WorldWideScience

Sample records for fault-tolerant facility location

  1. Fault-tolerant Concave Facility Location Problem with Uniform Requirements

    Institute of Scientific and Technical Information of China (English)

    Xing WANG; Da-Chuan XU; Zheng-Hai HUANG

    2012-01-01

    In this paper,we consider the fault-tolerant concave facility location problem (FTCFL) with uniform requirements. By investigating the structure of the FTCFL,we obtain a modified dual-fitting bifactor approximation algorithm.Combining the scaling and greedy argumentation technique,the approximation factor is proved to be 1.52.

  2. Fault-Tolerant Systems with Concurrent Error-Locating Capability

    Institute of Scientific and Technical Information of China (English)

    JIANG JianHui(江建慧); MIN YingHua(闵应骅); PENG ChengLian(彭澄廉)

    2003-01-01

    Fault-tolerant systems have found wide applications in military, industrial andcommercial areas. Most of these systems are constructed by multiple-modular redundancy or er-ror control coding techniques. They need some fault-tolerant specific components (such as voter,switcher, encoder, or decoder) to implement error-detecting or error-correcting functions. However,the problem of error detection, location or correction for fault-tolerance specific components them-selves has not been solved properly so far. Thus, the dependability of a whole fault-tolerant systemwill be greatly affected. This paper presents a theory of robust fault-masking digital circuits forcharacterizing fault-tolerant systems with the ability of concurrent error location and a new schemeof dual-modular redundant systems with partially robust fault-masking property. A basic robustfault-masking circuit is composed of a basic functional circuit and an error-locating corrector. Sucha circuit not only has the ability of concurrent error correction, but also has the ability of concurrenterror location. According to this circuit model, for a partially robust fault-masking dual-modularredundant system, two redundant modules based on alternating-complementary logic consist of thebasic functional circuit. An error-correction specific circuit named as alternating-complementarycorrector is used as the error-locating corrector. The performance (such as hardware complexity,time delay) of the scheme is analyzed.

  3. Scalable Fault-Tolerant Location Management Scheme for Mobile IP

    Directory of Open Access Journals (Sweden)

    JinHo Ahn

    2001-11-01

    Full Text Available As the number of mobile nodes registering with a network rapidly increases in Mobile IP, multiple mobility (home of foreign agents can be allocated to a network in order to improve performance and availability. Previous fault tolerant schemes (denoted by PRT schemes to mask failures of the mobility agents use passive replication techniques. However, they result in high failure-free latency during registration process if the number of mobility agents in the same network increases, and force each mobility agent to manage bindings of all the mobile nodes registering with its network. In this paper, we present a new fault-tolerant scheme (denoted by CML scheme using checkpointing and message logging techniques. The CML scheme achieves low failure-free latency even if the number of mobility agents in a network increases, and improves scalability to a large number of mobile nodes registering with each network compared with the PRT schemes. Additionally, the CML scheme allows each failed mobility agent to recover bindings of the mobile nodes registering with the mobility agent when it is repaired even if all the other mobility agents in the same network concurrently fail.

  4. A scalable, locality aware, fault-tolerant, and decentralized location scheme for distributed networks

    Institute of Scientific and Technical Information of China (English)

    BAI Hai-huan; JIANG Jun-jie; ZOU Fu-tai; WANG Wei-nong

    2005-01-01

    This paper presents Isotope, an efficient, locality aware, fault-tolerant, and decentralized scheme for data location in distributed networks. This scheme is designed based on the mathematical model of decentralized location services and thus has provable correctness and performance. In Isotope, each node needs to only maintain linkage information with about O( log n) other nodes and any node can be reached within O( log n) routing hops. Compared with other related schemes, Isotope' s average locating path length is only half that of Chord,and its locating performance and locality-awareness are sinilar to that of Pastry and Tapestry. In addition, Isotope is more suitable for constantly changing networks because it needs to exchange only O(log n) O(log n)messages to update the routing information for nodes arrival, departure and failure.

  5. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  6. Fault tolerant computing systems

    CERN Document Server

    Randell, B

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection, damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (15 refs).

  7. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena

    2013-01-01

    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  8. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  9. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  10. Unconstrained and Constrained Fault-Tolerant Resource Allocation

    CERN Document Server

    Liao, Kewen

    2011-01-01

    First, we study the Unconstrained Fault-Tolerant Resource Allocation (UFTRA) problem (a.k.a. FTFA problem in \\cite{shihongftfa}). In the problem, we are given a set of sites equipped with an unconstrained number of facilities as resources, and a set of clients with set $\\mathcal{R}$ as corresponding connection requirements, where every facility belonging to the same site has an identical opening (operating) cost and every client-facility pair has a connection cost. The objective is to allocate facilities from sites to satisfy $\\mathcal{R}$ at a minimum total cost. Next, we introduce the Constrained Fault-Tolerant Resource Allocation (CFTRA) problem. It differs from UFTRA in that the number of resources available at each site $i$ is limited by $R_{i}$. Both problems are practical extensions of the classical Fault-Tolerant Facility Location (FTFL) problem \\cite{Jain00FTFL}. For instance, their solutions provide optimal resource allocation (w.r.t. enterprises) and leasing (w.r.t. clients) strategies for the cont...

  11. Adaptive Fault Tolerance

    Science.gov (United States)

    1994-05-01

    center ( MOCl ) and one workstation processor (WS1) in the Adaptive Fault Tolerance 22 command center (CCE). The remaining data processing routines (GDI...78243-7063 NRAIR232 ATTN: DANIEL W. ATKINSON 9800 SAVAGE RD FT MEADE MD 20755-6000 TRUSTED INFORMATION SYSTEMS, INC. ATTN: WILLIAM C. BARKER 3060

  12. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    was to avoid a total close-down in case of the most likely faults. The second was a fault tolerant attitude control system for a micro satellite where the operation of the system is mission critical. The purpose was to avoid hazardous effects from faults and maintain operation if possible. A method...

  13. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel

    2009-01-01

    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  14. Fault-tolerant rotary actuator

    Science.gov (United States)

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  15. IHS Facility Locator

    Data.gov (United States)

    U.S. Department of Health & Human Services — This map can be used to find an Indian Health Service, Tribal or Urban Indian Health Program facility. This map can be used to: Zoom in to a general location to...

  16. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  17. Fault tolerant software modules for SIFT

    Science.gov (United States)

    Hecht, M.; Hecht, H.

    1982-01-01

    The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.

  18. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  19. Fault Tolerant Frequent Pattern Mining

    Energy Technology Data Exchange (ETDEWEB)

    Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan

    2016-12-19

    FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing, though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.

  20. Designing fault-tolerant distributed archives for picture archiving and communication systems.

    Science.gov (United States)

    Mendenhall, R; Dewey, M; Soutar, I

    2001-06-01

    Distributed archives in a picture archiving and communication system (PACS) environment can provide added fault tolerance and fail-over capability, as well as increased load capacity at a more economical price than traditional 'high-availability" systems. Systems can be configured with varying levels of fault tolerance, depending on the amount of redundancy desired. There is, however, a direct correlation between the level of hardware redundancy and cost to implement. This presentation details the system design for fault-tolerant distributed archives as well as several options for redundancy, referencing implementation of a fault-tolerant archive system at the University of Utah. The distributed archive system described here is based on Image Devices' image archive software, which can be implemented on multiple individual archive servers in order to distribute archive functionality and operational load. The configuration and implementation of the individual servers together make up the distributed archive system and does not impact the ability of the system to be scaled to meet future requirements. Several implementation and configuration options exist, including the ability for servers to maintain replicated databases containing patient and image information. Thus, each archive can be aware of all information and the location of this information within the distributed archive system. The goal is to produce systems that will still be operational in the event of any single point of failure, ie, a network connection failure between facilities or the failure of a single archive server within the distributed system. During normal operation, workload for image acquisition, image routing and image query requests will be distributed between the archive servers. If the system is deployed in a multifacility environment, each archive server can be configured to be responsible for the acquisition and image distribution management within that server's local facility. If the

  1. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional pr...

  2. Fault-tolerant quantum computation

    CERN Document Server

    Preskill, J

    1997-01-01

    The discovery of quantum error correction has greatly improved the long-term prospects for quantum computing technology. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment, or due to imperfect implementations of quantum logical operations. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. In principle, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per gate is less than a certain critical value, the accuracy threshold. It may be possible to incorporate intrinsic fault tolerance into the design of quantum computing hardware, perhaps by invoking topological Aharonov-Bohm interactions to process quantum information.

  3. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  4. Robot Position Sensor Fault Tolerance

    Science.gov (United States)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  5. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  6. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  7. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show......-tolerant control....

  8. Design a Fault Tolerance for Real Time Distributed System

    OpenAIRE

    Ban M. Khammas

    2012-01-01

    This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...

  9. Fault Tolerant Homopolar Magnetic Bearings

    Science.gov (United States)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  10. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  11. On Constrained Facility Location Problems

    Institute of Scientific and Technical Information of China (English)

    Wei-Lin Li; Peng Zhang; Da-Ming Zhu

    2008-01-01

    Given m facilities each with an opening cost, n demands, and distance between every demand and facility,the Facility Location problem finds a solution which opens some facilities to connect every demand to an opened facility such that the total cost of the solution is minimized. The k-Facility Location problem further requires that the number of opened facilities is at most k, where k is a parameter given in the instance of the problem. We consider the Facility Location problems satisfying that for every demand the ratio of the longest distance to facilities and the shortest distance to facilities is at most w, where w is a predefined constant. Using the local search approach with scaling technique and error control technique, for any arbitrarily small constant ∈ > 0, we give a polynomial-time approximation algorithm for the ω-constrained Facility Location problem with approximation ratio 1 + √ω + 1 + ∈, which significantly improves the previous best known ratio (ω + 1)/α for some 1 ≤α≤ 2, and a polynomial-time approximation algorithm for the ω-constrained κ-Facility Location problem with approximation ratio ω + 1 + ∈. On the aspect of approximation hardness, we prove that unless NP (C) DTIME(nO(loglogn)), the ω-constrained Facility Location problem cannot be approximated within 1 + √ω-1,which slightly improves the previous best known hardness result 1.243 + 0.316 ln(ω - 1). The experimental results on the standard test instances of Facility Location problem show that our algorithm also has good performance in practice.

  12. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    YANG GYUN OH

    2013-11-01

    Full Text Available For the improvement of APR1400 Diverse Protection System (DPS design, the Advanced DPS (ADPS has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

  13. Software fault tolerance in computer operating systems

    Science.gov (United States)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  14. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  15. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  16. Mental Health Treatement Facilities Locator

    Data.gov (United States)

    U.S. Department of Health & Human Services — An online resource for locating mental health treatment facilities and programs supported by the Substance Abuse and Mental Health Services Administration (SAMHSA)....

  17. MICROTHREAD BASED (MTB) COARSE GRAINED FAULT TOLERANCE SUPERSCALAR PROCESSOR ARCHITECTURE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fault tolerance in microprocessor systems has become a popular topic of architecture research.Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance.This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.

  18. Architecting fault-tolerant software systems

    NARCIS (Netherlands)

    Sözer, Hasan

    2009-01-01

    The increasing size and complexity of software systems makes it hard to prevent or remove all possible faults. Faults that remain in the system can eventually lead to a system failure. Fault tolerance techniques are introduced for enabling systems to recover and continue operation when they are subj

  19. Fault Tolerant Control: A Simultaneous Stabilization Result

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Blondel, V.D.

    2004-01-01

    This paper discusses the problem of designing fault tolerant compensators that stabilize a given system both in the nominal situation, as well as in the situation where one of the sensors or one of the actuators has failed. It is shown that such compensators always exist, provided that the system...

  20. Software Implemented Fault-Tolerant (SIFT) user's guide

    Science.gov (United States)

    Green, D. F., Jr.; Palumbo, D. L.; Baltrus, D. W.

    1984-01-01

    Program development for a Software Implemented Fault Tolerant (SIFT) computer system is accomplished in the NASA LaRC AIRLAB facility using a DEC VAX-11 to interface with eight Bendix BDX 930 flight control processors. The interface software which provides this SIFT program development capability was developed by AIRLAB personnel. This technical memorandum describes the application and design of this software in detail, and is intended to assist both the user in performance of SIFT research and the systems programmer responsible for maintaining and/or upgrading the SIFT programming environment.

  1. Modeling discrete competitive facility location

    CERN Document Server

    Karakitsiou, Athanasia

    2015-01-01

    This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...

  2. Uncapacitated facility location problems: contributions

    Directory of Open Access Journals (Sweden)

    Galvão Roberto Diéguez

    2004-01-01

    Full Text Available The objective of the present paper is to review my personal contributions in the field of uncapacitated facility location problems. These contributions took place throughout my academic career, from the time I was a Ph.D. student at Imperial College to the present day. They cover approximately 30 years, from 1973 to 2003; they address: algorithms developed for the p-median problem and for a general formulation of uncapacitated location problems; the study of dynamic location models; covering and hierarchical location problems; queuing-based probabilistic location models. The contributions encompass theoretical developments, computational algorithms and practical applications. All work took place in an academic environment, with the invaluable collaboration of colleagues (both in Brazil and abroad and research students at COPPE. Each section in the paper is dedicated to a topic that involves a personal contribution. Every one of them is placed within the context of the existing literature.

  3. A Primer on Architectural Level Fault Tolerance

    Science.gov (United States)

    Butler, Ricky W.

    2008-01-01

    This paper introduces the fundamental concepts of fault tolerant computing. Key topics covered are voting, fault detection, clock synchronization, Byzantine Agreement, diagnosis, and reliability analysis. Low level mechanisms such as Hamming codes or low level communications protocols are not covered. The paper is tutorial in nature and does not cover any topic in detail. The focus is on rationale and approach rather than detailed exposition.

  4. Implementation of the Six Channel Redundancy to achieve fault tolerance in testing of satellites

    CERN Document Server

    Aravinda, H S; Moodithaya, Ranjan

    2010-01-01

    This paper aims to implement the six channel redundancy to achieve fault tolerance in testing of satellites with acoustic spectrum. We mainly focus here on achieving fault tolerance. An immediate application is the microphone data acquisition and to do analysis at the Acoustic Test Facility (ATF) centre, National Aerospace Laboratories. It has an 1100 cubic meter reverberation chamber in which a maximum sound pressure level of 157 dB is generated. The six channel Redundancy software with fault tolerant operation is devised and developed. The data are applied to program written in C language. The program is run using the Code Composer Studio by accepting the inputs. This is tested with the TMS 320C 6727 DSP, Pro Audio Development Kit (PADK).

  5. Adaptive Fault Tolerance for Many-Core Based Space-Borne Computing

    Science.gov (United States)

    James, Mark; Springer, Paul; Zima, Hans

    2010-01-01

    This paper describes an approach to providing software fault tolerance for future deep-space robotic NASA missions, which will require a high degree of autonomy supported by an enhanced on-board computational capability. Such systems have become possible as a result of the emerging many-core technology, which is expected to offer 1024-core chips by 2015. We discuss the challenges and opportunities of this new technology, focusing on introspection-based adaptive fault tolerance that takes into account the specific requirements of applications, guided by a fault model. Introspection supports runtime monitoring of the program execution with the goal of identifying, locating, and analyzing errors. Fault tolerance assertions for the introspection system can be provided by the user, domain-specific knowledge, or via the results of static or dynamic program analysis. This work is part of an on-going project at the Jet Propulsion Laboratory in Pasadena, California.

  6. COMPREHENSIVE EVALUATION OF FAULT-TOLERANT PROPERTIES OF REDUNDANT ROBOTS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; FENG Dengdian

    2008-01-01

    When a redundant robot performs a fault-tolerant operation for locked joint failures, its fault tolerant properties should include dexterity and sudden change of joint velocity at the moment of locking failed joints and the dexterity during the post-failure. Firstly three fault-tolerant indexes, reduced condition number, sudden change of relative joint velocity and centrality are proposed, which can comprehensively evaluate the kinematical performance of a redundant robot during its entire fault-tolerant operations. Then, the influence of the initial postures of robot's end-effector on these fault-tolerant indexes is analyzed with a planar robot and a spatial robot. Simulation results show that for a given task the joint trajectory with the best comprehensive effect of fault tolerance can be determined by optimizing the initial posture of a robot.

  7. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan;

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault...

  8. Fault tolerant quantum computation with nondeterministic gates.

    Science.gov (United States)

    Li, Ying; Barrett, Sean D; Stace, Thomas M; Benjamin, Simon C

    2010-12-17

    In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations.

  9. Method and system for environmentally adaptive fault tolerant computing

    Science.gov (United States)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  10. Fault tolerant system design for uninterruptible power supplies

    OpenAIRE

    B. Y. Volochiy; D. S. Kuznetsov

    2012-01-01

    The problem of design for reliability of a fault tolerant system for uninterruptible power supplies is considered. Configuration of a fault tolerant system determines the structure of an uninterruptible power supply: power supply built from modules of the same type, stand-by sliding reserve for them, twice total reserve of the power supply with two accumulator batteries, the controls and diagnostics means. The developed tool for automated analytical model of fault tolerant systems generation ...

  11. Coordinated Fault Tolerance for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  12. Self Fault-Tolerance of Protocols: A Case Study

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The prerequisite for the existing protocols' correctness is that protocols can be normally operated under the normal conditions, rather than dealing with abnormal conditions.In other words, protocols with the fault-tolerance can not be provided when some fault occurs. This paper discusses the self fault-tolerance of protocols. It describes some concepts and methods for achieving self fault tolerance of protocols. Meanwhile, it provides a case study, investigates a typical protocol that does not satisfy the self fault-tolerance, and gives a new redesign version of this existing protocol using the proposed approach.

  13. Fault Tolerant Magnetic Bearing for Turbomachinery

    Science.gov (United States)

    Choi, Benjamin; Provenza, Andrew

    2001-01-01

    NASA Glenn Research Center (GRC) has developed a Fault-Tolerant Magnetic Bearing Suspension rig to enhance the bearing system safety. It successfully demonstrated that using only two active poles out of eight redundant poles from each radial bearing (that is, simply 12 out of 16 poles dead) levitated the rotor and spun it without losing stability and desired position up to the maximum allowable speed of 20,000 rpm. In this paper, it is demonstrated that as far as the summation of force vectors of the attracting poles and rotor weight is zero, a fault-tolerant magnetic bearing system maintained the rotor at the desired position without losing stability even at the maximum rotor speed. A proportional-integral-derivative (PID) controller generated autonomous corrective actions with no operator's input for the fault situations without losing load capacity in terms of rotor position. This paper also deals with a centralized modal controller to better control the dynamic behavior over system modes.

  14. Fault-Tolerant Grid Architecture and Practice

    Institute of Scientific and Technical Information of China (English)

    JIN Hai(金海); ZOU DeQing(邹德清); CHEN HanHua(陈汉华); SUN JianHua(孙建华); WU Song(吴松)

    2003-01-01

    Grid computing emerges as effective technologies to couple geographically distributed resources and solve large-scale computational problems in wide area networks. The fault tolerance is a significant and complex issue in grid computing systems. Various techniques have been investigated to detect and correct faults in distributed computing systems. Unreliable fault detection is one of the most effective techniques. Globus as a grid middleware manages resources in a wide area network. The Globus fault detection service uses the well-known techniques based on unreliable fault detectors to detect and report component failures. However, more powerful techniques are required to detect and correct both system-level and application-level faults in a grid system, and a convenient toolkit is also needed to maintain the consistency in the grid. A fault-tolerant grid platform (FTGP) based on an unreliable fault detector and the Globus fault detection service is presented in this paper. The platform offers effective strategies in such three aspects as grid key components, user tasks, and high-level applications.

  15. Enhancement of Fault Tolerance in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Pushpanjali Gupta

    2014-08-01

    Full Text Available In recent years researchers are trying to work out scientific applications in cloud so that it decreases the infrastructure cost and increases the span of team and finally innovative ideas towards applications is increased. But the cloud is still not as much reliable, controllable as grid. So in the evolving Cloud computing environment there is a great need of fault tolerance mechanism for the system to work effectively even in the presence of failure. Moreover Big Organizations are also opting for using Hybrid Cloud instead of private Cloud. Thus, in this paper we propose an approach of using a new framework in Cloud so as to use Cloud for scientific applications as well makes the public Cloud trustworthy platform. There is a progressive approach introduced to provide an effective way to achieve high fault tolerance in Clouds by enabling a new workflow planning method to balance performance, reliability and cost for critical scientific applications and focus mainly on use of distributed resources for workflow execution mainly in serial and concurrent manner.

  16. Fault Tolerant Controllers for Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, H.; Stoustrup, Jakob

    2004-01-01

    A general compensator architecture for fault tolerant control (FTC) for sampled-data systems is proposed. The architecture is based on the YJBK parameterization of all stabilizing controllers, and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The FTC...

  17. Fault tolerant controllers for sampled-data systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2004-01-01

    A general compensator architecture for fault tolerant control (FTC) for sampled-data systems is proposed. The architecture is based on the YJBK parameterization of all stabilizing controllers, and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The FTC...

  18. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  19. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  20. Data Structures: Sequence Problems, Range Queries, and Fault Tolerance

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund

    for a range of sequence analysis problems that have risen from applications in pattern matching, bioinformatics, and data mining. On a high level, each problem is dened by a function and some constraints and the job at hand is to locate subsequences that score high with this function and are not invalidated...... a certain function on the elements in a given query subsequence. There are many types of functions that has been considered in connection with input from dierent sources. The input could be ip-data sorted by ip-address, real estate prices sorted by zip code, advertising cost sorted by time etc. We consider...... data structures for two classic statistics functions, namely median and mode. Finally, Part III investigates fault tolerant algorithms and data structures. This deals with the trend of avoiding elaborate error checking and correction circuitry that would impose non-negligible costs in terms of hardware...

  1. Synthesis of Fault Tolerant Reversible Logic Circuits

    CERN Document Server

    Islam, Md Saiful; Begum, Zerina; Hafiz, Mohd Zulfiquar; Mahmud, Abdullah Al; 10.1109/CAS-ICTD.2009.4960883

    2010-01-01

    Reversible logic is emerging as an important research area having its application in diverse fields such as low power CMOS design, digital signal processing, cryptography, quantum computing and optical information processing. This paper presents a new 4*4 universal reversible logic gate, IG. It is a parity preserving reversible logic gate, that is, the parity of the inputs matches the parity of the outputs. The proposed parity preserving reversible gate can be used to synthesize any arbitrary Boolean function. It allows any fault that affects no more than a single signal readily detectable at the circuit's primary outputs. Finally, it is shown how a fault tolerant reversible full adder circuit can be realized using only two IGs. It has also been demonstrated that the proposed design offers less hardware complexity and is efficient in terms of gate count, garbage outputs and constant inputs than the existing counterparts.

  2. Distributed consensus and fault tolerance - Lecture 2

    CERN Document Server

    CERN. Geneva

    2017-01-01

    In a world where clusters with thousands of nodes are becoming commonplace, we are often faced with the task of having them coordinate and share state. As the number of machines goes up, so does the probability that something goes wrong: a node could temporarily lose connectivity, crash because of some race condition, or have its hard drive fail. What are the challenges when designing fault-tolerant distributed systems, where a cluster is able to survive the loss of individual nodes? In this lecture, we will discuss some basics on this topic (consistency models, CAP theorem, failure modes, byzantine faults), detail the raft consensus algorithm, and showcase an interesting example of a highly resilient distributed system, bitcoin.

  3. Distributed consensus and fault tolerance - Lecture 1

    CERN Document Server

    CERN. Geneva

    2017-01-01

    In a world where clusters with thousands of nodes are becoming commonplace, we are often faced with the task of having them coordinate and share state. As the number of machines goes up, so does the probability that something goes wrong: a node could temporarily lose connectivity, crash because of some race condition, or have its hard drive fail. What are the challenges when designing fault-tolerant distributed systems, where a cluster is able to survive the loss of individual nodes? In this lecture, we will discuss some basics on this topic (consistency models, CAP theorem, failure modes, byzantine faults), detail the raft consensus algorithm, and showcase an interesting example of a highly resilient distributed system, bitcoin.

  4. Scalability, performance, and fault tolerance of PACS architectures

    Science.gov (United States)

    Blume, Hartwig R.; Prior, Fred W.; di Pierro, Milan C.; Goble, John C.; Lodgberg, Jonas; Kenney, Robert S.; Goeringer, Fred

    1998-07-01

    Three data-base architectures may be distinguished among Picture Archiving and Communication Systems (PACSs): (1) Configurations with logically and physically centralized data- base and file server, (2) systems with physically distributed file servers and a logically centralized data-base, and (3) installations with logically and physically distributed data- bases and file servers. A brief overview of these architectures and their scaleability, performance, and fault- tolerance is given. A PACS for an existing large university hospital is designed for the first as well as the second architecture using given image production data and workflow. We evaluate the fault-tolerance of the two architectures. By modeling the work-flow and employing queuing theory, solutions with practically realizable data transfer requirements are found for both architectures. With today's performance and cost of computers, storage, and information management technologies, the second and third architectures are preferably implemented, depending on the size of the installation. The architectures offer almost unlimited scaleability, very high fault-tolerance, and optimized workflow. We describe a modern commercial PACS that adheres to the open-systems concept and consists of software application programs that run, independent of specific computer and network components, on off-the-shelf hardware and under standard multi-platform operating systems and utilize commercial data-base management systems and network managers. The system is based on the second architecture with multiple islands of functionality, each with servers and archive modules and a physically distributed data-base. Our PACS architecture supports browser technology: Workstations use the data-base to determine the location of needed information and then, through the image browser, mount the appropriate file server for access. The architecture supports a concept similar to domain name server (DNS) directory services on the

  5. Oil Storage Facilities - Storage Tank Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  6. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  7. Parallel and distributed computation for fault-tolerant object recognition

    Science.gov (United States)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  8. Fault tolerant system design for uninterruptible power supplies

    Directory of Open Access Journals (Sweden)

    B. Y. Volochiy

    2012-02-01

    Full Text Available The problem of design for reliability of a fault tolerant system for uninterruptible power supplies is considered. Configuration of a fault tolerant system determines the structure of an uninterruptible power supply: power supply built from modules of the same type, stand-by sliding reserve for them, twice total reserve of the power supply with two accumulator batteries, the controls and diagnostics means. The developed tool for automated analytical model of fault tolerant systems generation and illustration of its capabilities in determination of requirements for repair service and accumulator batteries are given.

  9. Error channels and the threshold for fault-tolerant quantum computation

    Science.gov (United States)

    Eastin, Bryan

    The threshold for fault-tolerant quantum computation depends on the available resources, including knowledge about the error model. I investigate the utility of such knowledge by designing a fault-tolerant procedure tailored to a restricted stochastic Pauli channel and studying the corresponding threshold for quantum computation. Surprisingly, I find that tailoring yields, at best, modest gains in the threshold, while substantial losses occur for error models only marginally different from the assumed channel. This result is shown to derive from the fact that the ancillae used in threshold estimation are of exceedingly high quality and, thus, difficult to improve upon. Motivated by this discovery, I propose a tractable algebraic algorithm for predicting the outcome of threshold estimates, one which approximates ancillae as having independent and identically distributed errors on their constituent qubits. In the limit of an infinitely large code, the algorithm simplifies tremendously, yielding a rigorous threshold bound given the availability of ancillae with i.i.d. errors. I use this bound as a metric to judge the relative performance of various fault-tolerant procedures in combination with different error models. Modest gains in the threshold are observed for certain restricted error models, and, for the assumed ancillae, Knill's fault-tolerant method is found to be superior to that of Steane. My algorithm generally yields high threshold bounds, reflecting the computational value of large, low-error ancillae. In an effort to render these bounds achievable, I develop a novel procedure for directly constructing large ancillae. Numerically, the scaling and average error properties of this procedure are found to be encouraging, and, though it is not fault-tolerant, I prove that each error can spread to only one additional location. Promising means of improving the ancillae are proposed, and I discuss briefly the challenges associated with preparing the cat states

  10. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  11. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  12. Substance Abuse Treatment Facilities Locator

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Substance Abuse and Mental Health Services Administration (SAMHSA) provides on-line resource for locating drug and alcohol abuse treatment programs. The...

  13. Fault tolerance and reliability in integrated ship control

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Izadi-Zamanabadi, Roozbeh; Schiøler, Henrik

    2002-01-01

    Various strategies for achieving fault tolerance in large scale control systems are discussed. The positive and negative impacts of distribution through network communication are presented. The ATOMOS framework for standardized reliable marine automation is presented along with the corresponding...

  14. Fault tolerant control schemes using integral sliding modes

    CERN Document Server

    Hamayun, Mirza Tariq; Alwi, Halim

    2016-01-01

    The key attribute of a Fault Tolerant Control (FTC) system is its ability to maintain overall system stability and acceptable performance in the face of faults and failures within the feedback system. In this book Integral Sliding Mode (ISM) Control Allocation (CA) schemes for FTC are described, which have the potential to maintain close to nominal fault-free performance (for the entire system response), in the face of actuator faults and even complete failures of certain actuators. Broadly an ISM controller based around a model of the plant with the aim of creating a nonlinear fault tolerant feedback controller whose closed-loop performance is established during the design process. The second approach involves retro-fitting an ISM scheme to an existing feedback controller to introduce fault tolerance. This may be advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existing control loops. A high fidelity benchmark model of a large transport aircraft is u...

  15. Modular, Fault-Tolerant Electronics Supporting Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern electronic systems tolerate only as many point failures as there are redundant system copies, using mere macro-scale redundancy. Fault Tolerant Electronics...

  16. Object Replication and CORBA Fault-Tolerant Object Service

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CORBA (Common Object Request Broker Arc hitecture) provides 16Common Object Services for distributed application develo pment, but none of them are fault-tolerance related services. In this paper, we propose a replicated object based Fault-Tolerant Object Service (FTOS) for COR BA environment. Two fault-tolerant mechanisms are provided in FTOS including dy namic voting mechanism and object replication mechanism. The dynamic voting mech anism uses majority-voting strategy to ensure object state consistency in failu re situations. The object replication mechanism can help system administrators t o replicate and start-up objects easily. Our implementation provides a library according to the style of COSS. With this library, programmers can develop distr ibuted applications with fault-tolerance capability very easily.

  17. Fault-Tolerant Precision Formation Guidance for Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A methodology is to be developed that will allow the development and implementation of fault-tolerant control system for distributed collaborative spacecraft. The...

  18. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...... is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults...... in the steering system. The paper shows how active control reconfiguration can accommodate all critical faults. The fault-tolerant abilities of the steering system are demonstrated on the hardware of a warehouse truck....

  19. Fault tolerance and reliability in integrated ship control

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Izadi-Zamanabadi, Roozbeh; Schiøler, Henrik

    2002-01-01

    Various strategies for achieving fault tolerance in large scale control systems are discussed. The positive and negative impacts of distribution through network communication are presented. The ATOMOS framework for standardized reliable marine automation is presented along with the corresponding...

  20. Fault-Tolerant Relative Navigation System (RNS) for Docking Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A method is propsed to develop a sensor fusion process for blending GPS/IMU/EO data for fault tolerant rendezvous and docking of spacecraft. The methodology takes...

  1. On the design of fault-tolerant robotic manipulator systems

    Science.gov (United States)

    Tesar, Delbert

    1993-01-01

    Robotic systems are finding increasing use in space applications. Many of these devices are going to be operational on board the Space Station Freedom. Fault tolerance has been deemed necessary because of the criticality of the tasks and the inaccessibility of the systems to maintenance and repair. Design for fault tolerance in manipulator systems is an area within robotics that is without precedence in the literature. In this paper, we will attempt to lay down the foundations for such a technology. Design for fault tolerance demands new and special approaches to design, often at considerable variance from established design practices. These design aspects, together with reliability evaluation and modeling tools, are presented. Mechanical architectures that employ protective redundancies at many levels and have a modular architecture are then studied in detail. Once a mechanical architecture for fault tolerance has been derived, the chronological stages of operational fault tolerance are investigated. Failure detection, isolation, and estimation methods are surveyed, and such methods for robot sensors and actuators are derived. Failure recovery methods are also presented for each of the protective layers of redundancy. Failure recovery tactics often span all of the layers of a control hierarchy. Thus, a unified framework for decision-making and control, which orchestrates both the nominal redundancy management tasks and the failure management tasks, has been derived. The well-developed field of fault-tolerant computers is studied next, and some design principles relevant to the design of fault-tolerant robot controllers are abstracted. Conclusions are drawn, and a road map for the design of fault-tolerant manipulator systems is laid out with recommendations for a 10 DOF arm with dual actuators at each joint.

  2. Fault Tolerance in Distributed Systems using Fused State Machines

    OpenAIRE

    Balasubramanian, Bharath; Vijay K Garg

    2013-01-01

    Replication is a standard technique for fault tolerance in distributed systems modeled as deterministic finite state machines (DFSMs or machines). To correct f crash or f/2 Byzantine faults among n different machines, replication requires nf additional backup machines. We present a solution called fusion that requires just f additional backup machines. First, we build a framework for fault tolerance in DFSMs based on the notion of Hamming distances. We introduce the concept of an (f,m)-fusion...

  3. Advanced development for space robotics with emphasis on fault tolerance

    Science.gov (United States)

    Tesar, D.; Chladek, J.; Hooper, R.; Sreevijayan, D.; Kapoor, C.; Geisinger, J.; Meaney, M.; Browning, G.; Rackers, K.

    1995-01-01

    This paper describes the ongoing work in fault tolerance at the University of Texas at Austin. The paper describes the technical goals the group is striving to achieve and includes a brief description of the individual projects focusing on fault tolerance. The ultimate goal is to develop and test technology applicable to all future missions of NASA (lunar base, Mars exploration, planetary surveillance, space station, etc.).

  4. Fault-Tolerant Postselected Quantum Computation: Threshold Analysis

    CERN Document Server

    Knill, E

    2004-01-01

    The schemes for fault-tolerant postselected quantum computation given in [Knill, Fault-Tolerant Postselected Quantum Computation: Schemes, http://arxiv.org/abs/quant-ph/0402171] are analyzed to determine their error-tolerance. The analysis is based on computer-assisted heuristics. It indicates that if classical and quantum communication delays are negligible, then scalable qubit-based quantum computation is possible with errors above 1% per elementary quantum gate.

