WorldWideScience

Sample records for fcm neutron fluxes

  1. Using thermalizers in measuring 'Ukryttia' object's FCM neutron fluxes

    CERN Document Server

    Krasnyanskaya, O G; Odinokin, G I; Pavlovich, V N

    2003-01-01

    The results of research of a thermalizer (heater) width influence on neutron thermalization efficiency during FCM neutron flux measuring in the 'Ukryttia' are described. The calculations of neutron flux densities were performed by the Monte-Carlo method with the help of computer code MCNP-4C for FCM different models.Three possible installations of detectors were considered: on FCM surface,inside the FCM, and inside the concrete under the FCM layer. It was shown,that in order to increase the sensitivity of neutron detectors in intermediate and fast neutrons field,and consequently, to decrease the dependence of the readings of spectral distribution of neutron flux,it is necessary to position the detector inside the so-called thermalizer or heater. The most reasonable application of thick 'heaters' is the situation, when the detector is placed on FCM surface.

  2. Neutrons in the moon. [neutron flux and production rate calculations

    Science.gov (United States)

    Kornblum, J. J.; Fireman, E. L.; Levine, M.; Aronson, A.

    1973-01-01

    Neutron fluxes for energies between 15 MeV and thermal at depths of 0 to 300 g/sq cm in the moon are calculated by the discrete ordinate mathod with the ANISN code. With the energy spectrum of Lingenfelter et al. (1972). A total neutron-production rate for the moon of 26 plus or minus neutrons/sq cm sec is determined from the Ar-37 activity measurements in the Apollo 16 drill string, which are found to have a depth dependence in accordance with a neutron source function that decreases exponentially with an attenuation length of 155 g/sq cm.

  3. Fusion Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    YANG Jinwei; YANG Qingwei; XIAO Gongshan; ZHANG Wei; SONG Xianying; LI Xu

    2008-01-01

    Neutron flux monitor (NFM) as an important diagnostic sub-system in ITER (international thermonuclear experimental reactor) provides a global neutron source intensity, fusion power and neutron flux in real time. Three types of neutron flux monitor assemblies with different sensitivities and shielding materials have been designed. Through MCNP (Mante-Carlo neutral particle transport code) calculations, this extended system of NFM can detect the neutron flux in a range of 104 n/(cm2·s) to 1014 n/(cm2·s). It is capable of providing accurate neutron yield measurements for all operational modes encountered in the ITER experiments including the in-situ calibration. Combining both the counting mode and Campbelling (MSV; Mean Square Voltage) mode in the signal processing units, the requirement of the dynamic range (107) for these NFMs and time resolution (1 ms) can be met. Based on a uncertainty analysis, the estimated absolute measurement accuracies of the total fusion neutron yield can reach the required 10% level in both the early stage of the DD-phase and the full power DT operation mode. In the advanced DD-phase, the absolute measurement accuracy would be better than 20%.

  4. Neutron flux measurements around PLT

    Energy Technology Data Exchange (ETDEWEB)

    Zankl, G.; Strachan, J.D.; Lewis, R.; Pettus, W.; Schmotzer, J.

    1980-09-01

    Using Indium activation foils, the toroidal and poloidal neutron emission patterns were determined for PLT plasmas which include ICRF and neutral beam heating. The activities produced the /sup 115/In (n,n') /sup 115m/In reaction were determined by counting the 336 keV ..gamma.. line of the /sup 115m/In decay. This activation cross section falls just below 2.5 MeV so that the influence of scattered neutrons of degraded energies is reduced. From the magnitude of the activity, the absolute calibration of the PLT fusion neutron emission is obtained with less than or equal to 40% accuracy.

  5. Modulating the Neutron Flux from a Mirror Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  6. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    Rupa Sarkar; Prasanna Kumar Mondal; Barun Kumar Chatterjee

    2015-10-01

    A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for non-dissipative medium one can obtain the neutron flux from dose rate. We have used a 241 AmBe neutron source for neutron irradiation, and the neutron dose rate and count rate were measured using a NM2B neutron monitor and R-12 superheated droplet detector (SDD), respectively. Here, the neutron flux inferred from the neutron count rate obtained with R-12 SDD shows an excellent agreement with the flux inferred from the neutron dose rate in a non-dissipative medium.

  7. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A.; Genthon, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  8. Neutron Flux Density Measured by Analysis of Annealing Heat

    Institute of Scientific and Technical Information of China (English)

    WANG; Fan; SHI; Yong-qian; ZHU; Qing-fu; LU; Jin; LI; Lai-dong

    2015-01-01

    Neutron flux density measurement by thermal analysis is a new method different from the previous.This method is first put the sample to the neutron field.Second,measure the annealingheat of the sample.Find out the suitable mixture of crystal boron and apatite to measure the neutron flux density.Then put the sample to the neutron field in

  9. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.

  10. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  11. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  12. Development of Prototype Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    Yang Jinwei; Song Xianying; Zhang Wei; Li Xu; Lee Wenzhong; Wang Shiqing; Xiao Gongshan; Yang Bo; Lu Shuangtong

    2005-01-01

    The prototype neutron flux monitor consists of a high purity 235U fission chamberdetector and a "blank" detector, which is a fissile material free detector with the same dimensionas the fission chamber detector to identify noise issues such as noise coming from gamma rays. Themain parameters of the fission chamber assembly that have been measured in the laboratory areconfirmed to approach the technological level of the International Thermonuclear ExperimentalReactor (ITER) in the near future. This prototype neutron flux monitor will be further developedto become a neutron flux monitor suitable for the operation phase of D-D fusion on the ITER.

  13. Analysis of natural neutron flux in a seismically active zone

    Directory of Open Access Journals (Sweden)

    V. F. Ostapenko

    2003-01-01

    Full Text Available In a seismically active zone in the near Almaty area (Kazakhstan since 1996 observations of variations of a natural neutron flux have been conducted. Sometimes the neutron flux rises sharply within the one-hour interval in comparison with the background. It occurs on the eve of activation of seismic processes. Increase of the neutron flux level had taken place from 1 h to 10 days prior to earthquakes. It is also indicated a tendency of growth of the anomaly level in accordance with the growth of energetic class of the subsequent earthquake. A character of connection between the neutron flux and earthquakes is still not clear. It is proposed that the neutron flux anomalies caused by variations of cosmic radiation intensity under action of fluxes of solar material, which is burst into interplanetary space (solar wind during solar flares. Energy of the solar wind transferred to Earth puts into action a trigger mechanism of the process of initiation of earthquakes at those places where conditions have already been prepared for them. The neutron flux anomalies can be used as substantial additional information for classical geophysical methods of short-term earthquake prediction.

  14. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  15. Recent developments on micrometric fission chambers for high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A. [Irfu, Service de Physique Nucleaire, CEA-Saclay, 91191 Gif-sur-Yvette (France); Bringer, O.; Dupont, E.; Marie, F.; Panebianco, S.; Toussaint, J. C.; Veyssiere, C. [Irfu, CEA-Saclay, 91191 Gif-sur-Yvette (France); Chabod, S. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3 (France); Breaud, S.; Oriol, L. [DEN/DER/SPEX, CEA-Cadarache, Saint-Paul-lez-Durances (France)

    2009-07-01

    With the development of innovative nuclear systems and new generation neutron sources, the nuclear instrumentation should be adapted. Since several years, we developed microscopic fission chambers to study the transmutation of minor actinides in high thermal-neutron fluxes. The recent developments done to fulfill the drastic conditions of irradiations are described in this paper together with the feedback from the measurements. Two installations were used: the HFR of the ILL for its highest thermal neutron flux of the world and the MEGAPIE target which was the first 1 MW liquid Pb-Bi spallation target in the world. (authors)

  16. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  17. Neutron flux optimization in irradiation channels at NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, B. [Division Reacteur, Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA, Alger (Algeria)]. E-mail: b_meftah@yahoo.com; Zidi, T. [Division Reacteur, Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA, Alger (Algeria); Bousbia-Salah, A. [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione, Facolta di Ingegneria, Universita di Pisa, Via Diotisalvi, 2 - 56126 Pisa (Italy)

    2006-09-15

    Optimization of neutron fluxes in experimental channels is of great concern in research reactor utilization. The general approach used at the NUR research reactor for neutron flux optimization in irradiation channels is presented. The approach is essentially based upon a judicious optimization of the core configuration combined with the improvement of reflector characteristics. The method allowed to increase the thermal neutron flux for radioisotope production purposes by more than 800%. Increases of up to 60% are also observed in levels of useful fluxes available for neutron diffraction experiments (small angle neutron scattering (SANS), neutron reflectometry, etc.). Such improvements in the neutronic characteristics of the NUR reactor opened new perspectives in terms of its utilization. More particularly, it is now possible to produce at industrial scales major radio-isotopes for medicine and industry and to perform, for the first time, material testing experiments. The cost of the irradiations in the optimized configuration is generally small when compared to those performed in the old configuration and an average reduction factor of about of 10 is expected in the case of production of Molybdenum-99 (isotope required for the manufacturing of Technetium-99 medical kits). In addition to these important results, safety analysis studies showed that the more symmetrical nature of the core geometry leads to a more adequately balanced reactivity control system and contributes quite efficiently to the operational safety of the NUR reactor. Results of comparisons between calculations and measurements for a series of parameters of importance in reactor operation and safety showed good agreement.

  18. Determination of spallation neutron flux through spectral adjustment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, M.A., E-mail: mosbym@lanl.gov; Engle, J.W.; Jackman, K.R.; Nortier, F.M.; Birnbaum, E.R.

    2016-08-15

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  19. Determination of spallation neutron flux through spectral adjustment techniques

    Science.gov (United States)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  20. Beam choppers for neutron reflectometers at steady flux reactors

    Science.gov (United States)

    Pleshanov, N. K.

    2017-09-01

    Realizations of the TOF technique for neutron reflectometers at steady flux reactors are compared. Beam choppers for neutron reflectometers divide into choppers of type 1 (Δλ = const) and 2 (Δλ / λ = const) . It follows from Monte-Carlo simulations that choppers of type 1 do not yield to more intricate choppers of type 2, widely used at neutron reflectometers. Because of a very fast drop of neutron reflectivities with the momentum transfer q, non-optimality of measurements with a chopper of type 1 is fully compensated by better statistics at large q, and is not so much essential at small q. To vary the TOF resolution with choppers of type 1, a phasing of two discs and a turning of the system of two discs are suggested. The fluxes of neutrons with wavelengths beyond the working range and the efficiencies of their elimination by means of a bandwidth limiting prechopper are evaluated.

  1. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    Science.gov (United States)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R.; Zuber, M. T.

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range 0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  2. Neutron flux reduction programs for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C.S. [Korea Atomic Energy Research Inst. KAERI, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, B.C. [Korea Reactor Integrity Surveillance Technology KRIST, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    The objective of this work is to implement various fast neutron flux reduction programs on the belt-line region of the reactor pressure vessel to reduce the increasing rate of reference temperature for pressurized thermal shock (RT PTS) for Korea Nuclear Unit 1. A pressurized thermal shock (PTS) event is an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. A PTS concern arises if one of these transients acts in the belt-line region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Generally, the RT PTS value is continuously increasing according to the fast neutron irradiation during the reactor operation, and it can reach the screening criterion prior to the expiration of the operating license. To reduce the increasing rate of RT PTS, various neutron flux reduction programs can be implemented, which are focused on license renewal. In this paper, neutron flux reduction programs, such as low leakage loading pattern strategy, loading of neutron absorber rods, and dummy fuel assembly loading are considered for Korea Nuclear Unit 1, of which the RT PTS value of the leading material (circumferential weld) is going to reach the screening criterion in the near future. To evaluate the effects of the neutron flux reduction programs, plant and cycle specific forward neutron transport calculations for the various neutron flux reduction programs were carried out. For the analysis, all transport calculations were carried out by using the DORT 3.1 discrete ordinate code and BUGLE-96 cross-section library. (authors)

  3. On the limit of neutron fluxes in the fission-based pulsed neutron sources

    Science.gov (United States)

    Aksenov, V. L.; Ananiev, V. D.; Komyshev, G. G.; Rogov, A. D.; Shabalin, E. P.

    2017-09-01

    The upper limit of the density of the thermal neutron flux from pulsed sources based on the fission reaction is established. Three types of sources for research on ejected beams are considered: a multiplying target of the proton accelerator (a booster), a booster with the reactivity modulation (a superbooster), and a pulsing reactor. Comparison with other high-flux sources is carried out. The investigation has been performed at the Frank Laboratory of Neutron Physics of JINR.

  4. CR-39 detector based thermal neutron flux measurements, in the photo neutron project

    Energy Technology Data Exchange (ETDEWEB)

    Mameli, A.; Greco, F.; Fidanzio, A. [U.O. di Fisica Sanitaria Policlinico A. Gemelli, Universita Cattolica S. Cuore, Roma (Italy); Fusco, V. [U.O. di Radioterapia, Centro di Riferimento Oncologico della Basilicata, CROB Rionero Pz (Italy); Cilla, S.; D' Onofrio, G.; Grimaldi, L.; Augelli, B.G. [U.O. di Fisica Sanitaria, Centro di Ricerca e Formazione ad Alta Tecnologia nelle Scienze Biomediche dell' Universita Cattolica S. Cuore, Campobasso (Italy); Giannini, G.; Bevilacqua, R.; Totaro, P. [Dipartimento di Fisica-Universita di Trieste e INFN Sez Trieste, Padriciano, Trieste (Italy); Tommasino, L. [Consultant, Via Cassia 1727, 00123 Roma (Italy); Azario, L. [Istituto di Fisica, Universita Cattolica del S. Cuore, Roma (Italy); Piermattei, A. [Istituto di Fisica, Universita Cattolica del S. Cuore, Roma (Italy)], E-mail: a.piermattei@rm.unicatt.it

    2008-08-15

    PhoNeS (photo neutron source) is a project aimed at the production and moderation of neutrons by exploiting high energy linear accelerators, currently used in radiotherapy. A feasibility study has been carried out with the scope in mind to use the high energy photon beams from these accelerators for the production of neutrons suitable for boron neutron capture therapy (BNCT). Within these investigations, it was necessary to carry out preliminary measurements of the thermal neutron component of neutron spectra, produced by the photo-conversion of X-ray radiotherapy beams supplied by three LinAcs: 15 MV, 18 MV and 23 MV. To this end, a simple passive thermal neutron detector has been used which consists of a CR-39 track detector facing a new type of boron-loaded radiator. Once calibrated, this passive detector has been used for the measurement of both the thermal neutron component and the cadmium ratio of different neutron spectra. In addition, bubble detectors with a response highly sensitive to thermal neutrons have also been used. Both thermal neutron detectors are simple to use, very compact and totally insensitive to low-ionizing radiation such as electrons and X-rays. The resultant thermal neutron flux was above 10{sup 6} n/cm{sup 2}s and the cadmium ratio was no greater than 15 for the first attempt of photo-conversion of X-ray radiotherapy beams.

  5. Neutron spatial flux profile measurement in compact subcritical system using miniature neutron detectors

    Science.gov (United States)

    Shukla, Mayank; Desai, Shraddha S.; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-02-01

    A zero power multiplying assembly in subcritical regime serves as a benchmark for validating subcritical reactor physics. The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplying medium requires a well-defined neutron flux to carry out the experiments. For this it is necessary to know the neutron flux profile inside a subcritical system. A compact subcritical assembly BRAHMMA has been developed in India. The experimental channels in this assembly are typically less than 8 mm diameter. This requires use of miniature detectors that can be mounted in these experimental channels. In this article we present the thermal neutron flux profile measurement in a compact subcritical system using indigenously developed miniature gas filled neutron detectors. These detectors were specially designed and fabricated considering the restrictive dimensional requirements of the subcritical core. Detectors of non-standard size with various sensitivities, from 0.4 to 0.001 cps/nv were used for neutron flux of interest ranging from 103 to 107 n-cm-2 s-1. A comparison of measured neutron flux using these detectors and simulated Monte Carlo calculations are also presented in this article.

  6. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2004-01-01

    Full Text Available The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114.

  7. Computational program to neutron flux calculation; Programa computacional para calculo de fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani; Furieri, Rosanne Cefaly de Aranda Amado [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    The absolute value of the neutron flux is of paramount importance in reactor physics and other application on the nuclear field. Due to several corrections which should be done, such as radioactive decay of the produced nuclides, normalization factors between different irradiations, neutron spectrum perturbation, cross section behaviour and growing of the reactor power, among other factors, make the calculation of the neutron flux very cumbersome. the software FLUXO was developed to overcome these inconveniences. It is programmed in FORTRAN language, and was written to calculate the absolute flux of thermal, epithermal and fast neutrons, through the foil activation technique. The magnitude of this activation can be measured by a 4{pi} {beta}-{gamma} coincidence measurement or by gamma spectroscopy alone. The software calculates as well, the absolute activity of radioactive sources, and reactor-irradiated samples. (author)

  8. Isotopic characterization and thermal neutron flux determination of a PuBe neutron source.

    Science.gov (United States)

    Purty, Ravi Ankit; Akanchha; Prasad, Shikha

    2017-07-01

    The Indian Institute of Technology Kanpur (IIT Kanpur) possesses a PuBe neutron source facility with an initial activity of 5 Ci, dated September 1966 (nearly 50 years ago). An understanding of the present activity and the rate of its change will allow implementation of proper radiological safety procedures and future radiological safety planning. Knowing the absolute neutron flux will help us in future neutron activation studies. These details are also important to ensure proper security precautions. In our work, we attempt to identify the isotopic composition to determine the rate of change of the source and the absolute thermal neutron flux of plutonium beryllium (PuBe) sample at IIT Kanpur. We have used gamma-ray spectroscopy for determining the isotopic composition of the PuBe neutron source. After utilizing gamma-ray spectroscopy it is found that the source is composed of (239)Pu and a small amount of (241)Am is present as an impurity. The mass ratio of (241)Am to (239)Pu is found to be approximately 18.1µg/g with an uncertainty of 1.39%. Delayed gamma neutron activation analysis (DGNAA) is used to determine the thermal neutron flux of the same PuBe neutron source using copper, cobalt, nickel and cadmium samples. The average thermal neutron flux as calculated from DGNAA is approximately 1.27×10(3)n/(cm(2)-s) at 1cm above the PuBe neutron source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Flux-Vortex Pinning and Neutron Star Evolution

    Science.gov (United States)

    Alpar, M. Ali

    2017-09-01

    G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the wind accretion phase of binary evolution, outward motion of vortex lines will reduce the dipole magnetic moment in proportion to the rotation rate. The presence of a toroidal array of flux lines makes this mechanism inevitable and independent of the angle between the rotation and magnetic axes. The incompressibility of the flux-line array (Abrikosov lattice) determines the epoch when the mechanism will be effective throughout the neutron star. Flux vortex pinning will not be effective during the initial young radio pulsar phase. It will, however, be effective and reduce the dipole moment in proportion with the rotation rate during the epoch of spindown by wind accretion as proposed by Srinivasan et al. The mechanism operates also in the presence of vortex creep.

  10. Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation method

    OpenAIRE

    Negoita, Cezar Ciprian

    2004-01-01

    The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the "tokamak" concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displaceme...

  11. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    OpenAIRE

    Ljubenov Vladan; Milošević Miodrag 1

    2004-01-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by t...

  12. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    Science.gov (United States)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  13. Simulation of neutron fluxes around the W7-X Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny

    1999-12-01

    A new fusion experiment, the WENDELSTEIN 7-X Stellarator (W7-X), will be undertaken in Greifswald in Germany. Measurements of the neutron flux will provide information on fusion reaction rates and possibly also on ion temperatures as function of time. For this purpose moderating neutron counters will be designed, tested, calibrated and eventually used at W7-X. Extensive Monte-Carlo simulations have been performed in order to select the most suitable detector and moderator combination with a flat response function and highest achievable efficiency. Different detector configurations with different moderating materials have been tried out, showing that a 32 cm thick graphite moderating BF{sub 3} -counter gives the desired flat response and sufficient efficiency. Neutron spectra calculations have been made for different torus models and the influence of floor, walls and ceiling (i.e. reactor hall) have been investigated. Presented results suggest that a more detailed torus model significantly reduces the number of neutron counts at the detector. Calculations including the reactor hall indicate a tendency of shifting the neutron spectra towards the thermal region. The main part of the scattered neutrons are back-scattered from the floor. Finally, calculations on the graphite moderating BF{sub 3} -counter in the detailed torus environment were performed in order to assess the absolute response function under the influence of the reactor hall. The results show that the detector count rate will increase by only 5-7 % when the reactor hall is taken into account. With a stellarator generating 10{sup 12} to 10{sup 16} neutrons per second the detector count rate will be 2x10{sup 5} to 2x10{sup 9} neutrons per second.

  14. Operation REDWING. Project 2.51, Neutron-Flux Measurements. Extracted Version

    Science.gov (United States)

    1981-05-15

    The attenuation of the thermal -neutron flux is increased by adding borax. The neutron dose was reduced by a factor of approximately four by a...the thermal -neutron flux is increased by adding borax. The neutron dose was reduced by a factor of approximately four by a concrete box three feet on a...the ,, eutrons and their spatial distribution is of basic importance to the assessment of the effects of the neutrons from a device. Measurements of this

  15. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    CERN Document Server

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  16. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    OpenAIRE

    Imam Mahmoud M.; Roushdy Hassan

    2002-01-01

    The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a) to provide a thermal neutron flux in the neutron transmutation silicon doping, (b) to provide a thermal flux in the neutron activation analysis position, and (c) to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, ...

  17. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  18. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5\\% of total neutron flux flux.

  19. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line

    OpenAIRE

    Elham Bavarnegin; Alireza Sadremomtaz; Hossein Khalafi; Yaser Kasesaz

    2016-01-01

    Aim: Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. Materials and Methods: The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Results: Different dose components have been measured in a head phantom which has been designed an...

  20. Novel Cluster Validity Index for FCM Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jian Yu; Cui-Xia Li

    2006-01-01

    How to determine an appropriate number of clusters is very important when implementing a specific clustering algorithm, like c-means, fuzzy c-means (FCM). In the literature, most cluster validity indices are originated from partition or geometrical property of the data set. In this paper, the authors developed a novel cluster validity index for FCM, based on the optimality test of FCM. Unlike the previous cluster validity indices, this novel cluster validity index is inherent in FCM itself. Comparison experiments show that the stability index can be used as cluster validity index for the fuzzy c-means.

  1. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Klix, A. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, M.; Batistoni, P. [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Fischer, U. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Santagata, A. [ENEA C.R. Casaccia, via Anguillarese Km. 1,300, 00100 Roma (Italy)

    2014-10-15

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra.

  2. The preliminary results of fast neutron flux measurements in the DULB laboratory at Baksan

    OpenAIRE

    2000-01-01

    One of the main sources of a background in underground physics experiments (such as the investigation of solar neutrino flux, neutrino oscillations, neutrinoless double beta decay, and the search for annual and daily Cold Dark Matter particle flux modulation) are fast neutrons originating from the surrounding rocks. The measurements of fast neutron flux in the new DULB Laboratory situated at a depth of 4900 m w.e. in the Baksan Neutrino Observatory have been performed. The relative neutron sh...

  3. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  4. Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    CERN Multimedia

    Kitis, G; Wiescher, M; Dahlfors, M; Soares, J

    2002-01-01

    We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.

  5. Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Xin; ZHANG Yi; WANG Ji-Jin; HU Bi-Tao

    2009-01-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial reso-lution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  6. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  7. Neutron flux and power in RTP core-15

    Science.gov (United States)

    Rabir, Mohamad Hairie; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na'im Syauqi Bin

    2016-01-01

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  8. Neutron flux and power in RTP core-15

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na’im Syauqi Bin [Nuclear and reactor Physics Section, Nuclear Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  9. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  10. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  11. Flux and Spectrum of Neutrons Generated from 25 Mv Medical X-Ray Therapy Machine

    Science.gov (United States)

    1989-05-01

    neutron absorption cross section at t. By using this relation in equation (1) the integration is possible over...0 n td f dat) n (it, rpLthprmQJ where 000 is defined as the microscopic neutron absorption cross - section at 2200 m/s, the most probable speed of a... neutron - absorption cross - section of the target as a function of energy O(E) is neutron flux per unit of energy as a function of energy. 1,d is

  12. Study of Collimated Neutron Flux Monitors for MAST and MAST Upgrade

    OpenAIRE

    Sangaroon, Siriyaporn

    2014-01-01

    Measurements of the neutron emission, resulting from nuclear fusion reactions between the hydrogen isotopes deuterium and tritium, can provide a wealth of information on the confinement properties of fusion plasmas and how these are affected by Magneto-Hydro-Dynamic (MHD) instabilities. This thesis describes work aimed to develop neutron measurement techniques for nuclear fusion plasma experiments, specifically regarding the performance and design of collimated neutron flux monitors (neutron ...

  13. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    Science.gov (United States)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  14. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  15. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  16. Flux dependence of cluster formation in neutron-irradiated weld material

    Science.gov (United States)

    Bergner, F.; Ulbricht, A.; Hein, H.; Kammel, M.

    2008-03-01

    The effect of neutron flux on the formation of irradiation-induced clusters in reactor pressure vessel (RPV) steels is an unresolved issue. Small-angle neutron scattering was measured for a neutron-irradiated RPV weld material containing 0.22 wt% impurity Cu. The experiment was focused on the influence of neutron flux on the formation of irradiation-induced clusters at fixed fluence. The aim was to separate and tentatively interpret the effect of flux on the characteristics of the cluster size distribution. We have observed a pronounced effect of neutron flux on cluster size, whereas the total volume fraction of irradiation-induced clusters is insensitive to the level of flux. The result is compatible with a rate theory model according to which the range of applied fluxes covers the transition from a flux-independent regime at lower fluxes to a regime of decelerating cluster growth. The results are confronted with measured irradiation-induced changes of mechanical properties. Despite the observed flux effect on cluster size, both yield stress increase and transition temperature shift turned out to be independent of flux. This is in agreement with the volume fraction of irradiation-induced clusters being insensitive to the level of flux.

  17. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  18. Notes on neutron flux measurement; Notas sobre medida de flujos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs.

  19. Thermal, intermediate and fast neutron flux measurements using activation detectors; Mesure des flux de neutrons thermiques, intermediaires et rapides au moyen de detecteurs par activation

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Lott, M.; Manent, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The problem of neutron flux measurements using activation detectors is studied in the particular case of protection research. It is shown how it possible, it is possible, using a known thermal flux, to organise a coherent calibration system for all the detectors. The rapid neutron detectors are calibrated with respect to a reference detector (phosphorus) in a natural uranium converter; the intermediate neutron detectors with respect to gold in the axial channel of ZOE. This method makes it possible to minimise the errors due to the activation cross-sections. A brief description is given of the counting room of the Pile Safety Study Service, as well of the practical utilisation characteristics of the counters employed. (authors) [French] Le probleme de la mesure des flux de neutrons au moyen de detecteurs par activation est etudie dans le cas particulier des etudes de protections. On montre comment, a partir d'un flux thermique connu, on peut organiser un systeme coherent d'etalonnage de tous les detecteurs. Les detecteurs de neutrons rapides sont etalonnes par rapport a un detecteur de reference (phosphore) dans un convertisseur en uranium naturel; les detecteurs de neutrons intermediaires, par rapport a l'or dans le canal axial de ZOE, Cette methode permet de minimiser les erreurs dues aux sections efficaces d'activation. On decrit sommairement la salle de comptage du Service d'Etudes de Protections de Piles et on indique les caracteristiques d'emploi pratique des detecteurs utilises. (auteurs)

  20. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  1. The preliminary results of fast neutron flux measurements in the DULB laboratory at Baksan

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Shikhin, A A; Yants, V E; Zaborskaia, O S; Klimenko, A A; Osetrov, S B; Smolnikov, A A; Vasilev, S I

    2000-01-01

    One of the main sources of a background in underground physics experiments (such as the investigation of solar neutrino flux, neutrino oscillations, neutrinoless double beta decay, and the search for annual and daily Cold Dark Matter particle flux modulation) are fast neutrons originating from the surrounding rocks. The measurements of fast neutron flux in the new DULB Laboratory situated at a depth of 4900 m w.e. in the Baksan Neutrino Observatory have been performed. The relative neutron shielding properties of several commonly available natural materials were investigated too. The preliminary results obtained with a high-sensitive fast neutron spectrometer at the level of sensitivity of about 10^(-7) neutron/ (cm^2 sec) are presented and discussed.

  2. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Science.gov (United States)

    Marini, P.; Mathieu, L.; Acosta, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  3. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    Science.gov (United States)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system.

  4. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    Science.gov (United States)

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  5. Low-energy neutron flux measurement using a resonance absorption filter surrounding a lithium glass scintillator

    Science.gov (United States)

    Ghal-Eh, N.; Koohi-Fayegh, R.; Hamidi, S.

    2007-06-01

    The resonance absorption filter technique has been used to determine the thermal/epithermal neutron flux. The main idea in this technique is to use an element with a high and essentially singular resonance in the neutron absorption cross section as a filter surrounding a miniature-type lithium glass scintillator. The count with and without the filter surrounding the detector gives the number of resonance-energy neutrons. Some preliminary results and a comparison with the MCNP code are shown.

  6. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Science.gov (United States)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  7. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  8. Variation of environmental neutron flux with altitude and depth of both water and soil

    Institute of Scientific and Technical Information of China (English)

    K. KOMURA; N.K. AHMED; A.H. EL-KAMEL; A.M.M. YOUSEF

    2004-01-01

    Applying the extreme low-level γ-ray spectroscopic analysis the environmental neutron flux is measured using different moderator construction and environment through the reaction 197Au (n, γ) 198Au. The contribution of thermal and resonance neutrons is separated using the cadmium difference technique, while fast neutrons are measured by the paraffin moderator. The results of altitude dependence of the neutron flux are discussed. The thermal neutron flux near the surface of sea water is less than its value at 100 cm over ground near sea water, while the value over the surfaces of fresh water is higher than that near the surface of sea water. Also the thermal neutron flux at 5 cm soil depth increases, then decreases to its original value at 10 cm depth and still constant until 25 cm, then decreases rapidly to reach 27% of its original value at 60 cm depth. The soil compositions, corresponding neutron temperatures and effective absorption cross sections of earth are the most effective factors on the equilibrium region of thermal neutrons in the ground.

  9. Studies on the origin of neutron flux fluctuations- Final report; Untersuchungen der Ursachen fuer Neutronenflussschwankungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blaesius, Christoph; Herb, Joachim; Kuentzel, Matthias

    2016-01-15

    Aim of the project was to find possible explanations for the neutron flux fluctuations and their changes over the last decades in German PWR. Several models concerning thermal hydraulics, structural mechanics and neutron physics were evaluated. It was shown that up to now no models are available that could explain the observed phenomena. Future studies should focus on interdisciplinary coupling of different models.

  10. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.

    Science.gov (United States)

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V

    2007-04-01

    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.

  11. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  12. Preliminary Design of Neutron Flux and Spectrum Diagnostics in NT-TBM

    Institute of Scientific and Technical Information of China (English)

    YANG Jinwei; FENG Kaiming; CHENG Zhi

    2007-01-01

    A special neutron diagnostic system is proposed that facilitates the measurement of neutron fluxes and spectra in the neutronics and tritium production-test blanket module (NTTBM) without interrupting the operation of the International Thermal-nuclear Experimental Reactor (ITER),for studying the multiplication rate in the neutron multiplier and breeding ratio of tritium in the breeder.This system includes an encapsulated foil activation system,micro-fission chamber detectors (MFC),and a compact neutron spectrometer using a natural diamond detector (NDD).A helium coolant loop with a reasonable diameter is designed carefully for every measurement channel that ensures that the neutron detectors and preamplifiers would work well under a high temperature scenario and that the filling rates of the neutron multiplier (beryllium pebble)and tritium breeder material (Li4Si04) would not decrease excessively (the expected value≥80%)due to the dimensions of the helium coolant loop.

  13. Three new nondestructive evaluation tools based on high flux neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M. [and others

    1997-03-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities.

  14. Neutron-diffraction investigations of flux-lines in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Forgan, E.M. [Birmingham Univ. (United Kingdom); Lee, S.L. [Saint Andrews Univ. (United Kingdom); McKPaul, D. [Warwick Univ., Coventry (United Kingdom); Mook, H.A. [Oak Ridge National Lab., TN (United States); Cubitt, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    SANS has proved an extremely useful tool for investigating flux-line structures within the bulk of superconductors. With high-T{sub c} materials, the scattered intensities are weak, but careful measurements are giving important new information about flux lattices, flux pinning and flux-lattice melting. (author). 10 refs.

  15. Neutronic analysis for in situ calibration of ITER in-vessel neutron flux monitor with microfission chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Kondoh, Takashi; Kusama, Yoshinori [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC). ► The source transfer system deigned in this study does not affect MFC detection efficiency. ► The rotation method is appropriate for full calibration because the calibration time is shorter. ► But, point-by-point method should be performed to check the accuracy of the MCNP model. ► Combination of two methods are important to perform in situ calibration efficiently. -- Abstract: Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC), which is the in-vessel neutron-flux monitor at the International Thermonuclear Experimental Reactor (ITER). We present the design of the transfer system for a neutron generator, which consists of two toroidal rings and a neutron-generator holder, and estimate the effect of the system on MFC detection efficiency through neutronic analysis with the Monte Carlo N-particle (MCNP) code. The result indicates that the designed transfer system does not affect MFC detection efficiency. In situ calibrations by the point-by-point method and by the rotation method are also simulated and compared by neutronic analysis. The results indicate that the rotation method is appropriate for full calibration because the calibration time is shorter (all neutron-flux monitors can be calibrated simultaneously). However, the rotation method makes it difficult to compare the results with neutronic analysis, so the point-by-point method should be performed prior to full calibration to check the accuracy of the MCNP model.

