-Cho, Mishima-gun, Osaka 618-0013 (Japan); Iga, Yuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hashimoto, Taichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hao, Xiuchun; Higuchi, Kohei [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Maenaka, Kazusuke [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2011-11-15

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-{mu}m-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 {mu}m are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: > We demonstrate the fabrication of micro-magnets using silicon molding processes. > NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 {mu}m. > The 12-{mu}m-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. > Magnetic structures as narrow as 20 {mu}m are fabricated using NdFeB magnetic powder. > VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  4. Fabrication of α-Fe/Fe3C/Woodceramic Nanocomposite with Its Improved Microwave Absorption and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Weihong Zhou

    2018-05-01

    Full Text Available Furan resin and fir powder pretreated by FeCl3 and aqueous ammonia solution were used to fabricate α-Fe/Fe3C/woodceramic nanocomposite. The bands of the pretreated wood powder were characterized by Fourier transform infrared spectroscopy (FTIR. The structural characterization of the nanocomposites was performed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The microwave absorption of the nanocomposites was measured by a vector network analyzer in the range of 2–18 GHz. The mechanical properties of the composites were also investigated. XRD and SEM results show that the α-Fe and Fe3C nanoparticles are in-situ generated and disperse in the matrix of the woodceramic. The diameters of these nanoparticles increase with the increasing of concentration of FeCl3 solution. The experimental results show that both the complex permittivity and the complex permeability of α-Fe/Fe3C/woodceramic nanocomposites increase as the concentration of FeCl3 solution increases. The composites pretreated with 0.60 mol·L−1 FeCl3 have the best absorption properties. The maximum value of reflection loss (RL at 3 mm thickness reaches −25.60 dB at 10.16 GHz and the bandwidth below −10 dB is about 2.5 GHz. Compared to woodceramic, the bending strength and compressive strength of α-Fe/Fe3C/woodceramic nanocomposites increase by 22.5% and 18.7% at most, respectively.

  5. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  6. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  7. Magnetostrictive properties of FeAl/polyester and FeAl/silicone composites

    Energy Technology Data Exchange (ETDEWEB)

    Riesgo, G. [Dpto. de Ciencias y Técnicas de la Navegación, Universidad de Oviedo, Campus universitario de Gijón, 33203 Gijón (Spain); Carrizo, J. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Crespo, R.D. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Sepúlveda, R. [Dpto. de Ingeniería Mecánica y de los Materiales, Universidad de Sevilla, Isla Cartuja, 41092 Sevilla (Spain); García, J.A. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2017-01-15

    Highlights: • Nanocrystalline powders of FeAl have been obtained from the Fe{sub 81}Al{sub 19} ribbon produced by melt spinning. • The method allows the obtainment of a FeAl solid solution from the starting process. • The microstructure and magnetic properties of the powders were investigated. • Composites with a magnetostriction of 45 ppm have been obtained. - Abstract: Ribbons of composition Fe{sub 81}Al{sub 19} obtained by the melt spinning method have been used to yield powder by mechanical milling. Using this method, a rapid nanocrystallization and a FeAl solid solution phase was obtained from the start of the process. The microstructural and magnetic properties as well as the XRD patterns of the powders were studied in function of the milling time. Grain refinement and an increase of the coercive field were the main transformations resulting from increasing the milling time. Two sets of magnetostrictive composites were produced from the 100 h-milled powder. In one of them polyester was used as matrix and in the other one silicone. In the case of the silicone composites cured in a magnetic field of 140 mT in the longitudinal direction a saturation magnetostriction as high as 45 ppm was obtained.

  8. Fe II/Fe III mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): A DFT+U study

    Science.gov (United States)

    Combelles, C.; Ben Yahia, M.; Pedesseau, L.; Doublet, M.-L.

    The iron-based metal-organic-framework MIL53(Fe) has recently been tested as a cathode materials for Li-Ion batteries, leading to promising cycling life and rate capability. Despite a poor capacity of 70 mAh g -1 associated with the exchange of almost 0.5Li/Fe, this result is the first evidence of a reversible lithium insertion never observed in a MOF system. In the present study, the MIL53(Fe) redox mechanism is investigated through first-principles DFT+U calculations. The results show that MIL53(Fe) is a weak antiferromagnetic charge transfer insulator at T = 0 K, with iron ions in the high-spin S = 5/2 state. Its reactivity vs elemental lithium is then investigated as a function of lithium composition and distribution over the most probable Li-sites of the MOF structure. The redox mechanism is fully interpreted as a two-step insertion/conversion mechanism, associated with the stabilization of the Fe 3+/Fe 2+ mixed-valence state prior to the complete decomposition of the inorganic-organic interactions within the porous MOF architecture.

  9. Acetone sensors based on microsheet-assembled hierarchical Fe2O3 with different Fe3+ concentrations

    Science.gov (United States)

    Wang, Han; Yan, Lei; Li, Shuo; Li, Yu; Liu, Li; Du, Liting; Duan, Haojie; Cheng, Yali

    2018-02-01

    Several different morphologies of microsheet-assembled Fe2O3 have been fabricated by hydrothermal method using diverse concentrations of Fe3+ precursor solutions (0.025, 0.020, 0.015, 0.010 mol/L Fe3+). The as-synthesized materials have been characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The SEM images reflect that the morphologies of as-synthesized materials are affected by the concentrations of Fe3+ in precursor solutions. The less concentration of Fe3+, the more porous of Fe2O3 microflowers, and thinner of slices distributed on the surface. Furthermore, gas sensors based on these Fe2O3 microflowers manufactured and tested to various common gases. The optimum response value to 100 ppm acetone is 52 at the working temperature of 220 °C. Meanwhile, the Fe2O3 microflower sensors possess ultrafast response-recovery speed, which are 8 and 19 s, respectively. The possible sensing mechanism was mainly attributed to the high surface area, three-dimensional porous structure.

  10. Chemical synthesis of magnetic Fe-B and Fe-Co-B particles and chains

    International Nuclear Information System (INIS)

    Fulmer, P.; Kim, J.; Manthiram, A.; Sanchez, J.M.

    1999-04-01

    With an objective to develop magnetic materials with high saturation magnetization for the Magnetically Assisted Chemical Separation (MACS) process the chemical synthesis of Fe-B and Fe-Co-B alloys by reducing iron and cobalt chloride solutions with potassium borohydride has been investigated systematically. The influence of the concentration of the reactants, applied magnetic field, reaction atmosphere, and method of mixing the reactants on the microstructure, particle size, composition and magnetic properties has been studied. Both M-B (M = Fe and Co) particles and elongated chains composed of nanometer size M-B particles have been obtained depending on the reaction conditions. The Fe-B samples exhibit saturation magnetization of M S of 120--190 emu/g, remanent magnetization M r of 10--22 emu/g, and coercive field H c of 400--900 Oe. A high M S value of 190 emu/g, which is close to the theoretical value of 218 emu/g for pure Fe, has been achieved particularly for samples with well-defined chain structures. Increasing the Co content in the Fe-Co-B alloys increases the boron content and thereby decreases the crystallinity and M S values although marginal increase in H c (1,250 Oe) and M r (36 emu/g) values could be made in some Fe-Co-B compositions. The chain structure with high M S may be attractive for other magnetic separation processes as well

  11. Uptake and Release of Cerium During Fe-Oxide Formation and Transformation in Fe(II) Solutions

    DEFF Research Database (Denmark)

    Nedel, Sorin; Dideriksen, Knud; Christiansen, Bo C.

    2010-01-01

    Fe-oxides are ubiquitous in soils and sediments and form during Fe(0) corrosion. Depending on redox conditions and solution composition, Fe-oxides such as ferrihydrite, goethite, magnetite, and green rust (GR) may form. These phases typically have high surface area and large affinity for adsorption......(III) release. X-ray photoelectron spectroscopy revealed Ce(III) adsorbed on magnetite. When Fe-oxides were synthesized by air oxidation of Fe(II) solutions at pH 7, GR(Na,SO4) played a catalytic role in the oxidation of Ce(III) to Ce(IV) by O-2, removing more than 90% of the dissolved Ce. Transmission electron...

  12. Fe-Ti-Cr-Oxides in Martian Meteorite EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy

    Science.gov (United States)

    Wang, Alian; Kuebler, Karla E.; Jolliff, Bradley L.; Haskin, Larry A.