  5. Fault tolerant programmable digital attitude control electronics study

    Science.gov (United States)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  6. Steps toward fault-tolerant quantum chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Andrew Garvin

    2010-05-01

    Developing quantum chemistry programs on the coming generation of exascale computers will be a difficult task. The programs will need to be fault-tolerant and minimize the use of global operations. This work explores the use a task-based model that uses a data-centric approach to allocate work to different processes as it applies to quantum chemistry. After introducing the key problems that appear when trying to parallelize a complicated quantum chemistry method such as coupled-cluster theory, we discuss the implications of that model as it pertains to the computational kernel of a coupled-cluster program - matrix multiplication. Also, we discuss the extensions that would required to build a full coupled-cluster program using the task-based model. Current programming models for high-performance computing are fault-intolerant and use global operations. Those properties are unsustainable as computers scale to millions of CPUs; instead one must recognize that these systems will be hierarchical in structure, prone to constant faults, and global operations will be infeasible. The FAST-OS HARE project is introducing a scale-free computing model to address these issues. This model is hierarchical and fault-tolerant by design, allows for the clean overlap of computation and communication, reducing the network load, does not require checkpointing, and avoids the complexity of many HPC runtimes. Development of an algorithm within this model requires a change in focus from imperative programming to a data-centric approach. Quantum chemistry (QC) algorithms, in particular electronic structure methods, are an ideal test bed for this computing model. These methods describe the distribution of electrons in a molecule, which determine the properties of the molecule. The computational cost of these methods is high, scaling quartically or higher in the size of the molecule, which is why QC applications are major users of HPC resources. The complexity of these algorithms means that

  7. An Autonomous Distributed Fault-Tolerant Local Positioning System

    Science.gov (United States)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  8. Fault tolerant hypercube computer system architecture

    Science.gov (United States)

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)

    1989-01-01

    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node

  9. Checkpoint and Replication Oriented Fault Tolerant Mechanism for MapReduce Framework

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-09-01

    Full Text Available MapReduce is an emerging programming paradigm and an associated implementation for processing and generating big data which has been widely applied in data-intensive systems. In cloud environment, node and task failure is no longer accidental but a common feature of large-scale systems. In MapReduce framework, although the rescheduling based fault-tolerant method is simple to implement, it failed to fully consider the location of distributed data, the computation and storage overhead. Thus, a single node failure will increase the completion time dramatically. In this paper, a Checkpoint and Replication Oriented Fault Tolerant scheduling algorithm (CROFT is proposed, which takes both task and node failure into consideration. Preliminary experiments show that with less storage and network overhead. CROFT will significantly reduce the completion time at failure time, and the overall performance of MapReduce can be improved at least over 30% than original mechanism in Hadoop.  

  10. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    Science.gov (United States)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  11. Location - Managed Facility - St. Paul District (MVP)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — St. Paul District - US Army Corps of Engineers Managed Facility locations. District headquarters, Natural Resource, Recreation, Lock and Dam, and Regulatory offices...

  12. A Fault Tolerance Mechanism for On-Road Sensor Networks

    Science.gov (United States)

    Feng, Lei; Guo, Shaoyong; Sun, Jialu; Yu, Peng; Li, Wenjing

    2016-01-01

    On-Road Sensor Networks (ORSNs) play an important role in capturing traffic flow data for predicting short-term traffic patterns, driving assistance and self-driving vehicles. However, this kind of network is prone to large-scale communication failure if a few sensors physically fail. In this paper, to ensure that the network works normally, an effective fault-tolerance mechanism for ORSNs which mainly consists of backup on-road sensor deployment, redundant cluster head deployment and an adaptive failure detection and recovery method is proposed. Firstly, based on the N − x principle and the sensors’ failure rate, this paper formulates the backup sensor deployment problem in the form of a two-objective optimization, which explains the trade-off between the cost and fault resumption. In consideration of improving the network resilience further, this paper introduces a redundant cluster head deployment model according to the coverage constraint. Then a common solving method combining integer-continuing and sequential quadratic programming is explored to determine the optimal location of these two deployment problems. Moreover, an Adaptive Detection and Resume (ADR) protocol is deigned to recover the system communication through route and cluster adjustment if there is a backup on-road sensor mismatch. The final experiments show that our proposed mechanism can achieve an average 90% recovery rate and reduce the average number of failed sensors at most by 35.7%. PMID:27918483

  13. A fault-tolerant intelligent robotic control system

    Science.gov (United States)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  14. Fault-tolerant Control Systems-An Introductory Overview

    Institute of Scientific and Technical Information of China (English)

    Jin Jiang

    2005-01-01

    This paper presents an introductory overview on the development of fault-tolerant control systems. For this reason, the paper is written in a tutorial fashion to summarize some of the important results in this subject area deliberately without going into details in any of them. However, key references are provided from which interested readers can obtain more detailed information on a particular subject. It is necessary to mention that, throughout this paper, no efforts were made to provide an exhaustive coverage on the subject matter. In fact, it is far from it. The paper merely represents the view and experience of its author. It can very well be that some important issues or topics were left out unintentionally. If that is the case, the author sincerely apologizes in advance.After a brief account of fault-tolerant control systems, particularly on the original motivations, and the concept of redundancies, the paper reviews the development of fault-tolerant control systems with highlights to several important issues from a historical perspective. The general approaches to fault-tolerant control has been divided into passive, active, and hybrid approaches. The analysis techniques for active fault-tolerant control systems are also discussed. Practical applications of faulttolerant control are highlighted from a practical and industrial perspective. Finally, some critical issues in this area are discussed as open problems for future research/development in this emerging field.

  15. Fault Tolerant Parallel Filters Based On Bch Codes

    Directory of Open Access Journals (Sweden)

    K.Mohana Krishna

    2015-04-01

    Full Text Available Digital filters are used in signal processing and communication systems. In some cases, the reliability of those systems is critical, and fault tolerant filter implementations are needed. Over the years, many techniques that exploit the filters’ structure and properties to achieve fault tolerance have been proposed. As technology scales, it enables more complex systems that incorporate many filters. In those complex systems, it is common that some of the filters operate in parallel, for example, by applying the same filter to different input signals. Recently, a simple technique that exploits the presence of parallel filters to achieve multiple fault tolerance has been presented. In this brief, that idea is generalized to show that parallel filters can be protected using Bose– Chaudhuri–Hocquenghem codes (BCH in which each filter is the equivalent of a bit in a traditional ECC. This new scheme allows more efficient protection when the number of parallel filters is large.

  16. Study on inverter fault-tolerant operation of PMSM DTC

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents an investigation of inverter fault-tolerant operation for a permanent magnet synchronous motor (PMSM) direct torque control (DTC) system under various inverter faults. The performance of a faulty standard 6-switch inverter driven PMSM DTC system is analyzed. To avoid the loss or even disaster caused by the inverter faults, a topology-modified inverter with fault-tolerant capability is introduced, which is reconfigured as a 3-phase 4-switch inverter. The modeling of the 4-switch inverter is then analyzed and a novel DTC strategy with a unique nonlinear perpendicular flux observer and feedback compensation scheme is proposed for obtaining a continuous, disturbance-free drive system. The simulation and experimental results demonstrate that the proposed inverter fault-tolerant PMSM DTC system is able to operate stably and continuously with acceptable static and pretty good dynamic performance.

  17. Fault tolerant wind speed estimator used in wind turbine controllers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    . In this paper a fault tolerant wind speed estimator is designed based on a set of unknown input observers, each designed to the different sets of non-faulty sensors. Faults in the rotor, generator and wind speed sensors are considered. The designed wind speed estimator is passive tolerant towards faults...... in the wind speed sensors, and faults in the generator and rotor speed sensors are accommodated by an active fault tolerant observer scheme in which the faults are detected and identified, and the observer corresponding to the non-faulty sensors are used. The potential of the scheme is shown by applying......Advanced control schemes can be used to optimize energy production and cost of energy in modern wind turbines. These control schemes most often rely on wind speed estimations. These designs of wind speed estimators are, however, not designed to be fault tolerant towards faults in the used sensors...

  18. Sensor Fault Tolerant Generic Model Control for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.

  19. A Fault-Tolerant Architecture for Parlay Application Server

    Institute of Scientific and Technical Information of China (English)

    LI Yong-ping; CHEN Jun-liang

    2004-01-01

    As the value-added service providing system in the Next-Generation Networks (NGN), Application Servers (AS) are required to provide the carrier-class reliability. To increase the reliability of AS, the fault-tolerant technology is often adopted. This paper proposes a fault-tolerant architecture for AS against single-point faults. The result of analysis shows that the architecture has a good reliability and is easily extendable. Such an advantage is attributed to a kind of special fault-tolerant design, which is different from others in that two Service Logic Program (SLP) instances do not only provide backups to each other, but also share them in the service traffic.

  20. Mine-Hoist Active Fault Tolerant Control System and Strategy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-jie; WANG Yao-cai; MENG Jiang; ZHAO Peng-cheng; CHANG Yan-wei

    2005-01-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.

  1. Learning Fault-tolerant Speech Parsing with SCREEN

    CERN Document Server

    Wermter, S; Wermter, Stefan; Weber, Volker

    1994-01-01

    This paper describes a new approach and a system SCREEN for fault-tolerant speech parsing. SCREEEN stands for Symbolic Connectionist Robust EnterprisE for Natural language. Speech parsing describes the syntactic and semantic analysis of spontaneous spoken language. The general approach is based on incremental immediate flat analysis, learning of syntactic and semantic speech parsing, parallel integration of current hypotheses, and the consideration of various forms of speech related errors. The goal for this approach is to explore the parallel interactions between various knowledge sources for learning incremental fault-tolerant speech parsing. This approach is examined in a system SCREEN using various hybrid connectionist techniques. Hybrid connectionist techniques are examined because of their promising properties of inherent fault tolerance, learning, gradedness and parallel constraint integration. The input for SCREEN is hypotheses about recognized words of a spoken utterance potentially analyzed by a spe...

  2. Fault-Tolerant Mechanism of the Distributed Cluster Computers"

    Institute of Scientific and Technical Information of China (English)

    SHANG Yizi; JIN Yang; WU Baosheng

    2007-01-01

    The distributed system with high performance and stability is commonly adopted in large scale scientific and engineering computing. In this paper, we discuss a fault-tolerant mechanism under Linux circumstance to improve the fault-tolerant ability of the system, namely a scheme and frame to form the stable computing platform. In terms of the structure and function of the distributed system, active list and file invocation strategies are employed in the task management. System multilevel fault-tolerance can be achieved by repeated processes in a single node and task migration on multi-nodes. Manager node agent introduced in this paper administrates the nodes using the list, disposes of the tasks according to the nodes'performance, and hence, to be able to make full use of the cluster resources. An evaluation method is proposed to appraise the performance. The analyzed results show the usefulness of the scheme proposed except for some additional overhead of memory consumption.

  3. Fault-tolerant search algorithms reliable computation with unreliable information

    CERN Document Server

    Cicalese, Ferdinando

    2013-01-01

    Why a book on fault-tolerant search algorithms? Searching is one of the fundamental problems in computer science. Time and again algorithmic and combinatorial issues originally studied in the context of search find application in the most diverse areas of computer science and discrete mathematics. On the other hand, fault-tolerance is a necessary ingredient of computing. Due to their inherent complexity, information systems are naturally prone to errors, which may appear at any level - as imprecisions in the data, bugs in the software, or transient or permanent hardware failures. This book pr

  4. Concepts and Methods in Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecly, M.; Wu, N.E.

    2001-01-01

    in an intelligent way. The aim is to prevent that simple faults develop into serious failure and hence increase plant availability and reduce the risk of safety hazards. Fault-tolerant control merges several disciplines into a common framework to achieve these goals. The desired features are obtained through on......Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to technical parts of the plant, to personnel or the environment. Fault-tolerant control combines diagnosis with control methods to handle faults...

  5. Fault-tolerant for Electric Vehicles Drive System Sensor Failure

    Directory of Open Access Journals (Sweden)

    Zhang Liwei

    2013-10-01

    Full Text Available When EV failure happens, it needs to take some fault-tolerant method to ensure people’s safety. When the current sensor and speed sensor are out of work, the software fault-tolerant control algorithm switching strategy can be used. This paper has done theoretical analysis of the rotor field-oriented vectoe control algorithm into the open loop constant V/F control algorithm, and the phase angle compensation method is used to reduce the shock of current and torque, and simulation is done in MATLAB/Simulink.    

  6. Fault Tolerant Control Using Gaussian Processes and Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Yang Xiaoke

    2015-03-01

    Full Text Available Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.

  7. A New Approach to Robust and Fault Tolerant Control

    Institute of Scientific and Technical Information of China (English)

    Kemin Zhou

    2005-01-01

    In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor,actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.

  8. Interactive animation of fault-tolerant parallel algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Apgar, S.W.

    1992-02-01

    Animation of algorithms makes understanding them intuitively easier. This paper describes the software tool Raft (Robust Animator of Fault Tolerant Algorithms). The Raft system allows the user to animate a number of parallel algorithms which achieve fault tolerant execution. In particular, we use it to illustrate the key Write-All problem. It has an extensive user-interface which allows a choice of the number of processors, the number of elements in the Write-All array, and the adversary to control the processor failures. The novelty of the system is that the interface allows the user to create new on-line adversaries as the algorithm executes.

  9. A Novel Nanometric Fault Tolerant Reversible Subtractor Circuit

    Directory of Open Access Journals (Sweden)

    Mozhgan Shiri

    2012-11-01

    Full Text Available Reversibility plays an important role when energy efficient computations are considered. Reversible logic circuits have received significant attention in quantum computing, low power CMOS design, optical information processing and nanotechnology in the recent years. This study proposes a new fault tolerant reversible half-subtractor and a new fault tolerant reversible full-subtractor circuit with nanometric scales. Also in this paper we demonstrate how the well-known and important, PERES gate and TR gate can be synthesized from parity preserving reversible gates. All the designs have nanometric scales.

  10. High Speed Operation and Testing of a Fault Tolerant Magnetic Bearing

    Science.gov (United States)

    DeWitt, Kenneth; Clark, Daniel

    2004-01-01

    Research activities undertaken to upgrade the fault-tolerant facility, continue testing high-speed fault-tolerant operation, and assist in the commission of the high temperature (1000 degrees F) thrust magnetic bearing as described. The fault-tolerant magnetic bearing test facility was upgraded to operate to 40,000 RPM. The necessary upgrades included new state-of-the art position sensors with high frequency modulation and new power edge filtering of amplifier outputs. A comparison study of the new sensors and the previous system was done as well as a noise assessment of the sensor-to-controller signals. Also a comparison study of power edge filtering for amplifier-to-actuator signals was done; this information is valuable for all position sensing and motor actuation applications. After these facility upgrades were completed, the rig is believed to have capabilities for 40,000 RPM operation, though this has yet to be demonstrated. Other upgrades included verification and upgrading of safety shielding, and upgrading control algorithms. The rig will now also be used to demonstrate motoring capabilities and control algorithms are in the process of being created. Recently an extreme temperature thrust magnetic bearing was designed from the ground up. The thrust bearing was designed to fit within the existing high temperature facility. The retrofit began near the end of the summer, 04, and continues currently. Contract staff authored a NASA-TM entitled "An Overview of Magnetic Bearing Technology for Gas Turbine Engines", containing a compilation of bearing data as it pertains to operation in the regime of the gas turbine engine and a presentation of how magnetic bearings can become a viable candidate for use in future engine technology.

  11. SIFT - Design and analysis of a fault-tolerant computer for aircraft control. [Software Implemented Fault Tolerant systems

    Science.gov (United States)

    Wensley, J. H.; Lamport, L.; Goldberg, J.; Green, M. W.; Levitt, K. N.; Melliar-Smith, P. M.; Shostak, R. E.; Weinstock, C. B.

    1978-01-01

    SIFT (Software Implemented Fault Tolerance) is an ultrareliable computer for critical aircraft control applications that achieves fault tolerance by the replication of tasks among processing units. The main processing units are off-the-shelf minicomputers, with standard microcomputers serving as the interface to the I/O system. Fault isolation is achieved by using a specially designed redundant bus system to interconnect the processing units. Error detection and analysis and system reconfiguration are performed by software. Iterative tasks are redundantly executed, and the results of each iteration are voted upon before being used. Thus, any single failure in a processing unit or bus can be tolerated with triplication of tasks, and subsequent failures can be tolerated after reconfiguration. Independent execution by separate processors means that the processors need only be loosely synchronized, and a novel fault-tolerant synchronization method is described.

  12. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  13. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear

  14. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear c

  15. Data Driven Fault Tolerant Control: A Subspace Approach

    NARCIS (Netherlands)

    Dong, J.

    2009-01-01

    The main stream research on fault detection and fault tolerant control has been focused on model based methods. As far as a model is concerned, changes therein due to faults have to be extracted from measured data. Generally speaking, existing approaches process measured inputs and outputs either by

  16. A benchmark for fault tolerant flight control evaluation

    NARCIS (Netherlands)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-01-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return − RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the

  17. Diagnosis and Fault-tolerant Control, 3rd Edition

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan;

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...

  18. Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes

    Directory of Open Access Journals (Sweden)

    Theodore J. Yoder

    2016-09-01

    Full Text Available It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of nontransversal, yet still fault-tolerant, gates that work directly on small quantum codes. Here, we demonstrate precisely the existence of such gates. In particular, we show how the limits of nontransversality can be overcome by performing rounds of intermediate error correction to create logical gates on stabilizer codes that use no ancillas other than those required for syndrome measurement. Moreover, the logical gates we construct, the most prominent examples being Toffoli and controlled-controlled-Z, often complete universal gate sets on their codes. We detail such universal constructions for the smallest quantum codes, the 5-qubit and 7-qubit codes, and then proceed to generalize the approach. One remarkable result of this generalization is that any nondegenerate stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of fault-tolerant gates. Another is the interaction of logical qubits across different stabilizer codes, which, for instance, implies a broadly applicable method of code switching.

  19. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2006-01-01

    where essential navigation information is provided even with multiple faults in instrumentation. The paper proposes a provable correct implementation through auto-generated state-event logics in a supervisory part of the algorithms. Test results from naval vessels document the performance and shows...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  20. Electrical Steering of Vehicles - Fault-tolerant Analysis and Design

    DEFF Research Database (Denmark)

    Blanke, Mogens; Thomsen, Jesper Sandberg

    2006-01-01

    The topic of this paper is systems that need be designed such that no single fault can cause failure at the overall level. A methodology is presented for analysis and design of fault-tolerant architectures, where diagnosis and autonomous reconfiguration can replace high cost triple redundancy sol...

  1. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR...

  2. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2006-01-01

    where essential navigation information is provided even with multiple faults in instrumentation. The paper proposes a provable correct implementation through auto-generated state-event logics in a supervisory part of the algorithms. Test results from naval vessels document the performance and shows...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  3. A Fault-tolerant Development Methodology for Industrial Control Systems

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Thybo, C.

    2004-01-01

    and logically sound manner. This paper presents the employe fault-tolerant development methodology and highlights steps, which have been essential for achieving complete and consistent monitoring capabilities. Fault diagnosis for a commercial refrigeration system is treated as a case-study....

  4. A Fault tolerant Control Supervisory System development Procedurefor Small Satellites

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Larsen, Jesper Abildgaard

    The paper presents a stepwise procedure to develop a fault tolerant control system for small satellites. The procedure is illustrated through implementation on the AAUSAT-II spacecraft. As it is shown the presented procedure requires expertise from several disciplines that are nevertheless...

  5. Fault-tolerant quantum computing with color codes

    CERN Document Server

    Landahl, Andrew J; Rice, Patrick R

    2011-01-01

    We present and analyze protocols for fault-tolerant quantum computing using color codes. We present circuit-level schemes for extracting the error syndrome of these codes fault-tolerantly. We further present an integer-program-based decoding algorithm for identifying the most likely error given the syndrome. We simulated our syndrome extraction and decoding algorithms against three physically-motivated noise models using Monte Carlo methods, and used the simulations to estimate the corresponding accuracy thresholds for fault-tolerant quantum error correction. We also used a self-avoiding walk analysis to lower-bound the accuracy threshold for two of these noise models. We present and analyze two architectures for fault-tolerantly computing with these codes: one with 2D arrays of qubits are stacked atop each other and one in a single 2D substrate. Our analysis demonstrates that color codes perform slightly better than Kitaev's surface codes when circuit details are ignored. When these details are considered, w...

  6. A Survey on Fault Tolerant Multi Agent System

    Directory of Open Access Journals (Sweden)

    Yasir Arfat

    2016-09-01

    Full Text Available A multi-agent system (MAS is formed by a number of agents connected together to achieve the desired goals specified by the design. Usually in a multi agent system, agents work on behalf of a user to accomplish given goals. In MAS co-ordination, co-operation, negotiation and communication are important aspects to achieve fault tolerance in MAS. The multi-agent system is likely to fail in a distributed environment and as an outcome of such, the resources for MAS may not be available due to the failure of an agent, machine crashes, process failure, software failure, communication failure and/or hardware failure. Therefore, many researchers have proposed fault tolerance approaches to overcome the failure in MAS. So we have surveyed these approaches in this paper, whereby our contribution is threefold. Firstly, we have provided taxonomy of faults and techniques in MAS. Secondly, we have provided a qualitative comparison of existing fault tolerance approaches. Thirdly, we have provided an evaluation of existing fault tolerance techniques. Results show that most of the existing schemes are not very efficient, due to various reasons like high computation costs, costly replication and large communication overheads.

  7. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes the challe...

  8. A Fault Tolerant Resource Allocation Architecture for Mobile Grid

    Directory of Open Access Journals (Sweden)

    P. T. Vanathi

    2012-01-01

    Full Text Available Problem statement: In order to achieve high level of reliability and availability, the grid infrastructure should be fault tolerant. Since the failure of resources affects job execution fatally, fault tolerance service is essential to satisfy QoS requirement in grid computing with respect to mobile nodes. Approach: We propose a fault tolerant technique for improving reliability in mobile grid environment considering the node mobility. The Cluster head and monitoring agent was designed in such a way it addresses both resource and network failure and present recovery techniques for overcoming the faults. Results: The proposed model achieves a identifiable performance when compared to the previous model (HRAA. By simulation results, we analyze the node and link failures on parameters such as delivery ratio, throughput and delay against the rate of success. Conclusion: The proposed fault tolerant approach checks for availability of the nodes with least work load for transferring the executed job to cluster head providing an alternate path in case of failure thereby enhancing the reliability of the grid environment.

  9. Electronic Power Switch for Fault-Tolerant Networks

    Science.gov (United States)

    Volp, J.

    1987-01-01

    Power field-effect transistors reduce energy waste and simplify interconnections. Current switch containing power field-effect transistor (PFET) placed in series with each load in fault-tolerant power-distribution system. If system includes several loads and supplies, switches placed in series with adjacent loads and supplies. System of switches protects against overloads and losses of individual power sources.

  10. Fault-Tolerant Process Control Methods and Applications

    CERN Document Server

    Mhaskar, Prashant; Christofides, Panagiotis D

    2013-01-01

    Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: ·         a framework for  detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; ·         controller reconfiguration and safe-parking-based fault-handling methodologies; ·         integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; ·         methods for handling sensor faults and data losses; and ·      ...

  11. Design of fault tolerant control system for steam generator using

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  12. Modular Multilevel Converter Control Strategy with Fault Tolerance

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Eni, Emanuel-Petre; Mathe, Laszlo;

    2013-01-01

    The Modular Multilevel Converter (MMC) technology has recently emerged in VSC-HVDC applications where it demonstrated higher efficiency and fault tolerance compared to the classical 2-level topology. Due to the ability of MMC to connect to HV levels, MMC can be also used in transformerless STATCO...

  13. A Decision Model for Locating Controversial Facilities

    Science.gov (United States)

    Mumphrey, Anthony J.; And Others

    1971-01-01

    Locating controversial public facilities, such as highways or airports, that generate significant public opposition requires a more sophisticated methodology than the traditional least cost" procedures for minimizing physical costs. Two models--a short-run political placation" model and a long-run welfare distribution" model--evaluate the…

  14. Competitive facility location along a highway

    NARCIS (Netherlands)

    Ahn, H.-K.; Cheng, S.-W.; Cheong, O.; Golin, M.; Oostrum, R. van

    2001-01-01

    We consider a competitive facility location problem with two players. Players alternate placing points, one at a time, into the playing arena, until each of them has placed n points. The arena is then subdivided according to the nearest-neighbor rule, and the player whose points control the

  15. Fault Tolerant Control System Design Using Automated Methods from Risk Analysis

    DEFF Research Database (Denmark)

    Blanke, M.

    Fault tolerant controls have the ability to be resilient to simple faults in control loop components.......Fault tolerant controls have the ability to be resilient to simple faults in control loop components....

  16. SIFT - A preliminary evaluation. [Software Implemented Fault Tolerant computer for aircraft control

    Science.gov (United States)

    Palumbo, D. L.; Butler, R. W.

    1983-01-01

    This paper presents the results of a performance evaluation of the SIFT computer system conducted in the NASA AIRLAB facility. The essential system functions are described and compared to both earlier design proposals and subsequent design improvements. The functions supporting fault tolerance are found to consume significant computing resources. With SIFT's specimen task load, scheduled at a 30-Hz rate, the executive tasks such as reconfiguration, clock synchronization and interactive consistency, require 55 percent of the available task slots. Other system overhead (e.g., voting and scheduling) use an average of 50 percent of each remaining task slot.

  17. Facility Location with Double-peaked Preferences

    DEFF Research Database (Denmark)

    Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie

    2015-01-01

    We study the problem of locating a single facility on a real line based on the reports of self-interested agents, when agents have double-peaked preferences, with the peaks being on opposite sides of their locations. We observe that double-peaked preferences capture real-life scenarios and thus...... complement the well-studied notion of single-peaked preferences. We mainly focus on the case where peaks are equidistant from the agents’ locations and discuss how our results extend to more general settings. We show that most of the results for single-peaked preferences do not directly apply to this setting...

  18. Scheduling and Optimization of Fault-Tolerant Embedded Systems with Transparency/Performance Trade-Offs

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru;

    2012-01-01

    In this article, we propose a strategy for the synthesis of fault-tolerant schedules and for the mapping of fault-tolerant applications. Our techniques handle transparency/performance trade-offs and use the faultoccurrence information to reduce the overhead due to fault tolerance. Processes and m...

  19. Optimization of preventive health care facility locations

    Directory of Open Access Journals (Sweden)

    McGregor S

    2010-03-01

    Full Text Available Abstract Background Preventive health care programs can save lives and contribute to a better quality of life by diagnosing serious medical conditions early. The Preventive Health Care Facility Location (PHCFL problem is to identify optimal locations for preventive health care facilities so as to maximize participation. When identifying locations for preventive health care facilities, we need to consider the characteristics of the preventive health care services. First, people should have more flexibility to select service locations. Second, each preventive health care facility needs to have a minimum number of clients in order to retain accreditation. Results This paper presents a new methodology for solving the PHCFL problem. In order to capture the characteristics of preventive health care services, we define a new accessibility measurement that combines the two-step floating catchment area method, distance factor, and the Huff-based competitive model. We assume that the accessibility of preventive health care services is a major determinant for participation in the service. Based on the new accessibility measurement, the PHCFL problem is formalized as a bi-objective model based on efficiency and coverage. The bi-objective model is solved using the Interchange algorithm. In order to accelerate the solving process, we implement the Interchange algorithm by building two new data structures, which captures the spatial structure of the PHCFL problem. In addition, in order to measure the spatial barrier between clients and preventive health care facilities accurately and dynamically, this paper estimates travelling distance and travelling time by calling the Google Maps Application Programming Interface (API. Conclusions Experiments based on a real application for the Alberta breast cancer screening program show that our work can increase the accessibility of breast cancer screening services in the province.

  20. Location selection criteria for supplementary motorway facilities

    Directory of Open Access Journals (Sweden)

    Malobabić Radomir

    2002-01-01

    Full Text Available Supplementary contents along motorways are rather important facilities for a safe and secure functioning of a substantial part of the road transport system. In the paper, it has been stressed that our practice has not dealt with this problem satisfactorily throughout the motorways design process and especially in the realization phase. Therefore, the solving of this major issue ought to be approached systematically and planning oriented so as to achieve an optimal effect of supplementary contents in the motorways’ exploitation. The role of these facilities is multifold. Some relate to a safer road functioning and some enable a more comfortable and secure traveling. To make them work as a system it is indispensable to set up location selection criteria and rules for the complementary facilities Respecting the adequate rhythm and function dominance is exceptionally important as well as establishing the traffic safety and applying high ecological standards.

  1. Fault Tolerance Middleware for a Multi-Core System

    Science.gov (United States)

    Some, Raphael R.; Springer, Paul L.; Zima, Hans P.; James, Mark; Wagner, David A.

    2012-01-01

    Fault Tolerance Middleware (FTM) provides a framework to run on a dedicated core of a multi-core system and handles detection of single-event upsets (SEUs), and the responses to those SEUs, occurring in an application running on multiple cores of the processor. This software was written expressly for a multi-core system and can support different kinds of fault strategies, such as introspection, algorithm-based fault tolerance (ABFT), and triple modular redundancy (TMR). It focuses on providing fault tolerance for the application code, and represents the first step in a plan to eventually include fault tolerance in message passing and the FTM itself. In the multi-core system, the FTM resides on a single, dedicated core, separate from the cores used by the application. This is done in order to isolate the FTM from application faults and to allow it to swap out any application core for a substitute. The structure of the FTM consists of an interface to a fault tolerant strategy module, a responder module, a fault manager module, an error factory, and an error mapper that determines the severity of the error. In the present reference implementation, the only fault tolerant strategy implemented is introspection. The introspection code waits for an application node to send an error notification to it. It then uses the error factory to create an error object, and at this time, a severity level is assigned to the error. The introspection code uses its built-in knowledge base to generate a recommended response to the error. Responses might include ignoring the error, logging it, rolling back the application to a previously saved checkpoint, swapping in a new node to replace a bad one, or restarting the application. The original error and recommended response are passed to the top-level fault manager module, which invokes the response. The responder module also notifies the introspection module of the generated response. This provides additional information to the

  2. Fault-tolerance techniques for SRAM-based FPGAs

    CERN Document Server

    Kastensmidt, Fernanda Lima; Reis, Ricardo

    2006-01-01

    Fault-tolerance in integrated circuits is no longer the exclusive concern of space designers or highly-reliable applications engineers. Today, designers of many next-generation products must cope with reduced margin noises. The continuous evolution of fabrication technology of semiconductor components – shrinking transistor geometry, power supply, speed, and logic density – has significantly reduced the reliability of very deep submicron integrated circuits, in face of various internal and external sources of noise. Field Programmable Gate Arrays (FPGAs), customizable by SRAM cells, are the latest advance in the integrated circuit evolution: millions of memory cells to implement the logic, embedded memories, routing, and embedded microprocessors cores. These re-programmable systems-on-chip platforms must be fault-tolerant to cope with current requirements.

  3. Fault Tolerant Robust Control Applied for Induction Motor (LMI approach

    Directory of Open Access Journals (Sweden)

    Hamouda KHECHINI

    2007-09-01

    Full Text Available This paper foregrounds fault tolerant robust control of uncertain dynamic linear systems in the state space representation. In fact, the industrial systems are more and more complex and the diagnosis process becomes indispensable to guarantee their surety of functioning and availability, that’s why a fault tolerant control law is imperative to achieve the diagnosis. In this paper, we address the problem of state feedback H2 /H∞ mixed with regional pole placement for linear continuous uncertain system. Sufficient conditions for feasibility are derived for a general class of convex regions of the complex plan. The conditions are presented as a collection of linear matrix inequalities (LMI 's. The efficiency and performance of this approach are then tested taking into consideration the robust control of a three- phase induction motor drive with the fluctuation of its parameters during the functioning.

  4. Concepts and Methods in Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecly, M.; Wu, N.E.

    2001-01-01

    Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to technical parts of the plant, to personnel or the environment. Fault-tolerant control combines diagnosis with control methods to handle faults...... in an intelligent way. The aim is to prevent that simple faults develop into serious failure and hence increase plant availability and reduce the risk of safety hazards. Fault-tolerant control merges several disciplines into a common framework to achieve these goals. The desired features are obtained through on...... other situations, complex reconfiguration or on-line controller redesign is required. This paper gives an overview of recent tools to analyze and explore structure and other fundamental properties of an automated system such that any inherent redundancy in the controlled process can be fully utilized...

  5. Reversible Logic Synthesis of Fault Tolerant Carry Skip BCD Adder

    CERN Document Server

    Islam, Md Saiful; 10.3329/jbas.v32i2.2431

    2010-01-01

    Reversible logic is emerging as an important research area having its application in diverse fields such as low power CMOS design, digital signal processing, cryptography, quantum computing and optical information processing. This paper presents a new 4*4 parity preserving reversible logic gate, IG. The proposed parity preserving reversible gate can be used to synthesize any arbitrary Boolean function. It allows any fault that affects no more than a single signal readily detectable at the circuit's primary outputs. It is shown that a fault tolerant reversible full adder circuit can be realized using only two IGs. The proposed fault tolerant full adder (FTFA) is used to design other arithmetic logic circuits for which it is used as the fundamental building block. It has also been demonstrated that the proposed design offers less hardware complexity and is efficient in terms of gate count, garbage outputs and constant inputs than the existing counterparts.