  16. Monitoring of the thermal neutron flux in the LSM underground laboratory

    CERN Document Server

    Rozov, S; Augier, C; Bergé, L; Benoit, A; Besida, O; Blümer, J; Broniatowski, A; Brudanin, V; Chantelauze, A; Chapellier, M; Chardin, G; Charlieux, F; Collin, S; Crauste, O; De Jesus, M; Defay, X; Di Stefano, P; Dolgorouki, Y; Domange, J; Dumoulin, L; Eitel, K; Filosofov, D; Gascon, J; Gerbier, G; Gros, M; Hannawald, M; Juillard, A; Kluck, H; Kozlov, V; Lemrani, R; Lubashevskiy, A; Marrach, C; Marnieros, S; Navick, X-F; Nones, C; Olivieri, E; Pari, P; Paul, B; Sanglard, V; Scorza, S; Semikh, S; Verdier, M-A; Vagneron, L; Yakushev, E

    2010-01-01

    This paper describes precise measurements of the thermal neutron flux in the LSM underground laboratory in proximity of the EDELWEISS-II dark matter search experiment together with short measurements at various other locations. Monitoring of the flux of thermal neutrons is accomplished using a mobile detection system with low background proportional counter filled with $^3$He. On average 75 neutrons per day are detected with a background level below 1 count per day (cpd). This provides a unique possibility of a day by day study of variations of the neutron field in a deep underground site. The measured average 4$\\pi$ neutron flux per cm$^{2}$ in the proximity of EDELWEISS-II is $\\Phi_{MB}=3.57\\pm0.05^{stat}\\pm0.27^{syst}\\times 10^{-6}$ neutrons/sec. We report the first experimental observation that the point-to-point thermal neutron flux at LSM varies by more than a factor two.

  17. Conformity Between LR0 Mock-Ups and Vvers Npp Rpv Neutron Flux Attenuation

    Science.gov (United States)

    Belousov, Sergey; Ilieva, Krassimira; Kirilova, Desislava

    2009-08-01

    The conformity of the mock-up results and those for reactor pressure vessel (RPV) of nuclear power plants (NPP) has been evaluated in order to qualify if the mock-ups data could be used for benchmark's purpose only, or/and for simulating of the NPP irradiation conditions. Neutron transport through the vessel has been calculated by the three-dimensional discrete ordinate code TORT with problem oriented multigroup energy neutron cross-section library BGL. Neutron flux/fluence and spectrum shape represented by normalized group neutron fluxes in the multigroup energy structure, for neutrons with energy above 0.5 MeV, have been used for conformity analysis. It has been demonstrated that the relative difference of the attenuation factor as well as the group neutron fluxes did not exceed 10% at all considered positions for VVER-440. For VVER-1000, it has been obtained the same consistency, except for the location behind the RPV. The neutron flux attenuation behind the RPV is 18% higher than the mock-up attenuation. It has been shown that this difference arises from the dissimilarity of the biological shielding. The obtained results have demonstrated that the VVERs' mock-ups are appropriate for simulating the NPP irradiation conditions. The mock-up results for VVER-1000 have to be applied more carefully i.e. taking into account the existing peculiarity of the biological shielding and RPV attenuation azimuthal dependence.

  18. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  19. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  20. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  1. Underground physics and the barometric pumping effect observed for thermal neutron flux underground

    Science.gov (United States)

    Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.

    2017-05-01

    It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.

  2. Neutron flux optimization in irradiation facilities at Peruvian research reactor RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Vela, M.; Arrieta, R.; Salazar, A.; Urcia, A.; Canaza, D.; Felix, J; Veramendi, E.; Ovalle, E.; Giol, R.; Zapata, L.; Ramos, F.; Tordocillo, J. [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Direccion de Instalaciones. Dept. de Reactores]. E-mail: mvela@ipen.gob.pe; rarrieta@ipen.gob.pe

    2005-07-01

    In this work we show the values distribution of the neutron flux at Peruvian Research Reactor RP-10, determined under two different safety and control rods configurations. The method applied was to irradiate small gold foils in irradiation facilities of the core to carry out the nuclear reaction {sup 197}Au(n, {gamma}){sup 198}Au; then using a gamma spectrometry system and the Westcott formalism we obtained the neutron flux. The results confirm the favorable effect of such configurations, increasing the neutron flux, both thermal and epithermal. These results have consistency with the weekly activity reports of radioisotopes lots given by the Radioisotopes Production Plant and Neutron Activation Analysis Group. (author)

  3. A digital wide range neutron flux measuring system for HL-2A

    Science.gov (United States)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  4. Measurements of neutron fluxes with energies from thermal to several MeV in near-Earth space: SINP results.

    Science.gov (United States)

    Shavrin, P I; Kuzhevskij, B M; Kuznetsov, S N; Nechaev, O Yu; Panasyuk, M I; Ryumin, S P; Yushkov, B Yu; Bratolyubova-Tsulukidze, L S; Lyagushin, V I; Germantsev, Yu L

    2002-10-01

    Neutron measurement results obtained at SINP MSU since 1970 are presented. These measurements were made using techniques based on neutron moderation and subsequent detection in a Li6I(Eu) crystal or a He3 coronal counter. The measurements were mainly carried out in orbits with inclination of 52 degrees and altitudes of 200-450 km. The spatial and angular distributions of the measured neutron fluxes were studied. The albedo neutron flux was estimated according to the count rate difference for opposite detector orientations towards Earth and away from it. This flux is comparable to the local neutron flux outside the Brazil anomaly region, where local neutrons dominate. Neutron fluxes, generated by solar protons, were detected during a solar flare on June 6, 1991 for the first time. Their spectrum was estimated as a power law with alpha>2.

  5. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Science.gov (United States)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  6. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Zeitelhack, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany)]. E-mail: karl.zeitelhack@frm2.tum.de; Schanzer, C. [Physik-Department E21, TU Muenchen, D-85747 Garching (Germany); Kastenmueller, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Roehrmoser, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Daniel, C. [Physik-Department E22, TU Muenchen, D-85747 Garching (Germany); Franke, J. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany); Gutsmiedl, E. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Kudryashov, V. [GKSS Forschungszentrum GmbH, D-21502 Geesthacht (Germany); Maier, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Paethe, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Petry, W. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schoeffel, T. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schreckenbach, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Urban, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Wildgruber, U. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany)

    2006-05-10

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D{sub 2} cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique 'twisted' guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  7. Operation TEAPOT. Project 2.2. Neutron Flux Measurements

    Science.gov (United States)

    1981-01-01

    Shot 2, Slow ( g-I7 eutron Data ..... .. 29 5.17 Shot 2, Intermediate Neutron Data; Pu, Np, U2 3 8 . .. 30 7 15.18~~~~M- Sht2, ______3 3.24 Shot 6...radiation-shielding studies conducted by Project 2.7. 1.2 BACKGROUND AND THEORY It has been shown empirically that the neutrons from thermal fission have an...detector, if thermal neutrons causing fission are shielded out with Bl°. Its effective threshold depends on the thickness of Bl° used and can be varied from

  8. Proposal of thermal neutron flux monitors based on vibrating wire

    CERN Document Server

    Arutunian, S G; Chung, M; Harutyunyan, G S; Lazareva, E G

    2015-01-01

    Two types of neutron monitors with fine spatial resolution are proposed based on vibrating wire. In the first type, neutrons interact with the vibrating wire, heat it, and lead to the change of natural frequency, which can be precisely measured. To increase the heat deposition during the neutron scattering, use of gadolinium layer which has the highest thermal neutron capture cross section among all elements is proposed. The second type of the monitor uses vibrating wire as a resonant target. Besides the measurement of beam profile according to the average signal, the differential signal synchronized with the wire oscillations defines the gradient of beam profile. Spatial resolution of the monitor is defined by the diameter of the wire.

  9. Thunderstorms as probable reason of high background neutron fluxes on L<1.2

    Science.gov (United States)

    Bratolyubova-Tsulukidze, L.; Grachev, E.; Grigoryan, O.; Kunitsyn, V.; Kuzhevskiy, B.; Nechaev, O.; Usanova, M.

    In this paper we analyze the neutron emission observations made in the experiment onboard MIR orbital station (1991), ISS (2002) and Colibri-2002 satellite (2002) at the altitude of 400 km. The helium discharge detectors made it possible to detect neutrons with energies ranging from 0.25eV to 1.9MeV. The spatial distribution of high background neutron fluxes has a longitude dependence. These events have been observed at -200 ... 600 and 1350 ...1800 ...- 1350 longitudinal intervals. The most intensive fluxes near the geomagnetic equator were registered in the African region. They are not found to be associated with increases of proton fluxes (Ep >50MeV). As a statistical set, the events appear to coincide with the most active region of atmospheric weather. In this paper we assess the possibility that the occurrence of high background neutron fluxes in the African region is connected with lightning discharges. To observe neutron emission at the altitude of 400 km ~101 0 neutrons are required to be produced by lightning discharge. These theoretical predictions suggest cloud charge values of about 250-300 Coulomb.

  10. Barometric pumping effect for radon-due neutron flux in underground laboratories

    CERN Document Server

    Stenkin, Yu V; Gromushkin, D M; Shchegolev, O B; Sulakov, V P

    2016-01-01

    It is known that neutron background is a big problem for low-background experiments in underground Laboratories. Our global net of en-detectors sensitive to thermal neutrons includes the detectors running both on the surface and at different depths underground. We present here results obtained with the en-detector of 0.75 m^2 which is running more than 3 years in underground room at a depth of 25 m of water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow. Spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by a radon barometric pumping effect resulting in similar effect in neutron flux produced in (alpha,n)-reactions by alpha-decays of radon and its daughters in surrounding rock

  11. Neutron Flux Measurement at TAPIRO Fast Reactor for APD's Irradiation Fluence Evaluation

    CERN Document Server

    Angelone, M; Diemoz, Marcella; Festinesi, Armando; Longo, Egidio; Organtini, Giovanni; Rosi, G

    1998-01-01

    The Avalanche Photodiodes ( APD) were chosen as photon sensors for the region of the CMS electromagnetic calorimeter. The LHC will be a hard environment for what concerns the radiation levels in the detectors. The most relevant damage on APDs is caused by neutrons that produce an increase in the dark current of these devices. In the CMS-ECAL collaboration a big effort was indeed done to understand this damage, but the evaluation of the absolute effect was limited by the knowledge of the neutron flux calibration of the various irradiation facilities. This investigation describes the calibration of the neutron flux of the Tapiro reactor in Rome and the calculation of the Non-Ionizing-Energy-Loss on Silicon for this reactor. The damage parameter alpha for the APDs is evaluated to be about 10-11*10^-17 A/cm/neutron at 18C and 2 days after the irradiation. Some cross-checks with other irradiation facilities are also presented.

  12. Thermal neutron flux measurement using the DUPIC SPND-instrumented rig

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. Y.; Moon, J. S.; Park, H. S.; Kang, K. H.; Ryu, H. J.; Jeong, I. H.; Song, K. C.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    The 3rd irradiation test of DUPIC fuel, which was fabricated in the DFDF(DUPIC Fuel Development Facility) was performed in HANARO. For the objectives of this irradiation test, the newly designed irradiation rig was equipped with three Rh- type SPND sensors around DUPIC mini-elements for estimating the thermal neutron flux in the OR4 hole. The thermal neutron flux was measured at this location for 5 months the start of the test. The measured data were transmitted to monitoring system. We confirmed that the trend of SPND signal is well agree with that of HANARO power. The measured average thermal neutron flux is 0.45 n/cm{sup 2} {center_dot}s and the average linear power of DUPIC mini-element was estimated to be 33.5 KW/m.

  13. The measurements of thermal neutron flux distribution in a paraffin phantom

    Indian Academy of Sciences (India)

    Parisa Akhlaghi; Laleh Rafat-Motavalli; Seyed Hashem Miri-Hakimabad

    2013-05-01

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of indium foils with two different detectors (Geiger–Muller counter and NaI(Tl)) was the aim of this project. The relative differences of the outcome of the experiments were between 2.5% and 5%. The final results were compared with MCNP4C outputs and the best agreement was generated using NaI(Tl) by a minimum discrepancy of about 0.6% for the foil placed 8.5 cm from the neutron source.

  14. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  15. The effect of craters on the lunar neutron flux

    CERN Document Server

    Eke, V R; Diserens, S; Ryder, M; Yeomans, P E L; Teodoro, L F A; Elphic, R C; Feldman, W C; Hermalyn, B; Lavelle, C M; Lawrence, D J

    2015-01-01

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater centre, has a minimum near the crater rim and at larger distances it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter (LOLA). The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ~0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The ampl...

  16. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Directory of Open Access Journals (Sweden)

    Alekseenko Victor

    2017-01-01

    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  17. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  18. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    Science.gov (United States)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  19. The 2.5 MeV neutron flux monitor for MAST

    Science.gov (United States)

    Cecconello, M.; Sangaroon, S.; Conroy, S.; Donato, M.; Ericsson, G.; Marini-Bettolo, C.; Ronchi, R.; Stro¨m, P.; Weiszflog, M.; Wodniak, I.; Turnyanskiy, M.; Akers, R.; Cullen, A.; Fitzgerald, I.; McArdle, G.; Pacoto, C.; Thomas-Davies, N.

    2014-07-01

    A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium-deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1-1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.

  20. The 2.5 MeV neutron flux monitor for MAST

    Energy Technology Data Exchange (ETDEWEB)

    Cecconello, M., E-mail: marco.cecconello@physics.uu.se [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Sangaroon, S.; Conroy, S.; Donato, M.; Ericsson, G.; Marini-Bettolo, C.; Ronchi, R.; Stroem, P.; Weiszflog, M.; Wodniak, I. [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Turnyanskiy, M.; Akers, R.; Cullen, A.; Fitzgerald, I.; McArdle, G.; Pacoto, C.; Thomas-Davies, N. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2014-07-01

    A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium–deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1–1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.

  1. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    Science.gov (United States)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  2. Uncovering flux line correlations in superconductors by reverse monte carlo refinement of neutron scattering data

    DEFF Research Database (Denmark)

    Laver, M.; Forgan, E.M.; Abrahamsen, Asger Bech

    2008-01-01

    We describe the use of reverse Monte Carlo refinement to extract structural information from angle-resolved data of a Bragg peak. Starting with small-angle neutron scattering data, the positional order of an ensemble of flux lines in superconducting Nb is revealed. We discuss the uncovered correl...

  3. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  4. A charge-collection method for measurements of pulsed fast-neutron flux

    CERN Document Server

    Ouyang, X P; Ho, Y K; Zhang, Z B

    2002-01-01

    A charge-collection method for measuring the flux of pulsed fast neutrons in current mode has been developed, which is based on the well-known recoil-proton method combined with ion-induced secondary electron emission from solid surfaces. The detection unit consists of four elements: an n-p converter, an absorber, a collector, and a rear insulator. The assembly does not require vacuum for operation. Recoil protons from the n-p converter and the secondary electrons induced by the passing protons on the interface of the absorber and the collector contribute to the detector output signal. By properly choosing the materials and the combination of the absorber and the collector, the fraction of secondary electrons in the output signal can be determined experimentally. This detection concept allows one to design a medium type of fast-neutron detector for measurements of extremely intense pulsed neutron flux with a number of advantages over the existing systems.

  5. Seasonal and Lunar month periods observed in natural neutron flux at high altitude

    CERN Document Server

    Stenkin, Yuri; Cai, Zeyu; Cao, Zhen; Cattaneo, Claudio; Cui, Shuwang; Giroletti, Elio; Gromushkin, Dmitry; Guo, Xuewen; Guo, Cong; He, Huihai; Liu, Ye; Ma, Xinhua; Shchegolev, Oleg; Vallania, Piero; Vigorito, Carlo; Zhao, Jing

    2016-01-01

    Air radon concentration measurement is useful for research on geophysical effects, but it is strongly sensitive to site geology and many geophysical and microclimatic processes such as wind, ventilation, air humidity and so on that induce very big fluctuations on the concentration of radon in air. On the contrary, monitoring the radon concentration in soil by measuring the thermal neutron flux reduces environmental effects. In this paper we report some experimental results on the natural thermal neutron flux as well as the concentration of air radon and its variations at 4300 m a.s.l. These results were obtained with unshielded thermal neutron scintillation detectors (en-detectors) and radon monitors located inside the ARGO-YBJ experimental hall. The correlation of these variations with the lunar month and 1-year period is undoubtedly confirmed. A method for earthquakes prediction provided by a global net of the en-detectors is currently under study.

  6. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    National Research Council Canada - National Science Library

    Abdessamad Didi; Ahmed Dadouch; Otman Jaï; Jaouad Tajmouati; Hassane El Bekkouri

    2017-01-01

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences...

  7. Flux gain for a next-generation neutron reflectometer resulting from improved supermirror performance

    CERN Document Server

    Rehm, C

    2002-01-01

    Next-generation spallation neutron source facilities will offer instruments with unprecedented capabilities through simultaneous enhancement of source power and usage of advanced optical components. The Spallation Neutron Source (SNS), already under construction at Oak Ridge National Laboratory and scheduled to be completed by 2006, will provide greater than an order of magnitude more effective source flux than current state-of-the-art facilities, including the most advanced research reactors. An additional order of magnitude gain is expected through the use of new optical devices and instrumentation concepts. Many instrument designs require supermirror neutron guides with very high critical angles for total reflection. In this contribution, we will discuss how the performance of a modern neutron-scattering instrument depends on the efficiency of these supermirrors. We summarize current limitations of supermirror coatings and outline ideas for enhancing their performance, particularly for improving the reflec...

  8. A novel method to measure low flux ambient thermal neutrons with 3He proportional counters

    Science.gov (United States)

    Zeng, Z. M.; Gong, H.; Yue, Q.; Li, J. M.

    2017-09-01

    A pulse shape discrimination method to discriminate neutron events from backgrounds based on the double-pulse effect of 3He proportional counters is proposed and detailed in this paper. We made an ambient thermal neutron measurement system composed of a commercial 3He proportional counter tube and the corresponding readout electronics. The background of the system has been measured and the minimum detectable amount of the 3He proportional counter tube will be reduced by an order of magnitude with this method. The system was applied to measure the ambient thermal neutron flux inside a large neutron shielding structure at a deep underground laboratory and the pulse shape discrimination method proves to be effective.

  9. In-situ SEOP polarizer and initial tests on a high flux neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, E., E-mail: e.babcock@fz-juelich.d [Institut Laue Langevin, Grenoble (France); Jeulich Centre for Neutron Science, Garching (Germany); Boag, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Andersen, K.H.; Becker, M. [Institut Laue Langevin, Grenoble (France); Beecham, C. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Institut Laue Langevin, Grenoble (France); Bordenave, F.; Chastagnier, J. [Institut Laue Langevin, Grenoble (France); Chen, W.C. [NIST Gaithersburg, MD (United States); Chung, R. [Institut Laue Langevin, Grenoble (France); Chupp, T.E. [FOCUS, University of Michigan, Ann Arbor, MI (United States); Elmore, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Fouilloux, P. [Institut Laue Langevin, Grenoble (France); Gentile, T.R. [NIST Gaithersburg, MD (United States); Jullien, D.; Lelievre-Berna, E.; Mouveau, P.; Petoukhov, A.; Revert, M.; Soldner, T. [Institut Laue Langevin, Grenoble (France)

    2009-09-01

    Polarized {sup 3}He has shown its unique characteristics in many areas of polarized neutron scattering, its ability to polarize neutrons at short wavelengths, accept wide-angle and divergent beams and low backgrounds enable new classes of experiments. While polarized {sup 3}He is not a steady state solution as commonly applied, the benefits have been shown to offset the drawbacks of polarizing and refreshing the polarization in the neutron spin filter cells. As an extension of this work, in-situ polarization using the spin-exchange optical pumping (SEOP) method was explored as a means to construct a system which could be used to polarize {sup 3}He in the state used for an effective neutron spin filter to constant polarization while on the neutron beam. An in-situ SEOP polarizer was constructed. This device utilized many devices and principles developed for neutron spin filters which are polarized off the beam line using either SEOP or metastability exchange optical pumping (MEOP) under the same research program. As a collimation of this work effects of extremely high neutron capture flux density >1x10{sup 10}cm{sup -2}s{sup -1} incident on the in-situ polarizer were explored.

  10. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection

    Directory of Open Access Journals (Sweden)

    B. M. Kuzhevskij

    2003-01-01

    Full Text Available The present work contains some results of observations of neutron flux variations near the Earth’s surface. The Earth’s crust is determined to be a significant source of thermal and slow neutrons, originated from the interaction between the nuclei of the elements of the Earth’s crust and the atmosphere and α-particles, produced by decay of radioactive gases (Radon, Thoron and Actinon. In turn, variations of radioactive gases exhalation is connected with geodynamical processes in the Earth’s crust, including tectonic activity. This determined relation between the processes in the Earth’s crust and neutrons’ flux allow to use variations of thermal and slow neutrons’ flux in order to observe increasing tectonic activity and to develop methods for short-term prediction of natural hazards.

  11. Evaluation of neutronic characteristic of irradiation field in MEU6-core. Comparison of neutron flux and neutron spectrum in MEU6-core and Mixed-core

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu; Komukai, Bunsaku; Tabata, Toshio; Takeda, Takashi; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-08-01

    In JMTR (Japan Materials Testing Reactor, 50 MW), the core configuration has been changed from previously employed Mixed-core (25 LEUs(low enrichment uranium (19.8%) fuel elements) and 2 MEUs (medium enrichment uranium (45%) fuel elements)) to MEU6-core (21 LEUs and 6 MEUs), since 125th operating cycle (started in Nov. 17, 1998). In order to investigate the effect of core configuration change on the irradiation tests, neutron flux distribution and neutron spectrum of irradiation field in MEU6-core were calculated by diffusion code CITATION and Monte Carlo code MCNP. As the result, it was confirmed that irradiation field in the MEU6-core has the neutronic characteristics almost equivalent to the irradiation field in the Mixed-core. (author)

  12. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Directory of Open Access Journals (Sweden)

    Çeçen Yiğit

    2017-01-01

    Full Text Available In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs. If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270° with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s which is compatible with an americium-beryllium (Am-Be neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  13. Neutron Imager and Flux Monitor Based on Micro Channel Plates (MCP) in Electrostatic Mirror Configuration

    Science.gov (United States)

    Variale, V.

    In this paper, a new high transparency device based on MCP for the monitoring the flux and spatial profile of a neutron beam will be described. The assembly consists of a carbon foil with a 6Li deposit, placed in the beam, and a MCP equipped with a phosphor screen readout viewed by a CCD camera, placed outside the beam. Secondary emitted electrons (SEE) produced in the carbon foil by the alpha-particles and tritons from the 6Li+n reaction, are deflected to the MCP detector by means of an electrostatic mirror, suitably designed to preserve the spatial resolution. The conductive layer on the phosphor can be used for neutron counting, and to obtain time-of-flight information. A peculiar feature of this device is that the use of an electrostatic mirror minimizes the perturbation of the neutron beam, i.e. absorption and scattering. It can be used at existing time-of-flight (TOF) facilities, in particular at the n_TOF facility at CERN, for monitoring the flux and special profile of the neutron beam in the thermal and epithermal region. In this work, the device principle and design will be presented, together with the main features in terms of resolution and neutron detection efficiency.

  14. Study of the beam-induced neutron flux and required shielding for DIANA

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: abest1@nd.edu [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Couder, Manoel [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Famiano, Michael [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Lemut, Alberto [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-11-01

    Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern. The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1 m thick water-shielded door as well as an emergency access/egress maze.

  15. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  16. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the Gallium-Germanium Solar Neutrino Experiment

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11+-0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5+-2.1)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 m of water equivalent was measured to be (7.3+-2.4)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be <2.3x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  17. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  18. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  19. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Lance [Indiana Univ., Bloomington, IN (United States)

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  20. Micro-pocket fission detectors (MPFD) for in-core neutron flux monitoring

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)]. E-mail: mcgregor@ksu.edu; Ohmes, Martin F. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Ortiz, Rylan E. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Sabbir Ahmed, A.S.M. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Kenneth Shultis, J. [S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2005-12-01

    Micro-pocket fission detectors (MPFD) have been fabricated and tested as in-core flux monitors in the 250 kW TRIGA nuclear reactor at Kansas State University. The prototype devices have been coated with a natural uranyl-nitrate to provide a neutron reactive coating. The devices are composed of alumina substrates sealed together to form a miniature gas pocket 3 mm in diameter and 1 mm wide. The devices are radiation hard and can operate in pulse mode in a neutron flux exceeding 10{sup 12} cm{sup -2} s{sup -1}. Placed in the central thimble of the reactor core, the MPFDs have shown count rate linearity from low to high power. Dead time losses become apparent at power levels exceeding 100 kW, yet are still low enough to allow for pulse mode operation.

  1. Thermal neutrons' flux near the Earth's surface as an evidence of the crustal stress

    Science.gov (United States)

    Sigaeva, Ekaterina; Nechayev, Oleg; Volodichev, Nikolay; Antonova, Valentina; Kryukov, Sergey; Chubenko, Alexander; Shchepetov, Alexander

    There are some ideas about the Earth’s global seismic activity appearance due to tidal forces. At the same time, the correlations between the big series of the earthquakes and the New and Full Moons and between the New and Full Moons and the increasings of the thermal neutrons’ flux from the Earth’s crust were observed. It is as though there are internal links between these three natural phenomena and the physical reasons for their appearance are the same. The paper presents the results of the ground-based thermal neutrons observations during different time periods characterized with phenomena in the near-Earth space (for instance, the New and Full Moon). Basing on the up-to-date conception of the tidal waves influence on the Earth's crust the authors confirm the role of the Moon in the production of the neutron flux near the Earth's surface.

  2. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B L; Robertson, J L; Iverson, E B; Selby, D L, E-mail: winnbl@ornl.gov

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 A to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  3. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Neutron Scattering Group; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Robertson, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Selby, D. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.

    2009-05-03

    The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  4. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Science.gov (United States)

    Winn, B. L.; Robertson, J. L.; Iverson, E. B.; Selby, D. L.

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  5. Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm.

    Science.gov (United States)

    Molina, F; Aguilera, P; Romero-Barrientos, J; Arellano, H F; Agramunt, J; Medel, J; Morales, J R; Zambra, M

    2017-08-04

    We present a methodology to obtain the energy distribution of the neutron flux of an experimental nuclear reactor, using multi-foil activation measurements and the Expectation Maximization unfolding algorithm, which is presented as an alternative to well known unfolding methods such as GRAVEL. Self-shielding flux corrections for energy bin groups were obtained using MCNP6 Monte Carlo simulations. We have made studies at the at the Dry Tube of RECH-1 obtaining fluxes of 1.5(4)×10(13)cm(-2)s(-1) for the thermal neutron energy region, 1.9(5)×10(12)cm(-2)s(-1) for the epithermal neutron energy region, and 4.3(11)×10(11)cm(-2)s(-1) for the fast neutron energy region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  7. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Science.gov (United States)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  8. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  9. Alternative method for thermal neutron flux measurements based on common boric acid as converter and Lr-15 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, D.; Greaves, E. D.; Sajo B, L.; Barros, H. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas (Venezuela, Bolivarian Republic of); Ingles, R. [Universidad Nacional de San Antonio Abad del Cusco, Av. de la Cultura No. 733, Cusco (Peru)

    2010-02-15

    A method to determine the flux and angular distribution of thermal neutrons with the use of Lr-115 detectors was developed. The use of the Lr-115 detector involves the exposure of a pressed boric acid sample (tablet) as a target, in tight contact with the track detector, to a flux of thermalized neutrons. The self-absorption effects in thin films or foil type thermal neutron detectors can be neglected by using the Lr-115 detector and boric acid tablet setup to operate via backside irradiation. The energy window and the critical angle-residual energy curve were determined by comparisons between the experimental and simulated track parameters. A computer program was developed to calculate the detector registration efficiency, so that the thermal neutron flux can be calculated from the track densities induced in the Lr-115 detector using the derived empirical formula. The proposed setup can serves as directional detector of thermal neutrons. (Author)

  10. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  11. Prediction Research of Red Tide Based on Improved FCM

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2016-01-01

    Full Text Available Red tides are caused by the combination effects of many marine elements. The complexity of the marine ecosystem makes it hard to find the relationship between marine elements and red tides. The algorithm of fuzzy c-means (FCM can get clear classification of things and expresses the fuzzy state among different things. Therefore, a prediction algorithm of red tide based on improved FCM is proposed. In order to overcome the defect of FCM which is overdependent on the initial cluster centers and the objective function, this paper gains the initial cluster centers through the principle of regional minimum data density and the minimum mean distance. The feature weighted cluster center is added to the objective function. Finally, the improved FCM algorithm is applied in the prediction research of red tide, and the results show that the improved FCM algorithm has good denoising ability and high accuracy in the prediction of red tides.

  12. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  13. Progress towards boron neutron capture therapy at the High Flux Reactor Petten.

    Science.gov (United States)

    Moss, R L

    1990-01-01

    During 1988 the first positive steps were taken to proceed with the design and construction of a neutron capture therapy facility on the High Flux Reactor (HFR) at Petten. The immediate aim is to realise within a short time (summer 1989), an epithermal neutron beam for radiobiological and filter optimisation studies on one of the 10 small aperture horizontal beam tubes. The following summer, a much larger neutron beam, i.e., in cross section and neutron fluence rate, will be constructed on one of the two large beam tubes that replaced the old thermal column in 1984. This latter beam tube faces one whole side of the reactor vessel, extending from a 50 x 40 cm input aperture to a 35 x 35 cm exit hole. The radiotherapeutic facility will be housed here, with the intention to start clinical trials at the beginning of 1991. This paper describes the present status of the project and includes: a general description of the pertinent characteristics with respect to NCT of the HFR; results of the recently completed preliminary neutron metrology and computer modeling at the input end of the candidate beam tube; the structure and planning of the proposed Work Programme; and the respective direct and indirect participation and collaboration with the Netherlands Cancer Institute and the European Collaboration Group on BNCT.

  14. Feasibility study of photo-neutron flux in various irradiation channels of Ghana MNSR using a Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Birikorang, S.A., E-mail: anddydat@yahoo.com [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); Akaho, E.H.K.; Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra-Ghana (Ghana); Ampomah-Amoako, E.; Seth, Debrah K.; Gyabour, R.A.; Sogbgaji, R.B.M. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana)

    2011-07-15

    Highlights: > The photo-neutron source was investigated within Ghana MNSR irradiation channels. > Irradiation channels under study were inner, outer and the fission chamber. > Thermal rated power at sub-critical state was estimated. > Neutron flux variation was investigated within the channels. > MCNP code has been used to investigate the flux variation. - Abstract: Computer simulation was carried out for photo-neutron source variation in outer irradiation channel, inner irradiation channels and the fission channel of a tank-in-pool reactor, a Miniature Neutron Source Reactor (MNSR) in sub-critical condition. Evaluation of the photo-neutron was done after the reactor has been in sub-critical condition for three month period using Monte Carlo Neutron Particle (MCNP) code. Neutron flux monitoring from the Micro Computer Control Loop System (MCCLS) was also investigated at sub-critical condition. The recorded neutron fluxes from the MCCLS after investigations were used to calculate the power of the reactor at sub-critical state. The computed power at sub-critical state was used to normalize the un-normalized results from the MCNP.

  15. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    CERN Document Server

    Zhao, Qiang; Yang, Lei; Zhang, Xueying; Cui, Wenjuan; Chen, Zhiqiang; Xu, Hushan

    2015-01-01

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron fl...

  16. Uncertainties in measuring trace amounts of cobalt and europium with low-flux neutron activation analysis

    Directory of Open Access Journals (Sweden)

    Burnham Steven

    2017-01-01

    Full Text Available Neutron activation analysis is widely used for identification of elements and their quantities even in trace amounts in the samples of almost any type. The challenges in detecting trace amounts of particular elements are often associated with the neutron flux produced at the research reactors. Low-flux neutron activation analysis usually presents the biggest challenge when analyzing trace quantities of elements with lower magnitude of radiative capture cross-sections. In this paper, we present the methodology and the quantified uncertainties associated with the detection of trace amounts of cobalt and europium, using as an example concrete aggregates. Recent growing interest is in improving structural concrete (increasing its strength but reducing its activation in nuclear power plant environments. Aside from buildings, structural concrete is also used as a biological shield in nuclear power plant that become radioactive after exposure to neutron flux. Due to radiative capture interactions, artificial radionuclides are generated to high enough concentrations that classify concrete as low-level radioactive waste at the time of the plant's decommissioning. Disposal of this concrete adds to the expense of nuclear power plant financing and its construction. Three radionuclides, 60Co, 152Eu, and 154Eu, account for 99 % of total residual radioactivity of nuclear power plant decommissioned concrete. IAEA document RS-G-1.7, Application of the Concepts of Exclusion, Exemption, and Clearance, specifies clearance levels of radionuclides specific activities: a specific activity lower than 0.1 Bqg-1 for 60Co and 152Eu, and 154Eu allows for a concrete to be recycled after decommissioning of the nuclear power plant. Therefore, low-flux neutron activation analysis is used to test the detection limits of trace elements in samples of cement, coarse, and fine concrete aggregates. These samples are irradiated at the University of Utah's 100 kW TRIGA Reactor at

  17. Measured and Predicted Neutron Flux Distributions in a Material Surrounding a Cylindrical Duct

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.; Sandlin, R.