    2003-01-01

    Fe-Ti-Cr-Oxide minerals contain much information about rock petrogenesis and alteration. Among the most important in the petrology of common intrusive and extrusive rocks are those of the FeO-TiO2-Cr2O3 compositional system chromite, ulv spinel-magnetite, and ilmenite-hematite. These minerals retain memories of oxygen fugacity. Their exsolution into companion mineral pairs give constraints on formation temperature and cooling rate. Laser Raman spectroscopy is anticipated to be a powerful technique for characterization of materials on the surface of Mars. A Mars Microbeam Raman Spectrometer (MMRS) is under development. It combines a micro sized laser beam and an automatic point-counting mechanism, and so can detect minor minerals or weak Raman-scattering phases such as Fe- Ti-Cr-oxides in mixtures (rocks & soils), and provide information on grain size and mineral mode. Most Fe-Ti-Cr-oxides produce weaker Raman signals than those from oxyanionic minerals, e.g. carbonates, sulfates, phosphates, and silicates, partly because most of them are intrinsically weaker Raman scatters, and partly because their dark colors limit the penetration depth of the excitation laser beam (visible wavelength) and of the Raman radiation produced. The purpose of this study is to show how well the Fe-Ti-Cr-oxides can be characterized by on-surface planetary exploration using Raman spectroscopy. We studied the basic Raman features of common examples of these minerals using well-characterized individual mineral grains. The knowledge gained was then used to study the Fe-Ti-Cr-oxides in Martian meteorite EETA79001, especially effects of compositional and structural variations on their Raman features.

  13. Adsorption induced modification of in-plane magnetic anisotropy in epitaxial Co and Fe/Co films on Fe(110)

    Science.gov (United States)

    Ślezak, M.; Ślezak, T.; Matlak, K.; DróŻdŻ, P.; Korecki, J.

    2018-05-01

    A study of in-plane magnetic anisotropy (MA) in epitaxial bcc Co films and Fe/Co bilayers on a Fe(110) surface is reported. Surface MA of as-deposited Co films and Fe/Co bilayers strongly depends on the Co (dCo) and Fe (dFe) thickness. Adsorption of residual gases drastically modifies in-plane MA of both Co films and Fe/Co bilayers. We present two dimensional MA maps in the (dCo, dFe) space for both as grown and adsorption-modified films. Our results indicate how to precisely engineer in-plane MA that can be controlled by dCo, dFe and is sensitive to the residual gas adsorption.

  14. Thermodynamical properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J. A.; Bernstein, L. A.; Garrett, P. E.; Younes, W.; Guttormsen, M.; Rekstad, J.; Siem, S.; Mitchell, G. E.; Schiller, A.; Voinov, A.

    2003-01-01

    Average nuclear level densities close to the nuclear binding energy in 56Fe and 57Fe are extracted from primary γ-ray spectra. A step structure is observed in the level density for both isotopes, and is interpreted as breaking of Cooper pairs. Thermal properties of 56Fe are studied within the statistical canonical ensemble. The experimental heat capacity in 56Fe is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  15. Ab-initio study of the interfacial properties in ultrathin MgO films on O-rich FeO/Fe(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Junjin; Yu, Byungdeok [University of Seoul, Seoul (Korea, Republic of)

    2014-09-15

    Using ab-initio simulations based on density functional theory, we systematically studied the interfacial properties of MgO films on O-rich FeO/Fe(001) surfaces with increasing number of MgO layers from one to three monolayers (MLs). The structural and the adhesion properties of the MgO/FeO/Fe(001) system were assessed and compared with those of simple MgO/Fe(001) interfaces. Our calculated results showed that the adhesion energy for MgO/FeO/Fe(001) was smaller than that for simple MgO/Fe(001). An analysis of the electronic structures and the charge rearrangements of the MgO/FeO/Fe(001) interfaces was also performed. The work functions of the MgO/FeO/Fe(001) systems upon the deposition of MgO films exhibited smaller decreases (0.45 - 0.67 eV) than those (1.43 - 1.74 eV) of the MgO/Fe(001) systems. In addition, the obtained work functions (3.77 - 3.99 eV) for MgO/FeO/Fe(001) were much larger than those (2.12 - 2.43 eV) for MgO/Fe(001).

  16. Fabricating Fe3O4/Fe/Biocarbon Fibers using Cellulose Nanocrystals for High-Rate Li-ion Battery Anode

    International Nuclear Information System (INIS)

    Zhang, Shuzhen; He, Wen; Zhang, Xudong; Yang, Guihua; Ma, Jingyun; Yang, Xuena; Song, Xin

    2015-01-01

    Highlights: • Mesoporous biocarbon fibers adhered with Fe 3 O 4 /Fe nanoparticles (Fe 3 O 4 /Fe/MBCFs) are synthesized. • This method uses the natural cotton as a template and carbon source. • Fe 3 O 4 /Fe/MBCFs exhibit excellent cycling performance at higher current. - ABSTRACT: Searching the high rate Fe 3 O 4 -based materials for lithium ion batteries (LIBs) is still a great challenge. Here we tackle this problem by developing a facile and green method which uses the natural cotton as a biotemplate and a activity biocarbon source. By this new method, we synthesized the mesoporous biocarbon fibers adhered with Fe 3 O 4 /Fe nanoparticles (Fe 3 O 4 /Fe/MBCFs). Fe 3 O 4 /Fe/MBCFs are a highly stable anode material for high-rate LIBs due to its excellent cycling performance at higher current and fast charging feature. This anode shows a high reversible capacity of 472 mAh g −1 after 500 cycles and can be rapidly charge to 100% in 28.3 min. After 160 cycles at varied current densities from 1 A g −1 to 10 A g −1 , it still delivered a high discharge capacity of 524.6 mAh g −1 and an ultra-high coulombic efficiency close to 100%. This is attributed to the synergistic effects of several factors including the unique mesoporous hybrid construction, the graphitized biocarbon fibers and the chemical bonding between Fe 3 O 4 and Fe nanoparticles. This work is instructive for fabrication and design of nanostructured electrodes with extraordinary properties from biomass renewable resources

  17. Formation of hard magnetic L1{sub 0}-FePt/FePd monolayers from elemental multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Nam Hoon

    2007-06-18

    In this thesis, ordered L1{sub 0}-FePt and FePd films of different nominal compositions are prepared from Fe/Pt and Fe/Pd multilayers by annealing. In case of the L1{sub 0}-FePt films the composition of the films is modified by changing the individual elemental layer thicknesses in the multilayer precursors. This simple variation of the composition is the great advantage of the multilayer approach compared to sputtering single alloy layer from an alloy target. The formation mechanism of the fct phase from the multilayers and the microstructural properties are investigated. The characteristics of the hysteresis loop (coercivity {mu}{sub 0}H{sub c}, remanence J{sub r}) and of the intrinsic magnetic properties (anisotropy constant K{sub l}, spontaneous polarization J{sub s}, exchange constant A) of the ordered L1{sub 0}-FePt and FePd films are studied. The effects of the composition of the L1{sub 0}-FePt films on the microstructural and magnetic properties are investigated. The microstructure of these ordered L1{sub 0}-FePt films are then correlated to the magnetic properties with microstructural parameters by investigating the temperature dependence of the coercivity. (orig.)

  18. CoFeRh alloys

    International Nuclear Information System (INIS)

    Tabakovic, Ibro; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas'ko, Vlad; Kief, Mark

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl 3 , NH 4 Cl, H 3 BO 3 , CoSO 4 , FeSO 4 , saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H 3 BO 3 to the RhCl 3 -NH 4 Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH 4 Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru∼Cu. The electrodeposited Rh films obtained from NH 4 Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed

  19. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    Science.gov (United States)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  20. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Xing [School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Jia, Yong, E-mail: yjiaahedu@163.com [School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 (China)

    2016-12-15

    Highlights: • Fe-EG complex microspheres were synthesized by a hydrothermal method. • The removal properties towards Cr(VI) ions were investigated. • The adsorption and reduction mechanism was revealed by FTIR and XPS. - Abstract: Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g{sup −1} at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO{sub 4}{sup 2−} ions were partly reduced to Cr(OH){sub 3} by Fe(II) ions and the organic groups in the Fe-EG complex.

  1. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    Science.gov (United States)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe

  2. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Biagioni, P [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Rougemaille, N [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Schmid, A K [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lanzara, A [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Duo, L [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy)

    2006-10-25

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.