  6. Novel designs for fault tolerant reversible binary coded decimal adders

    Science.gov (United States)

    Zhou, Ri-Gui; Li, Yan-Cheng; Zhang, Man-Qun

    2014-10-01

    Reversible logic circuits have received emerging attentions in recent years. Reversible logic is widely applied in some new technical fields, such as quantum computing, nanocomputing and optical computing and so on. In this paper, three fault tolerant gates are proposed, ZPL gate, ZQC gate and ZC gate. By using the proposed gates, fault tolerant quantum and reversible BCD adder and skip carry BCD adder are designed, which overcome the limitations of the existing methods. The proposed reversible BCD adders have also parity-preserving property. They are better than the existing counterparts, especially in the quantum cost. Proposed designs have been compared with existing designs with respect to the number of gates, number of garbage outputs and quantum cost.

  7. A fault-tolerant software strategy for digital systems

    Science.gov (United States)

    Hitt, E. F.; Webb, J. J.

    1984-01-01

    Techniques developed for producing fault-tolerant software are described. Tolerance is required because of the impossibility of defining fault-free software. Faults are caused by humans and can appear anywhere in the software life cycle. Tolerance is effected through error detection, damage assessment, recovery, and fault treatment, followed by return of the system to service. Multiversion software comprises two or more versions of the software yielding solutions which are examined by a decision algorithm. Errors can also be detected by extrapolation from previous results or by the acceptability of results. Violations of timing specifications can reveal errors, or the system can roll back to an error-free state when a defect is detected. The software, when used in flight control systems, must not impinge on time-critical responses. Efforts are still needed to reduce the costs of developing the fault-tolerant systems.

  8. A benchmark for fault tolerant flight control evaluation

    Science.gov (United States)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-12-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.

  9. Fault-tolerant clock synchronization validation methodology. [in computer systems

    Science.gov (United States)

    Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.

    1987-01-01

    A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.

  10. Fault-tolerant distributed mass storage for LHC computing

    CERN Document Server

    Wiebalck, A; Lindenstruth, V; Stinbeck, T M

    2003-01-01

    In this paper we present the concept and first prototyping results of a modular fault-tolerant distributed mass storage architecture for large Linux PC clusters as they are deployed by the upcoming particle physics experiments. The device masquerading technique using an Enhanced Network Block Device (ENBD) enables local RAID over remote disks as the key concept of the ClusterRAID system. The block level interface to remote files, partitions or disks provided by the ENBD makes it possible to use the standard Linux software RAID to add fault-tolerance to the system. Preliminary performance measurements indicate that the latency is comparable to a local hard drive. With four disks throughput rates of up to 55MB/s were achieved with first prototypes for a RAIDO setup, and about 40M/s for a RAID5 setup. (29 refs).

  11. A Blueprint for a Topologically Fault-tolerant Quantum Computer

    CERN Document Server

    Bonderson, Parsa; Freedman, Michael; Nayak, Chetan

    2010-01-01

    The advancement of information processing into the realm of quantum mechanics promises a transcendence in computational power that will enable problems to be solved which are completely beyond the known abilities of any "classical" computer, including any potential non-quantum technologies the future may bring. However, the fragility of quantum states poses a challenging obstacle for realization of a fault-tolerant quantum computer. The topological approach to quantum computation proposes to surmount this obstacle by using special physical systems -- non-Abelian topologically ordered phases of matter -- that would provide intrinsic fault-tolerance at the hardware level. The so-called "Ising-type" non-Abelian topological order is likely to be physically realized in a number of systems, but it can only provide a universal gate set (a requisite for quantum computation) if one has the ability to perform certain dynamical topology-changing operations on the system. Until now, practical methods of implementing thes...

  12. Universal Fault-Tolerant Computation on Decoherence-Free Subspaces

    CERN Document Server

    Bacon, D J; Lidar, D A; Whaley, K B

    2000-01-01

    A general scheme to perform universal quantum computation fault-tolerantly within decoherence-free subspaces (DFSs) of a system's Hilbert space is derived. This scheme leads to the first fault-tolerant realization of universal quantum computation on DFSs with the properties that (i) only one- and two-qubit interactions are required, and (ii) the system remains within the DFS throughout the entire implementation of a quantum gate. We show explicitly how to perform universal computation on clusters of the four-qubit DFS encoding one logical qubit each under "collective decoherence" (qubit-permutation-invariant system-bath coupling). Our results have immediate relevance to a number of proposed quantum computer implementations, in particular those in which the internal system Hamiltonian is of the Heisenberg type, such as spin-spin coupled quantum dots.

  13. Fault Tolerance in ZigBee Wireless Sensor Networks

    Science.gov (United States)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  14. Design methods for fault-tolerant finite state machines

    Science.gov (United States)

    Niranjan, Shailesh; Frenzel, James F.

    1993-01-01

    VLSI electronic circuits are increasingly being used in space-borne applications where high levels of radiation may induce faults, known as single event upsets. In this paper we review the classical methods of designing fault tolerant digital systems, with an emphasis on those methods which are particularly suitable for VLSI-implementation of finite state machines. Four methods are presented and will be compared in terms of design complexity, circuit size, and estimated circuit delay.

  15. Employment of Reduced Precision Redundancy for Fault Tolerant FPGA Applications

    OpenAIRE

    2009-01-01

    2009 17th IEEE Symposium on Field Programmable Custom Computing Machines This research explores the employment of Reduced Precision Redundancy (RPR) as a powersaving alternative to traditional Triple Modular Redundancy (TMR). This paper focuses on the details of RPR implementation and the effect of RPR fault tolerance on the performance of spacecraft systems. RPR-protected system performance is evaluated using a signal-to-noise ratio analogy developed with MATLAB an...

  16. GEMS: A Fault Tolerant Grid Job Management System

    OpenAIRE

    Tadepalli, Sriram Satish

    2003-01-01

    The Grid environments are inherently unstable. Resources join and leave the environment without any prior notification. Application fault detection, checkpointing and restart is of foremost importance in the Grid environments. The need for fault tolerance is especially acute for large parallel applications since the failure rate grows with the number of processors and the duration of the computation. A Grid job management system hides the heterogeneity of the Grid and the complexity of the ...

  17. Fault- Tolerant Design Techniques in A CMP Architecture

    Institute of Scientific and Technical Information of China (English)

    YAO Wen-bin; WANG Dong-sheng

    2005-01-01

    Single-chip multiprocessor ( CMP ) combined with the fault-tolerant(FT) techniques offers an ideal architecture to achieve high availability on the basis of sustaining high computing performance. FT design of a single-chip multiprocessor is described, including the techniques from hardware redundancy to software support and firmware strategy.The design aims at masking the influences of errors and automatically correcting the system states.

  18. FAULT TOLERANT SCHEDULING STRATEGY FOR COMPUTATIONAL GRID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    MALARVIZHI NANDAGOPAL,

    2010-09-01

    Full Text Available Computational grids have the potential for solving large-scale scientific applications using heterogeneous and geographically distributed resources. In addition to the challenges of managing and scheduling these applications, reliability challenges arise because of the unreliable nature of grid infrastructure. Two major problems that are critical to the effective utilization of computational resources are efficient scheduling of jobs and providing fault tolerance in a reliable manner. This paper addresses these problems by combining the checkpoint replication based fault tolerance echanism with Minimum Total Time to Release (MTTR job scheduling algorithm. TTR includes the service time of the job, waiting time in the queue, transfer of input and output data to and from the resource. The MTTR algorithm minimizes the TTR by selecting a computational resource based on job requirements, job characteristics and hardware features of the resources. The fault tolerance mechanism used here sets the job checkpoints based on the resource failure rate. If resource failure occurs, the job is restarted from its last successful state using a checkpoint file from another grid resource. Acritical aspect for an automatic recovery is the availability of checkpoint files. A strategy to increase the availability of checkpoints is replication. Replica Resource Selection Algorithm (RRSA is proposed to provide Checkpoint Replication Service (CRS. Globus Tool Kit is used as the grid middleware to set up a grid environment and evaluate the performance of the proposed approach. The monitoring tools Ganglia and NWS (Network Weather Service are used to gather hardware and network details respectively. The experimental results demonstrate that, the proposed approach effectively schedule the grid jobs with fault tolerant way thereby reduces TTR of the jobs submitted in the grid. Also, it increases the percentage of jobs completed within specified deadline and making the grid

  19. Algorithm-dependent fault tolerance for distributed computing

    Energy Technology Data Exchange (ETDEWEB)

    P. D. Hough; M. e. Goldsby; E. J. Walsh

    2000-02-01

    Large-scale distributed systems assembled from commodity parts, like CPlant, have become common tools in the distributed computing world. Because of their size and diversity of parts, these systems are prone to failures. Applications that are being run on these systems have not been equipped to efficiently deal with failures, nor is there vendor support for fault tolerance. Thus, when a failure occurs, the application crashes. While most programmers make use of checkpoints to allow for restarting of their applications, this is cumbersome and incurs substantial overhead. In many cases, there are more efficient and more elegant ways in which to address failures. The goal of this project is to develop a software architecture for the detection of and recovery from faults in a cluster computing environment. The detection phase relies on the latest techniques developed in the fault tolerance community. Recovery is being addressed in an application-dependent manner, thus allowing the programmer to take advantage of algorithmic characteristics to reduce the overhead of fault tolerance. This architecture will allow large-scale applications to be more robust in high-performance computing environments that are comprised of clusters of commodity computers such as CPlant and SMP clusters.

  20. Design Approach for Fault Tolerance in FPGA Architecture

    Directory of Open Access Journals (Sweden)

    Ms. Shweta S. Meshram

    2011-03-01

    Full Text Available Failures of nano-metric technologies owing to defects and shrinking process tolerances give rise tosignificant challenges for IC testing. In recent years the application space of reconfigurable devices hasgrown to include many platforms with a strong need for fault tolerance. While these systems frequentlycontain hardware redundancy to allow for continued operation in the presence of operational faults, theneed to recover faulty hardware and return it to full functionality quickly and efficiently is great. Inaddition to providing functional density, FPGAs provide a level of fault tolerance generally not found inmask-programmable devices by including the capability to reconfigure around operational faults in thefield. Reliability and process variability are serious issues for FPGAs in the future. With advancement inprocess technology, the feature size is decreasing which leads to higher defect densities, moresophisticated techniques at increased costs are required to avoid defects. If nano-technology fabricationare applied the yield may go down to zero as avoiding defect during fabrication will not be a feasibleoption Hence, feature architecture have to be defect tolerant. In regular structure like FPGA, redundancyis commonly used for fault tolerance. In this work we present a solution in which configuration bit-streamof FPGA is modified by a hardware controller that is present on the chip itself. The technique usesredundant device for replacing faulty device and increases the yield.

  1. SABRE: a bio-inspired fault-tolerant electronic architecture.

    Science.gov (United States)

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  2. Resource requirements for a fault-tolerant quantum Fourier transform

    Science.gov (United States)

    Goto, Hayato; Nakamura, Satoshi; Kujiraoka, Mamiko; Ichimura, Kouichi

    2015-03-01

    The quantum Fourier transform (QFT) is a basic subroutine for most quantum algorithms providing an exponential speedup over classical ones. We investigate resource requirements for a fault-tolerant QFT. To implement single-qubit rotations for a QFT in a fault-tolerant manner, we examine three types of approaches: ancilla-free gate synthesis, ancilla-assisted gate synthesis, and state distillation. While the gate synthesis approximates single-qubit rotations with basic quantum operations, the state distillation enables to perform specific single-qubit rotations required for the QFT exactly. It is unknown, however, which approach is better for the QFT. We estimated the resource requirement for a QFT in each case, where the resource is measured by the total number of the π / 8 gates denoted by T, which is called the T count. Contrary to the initial expectation, the total T count for the state distillation is considerably larger than those for the ancilla-free and ancilla-assisted gate synthesis. Thus, we conclude that the ancilla-assisted gate synthesis is the best for a fault-tolerant QFT so far.

  3. Design and Verification of Fault-Tolerant Components

    DEFF Research Database (Denmark)

    Zhang, Miaomiao; Liu, Zhiming; Ravn, Anders Peter

    2009-01-01

    We present a systematic approach to design and verification of fault-tolerant components with real-time properties as found in embedded systems. A state machine model of the correct component is augmented with internal transitions that represent hypothesized faults. Also, constraints on the occur......We present a systematic approach to design and verification of fault-tolerant components with real-time properties as found in embedded systems. A state machine model of the correct component is augmented with internal transitions that represent hypothesized faults. Also, constraints...... relatively detailed such that they can serve directly as blueprints for engineering, and yet be amenable to exhaustive verication. The approach is illustrated with a design of a triple modular fault-tolerant system that is a real case we received from our collaborators in the aerospace field. We use UPPAAL...... to model and check this design. Model checking uses concrete parameters, so we extend the result with parametric analysis using abstractions of the automata in a rigorous verification....

  4. Redundant finite rings for fault-tolerant signal processors

    Science.gov (United States)

    Jullien, Graham A.; Bizzan, S. S.; Wigley, Neil M.; Miller, W. C.

    1994-10-01

    Redundant Residue Number Systems (RRNS) have been proposed as suitable candidates for fault tolerance in compute intensive applications. The redundancy is based on multiple projections to moduli sub-sets and conducting a search for results that lie in a so-called illegitimate range. This paper presents RRNS fault tolerant procedures for a recently introduced finite polynomial ring mapping procedure (modulus replication RNS). The mapping technique dispenses with the need for many relatively prime ring moduli, which is a major draw-back with conventional RRNS systems. Although double, triple, and quadrupole modular redundancy can be implemented in the polynomial mapping structure, polynomial coefficient circuitry, or the independent direct product ring computational channels, for error detection and/or correction, this paper discusses the implementation of redundant rings which are generated by (1) redundant residues, (2) spare general computational channels, or (3) a combination of the two. The first architecture is suitable for RNS embedding in the MRRNS, and the second for single moduli mappings. The combination architecture allows a trade-off between the two extremes. The application area is in fault tolerant compute intensive DSP arrays.

  5. PERFORMANCE ANALYSIS OF MINIMAL PATH FAULT TOLERANT ROUTING IN NOC

    Institute of Scientific and Technical Information of China (English)

    M. Ahmed; V. Laxmi; M. S. Gaur

    2011-01-01

    Occurrence of faults in Network on Chip (NoC) is inevitable as the feature size is continuously decreasing and processing elements are increasing in numbers.Faults can be revocable if it is transient.Transient fault may occur inside router,or in the core or in communication wires.Examples of transient faults are overflow of buffers in router,clock skew,cross talk,etc..Revocation of transient faults can be done by retransmission of faulty packets using oblivious or adaptive routing algorithms.Irrevocable faults causes non-functionality of segment and mainly occurs during fabrication process.NoC reliability increases with the efficient routing algorithms,which can handle the maximum faults without deadlock in network.As transient faults are temporary and can be easily revoked using retransmission of packet,permanent faults require efficient routing to route the packet by bypassing the nonfunctional segments.Thus,our focus is on the analysis of adaptive minimal path fault tolerant routing to handle the permanent faults.Comparative analysis between partial adaptive fault tolerance routing West-First,North-Last,Negative-First,Odd Even,and Minimal path Fault Tolerant routing (MinFT) algorithms with the nodes and links failure is performed using NoC Interconnect RoutinG and Application Modeling simulator (NIRGAM) for the 2D Mesh topology.Result suggests that MinFT ensures data transmission under worst conditions as compared to other adaptive routing algorithms.

  6. On Fault Tolerance of 3-Dimensional Mesh Networks

    Institute of Scientific and Technical Information of China (English)

    Gao-Cai Wang; Jian-Er Chen; Guo-Jun Wang

    2004-01-01

    In this paper, the concept of k-submesh and k-submesh connectivity fault tolerance model is proposed. And the fault tolerance of 3-D mesh networks is studied under a more realistic model in which each network node has an independent failure probability. It is first observed that if the node failure probability is fixed, then the connectivity probability of 3-D mesh networks can be arbitrarily small when the network size is sufficiently large. Thus, it is practically important for multicomputer system manufacturer to determine the upper bound for node failure probability when the probability of network connectivity and the network size are given.A novel technique is developed to formally derive lower bounds on the connectivity probability for 3-D mesh networks. The study shows that 3-D mesh networks of practical size can tolerate a large number of faulty nodes thus are reliable enough for multicomputer systems. A number of advantages of 3-D mesh networks over other popular network topologies are given. Compared to 2-D mesh networks, 3-D mesh networks are much stronger in tolerating faulty nodes, while for practical network size, the fault tolerance of 3-D mesh networks is comparable with that of hypercube networks but enjoys much lower node degree.

  7. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Science.gov (United States)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  8. 7 CFR 1738.12 - Location of facilities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Location of facilities. 1738.12 Section 1738.12... Location of facilities. RUS will make broadband loans for facilities which RUS determines are necessary to... facilities financed with loan funds to be located outside of eligible rural communities. ...

  9. 30 CFR 71.401 - Location of facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of facilities. 71.401 Section 71.401... Location of facilities. Bathhouses, change rooms, and sanitary flush toilet facilities shall be in a location convenient for the use of the miners. Where these facilities are designed to serve more than one...

  10. The optimization of global fault tolerant trajectory for redundant manipulator based on self-motion

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2015-01-01

    Full Text Available The redundancy feature of manipulators provides the possibility for the fault tolerant trajectory planning. Aiming at the completion of the specific task, an algorithm of global fault tolerant trajectory optimization for redundant manipulator based on the self-motion is proposed in this paper. Firstly, inverse kinematics equation of single redundancy manipulator based on self-motion variable and null-space velocity array of Jacobian are analyzed. Secondly, the mathematical description of fault tolerance criteria of the configuration of manipulator is established and the fault tolerance configuration group of manipulator is obtained by using iteration traversal under the fault tolerance criteria. Then, considering the joint limits and minimum the energy consumption as the optimization target, the global fault tolerant joint trajectory is achieved. Finally, simulation for 7 degree of freedom (DOF manipulator is performed, by which the effectiveness of the algorithm is validated.

  11. The New Fault Tolerant Onboard Computer for Microsatellite Missions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper describes an onboard computer with dual processing modules. Each processing module is composed of 32 bit ARM reduced instruction set computer processor and other commercial-off-the-shelf devices. A set of fault handling mechanisms is implemented in the computer system, which enables the system to tolerate a single fault. The onboard software is organized around a set of processes that communicate among each other through a routing process. Meeting an extremely tight set of constraints that include mass, volume, power consumption and space environmental conditions, the fault-tolerant onboard computer has excellent data processing capability that can meet the erquirements of micro-satellite missions.

  12. Exact Regenerating Codes for Byzantine Fault Tolerance in Distributed Storage

    CERN Document Server

    Han, Yunghsiang S; Mow, Wai Ho

    2011-01-01

    Due to the use of commodity software and hardware, crash-stop and Byzantine failures are likely to be more prevalent in today's large-scale distributed storage systems. Regenerating codes have been shown to be a more efficient way to disperse information across multiple nodes and recover crash-stop failures in the literature. In this paper, we present the design of regeneration codes in conjunction with integrity check that allows exact regeneration of failed nodes and data reconstruction in presence of Byzantine failures. A progressive decoding mechanism is incorporated in both procedures to leverage computation performed thus far. The fault-tolerance and security properties of the schemes are also analyzed.

  13. Fault-Tolerant Design of Spaceborne Mass Memory System

    Institute of Scientific and Technical Information of China (English)

    张宇宁; 常亮; 杨根庆; 李华旺

    2010-01-01

    A fault-tolerant spaceborne mass memory architecture is presented based on entirely commercial-off-theshelf components.The highly modularized and scalable memory kernel supports the hierarchical design and is well suited to redundancy structure.Error correcting code(ECC) and periodical scrubbing are used to deal with bit errors induced by single event upset.For 8-bit wide devices, the parallel Reed Solomon(10, 8) can perform coder/decoder calculations in one clock cycle, achieving a data rate of several Gb/...

  14. A Benchmark Evaluation of Fault Tolerant Wind Turbine Control Concepts

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    As the world’s power supply to a larger and larger degree depends on wind turbines, it is consequently and increasingly important that these are as reliable and available as possible. Modern fault tolerant control (FTC) could play a substantial part in increasing reliability of modern wind turbin...... accommodation is handled in software sensor and actuator blocks. This means that the wind turbine controller can continue operation as in the fault free case. The other two evaluated solutions show some potential but probably need improvements before industrial applications....

  15. Fault-tolerant and Diagnostic Methods for Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2003-01-01

    Precise and reliable navigation is crucial, and for reasons of safety, essential navigation instruments are often duplicated. Hardware redundancy is mostly used to manually switch between instruments should faults occur. In contrast, diagnostic methods are available that can use analytic redundancy...... to diagnose faults and autonomously provide valid navigation data, disregarding any faulty sensor data and use sensor fusion to obtain a best estimate for users. This paper discusses how diagnostic and fault-tolerant methods are applicable in marine systems. An example chosen is sensor fusion for navigation...

  16. Passive Fault tolerant Control of an Inverted Double Pendulum

    DEFF Research Database (Denmark)

    Niemann, H.; Stoustrup, Jakob

    2003-01-01

    A passive fault tolerant control scheme is suggested, in which a nominal controller is augmented with an additional block, which guarantees stability and performance after the occurrence of a fault. The method is based on the Youla parameterization, which requires the nominal controller to be imp...... to be implemented in the observer based form. The proposed method is applied to a double inverted pendulum system, for which an H controller has been designed and verified in a lap setup. In this case study, the fault is a degradation of the tacho loop....

  17. Fully fault tolerant quantum computation with non-deterministic gates

    CERN Document Server

    Li, Ying; Stace, Thomas M; Benjamin, Simon C

    2010-01-01

    In certain approaches to quantum computing the operations between qubits are non-deterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should assumed to be failure prone. In the logical limit of this architecture each component contains only one qubit. Here we derive thresholds for fault tolerant quantum computation under such extreme paradigms. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded, meanwhile the rate of unknown errors should not exceed 2 in 10^4 operations.

  18. Fault Tolerant Air Bubble Sensor using Triple Modular Redundancy Method

    Directory of Open Access Journals (Sweden)

    Kuspriyanto Kuspriyanto

    2013-03-01

    Full Text Available Detection of air bubbles in the blood is important for various medical treatments that use Extracorporeal Blood Circuits (ECBC, such as hemodialysis, hemofiltration and cardio-pulmonary bypass. Therefore a reliable air bubble detector is needed. In this study designed a fault tolerant air bubble detector. Triple Modular Redundancy (TMR method is used on the sensor section. A voter circuit of the TMR will choose one of three sensor output to be processed further. Application of TMR will prevent errors in the detection of air bubbles, especially if the sensor fails to work

  19. Fault tolerant issues in the BTeV trigger

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Appel et al.

    2002-12-03

    The BTeV trigger performs sophisticated computations using large ensembles of FPGAs, DSPs, and conventional microprocessors. This system will have between 5,000 and 10,000 computing elements and many networks and data switches. While much attention has been devoted to developing efficient algorithms, the need for fault-tolerant, fault-adaptive, and flexible techniques and software to manage this huge computing platform has been identified as one of the most challenging aspects of this project. They describe the problem and offer an approach to solving it based on a distributed, hierarchical fault management system.

  20. Data center networks topologies, architectures and fault-tolerance characteristics

    CERN Document Server

    Liu, Yang; Veeraraghavan, Malathi; Lin, Dong; Hamdi, Mounir

    2013-01-01

    This SpringerBrief presents a survey of data center network designs and topologies and compares several properties in order to highlight their advantages and disadvantages. The brief also explores several routing protocols designed for these topologies and compares the basic algorithms to establish connections, the techniques used to gain better performance, and the mechanisms for fault-tolerance. Readers will be equipped to understand how current research on data center networks enables the design of future architectures that can improve performance and dependability of data centers. This con

  1. 75 FR 19555 - NARA Facility Locations and Hours

    Science.gov (United States)

    2010-04-15

    ..., and 1280 [FDMS Docket NARA-10-0002] RIN 3095-AB66 NARA Facility Locations and Hours AGENCY: National... Regional Records Service Office, and the addition of facility information for the locations of two NARA... facility added. * * * * * PART 1253--LOCATION OF RECORDS AND HOURS OF USE 0 3. The authority citation for...

  2. 30 CFR 75.1712-2 - Location of surface facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of surface facilities. 75.1712-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location...

  3. 10 CFR 75.6 - Facility and location reporting.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility and location reporting. 75.6 Section 75.6 Energy... AGREEMENT General Provisions § 75.6 Facility and location reporting. (a) Except where otherwise specified... that its facility or location is required to report under the Safeguards Agreement shall make its...

  4. Prognostics Enhancemend Fault-Tolerant Control with an Application to a Hovercraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault-Tolerant Control (FTC) is an emerging area of engineering and scientific research that integrates prognostics, health management concepts and intelligent...

  5. Research on Fault Tolerant Scheduling Algorithms of Web Cluster Based on Probability

    Institute of Scientific and Technical Information of China (English)

    LIU An-feng; CHEN Zhi-gang; LONG Guo-ping

    2005-01-01

    Aiming at the soft real-time fault tolerant demand of critical web applications at present, such as E-commerce, a new fault tolerant scheduling algorithm based on probability is proposed. To achieve fault tolerant scheduling,the primary/slave backup technology is applied on the basis of task's self similar accessing characteristics, when the primary task completed successfully, the resources allocated for the slave task are reclaimed, thus advancing system's efficiency.Experimental results demonstrate on the premise of satisfying system's certain fault tolerant probability, task's schedulabilistic probability is improved, especially, the higher task's self similar degree is, the more obviously the utilization of system resources is enhanced.

  6. A Review of the Discrete Facility Location Problem

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; XU Yu; LI Yi-xue

    2006-01-01

    In this paper we attempt to classify discrete facility location problems in the right perspective and propose discrete facility location problems that include: median problems, covering problems, center problems, multi-commodities problems and dynamic problems on the basis of former research by other scholars. We consider vehicle routing location problems, inventory-location problems and hub problems as a recent research field of discrete facility location problems according to literature from the last 10 years.

  7. Fault tolerant, radiation hard, high performance digital signal processor

    Science.gov (United States)

    Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke

    1990-01-01

    An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.

  8. Architecting Fault Tolerance with Exception Handling: Verification and Validation

    Institute of Scientific and Technical Information of China (English)

    Patrick H. S. Brito; Rogério de Lemos; Cecília M. F. Rubira; Eliane Martins

    2009-01-01

    When building dependable systems by integrating untrusted software components that were not originally designed to interact with each other, it is likely the occurrence of architectural mismatches related to assumptions in their failure behaviour. These mismatches, if not prevented during system design, have to be tolerated during runtime. This paper presents an architectural abstraction based on exception handling for structuring fault-tolerant software systems.This abstraction comprises several components and connectors that promote an existing untrusted software element into an idealised fault-tolerant architectural element. Moreover, it is considered in the context of a rigorous software development approach based on formal methods for representing the structure and behaviour of the software architecture. The proposed approach relies on a formal specification and verification for analysing exception propagation, and verifying important dependability properties, such as deadlock freedom, and scenarios of architectural reconfiguration. The formal models are automatically generated using model transformation from UML diagrams: component diagram representing the system structure, and sequence diagrams representing the system behaviour. Finally, the formal models are also used for generating unit and integration test cases that are used for assessing the correctness of the source code. The feasibility of the proposed architectural approach was evaluated on an embedded critical case study.

  9. Design of Reliable Adaptive Filter with Fault Tolerance Using DSP

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, D. W.; Lee, J. W. [Electronics and Telecommunications Research Institute, Taejon (Korea); Seo, B. H. [Kyungbok National University, Taegu (Korea)

    2001-01-01

    LSM algorithm has been used for plant identifier and noise cancellation. This algorithm has been researched for performance enhancement of filtering. The design and development of a reliable system has been becoming a key issue in industry field because the reliability of a system is considered as an important factor to perform the system's function successfully. And the computing with reliability and fault tolerance is a important factor in the case of aviation, system communication, and nuclear plant. This paper presents design of reliable adaptive filter with fault tolerance. Generally, redundancy is used for reliability. In this case it needs computing or circuit for voting mechanism or computing for fault detection or switching part. But this presented Filter is not in need of computing for voting mechanism, or fault detection. Therefore it has simple computing , and practicality for application. And in this paper, reliability of adaptive filter is analyzed. The effectiveness of the proposed adaptive filter is demonstrated to the case studies of plant identifier and noise cancellation by using DSP. (author). 9 refs., 18 figs.

  10. Fault-tolerance in Two-dimensional Topological Systems

    Science.gov (United States)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an

  11. An approach to experimental evaluation of real-time fault-tolerant distributed computing schemes

    Science.gov (United States)

    Kim, K. H.

    1989-01-01

    A testbed-based approach to the evaluation of fault-tolerant distributed computing schemes is discussed. The approach is based on experimental incorporation of system structuring and design techniques into real-time distributed-computing testbeds centered around tightly coupled microcomputer networks. The effectiveness of this approach has been experimentally confirmed. Primary advantages of this approach include the accuracy of the timing and logical-complexity data and the degree of assurance of the practical effectiveness of the scheme evaluated. Various design issues encountered in the course of establishing the network testbed facilities are discussed, along with their augmentation to support some experiments. The shortcomings of the testbeds are also discussed together with the desired extensions of the testbeds.

  12. Fault-Tolerant Technique in the Cluster Computation of the Digital Watershed Model

    Institute of Scientific and Technical Information of China (English)

    SHANG Yizi; WU Baosheng; LI Tiejian; FANG Shenguang

    2007-01-01

    This paper describes a parallel computing platform using the existing facilities for the digital watershed model. In this paper, distributed multi-layered structure is applied to the computer cluster system, and the MPI-2 is adopted as a mature parallel programming standard. An agent is introduced which makes it possible to be multi-level fault-tolerant in software development. The communication protocol based on checkpointing and rollback recovery mechanism can realize the transaction reprocessing. Compared with conventional platform, the new system is able to make better use of the computing resource. Experimental results show the speedup ratio of the platform is almost 4 times as that of the conventional one, which demonstrates the high efficiency and good performance of the new approach.

  13. 7 CFR 1735.91 - Location of facilities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Location of facilities. 1735.91 Section 1735.91 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF... All Acquisitions and Mergers § 1735.91 Location of facilities. Telephone facilities to be acquired...

  14. The solution of location problems with certain existing facility structures

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1983-01-01

    It is known that in the Euclidean distance case, the optimal minisum location of a new facility in relation to four existing facilities is at the intersection of the two lines joining two pairs of the facilities. The authors extend this concept to minisum problems having any even number of existing...... facilities and characterized by generalized distance norms...

  15. Online Reconfigurable Self-Timed Links for Fault Tolerant NoC

    Directory of Open Access Journals (Sweden)

    Teijo Lehtonen

    2007-01-01

    of the links. The fault tolerance properties are analyzed using a fault model containing temporary, intermittent, and permanent faults that occur both as bursts and as single faults. The results show a considerable enhancement in the fault tolerance at the cost of performance and area, and with only a slight increase in power consumption.

  16. Decentralized Fault Tolerant Control for a Class of Interconnected Nonlinear Systems.

    Science.gov (United States)

    Shao, Shuai; Yang, Hao; Jiang, Bin; Cheng, Shuyao

    2016-11-22

    This paper proposes a decentralized fault tolerant methodology for a class of interconnected nonlinear systems. The key novelty of our proposed method is that fault tolerant control can be achieved without necessarily exchanging the state information between the subsystems and the couplings' effect can be dealt with utilizing the cyclic-small-gain methodology. Simulation results demonstrate effectively the validity of our proposed approach.

  17. Design study of Software-Implemented Fault-Tolerance (SIFT) computer

    Science.gov (United States)

    Wensley, J. H.; Goldberg, J.; Green, M. W.; Kutz, W. H.; Levitt, K. N.; Mills, M. E.; Shostak, R. E.; Whiting-Okeefe, P. M.; Zeidler, H. M.

    1982-01-01

    Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view.

  18. SIFT - Multiprocessor architecture for Software Implemented Fault Tolerance flight control and avionics computers

    Science.gov (United States)

    Forman, P.; Moses, K.

    1979-01-01

    A brief description of a SIFT (Software Implemented Fault Tolerance) Flight Control Computer with emphasis on implementation is presented. A multiprocessor system that relies on software-implemented fault detection and reconfiguration algorithms is described. A high level reliability and fault tolerance is achieved by the replication of computing tasks among processing units.

  19. A droplet routing technique for fault-tolerant digital microfluidic devices

    NARCIS (Netherlands)

    Zhang, X.; van Proosdij, Frits; Kerkhoff, Hans G.

    2008-01-01

    Abstract—Efficient droplet routing is one of the key approaches for realizing fault-tolerant microfluidic biochips. It requires that run-time diagnosis and fault recovery can be made possible in such systems. This paper describes a droplet routing technique for a fault-tolerant digital microfluidic

  20. A droplet routing technique for fault-tolerant digital microfluidic devices

    NARCIS (Netherlands)

    Zhang, Xiao; Proosdij, van Frits; Kerkhoff, Hans G.

    2008-01-01

    Abstract—Efficient droplet routing is one of the key approaches for realizing fault-tolerant microfluidic biochips. It requires that run-time diagnosis and fault recovery can be made possible in such systems. This paper describes a droplet routing technique for a fault-tolerant digital microfluidic

  1. Fault-Tolerant Design and Testing of USB2.0 Peripheral Devices IP Core System

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaoping; WEI Yuanfeng

    2007-01-01

    Universal serial bus 2.0 (USB2.0) is a kind of mainstream interface technology. The traditional USB developing is only to develop USB peripheral devices. For the USB2.0 peripheral devices IP core system that has wide application foreground, some interference inevitably exists in signal transmitting. Some fault-tolerant design and test methods must be adopted in order to correctly transmit and receive data. Combining with a project, this paper introduces in detail about measures, hardware implement, and test methods of fault-tolerant design about USB2.0 peripheral devices IP core system. Fault-tolerant design measures, noise reduction measures of signal processing, fault-tolerant methods about data encode and decode, package identification (ID) field fault-tolerant methods, and cyclic redundancy checks fault-tolerant methods are discussed. The paper also presents some hardware implement methods about fault-tolerant design of data decode and test methods about fault-tolerant design of USB2.0 IP core system. These methods can offer the reference for development of USB2.0 system in all kinds of electronics instrumentations.