    1966-03-15

    The radial fast neutron flux attenuations in the material (iron) surrounding ducts of diameters 7, 9, and 15 cm and total duct length of about 1.5 m have been investigated with and without neutron scattering cans filled with D{sub 2}O in the duct. Experimentally the problem was solved by the use of foil activation techniques. Theoretically it was attacked by, in the first place, a Monte Carlo program specially written for this purpose and utilizing an importance sampling technique. In the second place non- and single-scattering removal flux codes were tried, and also simple hand calculations. The Monte Carlo results accounted well for the fast flux attenuation, while the non- and single-scattering methods overestimated the attenuation generally by a factor of 10 or less. Simple hand calculations using three empirical parameters could be fitted to the measured data within a factor of 1.2 - 1.3 at penetration depths greater than 3 - 4 cm. The distribution of the D{sub 2}O-scattered flux could well be described in terms of single scattering.

  18. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  19. Calculation of intermediate neutron flux in the radial reflectors of graphite reactors, comparison with experiments; Calcul du flux de neutrons intermediaires dans les reflecteurs lateraux des piles a graphite. Comparaison avec l'experience

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Vergnaud, T.; Oceraies, Y

    1967-12-01

    In a graphite pile, EDF or Inca type reactor, it is necessary to know the value of the intermediate neutron flux at the output of the lateral reflector in order to determine more precisely the neutron flux at the level of ionisation chambers. A sub critical pile of graphite and natural uranium was built, allowing to reconstitute the geometry of the radiation sources and the disposition of inferior and lateral protections of these piles. This pile is supplied with thermal neutrons coming from the Nereide light water type reactor. Some measurements of intermediate neutron flux have been made in this pile in order to establish a formalism for neutron flux calculation in slowing down in a whole core-lateral reflector, from the distribution of the thermal neutrons flux in the core. The flux calculation is done by age theory in three dimensions, in two homogenous media, separated by an axially semi infinite and laterally finite plane. One of these media includes a distribution of source. The constants are modified in order to take into account the presence of empty channels in the stacking. These calculations are done by the Malaga code. The checking of the formalism has been made in a greater complex geometry of these reactors that introduces an uncertainty factor in the comparison of results. We can however tell that we estimate correctly the variation of the intermediate neutrons flux in the core as well as its descending in a holed lateral reflector. The ratio between the calculation and the experiment is inferior to 2 or 3. Most of the time to a factor 2. [French] Dans une pile a graphite, du type EdF ou Inca, il est necessaire de connaitre la valeur du flux de neutrons intermediaires a la sortie du reflecteur lateral, afin de determiner avec plus de precision le flux de neutrons au niveau des chambres d'ionisation. Il a ete construit un empilement sous-critique, graphite uranium naturel, qui permet de reconstituer la geometrie des sources de rayonnement et la

  20. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  1. A study on signal processing for wide-range neutron flux measurement using improved algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Hong; Lee, Yeun Hee; Lee, Jeong Yang [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    ENFMS(ex-core neutron flux monitoring system) is divided to source range, intermediate range and power ranger in accordance with its range and the output signal measurements of that are carried out with BF{sub 3} counter, fission chamber. There have been lots of study to adopt the wide-range measurement method which use only fission chamber through the whole reactor power. To do that is needs extending the power measurement range which is covered by fission chamber to lower power range. In lower power range the effect of noise in signal is greater relatively than that of high power range. The existing signal processing method to measurement plant power range in ENFMS in which the individual neutron flux pulse can be countered as the reactor power increased is MSV (mean square voltage) measurement. In this paper the extended method from MSV (2nd moment) mode to 3rd moment to improve the discrimination between neutron signal and background noise was studied. The simulation was shown that accuracy of power measurement in ENFMS using the method mention above would be improved. 2 tabs., 10 figs., 18 refs. (Author) .new.

  2. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  3. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Leandro C.; Crispim, Verginia R. [Nuclear Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Ferreira, Francisco J. O. [National Nuclear Energy Commission, CNEN/IEN, Division Reactors, Rio de Janeiro (Brazil)

    2017-06-15

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows.

  4. Influence of neutron flux, frequency and temperature to electrical impedance of nano silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin, E-mail: hus.elchin@yahoo.com, E-mail: hus.elchin@gmail.com; Garibov, Adil; Mehdiyeva, Ravan [Institute of Radiation Problems of Azerbaijan National Academy of Sciences, AZ 1143, B.Vahabzadeh 9, Baku (Azerbaijan); Andreja, Eršte, E-mail: andreja.erste@ijs.si [Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana Slovenia (Slovenia); Rustamov, Anar, E-mail: a.rustamov@cern.ch [Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2014-11-15

    We studied electric impedance of SiO{sub 2} nanomaterial at its initial state and after being exposed to continuous neutron irradiation for up to 20 hours. In doing so we employed a flux of neutrons of 2x10{sup 13} n⋅cm{sup −2}s{sup −1} while the frequency and temperature ranges amounted to 0,09 – 2.3 MHz and 100 – 400 K correspondingly. Analysis in terms of the Cole-Cole expression revealed that with increasing irradiation period the polarization and relaxation times decrease as a result of combination of nanoparticles. Moreover, it is demonstrated that the electric conductivity of samples, on the other hand, increases with the increasing irradiation period. At low temperatures formations of clusters at three distinct states with different energies were resolved.

  5. Further investigations on the Neutron Flux Generation in a Plasma Discharge Electrolytic Cell

    CERN Document Server

    Faccini, R; Polosa, A D; Angelone, M; Castagna, E; Lecci, S; Loreti, S; Pietropaolo, A; Pillon, M; Sansovini, M; Sarto, F; Violante, V; Bedogni, R; Esposito, A

    2014-01-01

    Our recent paper on the "Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell" [1] has as main goal the validation of the experiment in Ref.[2]. As a follow-up, Ref.[3] moves a set of objections on our procedure and presents argumentations on why the experiments should not yield the same results. We collect here additional material and calculations that contribute to understanding the observed discrepancies. Furthermore we prove that the absence of signals from Indium activation detectors reported also for the experiment of Ref.[2] is a clear indication that neutron production does not occur. [1] R.Faccini et al arXiv:1310.4749 [2] D.Cirillo et al, Key Engineering Materials 495, 104 (2012). [3] A.Widom et al. arXiv:1311.2447

  6. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  7. Neutron flux mapping of Argonauta reactor in the new configuration of its reactor core; Mapeamento do fluxo de neutrons do reator Argonauta na nova configuracao do seu nucleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani; Furieri, Rosanne Cefaly de Aranda Amado [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Whenever tasks involving the use of a nuclear reactor are carried out, e.g., radioisotope production, activation analysis, neutrongraphy, etc., it is necessary to know the magnitude of the associate neutron flux. The Argonauta reactor operating in Rio de Janeiro, at Instituto de Engenharia Nuclear - IEN/CNEN, was submitted to some modifications in its core, which made necessary to measure again its new neutronic characteristics, not only in the core itself, but also at the irradiation pads. In this type of research reactor, the neutrons are energetically distributed from values below 1 eV, to values reaching the magnitude of MeV. Therefore, depending on the kind of experiment to be conducted, it may become necessary to know the integrated neutron flux within certain energy ranges. In this work, the neutron flux for thermal and epithermal regions were determined by using the foil activation method. To accomplish this goal, two different techniques were applied. In the first technique {beta}-{gamma} gamma coincidence measurements were performed using a proportional 4{pi}{beta} gaseous detector and a NaI(Tl) scintillation detector, while in the second one, gamma spectroscopy was carried out using Hp-Ge and NaI(Tl) detectors. In both cases, the flux was computed using the FLUXO software, specially developed for this purpose. (author)

  8. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  9. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Stefan [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Djuricic, Mile [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Nuclear Engineering Seibersdorf, 2444 Seibersdorf (Austria); Villa, Mario; Boeck, Helmuth [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Steinhauser, Georg, E-mail: georg.steinhauser@ati.ac.at [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2011-11-15

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10{sup 9} cm{sup -2} s{sup -1} at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: > Neutron activation is an important process for the waste management of nuclear facilities. > Biological shield of the TRIGA reactor Vienna has been topic of investigation. > Flux values allow a categorization of the concrete concerning radiation protection legislation. > Reactor installations are of great importance as neutron sources into the biological shield. > Every installation shows distinguishable flux profiles.

  10. A research on fast FCM algorithm based on weighted sample

    Institute of Scientific and Technical Information of China (English)

    KUANG Ping; ZHU Qing-xin; WANG Ming-wen; CHEN Xu-dong; QING Li

    2006-01-01

    To improve the computational performance of the fuzzy C-means (FCM) algorithm used in dataset clustering with large numbers,the concepts of the equivalent samples and the weighting samples based on eigenvalue distribution of the samples in the feature space were introduced and a novel fast cluster algorithm named weighted fuzzy C-means (WFCM) algorithm was put forward,which came from the traditional FCM algorithm.It was proved that the duster results were equivalent in dataset with two different cluster algorithms:WFCM and FCM.Furthermore,the WFCM algorithm had better computational performance than the ordinary FCM algorithm.The experiment of the gray image segmentation showed that the WFCM algorithm is a fast and effective cluster algorithm.

  11. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  12. Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ling; WAN Bao-Nian; ZHONG Guo-Qiang; HU Li-Qun; LIN Shi-Yao; ZHANG Xin-Jun; ZANG Qing

    2011-01-01

    Ion cyclotron resonance heating experiments using antenna, in the high Reid side (HFS) have been carried out on HT-7 in different target plasmas. Unlike a standard-mode conversion heating scheme with dominant electron heating, anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma. The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave, which could produce a high energy tail on ion energy distribution.%Ion cyclotron resonance heating experiments using antenna in the high field side (HFS) have been carried out on HT-7 in different target plasmas.Unlike a standard-mode conversion heating scheme with dominant electron heating,anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma.The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave,which could produce a high energy tail on ion energy distribution.Neutron diagnostics have been applied in ion cyclotron range frequency (ICRF) plasmas on HT-7 for measurements of the fusion reaction product,which give a direct measure of the ICRF heating.The neutron emission is recorded by a 3He proportional counter,whose sensitive size is φ30 mm × 300 mm,gas pressure is 49.34 kPa and the responsibility to thermal neutrons is 133 cps/n.cm-2.s-1.It exploits large reaction cross sections and is therefore embedded in polythene moderators to thermalize the incident neutrons.

  13. Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)

    2016-11-01

    It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)

  14. A High-Speed Baseline Restorer for Neutron Flux Detection in ITER

    Institute of Scientific and Technical Information of China (English)

    曹宏睿; 李世平; 徐修峰; 袁国梁; 杨青巍; 阴泽杰

    2012-01-01

    A neutron flux monitor .(NFM) is a key diagnostic system in the International Ther- monuclear Experimental Reactor (ITER), and may provide readings of a series of important parameters in fusion reaction processes. As a valuable part of the main electronics system of the NFM, the high-speed baseline restorer we designed is an important signal conversion plug-in which can restore the input signal baseline offset to a zero level, while keeping the output pulse signal waveform from the preamplifier basically unchanged.

  15. Flux lattice behavior in high- T sub c materials studied by neutron depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Crow, M.L.; Goyette, R.J.; Nunes, A.C.; Pickart, S.J. (University of Rhode Island, Kingston, Rhode Island 02881 (USA)); McGuire, T.R.; Shinde, S.; Shaw, T.M. (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (USA))

    1990-05-01

    The depolarization of a neutron beam passing through a sample of the high-{ital T}{sub {ital c}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} has been measured as a function of temperature and applied field. The difference in behavior between field-cooled and zero-field-cooled states, the observation of hysteresis correlated with {ital H}{sub {ital c}1}, and the disappearance of the effect near 55 K (below {ital T}{sub {ital c}}) suggest an explanation in terms of vortex line lattice formation with possible connection to recently proposed flux line entanglement and melting.

  16. A neutron study of the flux lattice in the superconductor CeRu{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, A. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Cubitt, R. [Institut Max von Laue -Paul Langevin, 38 - Grenoble (France); McPaul, D. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics; Forgan, E. [Birmingham Univ. (United Kingdom). School of Physics and Space Research; Nutley, M. [Birmingham Univ. (United Kingdom). School of Physics and Space Research; Mook, H. [Oak Ridge National Lab., TN (United States). Solid State Div.; Yethiraj, M. [Oak Ridge National Lab., TN (United States). Solid State Div.; Lejay, P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Caplan, D. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Penisson, J.M. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee

    1996-07-01

    Small-angle neutron diffraction measurements from the flux lattice in a single crystal of the cubic Laves` phase superconductor, CeRu{sub 2}, are reported. The mixed state is described in terms of aligned rigid bundles of vortices. The bundle diameters decrease above 1/2H{sub c2} (consistent with collective weak pinning theory) and become comparable with the penetration length at a field at which a `peak effect` is seen in magnetisation measurements. A clear memory of field histories that pass through the `peak effect` region is also found; however, some of the induced disorder can be removed by subsequently cycling the field. (orig.).

  17. The study of aeroball system for measuring 3D neutron flux distribution in reactor core

    Institute of Scientific and Technical Information of China (English)

    LuoZheng-Pei; LiFu; 等

    1997-01-01

    Aeroball system is attractive in several aspects because it can easily transport the map of neutron flux distribution to be measured from incore to outside of a reactor vessel.However,before the aeroball system is put to practical use in the heating reactor.there are four topics that have to be further studied.They are the stability of the activated positions,enhancement of signal/noise(S/N)ratio,distributed control and data-acquisition system and on-lin nbeutron flux distribution reconstruction.Besides describing the rasons for them,this paper gives out the theory,concept and solution about the first two topics and it is helptul to give the possibility to enhance the reactor-power.

  18. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study.

    Science.gov (United States)

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2017-07-01

    The neutron flux monitors from 10keV to 1MeV designed for boron neutron capture therapy (BNCT) were experimentally tested with prototype monitors in an appropriate neutron field produced at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. The experimental test results and related analysis indicated that the performance of the monitors was good and the neutron fluxes from 10keV to 1MeV of practical BNCT neutron sources can be measured within 10% by the monitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel; Prozorov, Ruslan

    2012-05-17

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (Tflux was nearly constant. The expelled field outside of the samples followed 1/R dependence. These measurements provided a unique and detailed picture of macroscopic superconducting samples, confirming the existence of both uniform bulk Meissner expulsion in single crystals and bulk flux trapping with nearly-Bean-model profiles due to flux pinning in polycrystalline samples.

  20. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    Science.gov (United States)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCD's) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4-12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approx. = .05 V/rad responsivity with greater than or = 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 105 to 107 n/cc range indicate smearing over approx. 1 to 10 percent of the CCD array with charge per pixel ranging between noise and saturation levels.

  1. Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs)

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, E.D.

    2001-01-11

    The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is currently undergoing an upgrading program, a part of which is to increase the diameters of two of the four radiation beam tubes (HB-2 and HB-4). This change will cause increased neutron and gamma radiation dose rates at and near locations where the tubes penetrate the vessel wall. Consequently, the rate of radiation damage to the reactor vessel wall at those locations will also increase. This report summarizes calculations of the neutron and gamma flux (particles/cm{sup 2}/s) and the dpa rate (displacements/atom/s) in iron at critical locations in the vessel wall. The calculated dpa rate values have been recently incorporated into statistical damage evaluation codes used in the assessment of radiation induced embrittlement. Calculations were performed using models based on the discrete ordinates methodology and utilizing ORNL two-dimensional and three-dimensional discrete ordinates codes. Models for present and proposed beam tube designs are shown and their results are compared. Results show that for HB-2, the dpa rate in the vessel wall where the tube penetrates the vessel will be increased by {approximately}10 by the proposed enlargement. For HB-4, a smaller increase of {approximately}2.6 is calculated.

  2. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  3. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Mostafaei, F.; McNeill, F.E.; Chettle, D.R.; Matysiak, W.; Bhatia, C.; Prestwich, W.V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  4. Underground low flux neutron background measurements in LSM using a large volume (1m3) spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Giomataris, I.; Bougamont, E.; Irastorza, I.; Aune, S.; Chapelier, M.; Charvin, P. H.; Colas, P.; Derre, J.; Ferrer, E.; Gerbier, G.; Gros, M.; Mangier, P.; Navick, X. F.; Salin, P.; Vergados, J. D.; Zampalo, M.

    2010-01-01

    A large volume (1m3) spherical proportional counter has been developed at CEA/Saclay, for low flux neutron measurements. The high voltage is applied to a small sphere 15mm in diameter, located in the center of the counter and the wall of the counter is grounded. Neutrons can be measured successfully, with high sensitivity, using 3He gas in the detector. The proton and tritium energy deposition in the drift gaseous volume, from the reaction 3He(n,p)3H, can provide the neutron spectra from thermal neutrons up to several MeV. The detector has been installed in the underground laboratory in Modane (LSM) to measure the neutron background. The sphere has been has been filled with gas mixture of Ar + 2% CH4 +3gr He-3, at 275 mbar. The thermal neutron peak is well separated from the cosmic ray and gamma background, permitting of neutron flux calculation. Other potential applications requiring large volume of about 10 m in radius are described in detail in reference

  5. The finite cell method for polygonal meshes: poly-FCM

    Science.gov (United States)

    Duczek, Sascha; Gabbert, Ulrich

    2016-10-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  6. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  7. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; De Izarra, G. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Elter, Zs.; Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goteborg, (Sweden); Verma, V.; Hellesen, C.; Jacobsson, S. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala, (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Sensors and Electronic Architecture Laboratory, Saclay, F-91191 Gif Sur Yvette, (France); Chapoutier, N.; Scholer, A-C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon, (France); Cantonnet, B.; Nappe, J-C. [PHONIS France S.A.S, Nuclear Instrumentation, Avenue Roger Roncier, B.P. 520, F-19106 Brive Cedex, (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Department of Power and Energy System, F-91192 Gif Sur Yvette, (France); Jadot, F. [CEA, DEN, DER, ASTRID Project Group, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  8. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  9. Analyzer of neutron flux in real time; Analizador de flujo neutronico en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  10. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Al Mahamid, I. [Lawrence Berkeley National Laboratory, E.H. and S. Div., CA (United States); Blandin, C. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Chabod, S. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Chartier, F. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Dupont, E.; Fioni, G. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Isnard, H. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Letourneau, A.; Marie, F. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Panebianco, S.; Veyssiere, C. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France)

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  11. Simulation of the neutron flux in the irradiation facility at RA-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.it [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6 27100, Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6 27100, Pavia (Italy); Pinto, J.M. [Department of Research and Production Reactors, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina); Thorp, S.I. [Department of Instrumentations and Control, Comision Nacional de Energia Atomica (CNEA), Presbitero Luis Gonzalez y Aragon 15 (B1802AYA), Buenos Aires (Argentina); Farias, R.O. [CONICET, Avda. Rivadavia 1917, (1033) C.A.B.A. Argentina (Argentina); Soto, M.S. [FCEyN, Universidad de Buenos Aires (1428), Cdad. Universitaria. C.A.B.A. Argentina (Argentina); Sztejnberg, M. [Department of Instrumentations and Control, Comision Nacional de Energia Atomica (CNEA), Presbitero Luis Gonzalez y Aragon 15 (B1802AYA), Buenos Aires (Argentina); Pozzi, E.C.C. [Department of Research and Production Reactors, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina)] [Department of Radiobiology, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina)

    2011-12-15

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comision Nacional de Energia Atomica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility.

  12. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  13. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  14. EURISOL Multi-MW Target Station - MAFF Configuration - Neutron Fluxes, Fission Rates, Dose Rates and Activation

    CERN Document Server

    Luis, R; Goncalves, I. F; Vaz, P; Kadi, Y; Kharoua, C; Rocca, R; Bermudez, J; Tecchio, L; Negoita, F; Ene, D; David, J.C

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims atproducing high intensity radioactive ion beams produced by neutron-induced fission on fissile targets(235U) surrounding a liquid mercury converter. A proton beam of 1GeV and 4MW impinges on theconverter, generating, by spallation reactions, high neutron fluxes that induce fission in thesurrounding fissile targets.In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess theneutronics performance of the system, which geometry, inspired in the MAFF concept, allows aversatile manipulation of the fission targets. The first objective of the study was to optimize thegeometry and the materials used in the fuel and reflector elements of the system, in order to achievethe highest possible fission rates. Indeed, it is shown that the appropriate combination of fission targetmaterial and surrounding reflector material leads to the aimed value of 1015 fissions/s per fissiontarget. The second part of this...

  15. 232Th, 233Pa, and 234U capture cross-section measurements in moderated neutron flux

    Science.gov (United States)

    Bringer, O.; Isnard, H.; AlMahamid, I.; Chartier, F.; Letourneau, A.

    2008-07-01

    The Th-U cycle was studied through the evolution of a 100 μg 232Th sample irradiated in a moderated neutron flux of 8.010 14 n/cm 2/s, intensity close to that of a thermal molten salt reactor. After 43 days of irradiation and 6 months of cooling, a precise mass spectrometric analysis, using both TIMS and MC-ICP-MS techniques, was performed, according to a rigorous methodology. The measured thorium and uranium isotopic ratios in the final irradiated sample were then compared with integral simulations based on evaluated data; an overall good agreement was seen. Four important thermal neutron-capture cross-sections were also extracted from the measurements, 232Th (7.34±0.21 b), 233Pa (38.34±1.78 b), 234U (106.12±3.34 b), and 235U (98.15±11.24 b). Our 232Th and 235U results confirmed existing values whereas the cross-sections of 233Pa and 234U (both key parameters) have been redefined.

  16. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  17. Neutron scattering studies of the flux line lattice in ErNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T. E-mail: nagata@phys.ocha.ac.jp; Yano, F.; Habuta, E.; Kawano-Furukawa, H.; Nagao, M.; Yoshizawa, H.; Furukawa, N.; Takeya, H.; Kadowaki, K

    2004-05-01

    We examined the flux line lattice in ErNi{sub 2}{sup 11}B{sub 2}C by small angle neutron scattering technique. On field cooling process, effective field (H{sub eff}) determined by the observed vortex distance increased by 200 Oe below the weak ferromagnetic transition temperature T{sub WFM}.

  18. Determining the Magnitude of Neutron and Galactic Cosmic Ray (GCR) Fluxes at the Moon using the Lunar Exploration Neutron Detector during the Historic Space-Age Era of High GCR Flux

    Science.gov (United States)

    Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.

    2013-12-01

    The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor

  19. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    Science.gov (United States)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  20. Methods and applications in high flux neutron imaging; Methoden und Anwendungen fuer bildgebende Verfahren mit hohen Neutronenfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, H.

    2007-02-07

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  1. The development of a high count rate neutron flux monitoring channel using silicon carbide semiconductor radiation detectors

    Science.gov (United States)

    Reisi Fard, Mehdi

    In this dissertation, a fast neutron flux-monitoring channel, which is based on the use of SiC semiconductor detectors is designed, modeled and experimentally evaluated as a power monitor for the Gas Turbine Modular Helium Reactors. A detailed mathematical model of the SiC diode detector and the electronic processing channel is developed using TRIM, MATLAB and PSpice simulation codes. The flux monitoring channel is tested at the OSU Research Reactor. The response of the SiC neutron-monitoring channel to neutrons is in close agreement to simulation results. Linearity of the channel response to thermal and fast neutron fluxes, pulse height spectrum of the channel, energy calibration of the channel and the detector degradation in a fast neutron flux are presented. Along with the model of the neutron monitoring channel, a Simulink model of the GT-MHR core has been developed to evaluate the power monitoring requirements for the GT-MHR that are most demanding for the SiC diode power monitoring system. The Simulink model is validated against a RELAP5 model of the GT-MHR. This dyanamic model is used to simulate reactor transients at the full power and at the start up, in order to identify the response time requirements of the GT-MHR. Based on the response time requirements that have been identified by the Simulink model and properties of the monitoring channel, several locations in the central reflector and the reactor cavity are identified to place the detector. The detector lifetime and dynamic range of the monitoring channel at the detector locations are calculated. The channel dynamic range in the GT-MHR central reflector covers four decades of the reactor power. However, the detector does not survive for a reactor refueling cycle in the central reflector. In the reactor cavity, the detector operates sufficiently long; however, the dynamic range of the channel is smaller than the dynamic range of the channel in the central reflector.

  2. Neutron flux measurements in the side-core region of Hunterston B advanced gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Shaw, S.E. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom); Huggon, A.P.; Steadman, R.J.; Thornton, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Whiley, G.S. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom)

    2011-07-01

    The core restraints of advanced gas-cooled reactors are important structural components that are required to maintain the geometric integrity of the cores. A review of neutron dosimetry for the sister stations Hunterston B and Hinkley Point B identified that earlier conservative assessments predicted high thermal neutron dose rates to key components of the restraint structure (the restraint rod welds), with the implication that some of them may be predicted to fail during a seismic event. A revised assessment was therefore undertaken [Thornton, D. A., Allen, D. A., Tyrrell, R. J., Meese, T. C., Huggon, A.P., Whiley, G. S., and Mossop, J. R., 'A Dosimetry Assessment for the Core Restraint of an Advanced Gas Cooled Reactor,' Proceedings of the 13. International Symposium on Reactor Dosimetry (ISRD-13, May 2008), World Scientific, River Edge, NJ, 2009, W. Voorbraak, L. Debarberis, and P. D'hondt, Eds., pp. 679-687] using a detailed 3D model and a Monte Carlo radiation transport program, MCBEND. This reassessment resulted in more realistic fast and thermal neutron dose recommendations, the latter in particular being much lower than had been thought previously. It is now desirable to improve confidence in these predictions by providing direct validation of the MCBEND model through the use of neutron flux measurements. This paper describes the programme of work being undertaken to deploy two neutron flux measurement 'stringers' within the side-core region of one of the Hunterston B reactors for the purpose of validating the MCBEND model. The design of the stringers and the determination of the preferred deployment locations have been informed by the use of detailed MCBEND flux calculations. These computational studies represent a rare opportunity to design a flux measurement beforehand, with the clear intention of minimising the anticipated uncertainties and obtaining measurements that are known to be representative of the neutron fields to which

  3. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    Science.gov (United States)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  4. Transmutation of minor actinides in high and representative neutron fluxes: the mini-INCA and MEGAPIE projects

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Chabod, S.; Marie, F.; Ridikas, D.; Toussaint, J.C.; Veyssiere, C. [CEA/DSM/DAPNIA Saclay, Gif-sur-Yvette (France); Blandin, C. [CEA/DEN/DER/SPEX Cadarache - Saint-Paul-lez-Durances (France); Mutti, P. [Inst. Laue-Langevin, Grenoble (France)

    2003-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at CEA/DSM with objectives to determine optimal conditions for transmutation and incineration of minor actinides (MA) in high intensity neutron fluxes. Our experimental tools based on alpha- and gamma-spectroscopy of the samples and the development of micro fission chambers could gather either microscopic information on nuclear reactions (total or partial cross sections for neutron capture and/or fission reactions) or macroscopic information on transmutation and incineration potentials. Neutron capture cross sections of selected actinides ({sup 241}Am, {sup 242}Am, {sup 242}Pu, {sup 237}Np) have already been measured at ILL, showing some discrepancies when compared to evaluated data libraries but in overall good agreement with recent data. The studies and possibilities offer by the MEGAPIE project to assess neutronic performances of a 1 MW spallation target and the incineration of MA in a representative neutron flux of a spallation source are also discussed. (orig.)

  5. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d' Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de, E-mail: ubitelli@ipen.b, E-mail: gsasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  6. Search for causes of the low epithermal neutron flux anomaly in the Arabia Terra region (Mars)

    Science.gov (United States)

    Basilevsky, A. T.; Rodin, A. V.; Raitala, J.; Neukum, G.; Werner, S.; Kozyrev, A. S.; Sanin, A. B.; Mitrofanov, I. G.; Head, J. W.; Boynton, W.; Saunders, R. S.

    2006-10-01

    A geologic analysis of 274 images acquired by the high-resolution MOC camera onboard the Mars Global Surveyor spacecraft within the Arabia Terra low neutron flux anomaly (which is indicative of an anomalously high abundance of hydrogen: up to 16 wt % of the equivalent amount of water) was performed. Correlation between the enhanced abundance of equivalent water with the presence of dust on the surface was found. Since dust plays a key role in condensation of water from the atmosphere, we suppose that the anomalies could result from the retention of atmospheric moisture. To analyze this suggestion, we performed a theoretical modeling that allowed us to map the planetary-scale distributions of several meteorological parameters responsible for the atmospheric moisture condensation. Two antipodal regions coinciding rather well with the Arabia Terra anomaly and the geographically antipodal anomaly southwest of Olympus Mons were found in the maps. This suggests that the anomalies are rather recent than ancient formations. They were probably formed by a sink of moisture from the atmosphere in the areas where present meteorological conditions support this sink. Geological parameters, primarily the presence of dust, only promote this process. We cannot exclude the possibility that the Martian cryosphere, rather than the atmosphere, supplied the studied anomalies with moisture during their formation: the thermodynamic conditions in the anomaly areas could block the moisture flux from the Martian interior in the upper regolith layer. The moisture coming from the atmosphere or from the interior is likely held as chemically bound water entering into the structure of water-bearing minerals (probably, hydrated magnesium sulfates) directly from the vapor; or the moisture precipitates as frost, penetrates into microfissures, and then is bound in minerals. Probably, another geologic factor—the magnesium sulfate abundance—works in the Arabia Terra anomaly.

  7. An Automatic Image Inpainting Algorithm Based on FCM

    Directory of Open Access Journals (Sweden)

    Jiansheng Liu

    2014-01-01

    Full Text Available There are many existing image inpainting algorithms in which the repaired area should be manually determined by users. Aiming at this drawback of the traditional image inpainting algorithms, this paper proposes an automatic image inpainting algorithm which automatically identifies the repaired area by fuzzy C-mean (FCM algorithm. FCM algorithm classifies the image pixels into a number of categories according to the similarity principle, making the similar pixels clustering into the same category as possible. According to the provided gray value of the pixels to be inpainted, we calculate the category whose distance is the nearest to the inpainting area and this category is to be inpainting area, and then the inpainting area is restored by the TV model to realize image automatic inpainting.

  8. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  9. Measurement of the thermal and fast neutron flux in a research reactor with a Li and Th loaded optical fibre detector

    CERN Document Server

    Yamane, Y; Misawa, T; Karlsson, J K H; Pázsit, I

    1999-01-01

    The spatial dependence of thermal and fast neutron flux was measured axially in the core of a 1 MW research reactor. The measurements were made by a thin optical fibre detector with a neutron sensitive ZnS(Ag) scintillation tip. For thermal neutrons sup 6 Li was used, whereas for fast neutrons sup 2 sup 3 sup 2 Th was used as neutron converter. The spatial dependence was measured by moving the fibre axially with a uniform speed. The measurement takes a few minutes, compared to up to 10 h with the conventional wire activation method. Comparison with traditional measurements shows a good agreement. (author)

  10. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  11. On the Inner Radius Evolution with Fluxes of the Neutron Star Binary Serpens X-1

    CERN Document Server

    Chiang, Chia-Ying; Cackett, Edward M; Miller, Jon M; Bhattacharyya, Sudip; Strohmayer, Tod E

    2016-01-01

    We analyze the latest Suzaku observation of the bright neutron star system Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of ~8 $R_{\\rm G}$. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find the inner radius to be consistent over a wide range of luminosity, implying that the inner radius of Serpens X-1 does not evolve significantly over the range of $L/L_{\\rm Edd}$ ~ 0.2-0.6.

  12. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    Science.gov (United States)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  13. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Endo, Kiyoshi; Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan)

    2002-12-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient. (author)

  14. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  15. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    CERN Document Server

    Yamamoto, K; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, T

    2002-01-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.

  16. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  17. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    Science.gov (United States)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Фth) and epithermal neutron fluxes (Фepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Фth = (2.11 ± 0.05) × 103 n cm-2 s-1, Фepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Фth = (1.49 ± 0.04) × 103 n cm-2 s-1, Фepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  18. Biomedical Image Processing Using FCM Algorithm Based on the Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    YAN Yu-hua; WANG Hui-min; LI Shi-pu

    2004-01-01

    An effective processing method for biomedical images and the Fuzzy C-mean (FCM) algorithm based on the wavelet transform are investigated.By using hierarchical wavelet decomposition, an original image could be decomposed into one lower image and several detail images. The segmentation started at the lowest resolution with the FCM clustering algorithm and the texture feature extracted from various sub-bands. With the improvement of the FCM algorithm, FCM alternation frequency was decreased and the accuracy of segmentation was advanced.