  3. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    International Nuclear Information System (INIS)

    Brambilla, A.; Biagioni, P.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Duo, L.; Ciccacci, F.; Finazzi, M.

    2006-01-01

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models

  4. Diffusion in ordered Fe-Si alloys

    International Nuclear Information System (INIS)

    Sepiol, B.; Vogl, G.

    1995-01-01

    The measurement of the diffusional Moessbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D0 3 structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe 3 Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe 3 Si to the iron-rich side is discussed. (orig.)

  5. The effect of temperature on primary defect formation in Ni–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengbin, E-mail: wangchengbin@sinap.ac.cn [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Wei; Ren, Cuilan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhiyuan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-02-15

    Molecular dynamics (MD) simulations have been used to study the influence of temperature on defect generation and evolution in nickel and Ni–Fe alloy (with 15% and 50% Fe content) with a 10-keV primary knock-on atom (PKA) at six different temperatures from 0 to 1500 K. The recently available Ni–Fe potential is used with its repulsive part modified by Vörtler. The temporal evolution and temperature dependence of stable defect formation and in-cascade clustering processes are analysed. The number of stable defect and the interstitial clustering fraction are found to increase with temperature whereas the vacancy clustering fraction decreases with temperature. The alloy composition dependence of the stable defect number is also found for the PKA energy considered here. Additionally, a study of the temperature influence on the cluster size distribution is performed, revealing a systematic change in the cluster size distributions, with higher temperature cascades producing larger interstitial clusters.

  6. Microstructure and magnetic properties of nanocomposite FePt/MgO and FePt/Ag films

    International Nuclear Information System (INIS)

    Chen, S.C.; Kuo, P.C.; Sun, A.C.; Chou, C.Y.; Fang, Y.H.; Wu, T.H.

    2006-01-01

    An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (H c- parallel ) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film

  7. The thermal evolution of Mercury's Fe-Si core

    Science.gov (United States)

    Knibbe, Jurriën Sebastiaan; van Westrenen, Wim

    2018-01-01

    We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.

  8. Distribution of inorganic arsenic species in groundwater from Central-West Part of Santa Fe Province, Argentina

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Brusa, Lucila; Beldoménico, Horacio; Tudino, Mabel

    2013-01-01

    Highlights: • Study on inorganic arsenic species in groundwater for drinking in Santa Fe Argentina. • This information is currently scarce or absent in the region. • An analytical methodology based on SPE-FI-HGAAS coupling was used for speciation. • Information is given for a more accurate interpretation of the toxicological impact. - Abstract: The distribution of inorganic arsenic species in groundwater used as drinking water supply by the peri-urban and rural population from central-western area of Santa Fe Province, Argentina, was studied. An analytical methodology based on an online system of atomic absorption spectrometry with hydride generation and flow injection (FI-HGAAS) was used for total inorganic arsenic determination. For speciation purposes, the distinction between As(V) and As(III) was performed through the on line coupling of FI-HGAAS to a solid phase system based on an anionic exchanger able to retain As(V) as oxyanion, allowing As(III) to be selectively determined. The concentration of As(V) was calculated as the difference between total arsenic and As(III) concentrations. Effects of matrix interference due to the nonselective behavior of the exchange resins were carefully laid. Results for 59 samples collected from 27 localities showed an almost exclusive predominance of pentavalent forms

  9. Fe magnetic moment formation and exchange interaction in Fe{sub 2}P: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.B., E-mail: liuxubo@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ping Liu, J.; Zhang, Qiming [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altounian, Z. [Center for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2013-03-15

    Electronic structure and magnetic properties of Fe{sub 2}P have been studied by a first-principles density functional theory calculation. The ground state is ferromagnetic and the calculated magnetic moments for Fe{sub 1} (3f) and Fe{sub 2} (3g) are 0.83 and 2.30μ{sub B}, respectively. The nearest neighbor inter-site magnetic exchange coupling parameter at the Fe{sub 1} layer (0.02 mRy) is much smaller than that at the Fe{sub 2} layer (1.29 mRy). The Fe moment at the 3f site is metastable and sensitive to the inter-site exchange interaction with its magnetic neighbors, which is responsible for the first order magnetic transition and large magneto-caloric effect around T{sub C}.

  10. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.

    Science.gov (United States)

    Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan

    2013-06-06

    Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.

  11. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Souvik [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Nguyen, Thuy-Ai D. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Gan, Lu [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Jones, Anne K. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA

    2015-01-01

    Peptide based models for [FeFe]-hydrogenase were synthesized utilizing unnatural phosphine-amino acids and their electrocatalytic properties were investigated in mixed aqueous-organic solvents.

  12. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NARCIS (Netherlands)

    Grift, B. van der; Behrends, T.; Osté, L.A.; Schot, P.P.; Wassen, M.J.; Griffioen, J.

    2016-01-01

    Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction

  13. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NARCIS (Netherlands)

    van der Grift, B.; Behrends, T.; Osté, L.A.; Schot, P.P.; Wassen, M.J.; Griffioen, J.

    2016-01-01

    Abstract Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition,

  14. Mechanism of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4}: A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Virender K., E-mail: vsharma@sph.tamhsc.edu [Texas A& M University, Department of Environmental and Occupational Health, School of Public Health (United States); Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science (Czech Republic)

    2016-12-15

    This paper presents thermal decomposition of potassium ferrate(VI) (K{sub 2}FeO{sub 4}) and barium ferrate(VI) (BaFeO{sub 4}) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe {sup V} and Fe {sup IV} as intermediate iron species using the applied techniques are given. Thermal decomposition of K{sub 2}FeO{sub 4} involved Fe {sup V}, Fe {sup IV}, and K{sub 3}FeO{sub 3} as intermediate species while BaFeO{sub 3} (i.e. Fe {sup IV}) was the only intermediate species during the decomposition of BaFeO{sub 4}. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4} under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  15. Adsorption of As(V) from water using Mg-Fe-based hydrotalcite (FeHT)

    Energy Technology Data Exchange (ETDEWEB)

    Tuerk, T. [Mineral Processing Division, Department of Mining Engineering, Karadeniz Technical University, 61080 Trabzon (Turkey); Alp, I., E-mail: ialp@ktu.edu.tr [Mineral Processing Division, Department of Mining Engineering, Karadeniz Technical University, 61080 Trabzon (Turkey); Deveci, H. [Mineral Processing Division, Department of Mining Engineering, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2009-11-15

    This paper describes a study of the sorptive removal of arsenate (As(V)) from aqueous solutions by synthetically prepared Mg-Fe-based hydrotalcites (FeHT) as layered double hydroxide (LDH) adsorbents. The synthesis of Fe{sup 3+}-substituted hydrotalcites (FeHT) with the chemical formula [Mg(II){sub 6}Fe(III){sub 2}(OH){sub 16}]{sup 2+}[CO{sub 3} x yH{sub 2}O]{sup 2-} was achieved by a co-precipitation method. The reaction products were characterized by powder X-ray diffraction analysis. The influences of solution pH, initial arsenate (As(V)) concentration, and sorbent concentration were investigated in multiple kinetic runs. The adsorption rates and isotherms were investigated in batch experiments. The pseudo-first-order and second-order kinetic models were tested and the latter was found to fit better to the experimental data. Langmuir and Freundlich isotherms were used to describe the adsorption data from equilibrium experiments. The results have shown that FeHT has a high arsenate removal efficiency, with the ability to reduce the concentration of arsenate in the aqueous solution from an initial value of 330 {mu}g/l to <10 {mu}g/l (i.e. below the limit value specified by WHO).

  16. Electrical conduction of glasses in the system Fe2O3-Sb2O3-TeO2; Fe2O3-Sb2O3-TeO2 kei garasu no denki dendo

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Honghua; Mori, H; Sakata, H; Hirayama, T [Tokai Univ., Tokyo (Japan). Faculty of Engineering

    1995-01-01

    In this study, taking into consideration that TeO2 is a component of the glass network and Sb2O3 shows the redox effect in the glasses reducing its possibility of transformation of Sb{sup 3+} to Sb{sup 5+} as well as glass basicity, highly conductive tellurite based glasses have been prepared by the press-quenching method selecting the Fe2O3-Sb2O3-TeO2 system, and the electroconductive mechanism of the glasses has been examined by measuring its D.C. conductivity {sigma}. Part of the obtained information is as follows; the glass formation range of the Fe2O3-Sb2O3-TeO2 system has been 0 {le} Fe2O3 {le} 15mol%, 0 {le} Sb2O3 {le} 18mol% and 78 {le} TeO2 {le} 100mol% and about 15mol% of the additional amount of Fe2O3 has been the limit of glass formation. As the amount of Fe2O3 has increased, C{sub Fe} has also increased and with this, the linear electroconductivity of the glasses has increased from 1.86 {times} 10{sup -7}S{center_dot}cm{sup -1} to 1.62 {times} 10{sup -6}S{center_dot}cm{sup -1} and the glasses have been confirmed as the n-type semiconductor. The factor determining {sigma} of the glasses has been C{sub Fe} which has increased as the amount of Fe2O3 has increased. 34 refs., 8 figs., 2 tabs.