  2. Fault-Tolerant Approach for Modular Multilevel Converters under Submodule Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Tian, Yanjun; Zhu, Rongwu;

    2016-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The fault-tolerant operation is one of the important issues for the MMC. This paper proposed a fault-tolerant approac...

  3. Energy-Aware Synthesis of Fault-Tolerant Schedules for Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Poulsen, Kåre Harbo; Pop, Paul; Izosimov, Viacheslav

    2007-01-01

    This paper presents a design optimisation tool for distributed embedded real-time systems that 1) decides mapping, fault-tolerance policy and generates a fault-tolerant schedule, 2) is targeted for hard real-time, 3) has hard reliability goal, 4) generates static schedule for processes and messages...

  4. Fast architecture-level synthesis of fault-tolerant flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Huang, Wei Lun; Gupta, Ankur; Roy, Sudip

    2017-01-01

    in turn results in wastage of expensive reagent fluids. In order to make the chip fault-tolerant, the state-of-the-art technique adopts simulated annealing (SA) based approach to synthesize a fault-tolerant architecture. However, the SA method is time consuming and non-deterministic with over...

  5. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line...

  6. A fault-tolerant voltage measurement method for series connected battery packs

    Science.gov (United States)

    Xia, Bing; Mi, Chris

    2016-03-01

    This paper proposes a fault-tolerant voltage measurement method for battery management systems. Instead of measuring the voltage of individual cells, the proposed method measures the voltage sum of multiple battery cells without additional voltage sensors. A matrix interpretation is developed to demonstrate the viability of the proposed sensor topology to distinguish between sensor faults and cell faults. A methodology is introduced to isolate sensor and cell faults by locating abnormal signals. A measurement electronic circuit is proposed to implement the design concept. Simulation and experiment results support the mathematical analysis and validate the feasibility and robustness of the proposed method. In addition, the measurement problem is generalized and the condition for valid sensor topology is discovered. The tuning of design parameters are analyzed based on fault detection reliability and noise levels.

  7. A Replication-Based Mechanism for Fault Tolerance in MapReduce Framework

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available MapReduce is a programming model and an associated implementation for processing and generating large data sets with a parallel, distributed algorithm on a cluster. In cloud environment, node and task failure are no longer accidental but a common feature of large-scale systems. Current rescheduling-based fault tolerance method in MapReduce framework failed to fully consider the location of distributed data and the computation and storage overhead of rescheduling failure tasks. Thus, a single node failure will increase the completion time dramatically. In this paper, a replication-based mechanism is proposed, which takes both task and node failure into consideration. Experimental results show that, compared with default mechanism in Hadoop, our mechanism can significantly improve the performance at failure time, with more than 30% decreasing in execution time.

  8. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters......Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable...... degraded performance even in the faulty case. In this thesis, we have designed such controllers for climate control systems for livestock buildings in three steps: Deriving a model for the climate control system of a pig-stable. Designing a active fault diagnosis (AFD) algorithm for different kinds...

  9. Incorporating Fault Tolerance in LEACH Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rudranath Mitra

    2012-06-01

    Full Text Available Routing protocols have been a challenging issue in wireless sensor networks. WSN is one of the focussed are of research because of its multi-aspect applications. These networks are self-organized using clustering algorithms to conserve energy. LEACH (Low-Energy Adaptive Clustering Hierarchy protocol[1] is one of the significant protocols for routing in WSN. In LEACH, sensor nodes are organized in several small clusters where there are cluster heads in each cluster. These CHs gather data from their local clusters aggregate them & send them to the base station. On the LEACH many new schemes have been proposed to enhance its activity like its efficiency, security etc. In this paper the fault tolerance issue is being incorporated.

  10. On the Practicality of `Practical' Byzantine Fault Tolerance

    CERN Document Server

    Chondros, Nikos; Roussopoulos, Mema

    2011-01-01

    Byzantine Fault Tolerant (BFT) systems are considered by the systems research community to be state of the art with regards to providing reliability in distributed systems. BFT systems provide safety and liveness guarantees with reasonable assumptions, amongst a set of nodes where at most f nodes display arbitrarily incorrect behaviors, known as Byzantine faults. Despite this, BFT systems are still rarely used in practice. In this paper we describe our experience, from an application developer's perspective, trying to leverage the publicly available and highly-tuned PBFT middleware (by Castro and Liskov), to provide provable reliability guarantees for an electronic voting application with high security and robustness needs. We describe several obstacles we encountered and drawbacks we identified in the PBFT approach. These include some that we tackled, such as lack of support for dynamic client management and leaving state management completely up to the application. Others still remaining include the lack of...

  11. Fault tolerant vector control of induction motor drive

    Science.gov (United States)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  12. Experimental magic state distillation for fault-tolerant quantum computing.

    Science.gov (United States)

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond

    2011-01-25

    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  13. Experimental magic state distillation for fault-tolerant quantum computing

    CERN Document Server

    Souza, Alexandre M; Ryan, Colm A; Laflamme, Raymond; 10.1038/ncomms1166

    2011-01-01

    Any physical quantum device for quantum information processing is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error correcting or error avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states such as |0> and the Magic State. Here we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  14. Fault-Tolerant Tree-Based Multicasting in Mesh Multicomputers

    Institute of Scientific and Technical Information of China (English)

    WU Jie; CHEN Xiao

    2001-01-01

    We propose a fault-tolerant tree-based multicast algorithm for 2-dimensional (2-D) meshes based on the concept of the extended safety level which is a vector associated with each node to capture fault information in the neighborhood. In this approach each destination is reached through a minimum number of hops. In order to minimize the total number of traffic steps, three heuristic strategies are proposed. This approach can be easily implemented by pipelined circuit switching (PCS). A simulation study is conducted to measure the total number of traffic steps under different strategies. Our approach is the first attempt to address the faulttolerant tree-based multicast problem in 2-D meshes based on limited global information with a simple model and succinct information.

  15. Piecewise Sliding Mode Decoupling Fault Tolerant Control System

    Directory of Open Access Journals (Sweden)

    Rafi Youssef

    2010-01-01

    Full Text Available Problem statement: Proposed method in the present study could deal with fault tolerant control system by using the so called decentralized control theory with decoupling fashion sliding mode control, dealing with subsystems instead of whole system and to the knowledge of the author there is no known computational algorithm for decentralized case, Approach: In this study we present a decoupling strategy based on the selection of sliding surface, which should be in piecewise sliding surface partition to apply the PwLTool which have as purpose in our case to delimit regions where sliding mode occur, after that as Results: We get a simple linearized model selected in those regions which could depict the complex system, Conclusion: With the 3 water tank level system as example we implement this new design scenario and since we are interested in networked control system we believe that this kind of controller implementation will not be affected by network delays.

  16. Fault Tolerance Mechanism in Chip Many-Core Processors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; HAN Yinhe; LI Huawei; LI Xiaowei

    2007-01-01

    As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performance. Effective fault tolerance techniques are essential to improve the yield of such complex chips. In this paper, a core-level redundancy scheme called N+M is proposed to improve N-core processors'yield by providing M spare cores. In such architecture, topology is an important factor because it greatly affects the processors'performance. The concept of logical topology and a topology reconfiguration problem are introduced, which is able to transparently provide target topology with lowest performance degradation as the presence of faulty cores on-chip. A row rippling and column stealing (RRCS) algorithm is also proposed. Results show that PRCS can give solutions with average 13.8% degradation with negligible computing time.

  17. Fault tolerance techniques for embedded telemetry system: case study

    Science.gov (United States)

    Krosman, Kazimierz; Sosnowski, Janusz

    2016-09-01

    This paper presents software methods of improving fault tolerance in embedded systems. These methods have been adapted to a telemetry system dedicated to tracking vehicles for logistics purposes. The developed telemetry system allows us to monitor vehicle position and some technical parameters via GSM communication. It comprises the capability of remote software reconfiguration. To evaluate dependability of the system we use a fault injection technique based on simulating bit-flip errors within memory cells. For this purpose an original testbed has been developed. It provides not only the capability of disturbing internal state of the tested system (via JTAG interface) but also the possibility of controlling system input states and observing its behavior (in particular output signals) according to specified test scenarios. The whole test process is automatized. The paper presents a case study related to a commercial product but the described methodology and techniques can be extended for other embedded systems.

  18. Certifying qubit operations below the fault tolerance threshold

    CERN Document Server

    Blume-Kohout, Robin; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter

    2016-01-01

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if -- and only if -- the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking (RB), which reports a different "error rate" that is not sensitive to all errors, cannot be compared directly to diamond norm thresholds, and cannot efficiently certify a qubit for FTQEC. We use gate set tomography (GST) to completely characterize the performance of a trapped-Yb$^+$-ion qubit and certify it rigorously as suitable for FTQEC by establishing that its diamond norm error rate is less than $6.7\\times10^{-4}$ with $95\\%$ confidence.

  19. A Bypass-Ring Scheme for a Fault Tolerant Multicast

    Directory of Open Access Journals (Sweden)

    V. Dynda

    2003-01-01

    Full Text Available We present a fault tolerant scheme for recovery from single or multiple node failures in multi-directional multicast trees. The scheme is based on cyclic structures providing alternative paths to eliminate faulty nodes and reroute the traffic. Our scheme is independent of message source and direction in the tree, provides a basis for on-the-fly repair and can be used as a platform for various strategies for reconnecting tree partitions. It only requires an underlying infrastructure to provide a reliable routing service. Although it is described in the context of a message multicast, the scheme can be used universally in all systems using tree-based overlay networks for communication among components.

  20. TRSTR: A Fault- Tolerant Microprocessor Architecture Based on SMT

    Institute of Scientific and Technical Information of China (English)

    YANG Hua; CUI Gang; YANG Xiao-zong

    2005-01-01

    Based on Simultaneous Multithreading (SMT),we propose a fault-tolerant scheme called Tri-modular Redundantly and Simultaneously Threaded processor with Recovery (TRSTR). TRSTR features as following: First, we introduce an arbitrator context into the conventional SRT (Simultaneous and Redundantly Threaded), which acts as an arbitrator when results from the other two contexts disagree, or acts as an ordinary thread generally, thus making full use of SMT' s parallelism. Second, we append reconfigurable feature to sphere of replication in SRT, making it more flexible for changing demands and situations. Third, TRSTR has two working modes: Tri-Simultaneous with Voting (TSV) and Dual-Simultaneous with Arbitrator (DSA), which can switch at will. Finally, in addition to transient-fault coverage,TRSTR has on-line self-checking and self-recovering abilities,so as to shield off some permanent faults and reconfigure itself without stopping the crucial job, improving its reliability and availability.

  1. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    In this paper, a fault tolerant control (FTC) strategy is proposed for evaporator superheat control in supermarket refrigeration systems. Conventional control uses a pressure and temperature sensor for this purpose, however, the pressure sensor can fail to function. A contingency control strategy......, based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...... in a plug & play fashion. The strategy is outlined by means of procedural steps as well as a flow chart that also illustrates the process of automatic tuning of the maximum slope-seeking controller. Test results are furthermore presented for a display case in a full scale CO2 supermarket refrigeration...

  2. Structural Fault Tolerance of Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    HAO Jingbo; YIN Jianping; ZHANG Boyun

    2007-01-01

    The fault tolerance of scale-free networks is examined in this paper. Through the simulation on the changes of the average path length and network fragmentation of the Barabasi-Albert model when faults happen, it can be observed that generic scale-free networks are quite robust to random failures, but are very vulnerable to targeted attacks at the same time. Therefore, an existing optimization strategy for the robustness of scale-free networks to failures and attacks is also introduced. The simulation similar with the above proved that the so-called (1, 0) network has potentially interconnectedness closer to that of a scale-free network and robustness to targeted attacks closer to that of an exponential network. Furthermore, its resistance to random failures is better than that of either of them.

  3. BFTDT: Byzantine Fault Tolerance tryout for Dependable Transactions in Cloud

    Directory of Open Access Journals (Sweden)

    Gayathri S

    2012-11-01

    Full Text Available Cloud Web Services (CWS is the technology used for business collaboration and integration among the web users. The Web Services Atomic Transactions (WS-AT have been used for the trusted distributed transaction processing over the web. The WS-AT in the distributed sense has byzantine faults to overcome that Byzantine Faults Techniques (BFT is used. The reliable coordinator provides the services that are Coordination services, Activation services, Registration Services and Completion services which make the transaction effective and reliable. In the trusted environment, to evade congestion of the resources, fair share bandwidth allocation scheme is used to allocate separate bandwidth for each web users and the transaction is processed Coordinator server and the Transaction Processing Monitor (TPM. The WS-AT for business applications analysis shows the high degree of dependability, security, trust, fault tolerance and fairness of the resources in the trusted environment.

  4. Fault tolerant quantum random number generator certified by Majorana fermions

    Science.gov (United States)

    Deng, Dong-Ling; Duan, Lu-Ming

    2013-03-01

    Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a new perspective to apply Majorana fermions for robust generation of certified random numbers, which has important applications in cryptography and other related areas. This work was supported by the NBRPC (973 Program) 2011CBA00300 (2011CBA00302), the IARPA MUSIQC program, the ARO and the AFOSR MURI program.

  5. Fault Tolerant Distributed and Fixed Hierarchical Mobile IP

    Directory of Open Access Journals (Sweden)

    Paramesh C. Upadhyay

    2010-04-01

    Full Text Available To several mobility management protocols proposed for IP-based mobile networks, faulttolerance aspect of mobility agents is a primary requirement to sustain continuous service availability to themobile hosts. For a localized or micro- mobility management solution, the local mobility agent i.e. gateway isa single point of failure because it is responsible for enforcing the signaling and data packets in its domain.Such failures may severely disrupt the communications among the failure-affected users. The problembecomes even more severe for mobility agents in a distributed mobility management scheme with overlappingregistration areas.This paper proposes a fault tolerance scheme for Distributed and Fixed Hierarchical Mobile IP(DFHMIP and evaluates its performance in terms of data transmission cost and blocking probability.

  6. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  7. A Semantics-Based Approachfor Achieving Self Fault-Tolerance of Protocols

    Institute of Scientific and Technical Information of China (English)

    李腊元; 李春林

    2000-01-01

    The cooperation of different processes may be lost by mistake when a protocol is executed. The protocol cannot be normally operated under this condition. In this paper, the self fault-tolerance of protocols is discussed, and a semanticsbased approach for achieving self fault-tolerance of protocols is presented. Some main characteristics of self fault-tolerance of protocols concerning liveness, nontermination and infinity are also presented. Meanwhile, the sufficient and necessary conditions for achieving self fault-tolerance of protocols are given. Finally, a typical protocol that does not satisfy the self fault-tolerance is investigated, and a new redesign version of this existing protocol using the proposed approach is given.

  8. Design of Parity Preserving Logic Based Fault Tolerant Reversible Arithmetic Logic Unit

    Directory of Open Access Journals (Sweden)

    Rakshith Saligram1

    2013-06-01

    Full Text Available Reversible Logic is gaining significant consideration as the potential logic design style for implementation in modern nanotechnology and quantum computing with minimal impact on physical entropy .Fault Tolerant reversible logic is one class of reversible logic that maintain the parity of the input and the outputs. Significant contributions have been made in the literature towards the design of fault tolerant reversible logic gate structures and arithmetic units, however, there are not many efforts directed towards the design of fault tolerant reversible ALUs. Arithmetic Logic Unit (ALU is the prime performing unit in any computing device and it has to be made fault tolerant. In this paper we aim to design one such fault tolerant reversible ALU that is constructed using parity preserving reversible logic gates. The designed ALU can generate up to seven Arithmetic operations and four logical operations

  9. A localization property for facility location problems with arbitrary norms

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1988-01-01

    In an earlier article (1983), the authors showed that, for facilities-location problems characterized by generalized distance norms and any even number of existing facilities, the optimal location of the new facility is at the intersection of the lines joining the pairs of facilities if these lines...... intersect at a single point. In this article the authors extend this concept to show that, for a more general class of problems, the optimal location is one of a set of points which is specified by the existing facilities...

  10. A localization property for facility location problems with arbitrary norms

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1988-01-01

    In an earlier article (1983), the authors showed that, for facilities-location problems characterized by generalized distance norms and any even number of existing facilities, the optimal location of the new facility is at the intersection of the lines joining the pairs of facilities if these lines...... intersect at a single point. In this article the authors extend this concept to show that, for a more general class of problems, the optimal location is one of a set of points which is specified by the existing facilities...

  11. Spatial interaction models facility location using game theory

    CERN Document Server

    D'Amato, Egidio; Pardalos, Panos

    2017-01-01

    Facility location theory develops the idea of locating one or more facilities by optimizing suitable criteria such as minimizing transportation cost, or capturing the largest market share. The contributions in this book focus an approach to facility location theory through game theoretical tools highlighting situations where a location decision is faced by several decision makers and leading to a game theoretical framework in non-cooperative and cooperative methods. Models and methods regarding the facility location via game theory are explored and applications are illustrated through economics, engineering, and physics. Mathematicians, engineers, economists and computer scientists working in theory, applications and computational aspects of facility location problems using game theory will find this book useful.

  12. Software engineering for fault-tolerant systems. Final technical report, Jan 89-Aug 90

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A.L.; Mansour, N.

    1991-03-01

    The objectives of this study are to (1) assess the current state of the art of fault tolerant software schemes, (2) evaluate the status of various software engineering issues in this context, (3) identify critical gaps in the currently available technology and, (4) provide recommendations for research and development efforts to enhance the technological base of fault tolerant software engineering. Towards these objectives, the authors have discussed several software fault tolerance schemes, studied the available experimental and analytical evidence about their usefulness and assessed the current status of fault tolerant software engineering for sequential and parallel computers. Based on the studies reported here, they feel that the current state-of-the-art of fault tolerant software is mature enough to tolerate design faults in specific circumstances with appropriate provisions of redundancy and allied supporting mechanisms. However, no known fault tolerance technique can guarantee failure-free system operation. Further, it is questionable whether the current approaches are cost-effective in achieving the desired gain in operational software reliability. They feel that what is needed is a systematic, cost effective approach to software development which explicitly addresses the fault tolerance issues throughout the development life-cycle.

  13. The solution of location problems with certain existing facility structures

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1983-01-01

    It is known that in the Euclidean distance case, the optimal minisum location of a new facility in relation to four existing facilities is at the intersection of the two lines joining two pairs of the facilities. The authors extend this concept to minisum problems having any even number of existi...

  14. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  15. 14 CFR 21.43 - Location of manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of manufacturing facilities. 21.43... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.43 Location of manufacturing facilities. Except as provided in § 21.29, the Administrator does not issue a type certificate if the...

  16. 47 CFR 3.42 - Location of processing facility.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Location of processing facility. 3.42 Section 3.42 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION AND ADMINISTRATION OF... Location of processing facility. Settlement of maritime mobile and maritime mobile-satellite service...

  17. Capacitated Dynamic Facility Location Problem Based on Tabu Search Algorithm

    Institute of Scientific and Technical Information of China (English)

    KUANG Yi-jun; ZHU Ke-jun

    2007-01-01

    Facility location problem is a kind of NP-Hard combinational problem. Considering ever-changing demand sites, demand quantity and releasing cost, we formulate a model combining tabu search and FCM (fuzzy clustering method) to solve the eapacitated dynamic facility location problem. Some results are achieved and they show that the proposed method is effective.

  18. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    Science.gov (United States)

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  19. Fault tolerant motion planning based on joint torque limit for redundant manipulators

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    First, two fault tolerant planning algorithms with avoidance of joint static torque limit or joint dynamic torque limit are proposed respectively. The former is suitable for the low-speed manipulators, and the latter is suitable for the high-speed manipulators. These algorithms not only can insure manipulation tasks to lie within the fault tolerant workspace but also can avoid joint torque limit, and hence can insure a redundant manipulator to be fault tolerant in both kinematical sense and dynamic sense. Then, the simulation examples for a planar 3R manipulator demonstrate the validity of these algorithms.

  20. A Fault-Tolerant Multiprocessor for Real-Time Control Applications

    Science.gov (United States)

    Roberts, Thomas E.; Johnson, Barry W.

    1987-10-01

    This paper presents the design, analysis, and experimental evaluation of a fault-tolerant multiprocessor for use in systems requiring real-time, microprocessor-based control. Example applications of the fault-tolerant system are found in robotics, process control, manufacturing, and factory automation. The architecture for the multiprocessor is presented and analyzed for reliability, availability, and safety. A prototype of the fault-tolerant multiprocessor has been constructed, using Intel 8088 processors, and experimentally evaluated in the laboratory. Both hardware and software descriptions of the system are provided, and an example application to the control of an electric wheelchair is presented.

  1. Intertemporal and Spatial Location of Disposal Facilities

    NARCIS (Netherlands)

    Andre, F.J.; Velasco, F.; Gonzalez, L.

    2004-01-01

    Optimal capacity and location of a sequence of land.lls are studied, and the interactions between both decisions are pointed out.The decision capacity has some spatial implications, because it a.ects the feasible region for the rest of land.lls, and some temporal implications, because the capacity

  2. Fault Tolerant Control for Civil Structures Based on LMI Approach

    Directory of Open Access Journals (Sweden)

    Chunxu Qu

    2013-01-01

    Full Text Available The control system may lose the performance to suppress the structural vibration due to the faults in sensors or actuators. This paper designs the filter to perform the fault detection and isolation (FDI and then reforms the control strategy to achieve the fault tolerant control (FTC. The dynamic equation of the structure with active mass damper (AMD is first formulated. Then, an estimated system is built to transform the FDI filter design problem to the static gain optimization problem. The gain is designed to minimize the gap between the estimated system and the practical system, which can be calculated by linear matrix inequality (LMI approach. The FDI filter is finally used to isolate the sensor faults and reform the FTC strategy. The efficiency of FDI and FTC is validated by the numerical simulation of a three-story structure with AMD system with the consideration of sensor faults. The results show that the proposed FDI filter can detect the sensor faults and FTC controller can effectively tolerate the faults and suppress the structural vibration.

  3. Fault-tolerant quantum blind signature protocols against collective noise

    Science.gov (United States)

    Zhang, Ming-Hui; Li, Hui-Fang

    2016-10-01

    This work proposes two fault-tolerant quantum blind signature protocols based on the entanglement swapping of logical Bell states, which are robust against two kinds of collective noises: the collective-dephasing noise and the collective-rotation noise, respectively. Both of the quantum blind signature protocols are constructed from four-qubit decoherence-free (DF) states, i.e., logical Bell qubits. The initial message is encoded on the logical Bell qubits with logical unitary operations, which will not destroy the anti-noise trait of the logical Bell qubits. Based on the fundamental property of quantum entanglement swapping, the receiver simply performs two Bell-state measurements (rather than four-qubit joint measurements) on the logical Bell qubits to verify the signature, which makes the protocols more convenient in a practical application. Different from the existing quantum signature protocols, our protocols can offer the high fidelity of quantum communication with the employment of logical qubits. Moreover, we hereinafter prove the security of the protocols against some individual eavesdropping attacks, and we show that our protocols have the characteristics of unforgeability, undeniability and blindness.

  4. Fault-tolerant digital microfluidic biochips compilation and synthesis

    CERN Document Server

    Pop, Paul; Stuart, Elena; Madsen, Jan

    2016-01-01

    This book describes for researchers in the fields of compiler technology, design and test, and electronic design automation the new area of digital microfluidic biochips (DMBs), and thus offers a new application area for their methods.  The authors present a routing-based model of operation execution, along with several associated compilation approaches, which progressively relax the assumption that operations execute inside fixed rectangular modules.  Since operations can experience transient faults during the execution of a bioassay, the authors show how to use both offline (design time) and online (runtime) recovery strategies. The book also presents methods for the synthesis of fault-tolerant application-specific DMB architectures. ·         Presents the current models used for the research on compilation and synthesis techniques of DMBs in a tutorial fashion; ·         Includes a set of “benchmarks”, which are presented in great detail and includes the source code of most of the t...

  5. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  6. ALLIANCE: An architecture for fault tolerant multi-robot cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    ALLIANCE is a software architecture that facilitates the fault tolerant cooperative control of teams of heterogeneous mobile robots performing missions composed of loosely coupled, largely independent subtasks. ALLIANCE allows teams of robots, each of which possesses a variety of high-level functions that it can perform during a mission, to individually select appropriate actions throughout the mission based on the requirements of the mission, the activities of other robots, the current environmental conditions, and the robot`s own internal states. ALLIANCE is a fully distributed, behavior-based architecture that incorporates the use of mathematically modeled motivations (such as impatience and acquiescence) within each robot to achieve adaptive action selection. Since cooperative robotic teams usually work in dynamic and unpredictable environments, this software architecture allows the robot team members to respond robustly, reliably, flexibly, and coherently to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. The feasibility of this architecture is demonstrated in an implementation on a team of mobile robots performing a laboratory version of hazardous waste cleanup.

  7. Fault-Tolerant Software-Defined Radio on Manycore

    Science.gov (United States)

    Ricketts, Scott

    2015-01-01

    Software-defined radio (SDR) platforms generally rely on field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), but such architectures require significant software development. In addition, application demands for radiation mitigation and fault tolerance exacerbate programming challenges. MaXentric Technologies, LLC, has developed a manycore-based SDR technology that provides 100 times the throughput of conventional radiationhardened general purpose processors. Manycore systems (30-100 cores and beyond) have the potential to provide high processing performance at error rates that are equivalent to current space-deployed uniprocessor systems. MaXentric's innovation is a highly flexible radio, providing over-the-air reconfiguration; adaptability; and uninterrupted, real-time, multimode operation. The technology is also compliant with NASA's Space Telecommunications Radio System (STRS) architecture. In addition to its many uses within NASA communications, the SDR can also serve as a highly programmable research-stage prototyping device for new waveforms and other communications technologies. It can also support noncommunication codes on its multicore processor, collocated with the communications workload-reducing the size, weight, and power of the overall system by aggregating processing jobs to a single board computer.

  8. Fault-tolerant error correction with the gauge color code

    Science.gov (United States)

    Brown, Benjamin J.; Nickerson, Naomi H.; Browne, Dan E.

    2016-07-01

    The constituent parts of a quantum computer are inherently vulnerable to errors. To this end, we have developed quantum error-correcting codes to protect quantum information from noise. However, discovering codes that are capable of a universal set of computational operations with the minimal cost in quantum resources remains an important and ongoing challenge. One proposal of significant recent interest is the gauge color code. Notably, this code may offer a reduced resource cost over other well-studied fault-tolerant architectures by using a new method, known as gauge fixing, for performing the non-Clifford operations that are essential for universal quantum computation. Here we examine the gauge color code when it is subject to noise. Specifically, we make use of single-shot error correction to develop a simple decoding algorithm for the gauge color code, and we numerically analyse its performance. Remarkably, we find threshold error rates comparable to those of other leading proposals. Our results thus provide the first steps of a comparative study between the gauge color code and other promising computational architectures.

  9. Fault-tolerant error correction with the gauge color code.

    Science.gov (United States)

    Brown, Benjamin J; Nickerson, Naomi H; Browne, Dan E

    2016-07-29

    The constituent parts of a quantum computer are inherently vulnerable to errors. To this end, we have developed quantum error-correcting codes to protect quantum information from noise. However, discovering codes that are capable of a universal set of computational operations with the minimal cost in quantum resources remains an important and ongoing challenge. One proposal of significant recent interest is the gauge color code. Notably, this code may offer a reduced resource cost over other well-studied fault-tolerant architectures by using a new method, known as gauge fixing, for performing the non-Clifford operations that are essential for universal quantum computation. Here we examine the gauge color code when it is subject to noise. Specifically, we make use of single-shot error correction to develop a simple decoding algorithm for the gauge color code, and we numerically analyse its performance. Remarkably, we find threshold error rates comparable to those of other leading proposals. Our results thus provide the first steps of a comparative study between the gauge color code and other promising computational architectures.

  10. Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems

    Science.gov (United States)

    Agogino, Adrian; Turner, Kagan

    2005-01-01

    The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.

  11. A Modular and Fault-Tolerant Data Transport Framework

    CERN Document Server

    Steinbeck, Timm M

    2009-01-01

    The High Level Trigger (HLT) of the future ALICE heavy-ion experiment has to reduce its input data rate of up to 25 GB/s to at most 1.25 GB/s for output before the data is written to permanent storage. To cope with these data rates a large PC cluster system is being designed to scale to several 1000 nodes, connected by a fast network. For the software that will run on these nodes a flexible data transport and distribution software framework, described in this thesis, has been developed. The framework consists of a set of separate components, that can be connected via a common interface. This allows to construct different configurations for the HLT, that are even changeable at runtime. To ensure a fault-tolerant operation of the HLT, the framework includes a basic fail-over mechanism that allows to replace whole nodes after a failure. The mechanism will be further expanded in the future, utilizing the runtime reconnection feature of the framework's component interface. To connect cluster nodes a communication ...

  12. Proposal of fault-tolerant tomographic image reconstruction

    CERN Document Server

    Kudo, Hiroyuki; Yamazaki, Fukashi; Nemoto, Takuya

    2016-01-01

    This paper deals with tomographic image reconstruction under the situation where some of projection data bins are contaminated with abnormal data. Such situations occur in various instances of tomography. We propose a new reconstruction algorithm called the Fault-Tolerant reconstruction outlined as follows. The least-squares (L2-norm) error function ||Ax-b||_2^2 used in ordinary iterative reconstructions is sensitive to the existence of abnormal data. The proposed algorithm utilizes the L1-norm error function ||Ax-b||_1^1 instead of the L2-norm, and we develop a row-action-type iterative algorithm using the proximal splitting framework in convex optimization fields. We also propose an improved version of the L1-norm reconstruction called the L1-TV reconstruction, in which a weak Total Variation (TV) penalty is added to the cost function. Simulation results demonstrate that reconstructed images with the L2-norm were severely damaged by the effect of abnormal bins, whereas images with the L1-norm and L1-TV reco...

  13. A PROBABILISTIC CHARACTERIZATION OF A FAULT-TOLERANT GOSSIPING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Xiaohu LI; Paul PARKER; Shouhuai XU

    2009-01-01

    Gossiping is a popular technique for probabilistic reliable multicast (or broadcast). However,it is often difficult to understand the behavior of gossiping algorithms in an analytic fashion. Indeed,existing analyses of gossip algorithms are either based on simulation or based on ideas borrowed from epidemic models while inheriting some features that do not seem to be appropriate for the setting of gossiping. On one hand, in epidemic spreading, an infected node typically intends to spread the infection an unbounded number of times (or rounds); whereas in gossiping, an infected node (i.e., a node having received the message in question) may prefer to gossip the message a bounded number of times. On the other hand, the often assumed homogeneity in epidemic spreading models (especially that every node has equal contact to everyone else in the population) has been silently inherited in the gossiping literature, meaning that an expensive membership protocol is often needed for maintaining nodes' views. Motivated by these observations, the authors present a characterization of a popular class of fault-tolerant gossip schemes (known as "push-based gossiping") based on a novel probabilistic model, while taking the afore-mentioned factors into consideration.

  14. Lightweight storage and overlay networks for fault tolerance.

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, Ron A.

    2010-01-01

    The next generation of capability-class, massively parallel processing (MPP) systems is expected to have hundreds of thousands to millions of processors, In such environments, it is critical to have fault-tolerance mechanisms, including checkpoint/restart, that scale with the size of applications and the percentage of the system on which the applications execute. For application-driven, periodic checkpoint operations, the state-of-the-art does not provide a scalable solution. For example, on today's massive-scale systems that execute applications which consume most of the memory of the employed compute nodes, checkpoint operations generate I/O that consumes nearly 80% of the total I/O usage. Motivated by this observation, this project aims to improve I/O performance for application-directed checkpoints through the use of lightweight storage architectures and overlay networks. Lightweight storage provide direct access to underlying storage devices. Overlay networks provide caching and processing capabilities in the compute-node fabric. The combination has potential to signifcantly reduce I/O overhead for large-scale applications. This report describes our combined efforts to model and understand overheads for application-directed checkpoints, as well as implementation and performance analysis of a checkpoint service that uses available compute nodes as a network cache for checkpoint operations.

  15. Probabilistic analysis on fault tolerance of 3-Dimensional mesh networks

    Institute of Scientific and Technical Information of China (English)

    王高才; 陈建二; 王国军; 陈松乔

    2003-01-01

    The probability model is used to analyze the fault tolerance of mesh. To simplify its analysis, it is as-sumed that the failure probability of each node is independent. A 3-D mesh is partitioned into smaller submeshes,and then the probability with which each submesh satisfies the defined condition is computed. If each submesh satis-fies the condition, then the whole mesh is connected. Consequently, the probability that a 3-D mesh is connected iscomputed assuming each node has a failure probability. Mathematical methods are used to derive a relationship be-tween network node failure probability and network connectivity probability. The calculated results show that the 3-D mesh networks can remain connected with very high probability in practice. It is formally proved that when thenetwork node failure probability is boutded by 0.45 %, the 3-D mesh networks of more than three hundred thousandnodes remain connected with probability larger than 99 %. The theoretical results show that the method is a power-ful technique to calculate the lower bound of the connectivity probability of mesh networks.

  16. A Cost Effective Fault-Tolerant Scheme for RAIDs

    Institute of Scientific and Technical Information of China (English)

    FANG Liang(方粮); LU XiCheng(卢锡城)

    2003-01-01

    The rapid progress in mass storage technology has made it possible for designersto implement large data storage systems for a variety of applications. One of the efficient waysto build large storage systems is to use RAIDs as basic storage modules. In general, the datacan be recovered in RAIDs only when one error occurs. But in large RAIDs systems, the faultprobability will increase when the number of disks increases, and the use of disks with big storagecapacity will cause the recovering time to prolong, thus the probability of the second disk's faultwill increase. Therefore, it is necessary to develop methods to recover data when two or more errorshave occurred. In this paper, a fault tolerant scheme is proposed based on extended Reed-Solomoncode, a recovery procedure is designed to correct up to two errors which is implemented by softwareand hardware together, and the scheme is verified by computer simulation. In this scheme, only tworedundant disks are used to recover up to two disks' fault. The encoding and decoding methods,and the implementation based on software and hardware are described. The application of thescheme in software RAIDs that are built in cluster computers are also described. Compared withthe existing methods such as EVENODD and DH, the proposed scheme has distinct improvementin implementation and redundancy.