  19. Calculation of neutron and gamma fluxes in support to the interpretation of measuring devices irradiated in the core periphery of the OSIRIS Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, Fadhel [Alternative Energies and Atomic Energy Commission - CEA, Saclay Center, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2015-07-01

    Technological irradiations carried out in material testing reactors (MTRs) are used to study the behavior of materials under irradiation conditions required by different types of nuclear power plants (NPPs). For MTRs, specific instrumentation is required for the experiment monitoring and for the characterization of irradiation conditions, in particular the flux of neutrons and photons. To measure neutron and photon flux in experimental locations, different sensors can be used, such as SPNDs (self-powered neutron detectors), SPGDs (self-powered gamma detectors) and ionization chambers. These sensors involve interactions producing ultimately a measurable electric current. Various sensors have been recently tested in the core periphery of the OSIRIS reactor (located at the CEA-Saclay center) in order to qualify their responses to the neutron and the photon flux. One of the key input data for this qualification is to have a relevant evaluation of neutron and gamma fluxes at the irradiation location. The objective of this work is to evaluate the neutron and the gamma flux in the core periphery of the OSIRIS reactor. With this intention, specific neutron-photonic three-dimensional calculations have been performed and are mainly based on the TRIPOLI-4{sup R} three-dimensional continuous-energy Monte Carlo code, developed by CEA (Saclay Center) and extensively validated against reactor dosimetry benchmarks. In the case of the OSIRIS reactor, TRIPOLI-4{sup R} code has been validated against experimental results based on neutron flux and nuclear heating measurements performed in ex-core and in-core experiments. In this work, simultaneous contribution of neutrons and gamma photons in the core periphery is considered using neutron-photon coupled transport calculations. Contributions of prompt and decay photons have been taken into account for the gamma flux calculation. Specific depletion codes are used upstream to provide the decay-gamma sources required by TRIPOLI-4

  20. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    CERN Document Server

    Dokania, N; Mathimalar, S; Garai, A; Nanal, V; Pillay, R G; Bhushan, K G

    2015-01-01

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  1. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq {sup 241}Am-Be isotopic source

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Haluk [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey); Budak, Mustafa Guray, E-mail: mbudak@gazi.edu.tr [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Karadag, Mustafa [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Yüksel, Alptuğ Özer [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey)

    2014-11-01

    Highlights: • An irradiation unit was installed using a 37 GBq {sup 241}Am-Be neutron source. • The source neutrons moderated by using both water and paraffin. • Irradiation unit was shielded by boron oxide and lead against neutrons and gammas. • There are two sites for irradiations, one of them has a pneumatic transfer system. • Cadmium ratio method was used for irradiation site characterization. - Abstract: For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq {sup 241}Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (φ{sub th}) and epithermal neutron fluxes (φ{sub epi}), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be φ{sub th} = (2.11 ± 0.05) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (3.32 ± 0.17) × 10{sup 1} n cm{sup −2} s{sup −1}, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as φ{sub th} = (1.49 ± 0.04) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (2.93 ± 0

  2. SPHERES, Jülich's high-flux neutron backscattering spectrometer at FRM II.

    Science.gov (United States)

    Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kämmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J; Schneider, Harald; Staringer, Simon

    2012-07-01

    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Jülich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 μeV, a dynamic range of ± 31 μeV, and a signal-to-noise ratio of up to 1750:1.

  3. SPHERES, J\\"ulich's High-Flux Neutron Backscattering Spectrometer at FRM II

    CERN Document Server

    Wuttke, Joachim; Drochner, Matthias; Kämmerling, Hans; Kayser, Franz-Joseph; Pardo, Luis Carlos; Prager, Michael; Ossovyi, Vladimir; Schneider, Gerald J; Schneider, Harald; Staringer, Simon; Richter, Dieter

    2012-01-01

    SPHERES (SPectrometer with High Energy RESolution) is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the J\\"ulich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 micro-eV, a dynamic range of +-31 micro-eV, and a signal-to-noise ratio of up to 1750:1.

  4. SPHERES, Juelich's high-flux neutron backscattering spectrometer at FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kaemmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J.; Schneider, Harald; Staringer, Simon [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2012-07-15

    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Juelich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 {mu}eV, a dynamic range of {+-} 31 {mu}eV, and a signal-to-noise ratio of up to 1750:1.

  5. The Impact of Craters on Neutron Fluxes and Lunar Polar Hydrogen Abundances

    Science.gov (United States)

    Eke, V.; Bower, K.; Diserens, S.; Ryder, M.; Yeomans, P.; Teodoro, L.; Elphic, R.; Feldman, W.; Hermalyn, B.; Lavelle, C.; Lawrence, D.; Maurice, S.

    2015-10-01

    Hydrogen abundances in lunar polar cold traps are investigated using remotely-sensed neutron count rates. The effect of neutron beaming from craters is measured using data from the Lunar Prospector Neutron Spectrometer (LPNS) and understood in the context of a simple model. This enables a reanalysis of data near the lunar poles, accounting for the topographical impact on the neutron count rates, leading to improved estimates of the hydrogen abundance in the various cold traps. For the case of Cabeus, taking into account the topographical effect increases the inferred water- equivalent hydrogen weight percentage from˜1%to˜4%, consistent with that measured using the LCROSS impactor.

  6. Design of a new neutron delivery system for high flux source

    OpenAIRE

    Boffy, Romain

    2016-01-01

    La construcción en la actualidad de nuevas fuentes para el uso de haces de neutrones así como los programas de renovación en curso en algunas de las instalaciones experimentales existentes han evidenciado la necesidad urgente de desarrollar la tecnología empleada para la construcción de guías de neutrones con objeto de hacerlas mas eficientes y duraderas. Esto viene motivado por el hecho de que varias instalaciones de experimentación con haces de neutrones han reportado un número de incidente...

  7. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    Science.gov (United States)

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  8. Enhancement of flux pinning properties in nanosized MgO added Bi-2212 superconductor through neutron irradiation

    Science.gov (United States)

    Mohiju, Zaahidah'Atiqah; Hamid, Nasri A.; Abdullah, Yusof

    2017-01-01

    For superconducting material to maintain high critical current density, Jc in any applications, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material by creating a desired microstructure with appropriate defects. To further enhance the pinning properties, radiation is one of the convenient ways to improve the microstructure of the material that has correlation with basic properties of superconductors. Neutron irradiation is one of the niche techniques that can be used to perform the task. Defects with larger radius have dimension comparable to the coherence length of the material and thus improved its superconducting properties. In this paper, a small amount of nanosized MgO particles was used to create defects in the Bi-2212 superconducting material. The Bi-2212/MgO compounds were heat treated, followed by partial melting and slow cooling. Part of the samples was subjected to neutron irradiation using the TRIGA-MARK-II research reactor at the Malaysian Nuclear Agency. Characterization of non-irradiated and irradiated samples was performed via the temperature dependence on electrical resistance measurements, X-ray Diffraction Patterns (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. From the analysis, there was changed in the critical current density and transition temperature of samples subjected to neutron irradiation due to formation of point defects in the microstructure. Higher critical current density indicates better flux pinning properties in the Bi-2212/MgO compounds.

  9. Flux pinning and flux creep in neutron irradiated (Y,Gd)Ba sub 2 Cu sub 3 O sub x

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O. (Los Alamos Scientific Lab., NM (United States) Superconductivity Research Lab., Tokyo (Japan)); Sickafus, K.E.; Peterson, D.E. (Los Alamos National Lab., NM (United States))

    1991-01-01

    Powder samples of Y{sub 0.9}Gd{sub 0.1}Ba{sub 2}Cu{sub 3}O{sub x} were irradiated with mixed spectrum ({approximately}50% E<0.5eV, 50% E>0.5eV) neutrons with most interactions expected to occur at the Gd site. As a function of fluence the samples showed increased ({approximately}X3-X8) magnetically measured critical current densities J{sub c} at low fluences, falling off at the highest values. An analysis of magnetic relaxation data, which allows for a nonlinear pinning potential U vs J relationship, revealed substantial increases in U at constant J, indicating that the irradiation introduced more effective pinning centers than those originally present. 13 refs., 3 figs., 1 tab.

  10. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  11. Adaptive Image Digital Watermarking with DCT and FCM

    Institute of Scientific and Technical Information of China (English)

    SU Liyun; MA Hong; TANG Shifu

    2006-01-01

    A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The watermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.

  12. The influence of plasma horizontal position on the neutron rate and flux of neutral atoms in injection heating experiment on the TUMAN-3M tokamak

    Science.gov (United States)

    Kornev, V. A.; Chernyshev, F. V.; Melnik, A. D.; Askinazi, L. G.; Wagner, F.; Vildjunas, M. I.; Zhubr, N. A.; Krikunov, S. V.; Lebedev, S. V.; Razumenko, D. V.; Tukachinsky, A. S.

    2013-11-01

    Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by Δ R = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.

  13. NetFCM: A Semi-Automated Web-Based Method for Flow Cytometry Data Analysis

    DEFF Research Database (Denmark)

    Frederiksen, Juliet Wairimu; Buggert, Marcus; Karlsson, Annika C.

    2014-01-01

    data analysis has become more complex and labor-intensive than previously. We have therefore developed a semi-automatic gating strategy (NetFCM) that uses clustering and principal component analysis (PCA) together with other statistical methods to mimic manual gating approaches. NetFCM is an online...... corresponding to those obtained by manual gating strategies. These data demonstrate that NetFCM has the potential to identify relevant T cell populations by mimicking classical FCM data analysis and reduce the subjectivity and amount of time associated with such analysis. (c) 2014 International Society......Multi-parametric flow cytometry (FCM) represents an invaluable instrument to conduct single cell analysis and has significantly increased our understanding of the immune system. However, due to new techniques allowing us to measure an increased number of phenotypes within the immune system, FCM...

  14. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  15. Neutronics Conversion Analyses of the Laue-Langevin Institute (ILL) High Flux Reactor (RHF)

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Calzavara, Y. [Inst. Laue-Langevin (ILL), Grenoble (France)

    2014-09-30

    The following report describes the neutronics results obtained with the MCNP model of the RHF U7Mo LEU reference design that has been established in 2010 during the feasibility analysis. This work constitutes a complete and detailed neutronics analysis of that LEU design using models that have been significantly improved since 2010 and the release of the feasibility report. When possible, the credibility of the neutronics model is tested by comparing the HEU model results with experimental data or other codes calculations results. The results obtained with the LEU model are systematically compared to the HEU model. The changes applied to the neutronics model lead to better comparisons with experimental data or improved the calculation efficiency but do not challenge the conclusion of the feasibility analysis. If the U7Mo fuel is commercially available, not cost prohibitive, a back-end solution is established and if it is possible to manufacture the proposed element, neutronics analyses show that the performance of the reactor would not be challenged by the conversion to LEU fuel.

  16. The CG-1D Neutron Imaging Beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    Science.gov (United States)

    Santodonato, Lou; Bilheux, Hassina; Bailey, Barton; Bilheux, Jean; Nguyen, Phong; Tremsin, Anton; Selby, Doug; Walker, Lakeisha

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better "smoothing" of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 μSv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ∼ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 μs timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  17. Measurement of the High Energy Neutron Flux on the Surface of the Natural Uranium Target Assembly QUINTA Irradiated by Deuterons of 4 and 8 GeV Energy

    Science.gov (United States)

    Adam, J.; Baldin, A. A.; Chilap, V.; Furman, W.; Katovsky, K.; Khushvaktov, J.; Kumar, V.; Pronskikh, V.; Mar'in, I.; Solnyshkin, A.; Suchopar, M.; Tsupko-Sitnikov, V.; Tyutyunnikov, S.; Vrzalova, J.; Wagner, V.; Zavorka, L.

    Experiments with the natural uranium target assembly "QUINTA" exposed to 4 and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The reaction rates of 27Al(n,y1)24Na, 27Al(n,y2)22Na and 27Al(n,y3)7Be reactions with effective threshold energies of 5, 27, and 119 MeV were measured at both 4 GeV and 8 GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for 4 or 8 GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 GeV to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with the MCNPX 2.7 code.

  18. Neutron flux measurement based on the 2 nd Campbell theorem; Medicion del flujo neutronico basada en el segundo teorema de Campbell

    Energy Technology Data Exchange (ETDEWEB)

    Giuliodori, Luis M.; Milberg, Mario; Zalcman, Julio [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    Generally, nuclear flux measurement in research and production reactor are carried out in two stages: first, low level fluxes are measured by counting the pulses produced by fission or boron trifluoride chambers. Second, for high flux levels the parameter measured is the mean current generated in a compensated ionization chamber. A method which shows the feasibility of measuring neutron flux in the second stage with the same counting chamber used in the first stage, without the need to move it from its placement, is presented. (author). 6 refs., 4 figs.

  19. Evaluation of the thermal neutron flux in the core of IPEN/MB-01 reactor using the code Monte Carlo (MCNP)

    Energy Technology Data Exchange (ETDEWEB)

    Salome, Jean A.D.; Cardoso, Fabiano; Faria, Rochkhudson B.; Pereira, Claubia, E-mail: jadsalome@yahoo.com.br, E-mail: fabinuclear@yahoo.com.br, E-mail: rockdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The IPEN/MB-01 reactor, located in the city of Sao Paulo - Brazil, reached its first criticality on the year of 1988. The reactor is characterized by a low output power of 100 W only, even because its purpose is to produce knowledge about nuclear power plants on a smaller geometric scale without the requirement of an extremely complex cooling system. The use of devices such as this it is very interesting because it achieves the demands of nuclear engineering about the neutronic parameters needed in the design of large nuclear plants through relatively simple and inexpensive methods. In this paper, the computational mathematical code MCNP5 is used to perform the calculation of the thermal neutron flux in the core of the IPEN/MB-01 reactor. To do this is used an experiment from the LEU-COMP-THERM-077 benchmark that represents the standard rectangular configuration of the IPEN/MB-01 reactor. The thermal neutron flux is calculated at some axial planes of different heights and, after that, axial profiles of the thermal neutron flux are done and compared to experimental results issued previously. The experimental values used as reference refer to a cylindrical configuration of the core of the reactor. Finally, the pertinence and relevance of the results are checked. With this work is expected to produce more knowledge about the dynamics of neutron flux in the core of the IPEN/MB-01 reactor. (author)

  20. Use and Evaluation of FCM as a Tool for Long Term Socio Ecological Research

    DEFF Research Database (Denmark)

    Wildenberg, Martin; Bachhofer, Michael; Isak, Kirsten Grovermann Qvist

    2014-01-01

    -ecological systems. As part of ALTER-Net, we applied FCM to five cases and subsequently evaluated the approach by means of a SWOT framework. This examined the strengths and weaknesses of, and the opportunities and threats to FCM when applied as a tool in conservation management....

  1. Pomegranate MR images analysis using ACM and FCM algorithms

    Science.gov (United States)

    Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.

  2. THERMAL NEUTRON FLUX MAPPING ON A TARGET CAPSULE AT RABBIT FACILITY OF RSG-GAS REACTOR FOR USE IN k0-INAA

    Directory of Open Access Journals (Sweden)

    Sutisna Sutisna

    2015-03-01

    Full Text Available Instrumental neutron activation analysis based on the k0 method (k0-INAA requires the availability of the accurate reactor parameter data, in particular a thermal neutron flux that interact with a targets inside the target capsule. This research aims to determine and map the thermal neutron flux inside the capsule and irradiation channels used for the elemental quantification using the k0-AANI. Mapping of the thermal neutron flux (фth on two type of irradiation capsule have been done for RS01 and RS02 facilities of RSG-GAS reactor. Thermal neutron flux determined using Al-0,1%Au alloy through 197Au(n,g 198Au nuclear reaction, while the flux mapping done using statistics R. Thermal neutron flux are calculated using k0-IAEA software provided by IAEA. The results showed the average thermal neutron flux is (5.6±0.3×10+13 n.cm-2.s-1; (5.6±0.4×10+13 n.cm-2.s-1; (5.2±0.4×10+13 n.cm-2.s-1 and (5.3±0.4×10+13 n.cm-2.s-1 for Polyethylene capsule of 1st , 2nd, 3rd and 4th layer respectively. In the case of Aluminum capsule, the thermal neutron flux was lower compared to that on Polyethylene capsule. There were (3.0±0.2×10+13 n.cm-2.s-1; (2.8±0.1×10+13 n.cm-2.s-1; (3.2±0.3×10+13 n.cm-2.s-1 for 1st, 2nd and 3rd layers respectively. For each layer in the capsule, the thermal neutron flux is not uniform and it was no degradation flux in the axial direction, both for polyethylene and aluminum capsules. Contour map of eight layer on polyethylene capsule and six layers on aluminum capsule for RS01 and RS02 irradiation channels had a similar pattern with a small diversity for all type of the irradiation capsule. Keywords: thermal neutron, flux, capsule, NAA   Analisis aktivasi neutron instrumental berbasis metode k0 (k0-AANI memerlukan ketersediaan data parameter reaktor yang akurat, khususnya data fluks neutron termal yang berinteraksi dengan inti sasaran di dalam kapsul target. Penelitian ini bertujuan menentukan dan memetakan fluks neutron termal

  3. [Project for] a high-flux extracted neutron beam reactor [for physicists]; Un [projet de] reacteur a haut flux et faisceaux sortis [pour physiciens

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    French requirements in neutron beams of different energies extracted from a reactor are briefly described. The well-known importance of cold neutrons (above 4 Angstrom) is emphasized. The main characteristics of a reactor suitable for physicists are outlined: They are: 1 - A flux of about 7. 10{sup 14} thermal neutrons in the heavy water of the reflector, 2 - Maximum flexibility obtained by: - physical separation of the core and the reflector, - independence of the different experiments, - possibility of modifying physical experiments up to - and including - the nature of the used reflector, without any appreciable interruption in the operation of the reactor, - reduction of fixed shields to a minimum; ample use of liquid shields (water) and fluid shields (sands). 3 - Technological continuity as far as possible with French research reactors (Siloe, Pegase, Osiris) already existing or under construction. 4 - Safety of operation arising from simplicity of conception. 5 - Minimised construction costs. Lowering of the operating costs is looked for indirectly in the simplification of the solutions and the reduction of operating staff, rather than directly by reducing the consumption of fuel elements and energy. The recommended solution can be described as a closed-core non-pressurized swimming-pool reactor, highly under-moderated by the cooling light water. Surrounding the reactor are a number of 'beam tubes-loops' each consisting of: - a part of the reflector (heavy water in the example described), - a part of neutron extraction beam tube, - the circuits required for their cooling, - the inlet systems of suitable fluids to the beam tube nose (liquid hydrogen in the example described), - the necessary outlets for measurement and control system. The whole 'beam tubes loops' is immersed in the water of the metallic self-supporting swimming-pool. The shielding outside the swimming-pool is composed for the most part by heavy sand in which is the rest of

  4. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    Science.gov (United States)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  5. Study of neutronic flux in IPR-R1 reactor with MCNPX; Estudo do fluxo neutronico no reator IPR-R1 com o MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.A.S.; Castrillo, L.S., E-mail: julio.angelo@poli.br, E-mail: lazara@poli.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica; Oliveira, R.M.B.M., E-mail: romero.matias@educacao.pe.gov.br [Secretaria Executiva de Educacao do Estado de Pernambuco (SEE), Recife, PE (Brazil)

    2016-11-01

    MCNPX computer code, one of the latest versions of code MCNP transport were used to study the flux distribution and its neutronic fluence as a function of energy in two research reactor irradiation IPR-R1. The model developed was validated with research conducted by Dalle (2005). Initially, in the simulation is considered fresh fuel whose core configuration contained three neutron rods control, being two of them 100% ejected while the other inserted 3,1 x 10{sup -1} m deep, as adopted in the literature situation. The neutron source used was the critical type, through KSRC card. The results of the neutron flow and neutronic fluence were obtained in the central tube and the turntable on a range of energy spectrum that ranged from 1.0 x 10{sup -9} MeV to 10 MeV, showing good correlations with the model used in validation. Finally, a hypothetical situation wherein the three reactor control rods are ejected simultaneously was simulated. The simulation results showed an increase in the neutron flux of 7% in the central tube and 5% on the turntable.

  6. A study on the excore neutron flux monitoring system for the wide range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Jun; Jeong, Dae Won; Baek, Kwang Il; Lee, Jeong Yang; Ha, Jae Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    This paper describes a study in which only one kind of neutron detector were used in the advanced ENFMS. The conceptual design was performed for overall system with unified fission chamber. The system consists of detector, junction box, wide-range amplifier and signal processing device. Also the requirements of 10CFR50 App. R were considered in design. On the other hand, through computer simulation, the characteristics of pulse-count mode and MSV mode was scrutinized and each noise withstanding capability was analyzed. The results say that 3rd moment has the more stable characteristics to background noise than MSV method. Also, to remain the integrity of information against noise, during installation and operation, the overall system of KSNP was analyzed from a view of noise. By administration for the cause of noise and noise-coupling paths, through the full understanding of noise characteristics, the transfer of the noise source can be minimized. (Author).

  7. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution; Caracterizacao do nucleo cilindrico de menor excesso de reatividade do reator IPEN/MB-01, pela medida da distribuicao espacial e energetica do fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni Garcia

    2014-07-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  8. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  9. HERITAGE: the concept of a giant flux neutron reflectometer for the exploration of 3-d structure of free-liquid and solid interfaces in thin films

    Science.gov (United States)

    Mattauch, S.; Ioffe, A.; Lott, D.; Bottyán, L.; Daillant, J.; Markó, M.; Menelle, A.; Sajti, S.; Veres, T.

    2017-01-01

    The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - well fitted to the long pulse structure of a neutron source is presented. It is constitutes a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration of lateral and in depth structures in thin films. This is achieved by specially designed neutron guides. In the horizontal direction (perpendicular to the scattering plane) the guide's elliptic shape focusses the neutrons onto the sample. In the vertical direction a multichannel geometry provides a smooth divergence distribution at the sample position while accepting the entire beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides extremely high flexibility in respect to sample geometries and environments, including the possibility to study virtually all types of solid and liquid interfaces, statically or kinetically. The use of multiple beam illumination allows for reflectivity and GISANS measurements at liquid interfaces both from above and below without a need to move the sample. This concept assures the delivery of the maximum possible and usable flux to the sample in both reflectivity and GISANS measurement regimes. The presented design outperforms the flux of all present-day and already for the ESS planned reflectometers and GISANS setups in flux and in measuring time for standard samples.

  10. Conception d'un nouveau système de distribution de neutrons pour source à haut flux

    OpenAIRE

    Boffy, Romain

    2016-01-01

    The building of new experimental neutron beam facilities as well as the renewal programmes under development at some of the already existing installations have pinpointed the urgent need to develop neutron guide technology in order to make such neutron transport devices more efficient and durable. In fact, a number of mechanical failures of neutron guides have been reported by several research centres. It is therefore important to understand the behaviour of the glass substrates on top of whi...

  11. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    Science.gov (United States)

    Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.

  12. HERITAGE: the concept of a giant flux neutron reflectometer for the exploration of 3-d structure of free-standing and solid interfaces in thin films

    CERN Document Server

    Mattauch, S; Lott, D; Bottyán, L; Markó, M; Veres, T; Sajti, S; Daillant, J; Menelle, A

    2015-01-01

    The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - fitted to the long pulse structure of a neutron source is presented. It is dedicated on creating a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration for lateral structures in thin films. This is achieved by specially designed neutron guides: in the horizontal direction (perpendicular to the scattering plane) it has an elliptic shape and focusses neutrons onto the sample. In the vertical direction it has a multichannel geometry providing a smooth divergence distribution at the sample while accepting the whole beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides an extremely high flexibility in respect to sample geometries and environments, including the possibility to study all t...

  13. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  14. On an evaluation of the continuous flux and dominant Eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, C.; Schramm, M.; Vilhena, M.T.; Bodmann, B.E.J., E-mail: celina.ceolin@gmail.com, E-mail: marceloschramm@hotmail.com, E-mail: vilhena@pq.cnpq.br, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2013-07-01

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on a expansion in Taylor Series, which was proven to be useful in [1] [2] [3]. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method [4]. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations. (author)

  15. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  16. High-temperature long-lasting stability assessment of a single-crystal diamond detector under high-flux neutron irradiation

    Science.gov (United States)

    Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.

    2016-11-01

    An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.

  17. Caliban: distribution des fluences neutroniques et des doses gamma en fonctionnement continu (CALIBAN: distribution of neutron flux and gamma doses in continuous operation)

    Energy Technology Data Exchange (ETDEWEB)

    Morin, J.; Chevallier, J.; Blanc, R.; Mathieu, A.; Sester, C.

    1974-10-01

    In order to compensate for the temporary interruption of the PROSPERO reactor, it is desirable to use the CALIBAN reactor in continuous operation. As part of efforts to establish parameters for this service, a study was made of neutron flux and gamma dosage at distances of 50 to 70 cm from the axis of the CALIBAN core. This is a region that has hitherto been little studied during continuous operation. The results are given in this paper.

  18. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  19. Measure of thermal neutron flux in the IPEN/MB-01 reactor using {sup 197} Au wire activation detectors; Medida do fluxo de neutrons termicos do reator IPEN/MB-01 com detectores de ativacao de fios de {sup 197} Au

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre Luis Ferreira

    1995-12-31

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 10{sup 9} neutrons/cm{sup 2}.s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core 73 refs., 60 figs., 31 tabs.

  20. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  1. Detection and elimination of the electromagnetic interferences in the neutron flux measurement circuit, Source Range; Deteccion y eliminacion de interferencias electromagneticas en el circuito de medicion de flujo neutronico, rango de fuente

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. M.; Esguivillas, L.; Valle, J. L.

    2010-07-01

    This paper compiles an experience in Asco I Nuclear Power Plant about electromagnetic interferences associated to the neutron flux measurement system, Source Range Asco I NPP. The circuit affected is the proportional detector (BF3) located outside the reactor vessel to measure the neutron leakage in shutdown and in start-up.

  2. Measuring the performance of FCM versus PSO for fuzzy clustering problems

    Directory of Open Access Journals (Sweden)

    Amir Reza Soltani

    2013-06-01

    Full Text Available Clustering cellular manufacturing plays an important role in many industrial engineering problems. This paper investigates the performance of two methods of heuristic and metaheuristics fuzzy clustering. The proposed method investigates heuristic well-known FCM and particle swarm optimization (PSO on some well-known benchmarks. We use two criteria of J(P as well as Xie-Beni to compare the results. Three parameters of PSO method is tuned using design of experiment and then the results of PSO are compared versus FCM method in terms of two mentioned criteria. The proposed models are run for each instance 10 different times and, using ANOVA test, the means of two methods are compared. While the results of ANOVA do not indicate any meaningful difference between PSO and FCM in terms of J(P, we have found some meaningful differences between PSO and FCM in terms of Xie-Beni criterion. In other words, PSO performs better than FCM in terms of Xie-Beni.

  3. Neutron flux from a 14‐MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    OpenAIRE

    2009-01-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14‐MeV (D‐T) neutron generator and a...

  4. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  5. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  6. Preliminary Design of LEU MNSR for BNCT with Excellent Epithermal Neutron Flux Treatment Beam%高额超热中子束流治疗孔道低浓化BNCT堆初步设计方案

    Institute of Scientific and Technical Information of China (English)

    于涛; 钱金栋; 谢金森

    2012-01-01

    Based on the Miniature Neutron Source Reactor (MNSR) with high enrichment uranium (HEU) fuel and accordance with the requirements of BNCT, the 19.5% of enriched fuel UO2 fuel core for BNCT with epithermal neutron treatment beam was primary designed, the reactor core parameters such as epithermal neutron flux density,epithermal neutron flux unit of fast neutron dose rate,epithermal neutron flux unit photon dose rate of γ,epithermal neutron flux ratio of thermal neutron flux, neutron spectrum were calculated and analyzed. The results show that the design program was an excellent epithermal neutron treatment beam.%根据硼中子俘获治疗( BNCT)中子源的要求,在高浓铀为燃料的微型反应堆(MNSR)的基础上,以富集度19.5%的UO2为燃料,将其堆芯低浓化并且添加水平超热中子束流治疗孔道,开展超热中子束流BNCT堆堆芯低浓化初步设计.计算BNCT堆的超热中子注量率、单位超热中子注量的快中子剂量率、单位超热中子注量的γ光子剂量率、超热中子注量与热中子的注量之比、中子束流能谱等关键参数.结果表明,该设计可以得到优良的超热中子束流.

  7. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Conway, Adam M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikolić, Rebecca J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dar, Mushtaq A. [King Saud Univ., Riyadh (Saudi Arabia); Cheung, Chin L. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  8. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Conway, Adam M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikolić, Rebecca J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dar, Mushtaq A. [King Saud Univ., Riyadh (Saudi Arabia); Cheung, Chin L. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  9. UN TRISO Compaction in SiC for FCM Fuel Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.

  10. Online Fault Diagnosis for Biochemical Process Based on FCM and SVM.

    Science.gov (United States)

    Wang, Xianfang; Du, Haoze; Tan, Jinglu

    2016-12-01

    Fault diagnosis is becoming an important issue in biochemical process, and a novel online fault detection and diagnosis approach is designed by combining fuzzy c-means (FCM) and support vector machine (SVM). The samples are preprocessed via FCM algorithm to enhance the ability of classification firstly. Then, those samples are input to the SVM classifier to realize the biochemical process fault diagnosis. In this study, a glutamic acid fermentation process is chosen as an example to diagnose the fault by this method, the result shows that the diagnosis time is largely shortened, and the accuracy is extremely improved by comparing to a single SVM method.

  11. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  12. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  13. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Izarra, G. de [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Elter, Zs. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Verma, V. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Metrology, Instrumentation and Information Department, Saclay, 91191 Gif-sur-Yvette (France); Chapoutier, N.; Scholer, A.C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon (France); Hellesen, C.; Jacobsson, S. [Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Cantonnet, B.; Nappe, J.C. [PHOTONIS France, Nuclear Instrumentation, 19100 Brive-la-Gaillarde (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Energy Department, 3 rue Joliot-Curie, 91191 Gif-sur-Yvette (France)

    2015-07-01

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under

  14. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR; Calculo de flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.

    2011-07-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-{theta} and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-{theta}, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, {theta} and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm{sup 2}s, at a height H 4 (239.07 cm) and angle 32.236{sup o} in the core shroud and 4.00 E + 09 n/cm{sup 2}s at a height H 4 and angle 35.27{sup o} in the inner wall of the reactor vessel, positions that are consistent to within {+-}10% over the ones reported in the literature. (Author)

  15. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  16. ITER中子通量监测器的优化计算%Optical Calculations of Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    李初; 王强; 兰礼; 刘虓瀚; 曾军; 刘艺琴; 罗小兵

    2012-01-01

    中子通量监测器(NFM)可实现ITER实时的中子通量测定,转化得到聚变功率,功率密度,等离子体温度等.获得NFM探测效率对能量的相对平坦响应对准确诊断十分必要.论文针对特定的NFM裂变室结构,运用MCNP—4C对裂变室包裹层慢化剂/屏蔽材料种类及厚度进行了优化计算.这些工作对探测器裂变室结构的优化设计实验标定及定型具有重要意义.%The Neutron Flux Monitor(NFM) can provide the real - time flux of ITER( International Thermonuclear Experimental Reactor ) , and get the fusion power and temperature of the plasma after transformation. A relative flat energy response curve of neutron detection efficiency is essential for accurate diagnosis of NFM in ITER. The paper makes an optimal computation on thickness of different moderator/ shielding material with the MCNP - 4C as to the specific structure of NFM fission chamber. It is significant for the optimal design and the experimental calibration of the NFM

  17. Neutron Monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    CERN Document Server

    Maurin, D; Derome, L; Ghelfi, A; Hubert, G

    2014-01-01

    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation $\\phi$ (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10% level on $\\phi$ values. We find no clear ranking...

  18. Optimal Machine Tools Selection Using Interval-Valued Data FCM Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Yupeng Xin

    2014-01-01

    Full Text Available Machine tool selection directly affects production rates, accuracy, and flexibility. In order to quickly and accurately select the appropriate machine tools in machining process planning, this paper proposes an optimal machine tools selection method based on interval-valued data fuzzy C-means (FCM clustering algorithm. We define the machining capability meta (MAE as the smallest unit to describe machining capacity of machine tools and establish MAE library based on the MAE information model. According to the manufacturing process requirements, the MAEs can be queried from MAE library. Subsequently, interval-valued data FCM algorithm is used to select the appropriate machine tools for manufacturing process. Through computing matching degree between manufacturing process machining constraints and MAEs, we get the most appropriate MAEs and the corresponding machine tools. Finally, a case study of an exhaust duct part of the aeroengine is presented to demonstrate the applicability of the proposed method.