  17. Distribution of iron cations in natural chromites at different stages of oxidation: a {sup 57}Fe Moessbauer investigation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Tapan; Mitra, Sachinath [Jadavpur Univ., Calcutta (India). Dept. of Geological Sciences; Moon, Hi-Soo [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Geology

    1994-07-01

    {sup 57}Fe Moessbauer spectroscopic investigation of natural chromites from two chromite deposits of India (Sukinda and Byrapur) documents partly inverse spinel structure arising out of oxidation. The spectral fitting was based on allowing a disordering distribution of Fe{sup 2+} and Fe{sup 3+} ions at tetrahedral (A) and octahedral (B) sites. Moessbauer investigation of the samples taken from the physico-chemically distinct two horizons of Sukinda viz. brown ore and grey ores, and Byrapur area revealed three types of iron ion distribution as: Fe{sup 2+}(A), Fe{sup 3+}(A) and Fe{sup 2+}(B) (GC-group); (b)Fe{sup 3+}(A{sub 1}), Fe{sup 3+}(A{sub 2}) and Fe{sup 2+}(B) (BC-2 group), and (c) Fe{sup 3+}(A{sub 1}), Fe{sup 3+}(B) (BC-1 group). The distribution pattern of iron cations at A and B sites was linked to the degree of oxidation. These stages of oxidation could be modelled from normal to inverse form. A model suggesting `electron localisation` at the B-sites makes the intermediate stage. Iron site occupancy determined by Moessbauer spectroscopy of the presently studied samples indicates that these fall under three groups of oxidation stages. An early stage of oxidation is shown by samples of group GC, intermediate stage by group BC-2 and final stage by BC-1 group of chromite samples. The imprint of progressive oxidation manifested by Fe cation site occupancy has been correlated with the Fe{sup 2+}/{Sigma}Fe ratios, obtained for each group of samples. (author). 39 refs., 2 figs., 3 tabs.

  18. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  19. Probing Fe (III)/Fe (II) redox potential in a clayey material

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Chainet, Fabien; Betelu, Stephanie; Hadi, Jebril; Gaucher, Eric C.; Ignatiadis, Ioannis; Greneche, Jean-Marc; Charlet, Laurent

    2010-01-01

    Document available in extended abstract form only. Redox is one of the main factors affecting the migration of redox-sensitive radionuclides. As a consequence reducing conditions are considered of strategic importance for the confinement properties of a clayey formation towards nuclear waste. A representative redox potential of clay formation such as Callovian- Oxfordian (COx) can be derived from thermodynamic calculations considering equilibrium between observed redox phases such as pyrite and siderite. However, there is little information on the reactivity of the different reservoirs of redox constituents in this type of complex material. The present study aims at investigating the reactivity of the Fe(III)/Fe(II) redox couple in the structure of clay minerals using different investigation methods: electrochemistry and O 2 reduction kinetic experiments. Clay modified electrodes were specifically designed to probe Fe(III)/Fe(II) redox potential in the structure of clay minerals. The clay fraction of a Callovian-Oxfordian argillite sample originating from the same level than ANDRA underground research laboratory was used after pre-treatment to remove organic matter and accessory minerals such as pyrite that could influence redox potential measurements. These electrodes were used to verify the validity of the model of Favre et al. (2006) that links the redox potential (E clay ) to the the Fe(II)/Fe tot ratio in the structure (m rel ), the pH and the sodium concentration in solution: equation 1. The good agreement between direct potential measurements and model prediction provides a strong evidence of the relevance of this model in our experimental conditions although the clay composition and its too low Fe content do not a priori fulfil the conditions set by Drits and Manceau (2000) for the calculation of K 0 parameter. Following the verification of the model, we tried to apply it to the specific case of a Callovian-Oxfordian sample that had been very well preserved

  20. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application

    International Nuclear Information System (INIS)

    Wen, Y.H.; Zhang, H.M.; Qian, P.; Zhou, H.T.; Zhao, P.; Yi, B.L.; Yang, Y.S.

    2006-01-01

    The electrochemical behavior of the Fe(III)/Fe(II)-triethanolamine(TEA) complex redox couple in alkaline medium and influence of the concentration of TEA were investigated. A change of the concentration of TEA mainly produces the following two results. (1) With an increase of the concentration of TEA, the solubility of the Fe(III)-TEA can be increased to 0.6 M, and the solubility of the Fe(II)-TEA is up to 0.4 M. (2) In high concentration of TEA with the ratio of TEA to NaOH ranging from 1 to 6, side reaction peaks on the cathodic main reaction of the Fe(III)-TEA complex at low scan rate can be minimized. The electrode process of Fe(III)-TEA/Fe(II)-TEA is electrochemically reversible with higher reaction rate constant than the uncomplexed species. Constant current charge-discharge shows that applying anodic active materials of relatively high concentrations facilitates the improvement of cell performance. The open-circuit voltage of the Fe-TEA/Br 2 cell with the Fe(III)-TEA of 0.4 M, after full charging, is nearly 2.0 V and is about 32% higher than that of the all-vanadium batteries, together with the energy efficiency of approximately 70%. The preliminary exploration shows that the Fe(III)-TEA/Fe(II)-TEA couple is electrochemically promising as negative redox couple for redox flow battery (RFB) application

  1. Electronic structures and magnetism of CaFeAsH and CaFeAsF

    International Nuclear Information System (INIS)

    Wang Guangtao; Shi Xianbiao; Liu Haipeng; Liu Qingbo

    2015-01-01

    We studied the electronic structures, magnetism, and Fermi surface (FS) nesting of CaFeAsH and CaFeAsF by first-principles calculations. In the nonmagnetic (NM) states, we found strong FS nesting, which induces magnetic instability and a spin density wave (SDW). Our calculations indicate that the ground state of CaFeAsH and CaFeAsF is the stripe antiferromagnetic state. The calculated bare susceptibility χ 0 (q) peaked at the M-point and was clearly suppressed and became slightly incommensurate with both electron doping and hole doping for both materials. (author)

  2. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers.

    Science.gov (United States)

    Bachmeier, Andreas; Esselborn, Julian; Hexter, Suzannah V; Krämer, Tobias; Klein, Kathrin; Happe, Thomas; McGrady, John E; Myers, William K; Armstrong, Fraser A

    2015-04-29

    Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.

  3. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    Science.gov (United States)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  4. {sup 57}Fe Mössbauer spectroscopic studies of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yuu, E-mail: tsuchiya.yuu1990@gmail.com; Ikeda, Shugo; Kobayashi, Hisao [University of Hyogo (Japan)

    2016-12-15

    We have investigated the physical properties of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2} samples using {sup 57}Fe Mössbauer spectroscopy. The observed {sup 57}Fe Mössbauer spectra were reconstructed using a major antiferromagnetic ordered K{sub 2}Fe{sub 4}Se{sub 5} phase and a minor paramagnetic phase down to 5 K, despite being superconducting below 32.2 K in K{sub x}Fe{sub 2-y}Se{sub 2}. The analysis of {sup 57}Fe Mössbauer spectrum for K{sub x}Fe{sub 2-y}S{sub 2} at 290 K confirms the presence of a major antiferromagnetic ordered K{sub 2}Fe{sub 4}S{sub 5} phase and a minor paramagnetic phase in the K{sub x}Fe{sub 2-y}S{sub 2} single crystal. The derived hyperfine interaction parameters of the paramagnetic phase in K{sub x}Fe{sub 2-y}S{sub 2} suggest that the microstructure of this phase in K{sub x}Fe{sub 2-y}S{sub 2} is similar to that of the superconducting phase in K{sub x}Fe{sub 2-y}Se{sub 2} although the K{sub x}Fe{sub 2-y}S{sub 2} single crystals exhibit no superconductivity down to 5 K.