  17. Novel approach to fault-tolerant logic and yield enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Takefuji, Y.; Adachi, Y.; Aiso, H.

    1982-01-01

    A design technique for improving reliability in function of a gate is proposed, in which a plurality of conventional logic circuits (gates) are used so as to give redundancy to a logic circuit itself. The gate with redundancy designed on the basis of the proposed technique is called the fault-tolerant gate (FTG) in this paper. The FTG has a recovery function with respect to a wider variety of faults. It is much more powerful than that offered by the TMR (triple modular redundancy) circuits. Therefore, the highly reliable logic circuits can be realized, and when the concept of FTGs is applied to vlsi chips the production yield must be enhanced. This paper is divided into three parts. In the first part, concrete methods to realize FTGs are described. The second part proves that the reliability of the gates can be improved by employing the concept of FTGs. In the last part, it is shown that the FTG contributes to the yield enhancement of vlsi chips. 13 references.

  18. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  19. Intertemporal and spatial location of disposal facilities

    OpenAIRE

    Andre, F.J.; Velasco, F; Gonzalez, L.

    2009-01-01

    The optimal capacity and location of a sequence of landfills are studied, and the interactions between both decisions are pointed out. Deciding the capacity of a landfill has some spatial implications, because it effects the feasible region for the rest of the landfills, and some temporal implications because the capacity determines the lifetime of the landfill and hence the instant of time where the next landfills will need to be constructed. Some general mathematical properties of the solut...

  20. Active and Passive Fault-Tolerant LPV Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2010-01-01

    of an incipient fault in the pitch system. We propose the design of an active fault-tolerant controller (AFTC) based on an existing LPV controller design method and extend this method to apply for the design of a passive fault-tolerant controller (PFTC). Both controllers are based on output feedback...... is more difficult to solve, as it involves solving bilinear matrix inequalities (BMIs) instead of linear matrix inequalities (LMIs). Simulation results show the performance of the active faulttolerant control system to be slightly superior to that of the passive fault-tolerant control system.......This paper addresses the design and comparison of active and passive fault-tolerant linear parameter-varying (LPV) controllers for wind turbines. The considered wind turbine plant model is characterized by parameter variations along the nominal operating trajectory and includes a model...

  1. An Integrated Fault Tolerant Robotic Controller System for High Reliability and Safety

    Science.gov (United States)

    Marzwell, Neville I.; Tso, Kam S.; Hecht, Myron

    1994-01-01

    This paper describes the concepts and features of a fault-tolerant intelligent robotic control system being developed for applications that require high dependability (reliability, availability, and safety). The system consists of two major elements: a fault-tolerant controller and an operator workstation. The fault-tolerant controller uses a strategy which allows for detection and recovery of hardware, operating system, and application software failures.The fault-tolerant controller can be used by itself in a wide variety of applications in industry, process control, and communications. The controller in combination with the operator workstation can be applied to robotic applications such as spaceborne extravehicular activities, hazardous materials handling, inspection and maintenance of high value items (e.g., space vehicles, reactor internals, or aircraft), medicine, and other tasks where a robot system failure poses a significant risk to life or property.

  2. Aircraft Attitude Distributed Fault-tolerant Control Based on Dynamic Actuator

    National Research Council Canada - National Science Library

    Zhou Hong-Cheng; Wang Dao-Bo

    2014-01-01

      For attitude control system, based on decentralized fault-tolerant control framework, actuators damage and stuck fault detection and identification unit are designed for the flight control system...

  3. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Blanke, M.

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures...... at a system level. In a design phase for an industrial system, possibilities span from fail safe design where any single point failure is accommodated by hardware, over fault-tolerant design where selected faults are handled without extra hardware, to fault-ignorant design where no extra precaution is taken....... The objective of this paper is to help, in the early product development state, to find the economical most suitable scheme. A salient result is that with increased customer awareness of total cost of ownership, new products can benefit significantly from applying fault tolerant control principles....

  4. [Advanced Development for Space Robotics With Emphasis on Fault Tolerance Technology

    Science.gov (United States)

    Tesar, Delbert

    1997-01-01

    This report describes work developing fault tolerant redundant robotic architectures and adaptive control strategies for robotic manipulator systems which can dynamically accommodate drastic robot manipulator mechanism, sensor or control failures and maintain stable end-point trajectory control with minimum disturbance. Kinematic designs of redundant, modular, reconfigurable arms for fault tolerance were pursued at a fundamental level. The approach developed robotic testbeds to evaluate disturbance responses of fault tolerant concepts in robotic mechanisms and controllers. The development was implemented in various fault tolerant mechanism testbeds including duality in the joint servo motor modules, parallel and serial structural architectures, and dual arms. All have real-time adaptive controller technologies to react to mechanism or controller disturbances (failures) to perform real-time reconfiguration to continue the task operations. The developments fall into three main areas: hardware, software, and theoretical.

  5. Fault diagnosis and fault-tolerant control of photovoltaic micro-inverter

    Institute of Scientific and Technical Information of China (English)

    李舟; 彭涛; 张鹏飞; 韩华; 杨建

    2016-01-01

    An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.

  6. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  7. Passive Fault Tolerant Control of Piecewise Affine Systems Based on H Infinity Synthesis

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Cocquempot, vincent; Schiøler, Henrik

    2011-01-01

    In this paper we design a passive fault tolerant controller against actuator faults for discretetime piecewise affine (PWA) systems. By using dissipativity theory and H analysis, fault tolerant state feedback controller design is expressed as a set of Linear Matrix Inequalities (LMIs). In the cur......). In the current paper, the PWA system switches not only due to the state but also due to the control input. The method is applied on a large scale livestock ventilation model....

  8. Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    Science.gov (United States)

    Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.

    2011-01-01

    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.

  9. Fault-tolerant quantum computation with asymmetric Bacon-Shor codes

    Science.gov (United States)

    Brooks, Peter; Preskill, John

    2013-03-01

    We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.

  10. Ship Propulsion System as a Benchmark for Fault-Tolerant Control

    OpenAIRE

    Izadi-Zamanabadi, Roozbeh; Blanke, M.

    1998-01-01

    Fault-tolerant control combines fault detection and isolation techniques with supervisory control to achieve autonomous accommodation of faults before they develop into failures. While fault detection and isolation (FDI) methods have matured during the past decade the extension to fault-tolerant control is a fairly new area. The paper presents a ship propulsion system as a benchmark that should be useful as a platform for development of new ideas and comparison of methods. The benchmark has t...

  11. Modeling the Fault Tolerant Capability of a Flight Control System: An Exercise in SCR Specification

    Science.gov (United States)

    Alexander, Chris; Cortellessa, Vittorio; DelGobbo, Diego; Mili, Ali; Napolitano, Marcello

    2000-01-01

    In life-critical and mission-critical applications, it is important to make provisions for a wide range of contingencies, by providing means for fault tolerance. In this paper, we discuss the specification of a flight control system that is fault tolerant with respect to sensor faults. Redundancy is provided by analytical relations that hold between sensor readings; depending on the conditions, this redundancy can be used to detect, identify and accommodate sensor faults.

  12. Survey and future directions of fault-tolerant distributed computing on board spacecraft

    Science.gov (United States)

    Fayyaz, Muhammad; Vladimirova, Tanya

    2016-12-01

    Current and future space missions demand highly reliable on-board computing systems, which are capable of carrying out high-performance data processing. At present, no single computing scheme satisfies both, the highly reliable operation requirement and the high-performance computing requirement. The aim of this paper is to review existing systems and offer a new approach to addressing the problem. In the first part of the paper, a detailed survey of fault-tolerant distributed computing systems for space applications is presented. Fault types and assessment criteria for fault-tolerant systems are introduced. Redundancy schemes for distributed systems are analyzed. A review of the state-of-the-art on fault-tolerant distributed systems is presented and limitations of current approaches are discussed. In the second part of the paper, a new fault-tolerant distributed computing platform with wireless links among the computing nodes is proposed. Novel algorithms, enabling important aspects of the architecture, such as time slot priority adaptive fault-tolerant channel access and fault-tolerant distributed computing using task migration are introduced.

  13. Congestion Service Facilities Location Problem with Promise of Response Time

    Directory of Open Access Journals (Sweden)

    Dandan Hu

    2013-01-01

    Full Text Available In many services, promise of specific response time is advertised as a commitment by the service providers for the customer satisfaction. Congestion on service facilities could delay the delivery of the services and hurts the overall satisfaction. In this paper, congestion service facilities location problem with promise of response time is studied, and a mixed integer nonlinear programming model is presented with budget constrained. The facilities are modeled as M/M/c queues. The decision variables of the model are the locations of the service facilities and the number of servers at each facility. The objective function is to maximize the demands served within specific response time promised by the service provider. To solve this problem, we propose an algorithm that combines greedy and genetic algorithms. In order to verify the proposed algorithm, a lot of computational experiments are tested. And the results demonstrate that response time has a significant impact on location decision.

  14. Recycling Facilities - Mine Drainage Treatment/Land Recycling Project Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Mine Drainage Treatment/Land Reclamation Locations are clean-up projects that are working to eliminate some form of abandoned mine. The following sub-facility types...

  15. 14 CFR 21.137 - Location of manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of manufacturing facilities. 21.137 Section 21.137 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... manufacturing facilities. The Administrator does not issue a production certificate if the...

  16. Parallel Approximation Algorithms for Facility-Location Problems

    OpenAIRE

    Blelloch, Guy E.; Tangwongsan, Kanat

    2010-01-01

    This paper presents the design and analysis of parallel approximation algorithms for facility-location problems, including $\\NC$ and $\\RNC$ algorithms for (metric) facility location, $k$-center, $k$-median, and $k$-means. These problems have received considerable attention during the past decades from the approximation algorithms community, concentrating primarily on improving the approximation guarantees. In this paper, we ask, is it possible to parallelize some of the beautiful results from...

  17. 33 CFR 137.65 - Visual inspections of the facility, the real property on which the facility is located, and...

    Science.gov (United States)

    2010-07-01

    ... facility, the real property on which the facility is located, and adjoining properties. 137.65 Section 137... inspections of the facility, the real property on which the facility is located, and adjoining properties. (a... the facility and the real property on which the facility is located, and the improvements at the...

  18. On a rational stopping rule for facilities location algorithms

    DEFF Research Database (Denmark)

    Juel, Henrik

    1984-01-01

    In the multifacility location problem, a number of new facilities are to be located so as to minimize a sum of weighted distances. Love and Yeong (1981) developed a lower bound on the optimal value for use in deciding when to stop an iterative solution procedure. The authors develop a stronger...

  19. On a rational stopping rule for facilities location algorithms

    DEFF Research Database (Denmark)

    Juel, Henrik

    1984-01-01

    In the multifacility location problem, a number of new facilities are to be located so as to minimize a sum of weighted distances. Love and Yeong (1981) developed a lower bound on the optimal value for use in deciding when to stop an iterative solution procedure. The authors develop a stronger...

  20. A Framework-Based Approach for Fault-Tolerant Service Robots

    Directory of Open Access Journals (Sweden)

    Heejune Ahn

    2012-11-01

    Full Text Available Recently the component-based approach has become a major trend in intelligent service robot development due to its reusability and productivity. The framework in a component-based system should provide essential services for application components. However, to our knowledge the existing robot frameworks do not yet support fault tolerance service. Moreover, it is often believed that faults can be handled only at the application level. In this paper, by extending the robot framework with the fault tolerance function, we argue that the framework-based fault tolerance approach is feasible and even has many benefits, including that: 1 the system integrators can build fault tolerance applications from non-fault-aware components; 2 the constraints of the components and the operating environment can be considered at the time of integration, which – cannot be anticipated eaily at the time of component development; 3 consistency in system reliability can be obtained even in spite of diverse application component sources. In the proposed construction, we build XML rule files defining the rules for probing and determining the fault conditions of each component, contamination cases from a faulty component, and the possible recovery and safety methods. The rule files are established by a system integrator and the fault manager in the framework controls the fault tolerance process according to the rules. We demonstrate that the fault-tolerant framework can incorporate widely accepted fault tolerance techniques. The effectiveness and real-time performance of the framework-based approach and its techniques are examined by testing an autonomous mobile robot in typical fault scenarios.

  1. The p-median Facility Location Problem and Solution Approaches

    Directory of Open Access Journals (Sweden)

    Mehmet BASTI

    2012-05-01

    Full Text Available In today’s globalized and increasingly competitive environment, organizations’ need to implement successful strategies for supply chain management has become indispensable. Transportation costs within the supply chain comprise an important part of the organizations’ expenses. For this reason, the strategic selection of location is an issue that directly affects supply chain performance and costs. At this stage, it becomes very important to apply the latest and the best methods to the facility location problem. The focus of this study is the p-median problem and its solution techniques, one of the location allocation problems aimed at minimizing the costs arising from shipments between facilities and demand points.

  2. Fault Tolerance and Recovery for Group Communication Services in Distributed Networks

    Institute of Scientific and Technical Information of China (English)

    Yue-Hua Wang; Zhong Zhou; Ling Liu; Wei Wu

    2012-01-01

    Group communication services (GCSs) are becoming increasingly important as a wide field of promising applications has emerged to serve millions of users distributed across the world.However,it is challenging to make the service fault tolerance and scalable to fulfill the voluminous demand of users in a distributed network (DN).While many reliable group communication protocols have been dedicated to addressing such a challenge so as to accommodate the changes in the network,they are often costly or require complicated strategies to handle the service interruptions caused by node departures or link failures,which hinders the service practicability. In this paper,we present two schemes to address the challenges.The first one is a location-aware replication scheme called NS,which makes replicas in a dispersed fashion that enables the services on nodes to gain immunity of failures with different patterns (e.g.,network partition and single point failure) while keeping replication overhead low.The second one is a novel failure recovery scheme that exploits the independence between service recovery and structure recovery in time domain to achieve quick failure recovery.Our simulation results indicate that the two proposed schemes outperform the existing schemes and simple alternative schemes in service success rate,recovery latency,and communication cost.

  3. Fault-tolerant drive electronics for a Xinetics deformable mirror at GeMS DM0

    Science.gov (United States)

    Barberio, Michael J.

    2016-07-01

    Gemini South is replacing one of the (3) CILAS DMs with a 349-actuator Xinetics DM in its GeMS MCAO system. Xinetics mirrors operate over a 40-100V dynamic range and require that inter-actuator stroke differences are limited to half-scale; each actuator must be within 30V of its neighbor to prevent mechanical stress and possible face sheet separation. A robust way to implement this protection is to use high power transient voltage suppressors (TVSs) as a 2D-mesh between the amplifiers and mirror, but this has system implications. A sustained clamp condition dissipates significant power in the devices, and if an actuator fails as short (which occurred once with the DM in a thermal chamber), the system is subject to a cascade failure event as multiple outputs drive the shorted actuator through the TVS network. This latter risk is readily resolved by using series fuses to the DM. In this third-generation driver, current sensing and logic inhibit amplifier outputs after a sustained TVS clamp condition or shorted output, and LED indicators show the location. Redundant thermal sensing is used on modular TVS row and column boards. A second 2D-mesh of high impedance resistors after the fuses will hold an unpowered channel to the average voltage of its neighbors, with a negligible influence function. A Failure Modes and Effects Analysis shows significant fault tolerance.

  4. Performance and Fault Tolerance in the StoreTorrent Parallel Filesystem

    CERN Document Server

    Sacerdoti, Federico D

    2010-01-01

    With a goal of supporting the timely and cost-effective analysis of Terabyte datasets on commodity components, we present and evaluate StoreTorrent, a simple distributed filesystem with integrated fault tolerance for efficient handling of small data records. Our contributions include an application-OS pipelining technique and metadata structure to increase small write and read performance by a factor of 1-10, and the use of peer-to-peer communication of replica-location indexes to avoid transferring data during parallel analysis even in a degraded state. We evaluated StoreTorrent, PVFS, and Gluster filesystems using 70 storage nodes and 560 parallel clients on an 8-core/node Ethernet cluster with directly attached SATA disks. StoreTorrent performed parallel small writes at an aggregate rate of 1.69 GB/s, and supported reads over the network at 8.47 GB/s. We ported a parallel analysis task and demonstrate it achieved parallel reads at the full aggregate speed of the storage node local filesystems.

  5. Robust fault-tolerant control for wing flutter under actuator failure

    Institute of Scientific and Technical Information of China (English)

    Gao Mingzhou; Cai Guoping

    2016-01-01

    Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those con-trol laws may not work effectively if the aeroelastic system involves actuator faults. In the current study for wing flutter of reentry vehicle, the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account. In this paper, we use the radial basis function neural network and the finite-time H∞adaptive fault-tolerant control technique to deal with the flutter problem of wings, which is affected by actuator faults, actuator saturation, parameter uncertainties and external disturbances. The theory of this article includes the modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time adaptive fault-tolerant controller is theoretically proved. Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well.

  6. VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate

    Science.gov (United States)

    Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab

    2017-08-01

    Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.

  7. Design and analysis of linear fault-tolerant permanent-magnet vernier machines.

    Science.gov (United States)

    Xu, Liang; Ji, Jinghua; Liu, Guohai; Du, Yi; Liu, Hu

    2014-01-01

    This paper proposes a new linear fault-tolerant permanent-magnet (PM) vernier (LFTPMV) machine, which can offer high thrust by using the magnetic gear effect. Both PMs and windings of the proposed machine are on short mover, while the long stator is only manufactured from iron. Hence, the proposed machine is very suitable for long stroke system applications. The key of this machine is that the magnetizer splits the two movers with modular and complementary structures. Hence, the proposed machine offers improved symmetrical and sinusoidal back electromotive force waveform and reduced detent force. Furthermore, owing to the complementary structure, the proposed machine possesses favorable fault-tolerant capability, namely, independent phases. In particular, differing from the existing fault-tolerant machines, the proposed machine offers fault tolerance without sacrificing thrust density. This is because neither fault-tolerant teeth nor the flux-barriers are adopted. The electromagnetic characteristics of the proposed machine are analyzed using the time-stepping finite-element method, which verifies the effectiveness of the theoretical analysis.

  8. Robust fault-tolerant control for wing flutter under actuator failure

    Directory of Open Access Journals (Sweden)

    Gao Mingzhou

    2016-08-01

    Full Text Available Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those control laws may not work effectively if the aeroelastic system involves actuator faults. In the current study for wing flutter of reentry vehicle, the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account. In this paper, we use the radial basis function neural network and the finite-time H∞ adaptive fault-tolerant control technique to deal with the flutter problem of wings, which is affected by actuator faults, actuator saturation, parameter uncertainties and external disturbances. The theory of this article includes the modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time adaptive fault-tolerant controller is theoretically proved. Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well.

  9. A real-time fault-tolerant scheduling algorithm with low dependability cost in on-board computer system

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-dong; WEI Zhen-hua

    2008-01-01

    To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.

  10. On Pure and (approximate) Strong Equilibria of Facility Location Games

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Telelis, Orestis A.

    2008-01-01

    We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every...... networks we prove upper and lower bounds on PoS, while an O(ln n) upper bound implied by previous work is tight for non-metric networks. We also prove a constant upper bound for the SPoA of metric networks when strong equilibria exist. For the weighted game on general networks we prove existence of e...

  11. Uncapacitated facility location problem with self-serving demands

    Directory of Open Access Journals (Sweden)

    E Monabbati

    2013-12-01

    Full Text Available In classical uncapacitated facility location problems (UFLP the goal is to satisfy requirements of some demand points by setting up some servers, among potential facility locations, such that the total cost including service costs and fixed costs are minimized. In this paper a generalization of UFLP is considered in which some demand points, called self-serving, could be served exclusively by a new server at that point. Numerical experiments show that near optimal solutions are achieved by the proposed method.

  12. A competitive facility location in a closed form supply chain

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Mohammadi

    2014-06-01

    Full Text Available This paper studies capacitated facility location problem by considering green management perspectives. The proposed study considers reverse logistic problem as an alternative strategy for facility location in an attempt to take care of environmental characteristics. The resulted problem is formulated as mixed integer programming and it is classified as an NP-Hard problem. Therefore, a Lagrangian relaxation methodology is presented to reduce the complexity of the proposed problem and the solution has been implemented for some instances to examine the performance of the proposed study.

  13. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian

    2015-12-01

    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  14. Integral Sliding Mode Fault-Tolerant Control for Uncertain Linear Systems Over Networks With Signals Quantization.

    Science.gov (United States)

    Hao, Li-Ying; Park, Ju H; Ye, Dan

    2016-06-13

    In this paper, a new robust fault-tolerant compensation control method for uncertain linear systems over networks is proposed, where only quantized signals are assumed to be available. This approach is based on the integral sliding mode (ISM) method where two kinds of integral sliding surfaces are constructed. One is the continuous-state-dependent surface with the aim of sliding mode stability analysis and the other is the quantization-state-dependent surface, which is used for ISM controller design. A scheme that combines the adaptive ISM controller and quantization parameter adjustment strategy is then proposed. Through utilizing H∞ control analytical technique, once the system is in the sliding mode, the nature of performing disturbance attenuation and fault tolerance from the initial time can be found without requiring any fault information. Finally, the effectiveness of our proposed ISM control fault-tolerant schemes against quantization errors is demonstrated in the simulation.

  15. Novel Design for Quantum Dots Cellular Automata to Obtain Fault-Tolerant Majority Gate

    Directory of Open Access Journals (Sweden)

    Razieh Farazkish

    2012-01-01

    Full Text Available Quantum-dot Cellular Automata (QCA is one of the most attractive technologies for computing at nanoscale. The principle element in QCA is majority gate. In this paper, fault-tolerance properties of the majority gate is analyzed. This component is suitable for designing fault-tolerant QCA circuits. We analyze fault-tolerance properties of three-input majority gate in terms of misalignment, missing, and dislocation cells. In order to verify the functionality of the proposed component some physical proofs using kink energy (the difference in electrostatic energy between the two polarization states and computer simulations using QCA Designer tool are provided. Our results clearly demonstrate that the redundant version of the majority gate is more robust than the standard style for this gate.

  16. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  17. Fault Tolerance Assistant (FTA): An Exception Handling Programming Model for MPI Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Aiman [Univ. of Chicago, IL (United States). Dept. of Computer Science; Laguna, Ignacio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sato, Kento [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Islam, Tanzima [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-23

    Future high-performance computing systems may face frequent failures with their rapid increase in scale and complexity. Resilience to faults has become a major challenge for large-scale applications running on supercomputers, which demands fault tolerance support for prevalent MPI applications. Among failure scenarios, process failures are one of the most severe issues as they usually lead to termination of applications. However, the widely used MPI implementations do not provide mechanisms for fault tolerance. We propose FTA-MPI (Fault Tolerance Assistant MPI), a programming model that provides support for failure detection, failure notification and recovery. Specifically, FTA-MPI exploits a try/catch model that enables failure localization and transparent recovery of process failures in MPI applications. We demonstrate FTA-MPI with synthetic applications and a molecular dynamics code CoMD, and show that FTA-MPI provides high programmability for users and enables convenient and flexible recovery of process failures.

  18. H∞ robust fault-tolerant controller design for an autonomous underwater vehicle's navigation control system

    Science.gov (United States)

    Cheng, Xiang-Qin; Qu, Jing-Yuan; Yan, Zhe-Ping; Bian, Xin-Qian

    2010-03-01

    In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain. Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the H∞ controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.

  19. Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers

    Science.gov (United States)

    Jia, Qingxian; Chen, Wen; Zhang, Yingchun; Li, Huayi

    2016-12-01

    This paper addresses the problem of integrated fault reconstruction and fault-tolerant control in linear systems subject to actuator faults via learning observers (LOs). A reconfigurable fault-tolerant controller is designed based on the constructed LO to compensate for the influence of actuator faults by stabilising the closed-loop system. An integrated design of the proposed LO and the fault-tolerant controller is explored such that their performance can be simultaneously considered and their coupling problem can be effectively solved. In addition, such an integrated design is formulated in terms of linear matrix inequalities (LMIs) that can be conveniently solved in a unified framework using LMI optimisation technique. At last, simulation studies on a micro-satellite attitude control system are provided to verify the effectiveness of the proposed approach.

  20. A Fault Tolerant Congestion Aware Routing Protocol for Mobile Adhoc Networks

    Directory of Open Access Journals (Sweden)

    K. Duraiswamy

    2012-01-01

    Full Text Available Problem statement: The performance of ad hoc routing protocols will significantly degrade when there are faulty nodes in the network. Packet losses and bandwidth degradation are caused due to congestion and thus, time and energy is wasted during its recovery. The fault tolerant congestion aware routing protocol addresses these problems by exploring the network redundancy through multipath routing. Approach: In this study, it is proposed to design a fault tolerant congestion aware multi path routing protocol to reduce the route breakages and congestion losses. The AOMDV protocol is used as a base for the multipath routing. This proposed scheme enables more nodes to salvage a dropped packet. Results: Simulation results show that the proposed protocol achieves better throughput and packet delivery ratio with reduced delay, packet drop and energy. Conclusion: An effective congestion control technique proposed in this study proactively detects node level and link level congestion and performs congestion control using the fault-tolerant multiple paths.

  1. Fault-tolerant onboard digital information switching and routing for communications satellites

    Science.gov (United States)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.; Kim, Heechul

    1993-01-01

    The NASA Lewis Research Center is developing an information-switching processor for future meshed very-small-aperture terminal (VSAT) communications satellites. The information-switching processor will switch and route baseband user data onboard the VSAT satellite to connect thousands of Earth terminals. Fault tolerance is a critical issue in developing information-switching processor circuitry that will provide and maintain reliable communications services. In parallel with the conceptual development of the meshed VSAT satellite network architecture, NASA designed and built a simple test bed for developing and demonstrating baseband switch architectures and fault-tolerance techniques. The meshed VSAT architecture and the switching demonstration test bed are described, and the initial switching architecture and the fault-tolerance techniques that were developed and tested are discussed.

  2. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Institute of Scientific and Technical Information of China (English)

    Wang Xingjian; Wang Shaoping; Yang Zhongwei; Zhang Chao

    2015-01-01

    Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC) strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trim-mable horizontal stabilizer (THS) is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  3. Fault-Tolerant Consensus of Multi-Agent System With Distributed Adaptive Protocol.

    Science.gov (United States)

    Chen, Shun; Ho, Daniel W C; Li, Lulu; Liu, Ming

    2015-10-01

    In this paper, fault-tolerant consensus in multi-agent system using distributed adaptive protocol is investigated. Firstly, distributed adaptive online updating strategies for some parameters are proposed based on local information of the network structure. Then, under the online updating parameters, a distributed adaptive protocol is developed to compensate the fault effects and the uncertainty effects in the leaderless multi-agent system. Based on the local state information of neighboring agents, a distributed updating protocol gain is developed which leads to a fully distributed continuous adaptive fault-tolerant consensus protocol design for the leaderless multi-agent system. Furthermore, a distributed fault-tolerant leader-follower consensus protocol for multi-agent system is constructed by the proposed adaptive method. Finally, a simulation example is given to illustrate the effectiveness of the theoretical analysis.

  4. Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Science.gov (United States)

    Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.

    1984-01-01

    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.

  5. Fuzzy Logic-Based Secure and Fault Tolerant Job Scheduling in Grid

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng; JIANG Congfeng; LIU Xiaohu

    2007-01-01

    The uncertainties of grid sites security are main hurdle to make the job scheduling secure, reliable and fault-tolerant. Most existing scheduling algorithms use fixed-number job replications to provide fault tolerant ability and high scheduling success rate, which consume excessive resources or can not provide sufficient fault tolerant functions when grid security conditions change. In this paper a fuzzy-logic-based self-adaptive replication scheduling (FSARS) algorithm is proposed to handle the fuzziness or uncertainties of job replication number which is highly related to trust factors behind grid sites and user jobs. Remote sens-ing-based soil moisture extraction (RSBSME) workload experiments in real grid environment are performed to evaluate the proposed approach and the results show that high scheduling success rate of up to 95% and less grid resource utilization can be achieved through FSARS. Extensive experiments show that FSARS scales well when user jobs and grid sites increase.

  6. Adaptive fault-tolerant control of linear systems with actuator saturation and L2-disturbances

    Institute of Scientific and Technical Information of China (English)

    Wei GUAN; Guanghong YANG

    2009-01-01

    This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.

  7. EEBFTC: Extended Energy Balanced with Fault Tolerance Capability Protocol for WSN

    Directory of Open Access Journals (Sweden)

    Mona M. Jamjoom

    2017-01-01

    Full Text Available This paper proposes a new framework for wireless sensor networks (WSN by combining two routing protocol algorithms. In the proposed framework two algorithms are taking into consideration the energy balanced clustering (EBC protocol in WSN with fault tolerance capabilities. The organizer is automatically selected by the base station (BS and then it selects the cluster head (CH. The mechanism of selecting the organizer node and the cluster head (CH is based on the power, efficacy and energy balance load. In addition, the organizer is responsible to select a new CH in case of failure and vice versa. So, the energy balanced clustering and fault tolerance operations will prolong the node life time and thus the network will be efficient in data transmission and more reliable. The new framework after implementation is named Extended Energy Balanced with Fault Tolerance Capability (EEBFTC protocol.

  8. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  9. Clustering and Fault Tolerance for Target Tracking using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sania Bhatti

    2012-10-01

    Full Text Available Over the last few years, the deployment of WSNs (Wireless Sensor Networks has been fostered in diverse applications. WSN has great potential for a variety of domains ranging from scientific experiments to commercial applications. Due to the deployment of WSNs in dynamic and unpredictable environments. They have potential to cope with variety of faults. This paper proposes an energy-aware fault-tolerant clustering protocol for target tracking applications termed as the FTTT (Fault Tolerant Target Tracking protocol. The identification of RNs (Redundant Nodes makes SN (Sensor Node fault tolerance plausible and the clustering endorsed recovery of sensors supervised by a faulty CH (Cluster Head. The FTTT protocol intends two steps of reducing energy consumption: first, by identifying RNs in the network; secondly, by restricting the numbers of SNs sending data to the CH. Simulations validate the scalability and low power consumption of the FTTT protocol in comparison with LEACH protocol.

  10. Design of Parity Preserving Logic Based Fault Tolerant Reversible Arithmetic Logic Unit

    Directory of Open Access Journals (Sweden)

    Rakshith Saligram

    2013-07-01

    Full Text Available Reversible Logic is gaining significant consideration as the potential logic design style for implementationin modern nanotechnology and quantum computing with minimal impact on physical entropy .FaultTolerant reversible logic is one class of reversible logic that maintain the parity of the input and theoutputs. Significant contributions have been made in the literature towards the design of fault tolerantreversible logic gate structures and arithmetic units, however, there are not many efforts directed towardsthe design of fault tolerant reversible ALUs. Arithmetic Logic Unit (ALU is the prime performing unit inany computing device and it has to be made fault tolerant. In this paper we aim to design one such faulttolerant reversible ALU that is constructed using parity preserving reversible logic gates. The designedALU can generate up to seven Arithmetic operations and four logical operations.

  11. A Framework-Based Approach for Fault-Tolerant Service Robots

    Directory of Open Access Journals (Sweden)

    Heejune Ahn

    2012-11-01

    Full Text Available Recently the component‐based approach has become a major trend in intelligent service robot development due to its reusability and productivity. The framework in a component‐based system should provide essential services for application components. However, to our knowledge the existing robot frameworks do not yet support fault tolerance service. Moreover, it is often believed that faults can be handled only at the application level. In this paper, by extending the robot framework with the fault tolerance function, we argue that the framework‐based fault tolerance approach is feasible and even has many benefits, including that: 1 the system integrators can build fault tolerance applications from non‐fault‐aware components; 2 the constraints of the components and the operating environment can be considered at the time of integration, which ‐ cannot be anticipated eaily at the time of component development; 3 consistency in system reliability can be obtained even in spite of diverse application component sources. In the proposed construction, we build XML rule files defining the rules for probing and determining the fault conditions of each component, contamination cases from a faulty component, and the possible recovery and safety methods. The rule files are established by a system integrator and the fault manager in the framework controls the fault tolerance process according to the rules. We demonstrate that the fault‐tolerant framework can incorporate widely accepted fault tolerance techniques. The effectiveness and real‐time performance of the framework‐based approach and its techniques are examined by testing an autonomous mobile robot in typical fault scenarios.

  12. Robust Adaptive Fault-Tolerant Tracking Control of Three-Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    Hossein Tohidi

    2014-01-01

    Full Text Available This paper deals with the problem of induction motor tracking control against actuator faults and external disturbances using the linear matrix inequalities (LMIs method and the adaptive method. A direct adaptive fault-tolerant tracking controller design method is developed based on Lyapunov stability theory and a constructive algorithm based on linear matrix inequalities for online tuning of adaptive and state feedback gains to stabilize the closed-loop system in order to reduce the fault effect with disturbance attenuation. Simulation results reveal the merits of proposed robust adaptive fault-tolerant tracking control scheme on an induction motor subjected to actuator faults.

  13. Architecture Synthesis for Cost-Constrained Fault-Tolerant Flow-based Biochips

    DEFF Research Database (Denmark)

    Eskesen, Morten Chabert; Pop, Paul; Potluri, Seetal

    2016-01-01

    . This increase in fabrication complexity has led to an increase in defect rates during the manufacturing, thereby motivating the need to improve the yield, by designing these biochips such that they are fault tolerant. We propose an approach based on a Greedy Randomized Adaptive Search Procedure (GRASP......) for the synthesis of fault-tolerant biochip architectures. Our approach optimizes the introduction of redundancy within a given unit cost budget, such that, the biochemical application can successfully complete its execution within its deadline, even in the presence of faults, and the yield is maximized...