  19. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  20. Evaluation of the thermal neutron flux in samples of Al–Au alloy irradiated in the carrousel channels of the TRIGA MARK I IPR-R1 reactor using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Salomé, J.A.D.; Guerra, B.T. [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Menezes, M.Â.B.C. de [Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Campus da UFMG, Av. Antônio Carlos, 6627 31270-901, P.O. Box 941, Belo Horizonte, MG (Brazil); Silva, C.A.M. da [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – PCA1 – Anexo Engenharia – Pampulha, CEP 31270-901, Belo Horizonte, MG (Brazil); Dalle, H.M. [Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Campus da UFMG, Av. Antônio Carlos, 6627 31270-901, P.O. Box 941, Belo Horizonte, MG (Brazil)

    2014-07-01

    Highlights: • The TRIGA IPR-R1 was modelled using MCNP. • The thermal neutron flux through the samples in eleven irradiation channels was obtained. • The simulated results were compared to experimental values. • The relative error, the relative trend, the z-score test and uncertainty were analysed. - Abstract: The TRIGA IPR-R1 was modelled using MCNP. The model consists of a cylinder filled with water, fuel elements, radial reflectors, central tube, control rods and neutron source. Around the core is placed the Rotary Specimen Rack (RSR) with adequate groove to insert the samples to irradiation. The values of the thermal neutron flux through the samples in eleven irradiation channels were simulated and compared to the experimental results to validate the model. After that, the values of the thermal neutron flux, in the same channels, were simulated on two horizontal planes at different heights and compared to validate the model. These channels were characterized as representative channels of the neutron flux distribution in the RSR. To evaluate the results, the relative errors, the relative trend, the z-score test and the relevance to a confidence interval of 95% were analysed. Good agreement has been obtained for the most channels when compared with the experimental results.

  1. The Analysis of the FCM and WKNN Algorithms Performance for the Emotional Corpus SROL

    Directory of Open Access Journals (Sweden)

    ZBANCIOC, M.

    2012-08-01

    Full Text Available The purpose of this research is to find a set of relevant parameters for the emotion recognition. In this study we used the recordings from the emotion database SROL which is part of the project "Voiced Sounds of Romanian Language". The database was validated by human listeners. The recognition accuracy of the correct expressed emotion (neutral tone, joy, fury and sadness for the entire database was 63.97%. We used for the classification of input data the Recurrent Fuzzy C-Means (FCM and WKNN algorithms. We compared the cluster position with the statistical parameters extracted from vowels in order to establish the relevance of each parameter in the recognition of the emotions. For the extracted parameters for each vowel (mean, median and standard deviation of fundamental frequency - F0 and F1-F4 formants, jitter, and shimmer the FCM algorithm gave satisfactory results in the phonemes recognition, but not to the emotions. For this reason we used WKNN algorithm in classification, which provided the errors around 20-30% comparing with FCM algorithm when the classification errors are around 40-50%.

  2. Research on the lesion segmentation of breast tumor MR images based on FCM-DS theory

    Science.gov (United States)

    Zhang, Liangbin; Ma, Wenjun; Shen, Xing; Li, Yuehua; Zhu, Yuemin; Chen, Li; Zhang, Su

    2017-03-01

    Magnetic resonance imaging (MRI) plays an important role in the treatment of breast tumor by high intensity focused ultrasound (HIFU). The doctors evaluate the scale, distribution and the statement of benign or malignancy of breast tumor by analyzing variety modalities of MRI, such as the T2, DWI and DCE images for making accurate preoperative treatment plan and evaluating the effect of the operation. This paper presents a method of lesion segmentation of breast tumor based on FCM-DS theory. Fuzzy c-means clustering (FCM) algorithm combined with Dempster-Shafer (DS) theory is used to process the uncertainty of information, segmenting the lesion areas on DWI and DCE modalities of MRI and reducing the scale of the uncertain parts. Experiment results show that FCM-DS can fuse the DWI and DCE images to achieve accurate segmentation and display the statement of benign or malignancy of lesion area by Time-Intensity Curve (TIC), which could be beneficial in making preoperative treatment plan and evaluating the effect of the therapy.

  3. 流式细胞术(FCM)在生物学研究中的应用%Application Progress of Flow Cytometry (FCM) in the Biological Research

    Institute of Scientific and Technical Information of China (English)

    李靖; 李成斌; 顿文涛; 王政; 方庆

    2008-01-01

    流式细胞仪(FlOW Cytometer)是一种对细胞进行定量分析与分选的精密仪器,它具有分析速度快、特异性好和灵敏度高的优点,是生物学研究的有力工具.流式细胞术(Flow Cytometry,FCM)是用流式细胞仪测量液相中悬浮细胞或微粒的一种现代分析技术,它是众多不同学术背景、不同科技领域相结合的结晶.概述了FCM在国内外生物学领域应用的最新动态.

  4. Localizing by autoradiography at -195 deg radioactive areas in rats exposed to a high flux of thermal neutrons, importance of phosphorus 32 in consecutive internal irradiation; Localisation par autoradiographie a -195 deg des zones radioactives chez le rat expose a un haut flux de neutrons thermiques, importance du phosphore 32 dans l'irradiation interne consecutive

    Energy Technology Data Exchange (ETDEWEB)

    Chanteur, J.; Pellerin, P. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    Rats weighing 25 g were exposed for 5 mn to a flux of 6.10{sup 12} thermal neutrons/cm{sup 2}/s. Anatomical autoradiography at -195 deg. C has enabled the radioactive organs to be easily localised, to follow in course of time the decrease of radioactivity, and from it to deduce the probable nature of the numerous emitters in question. In particular, the phosphorus 32 has thus appeared to be one of those responsible for internal irradiation, general, on the one hand, by activating cellular phosphorus, local, on the other, by activating bony phosphates. Owing to this, an accidental irradiation by neutrons might have consequences that are both somatic (elective irradiation of the bone marrow) and genetic (activation of nucleic acids). The gamma spectrometry has confirmed the nature of certain other emitters. (author) [French] Des rats de 25 g ont ete exposes pendant 5 mn a un flux de 6.10{sup 12} neutrons thermiques/cm{sup 2}/s. L'autoradiographie anatomique a -195 deg. C a permis de localiser facilement les organes radioactifs, de suivre dans le temps la decroissance de la radioactivite, et d'en deduire la nature probable des nombreux emetteurs en cause. En particulier, le phosphore 32 est ainsi apparu comme l'un des responsables de l'irradiation interne, d'une part generale par activation du phosphore cellulaire, d'autre part locale par activation des phosphates osseux. Une irradiations accidentelle par neutrons aurait, de ce fait, des consequences a la fois somatiques (irradiation elective de la moelle osseuse) et genetiques (activation des acides nucleiques). La spectrometrie gamma a confirme la nature de certains autres emetteurs. (auteur)

  5. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    Directory of Open Access Journals (Sweden)

    Gruel A.

    2016-01-01

    Full Text Available Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm, and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the “hafnium” configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations. Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  6. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  7. Neutron scattering from the flux-line lattice in Bi2Sr2CaCu2O8+#gamma#

    DEFF Research Database (Denmark)

    Paul, D.M.; Forgan, E.M.; Cubitt, R.

    1995-01-01

    Neutron small-angle diffraction has been used to investigate the flux-line lattice structure within single crystals of the high-temperature superconductor Bi2.15Sr1.95CaCu2O8+x. The diffracted intensity goes rapidly to zero as the magnetic field or the temperature is increased. Melting at low...

  8. Current and future capabilities of the neutron reflectometer MIRROR at Oak Ridge National Laboratory's High Flux Isotope Reactor

    Science.gov (United States)

    Hamilton, W. A.; Smith, G. S.; Taylor, G. B.; Larkins, B. M.; Porcar, L.

    2006-11-01

    The peripatetic ORNL HFIR Center for Neutron Scattering reflectometer instrument MIRROR has recently been re-installed in an interim beam line position in the reactor beam room. In 2006 an upgraded version of the instrument will move to a high intensity guide hall position fed by the new HFIR cold source. In this short note, we present some aspects of current instrument operation-particularly with respect to data reduction from the instrument's linear reflection plane detector-with examples of ongoing research and analysis, and a brief outline of the expected capabilities of the fully upgraded guide hall instrument.

  9. Measurement of the Solar Neutrino Flux with an Array of Neutron Detectors in the Sudbury Neutrino Observatory

    CERN Document Server

    Jamieson, Blair

    2008-01-01

    The Sudbury Neutrino Observatory has measured the $^8$B solar neutrino flux using an array of 3He proportional counters. Results obtained using a Markov-Chain Monte-Carlo (MCMC) parameter estimation, integrating over a standard extended likelihood, yield effective neutrino fluxes of: phi_nc=5.54+0.33-0.31(stat)+0.36-0.34(syst) x 10^6 /cm^2/s, phi_cc=1.67+0.05-0.04(stat)+0.07-0.08(syst) x 10^6 /cm^2/s, and phi_es=1.77+0.24-0.21(stat)+0.09-0.10(syst) x 10^6 /cm^2/s. These measurements are in agreement with previous solar neutrino flux measurements, and with neutrino oscillation model results. Including these flux measurements in a global analysis of solar and reactor neutrino results yields an improved precision on the solar neutrino mixing angle of theta=34.4+1.3-1.2 degrees, and Delta m^2=7.59+0.19-0.21 eV^2.

  10. Classification of Difficult Recoverable Reserves Based on FCM and BP Neural Network%基于FCM-BP神经网络的难采储量分类

    Institute of Scientific and Technical Information of China (English)

    李德富; 翁克瑞; 杨娟; 诸克军; 李志; 曹洪

    2012-01-01

    目前储量的分类标准是通过划分指标值的范围来确定的,这就要求所有指标值恰好符合既定的指标范围,否则难以划分储量类别.为克服这一问题,结合模糊C均值算法和BP神经网络实现难采储量的分类.首先基于效益指标运用模糊C均值算法自动搜索储量的最佳类别,再利用BP神经网络建立储量效益指标类别与储量属性指标之间的关系表达式.在已知储量指标值的情况下,通过此关系式即可求得储量的类别.最后以大庆某油田为实例,对其难采储量进行了分类,有效指导难采储量滚动开发决策.%Currently, the classification and evaluation criterion of reserves were determined through the scope of the, criteria value, which required all criteria values were just right in the existing range of criteria. Otherwise it would be difficult to divide the reserves category. To overcome this problem, this paper combined with Fuzzy C-Means clustering algorithm (FCM) and BP neural network method to classify difficult recoverable reserves. First use FCM to automatically search for the optimal category of reserves, based on performance indicators. And then establish the relational expression between the reserves category and reserves properties by BP neural network. So in the case of the criteria value known, the categories of reserves can be obtained through this relational expression. Finally take the case of an oil field in the 10th Oil Production Plant of PetroChhm Daqing Oilfield LLC, and evaluate the recoverable reserves, which conducts the rolling development of recoverable reserves.

  11. The Analysis of the FCM and WKNN Algorithms Performance for the Emotional Corpus SROL

    OpenAIRE

    ZBANCIOC, M.; FERARU, S. M.

    2012-01-01

    The purpose of this research is to find a set of relevant parameters for the emotion recognition. In this study we used the recordings from the emotion database SROL which is part of the project "Voiced Sounds of Romanian Language". The database was validated by human listeners. The recognition accuracy of the correct expressed emotion (neutral tone, joy, fury and sadness) for the entire database was 63.97%. We used for the classification of input data the Recurrent Fuzzy C-Means (FCM) an...

  12. Procedure of calculation of the spatial distribution of temperatures and heat fluxes in the steam generator of a nuclear power installation with an RBEC fast-neutron reactor

    Science.gov (United States)

    Frolov, A. A.; Sedov, A. A.

    2016-08-01

    A method for combined 3D/1D-modeling of thermohydraulics of a once-through steam generator (SG) based on the joint analysis of three-dimensional thermo- and hydrodynamics of a single-phase heating coolant in the intertube space and one-dimensional thermohydraulics of steam-generating channels (tubes) with the use of well-known friction and heat-transfer correlations under various boiling conditions is discussed. This method allows one to determine the spatial distribution of temperatures and heat fluxes of heat-exchange surfaces of SGs with a single-phase heating coolant in the intertube space and with steam generation within tubes. The method was applied in the analytical investigation of typical operation of a once-through SG of a nuclear power installation with an RBEC fast-neutron heavy-metal reactor that is being designed by Kurchatov Institute in collaboration with OKB GIDROPRESS and Leipunsky Institute of Physics and Power Engineering. Flow pattern and temperature fields were obtained for the heavy-metal heating coolant in the intertube space. Nonuniformities of heating of the steam-water coolant in different heat-exchange tubes and nonuniformities in the distribution of heat fluxes at SG heat-exchange surfaces were revealed.

  13. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    Energy Technology Data Exchange (ETDEWEB)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.

  14. Peer selecting model based on FCM for wireless distributed P2P files sharing systems

    Institute of Scientific and Technical Information of China (English)

    LI Xi; JI Hong; ZHENG Rui-ming

    2010-01-01

    Ⅱn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this paper.The new model provides an effective approach on choosing an optimal peer from several resource discovering results for the best file transfer.Compared with the traditional rain-hops scheme that uses hops as the only selecting criterion,the proposed model uses FCM to investigate the complex relationships among various relative factors in wireless environments and gives an overall evaluation score on the candidate.It also has strong scalability for being independent of specified P2P resource discovering protocols.Furthermore,a complete implementation is explained in concrete modules.The simulation results show that the proposed model is effective and feasible compared with rain-hops scheme,with the success transfer rate increased by at least20% and transfer time improved as high as 34%.

  15. 用于强γ环境中测量中子参数的薄膜塑料闪烁探测器%Thin Plastic Scintillating Foil for Measuring Pulsed Neutron Flux in High Gamma-Ray Environment

    Institute of Scientific and Technical Information of China (English)

    欧阳晓平; 李真富; 王群书; 霍裕昆

    2005-01-01

    提出了在强γ环境中脉冲中子通量的薄膜闪烁体测量方法. 根据其与中子、γ响应的理论计算结果,研制成功一种对γ不灵敏,用于探测快脉冲中子通量的新型探测器. 该探测器由塑料薄膜闪烁体+光电探测器构成. 与传统探测器相比,该探测器具有如下特点:1.高中子灵敏度;2.高n/γ分辨;3.在给定能区具有平坦的能量响应.%A new conception of measuring pulsed neutron flux in high gamma-ray environment with a thin plastic scintillating foil is presented. Based on the calculations of the response to neutrons and gamma-rays, a new gamma-insensitive detector for detecting fast rising, transient neutron flux has been developed and preliminarily tested, which comprises a thin plastic scintillating foil of ST401 (TPSF) and a photomultiplier tube (or a photodiode). The detector exhibits three distinct properties compared with the conventional ones: (1) high neutron sensitivity, (2) high n/γ discrimination, and (3) flat response in the given neutron energy range.

  16. First in-core simultaneous measurements of nuclear heating and thermal neutron flux obtained with the innovative mobile calorimeter CALMOS inside the OSIRIS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Valerie; Bubendorff, Jacques; Carcreff, Hubert [Nuclear studies and reactor irradiation Service, CEA Saclay 91191 Gif sur Yvette (France); Salmon, Laurent [Thermalhydraulics and Fluid Mechanics Section, CEA Saclay 91191 Gif sur Yvette, (France)

    2015-07-01

    Nuclear heating inside a MTR reactor has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. This development required preliminary modelling and irradiation of mock-ups of the calorimetric probe in the ex-core area, where nuclear heating rate does not exceed 2 W.g{sup -1}. The calorimeter working modes, the different measurement procedures allowed with such a new probe, the main modeling and experimental results and expected advantages of this new technique have been already presented. However, these first in-core measurements were not performed beyond 6 W.g{sup -1}, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at the 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 10{sup 14} n.cm{sup -2}.s{sup -1} and nuclear heating up to 12 W.g{sup -1}. A comprehensive measurement campaign carried out from 2013 to 2015 inside all accessible irradiation locations of the core, allowed to qualify definitively this new device, not only in terms of measurement ability but also in terms of reliability. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a systematic comparison is made between results obtained by

  17. A Concept for the Inclusion of Analytical and Computational Capability in Existing Systems for Measurement of Neutron Flux

    Science.gov (United States)

    Patrick, Clinton; Cooper, Anita E.; Powers, W. T.

    2005-01-01

    For approximately two decades, efforts have been sponsored by NASA's Marshall Space Flight Center to make possible high-speed, automated classification and quantification of constituent materials in various harsh environments. MSFC, along with the Air Force/Arnold Engineering Development Center, has led the work, developing and implementing systems that employ principles of emission and absorption spectroscopy to monitor molecular and atomic particulates in gas plasma of rocket engine flow fields. One such system identifies species and quantifies mass loss rates in H2/O2 rocket plumes. Other gases have been examined and the physics of their detection under numerous conditions were made a part of the knowledge base for the MSFC/USAF team. Additionally, efforts are being advanced to hardware encode components of the data analysis tools in order to address real-time operational requirements for health monitoring and management. NASA has a significant investment in these systems, warranting a spiral approach that meshes current tools and experience with technological advancements. This paper addresses current systems - the Optical Plume Anomaly Detector (OPAD) and the Engine Diagnostic Filtering System (EDIFIS) - and discusses what is considered a natural progression: a concept for migrating them towards detection of high energy particles, including neutrons and gamma rays. The proposal outlines system development to date, basic concepts for future advancements, and recommendations for accomplishing them.

  18. A Concept for the Inclusion of Analytical and Computational Capability in Existing Systems for Measurement of Neutron Flux

    Science.gov (United States)

    Patrick, Clinton; Cooper, Anita E.; Powers, W. T.

    2005-01-01

    For approximately two decades, efforts have been sponsored by NASA's Marshall Space Flight Center to make possible high-speed, automated classification and quantification of constituent materials in various harsh environments. MSFC, along with the Air Force/Arnold Engineering Development Center, has led the work, developing and implementing systems that employ principles of emission and absorption spectroscopy to monitor molecular and atomic particulates in gas plasma of rocket engine flow fields. One such system identifies species and quantifies mass loss rates in H2/O2 rocket plumes. Other gases have been examined and the physics of their detection under numerous conditions were made a part of the knowledge base for the MSFC/USAF team. Additionally, efforts are being advanced to hardware encode components of the data analysis tools in order to address real-time operational requirements for health monitoring and management. NASA has a significant investment in these systems, warranting a spiral approach that meshes current tools and experience with technological advancements. This paper addresses current systems - the Optical Plume Anomaly Detector (OPAD) and the Engine Diagnostic Filtering System (EDIFIS) - and discusses what is considered a natural progression: a concept for migrating them towards detection of high energy particles, including neutrons and gamma rays. The proposal outlines system development to date, basic concepts for future advancements, and recommendations for accomplishing them.

  19. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.

  20. A Modified FCM Classifier Constrained by Conditional Random Field Model for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    WANG Shaoyu

    2016-12-01

    Full Text Available Remote sensing imagery has abundant spatial correlation information, but traditional pixel-based clustering algorithms don't take the spatial information into account, therefore the results are often not good. To this issue, a modified FCM classifier constrained by conditional random field model is proposed. Adjacent pixels' priori classified information will have a constraint on the classification of the center pixel, thus extracting spatial correlation information. Spectral information and spatial correlation information are considered at the same time when clustering based on second order conditional random field. What's more, the global optimal inference of pixel's classified posterior probability can be get using loopy belief propagation. The experiment shows that the proposed algorithm can effectively maintain the shape feature of the object, and the classification accuracy is higher than traditional algorithms.

  1. Pairwise FCM based feature weighting for improved classification of vertebral column disorders.

    Science.gov (United States)

    Unal, Yavuz; Polat, Kemal; Erdinc Kocer, H

    2014-03-01

    In this paper, an innovative data pre-processing method to improve the classification performance and to determine automatically the vertebral column disorders including disk hernia (DH), spondylolisthesis (SL) and normal (NO) groups has been proposed. In the classification of vertebral column disorders' dataset with three classes, a pairwise fuzzy C-means (FCM) based feature weighting method has been proposed. In this method, first of all, the vertebral column dataset has been grouped as pairwise (DH-SL, DH-NO, and SL-NO) and then these pairwise groups have been weighted using a FCM based feature set. These weighted groups have been classified using classifier algorithms including multilayer perceptron (MLP), k-nearest neighbor (k-NN), Naive Bayes, and support vector machine (SVM). The general classification performance has been obtained by averaging of classification accuracies obtained from pairwise classifier algorithms. To evaluate the performance of the proposed method, the classification accuracy, sensitivity, specificity, ROC curves, and f-measure have been used. Without the proposed feature weighting, the obtained f-measure values were 0.7738 for MLP classifier, 0.7021 for k-NN, 0.7263 for Naive Bayes, and 0.7298 for SVM classifier algorithms in the classification of vertebral column disorders' dataset with three classes. With the pairwise fuzzy C-means based feature weighting method, the obtained f-measure values were 0.9509 for MLP, 0.9313 for k-NN, 0.9603 for Naive Bayes, and 0.9468 for SVM classifier algorithms. The experimental results demonstrated that the proposed pairwise fuzzy C-means based feature weighting method is robust and effective in the classification of vertebral column disorders' dataset. In the future, this method could be used confidently for medical datasets with more classes.

  2. Fail-safe neutron shutter used for thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons (neutron flux = 3.876 x 10/sup 6/ (neutrons)/(cm/sup 2/.s)). Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available.

  3. Analysis of neutron flux distribution using the Monte Carlo method for the feasibility study of the Prompt Gamma Activation Analysis technique at the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Bruno T.; Pereira, Claubia, E-mail: brunoteixeiraguerra@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departmento de Energia Nuclear; Soares, Alexandre L.; Menezes, Maria Angela B.C., E-mail: menezes@cdtn.br, E-mail: asleal@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The IPR-R1 is a reactor type TRIGA, Mark-I model, manufactured by the General Atomic Company and installed at Nuclear Technology Development Centre (CDTN), Brazilian Commission for Nuclear Energy (CNEN), in Belo Horizonte, Brazil. It is a light water moderated and cooled, graphite-reflected, open-pool type research reactor and operates at 100 kW. It presents low power, low pressure, for application in research, training and radioisotopes production. The fuel is an alloy of zirconium hydride and uranium enriched at 20% in {sup 235}U. The implementation of the PGNAA (Prompt Gamma Neutron Activation Analysis) using this research reactor will significantly increase in number of chemical elements analysed and the kind of matrices. A project is underway in order to implement this technique at CDTN. The objective of this study was to contribute in feasibility analysis of implementing this technique. For this purpose, MCNP is being used. Some variance reduction tools in the methodology, that has been already developed, was introduced for calculating of the neutron flux in the neutron extractor inclined. The objective was to reduce the code error and thereby increasing the reliability of the results. With the implementation of the variance reduction tools, the results of the thermal and epithermal neutron fluxes presented a significant improvement in both calculations. (author)

  4. Investigation of Isfahan miniature neutron source reactor (MNSR) for boron neutron capture therapy by MCNP simulation

    OpenAIRE

    S. Z. Kalantari; H Tavakoli; Nami, M.

    2015-01-01

    One of the important neutron sources for Boron Neutron Capture Therapy (BNCT) is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA). In this paper, Miniature Neutron Source Reactor (MNSR) as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA) for the reactor and the neutron transport from the core of the reactor t...

  5. Monte Carlo Calculation of Core Reactivity and Fluxes for the Development of the BNCT Neutron Source at the Kyiv Research Reactor

    Science.gov (United States)

    Gritzay, Olena; Kalchenko, Oleksandr; Klimova, Nataliya; Razbudey, Volodymyr; Sanzhur, Andriy; Binney, Stephen

    2005-05-01

    The presented results show our consecutive steps in developing a neutron source with parameters required by Boron Neutron Capture Therapy (BNCT) at the Kyiv Research Reactor (KRR). The main goal of this work was to analyze the influence of installation of different types of uranium converters close to the reactor core on neutron beam characteristics and on level of reactor safety. The general Monte Carlo radiation transport code MCNP, version 4B, has been used for these calculations.

  6. Spectral unfolding of fast neutron energy distributions

    Science.gov (United States)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  7. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  8. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  9. AN UNSUPERVISED CLASSIFICATION FOR FULLY POLARIMETRIC SAR DATA USING SPAN/H/α IHSL TRANSFORM AND THE FCM ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Wu Yirong; Cao Fang; Hong Wen

    2007-01-01

    In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Aperture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPAN space to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN. Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPAN space directly during the segmentation procedure.

  10. Development and modelling of fission chambers designed for high neutron fluxes: applications at the HFR reactor (ILL) and the MEGAPIE target (PSI); Developpement et modelisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI)

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, S

    2006-11-15

    The international project MEGAPIE (MEGAwatt PIlot Experiment) at the Paul Scherrer Institute aims to build and operate the first 1 MW liquid lead-bismuth spallation target. This work is dedicated to the characterization of the neutron flux and the actinide incineration potential of the target. This mission has required the development of an innovating neutron detector (DNM) made of 8 micro fission chambers, installed inside the central rod of the MEGAPIE target. The combination of uranium chambers with chambers without deposit allows an efficient compensation of the gamma radiation background. The optimisation and development work on the MEGAPIE chambers have enabled us to measure the {sigma}{sub f} * {phi} product at each level of the DNM with an uncertainty of less than 3 per cent. We have inferred from these data the value of the epithermal neutron flux (E > 1 eV) at 37 cm away from the window: 3.4*10{sup 13} n.cm{sup -2}.s{sup -1}, and the values of the neutron flux at 50, 60 and 74 cm: 1.2*10{sup 13}, 7.9*10{sup 12} and 3.9*10{sup 12} n.cm{sup -2}.s{sup -1} respectively. All these values are notably less important than those obtained from MCNPX simulations. Thermocouples installed in DMN have enabled us to know the temperature distribution inside the target. For a beam intensity of 1.2 mA, the temperature ranges from 360 to 420 Celsius degrees in the low part of the central rod. The thermal inertia of the system composed of the central rod and DNM has been assessed for brutal changes of the beam intensity and is worth about 60 s. (A.C.)

  11. Nodal model for calculating the variations in neutron flux density due to stochastic vibrations of control elements of hexagonal cross section; Nodales Modell zur Berechnung der Neutronenflussdichteschwankungen infolge stochastischer Schwingungen von Regelelementen mit hexagonalem Querschnitt

    Energy Technology Data Exchange (ETDEWEB)

    Hollstein, F.

    1994-08-01

    Based on a three-dimensional modal geometry model for the WWER 440 reacotr, with nodes in the hexagonal z geometry, the equations for the interative calculation of the mean neutron flux density in a node and their variations due to stochastic control element vibration are shown. For modelling sources of noise, two different geometric and neutron-physics equations are used, according to the design of a control element as a spatial double pendulum with the absorber and fuel part. The neutron flux noise caused by vibration of the fuel parts is due to area sources. These are induced by material parameter variation due to control element displacement within the guide duct. The model of the `thermal black body` absorbing hollow cylinder is transferred to bodies of hexagonal crossection for the absorber part. Both sources of noise are described as disturbances for the partial neutron current densities averaged over the node surfaces in the two group diffusion approximation. The transfer of the noise signals is dealt with in the prompt response approximation. The `two group swelling nodes` are coupled to the `one group transmission nodes` on the basis of the modified one group diffusion approximation. The algorithms shown are the basis for development of a computer program for examining the transfer functions depending on location of neutron flux density variations with stochastic control element vibrations as the source of noise. (orig./HP) [Deutsch] Auf der Basis eines dreidimensionalen nodalen Geometriemodells fuer den WWER-440-Reaktor mit Nodes in Hexagonal-z-Geometrie werden die Beziehungen zur iterativen Berechnung der mittleren Neutronenflussdichte in einer Node sowie deren Schwankungen infolge stochastischer Regelelementschwingungen dargestellt. Fuer die Rauschquellenmodellierung werden entsprechend der Konstruktion eines Regelelements als raeumliches Doppelpendel mit Absorber- und Brennstoffteil zwei verschiedene geometrische und neutronenphysikalische Ansaetze

  12. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  13. A Background-Free Direction-Sensitive Neutron Detector2 A Background-Free Direction-Sensitive Neutron Detector

    CERN Document Server

    Roccaro, Alvaro; Ahlen, S; Avery, D; Inglis, A; Battat, J; Dujmic, D; Fisher, P; Henderson, S; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Sciolla, G; Skvorodnev, N; Wellenstein, H; Yamamoto, R

    2009-01-01

    We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamma rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications (neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction) will benefit from the improved neutron detection sensitivity and improved measurements of neutron properties made possible by this detector. The detector is free of backgrounds from x-rays, gamma rays, beta particles, relativistic singely charged particles and cosmic ray neutrons. It is sensitive to th...

  14. INFLUENCE OF SCATTERED NEUTRON RADIATION ON METROLOGICAL CHARACTERISTICS OF АТ140 NEUTRON CALIBRATION FACILITY

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2017-01-01

    Full Text Available Today facilities with collimated radiation field are widely used as reference in metrological support of devices for neutron radiation measurement. Neutron fields formed by radionuclide neutron sources. The aim of this research was to study characteristics of experimentally realized neutron fields geometries on АТ140 Neutron Calibration Facility using Monte Carlo method.For calibration, we put a device into neutron field with known flux density or ambient equivalent dose rate. We can form neutron beam from radionuclide fast-neutron source in different geometries. In containercollimator of АТ140 Neutron Calibration Facility we can install special inserts to gather fast-neutron geometry or thermal-neutron geometry. We need to consider neutron scattering from air and room’s walls. We can conduct measurements of neutron field characteristics in several points and get the other using Monte Carlo method.Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. From found relationship between full neutron flux and distance to neutron source we see that inverse square law is violated. Scattered radiation contribution into total flux increases when we are moving away from neutron source and significantly influences neutron fields characteristics. While source is exposed in shadow-cone geometry neutron specter has pronounced thermal component from wall scattering.In this work, we examined main geometry types used to acquire reference neutron radiation using radionuclide sources. We developed Monte Carlo model for 238Pu-Be neutron source and АТ140 Neutron Calibration Facility’s container-collimator. We have shown the most significant neutron energy distribution factor to be scattered radiation from room’s walls. It leads to significant changes of neutron radiation specter at a distance from the source. When planning location, and installing the facility we should consider

  15. Optimization of the geometry and composition of a neutron system for treatment by Boron Neutron Capture Therapy

    OpenAIRE

    2015-01-01

    Background: In the field of the treatment by Boron Neutron Capture Therapy (BNCT), an optimized neutron system was proposed. This study (simulation) was conducted to optimize the geometry and composition of neutron system and increase the epithermal neutron flux for the treatment of deep tumors is performed. Materials and Methods: A neutron system for BNCT was proposed. The system included 252Cf neutron source, neutron moderator/reflector arrangement, filter and concrete. To capture fast ...

  16. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  17. Measurement of the Ratio of High Energy Neutron in the Pulse Nuclear Reactor

    Institute of Scientific and Technical Information of China (English)

    MAO; Guo-shu; DING; You-qian; YANG; Lei; MA; Peng; YU; Zhen-hua

    2012-01-01

    <正>In the production of radioisotopes and neutron activation analysis, the fast neutron densities are very important to estimate the yields of the radioisotopes. In order to determine the fast neutron flux ratio, different foils are used to measure the thermal neutron flux and the fast neutron flux. In this paper 238U was used as only a monitor to measure the ratio of high energy neutron (>6 MeV). By measuring the

  18. Neutron beam imaging at neutron spectrometers at Dhruva

    Science.gov (United States)

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-01

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 106-107 n/cm2/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  19. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  20. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  1. Depth profile of 41Ca in an Apollo 15 drill core and the low-energy neutron flux in the Moon

    Science.gov (United States)

    Nishiizumi, K.; Fink, D.; Klein, J.; Middleton, R.; Masarik, J.; Reedy, R. C.; Arnold, J. R.

    1997-05-01

    Systematic measurements of the concentrations of cosmogenic 41Ca (half-life = 1.04 × 10 5 yr) in the Apollo 15 long core 15001-15006 were performed by accelerator mass spectroscopy. Earlier measurements of cosmogenic 10Be, 14C, 26Al, 36Cl, and 53Mn in the same core have provided confirmation and improvement of theoretical models for predicting production profiles of nuclides by cosmic ray induced spallation in the Moon and large meteorites. Unlike these nuclides, 41Ca in the lunar surface is produced mainly by thermal neutron capture reactions on 40Ca. The maximum productions of 41Ca, about 1 dpm/g Ca, was observed at a depth in the Moon of about 150 g/cm 2. For depths below about 300 g/cm 2, 41Ca production falls off exponentially with an e-folding length of 175 g/cm 2. Neutron production in the Moon was modeled with the Los Alamos High Energy Transport Code System, and yields of nuclei produced by low-energy thermal and epithermal neutrons were calculated with the Monte Carlo N-Particle code. The new theoretical calculations using these codes are in good agreement with our measured 41Ca concentrations as well as with 60Co and direct neutron fluence measurements in the Moon.

  2. PGNAA neutron source moderation setup optimization

    CERN Document Server

    Zhang, Jinzhao

    2013-01-01

    Monte Carlo simulations were carried out to design a prompt {\\gamma}-ray neutron activation analysis (PGNAA) thermal neutron output setup using MCNP5 computer code. In these simulations the moderator materials, reflective materials and structure of the PGNAA 252Cf neutrons of thermal neutron output setup were optimized. Results of the calcuations revealed that the thin layer paraffin and the thick layer of heavy water moderated effect is best for 252Cf neutrons spectrum. The new design compared with the conventional neutron source design, the thermal neutron flux and rate were increased by 3.02 times and 3.27 times. Results indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly.