  5. Texturing for bulk α-Fe/Nd2Fe14B nanocomposites with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Lou, L.; Hou, F.C.; Wang, Y.N.; Cheng, Y.; Li, H.L.; Li, W.; Guo, D.F.; Li, X.H.; Zhang, X.Y.

    2014-01-01

    In the present study, the texturing of bulk α-Fe/Nd 2 Fe 14 B nanocomposites produced from Nd-lean amorphous Nd x Fe 92.5−x Cu 1.5 B 6 (x=9 to 11.5 at%) via a hot deformation under a uniaxial stress of ∼350 MPa at 973 K has been studied. An enhanced (00l) texture of the hard phase is observed with increasing Nd content, which results in an increase in the magnetic anisotropy of the nanocomposite magnets. As a result, both the coercivity and the remanence of the magnets increase simultaneously with increasing Nd content from x=9–11.5 at%, yielding a significant enhancement of the maximum energy product from (BH) max =13.2 to 17.5 MGOe in the direction parallel to stress axis. - Highlights: • Textured bulk α-Fe/Nd 2 Fe 14 B nanocomposites have been produced from Nd-lean alloys. • Nd content has an effect on the texturing of α-Fe/Nd 2 Fe 14 B nanocomposite magnets. • An enhanced (00l) texture of hard phase is observed with increasing Nd content. • Both the coercivity and remanence increase simultaneously with Nd content

  6. Magnetism of cyano-bridged Ln3+-M3+ complexes. Part II: one-dimensional complexes (Ln3+ = Eu, Tb, Dy, Ho, Er, Tm; M3+ = Fe or Co) with bpy as blocking ligand.

    Science.gov (United States)

    Figuerola, Albert; Ribas, Joan; Casanova, David; Maestro, Miguel; Alvarez, Santiago; Diaz, Carmen

    2005-10-03

    The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to 13 one-dimensional complexes: trans-[M(CN)4(mu-CN)2Ln(H2O)4(bpy)]n.4nH2O.1.5nbpy (Ln = Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Lu3+; M = Fe3+, Co3+). The structures for [EuFe]n (1), [TbFe]n (2), [DyFe]n (3), [HoFe]n (4), [ErFe]n (5), [TmFe]n (6), [LuFe]n (7), [EuCo]n (8), [TbCo]n (9), [DyCo]n (10), [HoCo]n (11), [ErCo]n (12), and [TmCo]n (13) have been solved: they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular architecture created by the interplay of coordinative, hydrogen bonding, and pi-pi interactions. A stereochemical study of the eight-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. The Ln3+-Fe3+ interaction is antiferromagnetic in [DyFe]n and [TbFe]n. For [EuFe]n, [HoFe]n, [ErFe]n, and [TmFe]n, there is no sign of any significant interaction. The magnetic behavior of [DyFe]n suggests the onset of weak long-range ferromagnetic ordering at 2.5 K.

  7. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  8. Use of Fe(III) oxalate for oxidativewastewater treatment; Einsatz von Fe(III)-Oxalat zur chemisch-oxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Vogelpohl, A. [Clausthal Univ., Clausthal-Zellerfeld (Germany). Inst. fuer Thermische Verfahrenstechnik

    1998-08-01

    Iron(III)-oxalate was used as an iron catalyst for the Photo Fenton reaction. Iron(III) oxalations ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) are reduced to Fe(II) by irradiation using near UV-light ({lambda} = 300 - 400 nm) or visible light ({lambda} > 400 nm). At the same time, CO{sub 2}{sup -} or C{sub 2}O{sub 4}{sup -}-radicals originate, which cause the secondary reduction of Fe(III) to Fe(II). By means of the photolytically regenerated Fe(II) ions, hydroxyl radicals are increasingly formed, so that the degradation of organic substances is accelerated. The work aimed to assess the catalytic effect of Fe(III) oxalate for photochemical oxidation processes and to establish the parameters influencing further treatment of leachate from a municipal waste sanitary landfill by means of technical-scale experiments. (orig.) [Deutsch] In der vorliegenden Arbeit wurde Eisen(III)-Oxalat als Eisenkatalysator fuer die Photo-Fenton-Reaktion eingesetzt. Eisen(III)-Oxalationen ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) werden durch Strahlung mit nahem UV-Licht ({lambda}=300 bis 400 nm) oder mit sichtbarem Licht ({lambda}>400 nm) zu Fe(II) reduziert. Gleichzeitig entstehen CO{sub 2}{sup .-} oder C{sub 2}O{sub 4}{sup .-}-Radikale, die eine sekundaere Reduktion von Fe(III) zu Fe(II) bewirken. Mit Hilfe der photolytiisch regenerierten Fe(II)-Ionen werden vermehrt Hydroxylradikale gebildet und damit die Abbaugeschwindigkeit der organischen Substanzen beschleunigt. Ziel der hier vorgestellten Arbeit war es, die katalytische Wirkung von Fe(III)-Oxalat fuer photochemische Oxidationsverfahren abzuschaetzen und die Einflussparameter zur weitergehenden Behandlung eines Deponiesickerwassers aus Hausmuelldeponie anhand von Technikumsversuchen zu ermitteln. (orig.)

  9. Design and Micromagnetic Simulation of Fe/L10-FePt/Fe Trilayer for Exchange Coupled Composite Bit Patterned Media at Ultrahigh Areal Density

    Directory of Open Access Journals (Sweden)

    Warunee Tipcharoen

    2015-01-01

    Full Text Available Exchange coupled composite bit patterned media (ECC-BPM are one candidate to solve the trilemma issues, overcome superparamagnetic limitations, and obtain ultrahigh areal density. In this work, the ECC continuous media and ECC-BPM of Fe/L10-FePt/Fe trilayer schemes are proposed and investigated based on the Landau-Lifshitz-Gilbert equation. The switching field, Hsw, of the hard phase in the proposed continuous ECC trilayer media structure is reduced below the maximum write head field at interlayer exchange coupling between hard and soft phases, Aex, higher than 20 pJ/m and its value is lower than that for continuous L10-FePt single layer media and L10-FePt/Fe bilayer. Furthermore, the Hsw of the proposed ECC-BPM is lower than the maximum write head field with exchange coupling coefficient between neighboring dots of 5 pJ/m and Aex over 10 pJ/m. Therefore, the proposed ECC-BPM trilayer has the highest potential and is suitable for ultrahigh areal density magnetic recording technology at ultrahigh areal density. The results of this work may be gainful idea for nanopatterning in magnetic media nanotechnology.

  10. Physical conditions in CaFe interstellar clouds

    OpenAIRE

    Gnacinski, P.; Krogulec, M.

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.

  11. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  12. Reduction under hydrogen of ferrite MFe{sub 2}O{sub 4} (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe{sub 2}, Fe and Ni{sub 3}Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ballot, N.; Schoenstein, F.; Mercone, S.; Chauveau, T.; Brinza, O. [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France); Jouini, N., E-mail: jouini@univ-paris13.fr [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Spinels nano-particles MFe{sub 2}O{sub 4} (M: Co, Fe or Ni) are obtained by hydrolysis in polyol medium. Black-Right-Pointing-Pointer Gentle reduction under hydrogen flow of spinel nano-particles yields metal and alloy nanoparticles. Black-Right-Pointing-Pointer TEM and X-ray analysis show that CoFe{sub 2}, Fe and Ni{sub 3}Fe nano-particles are monocrystalline particles with size less than 160 nm. Black-Right-Pointing-Pointer Iron with size of 150 nm presents ferromagnetic behavior. Black-Right-Pointing-Pointer CoFe{sub 2} alloy with size of 55 nm could be considered as a superparamagnetic material. - Abstract: A novel method to process metal and various alloy particles of nanometric size is described. The first step consists in the elaboration of MFe{sub 2}O{sub 4} (M: Fe, Ni or Co) spinel nanoparticles in polyol medium via hydrolysis and the second one in gently reducing these latter under hydrogen at 300 Degree-Sign C. X-ray diffraction analysis shows that pure Fe and CoFe{sub 2} alloy are well obtained by reducing Fe{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4}, respectively. This is not the case when we try to reduce NiFe{sub 2}O{sub 4}. A mixture of Fe and Ni{sub 3}Fe is observed. TEM analysis reveals that the size of metal particles stays within the range of a few tenths of nm up to 150 nm, while the precursors (MFe{sub 2}O{sub 4}) never exceed 5 nm. Our results show that the formation of metal particles occurs via two main steps: (i) reduction of the spinel oxide nanoparticles into metal ones and (ii) aggregation of the latter, leading to larger metal nanoparticles. Magnetic measurements indicate that the as-obtained metallic materials have good magnetic properties mainly affected by the sizes of the nanoparticles and the purity of the reduced phases.