  14. Fault Tolerant Variable Block Carry Skip Logic (VBCSL) using Parity Preserving Reversible Gates

    CERN Document Server

    Islam, Md Saiful; Begum, Zerina; Hafiz, Mohd Zulfiquar

    2010-01-01

    Reversible logic design has become one of the promising research directions in low power dissipating circuit design in the past few years and has found its application in low power CMOS design, digital signal processing and nanotechnology. This paper presents the efficient design approaches of fault tolerant carry skip adders (FTCSAs) and compares those designs with the existing ones. Variable block carry skip logic (VBCSL) using the fault tolerant full adders (FTFAs) has also been developed. The designs are minimized in terms of hardware complexity, gate count, constant inputs and garbage outputs. Besides of it, technology independent evaluation of the proposed designs clearly demonstrates its superiority with the existing counterparts.

  15. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition...... for the exis- tence of a passive fault-tolerant controller is derived and formulated as the feasibility of a set of linear matrix inequalities (LMIs). The upper bound on the performance cost can be minimized using a convex optimization problem with LMI constraints which can be solved efficiently. The approach...

  16. Active leave behavior of members in a fault-tolerant group

    Institute of Scientific and Technical Information of China (English)

    WANG Yun

    2004-01-01

    Active replication is an effective means to enhance fault tolerant capability in distributed systems. A fault-tolerant group is composed of replicas of key components in a system. This paper analyzes three types of leave semantics of group members, and manifests activities a group member involves. Then it educes requirements for a group member to safely leave. As to quick-leave semantics, this paper proposes a solution and discusses the non-empty protocol and relay protocol in detail. Further, it gives proofs of correctness and termination property of the protocols. The solution is a building block for a practical and operational group membership module.

  17. Fault-Tolerant Control of the Road Wheel Subsystem in a Steer-By-Wire System

    Directory of Open Access Journals (Sweden)

    Bing Zheng

    2008-01-01

    Full Text Available This paper describes a fault-tolerant steer-by-wire road wheel control system. With dual motor and dual microcontroller architecture, this system has the capability to tolerate single-point failures without degrading the control system performance. The arbitration bus, mechanical arrangement of motors, and the developed control algorithm allow the system to reconfigure itself automatically in the event of a single-point fault, and assure a smooth reconfiguration process. Both simulation and experimental results illustrate the effectiveness of the proposed fault-tolerant control system.

  18. The SIFT computer and its development. [Software Implemented Fault Tolerance for aircraft control

    Science.gov (United States)

    Goldberg, J.

    1981-01-01

    Software Implemented Fault Tolerance (SIFT) is an aircraft control computer designed to allow failure probability of less than 10 to the -10th/hour. The system is based on advanced fault-tolerance computing and validation methodology. Since confirmation of reliability by observation is essentially impossible, system reliability is estimated by a Markov model. A mathematical proof is used to justify the validity of the Markov model. System design is represented by a hierarchy of abstract models, and the design proof comprises mathematical proofs that each model is, in fact, an elaboration of the next more abstract model.

  19. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    Science.gov (United States)

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  20. Enhanced fault-tolerant quantum computing in d-level systems.

    Science.gov (United States)

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  1. Validation Methods Research for Fault-Tolerant Avionics and Control Systems: Working Group Meeting, 2

    Science.gov (United States)

    Gault, J. W. (Editor); Trivedi, K. S. (Editor); Clary, J. B. (Editor)

    1980-01-01

    The validation process comprises the activities required to insure the agreement of system realization with system specification. A preliminary validation methodology for fault tolerant systems documented. A general framework for a validation methodology is presented along with a set of specific tasks intended for the validation of two specimen system, SIFT and FTMP. Two major areas of research are identified. First, are those activities required to support the ongoing development of the validation process itself, and second, are those activities required to support the design, development, and understanding of fault tolerant systems.

  2. Robust fault tolerant control of uncertain time-delay linear systems

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Robust fault tolerant control for a class of time-delay linear systems with parameter uncertainties is studied, and a time-delay related state feedback control is proposed. On the basis of Lyapunov method , we prove that the proposed control law has integrity against sensor and/or actuator failures if the correspondent sufficient condition can be satisfied. A heuristic algorithm is also provided to facilitate the realization of the fault tolerant control. Finally, a simulation example is presented to show the effectiveness of the proposed approach.

  3. Architecture for Intrusion Detection System with Fault Tolerance Using Mobile Agent

    Directory of Open Access Journals (Sweden)

    Chintan Bhatt

    2011-10-01

    Full Text Available This paper is a survey of the work, done for making an IDS fault tolerant.Architecture of IDS that usesmobile Agent provides higher scalability. Mobile Agent uses Platform for detecting Intrusions using filterAgent, co-relater agent, Interpreter agent and rule database. When server (IDS Monitor goes down,other hosts based on priority takes Ownership. This architecture uses decentralized collection andanalysis for identifying Intrusion. Rule sets are fed based on user-behaviour or applicationbehaviour.This paper suggests that intrusion detection system (IDS must be fault tolerant; otherwise, theintruder may first subvert the IDS then attack the target system at will.

  4. Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bidirectional Ring Network

    Directory of Open Access Journals (Sweden)

    Danial Rahdari

    2012-12-01

    Full Text Available Nowadays use of distributed systems such as internet and cloud computing is growing dramatically. Coordinator existence in these systems is crucial due to processes coordinating and consistency requirement as well. However the growth makes their election algorithm even more complicated. Too many algorithms are proposed in this area but the two most well known one are Bully and Ring. In this paper we propose a fault tolerant coordinator election algorithm in typical bidirectional ring topology which is twice as fast as Ring algorithm although far fewer messages are passing due to election. Fault tolerance technique is applied which leads the waiting time for the election reaching to zero.

  5. Scheduling of Fault-Tolerant Embedded Systems with Soft and Hard Timing Constraints

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2008-01-01

    /utility functions to capture the utility of soft processes. Process re-execution is employed to recover from multiple faults. A single static schedule computed off-line is not fault tolerant and is pessimistic in terms of utility, while a purely online approach, which computes a new schedule every time a process......In this paper we present an approach to the synthesis of fault-tolerant schedules for embedded applications with soft and hard real-time constraints. We are interested to guarantee the deadlines for the hard processes even in the case of faults, while maximizing the overall utility. We use time...

  6. A Probabilistic, Facility-Centric Approach to Lightning Strike Location

    Science.gov (United States)

    Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.

    2012-01-01

    A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  7. 76 FR 68170 - Instructions for Implementing Sustainable Locations for Federal Facilities in Accordance With...

    Science.gov (United States)

    2011-11-03

    ... Locations for Federal Facilities in Accordance With Executive Order 13514 AGENCY: Council on Environmental Quality. ACTION: Notice of availability of sustainable locations for Federal facilities implementing... Federal agencies for integrating sustainable facility location decision-making principles into agency...

  8. Site survey for optimum location of Optical Communication Experimental Facility

    Science.gov (United States)

    1968-01-01

    Site survey was made to determine the optimum location for an Optical Communication Experimental Facility /OCEF/ and to recommend several sites, graded according to preference. A site was desired which could perform two-way laser communication with a spacecraft and laser tracking with a minimum of interruption by weather effects.

  9. Linear facility location in three dimensions - Models and solution methods

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line or a line segment in three-dimensional space, such that the sum of distances from the facility represented by the line (segment) to a given set of points is minimized. An example is planning the drilling of a mine shaft, with access to ore deposits through...

  10. Linear facility location in three dimensions - Models and solution methods

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line or a line segment in three-dimensional space, such that the sum of distances from the facility represented by the line (segment) to a given set of points is minimized. An example is planning the drilling of a mine shaft, with access to ore deposits through...

  11. A hybrid nested partitions algorithm for banking facility location problems

    KAUST Repository

    Xia, Li

    2010-07-01

    The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.

  12. Sufficient conditions for optimal facility locations to coincide

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1980-01-01

    In some cases multifacility location problems may be solved by verifying a few simple inequalities involving the interfacility weights. The authors develop certain inequalities which are sufficient conditions for optimality in some multifacility problems. In the problems considered, distances are...... are represented by a symmetric metric and there are no constraints on the location of the new facilities......In some cases multifacility location problems may be solved by verifying a few simple inequalities involving the interfacility weights. The authors develop certain inequalities which are sufficient conditions for optimality in some multifacility problems. In the problems considered, distances...

  13. A facility location model for socio-environmentally responsible decision-making

    National Research Council Canada - National Science Library

    Ansbro, Dominic; Wang, Qing

    2013-01-01

    .... The model presented considers a network of suppliers, manufacturing facilities, customers, scrap recyclers, general recycling facilities and landfill sites and makes facility location and allocation...

  14. On Pure and (approximate) Strong Equilibria of Facility Location Games

    CERN Document Server

    Hansen, Thomas Dueholm

    2008-01-01

    We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every agent pays individually a (weighted) connection cost to the chosen location. We study the Price of Stability (PoS) of pure Nash equilibria and the Price of Anarchy of strong equilibria (SPoA), that generalize pure equilibria by being resilient to coalitional deviations. A special case of recently studied network design games, Facility Location merits separate study as a classic model with numerous applications and individual characteristics: our analysis for unweighted agents on metric networks reveals constant upper and lower bounds for the PoS, while an O(ln n) upper bound implied by previous work is tight for non-metric networks. Strong equilibria do not always exist, even for the unweighted metric case. For this cas...

  15. Final Project Report. Scalable fault tolerance runtime technology for petascale computers

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sadayappan, P [Ohio State Univ., Columbus, OH (United States)

    2015-06-16

    With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been a considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.

  16. Implementation of fault tolerant control for modular multilevel converter using EtherCAT communication

    DEFF Research Database (Denmark)

    Burlacu, Paul Dan; Mathe, Laszlo; Rejas, Marcos;

    2015-01-01

    . This communication platform has to ensure a perfect synchronization between the modules, and it should be also fault tolerant. The analysis of a MMC based on EtherCAT is presented in this paper from implementation and module fault point of view. The experimental tests show that the MMC operates after communication...

  17. Piloted Simulator Evaluation Results of New Fault-Tolerant Flight Control Algorithm

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Smaili, M.H.; Stroosma, O.; Chu, Q.P.; Mulder, J.A.; Joosten, D.A.

    2010-01-01

    A high fidelity aircraft simulation model, reconstructed using the Digital Flight Data Recorder (DFDR) of the 1992 Amsterdam Bijlmermeer aircraft accident (Flight 1862), has been used to evaluate a new Fault-Tolerant Flight Control Algorithm in an online piloted evaluation. This paper focuses on the

  18. Noise Threshold for a Fault-Tolerant Two-Dimensional Lattice Architecture

    CERN Document Server

    Svore, K M; Terhal, B M; Svore, Krysta M.; Vincenzo, David P. Di; Terhal, Barbara M.

    2006-01-01

    We consider a model of quantum computation in which the set of operations is limited to nearest-neighbor interactions on a 2D lattice. We model movement of qubits with noisy SWAP operations. For this architecture we design a fault-tolerant coding scheme using the concatenated [[7,1,3

  19. Realization of User Level Fault Tolerant Policy Management through a Holistic Approach for Fault Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung H [ORNL; Naughton, III, Thomas J [ORNL; Agarwal, Pratul K [ORNL; Bernholdt, David E [ORNL; Geist, Al [ORNL; Tippens, Jennifer L [ORNL

    2011-01-01

    Many modern scientific applications, which are designed to utilize high performance parallel com- puters, occupy hundreds of thousands of computational cores running for days or even weeks. Since many scien- tists compete for resources, most supercomputing centers practice strict scheduling policies and perform meticulous accounting on their usage. Thus computing resources and time assigned to a user is considered invaluable. However, most applications are not well prepared for un- foreseeable faults, still relying on primitive fault tolerance techniques. Considering that ever-plunging mean time to interrupt (MTTI) is making scientific applications more vulnerable to faults, it is increasingly important to provide users not only an improved fault tolerant environment, but also a framework to support their own fault tolerance policies so that their allocation times can be best utilized. This paper addresses a user level fault tolerance policy management based on a holistic approach to digest and correlate fault related information. It introduces simple semantics with which users express their policies on faults, and illustrates how event correlation techniques can be applied to manage and determine the most preferable user policies. The paper also discusses an implementation of the framework using open source software, and demonstrates, as an example, how a molecular dynamics simulation application running on the institutional cluster at Oak Ridge National Laboratory benefits from it.

  20. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    Science.gov (United States)

    Goto, Hayato

    2014-01-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387

  1. Step-by-step magic state encoding for efficient fault-tolerant quantum computation.

    Science.gov (United States)

    Goto, Hayato

    2014-12-16

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  2. Final Project Report. Scalable fault tolerance runtime technology for petascale computers

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sadayappan, P [Ohio State Univ., Columbus, OH (United States)

    2015-06-16

    With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been a considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.

  3. Active fault tolerant control for vertical tail damaged aircraft with dissimilar redundant actuation system

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Shaoping; Wang Xingjian; Shi Cun; Mileta M. Tomovic

    2016-01-01

    This paper proposes an active fault-tolerant control strategy for an aircraft with dissim-ilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the dam-aged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.

  4. Active and Passive Fault-Tolerant LPV Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2010-01-01

    This paper addresses the design and comparison of active and passive fault-tolerant linear parameter-varying (LPV) controllers for wind turbines. The considered wind turbine plant model is characterized by parameter variations along the nominal operating trajectory and includes a model of an inci...

  5. Towards fault-tolerant decision support systems for ship operator guidance

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Lajic, Zoran; Jensen, Jørgen Juncher

    2012-01-01

    Fault detection and isolation are very important elements in the design of fault-tolerant decision support systems for ship operator guidance. This study outlines remedies that can be applied for fault diagnosis, when the ship responses are assumed to be linear in the wave excitation. A novel...

  6. A novel fault tolerant permanent magnet synchronous motor with improved optimal torque control for aerospace application

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-04-01

    Full Text Available Improving fault tolerant performance of permanent magnet synchronous motor has always been the central issue of the electrically supplied actuator for aerospace application. In this paper, a novel fault tolerant permanent magnet synchronous motor is proposed, which is characterized by two stators and two rotors on the same shaft with a circumferential displacement of mechanical angle of 4.5°. It helps to reduce the cogging torque. Each segment of the stator and the rotor can be considered as an 8-pole/10-slot five-phase permanent magnet synchronous motor with concentrated, single-layer and alternate teeth wound winding, which enhance the fault isolation capacity of the motor. Furthermore, the motor has high phase inductance to restrain the short-circuit current. In addition, an improved optimal torque control strategy is proposed to make the motor work well under the open-circuit fault and short-circuit fault conditions. Simulation and experiment results show that the proposed fault tolerant motor system has excellent fault tolerant capacity, which is able to operate continuously under the third open-circuit fault and second short-circuit fault condition without system performance degradation, which was not available earlier.

  7. FAULT TOLERANCE FOR TWO WHEEL MOBILE ROBOT USING FSM (FINITE STATE MACHINE

    Directory of Open Access Journals (Sweden)

    Chan Shi Jing

    2017-02-01

    Full Text Available Fault Tolerance (FT enables system to continue operating despite in the event of failures. Therefore, FT serves as a backup component or procedure that can immediately play its role to minimize any service lost. FT exists in many forms, where it can either be in the software form or hardware form or both hardware and software form. Fault Tolerance is an umbrella term for fault detection, fault isolation, fault identification and fault solving. To better visualize the fault detection and isolation process, a two wheel robot is used in this study to represent the complex system. The aim of this research is to construct and design a Fault Tolerance algorithm considered to speed up the fault isolation procedure and it might identify multiple fault with the same static fault signature. The Finite State Machine (FSM model, a wide library of reusable model for the fault tolerant is used in this study to solve the fault in actuator or in the sensor by resetting and adjusting it to the correct position. Using the system sensors or actuators, the technique used is able to recognize the fault from its data. This FSM method is capable to avoid, replace, reset and recover any possible faults occurred in the system, offering an innovative solution to identify and solve a fault immediately.

  8. Mapping of Fault-Tolerant Applications with Transparency on Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2006-01-01

    In this paper we present an approach for the mapping optimization of fault-tolerant embedded systems for safety-critical applications. Processes and messages are statically scheduled. Process re-execution is used for recovering from multiple transient faults. We call process recovery transparent...

  9. A New Fault-tolerant Switched Reluctance Motor with reliable fault detection capability

    DEFF Research Database (Denmark)

    Lu, Kaiyuan

    2014-01-01

    while no extra search coil is actually needed. The motor itself is able to continue to work under any faulted conditions, providing fault-tolerant features. The working principle, performance evaluation of this motor will be demonstrated in this paper and Finite Element Analysis results are provided....

  10. Synthesis of Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru;

    2006-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes are statically scheduled and communications are performed using the time...

  11. Energy/Reliability Trade-offs in Fault-Tolerant Event-Triggered Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Gan, Junhe; Gruian, Flavius; Pop, Paul;

    2011-01-01

    This paper presents an approach to the synthesis of low-power fault-tolerant hard real-time applications mapped on distributed heterogeneous embedded systems. Our synthesis approach decides the mapping of tasks to processing elements, as well as the voltage and frequency levels for executing each...

  12. Design Optimization of Time- and Cost-Constrained Fault-Tolerant Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru;

    2005-01-01

    In this paper we present an approach to the design optimization of fault-tolerant embedded systems for safety-critical applications. Processes are statically scheduled and communications are performed using the time-triggered protocol. We use process re-execution and replication for tolerating...

  13. Fault Tolerance Mobile Agent System Using Witness Agent in 2-Dimensional Mesh Network

    Directory of Open Access Journals (Sweden)

    Ahmad Rostami

    2010-09-01

    Full Text Available Mobile agents are computer programs that act autonomously on behalf of a user or its owner and travel through a network of heterogeneous machines. Fault tolerance is important in their itinerary. In this paper, existent methods of fault tolerance in mobile agents are described which they are considered in linear network topology. In the methods three agents are used to fault tolerance by cooperating to each others for detecting and recovering server and agent failure. Three types of agents are: actual agent which performs programs for its owner, witness agent which monitors the actual agent and the witness agent after itself, probe which is sent for recovery the actual agent or the witness agent on the side of the witness agent. Communication mechanism in the methods is message passing between these agents. The methods are considered in linear network. We introduce our witness agent approach for fault tolerance mobile agent systems in Two Dimensional Mesh (2D-Mesh Network. Indeed Our approach minimizes Witness-Dependency in this network and then represents its algorithm.

  14. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Directory of Open Access Journals (Sweden)

    Arthur Brady

    Full Text Available As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all. We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  15. A Capacitated Facility Location Approach for the Tanker Employment Problem

    Science.gov (United States)

    2005-03-01

    Depot (MD) Vehicle Routing Problem (VRP) ......................................... 14 2.5 Capacitated Facility Location Problem (CFLP) with Sole...service receiver groups. In this sense the problem can be viewed as a multi-depot vehicle routing problem . Anchor points are two stationary points...for future research. 2.4 Multi-Depot (MD) Vehicle Routing Problem (VRP) Another approach to the Tanker Employment Problem is to model it as a VRP

  16. The p-median Facility Location Problem and Solution Approaches

    OpenAIRE

    BASTI, MEHMET

    2012-01-01

    In today’s globalized and increasingly competitive environment, organizations’ need to implement successful strategies for supply chain management has become indispensable. Transportation costs within the supply chain comprise an important part of the organizations’ expenses. For this reason, the strategic selection of location is an issue that directly affects supply chain performance and costs. At this stage, it becomes very important to apply the latest and the best methods to the facility...

  17. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  18. 40 CFR 267.18 - What are the standards for selecting the location of my facility?

    Science.gov (United States)

    2010-07-01

    ... the location of my facility? 267.18 Section 267.18 Protection of Environment ENVIRONMENTAL PROTECTION... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT General Facility Standards § 267.18 What are the standards for selecting the location of my facility? (a) You may not locate portions of new facilities where...

  19. Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-11-01

    Full Text Available Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM is researched in this paper to further promote their torque density and fault tolerance capability. It has two rotors and two sets of stator windings, and it can adopt a series drive mode or parallel drive mode. The fault-tolerance capability of the five-phase DRPMSM is researched. All open circuit fault types and corresponding fault tolerance techniques in different drive modes are analyzed. A fault-tolerance control strategy of injecting currents containing a certain third harmonic component is proposed for five-phase DRPMSM to ensure performance after faults in the motor or drive circuit. For adjacent double-phase faults in the motor, based on where the additional degrees of freedom are used, two different fault-tolerance current calculation schemes are adopted and the torque results are compared. Decoupling of the inner motor and outer motor is investigated under fault-tolerant conditions in parallel drive mode. The finite element analysis (FMA results and co-simulation results based on Simulink-Simplorer-Maxwell verify the effectiveness of the techniques.

  20. A Fault-Tolerant Modulation Method to Counteract the Double Open-Switch Fault in Matrix Converter Drive Systems without Redundant Power Devices

    DEFF Research Database (Denmark)

    Chen, Der-Fa; Nguyen-Duy, Khiem; Liu, Tian-Hua

    2012-01-01

    redundant physical connections. It is shown that different locations of the double open switch affect the availability of the revised modulation. The steady state absolute speed error achieved with the proposed method is 4% of the nominal speed. Experimental results are performed to demonstrate the efficacy......-stage modulation is adjusted based on the knowledge of the switching logics of the inverter-stage and the operating input voltage sectors. However, the proposed fault-tolerant method does not rely on the assist of any redundant power devices or any reconfiguration of the matrix converter circuit by means of using...... of the proposed methods....

  1. Location, use, and locational efficiency of health facilities in a Madras neighbourhood.

    Science.gov (United States)

    Kumaran, V V

    1983-01-01

    The present paper has two related aims: an attempt to measure locational efficiency of health facilities in a Madras neighbourhood - Alandur - through an analysis of use patterns obtained from a questionnaire study, and an application of two significant methods on problems relating to organisation of health services - set covering reasoning and maximal covering location method. Some major conclusions of the two related analyses are: - Generally use declines with distance. However, beyond the eleventh distance zone, the use increases sharply, only to decrease after the fourteenth distance zone, the number of visits attributable to quality services at locations in these distance zones. - Among the variables determining the use patterns, distance is most important, followed by cost of treatment, the quality care, nature of facility and its availability. - Set covering method yielded 5 potential health location sites which proved to be efficient in both population coverage and maximum time distances of five and ten minutes /maximal covering location method/. Two alternative sets identified by set covering method proved to be inefficient on both population and distance counts when maximal covering method was applied.

  2. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  3. Design of passive fault-tolerant flight controller against actuator failures

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2015-02-01

    Full Text Available The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference commands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.

  4. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  5. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Streichert Thilo

    2006-01-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  6. Design of passive fault-tolerant flight controller against actuator failures

    Institute of Scientific and Technical Information of China (English)

    Yu Xiang; Zhang Youmin

    2015-01-01

    The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference com-mands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.

  7. Fault Tolerant Controller Design for a Faulty UAV Using Fuzzy Modeling Approach

    Directory of Open Access Journals (Sweden)

    Moshu Qian

    2016-01-01

    Full Text Available We address a fault tolerant control (FTC issue about an unmanned aerial vehicle (UAV under possible simultaneous actuator saturation and faults occurrence. Firstly, the Takagi-Sugeno fuzzy models representing nonlinear flight control systems (FCS for an UAV with unknown disturbances and actuator saturation are established. Then, a normal H-infinity tracking controller is presented using an online estimator, which is introduced to weaken the saturation effect. Based on the normal tracking controller, we propose an adaptive fault tolerant tracking controller (FTTC to solve actuator loss of effectiveness (LOE fault problem. Compared with previous work, this approach developed in our research need not rely on any fault diagnosis unit and is easily applied in engineering. Finally, these results in simulation indicate the efficiency of our presented FTC scheme.

  8. Fault Tolerant and Optimal Control of Wind Turbines with Distributed High-Speed Generators

    Directory of Open Access Journals (Sweden)

    Urs Giger

    2017-01-01

    Full Text Available In this paper, the control scheme of a distributed high-speed generator system with a total amount of 12 generators and nominal generator speed of 7000 min − 1 is studied. Specifically, a fault tolerant control (FTC scheme is proposed to keep the turbine in operation in the presence of up to four simultaneous generator faults. The proposed controller structure consists of two layers: The upper layer is the baseline controller, which is separated into a partial load region with the generator torque as an actuating signal and the full-load operation region with the collective pitch angle as the other actuating signal. In addition, the lower layer is responsible for the fault diagnosis and FTC characteristics of the distributed generator drive train. The fault reconstruction and fault tolerant control strategy are tested in simulations with several actuator faults of different types.

  9. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then......, the estimate of fault is used to compensate for the effect of the fault. Hence, using the estimate of fault, a fault tolerant controller using a piecewise linear static output feedback is designed such that it stabilizes the system and provides an upper bound on the H∞ performance of the faulty system....... Sufficient conditions for the existence of robust fault estimator and fault tolerant controller are derived in terms of linear matrix inequalities. Upper bounds on the H∞ performance can be minimized by solving convex optimization problems with linear matrix inequality constraints. The efficiency...

  10. An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    CERN Document Server

    Wu, Guowei; Xia, Feng; Xu, Zichuan; 10.3390/s101109590

    2010-01-01

    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.

  11. Reconciling fault-tolerant distributed algorithms and real-time computing.

    Science.gov (United States)

    Moser, Heinrich; Schmid, Ulrich

    We present generic transformations, which allow to translate classic fault-tolerant distributed algorithms and their correctness proofs into a real-time distributed computing model (and vice versa). Owing to the non-zero-time, non-preemptible state transitions employed in our real-time model, scheduling and queuing effects (which are inherently abstracted away in classic zero step-time models, sometimes leading to overly optimistic time complexity results) can be accurately modeled. Our results thus make fault-tolerant distributed algorithms amenable to a sound real-time analysis, without sacrificing the wealth of algorithms and correctness proofs established in classic distributed computing research. By means of an example, we demonstrate that real-time algorithms generated by transforming classic algorithms can be competitive even w.r.t. optimal real-time algorithms, despite their comparatively simple real-time analysis.

  12. Quantum computation with topological codes from qubit to topological fault-tolerance

    CERN Document Server

    Fujii, Keisuke

    2015-01-01

    This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

  13. Optimal Configuration of Fault-Tolerance Parameters for Distributed Server Access

    DEFF Research Database (Denmark)

    Daidone, Alessandro; Renier, Thibault; Bondavalli, Andrea

    2013-01-01

    Server replication is a common fault-tolerance strategy to improve transaction dependability for services in communications networks. In distributed architectures, fault-diagnosis and recovery are implemented via the interaction of the server replicas with the clients and other entities such as e...... in replicated server architectures. In order to obtain insight into the system behaviour, a set of relevant environment parameters and controllable fault-tolerance parameters are chosen and the dependability/performance trade-off is evaluated....... such as enhanced name servers. Such architectures provide an increased number of redundancy configuration choices. The influence of a (wide area) network connection can be quite significant and induce trade-offs between dependability and user-perceived performance. This paper develops a quantitative stochastic...

  14. Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2011-01-01

    , designed using a proposed method that allows the inclusion of both faults and uncertainties in the LPV controller design. We specifically consider a 4.8 MW, variable-speed, variable-pitch wind turbine model with a fault in the pitch system. We propose the design of a nominal controller (NC), handling...... the parameter variations along the nominal operating trajectory caused by nonlinear aerodynamics. To accommodate the fault in the pitch system, an active fault-tolerant controller (AFTC) and a passive fault-tolerant controller (PFTC) are designed. In addition to the nominal LPV controller, we also propose...... a robust controller (RC). This controller is able to take into account model uncertainties in the aerodynamic model. The controllers are based on output feedback and are scheduled on an estimated wind speed to manage the parameter-varying nature of the model. Furthermore, the AFTC relies on information...

  15. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  16. On the Mobility and Fault Tolerance of Closed Chain Manipulators with Passive Joints

    Directory of Open Access Journals (Sweden)

    Pål J. From

    2008-10-01

    Full Text Available A systematic analysis of the mobility of closed chain manipulators with passive joints is presented. The main observation in this paper is that the mobility of the manipulator, considering the passive joints only, should always be zero. Further, for the manipulator to be fault tolerant, the mobility should remain zero when actuator failure occurs for an arbitrary joint. We present a simple and rigorous approach to the problem of finding the smallest set of active joints for which the manipulator remains equilibrated with respect to free swinging joint failure in any joint. Several examples of how to choose the active joints for different mechanisms to guarantee that the manipulator is equilibrated and fault tolerant are presented.

  17. Fault-tolerant Control of Inverter-fed Induction Motor Drives

    DEFF Research Database (Denmark)

    Thybo, C.

    The main purpose of this work was to investigate how fault-tolerant control (FTC) could be included in the control scheme of frequency converter fed induction motor applications. This was approached by identifying the potential failure modes for which fault tolerant control should be applied...... a current sensor fault, by switching to a closed loop scalar controller, was analysed. The main contributions of this work are · An investigation of the potential failure modes of inverter fed induction motor drives. · An extension of the FTC development cycle, to include economical cost-benefit analysis....... A description of the different frequency converter components, including models of the inverter, sensors and controllers was given, followed by a fault mode and effect analysis, which points out the potential fault modes of the design. Among the listed fault modes, two were found to be of particular practical...

  18. SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET

    Science.gov (United States)

    KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya

    2013-02-01

    Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.

  19. Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint

    Science.gov (United States)

    Wang, Rongrong; Jing, Hui; Karimi, Hamid Reza; Chen, Nan

    2015-10-01

    In this paper, the robust fault-tolerant (FT) H∞ control problem of active suspension systems with finite-frequency constraint is investigated. A full-car model is employed in the controller design such that the heave, pitch and roll motions can be simultaneously controlled. Both the actuator faults and external disturbances are considered in the controller synthesis. As the human body is more sensitive to the vertical vibration in 4-8 Hz, robust H∞ control with this finite-frequency constraint is designed. Other performances such as suspension deflection and actuator saturation are also considered. As some of the states such as the sprung mass pitch and roll angles are hard to measure, a robust H∞ dynamic output-feedback controller with fault tolerant ability is proposed. Simulation results show the performance of the proposed controller.

  20. Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    John Cortés-Romero

    2013-01-01

    Full Text Available This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI observer assisted sliding mode control in fault-tolerant schemes. Convincing improvements are presented with respect to classical sliding mode control strategies. As a collateral advantage, the observer-based control architecture offers the possibility of chattering reduction given that a significant part of the control signal is of the continuous type. The case study considers a classical DC motor control affected by actuator faults, parametric failures, and perturbations. Experimental results and comparisons with other established sliding mode controller design methodologies, which validate the proposed approach, are provided.

  1. A DYNAMIC FAULT TOLERANT ALGORITHM FOR IMPROVISING PERFORMANCE OF MULTIMEDIA SERVICES

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multimedia Services has drawn much attention from both industrial and academic researchers due to the emerging consumer market, how to provide High-Availability service is one of most important issues to take into account. In this paper, a dynamic fault tolerant algorithm is presented for highly available distributed multimedia service, then by introducing SLB(server load balancing) into fault tolerance and switching servers in different ways according to their functions, the proposed schema can preserve reliability and real-time of the system .The analysis and experiments indicate that resuming server's faulty by this method is smooth and transparent to the client The proposed algorithm is effectively improving the reliability of the multimedia service.

  2. Fault tolerant onboard packet switch architecture for communication satellites: Shared memory per beam approach

    Science.gov (United States)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.

    1994-01-01

    The NASA Lewis Research Center is developing a multichannel communication signal processing satellite (MCSPS) system which will provide low data rate, direct to user, commercial communications services. The focus of current space segment developments is a flexible, high-throughput, fault tolerant onboard information switching processor. This information switching processor (ISP) is a destination-directed packet switch which performs both space and time switching to route user information among numerous user ground terminals. Through both industry study contracts and in-house investigations, several packet switching architectures were examined. A contention-free approach, the shared memory per beam architecture, was selected for implementation. The shared memory per beam architecture, fault tolerance insertion, implementation, and demonstration plans are described.

  3. Service for fault tolerance in the Ad Hoc Networks based on Multi Agent Systems

    Directory of Open Access Journals (Sweden)

    Ghalem Belalem

    2011-02-01

    Full Text Available The Ad hoc networks are distributed networks, self-organized and does not require infrastructure. In such network, mobile infrastructures are subject of disconnections. This situation may concern a voluntary or involuntary disconnection of nodes caused by the high mobility in the Ad hoc network. In these problems we are trying through this work to contribute to solving these problems in order to ensure continuous service by proposing our service for faults tolerance based on Multi Agent Systems (MAS, which predict a problem and decision making in relation to critical nodes. Our work contributes to study the prediction of voluntary and involuntary disconnections in the Ad hoc network; therefore we propose our service for faults tolerance that allows for effective distribution of information in the Network by selecting some objects of the network to be duplicates of information.

  4. Robust H-infinity fault-tolerant control for uncertain descriptor systems by dynamical compensators

    Institute of Scientific and Technical Information of China (English)

    Bing LIANG; Guangren DUAN

    2004-01-01

    The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered.Based on H-infinity theory in descriptor systems,a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented.The dynamical compensator guarantees that the resultant colsed-loop system is admissible;furthermore,it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties.A numerical example shows the effect of the proposed method.

  5. Fault tolerant control of multivariable processes using auto-tuning PID controller.

    Science.gov (United States)

    Yu, Ding-Li; Chang, T K; Yu, Ding-Wen

    2005-02-01

    Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.

  6. Fault Tolerant Modular Linear Motor for Safe-Critical Automated Industrial Applications

    Directory of Open Access Journals (Sweden)

    Loránd SZABÓ

    2009-05-01

    Full Text Available In various safe-critical industrial, medical and defence applications the translational movements are performed by linear motors. In such applications both the motor and its power converter should be fault tolerant. To fulfil this assignment redesigned motorstructures with novel phase connections must be used. In the paper a modular double salient permanent magnet linear motor is studied. Its phases are split into independent channels. The study on the fault tolerant capability of the linear motor was performed via cosimulation, using the Flux-to-Simulink Technology. The conclusions of the paper could help the users to select the optimal linear motor topology for their certain application, function of the required meantraction force and its acceptable ripples.

  7. Fault-tolerant Control of Inverter-fed Induction Motor Drives

    DEFF Research Database (Denmark)

    Thybo, C.