  3. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  4. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  5. Classification of Horse Gaits Using FCM-Based Neuro-Fuzzy Classifier from the Transformed Data Information of Inertial Sensor

    Science.gov (United States)

    Lee, Jae-Neung; Lee, Myung-Won; Byeon, Yeong-Hyeon; Lee, Won-Sik; Kwak, Keun-Chang

    2016-01-01

    In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider’s hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse’s gaits. Furthermore, we develop a coaching system under both real horse riding and simulator environments and propose a method for analyzing the rider’s motion. Using the results of the analysis, the rider can be coached in the correct motion corresponding to the classified gait. To construct a motion database, the data collected from 16 inertial sensors attached to a motion capture suit worn by one of the country’s top-level horse riding experts were used. Experiments using the original motion data and the transformed motion data were conducted to evaluate the classification performance using various classifiers. The experimental results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network classifier (RBFNC) for the transformed motion data. PMID:27171098

  6. Establishment and validation of an updated diagnostic FCM scoring system based on pooled immunophenotyping in CD34+ blasts and its clinical significance for myelodysplastic syndromes.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Abnormal immunophenotypes of hematopoietic cells can be detected by flow cytometry (FCM to assist the diagnosis of myelodysplastic syndromes (MDS. We previously established a FCM scoring system for the diagnosis of low-grade MDS. In this study, additional valuable antigens were involved in an updated FCM scoring system (u-FCMSS for all MDS subtypes. The u-FCMSS showed better sensitivity and specificity (89.4% and 96.5% in distinguishing MDS from non-clonal cytopenia diseases. Validation analysis of u-FCMSS exhibited comparable sensitivity and specificity (86.7% and 93.3% and high agreement rate (88.9% of FCM diagnosis with morphological diagnosis at optimal cut-off (score 3. The distribution of FCM scores in different disease stages was also analyzed. The results suggested that early scoring from abnormal expression of mature myeloid/lymphoid antigens and advanced scoring from abnormal expression of stem/progenitor antigens expression constituted the majority of FCM scores of low-grade and high-grade MDS, respectively. High early scoring was generally accompanied by low IPSS-R score and superior survival, whereas high advanced scoring was accompanied by high IPSS-R score and inferior survival. In addition, the low-risk MDS patients with high early scoring and low advanced scoring were revealed as candidates for immunosuppressive therapy, whereas those with high advanced scoring and low early scoring may be more suitable for decitabine treatment. In conclusion, the u-FCMSS is a useful tool for diagnosis, prognosis and treatment selection in MDS. Differences in classes of antigens expressed and in distribution of FCM scores may reflect distinctive stage characteristics of MDS during disease progression.

  7. Market Segmentation of Air Passenger Transport Based on Joint Algorithm of Hierarchy Clustering and FCM%基于层次聚类 FCM 算法的航空客运市场细分

    Institute of Scientific and Technical Information of China (English)

    王悦; 曾小舟; 傅骏

    2015-01-01

    运用层次聚类法和FCM算法,从Kotler四维顾客价值角度构建航空客运市场细分量表,形成施测问卷,获取样本数据。将因子分析与基于层次聚类的FCM算法相结合,获得4类差距明显的子市场,并验证了市场细分的有效性。研究结果表明,基于层次聚类的FCM算法细分航空客运市场能够获得较为满意的结果,也验证了该混合算法的合理性、有效性和可操作性,其中细分量表与基于层次聚类的FCM算法可作为航空客运主体细分市场的依据和方法。%Combining the strengths of the hierarchy clustering method and the fuzzy c -means ( FCM) algorithm, the practi-cal issue of the market segmentation ( MS) of the air passenger transport was analyzed .The market segmentation scale for the air passenger transport was constructed from the Kotler's four-dimensional customer value ( CV) .On the basis of the scale , a ques-tionnaire was formed and the correspondent data were collected .Combining the factor analysis and the joint algorithm of hierarchy clustering and FCM , four segmented markets with significant differences were finally obtained .The mean value analysis and the variance analysis were applied to verify the effectiveness of the result .The results demonstrate that by applying the joint algorithm of hierarchy clustering and FCM , combining Kotler's four-dimensional CV , the market of air passenger transport could be desira-bly segmented.In turn, the results also confirm the feasibility and reasonableness of the joint algorithm .The market segmentation scale and the joint algorithm can be utilized for the MS for the operational subjects in civil aviation .

  8. Classification of Hard-to-Recover Reserves Based on FCM and Combination weighting approach%基于 FCM-组合赋权的难采储量分类

    Institute of Scientific and Technical Information of China (English)

    杨娟; 龚承柱; 诸克军

    2014-01-01

    Currently, the classification criterion of reserves are determined by the scope of the values of criteria such as geological attributes , reservoir phydical parameters and etc ., which require all attribute values of one block should be just right in the existing range of criteria , otherwise it would be difficult to divide the hard-to-re-cover reserves into different categories .To solve this problem , this paper combines with Fuzzy c-Means clustering algorithm(FCM)and combination weighting approach to classify hard-to-recover reserves.First, FCM is used to automatically search for the optimal category number of reserves based on effect indexes .Then , a combination weighting model is established based on the minimal error-sum of deviation of subjective weights and deviation of objective weights , which is used to compute the weights of attributes and the values of effect indexes .Finally, the categories that blocks belonge to is judged according to the result of FCM .To verify the validity of model , this paper applies it to the classification problem of hard-to-recover reserves from an oil field in the 10th Oil Pro-duction Plant of PetroChina Daqing Oilfield LLC , which would conduct the rolling development of hard-to-recover reserves .%目前储量的分类标准是通过划分指标值的范围来确定的,这就要求所有指标值恰好符合既定的指标范围,否则难以划分储量类别。为克服这一问题,本文结合模糊c-均值算法和组合赋权法实现难采储量的分类。首先基于效益指标运用模糊c-均值算法自动搜索储量的最佳类别,再利用主客观赋权偏差最小的思想,构建组合赋权模型,确定属性指标的权重,并计算储量效益指标值,结合模糊c-均值结果判别难采储量类别。最后以大庆某油田为实例,对其难采储量进行了分类,有效指导难采储量滚动开发决策。

  9. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    Neutrons are moderated or reduced in energy by scattering off of nuclei. When cosmic neutrons with high kinetic energy enter earth’s atmosphere...neutron flux. The simulation volume was modeled as a sphere centered at the origin with a radius of 100 cm. The shielding material was modeled as a

  10. Neutron flux distribution in a thermal column of RP-10 using CR-39 detectors; Distribucion de flujo neutronico en la columna termica del RP-10 usando detectores CR-39

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio Ordonez, Claudia [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Dept. de Calculo, Analisis y Seguridad (CASE)]. E-mail: caparicio@scientist.com; Zuniga Gamarra, Agustin [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Direccion General de Instalaciones (DGI)]. E-mail: azuniga@ipen.gob.pe

    2005-07-01

    In this work it is presented the use of CR-39 detector to determine the thermal neutron flux distribution in a thermal facility of RP-10 and other critical places of interest. The method consist of radiating the CR-39 detectors (TASTRAK, 500 mm of thickness and area 1 cm{sup 2}) within an acrylic container placed to different depths inside thermal column. The irradiation time went of 9 h at power 10 MW. The chemical etching was carried out using a solution of NaOH 6.25 N to 71 deg C for 6 h. The number of damages (tracks) was counted visually with an optical microscope (Carl Zeiss to 160 increases). Finally, the obtained results were compared with those obtained ones by mean of the activation technique, showing discrepancies of 5% in all length of thermal facility. (author)

  11. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor; Diseno y construccion de un sistema electronico automatico de medicion y graficado del flujo neutronico para el reactor subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J.L.; Balderas, E.G.; Rivero G, T. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  12. Neutron flux calculation for central channel in first cycle of SPRR-300%300#研究堆首炉中央孔道中子通量密度计算

    Institute of Scientific and Technical Information of China (English)

    杨万奎; 曾和荣; 冷军; 刘耀光

    2012-01-01

    The physical model of the 300 # swimming pool research reactor(SPRR-300) based on the Monte Carlo code MCNP has been verified. Sophisticated modeling is conducted. An effective multiplication factor value of 1. 002 29 is obtained, existing a relative error of 0. 229% compared with the critical value. Meanwhile, a problem comes out that the interrupt and con-tinue-run with parallel version of MCNP doesn't work. The problem is solved through trail and error process. A reasonable application of flux tally average over a cell and flux tally at a point is suggested, namely the former is prior to the latter to tally in big volume. Comparison between calculation results and experimental data shows that the thermal neutron flux has a deviation of 4. 6% at a power level of 3 MW. That is to say, the calculated value and the experimental value agree well with each other, and the neutron flux result is dependable.%基于MCNP程序对300#研究堆首炉堆芯进行精细建模,通过并行计算方式得到了实验临界棒位下堆芯的有效增殖因数为1.002 29,与临界值之间的相对误差为0.229%,验证了物理模型的正确性.探讨并解决了并行计算的中断与接续问题,提出了体通量计数与点探测器计数应用中的合理化建议,即对大体积空间计数时尽量使用体通量计数.计算值与实验值对比结果表明:两者在3 MW功率水平下热中子通量密度相差4.6%,符合得较好.

  13. Simulation Study of Double Values Dynamic Matrix Control of the Nuclear Reactor Neutron Flux Density%核反应堆中子通量密度的双值动态矩阵控制仿真研究

    Institute of Scientific and Technical Information of China (English)

    史小平; 伞冶

    2001-01-01

    In this paper, a sort of non-parameter model is constructed with the unit step response of the nuclear reactor neutron kinetics system. Furthermore, a sort of constant neutron flux density control law is presented using the double values dynamic matrix control principle. In contrast to the other control methods based on the accurate model, the method presented in this paper has good tracking performance and robustness. It can work despite the existence of un-measurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method.%利用核反应堆中子动力学系统的单位阶跃响应数据,获得了该系统的非参数模型,且提出了一种中子通量密度恒值问题的双值动态矩阵控制新方法。与基于精确模型的控制方法相比,此方法不必苛求模型的具体形式,且实时控制的计算量小、跟踪调节性能好、鲁棒性强、能消除不可测干扰。仿真结果验证了这种控制律的有效性和优越性。

  14. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  15. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R. (ed.); Axe, J.D.; Hayter, J.B.

    1990-07-01

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately.

  16. Experimental findings on self-recovery and improvement of representative parameters of some semiconductor devices as irradiated in fast neutron flux

    Science.gov (United States)

    Hammer, W.; Sterlinski, Sl.; Nazarov, V. M.; Bober, Z.

    Semiconductor devices (Si-Li detectors, diodes, transistors and integrated circuits) were irradiated at a nuclear reactor up to 2.8 x 10(exp14)n x cm(sup -2)(E sub n greater than 0.5 MeV) anda 14 MeV neutron generator up to 10(exp 13) n x cm(sup -2). While testing radiation damage it was seen that some Si-Li detectors and integrated circuits showed the effects of self-recovery and improvement of electrical characteristics.

  17. Measurement of Hard Lags and Coherences in the X-Ray Flux of Accreting Neutron Stars and Comparison with Accreting Black Holes

    OpenAIRE

    Ford, Eric C.; Van Der Klis, Michiel; Mendez, Mariano; van Paradijs, Jan; Kaaret, Philip

    1998-01-01

    Using the Rossi X-ray Timing Explorer we have measured lags of the 9 to 33 keV photons relative to the 2 to 9 keV photons in the timing noise between 0.01 and 100 Hz in the accreting neutron stars 4U 0614+091 and 4U 1705-44. We performed similar measurements on the accreting black hole candidates Cyg X-1 and GX 339-4 as a comparison. During the observations these sources were all in low (hard) states. We find phase lags of between 0.03 and 0.2 radians in all these sources, with a variation in...

  18. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  19. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  20. 宽量程中子通量密度测量数字化处理系统设计%Design of Wide Range Digital Processing System for Neutron Flux Density Measurement

    Institute of Scientific and Technical Information of China (English)

    袁超; 黄跃峰; 李勇平

    2015-01-01

    The real-time and accurate measurement of reactor neutron flux is directly related to safe operation of the reactor.Neutron flux measurement system with fission chamber based on the analog technology had some shortage, a fission chamber of digital output signal processing system was designed.The combination of two kinds of fission chamber working mode which is pulse and Campbell were applied in this system.Using high-speed ADC digitalized signal from the fission chamber, FPGA could be used in a variety of digital signal pro-cessing algorithms.And using MATLAB simulated output pulse signal of the fission chamber, which imported arbitrary waveform signal generator as neutron source, to be used in a preliminary validation of the algorithm. Test results showed that the digital processing system had good linearity and good performance.%实时准确地测量反应堆的中子通量变化状况,对于确保反应堆的安全运行有着重要意义。基于模拟测量系统存在的一些不足,设计一种数字化的宽量程裂变室输出信号处理系统。该数字化信号处理系统将裂变室的脉冲和坎贝尔两种工作模式相结合,利用高速ADC对裂变室输出脉冲信号数字化,在FPGA中运用数字信号处理算法实现两种工作模式的信号处理,并仿真了裂变室的输出脉冲信号导入任意波形信号发生器模拟中子信号源,用于对处理算法的初步验证。测试结果表明数字化处理系统线性度和性能良好。

  1. Solar Neutrons and the Earth's Radiation Belts.

    Science.gov (United States)

    Lingenfelter, R E; Flamm, E J

    1964-04-17

    The intensity and spectrum of solar neutrons in the vicinity of the earth are calculated on the assumption that the low-energy protons recently detected in balloon and satellite flights are products of solar neutron decay. The solar-neutron flux thus obtained exceeds the global average cosmic-ray neutron leakage above 10 Mev, indicating that it may be an important source of both the inner and outer radiation belts. Neutron measurements in the atmosphere are reviewed and several features of the data are found to be consistent with the estimated solar neutron spectrum.

  2. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  3. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  4. Application of the linear extended diffusion theory in the modeling of thermal neutron flux in a plane plate; Aplicacion de la teoria de difusion lineal extendida en el modelamiento del flujo de neutrones termicos en una placa plana

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Arreola V, G.; Vazquez R, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rvr@xanum.uam.mx

    2009-10-15

    In this work the thermal neutrons diffusion is studied with interfacial effects in a fuel-moderator arrangement that consist of an infinite series of plane fuel plates and of moderator willing so that each plate of multiplicative material has in each end a moderator plate. The developed pattern is an unidimensional model for the thermal group obtained of equation of volumetric diffusion average. One analysis of parametric sensibility was realized to find the correction constants for the diffusion coefficient, the absorption term and the new transfer or current term in the fuel-moderator interface. The obtained results are compared against the classic theory, being obtained a good agreement among both theories. (Author)

  5. Fast neutron activation analysis by means of low voltage neutron generator

    Science.gov (United States)

    Medhat, M. E.

    A description of D-T neutron generator (NG) is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given.

  6. Ultracold neutron detector for the spectrometer of a neutron lifetime measuring

    Science.gov (United States)

    Andreev, V. A.; Vasiljev, A. V.; Ivanov, E. A.; Ilyin, D. S.; Krivshich, A. G.; Serebrov, A. P.

    2016-04-01

    The gas-discharge detector is designed for the neutron lifetime spectrometer. The detector is intended for ultracold neutron flux monitoring in measurement cycles at the specrtometer (ILL, Grenoble, France). The detector has been successively tested with a Pu-Be neutron source under laboratory conditions and as a part of the spectrometer.

  7. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B{sub 4}C burnable poison; Medidas de reatividade e de fluxo de neutrons no reator IPEN/MB-01 com veneno queimavel de B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Fer, Nelson Custodio; Moreira, Joao Manoel Losada [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2000-07-01

    Burnable poison rods, made of B{sub 4}C- Al{sub 2} O{sub 3} pellets with 5.01 mg/cm{sup 3} {sup 10} B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  8. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  9. Optimization of the geometry and composition of a neutron system for treatment by Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Rohollah Gheisari

    2015-01-01

    Full Text Available Background: In the field of the treatment by Boron Neutron Capture Therapy (BNCT, an optimized neutron system was proposed. This study (simulation was conducted to optimize the geometry and composition of neutron system and increase the epithermal neutron flux for the treatment of deep tumors is performed. Materials and Methods: A neutron system for BNCT was proposed. The system included 252Cf neutron source, neutron moderator/reflector arrangement, filter and concrete. To capture fast neutrons, different neutron filters Fe, Pb, Ni and PbF2 with various thicknesses were simulated and studied. Li (with 1 mm thick was used for filtering of thermal neutrons. Bi with thickness of 1 cm was used to minimize the intensity of gamma rays. Monte Carlo simulation code MCNPX 2.4.0 was used for design of the neutron system and calculation of the neutron components at the output port of the system. Results: For different thicknesses of the filters, the fast neutron flux, the epithermal and thermal flux were calculated at the output port of the system. The spatial distribution of the fast neutron flux, the epithermal flux and gamma flux in human head phantom with the presence of 40 ppm of 10B were obtained. The present calculations showed that Pb filter (about 1 cm at the output port is suitable for fast neutron capture. The thickness of Li filter was determined due to its high absorption cross-section in thermal region. Bi was used as a gamma filter by the reason of it is good for shielding gamma rays, while having high transmission epithermal neutrons. Conclusion: The epithermal neutron flux has enhanced about 38 percent at the output port of the present system, compared with recent system proposed by Ghassoun et al. At 2 cm depth inside the head phantom, the neutron flux reaches a maximum value about . At this depth, the ratio of the thermal neutron flux to the epithermal flux is about three times, that suggests such a neutron system to treat tumors in the

  10. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  11. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  12. KOMPUTASI DISTRIBUSI NEUTRON DALAM STATISTIK MAXWELL BOLTZMANN

    Directory of Open Access Journals (Sweden)

    Tuti Purwoningsih

    2013-03-01

    Full Text Available The migration of neutron is arranged by some probability distributions such as probability of spread distribution, probability of distance distribution, probability of energy distribution and probability of flux distribution. One application of these pattern distributions is modelling the reaction between neutron and elements which compose the tissue related to the absorption of neutron in brain cancer tissues. This article explores computation analysis of pattern of distribution of neutron flux in a reactor system. Variables were the amount of neutron simulated and the depth of cylindrical reactor system. Simulations showed that 20-120 minutes was needed in executing 100,000 neutrons to build the distribution pattern of neutrons flux. This pattern was also depended on the depth of the system. In all depths, the peak of neutron flux distribution pattern was in the 3rd bin. Comparison between this simulations and experiment results in literatures showed that by analyzing the simulation of the distribution of neutron flux, a Poisson distribution which follows the Maxwell-Boltzmann was resulted. Perpindahan neutron diatur dengan beberapa peluang distribusi, seperti peluang distribusi sudut hamburan, peluang distribusi jarak perpindahan, peluang distribusi energi transfer, serta peluang distribusi fluks neutron. Salah satu aplikasi dari pola distribusi ini adalah pemodelan reaksi antara neutron dengan elemen-elemen penyusun jaringan yang terkait dengan serapan neutron dan dosis yang terserap oleh jaringan tumor otak pada terapi BNCT (Boron Neutron Capture Therapy. Dalam penelitian ini dibahas analisis komputasi tentang pola distribusi fluks neutron dalam suatu sistem reaktor. Variabel dalam penelitian ini adalah banyaknya neutron yang disimulasikan, serta kedalaman sistem reaktor yang dalam penelitian ini menggunakan sistem reaktor berbentuk silinder. Hasil simulasi menunjukkan bahwa dengan neutron sebanyak 100.000 diperlukan waktu eksekusi sekitar

  13. Calculating and measuring thermal neutrons exiting from neutron diffractometers collimators

    CERN Document Server

    Tafazolee, K

    2000-01-01

    process, effectiveness of them are studied for the enhancement of the available system. Final conclusion from the simulation process, indicates that the heavy water with the thickness of 50 to 60 cm. is the best moderator for gaining the better thermal neutrons flux for enhancement of P.N.D. in the T.R.R. Powder Neutron Diffractometer y (P.N.D.) is relatively good and practical way for identification of the 3 dimensional construction of materials. In order to exploit the capabilities of this method, in one of the neutron beam of the Tehran Research Reactor (T.R.R.), a collimator embedded inside the concrete wall, direct the neutrons produced in the core reactor towards a monochromator e. Neutrons having been monochromated by 2 nd collimator are then directed towards the sample. Then the pattern of diffracted neutrons from the sample are studied. In order to make the best out of it, neutrons coming to sit on the sample must be of the thermal type. That means the number/amount of thermal neutrons flux in compar...

  14. Neutron Flux and Th-U Conversion Ratio for Graphite-Molten Salt Reactor%石墨-熔盐反应堆堆芯中子通量与钍铀转换比

    Institute of Scientific and Technical Information of China (English)

    汤晓斌; 谢芹; 姚泽恩; 陈达

    2012-01-01

    作为获国际认可的第四代核电站反应堆堆型之一的熔盐堆(Molten salt reactor,MSR),具有固有安全性高、经济性好、核资源可持续发展以及易于防止核扩散等优点.针对石墨-熔盐零功率堆的几何参数,利用蒙特卡罗计算程序MCNP5建立了物理计算模型,计算临界情况下堆芯径向、轴向中子通量及增殖区厚度与Th-U转换比(Conversion ratio,CR)的关系.结果表明,(1)石墨-熔盐零功率堆堆芯中子通量密度分布较为平坦;(2)石墨-熔盐零功率堆反射层厚度和增殖区厚度在一定范围内,CR随反射层厚度或增殖区厚度的增加而增加,当超出该范围,CR不再随反射层厚度或增殖区厚度的增加而明显增加.%The molten salt reactor (MSR) is the only one liquid-fuel reactor in six candidates of Generation IV advanced nuclear reactor, which is characterized by remarkable advantages in safety, economics and sustainable development of the fissile resource and proliferation resistance of nuclear energy. A detailed computational model using the Monte Carlo code MCNP5 is set up, in order to study about radical/axis neutron flux and the influences of the reflect thickness or blanket thickness on the conversion ratio (CR) of the Th-U fuel cycle. Main results obtained in this calculation show that: (1) The neutron flux distribution of the graphite-molten zero power reactor core is relatively smooth. (2) CR will increase with the increasing of the thickness of reflector and/or the thickness of breeding region in a certain range and when it exceeds this range CR cannot get increased significantly.

  15. The D-FCM partitioned D-BSP tree for massive point cloud data access and rendering

    Science.gov (United States)

    Zhang, Yi

    2016-10-01

    The spatial partitioning of massive point cloud data involves dividing the space into a multi-tree structure step by step, so as to achieve the purpose of fast access and to render the point cloud. The current methods are based on spatial regularity and equal division, which is not consistent with the irregular and non-uniform distribution of most point clouds. This paper presents a directional fuzzy c-means (D-FCM) method for irregular spatial partitioning. The distance metric is weighted by a direction coefficient, which is determined by the eigenvalue of the point cloud. The orientation of each node is adaptively calculated by principal component analysis of the point cloud, and Karhunen-Loeve (KL) transform is applied to the points coordinates in node. A binary space partitioning (BSP) tree structure is used to partition the point cloud data node by node, and a directional BSP (D-BSP) tree is formed. The D-BSP tree structure was tested with point clouds of 0.1 million to over 2 billion points (up to 60 GB). The experimental results showed that the D-BSP tree can ensure that the bounding boxes are close to the actual spatial distribution of the point cloud, it can completely expand along the spatial configuration of the point cloud without generating unnecessary partitioning, and it can achieve a higher rendering speed with less memory requirement.

  16. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  17. 核测量系统采用标准输出信号的接口问题处理%New Interface Issues of Nuclear Reactor Neutron Flux Measurement System Using Unified Standard Signal

    Institute of Scientific and Technical Information of China (English)

    王学杰; 唐凤平; 朱世雷; 黄文; 钟定永

    2012-01-01

    核测量系统采用标准输出信号后,采用自动换档电流放大器的功率测量装置在档位切换时,输出信号有效值与量程的同步性可能出现问题,使保护系统、功率控制系统和报警系统信号接收端产生误动作.本工作对分析接口问题产生的原因进行分析,并提出解决办法.%When nuclear reactor control and protection system uses a unified standard electrical analog signal(4~20 mA)as an exchange signal, there exist problems of synchronization between the virtual value and range of output signals during switching of Neutron Flux Measurement System (NFMS) , and thus false actions occur in the protection system, the alarm system and the power control system. The cause of these new interface issues were described in this paper, and one solution for this problem was given in detail.

  18. A system of materials composition and geometry arrangement for fast neutron beam thermalization: An MCNP study

    Science.gov (United States)

    Uhlář, Radim; Alexa, Petr; Pištora, Jaromír

    2013-03-01

    Compact deuterium-tritium neutron generators emit fast neutrons (14.2 MeV) that have to be thermalized for neutron activation analysis experiments. To maximize thermal neutron flux and minimize epithermal and fast neutron fluxes across the output surface of the neutron generator facility, Monte Carlo calculations (MCNP5; Los Alamos National Laboratory) for different moderator types and widths and collimator and reflector designs have been performed. A thin lead layer close to the neutron generator as neutron multiplier followed by polyethylene moderator and surrounded by a massive lead and nickel collimator and reflector was obtained as the optimum setup.

  19. Neutrons produced by muons at 25 mwe

    Science.gov (United States)

    Dragić, A.; Aničin, I.; Banjanac, R.; Udovičić, V.; Joković, D.; Maletić, D.; Savić, M.; Veselinović, N.; Puzović, J.

    2013-02-01

    The flux of fast neutrons produced by CR muons in lead at the depth of 25 mwe is measured. Lead is a common shielding material and neutrons produced in it in muon interactions are unavoidable background component, even in sensitive deep underground experiments. A low background gamma spectrometer, equipped with high purity Ge detector in coincidence with muon detector is used for this purpose. Neutrons are identified by the structure at 692 KeV in the spectrum of delayed coincidences, caused by the neutron inelastic scattering on Ge-72 isotope. Preliminary result for the fast neutron rate is 3.1(5) × 10--4n/cm2 · s.

  20. Statistical Uncertainty in Quantitative Neutron Radiography

    CERN Document Server

    Piegsa, Florian M

    2016-01-01

    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform correct quantitative analysis. This fast and convenient method is applied to real data measured at the cold neutron radiography facility ICON at the Paul Scherrer Institute. Moreover, from the results the effective neutron flux at the beam line is determined.

  1. Constitutive laws for the neutron density current

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico)], E-mail: gepe@xanum.uam.mx; Morales-Sandoval, Jaime B. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Vazquez-Rodriguez, Rodolfo [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico); Espinosa-Martinez, Erick-G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico)

    2008-10-15

    In this technical note, a fractional wave equation for the average neutron motion in nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fickian and non-Fickian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional exponent that can be manipulated to obtain the best representation of the neutron transport phenomena. The detrended fluctuation analysis (DFA) method is presented in this paper to estimate the fractional exponent.

  2. Performance of an elliptically tapered neutron guide

    Science.gov (United States)

    Mühlbauer, Sebastian; Stadlbauer, Martin; Böni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-11-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  3. Performance of an elliptically tapered neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany)]. E-mail: sebastian.muehlbauer@frm2.tum.de; Stadlbauer, Martin [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schanzer, Christan [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Stahn, Jochen [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Filges, Uwe [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland)

    2006-11-15

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  4. Neutrons production on the IPHI accelerator for the validation of the design of the compact neutron source SONATE

    CERN Document Server

    Menelle, Alain; Prunes, Fabien; Homatter, Benoit; Annighöfer, Burkhard; Porcher, Florence; Chauvin, Nicolas; Schwindling, Jérôme; Letourneau, Alain; Marchix, Anthony; Tran, Ngoc-Hoang

    2016-01-01

    We aim at building an accelerator based compact neutron source which would provide a thermal neutron flux on the order of 4E12 n.s-1.cm-2.sr-1. Such brilliance would put compact neutron sources on par with existing medium flux neutron research reactors. We performed the first neutron production tests on the IPHI proton accelerator at Saclay. The neutron fluxes were measured using gold foil activation and 3He detectors. The measured fluxes were compared with MCNP and GEANT4 Monte Carlo simulations in which the whole experimental setup was modelled. There is a good agreement between the experimental measurements and the Monte-Carlo simulations. The available modelling tools will allow us to optimize the whole Target Moderator Reflector assembly together with the neutron scattering spectrometer geometries.

  5. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  6. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  7. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  8. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  9. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  10. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  11. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  12. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  13. The possibility existence of volatile compounds in the area of NSR S5 spot of local suppression of epithermal neutron flux in the South Pole region of the Moon.

    Science.gov (United States)

    Feoktistova, Ekaterina

    2016-07-01

    6 statistically significant areas in which it was recorded a lower value of the flow of epithermal neutrons was found in the polar regions of the moon according to LEND: 5 areas are located in the south polar region (the area NSR S1 - 5 [1]) and one (area NSR N1[1]) to the north. One of these areas - the area NSR S5 - is located in the landing sector Luna - Globe mission [2], the launch of which is planned by Russian Space Agency in 2018. In this paper, we investigated the temperature regime, illumination conditions and the possibility of the existence of deposits of volatile compounds in this area. To study we selected a number of substances was detected in the LCROSS impact site in the crater Cabeus, particularly compounds such as H2O, CO2, SO2, CH3OH, NH3, C2H4, H2S, CH4 · 5.75H2O and CO · 5.75H2O [3]. We divided the area of NSR S5 spot into a grid with a number of elements. Step in longitude grid was 0.15 degrees, a step in latitude 0.05 degrees. The total number of the elements of the area of the crater is 36000. The height, slope and orientation of each element were calculated based on a LOLA DEM [4] using an algorithm described in [5]. Our results show that the compounds of deposits such as H2O, CO2, SO2, CH3OH, NH3, C2H4, H2S, CH4 · 5.75H2O and CO · 5.75H2O may exist in NSR S5. Thus, the local suppression the epithermal neutron flux in this region may be due to the presence of hydrogen-containing compounds deposits. [1] Mitrofanov et al. (2012) JGR 117, E003956 [2] Ivanov et al. (2014) Solar System Res. 48, 391 - 402 [3] Colaprete et al. (2010) Science 330, 463-468 [4] http://wwwpds.wustl.edu/ [5] Zevenbergen, L.W., Thorne (1987) Earth Surface Processes and Landforms 12(1), 47-56.

  14. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Broekman, J. D. [University of Missouri, Research Reactor Center, 1513 Research Park Drive, Columbia, MO 65211-3400 (United States); Nigg, D. W. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Hawthorne, M. F. [University of Missouri, International Institute of Nano and Molecular Medicine, 1514 Research Park Dr., Columbia, MO 65211-3450 (United States)

    2013-07-01

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  15. Information from leading neutrons at HERA

    CERN Document Server

    Khoze, V A; Ryskin, M G

    2006-01-01

    In principle, leading neutrons produced in photoproduction and deep-inelastic scattering at HERA have the potential to determine the pion structure function, the neutron absorptive cross section and the form of the pion flux. To explore this potential we compare theoretical predictions for the x_L and p_t spectra of leading neutrons, and the Q^2 dependence of the cross section, with the existing ZEUS data.

  16. ANTARES: Cold neutron radiography and tomography facility

    OpenAIRE

    Schulz, Michael; Schillinger, Burkhard

    2015-01-01

    The neutron imaging facility ANTARES, operated by the Technische Universität München, is located at the cold neutron beam port SR-4a. Based on a pinhole camera principle with a variable collimator located close to the beam port, the facility provides the possibility for flexible use in high resolution and high flux imaging.

  17. Introduction of Prompt Gamma Thermal Neutron Activation Analysis at CARR

    Institute of Scientific and Technical Information of China (English)

    WANG; Xing-hua; XIAO; Cai-jin; ZHANG; Gui-ying; YAO; Yong-gang; JIN; Xiang-chun; WANG; Ping-sheng; HUA; Long; NI; Bang-fa

    2013-01-01

    CARR will provide with maximal neutron flux in Asia,the third of the world.By using the high quality neutron beam and the advanced international experience,Prompt Gamma Neutron Activation Analysis(PGNAA)facility will be setup at high level.PGNAA on CARR will promote the development of nuclear analysis technology and improve Chinese status in the nuclear analysis field.

  18. Neutron Radiography

    Science.gov (United States)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  19. Low energy neutron background in deep underground laboratories

    CERN Document Server

    Best, Andreas; Junker, Matthias; Kratz, Karl-Ludwig; Laubenstein, Matthias; Long, Alexander; Nisi, Stefano; Smith, Karl; Wiescher, Michael

    2015-01-01

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  20. Phenomenology of muon-induced neutron yield

    Science.gov (United States)

    Malgin, A. S.

    2017-07-01

    The cosmogenic neutron yield Yn characterizes the ability of matter to produce neutrons under the effect of cosmic ray muons with spectrum and average energy corresponding to an observation depth. The yield is the basic characteristic of cosmogenic neutrons. The neutron production rate and neutron flux both are derivatives of the yield. The constancy of the exponents α and β in the known dependencies of the yield on energy Yn∝Eμα and the atomic weight Yn∝Aβ allows one to combine these dependencies in a single formula and to connect the yield with muon energy loss in matter. As a result, the phenomenological formulas for the yields of muon-induced charged pions and neutrons can be obtained. These expressions both are associated with nuclear loss of the ultrarelativistic muons, which provides the main contribution to the total neutron yield. The total yield can be described by a universal formula, which is the best fit of the experimental data.

  1. Neutron collimator design of neutron radiography based on the BNCT facility

    Science.gov (United States)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  2. Measurement of the Surface and Underground Neutron Spectra with the UMD/NIST Fast Neutron Spectrometers

    Science.gov (United States)

    Langford, Thomas J.