  13. Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts

    DEFF Research Database (Denmark)

    Häggblad, Robert; Wagner, Jakob Birkedal; Hansen, Staffan

    2008-01-01

    A series of triclinic Fe1−xAlxVO4 phases with 0x1 were prepared and used in the oxidation of methanol to formaldehyde. The activity measurements revealed that both the activity and especially the selectivity to formaldehyde increased with time of operation for at least 16 h, indicating...... restructuring of the catalysts. Characterisation of the catalysts with XRD, XANES, and electron microscopy after use in methanol oxidation showed that the stability of the bulk phases improved when Al was substituted for Fe in the structure. XRD and XANES of the used FeVO4 showed that it partly transformed...... in methanol oxidation revealed no significant change in the metal composition, in good agreement with the corresponding bulk values, except for a lower Fe value. Steady-state activity data showed a modest increase in specific activity with the Al content, whereas the selectivity to formaldehyde was about 90...

  14. Part 6: Modelling of simultaneous chemical-biological P removal ...

    African Journals Online (AJOL)

    drinie

    approaches taken in modelling the chemical P removal processes. In the literature .... to 2 mgP/l) for an iron dose of ~1 to 10 mg/l as Fe - refer to dashed line in Fig. 1). ...... systems exhibiting biological enhanced phosphate removal. Part 3:.

  15. CoFeRh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tabakovic, Ibro [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)], E-mail: ibro.m.tabakovic@seagate.com; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas' ko, Vlad; Kief, Mark [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl{sub 3}, NH{sub 4}Cl, H{sub 3}BO{sub 3}, CoSO{sub 4}, FeSO{sub 4}, saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H{sub 3}BO{sub 3} to the RhCl{sub 3}-NH{sub 4}Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH{sub 4}Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru{approx}Cu. The electrodeposited Rh films obtained from NH{sub 4}Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed.

  16. Synthesis, characterization, and comparative gas-sensing properties of Fe{sub 2}O{sub 3} prepared from Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}-chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc [Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Hoa, Tran Thai; Khieu, Dinh Quang [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Lam, Tran Dai [Institute of Materials Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We have demonstrated a facile method to prepare Fe{sub 3}O{sub 4} nanoparticles and chitosan-coated Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer {alpha}-Fe{sub 2}O{sub 3} sensors prepared from those Fe{sub 3}O{sub 4} materials have been investigated and compared. Black-Right-Pointing-Pointer The results show potential application of {alpha}-Fe{sub 2}O{sub 3} for CO sensors in environmental monitoring. - Abstract: In this paper, Fe{sub 3}O{sub 4} and chitosan (CS)-coated Fe{sub 3}O{sub 4} nanoparticles were synthesized via co-precipitation method and subsequent covalent binding of CS onto the surface for functionalization, respectively. Characterization of the crystal structures and morphologies of as-synthesized nanoparticles by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy demonstrated that Fe{sub 3}O{sub 4} had a cubic spinal structure with irregular shapes and average diameters of 10-20 nm. The surface states and magnetic properties of Fe{sub 3}O{sub 4}-CS nanoparticles were characterized by Fourier transform infrared spectra and vibrating sample magnetometry. Results showed that Fe{sub 3}O{sub 4}-CS nanoparticles possessed super-paramagnetic properties, with saturated magnetization up to 60 emu/g. In addition, Fe{sub 3}O{sub 4} and CS-coated Fe{sub 3}O{sub 4} nanoparticles were used in the fabrication of {alpha}-Fe{sub 2}O{sub 3} based gas sensors. Gas sensing measurements revealed that the {alpha}-Fe{sub 2}O{sub 3} gas sensor prepared from Fe{sub 3}O{sub 4}-CS had a better response to H{sub 2}, CO, C{sub 2}H{sub 5}OH, and NH{sub 3} compared with the device prepared from pristine Fe{sub 3}O{sub 4}. Furthermore, the {alpha}-Fe{sub 2}O{sub 3} sensor prepared from Fe{sub 3}O{sub 4}-CS nanoparticles exhibited the highest response to CO among the test gases, suggesting that it has great potential for practical applications in environmental monitoring.

  17. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    Science.gov (United States)

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    Science.gov (United States)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  19. Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions

    KAUST Repository

    Dolui, Kapildeb

    2014-07-02

    We demonstrate giant magnetoresistance in Fe/MoS2/Fe junctions by means of ab initio transport calculations. We show that junctions incorporating either a monolayer or a bilayer of MoS2 are metallic and that Fe acts as an efficient spin injector into MoS2 with an efficiency of about 45%. This is the result of the strong coupling between the Fe and S atoms at the interface. For junctions of greater thickness, a maximum magnetoresistance of ∼300% is obtained, which remains robust with the applied bias as long as transport is in the tunneling limit. A general recipe for improving the magnetoresistance in spin valves incorporating layered transition metal dichalcogenides is proposed. © 2014 American Physical Society.

  20. Improvement of magnetic properties of Fe-50mass%Ni in MIM process; MIM process ni okeru Fe-50mass%Ni no jiki tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Miura, H. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering; Fujita, S. [Kumamoto University, Kumamoto (Japan); Fujita, M.; Ninomiya, R. [Mitsuikinzoku Co. Ltd., Tokyo (Japan)

    2000-12-15

    Metal injection molding (MIM) process is hoped to be one of processing for required to more complicated parts of magnetic components. In this study, the effect of different types of powders (prealloyed and mixed elemental powders) on the magnetic properties of permalloy (Fe-50mass%Ni) through the MIM technique was investigated. Approximately 94% of theoretical density was obtained by using the prealloyed powder, and the retained carbon and oxygen contents were controlled to be low. On the other hand, 96% of theoretical density was obtained by using the mixed elemental powder, but the magnetic properties were inferior to that of prealloyed powder's because of high retained oxygen content. By using the carbonyl Fe powder with high carbon, the retained oxygen and carbon content could be controlled to be low, resulting in the improved magnetic properties. (author)

  1. Thermodynamic study of NaFe complex oxides. High temperature properties of Na sub 5 FeO sub 4 and Na sub 3 FeO sub 3

    CERN Document Server

    Furukawa, T

    2002-01-01

    In order to contribute the investigation into corrosion mechanism of the structural materials by leakage sodium, thermodynamic study of Na-Fe complex oxides formed by the reactions was carried out. Na sub 5 FeO sub 4 and Na sub 3 FeO sub 3 were used as the sample. Its high temperature properties (i.e. melting, solidification and transformation) were observed by Differential Scanning Calorimetry, DSC. Moreover, the original test named 'melting point confirmation test' was performed for the observation of traces of melting and solidification after the tests. Following contents have been obtained by this study. (1) Na sub 5 FeO sub 4 was stably as the solid without phase transformation and melting until 800degC. However, the compound was showing a tendency to change into Na sub 4 FeO sub 3 with temperature increasing under the low oxygen potential. (2) The stability of Na sub 3 FeO sub 3 is the same as that of Na sub 5 FeO sub 4 until 700degC. Over the temperature, the compound was changed differential compound ...

  2. Effect of Fe on the phases and microstructure of TiC-Fe cermets by combustion synthesis/quasi-isostatic pressing

    International Nuclear Information System (INIS)

    Zhang Weifang; Zhang Xinghong; Wang Jianli; Hong Changqing

    2004-01-01

    Fully dense TiC-Fe cermets (x = 10, 20, 30, and 40 wt.%) were produced from Ti-C-Fe powder mixtures by combustion synthesis with quasi-isostatic pressing. The effect of Fe content on combustion temperature, combustion wave velocity, and final product density was investigated. The final product was characterized by XRD, SEM, and TEM. The combustion temperature and wave velocity decreased with increasing Fe content. Product density increased with increasing Fe content (96% at 30 wt.%). X-ray diffraction and transmission electron microscopy (TEM) revealed the final product to contain TiC, Fe phases, lath martensite, and Fe 2 Ti. The TiC particle size decreased with increasing Fe content. In addition, a low density of dislocations was observed in both the TiC particles and Fe binder, indicative of annealing and recrystallization, respectively

  3. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  4. Study of structural, electronic and magnetic properties of CoFeIn and Co2FeIn Heusler alloys

    International Nuclear Information System (INIS)

    El Amine Monir, M.; Khenata, R.; Baltache, H.; Murtaza, G.; Abu-Jafar, M.S.; Bouhemadou, A.; Bin Omran, S.