    The main purpose of this work was to investigate how fault-tolerant control (FTC) could be included in the control scheme of frequency converter fed induction motor applications. This was approached by identifying the potential failure modes for which fault tolerant control should be applied...... a current sensor fault, by switching to a closed loop scalar controller, was analysed. The main contributions of this work are · An investigation of the potential failure modes of inverter fed induction motor drives. · An extension of the FTC development cycle, to include economical cost-benefit analysis....... A description of the different frequency converter components, including models of the inverter, sensors and controllers was given, followed by a fault mode and effect analysis, which points out the potential fault modes of the design. Among the listed fault modes, two were found to be of particular practical...

  8. Systematic Fault Tolerant Control Based on Adaptive Thau Observer Estimation for Quadrotor Uavs

    Directory of Open Access Journals (Sweden)

    Cen Zhaohui

    2015-03-01

    Full Text Available A systematic fault tolerant control (FTC scheme based on fault estimation for a quadrotor actuator, which integrates normal control, active and passive FTC and fault parking is proposed in this paper. Firstly, an adaptive Thau observer (ATO is presented to estimate the quadrotor rotor fault magnitudes, and then faults with different magnitudes and time-varying natures are rated into corresponding fault severity levels based on the pre-defined fault-tolerant boundaries. Secondly, a systematic FTC strategy which can coordinate various FTC methods is designed to compensate for failures depending on the fault types and severity levels. Unlike former stand-alone passive FTC or active FTC, our proposed FTC scheme can compensate for faults in a way of condition-based maintenance (CBM, and especially consider the fatal failures that traditional FTC techniques cannot accommodate to avoid the crashing of UAVs. Finally, various simulations are carried out to show the performance and effectiveness of the proposed method.

  9. Error-detection-based quantum fault tolerance against discrete Pauli noise

    CERN Document Server

    Reichardt, B W

    2006-01-01

    A quantum computer -- i.e., a computer capable of manipulating data in quantum superposition -- would find applications including factoring, quantum simulation and tests of basic quantum theory. Since quantum superpositions are fragile, the major hurdle in building such a computer is overcoming noise. Developed over the last couple of years, new schemes for achieving fault tolerance based on error detection, rather than error correction, appear to tolerate as much as 3-6% noise per gate -- an order of magnitude better than previous procedures. But proof techniques could not show that these promising fault-tolerance schemes tolerated any noise at all. With an analysis based on decomposing complicated probability distributions into mixtures of simpler ones, we rigorously prove the existence of constant tolerable noise rates ("noise thresholds") for error-detection-based schemes. Numerical calculations indicate that the actual noise threshold this method yields is lower-bounded by 0.1% noise per gate.

  10. A New and Efficient Algorithm-Based Fault Tolerance Scheme for A Million Way Parallelism

    CERN Document Server

    Yao, Erlin; Wang, Rui; Zhang, Wenli; Tan, Guangming

    2011-01-01

    Fault tolerance overhead of high performance computing (HPC) applications is becoming critical to the efficient utilization of HPC systems at large scale. HPC applications typically tolerate fail-stop failures by checkpointing. Another promising method is in the algorithm level, called algorithmic recovery. These two methods can achieve high efficiency when the system scale is not very large, but will both lose their effectiveness when systems approach the scale of Exaflops, where the number of processors including in system is expected to achieve one million. This paper develops a new and efficient algorithm-based fault tolerance scheme for HPC applications. When failure occurs during the execution, we do not stop to wait for the recovery of corrupted data, but replace them with the corresponding redundant data and continue the execution. A background accelerated recovery method is also proposed to rebuild redundancy to tolerate multiple times of failures during the execution. To demonstrate the feasibility ...

  11. Fault-Tolerant Control for Networked Control Systems with Limited Information in Case of Actuator Fault

    Directory of Open Access Journals (Sweden)

    Wang Yan-feng

    2015-01-01

    Full Text Available This paper is concerned with the problem of designing a fault-tolerant controller for uncertain discrete-time networked control systems against actuator possible fault. The step difference between the running step k and the time stamp of the used plant state is modeled as a finite state Markov chain of which the transition probabilities matrix information is limited. By introducing actuator fault indicator matrix, the closed-loop system model is obtained by means of state augmentation technique. The sufficient conditions on the stochastic stability of the closed-loop system are given and the fault-tolerant controller is designed by solving a linear matrix inequality. A numerical example is presented to illustrate the effectiveness of the proposed method.

  12. FATAL+: A Self-Stabilizing Byzantine Fault-tolerant Clocking Scheme for SoCs

    CERN Document Server

    Dolev, Danny; Lenzen, Christoph; Posch, Markus; Schmid, Ulrich; Steininger, Andreas

    2012-01-01

    We present concept and implementation of a self-stabilizing Byzantine fault-tolerant distributed clock generation scheme for multi-synchronous GALS architectures in critical applications. It combines a variant of a recently introduced self-stabilizing algorithm for generating low-frequency, low-accuracy synchronized pulses with a simple non-stabilizing high-frequency, high-accuracy clock synchronization algorithm. We provide thorough correctness proofs and a performance analysis, which use methods from fault-tolerant distributed computing research but also addresses hardware-related issues like metastability. The algorithm, which consists of several concurrent communicating asynchronous state machines, has been implemented in VHDL using Petrify in conjunction with some extensions, and synthetisized for an Altera Cyclone FPGA. An experimental validation of this prototype has been carried out to confirm the skew and clock frequency bounds predicted by the theoretical analysis, as well as the very short stabiliz...

  13. A Middleware Approach to Achieving Fault Tolerance of Kahn Process Networks on Networks on Chips

    Directory of Open Access Journals (Sweden)

    Onur Derin

    2011-01-01

    propose a task-aware middleware concept that allows adaptivity in KPN implemented over a Network on Chip (NoC. We also list our ideas on the development of a simulation platform as an initial step towards creating fault tolerance strategies for KPNs applications running on NoCs. In doing that, we extend our SACRE (Self-Adaptive Component Run Time Environment framework by integrating it with an open source NoC simulator, Noxim. We evaluate the overhead that the middleware brings to the the total execution time and to the total amount of data transferred in the NoC. With this work, we also provide a methodology that can help in identifying the requirements and implementing fault tolerance and adaptivity support on real platforms.

  14. Fault Tolerant Multi-Criteria Multi-Path Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Koffka Khan

    2015-05-01

    Full Text Available The Ad Hoc On-Demand Multi-Path Distance Vector (AOMDV routing protocol allows the transport of data along one or more paths in wireless sensor networks (WSNs. The path chosen is based on a single shortest path hop count metric. The data on some WSNs is mission critical, for example, military and health care applications. Hence, fault tolerance in WSNs is becoming increasingly important. To improve the fault tolerance of WSNs in lossy environments, this work adds to the AOMDV routing protocol as it incorporates an additional packet loss metric. This Multi-criteria AOMDV or M-AOMDV is evaluated using the ns2 simulator. Simulations show that M-AOMDV maintains relatively low packet loss rates when the WSN is experiencing loss.

  15. Fault-tolerant Algorithms for Tick-Generation in Asynchronous Logic: Robust Pulse Generation

    CERN Document Server

    Dolev, Danny; Lenzen, Christoph; Schmid, Ulrich

    2011-01-01

    Today's hardware technology presents a new challenge in designing robust systems. Deep submicron VLSI technology introduced transient and permanent faults that were never considered in low-level system designs in the past. Still, robustness of that part of the system is crucial and needs to be guaranteed for any successful product. Distributed systems, on the other hand, have been dealing with similar issues for decades. However, neither the basic abstractions nor the complexity of contemporary fault-tolerant distributed algorithms match the peculiarities of hardware implementations. This paper is intended to be part of an attempt striving to overcome this gap between theory and practice for the clock synchronization problem. Solving this task sufficiently well will allow to build a very robust high-precision clocking system for hardware designs like systems-on-chips in critical applications. As our first building block, we describe and prove correct a novel Byzantine fault-tolerant self-stabilizing pulse syn...

  16. Satisfactory fault-tolerant controller design for uncertain systems subject to actuator faults

    Institute of Scientific and Technical Information of China (English)

    Zhang Dengfeng; Su Hongye; Wang Zhiquan

    2008-01-01

    Based on satisfactory control strategy, a new method for robust passive fault tolerant controller is proposed for a class of uncertain discrete-time systems subject to actuator faults. The state-feedback gain matrix is calculated by linear matrix inequality (LMI) technique. The designed controller guarantees that the closed-loop system meets the pre-specified consistent constraints on circular pole index and steady-state variance index simultaneously for normal case and possible actuator fault case. The consistency of the performance indices is discussed. Furthermore, with the mentioned indices constraints, a solution is obtained by convex optimal technique for the robust satisfactory fault-tolerant controller with optimal control-cost.

  17. Using Concatenated Quantum Codes for Universal Fault-Tolerant Quantum Gates

    Science.gov (United States)

    Jochym-O'Connor, Tomas; Laflamme, Raymond

    2014-01-01

    We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.

  18. A Fault Tolerant Trajectory Clustering (FTTC) for selecting cluster heads inWireless Sensor Networks

    CERN Document Server

    Munaga, Hazarath; Venkateswarlu, N B

    2011-01-01

    Wireless sensor networks (WSNs) suffers from the hot spot problem where the sensor nodes closest to the base station are need to relay more packet than the nodes farther away from the base station. Thus, lifetime of sensory network depends on these closest nodes. Clustering methods are used to extend the lifetime of a wireless sensor network. However, current clustering algorithms usually utilize two techniques; selecting cluster heads with more residual energy, and rotating cluster heads periodically to distribute the energy consumption among nodes in each cluster and lengthen the network lifetime. Most of the algorithms use random selection for selecting the cluster heads. Here, we propose a Fault Tolerant Trajectory Clustering (FTTC) technique for selecting the cluster heads in WSNs. Our algorithm selects the cluster heads based on traffic and rotates periodically. It provides the first Fault Tolerant Trajectory based clustering technique for selecting the cluster heads and to extenuate the hot spot proble...

  19. An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zichuan Xu

    2010-10-01

    Full Text Available A high degree of reliability for critical data transmission is required in body sensor networks (BSNs. However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.

  20. Efficient and Low-Cost Fault Tolerance for Web-Scale Systems

    OpenAIRE

    Serafini, Marco

    2010-01-01

    Online Web-scale services are being increasingly used to handle critical personal information. The trend towards storing and managing such information on the “cloud” is extending the need for dependable services to a growing range of Web applications, from emailing, to calendars, storage of photos, or finance. This motivates the increased adoption of fault-tolerant replication algorithms in Web-scale systems, ranging from classic, strongly-consistent replication in systems such as Chubby [Bur0...

  1. Fault-tolerant Fulltext Search for Large Multilingual Scientific Text Corpora

    OpenAIRE

    Esser, Wolfram M.

    2006-01-01

    In the work reported here, we present a new way of performing fault-tolerant fulltext retrieval on large text corpora, such as scientific encyclopedias. The weighted pattern morphing (WPM) technique introduced in this paper overcomes disadvantages of both the popular edit distance measure and the Soundex code approaches, yet keeping their flexibility. This algorithm handles phonetic similarities; common typing errors such as omission or transposition of letters, and inconsistent usage of abbr...

  2. Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control

    OpenAIRE

    John Cortés-Romero; Harvey Rojas-Cubides; Horacio Coral-Enriquez; Hebertt Sira-Ramírez; Alberto Luviano-Juárez

    2013-01-01

    This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI) observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI obs...

  3. Robust and Active Fault-tolerant Control for a Class of Nonlinear Uncertain Systems

    Institute of Scientific and Technical Information of China (English)

    You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu

    2006-01-01

    A novel integrated design strategy for robust fault diagnosis and fault-tolerant control (FTC) of a class of nonlinear uncertain systems is proposed. The uncertainties considered in this paper are more general than those in other existing works, and faults are described in a new formulation. It is proven that the states of a closed-loop system converge asymptotically to zero even if there are uncertainties and faults in a system. Simulation results on a simple pendulum are presented for illustration.

  4. Fault Tolerant Control Design for the Longitudinal Aircraft Dynamics using Quantitative Feedback Theory

    OpenAIRE

    Ossmann, Daniel

    2015-01-01

    Flight control laws of modern aircraft are scheduled with respect to flight point parameters. The loss of the air data measurement system implies inevitably the loss of relevant scheduling information. A strategy to design a fault tolerant longitudinal flight control system is proposed which can accommodate the total loss of the angle of attack and the calibrated airspeed measurements. In this scenario the described robust longitudinal control law is employed ensuring a control performance ...

  5. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    OpenAIRE

    Qixin Zhu; Kaihong Lu; Guangming Xie; Yonghong Zhu

    2015-01-01

    For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the mode...

  6. Characterization of the faulted behavior of digital computers and fault tolerant systems

    Science.gov (United States)

    Bavuso, Salvatore J.; Miner, Paul S.

    1989-01-01

    A development status evaluation is presented for efforts conducted at NASA-Langley since 1977, toward the characterization of the latent fault in digital fault-tolerant systems. Attention is given to the practical, high speed, generalized gate-level logic system simulator developed, as well as to the validation methodology used for the simulator, on the basis of faultable software and hardware simulations employing a prototype MIL-STD-1750A processor. After validation, latency tests will be performed.

  7. Fault-Tolerant Control for Networked Control Systems with Limited Information in Case of Actuator Fault

    OpenAIRE

    Wang Yan-feng; Wang Pei-liang; Li Zu-xin; Chen Hui-ying

    2015-01-01

    This paper is concerned with the problem of designing a fault-tolerant controller for uncertain discrete-time networked control systems against actuator possible fault. The step difference between the running step k and the time stamp of the used plant state is modeled as a finite state Markov chain of which the transition probabilities matrix information is limited. By introducing actuator fault indicator matrix, the closed-loop system model is obtained by means of state augmentation techniq...

  8. Combining Artificial Intelligence and Robust Techniques with MRAC in Fault Tolerant Control

    OpenAIRE

    Vargas Martínez, Adriana

    2011-01-01

    The investigation of this thesis presents different approaches for Fault Tolerant Control based on Model Reference Adaptive Control, Artificial Neural Networks, PID controller optimized by a Genetic Algorithm, Nonlinear, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI), LPV and nonlinear systems. All of the above techniques are integrated in different controller�s structures to prove their ability to accommodate a fault. Modern systems and their challenging op...

  9. Fault tolerant workflow scheduling based on replication and resubmission of tasks in Cloud Computing

    OpenAIRE

    Jayadivya S K; Jaya Nirmala S; Mary Saira Bhanu S

    2012-01-01

    The aim of workflow scheduling system is to schedule the workflows within the user given deadline to achieve a good success rate. Workflow is a set of tasks processed in a predefined order based on its data and control dependency. Scheduling these workflows in a computing environment, like cloud environment, is an NP-Complete problem and it becomes more challenging when failures of tasks areconsidered. To overcome these failures, the workflow scheduling system should be fault tolerant. In thi...

  10. Data Structures: Sequence Problems, Range Queries, and Fault Tolerance

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund

    for a range of sequence analysis problems that have risen from applications in pattern matching, bioinformatics, and data mining. On a high level, each problem is dened by a function and some constraints and the job at hand is to locate subsequences that score high with this function and are not invalidated...... a certain function on the elements in a given query subsequence. There are many types of functions that has been considered in connection with input from dierent sources. The input could be ip-data sorted by ip-address, real estate prices sorted by zip code, advertising cost sorted by time etc. We consider...

  11. Fault tolerant computer control for a Maglev transportation system

    Science.gov (United States)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  12. Scope of Reversible Engineering at Gate-Level : Fault - Tolerant Combinational Adders

    Directory of Open Access Journals (Sweden)

    M.Bharathi

    2012-05-01

    Full Text Available Reversible engineering has been one of the thrust areas ensuring that continual process of the innovation trends that explore and sustain the resources of the nature. This reversible engineering is used in many fields like quantum computing, low power CMOS design, nanotechnology, optical information processing, digital signal processing, cryptography, etc. These are the digital domain implementations of Reversible and Fault-Tolerant logic gates. Any arbitrary Boolean function can be synthesized by using the proposed parity preserving reversible gates. Not only the possibility of detecting errors is induced inherently in the proposed high speed adders at their output side but also it allows any fault that affects no more than a single signal that is detectable. The fault tolerant reversible full adder circuits are realized by using two IG gates only. The derived fault tolerant full adder is used for designing other arithmetic- logic circuit by using it as fundamental building block. The proposed reversible gate is designed to have less hardwarecomplexity and efficiecyt in terms of gate count, garbage outputs and constant input. In this paper, we design BCD adder using carry select logic, Carry-select and Bypass adders using FG gates, and newly designed TG gates.

  13. Dynamic Output Feedback Based Active Decentralized Fault-Tolerant Control for Reconfigurable Manipulator with Concurrent Failures

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2015-01-01

    Full Text Available The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI technique, the decentralized proportional-integral observer (DPIO is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence of H∞ fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.

  14. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  15. Upper bounds on fault tolerance thresholds of noisy Clifford-based quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Plenio, M B [Institut fuer Theoretische Physik, Albert-Einstein-Allee 11, Universitaet Ulm, D-89069 Ulm (Germany); Virmani, S [Department of Physics SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)], E-mail: shashank.virmani@strath.ac.uk

    2010-03-15

    We consider the possibility of adding noise to a quantum circuit to make it efficiently simulatable classically. In previous works, this approach has been used to derive upper bounds to fault tolerance thresholds-usually by identifying a privileged resource, such as an entangling gate or a non-Clifford operation, and then deriving the noise levels required to make it 'unprivileged'. In this work, we consider extensions of this approach where noise is added to Clifford gates too and then 'commuted' around until it concentrates on attacking the non-Clifford resource. While commuting noise around is not always straightforward, we find that easy instances can be identified in popular fault tolerance proposals, thereby enabling sharper upper bounds to be derived in these cases. For instance we find that if we take Knill's (2005 Nature 434 39) fault tolerance proposal together with the ability to prepare any possible state in the XY plane of the Bloch sphere, then not more than 3.69% error-per-gate noise is sufficient to make it classical, and 13.71% of Knill's {gamma} noise model is sufficient. These bounds have been derived without noise being added to the decoding parts of the circuits. Introducing such noise in a toy example suggests that the present approach can be optimized further to yield tighter bounds.

  16. FPGA Fault Tolerant Arithmetic Logic: A Case Study Using Parallel-Prefix Adders

    Directory of Open Access Journals (Sweden)

    David H. K. Hoe

    2013-01-01

    Full Text Available This paper examines fault tolerant adder designs implemented on FPGAs which are inspired by the methods of modular redundancy, roving, and gradual degradation. A parallel-prefix adder based upon the Kogge-Stone configuration is compared with the simple ripple carry adder (RCA design. The Kogge-Stone design utilizes a sparse carry tree complemented by several smaller RCAs. Additional RCAs are inserted into the design to allow fault tolerance to be achieved using the established methods of roving and gradual degradation. A triple modular redundant ripple carry adder (TMR-RCA is used as a point of reference. Simulation and experimental measurements on a Xilinx Spartan 3E FPGA platform are carried out. The TMR-RCA is found to have the best delay performance and most efficient resource utilization for an FPGA fault-tolerant implementation due to the simplicity of the approach and the use of the fast-carry chain. However, the superior performance of the carry-tree adder over an RCA in a VLSI implementation makes this proposed approach attractive for ASIC designs.

  17. Improving the Navigability of a Hexapod Robot using a Fault-Tolerant Adaptive Gait

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2012-06-01

    Full Text Available This paper encompasses a study on the development of a walking gait for fault tolerant locomotion in unstructured environments. The fault tolerant gait for adaptive locomotion fulfills stability conditions in opposition to a fault (locked joints or sensor failure event preventing a robot to realize stable locomotion over uneven terrains. To accomplish this feat, a fault tolerant gait based on force‐position control is proposed in this paper for a hexapod robot to enable stable walking with a joint failure. Furthermore, we extend our proposed fault detection and diagnosis (FDD method to deal with the critical failure of the angular rate sensors responsible for the attitude control of the robot over uneven terrains. A performance analysis of straight‐ line walking is carried out which shows that the proposed FDD‐based gait is capable of generating an adaptive walking pattern during joint or sensor failures. The performance of the proposed control is established using dynamic simulations and real‐world experiments on a prototype hexapod robot.

  18. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    Science.gov (United States)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  19. Robust Fault-Tolerant Tracking Control for Nonlinear Networked Control System: Asynchronous Switched Polytopic Approach

    Directory of Open Access Journals (Sweden)

    Chaoyang Dong

    2015-01-01

    Full Text Available This paper is concerned with the robust fault-tolerant tracking control problem for networked control system (NCS. Firstly, considering the locally overlapped switching law widely existed in engineering applications, the NCS is modeled as a locally overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, switched parameter dependent fault-tolerant tracking controllers are constructed to deal with the asynchronous switching phenomenon caused by the updating delays of the switching signals and weighted coefficients. Additionally, the global uniform asymptotic stability in the mean (GUAS-M and desired weighted l2 performance are guaranteed by combining the switched parameter dependent Lyapunov functional method with the average dwell time (ADT method, and the feasible conditions for the fault-tolerant tracking controllers are obtained in the form of linear matrix inequalities (LMIs. Finally, the performance of the proposed approach is verified on a highly maneuverable technology (HiMAT vehicle’s tracking control problem. Simulation results show the effectiveness of the proposed method.

  20. Plugging Braking of Two-PMSM Drive in Subway Applications with Fault-Tolerant Operation

    Directory of Open Access Journals (Sweden)

    Adel A. obed

    2016-06-01

    Full Text Available The Permanent Magnet Synchronous Motor (PMSM is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI controlled using Space Vector Pulse Width Modulation technique (SVPWM, Field Oriented Control method (FOC for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.

  1. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    Science.gov (United States)

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis. PMID:25045729

  2. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    Directory of Open Access Journals (Sweden)

    Guohai Liu

    2014-01-01

    Full Text Available A fault-tolerant permanent-magnet vernier (FT-PMV machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs. This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM, the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  3. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    Science.gov (United States)

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  4. Analysis of a hardware and software fault tolerant processor for critical applications

    Science.gov (United States)

    Dugan, Joanne B.

    1993-01-01

    Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.

  5. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  6. Reconfigurable fault-tolerant multiprocessor system for real-time control

    Energy Technology Data Exchange (ETDEWEB)

    Kao, M.L.

    1986-01-01

    Real-time control applications place stringent constraints in computers controlling them since the failure of a computer could result in costly damages and even loss of human lives. Fault-tolerant computers, therefore, have been always in high demand in critical avionic and aerospace applications. However, the use of redundancy techniques to achieve fault tolerance in industrial applications has only recently become feasible due to the rapid decrease in cost and increase in performance of microprocessors. As more and more robots are being built to replace human beings in dangerous and difficult tasks, the need for a reliable computer for robotics control increases. This need, in particular, motivated the research described in this dissertation - the design and implementation of a reconfigurable fault-tolerant multiprocessor system (the FREMP system). The FREMP system consists of four processing units (PUs) and three common parallel buses. Each PU is a combination of an Intel 86/30 single board computer and a custom fault detection/masking circuit board (FDM board). A hardware/software combined scheme was devised to detect faults and correct errors. This scheme has shown to be more efficient than software voting while maintaining the flexibility of software approaches. Time-frame scheduling was adopted to schedule tasks for execution.

  7. Adaptive Fault-Tolerant Routing in 2D Mesh with Cracky Rectangular Model

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2014-01-01

    Full Text Available This paper mainly focuses on routing in two-dimensional mesh networks. We propose a novel faulty block model, which is cracky rectangular block, for fault-tolerant adaptive routing. All the faulty nodes and faulty links are surrounded in this type of block, which is a convex structure, in order to avoid routing livelock. Additionally, the model constructs the interior spanning forest for each block in order to keep in touch with the nodes inside of each block. The procedure for block construction is dynamically and totally distributed. The construction algorithm is simple and ease of implementation. And this is a fully adaptive block which will dynamically adjust its scale in accordance with the situation of networks, either the fault emergence or the fault recovery, without shutdown of the system. Based on this model, we also develop a distributed fault-tolerant routing algorithm. Then we give the formal proof for this algorithm to guarantee that messages will always reach their destinations if and only if the destination nodes keep connecting with these mesh networks. So the new model and routing algorithm maximize the availability of the nodes in networks. This is a noticeable overall improvement of fault tolerability of the system.

  8. Scope of Reversible Engineering at Gate-Level : Fault - Tolerant Combinational Adders

    Directory of Open Access Journals (Sweden)

    M.Bharathi

    2012-04-01

    Full Text Available Reversible engineering has been one of the thrust areas ensuring that continual process of the innovation trends that explore and sustain the resources of the nature. This reversible engineering is used in many fields like quantum computing, low power CMOS design, nanotechnology, optical information processing, digital signal processing, cryptography, etc. These are the digital domain implementations of Reversible and Fault-Tolerant logic gates. Any arbitrary Boolean function can be synthesized by using the proposed parity preserving reversible gates. Not only the possibility of detecting errors is induced inherently in the proposed high speed adders at their output side but also it allows any fault that affects no more than a single signal that is detectable. The fault tolerant reversible full adder circuits are realized by using two IG gates only. The derived fault tolerant full adder is used for designing other arithmetic- logic circuit by using it as fundamental building block. The proposed reversible gate is designed to have less hardware complexity and efficiecyt in terms of gate count, garbage outputs and constant input. In this paper, we design BCD adder using carry select logic, Carry-select and Bypass adders using FG gates, and newly designed TG gates.

  9. Fault-tolerant control for current sensors of doubly fed induction generators based on an improved fault detection method

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    Fault-tolerant control of current sensors is studied in this paper to improve the reliability of a doubly fed induction generator (DFIG). A fault-tolerant control system of current sensors is presented for the DFIG, which consists of a new current observer and an improved current sensor fault...... detection algorithm, and fault-tolerant control system are investigated by simulation. The results indicate that the outputs of the observer and the sensor are highly coherent. The fault detection algorithm can efficiently detect both soft and hard faults in current sensors, and the fault-tolerant control...... system can effectively tolerate both types of faults. © 2013 Published by Elsevier Ltd. All rights reserved....

  10. Harmonic Analysis and Fault-Tolerant Capability of a Semi-12-Phase Permanent-Magnet Synchronous Machine Used for EVs

    Directory of Open Access Journals (Sweden)

    Haipeng Wang

    2012-09-01

    Full Text Available This paper deals with a fault-tolerant semi-12-phase permanent-magnet synchronous machine (PMSM used for electric vehicles. High fault-tolerant and low toque ripple features are achieved by employing fractional slot concentrated windings (FSCWs and open windings. Excessive magnetomotive force (MMF harmonic components can lead to thermal demagnetization of rotor magnets as well as high core loss. An improved all-teeth-wound winding disposition that changes the winding factor of each harmonic is applied to suppress harmonics. A relatively large slot leakage inductance that limits the short-circuit current (SCC induced in the short-circuited winding is proposed to deal with short-circuit fault. Fault-tolerant controls up to two phases open circuited are investigated in this paper based on keeping the same torque-producing MMF. The fault-tolerant control strategies corresponding to each faulty mode are studied and compared to ensure high performance operation.

  11. Fault-Tolerant Vision for Vehicle Guidance in Agriculture

    DEFF Research Database (Denmark)

    Blas, Morten Rufus

    The emergence of widely available vision technologies is enabling for a wide range of automation tasks in industry and other areas. Agricultural vehicle guidance systems have benefitted from advances in 3D vision based on stereo camera technology. By automatically guiding vehicles along crops...... dropout of 3D vision, faults in classification, or other defects, redundant information should be utilized. Such information can be used to diagnose faulty behavior and to temporarily continue operation with a reduced set of sensors when faults or artifacts occur. Additional sensors include GPS receivers...... and inertial sensors. To fully utilize the possibilities in 3D vision, the system must also be able to learn and adapt to changing environments. By learning features of the environment new diagnostic relations can be generated by creating redundant feed-forward information about crop location. Also, by mapping...

  12. Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation

    CERN Document Server

    Yerriswamy, T; 10.5121/sipij.2011.2306

    2011-01-01

    Continuing to estimate the Direction-of-arrival (DOA) of the signals impinging on the antenna array, even when a few elements of the underlying Uniform Linear Antenna Array (ULA) fail to work will be of practical interest in RADAR, SONAR and Wireless Radio Communication Systems. This paper proposes a new technique to estimate the DOAs when a few elements are malfunctioning. The technique combines Singular Value Thresholding (SVT) based Matrix Completion (MC) procedure with the Direct Data Domain (D^3) based Matrix Pencil (MP) Method. When the element failure is observed, first, the MC is performed to recover the missing data from failed elements, and then the MP method is used to estimate the DOAs. We also, propose a very simple technique to detect the location of elements failed, which is required to perform MC procedure. We provide simulation studies to demonstrate the performance and usefulness of the proposed technique. The results indicate a better performance, of the proposed DOA estimation scheme under...

  13. 14 CFR 145.105 - Change of location, housing, or facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Change of location, housing, or facilities..., Materials, and Data § 145.105 Change of location, housing, or facilities. (a) A certificated repair station... certificated repair station must operate while it is changing its location, housing, or facilities. ...

  14. 7 CFR 1735.13 - Location of facilities and service for nonrural subscribers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Location of facilities and service for nonrural...-TELECOMMUNICATIONS PROGRAM Loan Purposes and Basic Policies § 1735.13 Location of facilities and service for nonrural... location. (b) To the greatest extent practical, loans are limited to providing telephone facilities that...

  15. 41 CFR 301-74.5 - How should we select a location and a facility?

    Science.gov (United States)

    2010-07-01

    ... location and a facility? 301-74.5 Section 301-74.5 Public Contracts and Property Management Federal Travel... Agency Responsibilities § 301-74.5 How should we select a location and a facility? Site selection is a... location and the specific facility(ies) selected. In determining the best site in the interest of the...

  16. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of

  17. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    Science.gov (United States)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  18. Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications

    Science.gov (United States)

    Tsai, Chia-Wei; Lin, Jason

    2016-07-01

    This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.

  19. (m,n-Semirings and a Generalized Fault-Tolerance Algebra of Systems

    Directory of Open Access Journals (Sweden)

    Syed Eqbal Alam

    2013-01-01

    Full Text Available We propose a new class of mathematical structures called (m,n-semirings (which generalize the usual semirings and describe their basic properties. We define partial ordering and generalize the concepts of congruence, homomorphism, and so forth, for (m,n-semirings. Following earlier work by Rao (2008, we consider systems made up of several components whose failures may cause them to fail and represent the set of such systems algebraically as an (m,n-semiring. Based on the characteristics of these components, we present a formalism to compare the fault-tolerance behavior of two systems using our framework of a partially ordered (m,n-semiring.

  20. Fault Tolerant Magnetic Bearing Testing and Conical Magnetic Bearing Development for Extreme Temperature Environments

    Science.gov (United States)

    Keith, Theo G., Jr.; Clark, Daniel

    2004-01-01

    During the six month tenure of the grant, activities included continued research of hydrostatic bearings as a viable backup-bearing solution for a magnetically levitated shaft system in extreme temperature environments (1000 F), developmental upgrades of the fault-tolerant magnetic bearing rig at the NASA Glenn Research Center, and assisting in the development of a conical magnetic bearing for extreme temperature environments, particularly turbomachinery. It leveraged work from the ongoing Smart Efficient Components (SEC) and the Turbine-Based Combined Cycle (TBCC) program at NASA Glenn Research Center. The effort was useful in providing technology for more efficient and powerful gas turbine engines.

  1. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Blanke, M.

    1998-01-01

    against failure. The paper describes the assessments needed to find the right path for new industrial designs. The economic decisions in the design phase are discussed: cost of different failures, profits associated with available benefits, investments needed for development and life-time support....... The objective of this paper is to help, in the early product development state, to find the economical most suitable scheme. A salient result is that with increased customer awareness of total cost of ownership, new products can benefit significantly from applying fault tolerant control principles....

  2. Fault Tolerant Approach for Data Encryption and Digital Signature Based on ECC System

    Institute of Scientific and Technical Information of China (English)

    ZENG Yong; MA Jian-feng

    2005-01-01

    An integrated fault tolerant approach for data encryption and digital signature based on elliptic curve cryptography is proposed. This approach allows the receiver to verify the sender's identity and can simultaneously deal with error detection and data correction. Up to three errors in our approach can be detected and corrected. This approach has at least the same security as that based on RSA system, but smaller keys to achieve the same level of security. Our approach is more efficient than the known ones and more suited for limited environments like personal digital assistants (PDAs), mobile phones and smart cards without RSA co- processors.

  3. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    Science.gov (United States)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  4. Fault Detection and Isolation and Fault Tolerant Control of Wind Turbines Using Set-Valued Observers

    DEFF Research Database (Denmark)

    Casau, Pedro; Rosa, Paulo Andre Nobre; Tabatabaeipour, Seyed Mojtaba

    2012-01-01

    and Isolation (FDI) and Fault Tolerant Control (FTC) of wind turbines, by taking advantage of the recent advances in SVO theory for model invalidation. A simple wind turbine model is presented along with possible faulty scenarios. The FDI algorithm is built on top of the described model, taking into account......Research on wind turbine Operations & Maintenance (O&M) procedures is critical to the expansion of Wind Energy Conversion systems (WEC). In order to reduce O&M costs and increase the lifespan of the turbine, we study the application of Set-Valued Observers (SVO) to the problem of Fault Detection...

  5. A Piecewise Affine Hybrid Systems Approach to Fault Tolerant Satellite Formation Control

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran; Larsen, Jesper Abildgaard; Bak, Thomas

    2008-01-01

    In this paper a procedure for modelling satellite formations   including failure dynamics as a piecewise-affine hybrid system is   shown. The formulation enables recently developed methods and tools   for control and analysis of piecewise-affine systems to be applied   leading to synthesis of fault...... tolerant controllers and analysis of   the system behaviour given possible faults.  The method is   illustrated using a simple example involving two satellites trying   to reach a specific formation despite of actuator faults occurring....