    The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon

  3. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  4. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  5. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  6. Determination of europium content in Li2SiO3(Eu) by neutron activation analysis using Am-Be neutron source.

    Science.gov (United States)

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-12-01

    Circulardiscs of Li2SiO3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the (151)Eu(n,γ)(152m)Eu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined.

  7. Neutron spectrum for neutron capture therapy in boron; Espectro de neutrones para terapia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: dmedina_c@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with {sup 10}B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the {sup 10}B and produce a nucleus of {sup 7}Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10{sup 9} n/cm{sup 2}-sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  8. Monte Carlo Calculations for Neutron and Gamma Radiation Fields on a Fast Neutron Irradiation Device

    Science.gov (United States)

    Vieira, A.; Ramalho, A.; Gonçalves, I. C.; Fernandes, A.; Barradas, N.; Marques, J. G.; Prata, J.; Chaussy, Ch.

    We used the Monte Carlo program MCNP to calculate the neutron and gamma fluxes on a fast neutron irradiation facility being installed on the Portuguese Research Reactor (RPI). The purpose of this facility is to provide a fast neutron beam for irradiation of electronic circuits. The gamma dose should be minimized. This is achieved by placing a lead shield preceded by a thin layer of boral. A fast neutron flux of the order of 109 n/cm2s is expected at the exit of the tube, while the gamma radiation is kept below 20 Gy/h. We will present results of the neutron and gamma doses for several locations along the tube and different thickness of the lead shield. We found that the neutron beam is very collimated at the end of the tube with a dominant component on the fast region.

  9. Neutron transport study of a beam port based dynamic neutron radiography facility

    Science.gov (United States)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  10. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    Science.gov (United States)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; JET EFDA contributors

    2014-08-01

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  11. Solar neutron decay proton observations in cycle 21

    Science.gov (United States)

    Evenson, Paul; Kroeger, Richard; Meyer, Peter; Reames, Donald

    1990-01-01

    Measurement of the flux and energy spectrum of the protons resulting from the decay of solar flare neutrons gives unique information on the spectrum of neutrons from 5 to 200 MeV. Neutrons from three flares have been observed in this manner during solar cycle 21. The use of the decay protons to determine neutron energy spectra is reviewed, and new and definitive energy spectra are presented for the two large flares on June 3, 1982 and April 25, 1984.

  12. TRANSP modelling of total and local neutron emission on MAST

    Science.gov (United States)

    Klimek, I.; Cecconello, M.; Gorelenkova, M.; Keeling, D.; Meakins, A.; Jones, O.; Akers, R.; Lupelli, I.; Turnyanskiy, M.; Ericsson, G.; the MAST Team

    2015-02-01

    The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)—for different plasma scenarios on MAST are reported. In addition, the effect of various plasma parameters on neutron emission is studied by means of TRANSP simulation. The fast ion redistribution and losses due to fishbone modes, which belong to a wider category of energetic particle modes, are observed by the NC and modelled in TRANSP.

  13. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  14. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Palomo pinto, F R; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Lo meo, S; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Weiss, C; Kokkoris, M; Praena rodriguez, A J; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Tain enriquez, J L; Vlachoudis, V; Calviani, M; Reifarth, R; Mendoza cembranos, E; Quesada molina, J M; Schumann, M D; Tsinganis, A; Saxena, A; Rauscher, T; Calvino tavares, F; Bondarenko, I; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Leal cidoncha, E; Chiaveri, E; Milazzo, P M; Ferro pereira goncalves, I M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  15. Neutronic Characterization of the Megapie Target

    CERN Document Server

    Panebianco, Stefano; Bokov, Pavel; Chabod, Sebastien; Chartier, Frederic; Dupont, Emmeric; Dore, Diane; Ledoux, Xavier; Letourneau, Alain; Oriol, Ludovic; Prevost, Aurelien; Ridikas, Danas; Toussaint, Jean-Christian

    2007-01-01

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a f...

  16. The high intensity neutron source FRANZ

    CERN Document Server

    Lederer, Claudia

    2014-01-01

    The Frankfurt neutron source of Stern Gerlach Zentrum FRANZ is currently under construction at the University of Frankfurt. At FRANZ, a high intensity neutron beam in the keV energy region will be produced by bombarding a $^7$Li target with a proton beam of several mA. These unprecedented high neutron fluxes will allow a number of neutron induced cross section measurements for the first time. Measurements can be performed by the time-of-flight and by the activation technique.

  17. Neutron spectrum unfolding: Pt. 2; Experimental

    Energy Technology Data Exchange (ETDEWEB)

    Matiullah (Centre for Nuclear Studies, Nilore, Islamabad (Pakistan)); Wiyaja, D.S. (PPTN - BATAN, Bandung (Indonesia)); Berzonis, M.A.; Bondars, H.; Lapenas, A.A. (Latvijskij Gosudarstvennyj Univ., Riga (USSR)); Kudo, K. (Electrotechnical Lab., Tsukuba, Ibaraki (Japan)); Majeed, A.; Durrani, S.A. (Birimingham Univ. (United Kingdom). School of Physics and Space Research)

    1991-01-01

    In Part I of this paper, we described the use of the computer code SAIPS in neutron spectrum unfolding. Here in Part II, we present our experimental work carried out to study the shape of the neutron spectrum in different experimental channels of a 5 MW light-water cooled and moderated research reactor. The spectral neutron flux was determined using various fission foils (placed in close contact with mica track detectors) and activation detectors. From the measured activities, the neutron spectrum was unfolded by SAIPS. (author).

  18. Fast neutron detection with a segmented spectrometer

    Science.gov (United States)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  19. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  20. Delayed neutrons measurement at the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, S.; Bokov, P.; Dore, D.; Letourneau, A.; Prevost, A.; Ridikas, D. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); Ledoux, X. [CEA Bruyeres-le-Chatel (CEA DIF, DPTA/SPN), 91 (France). Dept. de Physique Theorique et Appliquee

    2008-07-01

    In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra. (authors)

  1. Delayed neutrons measurement at the MEGAPIE target

    CERN Document Server

    Panebianco, Stefano; Dore, Diane; Ledoux, Xavier; Letourneau, Alain; Prevost, Aurelien; Ridikas, Danas

    2007-01-01

    In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

  2. KL-FCM clustering analysis inIllumina golden gate DNA methylation microarrray%ILLUMINAGolden Gate DNA甲基化芯片的KL-FCM聚类分析

    Institute of Scientific and Technical Information of China (English)

    张林; 石玥; 汪菲; 李琪; 万苏磊; 王雪松

    2014-01-01

    DNA methylation is an important epigenetic modification, which has been found to be closely related to the occurrence and development of disease. Clustering analysis of DNA methylation is expected to find novel subtype of disease or novel method of prediction and prognosis. Fuzzy C-means ( FCM) is one of the common clustering methods. However it is more suitable in the condition that the feature space follows spherical or elliptical distribution, which makes it lack in universality. Illumina Golden Gate platform describes the methylation level based on the methylation percentage of each locus in each gene, and it is in (0,1), which follows beta mixture distribution. Thus we can not adopt FCM for clustering directly. This paper introduces the KL-FCM clustering method, which calculates the K-L distance of samples as partition measure. The KL-FCM is used to cluster the IRIS test dataset and some DNA methylation profile data. The validation results show that KL-FCM, with less computational load, can get better clustering performance than k-means and traditional FCM clustering methods.%DNA甲基化作为一种重要的表观遗传修饰,其甲基化水平被发现与疾病的发生发展密切相关,对其进行聚类分析有希望发现新的疾病亚型并建立有效的疾病预测预后方法。传统的聚类分析方法之一模糊C-均值( FCM:Fuzzy C-means)适用于特征空间呈球形或椭球形分布的场景,缺乏普适性。而Illumina Golden Gate平台通过计算基因的各甲基化位点的甲基化百分比描述其甲基化程度,其值位于(0,1)之间,服从混合贝塔分布,不能直接采用FCM进行聚类分析。鉴于此,本文提出基于KL特征测度的KL-FCM聚类算法,采用各样本间的K-L距离作为样本划分时的度量准则。最后,本文基于KL-FCM算法实现IRIS测试数据集和基因的DNA甲基化水平数据的聚类分析。实验结果表明该方法可以

  3. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin; Celarel, Aurelia [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei, Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

    2013-12-16

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  4. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...

  5. FERRIC CARBOXYMALTOSE (FCM COMPLEX IN THE TREATMENT OF POSTPARTUM ANAEMIA- NON-INFERIORITY OF A 500 MG VERSUS 1000 MG SINGLE-DOSE ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    Hema Divakar

    2016-12-01

    Full Text Available BACKGROUND The aim of the study is to determine the non-inferiority of a single dose of 500 mg Ferric Carboxymaltose (FCM (Group 1 to a single dose of 1000 mg (Group 2 in treating women with postpartum anaemia. MATERIALS AND METHODS Women were recruited within 24 hours of delivery and randomised to one of the two study groups excluded were mothers with non-iron deficiency anaemia, iron intolerance and haematological disease. Haematological markers were measured at baseline and at 6 weeks after treatment. Main Outcome Measures- The primary outcome was an Hb increase ≥20 g/L. Secondary outcomes included the proportion of patients attaining Hb ≥120 g/L and the mean Hb change. Design- Open label, randomised, non-blinded, prospective study. Setting- Maternity units of four hospitals in Southern India. Population- Women ≥18 years old with haemoglobin of >60 - 20 g/L between Groups 1 and 2 (91.4% versus 96.7%. Similar proportions of women in both groups became non-anaemic achieving an Hb of >120 g/L (57% versus 45.7%. The mean Hb change was comparable between the groups and both doses were well tolerated. CONCLUSION A single dose of 500 mg FCM (cost INR 2000.00 is non-inferior to a 1000 mg dose (cost INR 5000.00 in the treatment of postpartum anaemia. This has major implications for the scaling up of the eradication of iron-deficiency anaemia in India, since double the number of women who would otherwise have been treated with the 1000 mg dose can be treated with half the dose at less than half the cost with similar outcomes. Tweetable Abstract- A single dose of 500 mg FCM is a safe, efficacious and cost-effective treatment for PPA in India.

  6. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  7. Neutron Flux Depression in the UO{sub 2}-PuO{sub 2}(15 to 30%) Fuel Rods from IVO-FR2-Vg7-Irradiation Experiment; Depresion de flujo neutronico en las barras combustibles de UO2-PuO2(15 al 30%) del experimento de irradiacion IVO-FR2-Vg7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Fernandez, J. L.

    1983-07-01

    The thermal-neutron flux depression within a fuel rod has a great influence in the radial temperature profile of the rod, especially for high enrichment fuel. For this reason, a study was made about the UO{sub 2}-PUO{sub 2} (15 to 30% PUO{sub 2}) fuel pins for the KfK-JEN joint irradiation program IVO, in the FR2 reactor. Different methods (diffusion, Bonalumi, successive generations) were compared and a new approach (parabolic approximation) was developed. (Author) 22 refs.

  8. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  9. Neutron collimator design of neutron radiography based on the BNCT facility

    CERN Document Server

    Yang, XP; Li, YG; Peng, D; Lu, J; Zhang, GL; Zhao, H; Zhang, AW; Li, CY; Liu, WJ; Hu, T; Lv, JG

    2013-01-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of theneutron collimator is greater than 10^6 n/cm^2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  10. Neutronic design of the ITER radial neutron camera

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)], E-mail: petrizzi@frascati.enea.it; Barnsley, R. [EFDA CSU-Garching (Germany); Bertalot, L.; Esposito, B. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Haskell, H. [ITER International Team, Garching (Germany); Mainardi, E.; Marocco, D.; Podda, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy); Walker, C. [ITER International Team, Garching (Germany); Villari, S. [Associazione EURATOM-ENEA sulla Fusione, ENEA Centro Ricerche, C.P. 65, 00044 Frascati, Rome (Italy)

    2007-10-15

    This paper summarizes the work, performed in the frame of various EFDA contracts during 2004-2005, on the design review and upgrade of the ITER radial neutron camera (RNC). The RNC, which should provide information on the spatial distribution and energy spectrum of the neutron emission, consists of an ex-vessel system (fan-like collimator with 12 x 3 lines of sights) and an in-vessel system with further 9 lines for a full coverage of the plasma. A Monte Carlo code (MCNP) has been used for the neutronic calculations. The basic ITER model has been developed from the CATIA drawings to include the RNC with all details relevant for the neutronic analysis. In the model the collimator diameters have been set to 2 and 4 cm, respectively, for the ex-vessel and in-vessel systems. A detailed space dependent fusion neutron source (DD and DT phases in various plasma scenarios) has been used with a consistent ion temperature radial profile. A special variance reduction treatment has been developed so that neutrons reach the far regions in the high collimated neutron beam and score with a satisfying statistical error. Neutron and photon fluxes and spectra have been calculated. Approximately, one neutron out of 10{sup 11} emitted in all the plasma reaches a single ex-vessel detector. Therefore, for an emission rate of 1.8 x 10{sup 20} n/s (corresponding to 500 MW fusion power) the flux on the detectors is in the range (1-5) x 10{sup 8} n/(cm{sup 2} s) depending on the poloidal orientation. The fraction of scattered neutrons (>1 MeV) is lower than few % of the total. A measurement simulation software tool (MSST) performing asymmetric Abel inversion of simulated measured neutron signals has also been developed for line of sight and design optimization. Combining information from MCNP calculations and MSST, it has been possible to evaluate the performance of the RNC, check whether the present design of the RNC meets the measurement requirements and optimize the RNC design.

  11. Environmental neutrons as seen by a germanium gamma-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Skoro, G.P.; Anicin, I.V.; Kukoc, A.H.; Krmpotic, D.; Adzic, P.; Vukanovic, R.; Zupancic, M. (Boris Kidric Inst., Belgrade (Yugoslavia))

    1992-06-01

    Using a {sup 252}Cf neutron source we have calibrated the response of Ge detectors to fast neutrons and deduced the expression for determination of the flux of fast environmental neutrons based on the intensity of the spectral structure at 691.3 keV. We also suggest an approximate expression for estimation of the flux of environmental thermal neutrons from the intensity of the 139.9 keV line. (orig.).

  12. Design and simulations of the neutron dump for the back-streaming white neutron beam at CSNS

    Science.gov (United States)

    Zhang, L. Y.; Jing, H. T.; Tang, J. Y.; Wang, X. Q.

    2016-10-01

    For nuclear data measurements with a white neutron source, to control the background at the detector is a key issue. The neutron dump which locates at the end of the white neutron beam line at CSNS has a very important impact to the neutron and gamma backgrounds in the endstation. A sophisticated neutron dump was designed to reduce the backgrounds to the level of about 10-8 relative to the neutron flux. In this paper, the method to suppress both neutron and gamma backgrounds near a white-spectrum neutron dump is introduced. The optimized geometry structure and materials of the dump are described, and the neutron and gamma space distributions have been calculated by using the FLUKA code for different operation settings which are defined by beam spots of Φ30 mm, Φ60 mm and 90 mm×90 mm, respectively.

  13. 基于小波变换和改进的FCM算法的医学 CT图像分割法%Medical CT Image Segmentation Based on Wavelet Transform and Improved FCM Algorithm

    Institute of Scientific and Technical Information of China (English)

    马春

    2016-01-01

    为提高计算机辅助诊断的准确性,提出一种基于小波变换和改进的模糊C均值( Fuzzy C-Means, FCM)算法的医学CT图像分割方法。以FCM算法为基础,首先利用小波变换对医学图像进行分解,用分解后低频图像的像素点作为FCM算法的样本点;其次,利用马氏距离来进一步修正 FCM_S( FCM_Spatial)算法,修正后的 FCM 算法能更加精确地反映医学图像的信息。实验结果表明,算法的效率得到较大提高。%In order to enhance the accuracy of computer auxiliary diagnosis, a medical CT image segmentation algorithm based on wavelet transform and improved FCM algorithm is proposed .Because the traditional FCM algorithm usually run on all im-age pixels, which makes the efficiency of the algorithm reduced.On the basis of FCM algorithm, firstly this algorithm processes the image using wavelet transform, and the low frequency images by wavelet transform are inputted into FCM algorithm to obtain seg-mentation results.It not only greatly reduces the time complexity of the algorithm but also effectively suppresses image noise .Sec-ondly, the algorithm introduces the Mahalanobis distance to improve FCM_S algorithm, and the improved FCM algorithm can be more accurate to obtain medical image information .The experiments show that this algorithm significantly improves the segmenta-tion’s efficiency.

  14. Fusion neutron diagnostics on ITER tokamak

    Science.gov (United States)

    Bertalot, L.; Barnsley, R.; Direz, M. F.; Drevon, J. M.; Encheva, A.; Jakhar, S.; Kashchuk, Y.; Patel, K. M.; Arumugam, A. P.; Udintsev, V.; Walker, C.; Walsh, M.

    2012-04-01

    ITER is an experimental nuclear reactor, aiming to demonstrate the feasibility of nuclear fusion realization in order to use it as a new source of energy. ITER is a plasma device (tokamak type) which will be equipped with a set of plasma diagnostic tools to satisfy three key requirements: machine protection, plasma control and physics studies by measuring about 100 different parameters. ITER diagnostic equipment is integrated in several ports at upper, equatorial and divertor levels as well internally in many vacuum vessel locations. The Diagnostic Systems will be procured from ITER Members (Japan, Russia, India, United States, Japan, Korea and European Union) mainly with the supporting structures in the ports. The various diagnostics will be challenged by high nuclear radiation and electromagnetic fields as well by severe environmental conditions (ultra high vacuum, high thermal loads). Several neutron systems with different sensitivities are foreseen to measure ITER expected neutron emission from 1014 up to almost 1021 n/s. The measurement of total neutron emissivity is performed by means of Neutron Flux Monitors (NFM) installed in diagnostic ports and by Divertor Neutron Flux Monitors (DNFM) plus MicroFission Chambers (MFC) located inside the vacuum vessel. The neutron emission profile is measured with radial and vertical neutron cameras. Spectroscopy is accomplished with spectrometers looking particularly at 2.5 and 14 MeV neutron energy. Neutron Activation System (NAS), with irradiation ends inside the vacuum vessel, provide neutron yield data. A calibration strategy of the neutron diagnostics has been developed foreseeing in situ and cross calibration campaigns. An overview of ITER neutron diagnostic systems and of the associated challenging engineering and integration issues will be reported.

  15. Neutronic effects on tungsten-186 double neutron capture

    Science.gov (United States)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the

  16. Compositional terranes on Mercury: Information from fast neutrons

    Science.gov (United States)

    Lawrence, David J.; Peplowski, Patrick N.; Beck, Andrew W.; Feldman, William C.; Frank, Elizabeth A.; McCoy, Timothy J.; Nittler, Larry R.; Solomon, Sean C.

    2017-01-01

    We report measurements of the flux of fast neutrons at Mercury from 20ºS to the north pole. On the basis of neutron transport simulations and remotely sensed elemental compositions, cosmic-ray-induced fast neutrons are shown to provide a measure of average atomic mass, , a result consistent with earlier studies of the Moon and Vesta. The dynamic range of fast neutron flux at Mercury is 3%, which is smaller than the fast-neutron dynamic ranges of 30% and 6% at the Moon and Vesta, respectively. Fast-neutron data delineate compositional terranes on Mercury that are complementary to those identified with X-ray, gamma-ray, and slow-neutron data. Fast neutron measurements confirm the presence of a region with high , relative to the mean for the planet, that coincides with the previously identified high-Mg region and reveal the existence of at least two additional compositional terranes: a low- region within the northern smooth plains and a high- region near the equator centered near 90ºE longitude. Comparison of the fast-neutron map with elemental composition maps show that variations predicted from the combined element maps are not consistent with the measured variations in fast-neutron flux. This lack of consistency could be due to incomplete coverage for some elements or uncertainties in the interpretations of compositional and neutron data. Currently available data and analyses do not provide sufficient constraints to resolve these differences.

  17. Quality assessment of neutron delivery system for small-angle neutron scattering diffractometers of the Jülich Centre for Neutron Science at the FRM II

    Science.gov (United States)

    Radulescu, Aurel; Pipich, Vitaliy; Ioffe, Alexander

    2012-10-01

    Following the shutdown of FRJ-2 research reactor in Jülich, the pinhole small-angle neutron diffractometers KWS-1 and KWS-2 have been moved to the research reactor FRM II in Garching. The installation of these 40 m long instruments required the design and setup of new neutron guides with geometrical and optical features imposed by the instruments' positioning in the neutron guide hall, such as, the predetermined length and beam height as well as the foreseen improvement of the instrument performance. We report here about the quality assessment of the newly constructed neutron guides with respect to the optical, geometrical and alignment characteristics and the positioning of the velocity selector integrated in the neutron guide system by comparing the features of the measured neutron beams (in terms of neutron flux, intensity distribution and beam profile) with the results of the simulations of optimal neutron guide systems.

  18. Picosecond Neutron Yields from Ultra-Intense Laser-Target Interactions

    Science.gov (United States)

    Ellison, C. Leland; Fuchs, Julien

    2009-11-01

    High-flux neutron sources for neutron imaging and materials analysis applications have typically been provided by accelerator-based (Spallation Neutron Source) and reactor-based (High Flux Isotope Reactor) neutron sources. A novel approach is to use ultra-intense (> 10^18 W/cm^2) laser-target interactions to generate picosecond, collimated neutrons. Here we examine the feasibility of a source based on current (LULI) and upcoming laser facility capabilities. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. The parameters of the deuteron beam are well understood from laser-plasma and laser-target studies relevant to fast-ignition fusion. Expected neutron yields are presented in comparison to conventional neutron sources, previous experimental neutron yields, and within the context of neutron shielding safety requirements.

  19. Solar neutrons from the impulsive flare on 1982 June 3 at 1143 UT

    Science.gov (United States)

    Chupp, E. L.; Forrest, D. J.; Share, G. H.; Kanbach, G.; Debrunner, H.; Flueckiger, E.

    1983-01-01

    A transient flux of high energy solar neutrons from 50 MeV to about 1 GeV has been detected by the Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM) satellite following an intense burst of high energy photons (less than 100 MeV) peaking at 1143:29 UT. The neutrons were also detected by the IGY neutron monitor on Jungfraujoch (Switzerland). In this paper the SMM GRS observations are summarized and compared with the Jungfraujoch neutron monitor data, and both the time dependent neutron flux at the earth and the neutron emission spectrum at the sun are estimated.

  20. Capture-Gated Fast Neutron Spectroscopy

    Science.gov (United States)

    Mumm, H. P.; Abdurashitov, J. N.; Beise, E. J.; Breuer, H.; Gavrin, V. N.; Heimbach, C. R.; Langford, T. J.; Mendenhall, M.; Nico, J. S.; Shikhin, A. A.

    2015-10-01

    We present recent developments in fast neutron detection using segmented spectrometers based on the principle of capture-gating. Our approach employs an organic scintillator to detect fast neutrons through their recoil interaction with protons in the scintillator. The neutrons that thermalize and are captured produce a signal indicating that the event was due to a neutron recoil and that the full energy of the neutron was deposited. The delayed neutron capture also serves to discriminate against uncorrelated background events. The segmentation permits reconstruction of the initial neutron energy despite the nonlinear response of the scintillator. We have constructed spectrometers using both He-3 proportional counters and Li-6 doping as capture agents in plastic and liquid organic scintillators. We discuss the operation of the spectrometers for the measurement of low levels of fast neutrons for several applications, including the detection of very low-activity neutron sources and the characterization of the flux and spectrum of fast neutrons at the Earth's surface and in the underground environment.

  1. Cyclotron-based neutron source for BNCT

    Science.gov (United States)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  2. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  3. Intercomparison of Neutron Beam Guides for Cold Neutron Activation Station at HANARO using McStas/VITESS/RESTRAX Codes

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The HANARO (KAERI) research reactor has been developed a neutron guide system for cold neutron (CN) research facilities since July, 2003. The neutron guide system plays an important role in transporting cold neutrons from the CN source to the neutron facilities as CN-NDP, CN-PGAA, SANS, etc. The CN activation station is being installed in the HANARO cold-neutron research project. The CN-NDP and CN-PGAA were selected as two facilities using at this station. At the end position of CG1 and CG2B beam guides, the CN-NDP and CN-PGAA will be installed in the CN guide hall. In order to predict the neutron flux and intensity values at the CG1 and CG2B beam guides, the simulation results of neutron flux at the CG1 and CG2B beam guides are presented by using several Monte Carlo (MC) neutron ray-tracing simulation codes. The intercomparison of neutron flux values between McStas, VITESS and RESTRAX are performed for getting fairly correct results at two neutron beam guides

  4. Neutron Radiographic Inspection of Industrial Components using Kamini Neutron Source Facility

    Science.gov (United States)

    Raghu, N.; Anandaraj, V.; Kasiviswanathan, K. V.; Kalyanasundaram, P.

    2008-03-01

    Kamini (Kalpakkam Mini) reactor is a U233 fuelled, demineralised light water moderated and cooled, beryllium oxide reflected, low power (30 kW) nuclear research reactor. This reactor functions as a neutron source with a flux of 1012 n/cm2 s-1 at core centre with facilitates for carrying out neutron radiography, neutron activation analysis and neutron shielding experiments. There are two beam tubes for neutron radiography. The length/diameter ratio of the collimators is about 160 and the aperture size is 220 mm×70 mm. Flux at the outer end of the beam tube is ˜106-107 n/cm2 s. The north end beam tube is for radiography of inactive object while the south side beam tube is for radiography of radioactive objects. The availability of high neutron flux coupled with good collimated beam provides high quality radiographs with short exposure time. The reactor being a unique national facility for neutron radiography has been utilized in the examination of irradiated components, aero engine turbine blades, riveted plates, automobile chain links and for various types of pyro devices used in the space programme. In this paper, an overview of the salient features of this reactor facility for neutron radiography and our experience in the inspection of a variety of industrial components will be given.

  5. AP1000功率量程中子注量率正变化率高紧急停堆定值和时间常数研究%Study on Setpoint and Time Constant for AP1000 Power Range High Positive Neutron Flux Rate Reactor Trip

    Institute of Scientific and Technical Information of China (English)

    王银丽; 罗炜; 张英; 朱宏亮; 杨戴博; 袁彬

    2015-01-01

    Nuclear instrumentation system is an important part of safety instrument and control system in nuclear power plant. This paper introduces the principle of AP1000 power range high positive neutron flux rate reactor trip, and analyses the relationship of the trigger of this reactor trip with setpoint, time constant and power rate. The design of setpoint and time constant for power range high positive neutron flux rate reactor trip is verified on MATLAB software platform based on the transient process data of rod ejection and normal operation transient also.%核仪表系统(RPN)是核电厂仪控系统的重要组成部分。本文介绍了AP1000功率量程中子注量率正变化率高紧急停堆的基本原理,对该紧急停堆信号触发与停堆定值、时间常数、功率变化率的关系进行了分析,并以MATLAB软件为平台,基于弹棒事故和正常运行瞬态两种典型工况的瞬态过程数据,对AP1000功率量程中子注量率正变化率高紧急停堆定值和时间常数的设计进行了仿真验证。

  6. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Science.gov (United States)

    Maldonado-Velázquez, M.; Barrón-Palos, L.; Crawford, C.; Snow, W. M.

    2017-05-01

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10-7 rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  7. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  8. Designing of the 14 MeV neutron moderator for BNCT

    Institute of Scientific and Technical Information of China (English)

    CHENG Dao-Wen; LU Jing-Bin; YANG Dong; LIU Yu-Min; WANG Hui-Dong; MA Ke-Yan

    2012-01-01

    In boron neutron capture therapy (BNCT),the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%.If a D-T neutron generator is used in BNCT,the 14 MeV neutron moderator must be optimized to reduce the RFNT.Based on the neutron moderation theory and the simulation results,tungsten,lead and diamond were used to moderate the 14 MeV neutrons.Satisfying RFNT of less than 3%,the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer,a 14 cm thick lead layer and a 21 cm thick diamond layer.

  9. Experimental Study on Neutron Radiography Device Based on Reactor

    Institute of Scientific and Technical Information of China (English)

    LU; Jin; PENG; Dan; HAO; Qian; YU; Bo-xiang; LI; Yi-guo

    2012-01-01

    <正>Neutron radiography is a non-destructive testing developing fast recently, which requires stable and proper neutron source with low γ background. Neutrons from In-hospital Neutron Irradiator (IHNI) could meet this requirement. Based on the neutron beams of IHNI, a collimator is designed and built for neutron radiography. The experiment results show that in the case of IHNI working at normal rated power, the neutron flux at the end of the collimator is 1.43×106 cm-2·s-1; The max collimation ratio (L/D) is 58; the γ dose rate is 6.3×106 mSv/s. In a word, the collimator could be used for neutron radiography.

  10. Neutron scattering applications in structural biology: now and the future

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques all contribute unique information on biomolecular structures. In particular, solution scattering techniques give critical information on the conformations and dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods is demonstrated here by studies of protein/DNA complexes, and Ca{sup 2+}-binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach using neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources. (author)

  11. NECTAR-A fission neutron radiography and tomography facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Breitkreutz, H.; Jungwirth, M.; Wagner, F.M. [Technische Universitaet Muenchen, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2011-09-21

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  12. Design of a transportable high efficiency fast neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C., E-mail: calebroecker@berkeley.edu [Department of Nuclear Engineering, University of California at Berkeley, CA 94720 (United States); Bernstein, A.; Bowden, N.S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cabrera-Palmer, B. [Radiation and Nuclear Detection Systems, Sandia National Laboratories, Livermore, CA 94550 (United States); Dazeley, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Gerling, M.; Marleau, P.; Sweany, M.D. [Radiation and Nuclear Detection Systems, Sandia National Laboratories, Livermore, CA 94550 (United States); Vetter, K. [Department of Nuclear Engineering, University of California at Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm{sup 2} rising to 5000 cm{sup 2}. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm{sup 2} and 2500 cm{sup 2}. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  13. Fast and thermal neutron profiles for a 25-MV x-ray beam.

    Science.gov (United States)

    Price, K W; Nath, R; Holeman, G R

    1978-01-01

    High-energy x-ray radiotherapy machines generate neutrons by photonuclear reactions in the target and the treatment head and expose the patient to a neutron flux. In order to evaluate the neutron exposure quantitatively, fast and thermal neutron profiles for 25-MV x-ray beams of the Sagittaire accelerator have been measured. An activation technique, using the reactions 31P(n, gamma)32P (thermal neutrons) and 31P(n, p)31Si (fast neutrons, E greater than 0.7 MeV), has been developed to measure fast- and thermal-neutron fluxes in an intense high-energy photon flux. The sensitivity of this activation detector to high-energy photons, which has plagued many previous neutron measurements, was carefully measured and found to be less than 4%. Neutron fluxes for various photon field sizes ranging from 5 X 5 cm to 30 X 30 cm have been measured. The fast-neutron profiles were observed to have rounded edges and the thermal fluxes were found to be relatively uniform. In the central part of the x-ray beam, the ratio of neutron dose equivalent to photon absorbed dose was found to be between 0.2% and 0.5%. Outside of the photon field, the ratio of neutron dose equivalent to the central-axis photon absorbed dose was 0.12%.

  14. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    Science.gov (United States)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  15. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  16. Modelling and Measurements of MAST Neutron Emission

    OpenAIRE

    Klimek, Iwona

    2016-01-01

    Measurements of neutron emission from a fusion plasma can provide a wealth of information on the underlying temporal, spatial and energy distributions of reacting ions and how they are affected by a wide range of magneto-hydro-dynamic (MHD) instabilities. This thesis focuses on the interpretation of the experimental measurements recorded by neutron flux monitors with and without spectroscopic capabilities installed on the Mega Ampere Spherical Tokamak (MAST). In particular, the temporally and...

  17. 流式细胞仪在血液学检验中的应用%The Application of FCM in Hematological Examination

    Institute of Scientific and Technical Information of China (English)

    张学艳; 王军

    2008-01-01

    流式细胞仪(flow cytometer,FCM)是一项集激光技术、电子物理技术、光电测量技术、计算机技术以及细胞荧光化学技术、单克隆抗体技术为一体的新型高科技仪器.在医学研究领域中,流式细胞仪能够快速分析单个细胞的多种特性,它既可以定性也可以定量,适于大量标本的检测.主要介绍FCM在血液病临床与研究中的应用.

  18. 应用FCM算法的成组SMT PCB的装配线%Grouping SMT PCB Assembly using FCM Algorithm

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This is a further development work on grouping of printed circuit boards (PCBs)For Surface Mount Assembly in the electronic industry.The arrangement of PCBsamong several surface mount machine lines in a typical kind of group technology (GT)problem./From,literatures,there are various clustering techniques developed to solve the clustering problems .In This paper,fuzzy c-means clustering (FCM) is used to solve the PCBs GROUPING PROBLEM,Applying them in a real problem compares the results of the two method.The result shows that there should be a systematic metold to arrange the scheduling of PCB assemblies in electronic industry to improve the operations planning process.