    2015-01-01

    The structural, electronic and magnetic properties of half-Heusler CoFeIn and full-Heusler Co 2 FeIn alloys have been investigated by using the state of the art full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA) for the calculation of the structural properties, whereas the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) is applied for the computation of the electronic and magnetic properties in order to treat the “d” electrons. The structural properties have been calculated in the paramagnetic and ferromagnetic phases where we have found that both the CoFeIn and Co 2 FeIn alloys have a stable ferromagnetic phase. The obtained results of the spin-polarized band structure and the density of states show that the CoFeIn alloy is a metal and the Co 2 FeIn alloy has a complete half-metallic nature. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Co 2 FeIn alloy is half-metallic ferromagnet material whereas the CoFeIn alloy has a metallic nature. - Highlights: • Based on DFT calculations, CoFeIn and Co2FeIn Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • Electronic properties reveal the metallic (half-metallic) nature for CoFeIn (Co2FeIn)

  5. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  6. Synthesis and characterization of polypropiolate sodium (PPNa)-Fe3O4 nanocomposite

    International Nuclear Information System (INIS)

    Bahceci, S.; Unal, B.; Baykal, A.; Soezeri, H.; Karaoglu, E.; Esat, B.

    2011-01-01

    Highlights: · Polypropiolate sodium (PPNa)-Fe 3 O 4 nanocomposite was successfully synthesized by reflux route. · FT-IR, TGA and TEM analyses showed that the presence of PPNa onto the surface of Fe 3 O 4 NP's. · Magnetization measurements revealed that (PPNa)-Fe 3 O 4 nanocomposite has superparamagnetic properties at room temperature. · Magnetic core size, particle size and crystallite size are coinciding with each other. · It is pointed out that the a.c. conductivity of the nanocomposite studied here obeys the well-known power law of frequency in which it also varies with temperatures. - Abstract: Polypropiolate sodium (PPNa)-Fe 3 O 4 nanocomposites were successfully synthesized by the precipitation of Fe 3 O 4 in the presence of sodium polypropiolate and followed by reflux route. Structural, morphological, electrical and magnetic properties evaluation of the nanocomposite were performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), vibrating scanning magnetometry (VSM) and conductivity measurements. Crystalline phase was identified as magnetite with an average crystallite size of 7 ± 3 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM, by log-normal fitting, is ∼9 ± 1 nm. FT-IR analysis shows that the binding of PPNa on the surface of iron oxide is through bidentate linkage of carboxyl group. TGA analysis showed the presence of 20% PPNa around 80% magnetic core (Fe 3 O 4 )...PPNa-Fe 3 O 4 nanocomposite show superparamagnetic characteristics at room temperature. It is found that the a.c. conductivity of the nanocomposites obeys the well-known power law of frequency in which it also depends on temperature. Additionally, its d.c. conductivity showed that two operating regions of the activation energy. Both real and imaginary parts of either permittivity exhibit almost the same attitudes which are the indication of

  7. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    V. B. Naik

    2012-12-01

    Full Text Available We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB free layer (FL on magnetic and tunneling magnetoresistance (TMR properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA. It is found that the critical thickness (tc to sustain PMA is doubled (tc = 2.6 nm in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm. While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

  8. Study on high temperature desulphurization (Part 1). Comparison of CaO, ZnO, and Fe sub 2 O sub 3 as absorbents at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Motoo; Furimsky, E. (National Chemical Lab. for Industry, Tsukuba, (Japan))

    1989-06-29

    CaO, ZnO, and Fe{sub 2}O{sub 3} were used as adsorbents for H{sub 2}S removal to compare the H{sub 2}S removal and decomposition capacities at high temperature, and their desulphurization characteritics and reaction mechanisms were clarified. Evaluation of H{sub 2}S removal capacity, with the break point used as criterion, showed that increasing the temperature from 600 to 800{sup 0}C increased the H{sub 2}S removal in the presence of CaO but decreased it in the presence of Fe{sub 2}O{sub 3}. For ZnO, the temperature change had little effect on its adsorption. The bulk adsorption capacity was the largest for Fe{sub 2}O{sub 3} followed by CaO and ZnO. When the results were normalized to a unit of surface area, the adsorption capacity for ZnO was the largest followed by Fe{sub 2}O{sub 3} and CaO. In the presence of CaO, adsorption and decomposition started in the early stages while the adsorption of H{sub 2}S was accompanied by its decomposition in the presence of ZnO or Fe{sub 2}O{sub 3}. H{sub 2}S and S are oxidized in the presence of Fe{sub 2}O{sub 3} to produce SO{sub 2}, but no such reaction occurs with CaO or ZnO because it is thermodynamically disadvantageous. 2 refs., 4 figs., 2 tabs.

  9. High quality β-FeSi2 thin films prepared on silicon (100) by using pulsed laser ablation of Fe target

    International Nuclear Information System (INIS)

    Xu, S.C.; Yang, C.; Liu, M.; Jiang, S.Z.; Ma, Y.Y.; Chen, C.S.; Gao, X.G.; Sun, Z.C.; Hu, B.; Wang, C.C.; Man, B.Y.

    2012-01-01

    High quality β-FeSi 2 thin films have been fabricated on silicon (100) substrate by the pulsed laser deposition (PLD) technique with the Fe and sintered FeSi 2 targets. The crystalline quality and surface morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. These results indicate that the samples prepared with a Fe target can acquire a better crystalline quality and a smoother surface than those with a sintered FeSi 2 target. The reasons were discussed with subsurface superheating mechanism. The intrinsic PL spectrum attributed to the interband transition of β-FeSi 2 for all the samples was compared, showing that the film prepared with Fe target can acquire a good PL property by optimizing experimental parameters. It is suggested that sputtering Fe on Si substrate by the pulsed laser offers a cheap and convenient way to prepare the β-FeSi 2 thin films. -- Highlights: ► β-FeSi 2 films were fabricated by PLD technique with the Fe and FeSi 2 targets. ► The films prepared with Fe target have good crystalline quality and smooth surface. ► The Fe target prepared film acquired a high PL intensity. ► Sputtering Fe on Si substrate offers a convenient way to prepare the β-FeSi 2 films.

  10. Nematicity and Magnetism in FeSe and Other Families of Fe-Based Superconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yamakawa

    2016-06-01

    Full Text Available Nematicity and magnetism are two key features in Fe-based superconductors, and their interplay is one of the most important unsolved problems. In FeSe, the magnetic order is absent below the structural transition temperature T_{str}=90  K, in stark contrast to the fact that the magnetism emerges slightly below T_{str} in other families. To understand such amazing material dependence, we investigate the spin-fluctuation-mediated orbital order (n_{xz}≠n_{yz} by focusing on the orbital-spin interplay driven by the strong-coupling effect, called the vertex correction. This orbital-spin interplay is very strong in FeSe because of the small ratio between the Hund’s and Coulomb interactions (J[over ¯]/U[over ¯] and large d_{xz}, d_{yz}-orbital weight at the Fermi level. For this reason, in the FeSe model, the orbital order is established irrespective of the fact that the spin fluctuations are very weak, so the magnetism is absent below T_{str}. In contrast, in the LaFeAsO model, the magnetic order appears just below T_{str} both experimentally and theoretically. Thus, the orbital-spin interplay due to the vertex correction is the key ingredient in understanding the rich phase diagram with nematicity and magnetism in Fe-based superconductors in a unified way.

  11. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  12. Research Progress on Fe-based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    LIANG Xiu-bing

    2017-09-01

    Full Text Available The latest research progresses on Fe-based amorphous coatings were reviewed. The typical alloy system and the classification of Fe-based amorphous coatings were clarified. The status, progress and development of the Fe-based amorphous coatings prepared by thermal spray processing and laser cladding process were discussed. The main mechanical properties and potential applications of the Fe-based amorphous coatings were also described. Furthermore, based on the main problems mentioned above, the future development of the Fe-based amorphous coatings was discussed, including the exploitation preparation technologies of high amorphous content of the Fe-based coatings, the development of the low cost and high performance Fe-based coating alloys system, the broadening application of Fe-based amorphous coatings, and so on.