  6. Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System

    Science.gov (United States)

    Braman, Julia M. B.; Murray, Richard M; Wagner, David A.

    2007-01-01

    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.

  7. ONLINE MODEL AND ACTUATOR FAULT TOLERANT CONTROL FOR AUTONOMOUS MOBILE ROBOT

    Institute of Scientific and Technical Information of China (English)

    SONG Qi; JIANG Zhe; HAN Jianda

    2007-01-01

    A novel fault-tolerant adaptive control methodology against the actuator faults is proposed.The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filter (UKF) is employed for online estimation of both the motion states and the AEFs of mobile robot. A square root version of the UKF is introduced to improve efficiency and numerical stability. Using the information from the UKF, the reconfigurable controller is designed automatically based on an enhancement inverse dynamic control (IDC) methodology. The experiment on a 3-DOF omni-directional mobile robot is performed, and the effectiveness of the proposed method is demonstrated.

  8. Distributed Fault-Tolerant Avionic Systems - A Real-Time Perspective

    CERN Document Server

    Burke, Michael

    2010-01-01

    This paper examines the problem of introducing advanced forms of fault-tolerance via reconfiguration into safety-critical avionic systems. This is required to enable increased availability after fault occurrence in distributed integrated avionic systems(compared to static federated systems). The approach taken is to identify a migration path from current architectures to those that incorporate re-configuration to a lesser or greater degree. Other challenges identified include change of the development process; incremental and flexible timing and safety analyses; configurable kernels applicable for safety-critical systems.

  9. Novel active fault-tolerant control scheme and its application to a double inverted pendulum system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On the basis of the gain-scheduled H∞ design strategy,a novel active fault-tolerant control scheme is proposed.Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence,a reconfigurable robust H∞ linear parameter varying controller is developed.The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network.To demonstrate the effectiveness of the proposed method,a double inverted pendulum system,with a fault in the motor tachometer loop,is considered.

  10. Passive fault tolerant control of a double inverted pendulum - a case study

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    A passive fault tolerant control scheme is suggested, in which a nominal controller is augmented with an additional block, which guarantees stability and performance after the occurrence of a fault. The method is based on the YJBK parameterization, which requires the nominal controller to be impl...... to be implemented in observer based form. The proposed method is applied to a double inverted pendulum system, for which an H_inf controller has been designed and verified in a lab setup. In this case study, the fault is a degradation of the tacho loop....

  11. Research on robust fault-tolerant control for networked control system with packet dropout

    Institute of Scientific and Technical Information of China (English)

    Huo Zhihong; Fang Huajing

    2007-01-01

    A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.

  12. Research on fault-tolerant control of networked control systems based on information scheduling

    Institute of Scientific and Technical Information of China (English)

    Huo Zhihong; Zhang Zhixue; Fang Huajing

    2008-01-01

    A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design.Augmented state matrix analysis method is introduced,and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied.The parametric expression of the controller under actuator failures is given.Furthermore,the result is analyzed by simulation tests,which not only satisfies the networked control systems stability,but also decreases the data information number in network channel and makes full use of the network resources.

  13. Fault-tolerant control of linear uncertain systems using H∞ robust predictive control

    Institute of Scientific and Technical Information of China (English)

    Chen Xueqin; Geng Yunhai; Zhang Yingchun; Wang Feng

    2008-01-01

    The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm.

  14. A Piecewise Affine Hybrid Systems Approach to Fault Tolerant Satellite Formation Control

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran; Larsen, Jesper Abildgaard; Bak, Thomas

    2008-01-01

    In this paper a procedure for modelling satellite formations   including failure dynamics as a piecewise-affine hybrid system is   shown. The formulation enables recently developed methods and tools   for control and analysis of piecewise-affine systems to be applied   leading to synthesis of fault...... tolerant controllers and analysis of   the system behaviour given possible faults.  The method is   illustrated using a simple example involving two satellites trying   to reach a specific formation despite of actuator faults occurring....

  15. Fault Diagnosis and Fault Tolerant Control with Application on a Wind Turbine Low Speed Shaft Encoder

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Sardi, Hector Eloy Sanchez; Escobet, Teressa

    2015-01-01

    . This sensor has to be correct as blade pitch actions should be different at different azimuth angle as the wind speed varies within the rotor field due to different phenomena. A scheme detecting faults in this sensor has previously been designed for the application of a high end fault diagnosis and fault...... tolerant control of wind turbines using a benchmark model. In this paper, the fault diagnosis scheme is improved and integrated with a fault accommodation scheme which enables and disables the individual pitch algorithm based on the fault detection. In this way, the blade and tower loads are not increased...

  16. Optimal Heater Control with Technology of Fault Tolerance for Compensating Thermoforming Preheating System

    Directory of Open Access Journals (Sweden)

    Zhen-Zhe Li

    2015-01-01

    Full Text Available The adjustment of heater power is very important because the distribution of thickness strongly depends on the distribution of sheet temperature. In this paper, the steady state optimum distribution of heater power is searched by numerical optimization in order to get uniform sheet temperature. In the following step, optimal heater power distribution with a damaged heater was found out using the technology of fault tolerance, which will be used to reduce the repairing time when some heaters are damaged. The merit of this work is that the design variable was the power of each heater which can be directly used in the preheating process of thermoforming.

  17. Energy-Efficient Fault-Tolerant Dynamic Event Region Detection in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Enemark, Hans-Jacob; Zhang, Yue; Dragoni, Nicola

    2015-01-01

    Fault-tolerant event detection is fundamental to wireless sensor network applications. Existing approaches usually adopt neighborhood collaboration for better detection accuracy, while need more energy consumption due to communication. Focusing on energy efficiency, this paper makes an improvement...... its detection decision based on decisions received from its spatial and temporal neighbors, to local non-communicative decision making. The simulation results demonstrate that the improved algorithm does not degrade the detection accuracy of the original algorithm, while it has better energy...... efficiency with the number of messages exchanged in the network decreased....

  18. Plan for the Characterization of HIRF Effects on a Fault-Tolerant Computer Communication System

    Science.gov (United States)

    Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; Koppen, Sandra V.

    2008-01-01

    This report presents the plan for the characterization of the effects of high intensity radiated fields on a prototype implementation of a fault-tolerant data communication system. Various configurations of the communication system will be tested. The prototype system is implemented using off-the-shelf devices. The system will be tested in a closed-loop configuration with extensive real-time monitoring. This test is intended to generate data suitable for the design of avionics health management systems, as well as redundancy management mechanisms and policies for robust distributed processing architectures.

  19. Imprecise Computation Based Real-time Fault Tolerant Implementation for Model Predictive Control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC,according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.

  20. 2009 fault tolerance for extreme-scale computing workshop, Albuquerque, NM - March 19-20, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D. S.; Daly, J.; DeBardeleben, N.; Elnozahy, M.; Kramer, B.; Lathrop, S.; Nystrom, N.; Milfeld, K.; Sanielevici, S.; Scott, S.; Votta, L.; Louisiana State Univ.; Center for Exceptional Computing; LANL; IBM; Univ. of Illinois; Shodor Foundation; Pittsburgh Supercomputer Center; Texas Advanced Computing Center; ORNL; Sun Microsystems

    2009-02-01

    This is a report on the third in a series of petascale workshops co-sponsored by Blue Waters and TeraGrid to address challenges and opportunities for making effective use of emerging extreme-scale computing. This workshop was held to discuss fault tolerance on large systems for running large, possibly long-running applications. The main point of the workshop was to have systems people, middleware people (including fault-tolerance experts), and applications people talk about the issues and figure out what needs to be done, mostly at the middleware and application levels, to run such applications on the emerging petascale systems, without having faults cause large numbers of application failures. The workshop found that there is considerable interest in fault tolerance, resilience, and reliability of high-performance computing (HPC) systems in general, at all levels of HPC. The only way to recover from faults is through the use of some redundancy, either in space or in time. Redundancy in time, in the form of writing checkpoints to disk and restarting at the most recent checkpoint after a fault that cause an application to crash/halt, is the most common tool used in applications today, but there are questions about how long this can continue to be a good solution as systems and memories grow faster than I/O bandwidth to disk. There is interest in both modifications to this, such as checkpoints to memory, partial checkpoints, and message logging, and alternative ideas, such as in-memory recovery using residues. We believe that systematic exploration of these ideas holds the most promise for the scientific applications community. Fault tolerance has been an issue of discussion in the HPC community for at least the past 10 years; but much like other issues, the community has managed to put off addressing it during this period. There is a growing recognition that as systems continue to grow to petascale and beyond, the field is approaching the point where we don

  1. Low-Cost Fault Tolerant Methodology for Real Time MPSoC Based Embedded System

    Directory of Open Access Journals (Sweden)

    Mohsin Amin

    2014-01-01

    Full Text Available We are proposing a design methodology for a fault tolerant homogeneous MPSoC having additional design objectives that include low hardware overhead and performance. We have implemented three different FT methodologies on MPSoCs and compared them against the defined constraints. The comparison of these FT methodologies is carried out by modelling their architectures in VHDL-RTL, on Spartan 3 FPGA. The results obtained through simulations helped us to identify the most relevant scheme in terms of the given design constraints.

  2. Trojan horse attack free fault-tolerant quantum key distribution protocols

    Science.gov (United States)

    Yang, Chun-Wei; Hwang, Tzonelih

    2013-11-01

    This work proposes two quantum key distribution (QKD) protocols—each of which is robust under one kind of collective noises—collective-dephasing noise and collective-rotation noise. Due to the use of a new coding function which produces error-robust codewords allowing one-time transmission of quanta, the proposed QKD schemes are fault-tolerant and congenitally free from Trojan horse attacks without having to use any extra hardware. Moreover, by adopting two Bell state measurements instead of a 4-GHZ state joint measurement for decoding, the proposed protocols are practical in combating collective noises.

  3. Summarize of Electric Vehicle Electric System Fault and Fault-tolerant Technology

    Directory of Open Access Journals (Sweden)

    Zhang Liwei

    2013-09-01

    Full Text Available Electric vehicle drive system is a multi-variable function, running environment complexed and changeable system, so it’s failure form is complicated. In this paper, according to the fault happens in different position, establish vehicle fault table, analyze the consequences of failure may cause and the causes of failure. Combined with hardware limitations, and the maximum guarantee system performance requirements, passive software redundancy fault-tolerant strategy is put forward, give an example to analysis the pros and cons of this method.

  4. Fault-tolerant quantum random-number generator certified by Majorana fermions

    Science.gov (United States)

    Deng, Dong-Ling; Duan, Lu-Ming

    2013-07-01

    Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for the implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a perspective to apply Majorana fermions for the robust generation of certified random numbers, which has important applications in cryptography and other related areas.

  5. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  6. Energy-Efficient Deterministic Fault-Tolerant Scheduling for Embedded Real-Time Systems

    Institute of Scientific and Technical Information of China (English)

    LI Guo-hui; HU Fang-xiao; DU Xiao-kun; TANG Xiang-hong

    2009-01-01

    By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The schedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT+EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.

  7. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers

    Science.gov (United States)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2016-05-01

    Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.

  8. Evaluation of Simple Causal Message Logging for Large-Scale Fault Tolerant HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; Meneses, E; Kale, L V

    2011-02-25

    The era of petascale computing brought machines with hundreds of thousands of processors. The next generation of exascale supercomputers will make available clusters with millions of processors. In those machines, mean time between failures will range from a few minutes to few tens of minutes, making the crash of a processor the common case, instead of a rarity. Parallel applications running on those large machines will need to simultaneously survive crashes and maintain high productivity. To achieve that, fault tolerance techniques will have to go beyond checkpoint/restart, which requires all processors to roll back in case of a failure. Incorporating some form of message logging will provide a framework where only a subset of processors are rolled back after a crash. In this paper, we discuss why a simple causal message logging protocol seems a promising alternative to provide fault tolerance in large supercomputers. As opposed to pessimistic message logging, it has low latency overhead, especially in collective communication operations. Besides, it saves messages when more than one thread is running per processor. Finally, we demonstrate that a simple causal message logging protocol has a faster recovery and a low performance penalty when compared to checkpoint/restart. Running NAS Parallel Benchmarks (CG, MG and BT) on 1024 processors, simple causal message logging has a latency overhead below 5%.

  9. Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Lifflander, Jonathan; Meneses, Esteban; Menon, Harshita; Miller, Phil; Krishnamoorthy, Sriram; Kale, Laxmikant

    2014-09-22

    Deterministic replay of a parallel application is commonly used for discovering bugs or to recover from a hard fault with message-logging fault tolerance. For message passing programs, a major source of overhead during forward execution is recording the order in which messages are sent and received. During replay, this ordering must be used to deterministically reproduce the execution. Previous work in replay algorithms often makes minimal assumptions about the programming model and application in order to maintain generality. However, in many cases, only a partial order must be recorded due to determinism intrinsic in the code, ordering constraints imposed by the execution model, and events that are commutative (their relative execution order during replay does not need to be reproduced exactly). In this paper, we present a novel algebraic framework for reasoning about the minimum dependencies required to represent the partial order for different concurrent orderings and interleavings. By exploiting this theory, we improve on an existing scalable message-logging fault tolerance scheme. The improved scheme scales to 131,072 cores on an IBM BlueGene/P with up to 2x lower overhead than one that records a total order.

  10. Active fault tolerant control of piecewise affine systems with reference tracking and input constraints

    DEFF Research Database (Denmark)

    Gholami, M.; Cocquempot, V.; Schiøler, H.

    2014-01-01

    An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... the reference signal while the control inputs are bounded. The PFTC problem is transformed into a feasibility problem of a set of LMIs. The method is applied on a large-scale live-stock ventilation model.......An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault-free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive...

  11. Performance analysis of a dependable scheduling strategy based on a fault-tolerant grid model

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanzhuo; LIN Chuang; YANG Yang; SHAN Zhiguang

    2007-01-01

    The grid provides an integrated computer platform composed of differentiated and distributed systems.These resources are dynamic and heterogeneous.In this paper,a novel fault-tolerant grid-scheduling model is pre sented based on Stochastic Petri Nets (SPN) to assure the heterogeneity and dynamism of the grid system.Also,a new grid-scheduling strategy,the dependable strategy for the shortest expected accomplishing time (DSEAT),is put forward,in which the dependability factor is introduced in the task-dispatching strategy.In the end,the performance of the scheduling strategy based on the fault-tolerant gridscheduling model is analyzed by an software package,named SPNP.The numerical results show that dynamic resources will increase the response time for all classes of tasks in differing degrees.Compared with shortest expected accomplishing time (SEAT) strategy,the DSEAT strategy can reduce the negative effects of dynamic and autonomic resources to some extent so as to guarantee a high quality of service (QoS).

  12. A Fault-tolerable Control Scheme for an Open-frame Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Huang Hai

    2014-05-01

    Full Text Available Open-frame is one of the major types of structures of Remote Operated Vehicles (ROV because it is easy to place sensors and operations equipment on- board. Firstly, this paper designed a petri-based recurrent neural network (PRFNN to improve the robustness with response to nonlinear characteristics and strong disturbance of an open-frame underwater vehicle. A threshold has been set in the third layer to reduce the amount of calculations and regulate the training process. The whole network convergence is guaranteed with the selection of learning rate parameters. Secondly, a fault tolerance control (FTC scheme is established with the optimal allocation of thrust. Infinity-norm optimization has been combined with 2-norm optimization to construct a bi-criteria primal-dual neural network FTC scheme. In the experiments and simulation, PRFNN outperformed fuzzy neural networks in motion control, while bi-criteria optimization outperformed 2-norm optimization in FTC, which demonstrates that the FTC controller can improve computational efficiency, reduce control errors, and implement fault tolerable thrust allocation.

  13. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    Science.gov (United States)

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic.

  14. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    Science.gov (United States)

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed

    2015-07-01

    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework.

  15. Fault-tolerant Control of Discrete-time LPV systems using Virtual Actuators and Sensors

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Stoustrup, Jakob; Bak, Thomas

    2015-01-01

    This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying (LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal without re-designing the nominal controller by inserting a reconfiguration block between th....... Finally, the effectiveness of the method is demonstrated via a numerical example and stator current control of an induction motor.......This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying (LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal without re-designing the nominal controller by inserting a reconfiguration block between......, it transforms the output of the controller for the faulty system such that the stability and performance goals are preserved. Input-to-state stabilizing LPV gains of the virtual actuator and sensor are obtained by solving linear matrix inequalities (LMIs). We show that separate design of these gains guarantees...

  16. Fault-Tolerant Scheduling for Real-Time Embedded Control Systems

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Yang; Geert Deconinck; Wei-Hua Gui

    2004-01-01

    With the increasing complexity of industrial application, an embedded control system (ECS) requires processing a number of hard real-time tasks and needs fault-tolerance to assure high reliability. Considering the characteristics of real-time tasks in ECS, an integrated algorithm is proposed to schedule real-time tasks and to guarantee that all real-time tasks are completed before their deadlines even in the presence of faults. Based on the nonpreemptive critical-section protocol (NCSP), this paper analyzes the blocking time introduced by resource conflicts of relevancy tasks in fault-tolerant multiprocessor systems. An extended schedulability condition is presented to check the assignment feasibility of a given task to a processor. A primary/backup approach and on-line replacement of failed processors are used to tolerate processor failures. The analysis reveals that the integrated algorithm bounds the blocking time, requires limited overhead on the number of processors, and still assures good processor utilization. This is also demonstrated by simulation results. Both analysis and simulation show the effectiveness of the proposed algorithm in ECS.

  17. Fault-tolerant design of local controller for the poloidal field converter control system on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jun; Fu, Peng; Gao, Ge; He, Shiying; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Zhu, Lili; Chen, Xiaojiao

    2016-11-15

    Highlights: • The requirements on the Local Control Cubicles (LCC) for ITER Poloidal Field Converter are analyzed. • Decoupled service-based software architecture is proposed to make control loops on LCC running at varying cycle-time. • Fault detection and recovery methods for the LCC are developed to enhance the system. • The performance of the LCC with or without fault-tolerant feature is tested and compared. - Abstract: The control system for the Poloidal Field (PF) on ITER is a synchronously networked control system, which has several kinds of computational controllers. The Local Control Cubicles (LCC) play a critical role in the networked control system for they are the interface to all input and output signals. Thus, some additional work must be done to guarantee the LCCs proper operation under influence of faults. This paper mainly analyzes the system demands of the LCCs and faults which have been encountered recently. In order to handle these faults, decoupled service-based software architecture has been proposed. Based on this architecture, fault detection and system recovery methods, such as redundancy and rejuvenation, have been incorporated to achieve a fault-tolerant private network with the aid of QNX operating system. Unlike the conventional method, this method requires no additional hardware and can be achieved relatively easily. To demonstrate effectiveness the LCCs have been successfully tested during the recent PF Converter Unit performance tests for ITER.

  18. An Efficient Fault Tolerance System Design for Cmos/Nanodevice Digital Memories

    Directory of Open Access Journals (Sweden)

    D. Kavitha

    2014-11-01

    Full Text Available Targeting on the future fault-prone hybrid CMOS/Nanodevice digital memories, this paper present two faulttolerance design approaches the integrally address the tolerance for defect and transient faults. These two approaches share several key features, including the use of a group of Bose-Chaudhuri- Hocquenghem (BCH codes for both defect tolerance and transient fault tolerance, and integration of BCH code selection and dynamic logical-to-physical address mapping. Thus, a new model of BCH decoder is proposed to reduce the area and simplify the computational scheduling of both syndrome and chien search blocks without parallelism leading to high throughput.The goal of fault tolerant computing is improve the dependability of systems where dependability can be defined as the ability of a system to deliver service at an acceptable level of confidence in either presence or absence falult.ss The results of the simulation and implementation using Xilinx ISE software and the LCD screen on the FPGA’s Board will be shown at last.

  19. Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Parmeet Kaur Jaggi

    2015-10-01

    Full Text Available Mobile ad hoc networks (MANETs have significantly enhanced the wireless networks by eliminating the need for any fixed infrastructure. Hence, these are increasingly being used for expanding the computing capacity of existing networks or for implementation of autonomous mobile computing Grids. However, the fragile nature of MANETs makes the constituent nodes susceptible to failures and the computing potential of these networks can be utilized only if they are fault tolerant. The technique of checkpointing based rollback recovery has been used effectively for fault tolerance in static and cellular mobile systems; yet, the implementation of existing protocols for MANETs is not straightforward. The paper presents a novel rollback recovery protocol for handling the failures of mobile nodes in a MANET using checkpointing and sender based message logging. The proposed protocol utilizes the routing protocol existing in the network for implementing a low overhead recovery mechanism. The presented recovery procedure at a node is completely domino-free and asynchronous. The protocol is resilient to the dynamic characteristics of the MANET; allowing a distributed application to be executed independently without access to any wired Grid or cellular network access points. We also present an algorithm to record a consistent global snapshot of the MANET.

  20. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    Science.gov (United States)

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.

  1. A multiobjective scatter search algorithm for fault-tolerant NoC mapping optimisation

    Science.gov (United States)

    Le, Qianqi; Yang, Guowu; Hung, William N. N.; Zhang, Xinpeng; Fan, Fuyou

    2014-08-01

    Mapping IP cores to an on-chip network is an important step in Network-on-Chip (NoC) design and affects the performance of NoC systems. A mapping optimisation algorithm and a fault-tolerant mechanism are proposed in this article. The fault-tolerant mechanism and the corresponding routing algorithm can recover NoC communication from switch failures, while preserving high performance. The mapping optimisation algorithm is based on scatter search (SS), which is an intelligent algorithm with a powerful combinatorial search ability. To meet the requests of the NoC mapping application, the standard SS is improved for multiple objective optimisation. This method helps to obtain high-performance mapping layouts. The proposed algorithm was implemented on the Embedded Systems Synthesis Benchmarks Suite (E3S). Experimental results show that this optimisation algorithm achieves low-power consumption, little communication time, balanced link load and high reliability, compared to particle swarm optimisation and genetic algorithm.

  2. Fault-Tolerant Quantum Error Correction for non-Abelian Anyons

    Science.gov (United States)

    Dauphinais, Guillaume; Poulin, David

    2017-07-01

    While topological quantum computation is intrinsically fault-tolerant at zero temperature, it loses its topological protection at any finite temperature. We present a scheme to protect the information stored in a system supporting non-cyclic anyons against thermal and measurement errors. The correction procedure builds on the work of Gács (J Comput Syst Sci 32:15-78, 1986. doi: 10.1145/800061.808730) and Harrington (Analysis of quantum error-correcting codes: symplectic lattice codes and toric code, 2004) and operates as a local cellular automaton. In contrast to previously studied schemes, our scheme is valid for both abelian and non-abelian anyons and accounts for measurement errors. We analytically prove the existence of a fault-tolerant threshold for a certain class of non-Abelian anyon models, and numerically simulate the procedure for the specific example of Ising anyons. The result of our simulations are consistent with a threshold between {10^{-4}} and {10^{-3}}.

  3. Fault Tolerant Mechanism for Multimedia Flows in Wireless Ad Hoc Networks Based on Fast Switching Paths

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.

  4. Fault-Tolerant Wormhole Routing with 2 Virtual Channels in Meshes

    Institute of Scientific and Technical Information of China (English)

    Ji-Peng Zhou

    2005-01-01

    In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none of them,however, is capable of handling two convex fault regions with distance two by using only two virtual networks. In this paper, a fault-tolerant wormhole routing algorithm is presented to tolerate the disjointed convex faulty regions with distance two or no less, which do not contain any nonfaulty nodes and do not prohibit any routing as long as nodes outside faulty regions are connected in the mesh network. The processors' overlapping along the boundaries of different fault regions is allowed. The proposed algorithm, which routes the messages by X-Y routing algorithm in fault-free region, can tolerate convex fault-connected regions with only two virtual channels per physical channel, and is deadlock- and livelock-free. The proposed algorithm can be easily extended to adaptive routing.

  5. Fault Tolerant Architecture For A Fly-By-Light Flight Control Computer

    Science.gov (United States)

    Thompson, Kevin; Stipanovich, John; Smith, Brian; Reddy, Mahesh C.

    1990-02-01

    The next generation of flight control computers will utilize fiber optic technology to produce a fly-by-light flight control system. Optical transducers and optical fibers will take the place of electrical position transducers and wires, torsion bars, bell cranks, and cables. Applications for this fly-by-light technology include space launch vehicles, upperstages, space-craft, and commercial/military aircraft. Optical fibers are lighter than mechanical transmission media and unlike conven-tional wire transmissions are not susceptible to electromagnetic interference (EMI) and high energy emission sources. This paper will give an overview of a fault tolerant In-Line Monitored optical flight control system being developed at Boeing Aerospace & Electronics in Seattle, Washington. This system uses passive transducers with fiber optic interconnections which hold promises to virtually eliminate EMI threats to flight control system performance and flight safety and also provide significant weight savings. The main emphasis of this paper will be the In-Line Monitored architecture of the optical transducer system required for use in a fault tolerant flight control system.

  6. Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Zhao; Xiong, Naixue; Huang, Yannong; Xu, Degang; Hu, Chunyang

    2015-11-06

    The services composition technology provides flexible methods for building service composition applications (SCAs) in wireless sensor networks (WSNs). The high reliability and high performance of SCAs help services composition technology promote the practical application of WSNs. The optimization methods for reliability and performance used for traditional software systems are mostly based on the instantiations of software components, which are inapplicable and inefficient in the ever-changing SCAs in WSNs. In this paper, we consider the SCAs with fault tolerance in WSNs. Based on a Universal Generating Function (UGF) we propose a reliability and performance model of SCAs in WSNs, which generalizes a redundancy optimization problem to a multi-state system. Based on this model, an efficient optimization algorithm for reliability and performance of SCAs in WSNs is developed based on a Genetic Algorithm (GA) to find the optimal structure of SCAs with fault-tolerance in WSNs. In order to examine the feasibility of our algorithm, we have evaluated the performance. Furthermore, the interrelationships between the reliability, performance and cost are investigated. In addition, a distinct approach to determine the most suitable parameters in the suggested algorithm is proposed.

  7. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  8. Study of a unified hardware and software fault-tolerant architecture

    Science.gov (United States)

    Lala, Jaynarayan; Alger, Linda; Friend, Steven; Greeley, Gregory; Sacco, Stephen; Adams, Stuart

    1989-01-01

    A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified.

  9. A Fault-tolerable Control Scheme for an Open-frame Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Huang Hai

    2014-05-01

    Full Text Available Open-frame is one of the major types of structures of Remote Operated Vehicles (ROV because it is easy to place sensors and operations equipment onboard. Firstly, this paper designed a petri-based recurrent neural network (PRFNN to improve the robustness with response to nonlinear characteristics and strong disturbance of an open-frame underwater vehicle. A threshold has been set in the third layer to reduce the amount of calculations and regulate the training process. The whole network convergence is guaranteed with the selection of learning rate parameters. Secondly, a fault tolerance control (FTC scheme is established with the optimal allocation of thrust. Infinity-norm optimization has been combined with 2-norm optimization to construct a bi-criteria primal-dual neural network FTC scheme. In the experiments and simulation, PRFNN outperformed fuzzy neural networks in motion control, while bi-criteria optimization outperformed 2-norm optimization in FTC, which demonstrates that the FTC controller can improve computational efficiency, reduce control errors, and implement fault tolerable thrust allocation.

  10. Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory

    Directory of Open Access Journals (Sweden)

    Merheb Abdel-Razzak

    2015-09-01

    Full Text Available Abstract In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV quadrotor. In the first approach, a regular sliding mode controller (SMC augmented with an integrator uses the robustness property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling the velocity system. Tuning the controllers to find the optimal values of the sliding mode controller gains is made using the ecological systems algorithm (ESA, a biologically inspired stochastic search algorithm based on the natural equilibrium of animal species. The controllers are tested using SIMULINK in the presence of two different types of actuator faults, partial loss of motor power affecting all the motors at once, and partial loss of motor speed. Results of the quadrotor following a continuous path demonstrated the effectiveness of the controllers, which are able to tolerate a significant number of actuator faults despite the lack of hardware redundancy in the quadrotor system. Tuning the controller using a faulty system improves further its ability to afford more severe faults. Simulation results show that passive schemes reserve their important role in fault tolerant control and are complementary to active techniques

  11. Relaxed fault-tolerant hardware implementation of neural networks in the presence of multiple transient errors.

    Science.gov (United States)

    Mahdiani, Hamid Reza; Fakhraie, Sied Mehdi; Lucas, Caro

    2012-08-01

    Reliability should be identified as the most important challenge in future nano-scale very large scale integration (VLSI) implementation technologies for the development of complex integrated systems. Normally, fault tolerance (FT) in a conventional system is achieved by increasing its redundancy, which also implies higher implementation costs and lower performance that sometimes makes it even infeasible. In contrast to custom approaches, a new class of applications is categorized in this paper, which is inherently capable of absorbing some degrees of vulnerability and providing FT based on their natural properties. Neural networks are good indicators of imprecision-tolerant applications. We have also proposed a new class of FT techniques called relaxed fault-tolerant (RFT) techniques which are developed for VLSI implementation of imprecision-tolerant applications. The main advantage of RFT techniques with respect to traditional FT solutions is that they exploit inherent FT of different applications to reduce their implementation costs while improving their performance. To show the applicability as well as the efficiency of the RFT method, the experimental results for implementation of a face-recognition computationally intensive neural network and its corresponding RFT realization are presented in this paper. The results demonstrate promising higher performance of artificial neural network VLSI solutions for complex applications in faulty nano-scale implementation environments.

  12. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    Science.gov (United States)

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  13. Massive Sensor Array Fault Tolerance: Tolerance Mechanism and Fault Injection for Validation

    Directory of Open Access Journals (Sweden)

    Dugan Um

    2010-01-01

    Full Text Available As today's machines become increasingly complex in order to handle intricate tasks, the number of sensors must increase for intelligent operations. Given the large number of sensors, detecting, isolating, and then tolerating faulty sensors is especially important. In this paper, we propose fault tolerance architecture suitable for a massive sensor array often found in highly advanced systems such as autonomous robots. One example is the sensitive skin, a type of massive sensor array. The objective of the sensitive skin is autonomous guidance of machines in unknown environments, requiring elongated operations in a remote site. The entirety of such a system needs to be able to work remotely without human attendance for an extended period of time. To that end, we propose a fault-tolerant architecture whereby component and analytical redundancies are integrated cohesively for effective failure tolerance of a massive array type sensor or sensor system. In addition, we discuss the evaluation results of the proposed tolerance scheme by means of fault injection and validation analysis as a measure of system reliability and performance.

  14. An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes

    Institute of Scientific and Technical Information of China (English)

    WANG Limin; CHEN Xi; GAO Furong

    2013-01-01

    Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry,a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures.This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC).A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences.For the convenience of implementation,only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control,consisting of dynamic output feedback plus feed-forward control.The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures.Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs),and design procedures,which formulate a convex optimization problem with LMI constraints,are presented.An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.

  15. A Multiconstrained Grid Scheduling Algorithm with Load Balancing and Fault Tolerance.

    Science.gov (United States)

    Keerthika, P; Suresh, P

    2015-01-01

    Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user's deadline, and resource failure. This work attempts to design a resource allocation algorithm which is budget constrained and also targets load balancing, fault tolerance, and user satisfaction by considering the above requirements. The proposed Multiconstrained Load Balancing Fault Tolerant algorithm (MLFT) reduces the schedule makespan, schedule cost, and task failure rate and improves resource utilization. The proposed MLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent algorithms which separately concentrate on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.

  16. A Multiconstrained Grid Scheduling Algorithm with Load Balancing and Fault Tolerance

    Directory of Open Access Journals (Sweden)

    P. Keerthika

    2015-01-01

    Full Text Available Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline, and resource failure. This work attempts to design a resource allocation algorithm which is budget constrained and also targets load balancing, fault tolerance, and user satisfaction by considering the above requirements. The proposed Multiconstrained Load Balancing Fault Tolerant algorithm (MLFT reduces the schedule makespan, schedule cost, and task failure rate and improves resource utilization. The proposed MLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent algorithms which separately concentrate on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.

  17. Fault diagnosis and fault-tolerant control strategies for non-linear systems analytical and soft computing approaches

    CERN Document Server

    Witczak, Marcin

    2014-01-01

      This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science,as well as mechanical and chemical engineering.

  18. Adaptive fault-tolerant control of linear time-invariant systems in the presence of actuator saturation

    Institute of Scientific and Technical Information of China (English)

    Wei GUAN; Guanghong YANG

    2009-01-01

    This paper studies the problem of designing adaptive fault-tolerant controllers for linear time-invariant systems with actuator saturation.New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations.Based on the on-line estimation of eventual faults,the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems.The designs are developed in the framework of linear matrix inequality (LMI) approach,which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures.Two examples are given to illustrate the effectiveness of the design method.

  19. Synthesis of Fault-Tolerant Schedules with Transparency/Performance Trade-offs for Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru;

    2006-01-01

    In this paper we present an approach to the scheduling of fault-tolerant embedded systems for safety-critical applications. Processes and messages are statically scheduled, and we use process re-execution for recovering from multiple transient faults. If process recovery is performed such that th...... process graph, where the fault occurrence information is represented as conditional edges and the transparent recovery is captured using synchronization nodes.......In this paper we present an approach to the scheduling of fault-tolerant embedded systems for safety-critical applications. Processes and messages are statically scheduled, and we use process re-execution for recovering from multiple transient faults. If process recovery is performed...... such that the operation of other processes is not affected, we call it transparent recovery. Although transparent recovery has the advantages of fault containment, improved debugability and less memory needed to store the fault-tolerant schedules, it will introduce delays that can violate the timing constraints...

  20. 41 CFR 109-40.112 - Transportation factors in the location of Government facilities.

    Science.gov (United States)

    2010-07-01

    ... in the location of Government facilities. 109-40.112 Section 109-40.112 Public Contracts and Property... 40.1-General Provision § 109-40.112 Transportation factors in the location of Government facilities... prior to the selection of new site locations and during the planning and construction phases in the...