  19. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  20. Improved FCM Algorithm in Network Intrusion Detection Research%改进FCM算法在网络入侵检测中的应用研究

    Institute of Scientific and Technical Information of China (English)

    任真; 胡学文; 张红

    2011-01-01

    入侵检测作为一种主动防御技术已成为实现网络安全的一个重要手段.数据挖掘技术中模糊C均值算法(FCM)对分析审计日志数据和检测入侵非常有用,它通过迭代来优化目标函数,求取目标函数的极值点,但该算法本身无监督性,没有先验知识指导的初始化值易使算法陷入局部极值,从而产生误导.基于广义回归神经网络(GRNN)改进FCM算法则可以在网络入侵检测中最大可能地避免主观假定对预测结果的影响.%Intrusion detection technology as a proactive network security has become an important tool. FCM data mining techniques for analyzing audit data and intrusion detection logs are very useful,it is to optimize the objective function through iterative, the objec- tive function of the extreme point of strike, but the algorithm itself is unsupervised, the absence of prior knowledge of the initial value of the guide is easy to make the algorithm into a local minimum, thus misleading. Improved FCM algorithm based on GRNN network intrusion detection can be the maximum possible to avoid subjective assumptions of the forecast results.

  1. 基于GLCM特征的改进FCM的SAR图像分割方法%Modified FCM SAR image segmentation method based on GLCM feature

    Institute of Scientific and Technical Information of China (English)

    刘健; 程英蕾; 孙纪达

    2012-01-01

    为了克服了较大窗口提取图像边缘处特征值的不足,提出一种基于GLCM特征矩阵的动态滑动窗口算法.针对模糊C均值算法中,聚类中心不容易确定,聚类容易陷入局部最优解的问题,将粒子群优化算法(PSO)引入到聚类算法中,实现全局搜索.应用改进的模糊C均值算法完成了基于SAR纹理特征的图像分割,克服了传统聚类算法仅依赖灰度值进行分割的局限性,也一定程度上克服了斑噪声对SAR图像分割的影响.实验结果表明,该方法应用于SAR图像分割时,取得了很好的分割效果.%A dynamic gliding window for computing images' GLCM feature matrix is suggested, which has broken through the limitation of images' defects happened on the edges in a bigger window. In order to overcome the difficulties for deciding the clustering centers and to avoid getting clustering into the local minimum during the computation by fuzzy C-means (FCM) algorithm, a new FCM method combined with the particle swarm optimization (PSO) algorithm is proposed to segment SAR images. This new method not only gets over the limitation that the traditional clustering algorithms only rely on the information of gray value, but also keeps SAR images from influencing by speckle noise in some extent. The simulation results indicate that this modified method works very well for the SAR images' segmentation.

  2. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  3. Ambient neutrons of natural origin

    Science.gov (United States)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. Neutron flux in the energy range of 0.02 eV - 10 MeV is registered with two sets of proportional ^{3}He tubes placed into cylindrical paraffin thermalizers: an {bf outdoor detector }of 250 cm² area and {bf indoor detector }of 70 cm² area located on the second floor of a concrete building. The counter efficiency for thermal neutrons is 80%. The characteristics of the observed flux variation are quite different from those inherent to the neutrons of the cosmic ray origin. {bf Four types of the outdoor flux variations }are observed: 1) {bf seasonal }with a maxima in wet seasons; 2) {bf diurnal }with maximum at about 6 h local time and an amplitude up to several dozens; 3) {bf abrupt transient} ( 1 min) increases with magnitudes up to two orders higher than the mean daily flux; 4) short (several days) {bf quasi-periodic enhancements }with amplitudes up to several times higher than the mean daily flux. A large variation of the outdoor flux and its phase synchronism with that of the radon decay products means with a high probability their common origin. An apparent source of the neutrons observed is nuclear reactions of decay α-particles with the ground matter. In this case the dynamics of the outdoor flux variations of the first two types is controlled by those of the meteorological parameters in the locality. The third type events correlate with lightning strokes in the vicinity (<200 m) of the detector. The more rare fourth type correlate neither with geomagnetic disturbances nor with meteorological phenomena and are probably a result of natural radon release from the Earth's crust triggered by minor seismological activity. The indoor flux is quite stable with a possible weak maximum at16 h not exceeding 0.1.

  4. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  5. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  6. A Fast Neutron Spectrometer for Underground Science

    Science.gov (United States)

    Langford, Thomas; Beise, Elizabeth; Breuer, Herbert; Erwin, Dylan; Bass, Christopher; Heimbach, Craig; Nico, Jeff

    2010-02-01

    The characterization of the fast neutron fluence has become a critical issue for experiments that require extreme low-background environments, such as neutrino-less double-beta decay, dark matter searches, and solar neutrino experiments. In such experiments, fast neutrons may be the dominant and a potentially irreducible background, thus necessitating precise information about the fast neutron fluence and energy spectrum. The most reasonable approach to addressing the problem is through the complete characterization of the neutrons through both site-specific measurement and benchmarking of simulation codes. We will discuss the progress toward the development of a large-volume, segmented detector consisting of plastic scintillator and ^3He proportional counters. The detector will be placed in an underground environment to measure the fast neutron flux and energy spectrum. A prototype detector has been constructed and testing is in progress. We will discuss the status of the project and present data from the prototype detector. )

  7. Neutron diffraction of cell membranes (myelin).

    Science.gov (United States)

    Parsons, D F; Akers, C K

    1969-09-05

    Small-angle neutron diffraction (wavelength 4.05 angstroms) of human and rabbit sciatic nerve has been carried out by means of the Brookhaven high flux beam reactor with an automated slit camera. Most of the free water of the nerves was substituted in order to minimize incoherent scatter of hydrogen atoms. The differences in amplitude and phase shifts between neutrons and x-rays resulted in a neutron diffraction pattern that was completely different from the x-ray pattern. The neutron pattern consisted of a single peak of about 89-angstrom spacing in the region examined (up to 6-angstrom spacing). The strong third, fourth, and fifth order reflections (about 60, 45, and 36 angstroms) seen in the x-ray pattern were suppressed. The neutron data indicated a strong scattering from one portion of the membrane.

  8. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  9. Intermediate energy neutron beams from the MURR.

    Science.gov (United States)

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  10. Neutron measurements in ITER using the Radial Neutron Camera

    Science.gov (United States)

    Marocco, D.; Esposito, B.; Moro, F.

    2012-03-01

    The Radial Neutron Camera (RNC) is one of the key diagnostic systems of the ITER international fusion experiment. It is designed to measure the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions taking place in the ITER plasma through an array of 45 detectors positioned along collimated lines of sight. Scintillators and diamonds coupled to fast digital acquisition electronics are among the detectors presently considered for the RNC. The RNC will provide spatially resolved measurements of several plasma parameters needed for fusion power estimation, plasma control and plasma physics studies. The line-integrated RNC neutron fluxes are used to evaluate the local profile of the neutron emission (neutron emissivity, s-1m-3) and therefore the total neutron yield and the birth profile of the alpha particles. The temperature profile of the bulk ions can be derived from the Doppler broadened widths of the RNC line-integrated spectra, that also provide insight on the supra-thermal ions produced by the injection in the plasma of electromagnetic waves and neutral particles. The RNC emissivity and temperature measurements can be employed to estimate the composition of the ITER fuel, namely the ratio between the tritium and deuterium densities. Data processing techniques involving spatial inversion and spectra unfolding are necessary to deduce the profile quantities from the line-integrated RNC measurements. The expected performances of the RNC as a diagnostic for the neutron emissivity/ion temperature/fuel ratio profile (measurement range, time resolution, accuracy, precision) have been estimated by means of synthetic data simulating actual RNC measurements. The results of the simulations, together with an overall description of the diagnostic and of the measurement techniques, are presented.

  11. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  12. Anisotropic flux pinning in high Tc superconductors

    Science.gov (United States)

    Koleśnik, S.; Igalson, J.; Skośkiewicz, T.; Szymczak, R.; Baran, M.; Pytel, K.; Pytel, B.

    1995-02-01

    In this paper we present a comparison of the results of FC magnetization measurements on several PbSr(Y,Ca)CuO crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed.

  13. Novel Materials and Devices for Solid-State Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    There is a need in many fields, such as nuclear medicine, non-proliferation, energy exploration, national security, homeland security, nuclear energy, etc, for miniature, thermal neutron detectors. Until recently, thermal neutron detection has required physically large devices to provide sufficient neutron interaction and transduction signal. Miniaturization would allow broader use in the fields just mentioned and open up other applications potentially. Recent research shows promise in creating smaller neutron detectors through the combination of high-neutron-cross-section converter materials and solid-state devices. Yet, till recently it is difficult to measure low neutron fluxes by solidstate means given the need for optimized converter materials (purity, chemical composition and thickness) and a lack of designs capable of efficient transduction of the neutron conversion products (x-rays, electrons, gamma rays). Gadolinium-based semiconductor heterojunctions have detected electrons produced by Gd-neutron reactions but only at high neutron fluxes. One of the main limitations to this type of approach is the use of thin converter layers and the inability to utilize all the conversion products. In this LDRD we have optimized the converter material thickness and chemical composition to improve capture of conversion electrons and have detected thermal neutrons with high fidelity at low flux. We are also examining different semiconductor materials and converter materials to attempt to capture a greater percentage of the conversion electrons, both low and higher energy varieties. We have studied detector size and bias scaling, and cross-sensitivity to xrays and shown that we can detect low fluxes of thermal neutrons in less than 30 minutes with high selectivity by our approach. We are currently studying improvements in performance with direct placement of the Gd converter on the detector. The advancement of sensitive, miniature neutron detectors will have benefits in

  14. Investigation of Isfahan miniature neutron source reactor (MNSR for boron neutron capture therapy by MCNP simulation

    Directory of Open Access Journals (Sweden)

    S.Z Kalantari

    2015-01-01

    Full Text Available One of the important neutron sources for Boron Neutron Capture Therapy (BNCT is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA. In this paper, Miniature Neutron Source Reactor (MNSR as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA for the reactor and the neutron transport from the core of the reactor to the output windows of BSA was simulated by MCNPX code. To optimize the BSA performance, two sets of parameters should be evaluated, in-air and in-phantom parameters. For evaluating in-phantom parameters, a Snyder head phantom was used and biological dose rate and dose-depth curve were calculated in brain normal and tumor tissues. Our calculations showed that the neutron flux of the MNSR reactor can be used for BNCT, and the designed BSA in optimum conditions had a good therapeutic characteristic for BNCT.

  15. Characteristics of neutrons produced by muons in a standard rock

    Energy Technology Data Exchange (ETDEWEB)

    Malgin, A. S., E-mail: malgin@lngs.infn.it [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  16. Neutron measurements in near-Earth orbit with COMPTEL

    Science.gov (United States)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  17. Neutron measurements in near-Earth orbit with COMPTEL

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.J.; Aarts, H.; Bennett, K.; Lockwood, J.A.; Mcconnell, M.L.; Ryan, J.M.; Schoenfelder, V.; Steinle, H.; Peng, X. [Max-Planck-Institut fuer extraterrestrische Physik, Garching (Germany)]|[SRON-Utrecht, Utrecht, Netherlands]|[European Space Research and Technology Centre, Noordwijk, Netherlands]|[University of New Hampshire, Durham, NH, US

    1995-07-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL`s seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  18. Study of thermal neutron capture by /sup 32/S

    Energy Technology Data Exchange (ETDEWEB)

    Taichang, G.; Zongren, S.; Xiantang, Z.; Guohua, L.; Dazhao, D.

    1985-01-15

    The thermal neutron capture by /sup 32/S has been studied using a 140 cm/sup 3/ Ge(Li) detector at the thermal column of the heavy water moderated reactor at Institute of Atomic Energy. The thermal neutron flux at sample is 2 x 10/sup 6/n/cm/sup 2/-sec and the cadmium ratio (for gold) is 200.

  19. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  20. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  1. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  2. Development of a thermal neutron detector based on scintillating fibers and silicon photomultipliers.

    Science.gov (United States)

    Barbagallo, Massimo; Cosentino, Luigi; Greco, Giuseppe; Montereali, Rosa Maria; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vincenti, Maria Aurora; Finocchiaro, Paolo

    2010-09-01

    We propose a technique for thermal neutron detection, based on a (6)Li converter placed in front of scintillating fibers readout by means of silicon photomultipliers. Such a technique allows building cheap and compact detectors and dosimeters, thus possibly opening new perspectives in terms of granular monitoring of neutron fluxes as well as space-resolved neutron detection.

  3. Neutronic Analyses in Support of the HFIR Beamline Modifications and Lifetime Extension

    Science.gov (United States)

    Remec, I.; Blakeman, E. D.

    2009-08-01

    At the High Flux Isotope Reactor, in operation since 1966 at the Oak Ridge National Laboratory, a larger HB-2 beam tube was installed to enhance capabilities for neutron science research. Neutronic analyses, including dosimetry measurements, radiation transport simulations, and simultaneous neutron and gamma spectrum adjustment calculations, performed to assess the impact of modifications on the PV lifetime are presented.

  4. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  5. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films...... and the detection on nanoscopic roughnesses will be shown. The potential of neutron reflectometry is not only of academic origin. It may turn out to be useful in the design and development of new functional materials even though it will never develop into a standard method to be applied in the product control...

  6. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  7. Thermal neutron calibration channel at LNMRI/IRD.

    Science.gov (United States)

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units.

  8. Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L. [Neutron Sciences Directorate, Oak Ridge National Laboratory (United States)

    2011-07-01

    Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

  9. Cluster Validity Indexes for FCM Clustering Algorithm%模糊C均值算法的聚类有效性评价

    Institute of Scientific and Technical Information of China (English)

    朴尚哲; 超木日力格; 于剑

    2015-01-01

    The clustering quality of fuzzy C-means ( FCM) clustering algorithm is affected by several factors, such as initial setting of cluster centroid, the number of clusters and fuzzy index. In this paper, a comparative study on recently published five clustering validity measurement in different application fields is presented, e. g. , different dimension of data, different cluster number and different fuzzy index. The experimental results show that the validity index based on ratio of within-class compactness and between-class separation is robust to data dimension and noise, and the validity index based on degree of membership can be applied to dataset with low dimension. The research results provide researchers with an option of selecting a suitable fuzzy clustering validity index for different application environments.%模糊C均值( FCM)聚类算法最终形成的聚类质量会受到初始值的设定、簇的个数选定及参数选择等多方面因素的影响。文中对最近发表的5种代表性聚类有效性指数在不同的数据维数、聚类个数和参数等条件下对FCM的聚类有效性评价结果进行对比分析。实验结果表明基于类内紧致度和类间离散度比值的聚类有效性指数对数据维度及噪声较为鲁棒,基于隶属度的聚类有效性指数不适于高维数据等,上述结果可帮助研究人员在不同的应用环境下选择合适的模糊聚类有效性函数。

  10. Neutron and Gamma-ray Measurements

    Science.gov (United States)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  11. Neutron macromolecular crystallography at the FRM IIThe neutron single crystal diffractometer BIODIFF

    OpenAIRE

    Ostermann, Andreas; Schrader, Tobias Erich; Monkenbusch, Michael; Laatsch, Bernhard; Jüttner, Philipp; Petry, Winfried; Richter, Dieter

    2015-01-01

    The research reactor Heinz Maier-Leibnitz (FRM II) is a modern high flux neutron source which feeds at the present 27 state of the art instruments. The newly build neutron single crystal diffractometer BIODIFF is especially designed to collect data from crystals with large unit cells. The main field of application is the structure analysis of proteins, especially the determination of hydrogen atom positions. BIODIFF is a joint project of the Forschungszentrum Jülich (FZJ/JCNS) and the Forschu...

  12. The Automatic Image Segmentation Method Based on Fast FCM and Random Walk Algorithm%基于快速FCM与随机游走算法的图像自动分割方法

    Institute of Scientific and Technical Information of China (English)

    许健才; 张良均; 余燕团

    2016-01-01

    在图像分割中,针对 FCM 算法存在聚类数目需要预先给定、收敛速度慢等缺点,本文把快速模糊 C 均值聚类算法和随机游走算法相结合,具体方法为先采用快速模糊 C 均值聚类算法对图像进行预分割,以便获得聚类中心的位置,然后将该中心作为随机游走的种子点,再进行图像分割,实验结果得到了较为满意的预期效果,证明该方法是可行的。本文的研究为快速 FCM 实现自适应性和开发图形图像预处理系统提供了技术支持与理论依据。%As far as image segmentation, the defeat of the number of clusters for FCM algorithm is reeded to be improued. In this paper, the fast fuzzy C-means clustering and random walk algorithm are combined to solve the problem of image segmentation. Firstly, the fast FCM for image pre-segmentation to obtain the number of clusters and cluster central location as the seed points of random walk firstly. Then, for image segmentation, experimental results show that this method is feasible, and get a more satisfactory desired purpose. Results of this study achieve self-adaptive and fast FCM develop graphical image preprocessing system provides technical support and theoretical basis.

  13. Advanced geometries for ballistic neutron guides

    Science.gov (United States)

    Schanzer, Christian; Böni, Peter; Filges, Uwe; Hils, Thomas

    2004-08-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands.

  14. Advanced geometries for ballistic neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Schanzer, Christian E-mail: christian.schanzer@frm2.tum.de; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-08-21

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands.

  15. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  16. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  17. Epithermal neutron formation for boron neutron capture therapy by adiabatic resonance crossing concept

    Science.gov (United States)

    Khorshidi, A.; Ghafoori-Fard, H.; Sadeghi, M.

    2014-05-01

    Low-energy protons from the cyclotron in the range of 15-30 MeV and low current have been simulated on beryllium (Be) target with a lead moderator around the target. This research was accomplished to design an epithermal neutron beam for Boron Neutron Capture Therapy (BNCT) using the moderated neutron on the average produced from 9Be target via (p, xn) reaction in Adiabatic Resonance Crossing (ARC) concept. Generation of neutron to proton ratio, energy distribution, flux and dose components in head phantom have been simulated by MCNP5 code. The reflector and collimator were designed in prevention and collimation of derivation neutrons from proton bombarding. The scalp-skull-brain phantom consisting of bone and brain equivalent material has been simulated in order to evaluate the dosimetric effect on the brain. Results of this analysis demonstrated while the proton energy decreased, the dose factor altered according to filters thickness. The maximum epithermal flux revealed using fluental, Fe and bismuth (Bi) filters with thicknesses of 9.4, 3 and 2 cm, respectively and also the epithermal to thermal neutron flux ratio was 103.85. The potential of the ARC method to replace or complement the current reactor-based supply sources of BNCT purposes.

  18. The cold neutron tomography set-up at SINQ

    Science.gov (United States)

    Materna, T.; Baechler, S.; Jolie, J.; Masschaele, B.; Dierick, M.; Kardjilov, N.

    2004-06-01

    The cold neutron tomography station operated at SINQ (Paul Scherrer Institute, Switzerland) is reviewed. The high neutron flux together with a set-up based on a scintillator screen and a CCD camera yielded fast and effective results with resolution down to 250 μm: tomography of small samples (up to 2 cm large) could be performed in less than an hour. The use of a velocity selector improved the contrast discrimination and allows dichromatic tomography. The station is moving to the new research reactor FRM-II (Garching, Germany) where its performances will be increased by the availability of a 5-times-higher cold neutron flux.

  19. Neutronic performances of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, S.; Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); Beauvais, P.; Lotrus, P.; Molinie, F.; Toussaint, J.Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA), 91- Gif sur Yvette (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs (DEN/DER/SPEX), 13 - Saint Paul lez Durance (France)

    2008-07-01

    The MEGAPIE project is a key experiment on the road to Accelerator Driven Systems and it provides the scientific community with unique data on the behavior of a liquid lead-bismuth spallation target under realistic and long term irradiation conditions. The neutronic of such target is of course of prime importance when considering its final destination as an intense neutron source. This is the motivation to characterize the inside neutron flux of the target in operation. A complex detector, made of 8 'micro' fission-chambers, has been built and installed in the core of the target, few tens of centimeters from the proton/Pb-Bi interaction zone. This detector is designed to measure the absolute neutron flux inside the target, to give its spatial distribution and to correlate its temporal variations with the beam intensity. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, giving integral constraints on the neutron production models implemented in transport codes such as MCNPX. (authors)

  20. Neutronic performances of the MEGAPIE target

    CERN Document Server

    Panebianco, S; Bringer, O; Chabod, S; Chartier, F; Dupont, E; Letourneau, A; Lotrus, P; Oriol, L; Molinie, F; Toussaint, J Ch

    2007-01-01

    The MEGAPIE project is a key experiment on the road to Accelerator Driven Systems and it provides the scientific community with unique data on the behavior of a liquid lead-bismuth spallation target under realistic and long term irradiation conditions. The neutronic of such target is of course of prime importance when considering its final destination as an intense neutron source. This is the motivation to characterize the inside neutron flux of the target in operation. A complex detector, made of 8 micro fission-chambers, has been built and installed in the core of the target, few tens of centimeters from the proton/Pb-Bi interaction zone. This detector is designed to measure the absolute neutron flux inside the target, to give its spatial distribution and to correlate its temporal variations with the beam intensity. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, giving integral constraints on the neutron production mode...

  1. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.

    Science.gov (United States)

    Musolino, S V; McGinley, P H; Greenwood, R C; Kliauga, P; Fairchild, R G

    1991-01-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum-sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness greater than 200 g/cm2 would eliminate the excess gamma contamination found in Al-S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  2. Neutron scattering from the flux-line lattice in Bi2Sr2CaCu2O8+#gamma#

    DEFF Research Database (Denmark)

    Paul, D.M.; Forgan, E.M.; Cubitt, R.

    1995-01-01

    fields as a function of temperature coincides with the appearence of finite resistance within the superconducting state. At low temperatures the diffracted intensity disappears in fields greater than similar to 70 mT, probably due to the decomposition of the flux-line lattice into randomly pinned 2d...

  3. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  4. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  5. Neutron detectors for the ESS diffractometers

    DEFF Research Database (Denmark)

    Stefanescu, I.; Christensen, Mogens; Fenske, J.

    2017-01-01

    The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated...

  6. Neutron detectors for the ESS diffractometers

    DEFF Research Database (Denmark)

    Stefanescu, I.; Christensen, Mogens; Fenske, J.

    2016-01-01

    The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated...

  7. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    Science.gov (United States)

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature.

  8. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  9. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  10. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    OpenAIRE

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will ...

  11. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    Science.gov (United States)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  12. Neutron dosimetric measurements in shuttle and MIR.

    Science.gov (United States)

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with

  13. Design of the Mechanical Parts for the Neutron Guide System at HANARO

    Science.gov (United States)

    Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S.

    2008-03-01

    The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  14. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  15. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2013-01-01

    Neutron total cross sections of $^{197}$Au and $^\\text{nat}$Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent time structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and background conditions than found at other neutron sources.

  16. Strategy for the absolute neutron emission measurement on ITER.

    Science.gov (United States)

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  17. Application of Diamond Nanoparticles in Low-Energy Neutron Physics

    Directory of Open Access Journals (Sweden)

    Alexander Strelkov

    2010-03-01

    Full Text Available Diamond, with its exceptionally high optical nuclear potential and low absorption cross-section, is a unique material for a series of applications in VCN (very cold neutron physics and techniques. In particular, powder of diamond nanoparticles provides the best reflector for neutrons in the complete VCN energy range. It allowed also the first observation of quasi-specular reflection of cold neutrons (CN from disordered medium. Effective critical velocity for such a quasi-specular reflection is higher than that for the best super-mirror. Nano-diamonds survive in high radiation fluxes; therefore they could be used, under certain conditions, in the vicinity of intense neutron sources.

  18. LANSCE '90: The Manuel Lujan Jr. Neutron Scattering Center

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R.

    1990-01-01

    This paper describes progress that has been made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) during the past two years. Presently, LANSCE provides a higher peak neutron flux than any other pulsed spallation neutron source. There are seven spectrometers for neutron scattering experiments that are operated for a national user program sponsored by the US Department of Energy. Two more spectrometers are under construction. Plans have been made to raise the number of beam holes available for instrumentation and to improve the efficiency of the target/moderator system. 9 refs., 4 figs.

  19. Overview of Ignitor Neutronics and Activation

    Science.gov (United States)

    Rollet, S.; Batistoni, P.; Forrest, R.

    1999-11-01

    The Ignitor experiment is designed to produce D-T plasmas where ignition can take place and the physics of α-particles can be studied. After a first period of operation without significant neutron production, a second phase in deuterium with 2.5 MeV neutron production rate up to 10^17 n/s is planned. This will be followed by operations at increasing percentages of tritium, leading to short, but intense 14 MeV neutron production, up to ≈ 3 × 10^19 n/s. To calculate the neutron fluxes in all the machine components, including the streaming through the ports, a detailed description of the actual Ignitor machine is implemented in the MCNP-4B Monte Carlo code. These fluxes are then used as input for the FISPACT-97 code for the analysis of the activation at the end of life (EOL) and at intermediate times for safety assessment purposes. The estimated neutron emission pulse results in rather modest neutron fluences (≈ 10^18 n/cm^2 on the first wall at EOL). Therefore, radiation damage in the device components is not a concern, with the possible exception of the toroidal magnet insulator. On the other hand, the neutron flux on the first wall can be as high as that of a demonstration reactor (≈ 10^14 n/s/cm^2), inducing, in the absence of a blanket, considerable activation. The shielding strategy and possible solutions to prevent/reduce the activation of the cryostat are presented.

  20. Behaviour of Magnetic Tubes in Neutron Star's Interior

    OpenAIRE

    Singh, R.S.; Sinha, B.K.; Lohani, N. K.

    2002-01-01

    It is found from Maxwell's equations that the magnetic field lines are good analogues of relativistic strings. It is shown that the super-conducting current in the neutron star's interior causes local rotation of magnetic flux tubes carrying quantized flux.

  1. Neutron Imaging Calibration to Measure Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Bilheux, Hassina Z [ORNL; Sharma, Vishaldeep [ORNL; Fricke, Brian A [ORNL

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  2. A multilayer surface detector for ultracold neutrons

    CERN Document Server

    Wang, Zhehui; Callahan, N B; Adamek, E R; Bacon, J D; Blatnik, M; Brandt, A E; Broussard, L J; Clayton, S M; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Gao, J; Gray, F E; Hoffbauer, M A; Holley, A T; Ito, T M; Liu, C -Y; Makela, M; Ramsey, J C; Pattie,, R W; Salvat, D J; Saunders, A; Schmidt, D W; Schulze, R K; Seestrom, S J; Sharapov, E I; Sprow, A; Tang, Z; Wei, W; Wexler, J W; Womack, T L; Young, A R; Zeck, B A

    2015-01-01

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top $^{10}$B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the $^{10}$B layer is a few microns thick, which is sufficient to detect the charged particles from the $^{10}$B(n,$\\alpha$)$^7$Li neutron-capture reaction, while thin enough so that ample light due to $\\alpha$ and $^7$Li escapes for detection by photomultiplier tubes. One-hundred-nm thick $^{10}$B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparisons with other existing $^3$He and $^{10}$B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  3. A multilayer surface detector for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoffbauer, M.A.; Morris, C.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B.; Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Bacon, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blatnik, M. [Cleveland State University, Cleveland, OH 44115 (United States); Brandt, A.E. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J.; Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Gao, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hickerson, K.P. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Holley, A.T. [Tennessee Technological University, Cookeville, TN 38505 (United States); Ito, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, C.-Y. [Indiana University, Bloomington, IN 47405 (United States); and others

    2015-10-21

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top {sup 10}B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the {sup 10}B layer is a few microns thick, which is sufficient to detect the charged particles from the {sup 10}B(n,α){sup 7}Li neutron-capture reaction, while thin enough that ample light due to α and {sup 7}Li escapes for detection by photomultiplier tubes. A 100-nm thick {sup 10}B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing {sup 3}He and {sup 10}B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  4. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)], E-mail: mnnasri@kashanu.ac.ir; Jalali, M. [Isfahan Nuclear Science and Technology Research Institute, Atomic Energy organization of Iran (Iran, Islamic Republic of); Mohammadi, A. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2007-10-15

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF{sub 3} detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  5. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  6. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  7. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    Science.gov (United States)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  8. Optimization of the epithermal neutron beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2004-05-01

    The use of epithermal neutron beam in clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumors had been carried out for half a decade at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new BNCT protocols. Details of the conceptual design to produce a highly intensified and focused neutron beam with less gamma and neutron contamination in tissues are presented here for their potential applicability to other reactor facilities. Neutron-photon coupled Monte Carlo calculations were used to predict the flux, current, heating, and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  9. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  10. The ITER Radial Neutron Camera Detection System

    Science.gov (United States)

    Marocco, D.; Belli, F.; Bonheure, G.; Esposito, B.; Kaschuck, Y.; Petrizzi, L.; Riva, M.

    2008-03-01

    A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and nt/nd ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 108-109 n/cm2 s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.

  11. A new polarized neutron interferometry facility at the NCNR

    Science.gov (United States)

    Shahi, C. B.; Arif, M.; Cory, D. G.; Mineeva, T.; Nsofini, J.; Sarenac, D.; Williams, C. J.; Huber, M. G.; Pushin, D. A.

    2016-03-01

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  12. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  13. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Bilheux, Jean-Christophe [ORNL; Tremsin, Anton S [University of California, Berkeley; Santodonato, Louis J [ORNL; Dehoff, Ryan R [ORNL; Kirka, Michael M [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Herwig, Kenneth W [ORNL

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

  14. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  15. Real-Time Active Cosmic Neutron Background Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  16. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  17. Abdominal adipose tissue quantification on water-suppressed and non-water-suppressed MRI at 3T using semi-automated FCM clustering algorithm

    Science.gov (United States)

    Valaparla, Sunil K.; Peng, Qi; Gao, Feng; Clarke, Geoffrey D.

    2014-03-01

    Accurate measurements of human body fat distribution are desirable because excessive body fat is associated with impaired insulin sensitivity, type 2 diabetes mellitus (T2DM) and cardiovascular disease. In this study, we hypothesized that the performance of water suppressed (WS) MRI is superior to non-water suppressed (NWS) MRI for volumetric assessment of abdominal subcutaneous (SAT), intramuscular (IMAT), visceral (VAT), and total (TAT) adipose tissues. We acquired T1-weighted images on a 3T MRI system (TIM Trio, Siemens), which was analyzed using semi-automated segmentation software that employs a fuzzy c-means (FCM) clustering algorithm. Sixteen contiguous axial slices, centered at the L4-L5 level of the abdomen, were acquired in eight T2DM subjects with water suppression (WS) and without (NWS). Histograms from WS images show improved separation of non-fatty tissue pixels from fatty tissue pixels, compared to NWS images. Paired t-tests of WS versus NWS showed a statistically significant lower volume of lipid in the WS images for VAT (145.3 cc less, p=0.006) and IMAT (305 cc less, pfat volumes (436.1 cc less, p=0.002). There is strong correlation between WS and NWS quantification methods for SAT measurements (r=0.999), but poorer correlation for VAT studies (r=0.845). These results suggest that NWS pulse sequences may overestimate adipose tissue volumes and that WS pulse sequences are more desirable due to the higher contrast generated between fatty and non-fatty tissues.

  18. Neutron Instrumentation and Neutron Investigation of Archaeometallurgical Arms and Armours

    DEFF Research Database (Denmark)

    Fedrigo, Anna

    and a system of optical blind choppers, which make it possible to trade flux for energy resolution. The application of neutron diffraction and imaging techniques have long demonstrated their potential in the characterisation of dense materials in engineering and material science. In this project they have been...... used as a non-destructive analytical tool for the study of metallic artefacts of archaeometric interest. Three “pattern-welded” sword blades from the Viking age, provided by the National Museum of Denmark, have been fully characterised in terms of composition, manufacturing processes, and conservation...

  19. Automation of angular movement of the arm neutron diffractometer; Automatizacion del movimiento angular del brazo del difractometro de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Herrera A, E.; Quintana C, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Torres R, C. E.; Reyes V, M., E-mail: fortunato.aguilar@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, Metepec, Estado de Mexico (Mexico)

    2015-09-15

    A technique to determine the crystal structure of some materials is the neutron diffraction. This technique consists on placing the material in question in a monoenergetic neutron beam obtained by neutron diffraction in a monochromator crystal. The neutron energy depends of the diffraction angle. The Instituto Nacional de Investigaciones Nucleares has a neutron diffractometer and monochromator crystals of pyrolytic graphite. This crystal can be selecting the neutron energy depending on the angle of diffraction in the glass. The radiation source for the neutron diffractometer is the TRIGA Mark III reactor of the Nuclear Center Dr. Nabor Carrillo Flores. During their operation are also obtained besides neutrons, β and γ radiation. The interest is to have thermal neutrons, so fast neutrons and γ rays are removed using appropriate shielding. The average neutron fluxes of the radial port RE2 of neutron diffractometer at power 1 MW are: heat flow 2,466 x 10{sup 8} n cm{sup -2} sec{sup -1} and fast flow 1,239 x 10{sup 8} n cm{sup -2} sec{sup -1}. The neutron detector is housed in a shield mounted on a mechanical linkage with which the diffraction angle is selected, and therefore the energy of the neutrons. The movement of this joint was performed by the equipment operator manually, so that accuracy to select the diffraction angle was not good and the process rather slow. Therefore a mechanical system was designed, automated by means of a motor as an actuator, a system of force transmission and an electronic control in order that the operator will schedule the diffraction angles and allow the count in the neutrons detection system in a simple manner. (Author)

  20. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.