  13. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications

    KAUST Repository

    Liang, Hanfeng

    2017-04-11

    Water splitting driven by electricity or sunlight is one of the most promising ways to address the global terawatt energy needs of future societies; however, its large-scale application is limited by the sluggish kinetics of the oxygen evolution reaction (OER). NiFe-based compounds, mainly oxides and hydroxides, are well-known OER catalysts and have been intensively studied; however, the utilization of the synergistic effect between two different NiFe-based materials to further boost the OER performance has not been achieved to date. Here, we report the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxide/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes. The strong electronic interactions between NiFe hydroxide and NiFeP significantly lower the adsorption energy of H2O on the hybrid and thus lead to enhanced OER performance. As a result, the hybrid catalyst can deliver a geometrical current density of 300 mA cm–2 at an extremely low overpotential (258 mV, after ohmic-drop correction), along with a small Tafel slope of 39 mV decade–1 and outstanding long-term durability in alkaline media.

  14. Thermodynamical Properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J.A.; Bernstein, L.A.; Garrett, P.E.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Schiller, A.; Siem, S.; Voinov, A.; Younes, W.

    2002-01-01

    Average nuclear level densities close to the nuclear binding energy in 56 Fe and 57 Fe are extracted from primary γ-ray spectra. Thermal properties of 56 Fe are studied within the statistical canonical ensemble. The experimental heat capacity is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  15. The reduction of 4-chloronitrobenzene by Fe(II)-Fe(III) oxide systems - correlations with reduction potential and inhibition by silicate

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Adele M., E-mail: adele.jones1@unsw.edu.au; Kinsela, Andrew S.; Collins, Richard N.; Waite, T. David, E-mail: d.waite@unsw.edu.au

    2016-12-15

    Recent studies have demonstrated that the rate at which Fe(II)-Fe(III) oxyhydroxide systems catalyze the reduction of reducible contaminants, such as 4-chloronitrobenzene, is well correlated to their thermodynamic reduction potential. Here we confirm this effect in the presence of Fe(III) oxyhydroxide phases not previously assessed, namely ferrihydrite and nano-goethite, as well as Fe(III) oxyhydroxide phases previously examined. In addition, silicate is found to decrease the extent of Fe(II) sorption to the Fe(III) oxyhydroxide surface, increasing the reduction potential of the Fe(II)-Fe(III) oxyhydroxide suspension and, accordingly, decreasing the rate of 4-chloronitrobenzene reduction. A linear relationship between the reduction potential of the Fe(II)-Fe(III) oxyhydroxide suspensions and the reduction rate of 4-chloronitrobenzene (normalized to surface area and concentration of sorbed Fe(II)) was obtained in the presence and absence of silicate. However, when ferrihydrite was doped with Si (through co-precipitation) the reduction of 4-chloronitrobenzene was much slower than predicted from its reduction potential. The results obtained have significant implications to the likely effectiveness of naturally occurring contaminant degradation processes involving Fe(II) and Fe(III) oxyhydroxides in groundwater environments containing high concentrations of silicate, or other species which compete with Fe(II) for sorption sites.

  16. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    Science.gov (United States)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  17. Transport and superconducting properties of Fe-based superconductors: a comparison between SmFeAsO1-xFx and Fe1+yTe1-xSex

    Science.gov (United States)

    Tropeano, M.; Pallecchi, I.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Vignolo, M.; Martinelli, A.; Palenzona, A.; Putti, M.

    2010-05-01

    In this paper we carry out a direct comparison between transport and superconducting properties—namely resistivity, magnetoresistivity, Hall effect, Seebeck effect, thermal conductivity, upper critical field—of two different families of Fe-based superconductors, which can be viewed in many respects as end members: SmFeAsO1 - xFx with the largest Tc and the largest anisotropy and Fe1 + yTe1 - xSex, with the largest Hc2, the lowest Tc and the lowest anisotropy. In the case of the SmFeAsO1 - xFx series, we find that a single-band description allows us to extract an approximate estimation of band parameters such as carrier density and mobility from experimental data, although the behaviour of the Seebeck effect as a function of doping demonstrates that a multiband description would be more appropriate. On the contrary, experimental data for the Fe1 + y(Te1 - x, Sex) series exhibit a strongly compensated behaviour, which can be described only within a multiband model. In the Fe1 + y(Te1 - x, Sex) series, the role of the excess Fe, tuned by Se stoichiometry, is found to be twofold: on one hand it dopes electrons in the system and on the other hand it introduces localized magnetic moments, responsible for Kondo like scattering and likely pairbreaking of Cooper pairs. Hence, Fe excess also plays a crucial role in determining superconducting properties such as the Tc and the upper critical field Hc2. The huge Hc2 values of the Fe1 + yTe1 - xSex samples are described by a dirty limit law, opposed to the clean limit behaviour of the SmFeAsO1 - xFx samples. Hence, magnetic scattering by excess Fe seems to drive the system in the dirty regime, but its detrimental pairbreaking role seems not to be as severe as predicted by theory. This issue has yet to be clarified, addressing the more fundamental issue of the interplay between magnetism and superconductivity.

  18. Thermodynamic properties of Y/sub 3/Fe/sub 5/O/sub 12/ and TbFeO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Shchelkotunov, V A; Danilov, V N; Reznitskii, L A; Korobeinikova, A V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-01-01

    Two types of chemical compounds-garnets and perovskites - exist in Fe/sub 2/O/sub 3/-Y/sub 2/O/sub 3/ and Fe/sub 2/O/sub 3/-Tb/sub 2/..omega../sub 3/ systems. Both of them are noncompensated antiferromagnetics. Thermal-physical properties of TbFeO/sub 3/ were determined. Values of Csub(p),(Hsub(t)-Hsub(o)) and Ssub(T) in the temperature range 298 to 700 deg K for Y/sub 3/Fe/sub 5/O/sub 12/ and in the range 298 to 600 deg K for TbFeO/sub 3/ were calculated using the experimental data on TbFeO/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ thermal capacity. Magnetic contribution for Y/sub 3/Fe/sub 5/O/sub 12/ Usub(mag)=1617 cal/mol and ..delta..S=3.44 cal/mol.deg. was determined.

  19. Erosion resistance of FeAl-TiB2 and FeAl-WC at room and elevated temperatures

    International Nuclear Information System (INIS)

    Alman, D.E.; Tylczak, J.H.; Hawk, J.A.

    2000-01-01

    The resistance of FeAl-40%TiB 2 and FeAl-80%WC cermets to solid particle erosion at 25, 180, 500 and 700 C was evaluated and compared to the behavior of WC-6%Co (Co-90%WC) cemented carbides. Even though the WC-Co contained a higher volume fraction of the hard phase, the erosion rates of the FeAl-cermets were similar in magnitude to the erosion rates of the WC-Co. However, the erosion rates of the FeAl-cermets either were constant (FeAl-TiB 2 ) or decreased (FeAl-WC) with increasing test temperature; whereas, the erosion rates of the WC-Co cemented carbides increased with increasing test temperature. This indicated that once the microstructures of the FeAl-cermets are optimized for wear resistance, these materials might make promising candidates for high-temperature wear applications

  20. Magnetism mediated by a majority of [Fe³⁺ + VO²⁻] complexes in Fe-doped CeO₂ nanoparticles.

    Science.gov (United States)

    Paidi, V K; Ferreira, N S; Goltz, D; van Lierop, J

    2015-08-26

    We examine the role of Fe(3+) and vacancies (V(O)) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce(100-x)Fe(x)O2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce(4+) and Ce(3+) ions, and doping introduced Fe(3+) ions. The decrease in Ce(3+) and increase in Fe(3+) concentrations indicated the presence of more [Fe(3+) + V(O)(2-)] complexes with Fe loading in the particles. Charge neutralization, Fe(3+) + V(O)(2-) + 2Ce(4+) ↔ 2Ce(3+) + Fe(3+), identified the impact of V(O) on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe(3+) + V(O)(2-)]-Ce(3+) -[Fe(3+) + V(O)(2-)] complexes.